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1 Introduction

Search theory contributes significantly to fundamental and applied research in

economics, and is relevant for understanding many phenomena that are trouble-

some for classical theory. Examples include the coexistence of unemployment

and vacancies; price or wage dispersion and stickiness; bid-ask spreads; the diffi-

culties of bilateral trade that generate a role for money and related institutions;

partnership formation; and long and variable durations in the time to execute

trades in labor, housing and other markets. This essay surveys, consolidates and

extends a relatively recent and, we think, a particularly interesting branch of the

field called directed, or competitive, search.1

Consider any two-sided market with, e.g., buyers and sellers, firms and work-

ers, borrowers and lenders, or men and women. They are trying to get together,

usually in pairs, but sometimes multilaterally. Traditional search theory typically

assumes the agents meet bilaterally and at random, although whether a meeting

results in matching (trading or forming a relationship) can be endogenous, es-

pecially when there is heterogeneity. Directed search is different because agents

have information to target their search towards particular types, or sometimes

particular individuals, in the market. Moreover, traditional search models usually

assume the terms of trade are determined by bargaining, or some related mecha-

nism, after agents meet. Competitive search is again different because the terms

of trade — prices, or more generally, contracts or mechanisms — are announced or

posted in advance to attract agents on the other side of the market.

The label competitive search here means models with two characteristics: (a)

the terms of trade are posted by agents in advance of meetings; and (b) these

1Here is a more or less random sample of the older literature on random search: On goods

markets, see Burdett and Judd (1983), Rubinstein and Wolinsky (1987), Shi (1995) or Trejos

and Wright (1995). On labor, see Mortensen and Pissarides (1994), Burdett and Mortensen

(1998) or Pissarides (2000). On marriage, see Mortensen (1988), Burdett and Coles (1997) or

Shimer and Smith (2000). These models can have either bargaining or price/wage posting, but

posted terms do not attract counterparties as they do with directed search. The rest of this

essay goes into considerable detail on how this matters.
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terms direct search and hence help determine who meets whom.2 As well as being

a different philosophical approach to the study of markets, the combination of

posting and directed search makes a substantial difference for substantive issues.

In particular, posted prices have an allocative role, giving agents incentives to

seek out particular counterparties, and this often leads to efficiency (it is some-

times said the models internalize search externalities). In addition, posting entails

commitment, and this circumvents holdup problems with bargaining — which is

not to say that bargaining is uninteresting, but it is good to consider alternatives.

From another perspective, models with the characteristics (a) and (b) can dis-

pense with some exogenous features from traditional search: they typically avoid

having to specify a bargaining solution; and some of the models, but not all,

avoid the need for a matching function. Moreover, the theory is tractable, often

delivers cleaner results than alternatives, and bridges gaps between traditional

search, general equilibrium and game theory.

The approach is also arguably realistic. As Howitt (2005) says, “In contrast to

what happens in [random] search models, exchanges in actual market economies

are organized by specialist traders, who mitigate search costs by providing facil-

ities that are easy to locate. Thus when people wish to buy shoes they go to a

shoe store; when hungry they go to a grocer; when desiring to sell their labor

services they go to firms known to offer employment. Few people would think of

planning their economic lives on the basis of random encounters.” While realism

is not a unique desideratum, one could say he has a point. Even more color-

fully, Hahn (1987) says, “someone wishing to exchange his house goes to estate

agents or advertises — he does not, like some crazed particle, wait to bump into

a buyer.” And Prescott (2005) says “I think the bilateral monopoly problem has

2While not the first models in this class, as evidenced by Peters (1984,1991), Montgomery

(1991) and other work discussed below, Moen (1997) and Shimer (1996) started a take-off

phase in especially applied research, and they use the language in this way. The working

papers were both 1995, as was the original version of Mortensen and Wright (2002), who

according to Shimer (1996) “coined the phrase competitive search equilibrium.” While we like

this terminology, another meaning of the competitive search label is discussed below.
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been solved. There are stores that compete. I know where the drug store and the

supermarket are, and I take their posted prices as given. If some supermarket

offers the same quality of services and charges lower prices, I shop at that lower

price supermarket.” Whether or not they realize it, these commentators are all

more or less describing directed/competitive search.

There is another use for the competitive search label.3 Research in the area

often makes a concerted effort to analyze strategic aspects of markets with finite

numbers of agents. One can show in several settings that, as these numbers

get large, strategic considerations vanish. Sometimes a competitive search model

means a limiting large economy, in the same sense a competitive Walrasian model

means the set of traders is big enough to reasonably posit price taking. We

present large markets, finite markets and limiting results. The limiting results

are nice because we often have intuition about markets becoming competitive

when the set of agents is large, but formalizing this can be difficult (see Gale 2000

and references therein). Directed search cleanly demonstrates the idea despite

being far from Walrasian in the following sense: frictions take center stage, even

when the set of agents is large. In particular, some sellers can have few or no

customers, while others have more than they can handle, leading to rationing,

unsold inventories, the coexistence of vacancies and unemployment, etc.

The theory captures a simple yet powerful idea: if you post more favorable

terms customers come to you with higher probability, but not necessarily prob-

ability 1, due to capacity issues. If a restaurant only has a certain number of

tables, or a firm only wants to hire a certain number of workers, it may not be

smart to go where everyone else goes. Agents on both sides of the market face

thus a trade off between prices and probabilities. While the theory, like general

equilibrium theory, is concerned with the operation and efficiency of markets, it

goes further by pricing not only quantities but also the time required to trade.

This often delivers unique outcomes with remarkable efficiency properties, in con-

3We think this usage goes back to Peters (1994), in spirit, although to be precise he called

it “competitive matching equilibrium.”
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trast to traditional search theory, which is typically rife with inefficiencies. Yet

competitive search can also accommodate complications, like private information

or liquidity frictions, that may lead to multiplicity or inefficiency.

Section 2 begins with one-period models to convey the basic insights. Two

versions are presented, one framed in terms of labor and the other in terms of

goods markets, because, even though they are basically re-labelings, the economic

interpretations and applications are different. Here we also introduce tools like

matching technologies, and analyze efficiency as well as comparative statics. Sec-

tion 3 embeds the market in dynamic general equilibrium to discuss phenomena

such as price dispersion and stickiness, as well as on-the-job search. Section 4

presents applications in monetary economics in environments with indivisible as-

sets, which are crude yet allow one to make important points relatively easily,

and in more modern versions with divisible assets. Here the framework is natural,

tractable, and complements nicely random search models of money and credit.

While Sections 2-4 start with large numbers of agents, Section 5 goes deeper

into microfoundations by starting with finite markets, which imparts addition

insights, then considers limits when the numbers become large. Among other

reasons, this is useful because it makes clear how the relevant equilibrium con-

cept relates subgame perfection. Section 6 goes into detail on heterogeneity and

sorting by asking, who matches/trades with whom? Section 7 takes up private

information, where directed search has recently proved rather useful. Section 8

expands on how agents meet and the implications for mechanism design. Sec-

tion 9 covers miscellaneous other topics, including empirical evidence. Section

10 concludes. Appendices provide useful technical material that is hard to find

elsewhere. In terms of style, we provide details for a few benchmark models, then

discuss more or less formally extensions and applications in the literature, plus

unsolved problems and directions for future research.4

4While there is no previous survey on directed search, surveys on other topics — including

labor, money and housing — touch on it; see King (2003), Rogerson et al. (2005), Shi (2008),

Han and Strange (2015) and Lagos et al. (2016).
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2 Benchmark Models

We begin with a canonical competitive search model, with only one period, ap-

plied first to goods markets then to labor markets.

2.1 Goods Markets

There are large numbers of two types of agents called buyers and sellers, with

measures  and , and  =  denotes the population buyer-seller ratio.

One can think of buyers as households, or consumers, and sellers as retailers, but

other interpretations are possible (e.g., producers buying inputs from suppliers).

There are two tradable objects. There is an indivisible good , and sellers can

produce exactly one unit at cost  ≥ 0, while buyers want to consume exactly
one unit for utility   ; and there is a divisible good  that anyone can produce

at cost () =  and consume for utility  () = . This means there are gains

from trade in , while  serves as a payment instrument buyers use to compensate

sellers for their output. This can be interpreted as direct barter; more typically

in the literature it is called transferable utility.5

For now each seller posts a price , the amount of  buyers must pay to get ;

later sellers may post something more complicated. Each buyer directs his search

after observing all posted prices (all we really need is that each buyer observes

at least two; see Acemoglu and Autor 2016,Theorem 13.4). For now, traders

meet pairwise. In particular, suppose a set of buyers with measure  direct their

search toward a set of sellers with measure . Then the probability a seller meets

a buyer is  =  (), where  =  is the buyer/seller ratio, also called the

queue length or market tightness. Similarly, the probability a buyer meets a seller

5Sometimes  is called money or numeraire, but these are abuses of language we cannot

condone. It is obviously not money in a serious sense. It is also not a numeraire, which is

a good with price normalized to 1 in the Walrasian budget equation. There is no numeraire

in standard search models, which do not actually have budget equations. Below we present

models that explicitly incorporate numeraire goods and money. The interpretation here, where

buyers produce and sellers consume a good, with linear cost and utility, respectively, describes

an internally consistent environment; it does not justify calling  numeraire or money.
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is  =  () . As is standard, assume  =  () is increasing and concave.

Some people also assume  =  ()  is decreasing, although that is automatic

when  () is increasing and concave, given the natural restriction  (0) = 0. In

static models or discrete-time dynamics  and  are probabilities, so we impose

0 ≤  ≤ 1; in continuous-time they are arrival rates, so we only impose  ≥ 0.
We also usually assume differentiability, and sometimes lim→0 0 () =∞.
To understand this formulation, consider any two-sided market with 1 and

2 agents on each side, where the number of bilateral meetings between types 1

and 2 is  =  (1 2). Analogous to a production function mapping inputs into

output,  is increasing, concave and CRS (constant returns to scale). Then 1 =

 (1 2) 1 =  ( 1) , where  = 12, and 2 =  (1 2) 2 =  ( 1).

This generalizes models of one-sided markets (e.g., Diamond 1982), and is more

interesting because the ’s depend on tightness even with CRS. In addition, with

a two-sided specification it is natural to endogenize tightness by allowing entry

on one side, a vital component in many applications. In any case, for now, a

buyer seeks a seller with a particular , but whether he finds one is random.6

A set of sellers posting the same  and buyers searching for them constitutes

a submarket with tightness  = . Thus, a submarket is characterized by

( ). Buyers and sellers payoffs are denoted  and . Sellers maximize  by

posting ( ), although it is not crucial that they post  — sellers can equivalently

post only  and let buyers work out the equilibrium  for themselves. In any case,

for a seller to be in business, ( ) must deliver to buyers at least their market

payoff , and clearly he does not deliver more. While  is an equilibrium object,

is taken as given by individuals. This is called the market utility approach, used

by Montgomery (1991), McAfee (1993), Shimer (1996), Moen (1997) and many

others; Peters (2000), based on Peters (1991), derives it from microfoundations,

as do Julien et al. (2000) and Burdett et al. (2001), as discussed in Section 5.

6In Section 5 an agent finds a counterparty for sure, but may or may not trade, due to

capacity constraints; those models do not need an exogenous meeting function.
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The market utility approach allows us to write the sellers problem as

 = max


 () (− ) st
 ()


(− ) =  (1)

Sellers’ payoff in a submarket is their trading probability times their surplus

 =  − , while buyers’ payoff is their trading probability times their surplus

 =  − . In problem (1),  is taken as given, but it is determined below

by equilibrium. We defer a more rigorous definition of equilibrium to a more

general model below but the idea is basically optimization and market clearing:

sellers maximize  subject to buyers getting ; and the  emerging from (1)

is consistent with the set of buyers and sellers in the market. Notice sellers can

get the same  from lower  if  is higher, and buyers can get the same  from

higher  if  is lower. These trade-offs are a quintessential element of the theory.

One way to solve (1) is to rearrange the constraint as  = −  (), and

substitute this into the objective function to get

 = max

{ () (− )− }  (2)

This problem has a unique solution.7 If the solution is interior it satisfies the

FOC 0 () (− ) = . Then, given , the constraint yields  uniquely, so any

active submarkets must have the same ( ). Given CRS, therefore, without loss

of generality we can collapse all submarkets into one.

There are two standard ways to proceed. The first is to assume  and  are

fixed. Then the equilibrium buyer-seller ratio must be the same as the population

ratio,  =  (market clearing). The FOC then implies  = 0 () (− ), and

the constraint implies  = − (), or

 = + (1− ) (3)

7Appendix A considers a generalization without perfectly transferable utility: if a buyer

makes a payment  to a seller, the latter gets  () while former gets − (); of course, (1) is
the special case  () =  () = . Using Lagrangians, we show the SOC’s hold at any solution

to the FOC’s, so if there is an interior solution it must be unique. However, in general, one has

to check for a corner solution, where  () or  ()  hit 0 or 1, or at least assume the meeting

technology is such that  ()   ()  ∈ (0 1) ∀ to avoid corners.
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Figure 1: Equilibrium with (right) and without (left) entry by sellers

where  =  () ≡ 0 ()  () is the elasticity of  () wrt tightness. Hence,

price is a weighted average of cost and utility that splits the ex post (after meet-

ing) surplus  =  −  according to  =  (− ) and  = (1− ) (− ).

The ex ante (before meeting) payoffs can now be written  =  (− ) and

 = (1− ) (− ). This uniquely pins down the equilibrium h   i.
The second way to proceed is to assume one side has a cost to participate, and

therefore, in general, only some of them enter the market. Suppose it is sellers

that have a participation cost . Then in equilibrium, as long as  is neither

too big nor too small relative to , some but not all sellers enter, and we have

the free entry condition  = . As above, the FOC implies  = 0 () (− )

and the constraint implies  = + (1− ). Now  =  =  () (− ), from

which we get . Once again these conditions uniquely pin down h   i.
Fig. 1, a version of which appears in Peters (1991), shows the “Edgeworth

box” in ( ) space. Indifference curves for buyers slope down, because they are

willing to pay higher  if  is lower, so they can trade faster. Similarly, sellers are

willing to accept lower  if  is higher. As in elementary microeconomics, efficient

outcomes are points of tangency, tracing out the contract curve C. The left panel
depicts the case without entry, where C crosses  =  ; the right depicts the case

with entry by sellers, where C crosses the indifference curve  = .
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Figure 2: Equilibrium with (right) and without (left) entry by sellers

By way of comparison, consider the dual to (1),

 = max


 ()


(− ) st  () (− ) =  (4)

which looks as if buyers post and sellers search.8 One can check (4) leads to

the same conditions for h   i as (1), with  fixed or with entry. Hence, it

does not matter if buyers post and sellers search or vice versa (this is not always

true, but a sufficient condition satisfied here is that the number of meetings given

 buyers and  sellers does not depend on who searches; see fn. 32 below).

There is a third interpretation, with third parties called market makers designing

submarkets by posting ( ) to attract buyers and sellers. In Moen (1997),

there is a single market maker, somewhat like an auctioneer, perhaps, while

in Mortensen and Wright (2002) there are competing market makers trying to

extract entrance fees from participants, but competition drives the fees to 0. The

outcome is the same. Hence it does not matter here who posts, buyers, sellers or

market makers (again, this is not always true, as discussed below).

Fig. 2, used to describe competitive search equilibrium in Rocheteau and

Wright (2005), depicts the solution to (4) as a “demand” for sellers  as a

8The methods in Appendix A can be used to show the SOC’s hold at any solution to the

FOC’s, so the solution to (4) is unique, even in the generalization with payoffs  () and  ()

mentioned in fn. 7. Note that this only assumes  () is concave, not  () .
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function of the “cost”  (given , choosing  is the same as ). One can

check “demand” is decreasing and, as shown, hits 0 at finite . Without entry,

in the left panel “supply” is vertical and equilibrium determines . With entry

by sellers, in the right panel “supply” is horizontal at  and equilibrium deter-

mines . Indeed, one could nest these with a general upward-sloping “supply”

curve by letting  vary with the number of homogeneous entrants, or across het-

erogeneous potential entrants. The point of Fig. 2, like Fig. 1, is that the theory

can be described using tools from elementary microeconomics.9

Now consider a planner’s problem with endogenous participation by sellers,

max


½
 ()


(− )− 



¾
 (5)

The first term is the expected surplus per buyer; the second is the total entry

cost of sellers per buyer, since  = 1. Notice something interesting: if

we eliminate  from the objective function in (4) using the constraint, we get

exactly the same problem as (5). Hence, the solution is the same, and this means

equilibrium equilibrium is efficient.

For yet another comparison, consider bargaining instead of posting. One

interpretation is that there in no communication outside of meetings, so agents

cannot post terms to attract counterparties. Another is that it agents cannot

commit, so that even if they can communicate talk is cheap, although this is

subtle (Menzio 2007; Doyle and Wong 2013; Dutu 2013; Kim and Kircher 2015;

Stacey 2016a,b). In any case, when a buyer and seller meet they now determine

 by generalized Nash bargaining,

max

(− )


(− )

1−
 (6)

where  is buyer bargaining power. The solution is  =  + (1− ), which is

9Rocheteau and Wright (2005) study a generalization where “demand” in Fig. 2 may not be

single valued or continuous, and  might jump downward as  increases. With a horizontal

“supply,” as in the right panel of Fig. 2, if  jumps existence is not a problem, and uniqueness

holds at least generically. Existence may seem to be a problem with a vertial “supply,” because

it might hit a gap between two values of  when it jumps; in that case, there is an equilibrium

with two submarkets posting different ( ) but yielding the same payoff.
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the same as  under posting, and hence efficient, iff  = . This is the well-known

Hosios (1990) condition: efficiency obtains iff agents’ bargaining powers are equal

to the elasticity of the meeting technology with respect to their participation.10

Hence, sellers should get a share of −  commensurate with their contribution

to matching. Since this is exactly what competitive search delivers, it is often

said that it induces the Hosios condition endogenously.

If  =  is fixed, one can check   0 and   0, naturally,

while  ≈ −0 where “ ≈ ” means “ and  have the same sign.” Now

0  0, and hence   0, for many common meeting technologies but not

all. Appendix E shows 0 () ≷ 0 ⇔  () ≷ 1, where  () is the elasticity of
substitution. Consider a CES technology,  (1 2) = (


1 +


2)
1,  ∈ (−∞ 1),

where  = 1 (1− ). Then   0 ⇒ 0  0,   0 ⇒ 0  0, and, in the

Cobb-Douglas case,  = 0 ⇒ 0 = 0. Does   0 make sense? Yes. To see

why, first note that higher  unambiguously increases  and decreases . These

payoffs can change due to either changes in  or in the trading probabilities. By

construction,  () goes up and  ()  down with  , but if they move a lot,

 must go down so the changes in  and  are not too big. Hence an increase

in demand along the extensive margin (higher ) can lower price, even if one

can show an increase in demand along the intensive margin (higher ) implies

  0 unambiguously. Similarly, with seller entry, higher  reduces  and

raises , also implying  ≈ −0 and   0.

The finding that price might fall when the buyer-seller ratio goes up, either

exogenously, or in response to changes in other factors, reflects the big idea that

resource allocation is guided by both prices and probabilities. This encompasses

standard general equilibrium theory, which relies exclusively on prices, and stan-

dard search theory, which relies mainly if not exclusively on probabilities, will be

recurring theme in what follows.

10Earlier versions of this idea are in Mortensen (1982 ) and Pissarides (1986). Hosios

(1990) also shows a simple directed search model yields efficiency endogenously. Mangin and

Julien (2016) provide a recent generalization and more references.
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2.2 Labor Markets

Now let households be sellers, of their time, and firms buyers. Each firm wants

to hire exactly one worker, while each household wants to land one job. Thus,

 is the vacancy-unemployment ratio. Again, it does not matter here who posts

and who searches. Consider a version of (1) that maximizes workers’ payoffs,

 = max


 () ( − ) st
 ()


( − ) =  (7)

where  is output per worker and  is the value of unemployment benefits, leisure

and home production sacrificed by taking a job. Here ,  and  play the roles

of ,  and  in the goods market.

Emulating Section 2.1, with  =  fixed, we get  =  + (1− ) ,  =

 (1− ) ( − ) and  =  ( − ). And with entry by buyers (the firms in

this application), we get a similar outcome except  is endogenous and  = .

With  =  fixed we have  ≈ −0, and with entry we have   0

and  ≈ 0. If 0  0 then  goes up when with tightness, as one might

expect, but that is not true in general, as explained above for goods markets. As

other features of goods markets also carry over, we proceed to applications.

Albrecht et al. (2006), Galenianos and Kircher (2009) and Kircher (2009) let

workers apply for more than one job.11 If workers can apply to  ∈ {1 2 } va-
cancies, then it turns out there will be  distinct wages posted, and the optimal

search strategy is to apply to one of each — i.e., to look for work simultaneously

in  distinct submarkets. Hence, the model exhibits wage dispersion with homo-

geneous agents, as is relevant because a large part of empirical wage variation

cannot be explained by observables (Abowd et al. 1999; Mortensen 2003). Also,

consistent with the evidence, the density of posted wages can be shown to be

decreasing, while by way of contrast, in models based on Burdett and Mortensen

11A difference in approach is this: in Albrecht et al. (2006), if two or more firms make offers to

the same worker they compete à la Bertrand (see also Albrecht et al. 2003,2004); in Galenianos

and Kircher (2009) or Kircher (2009), and in our presentation, firms commit to posted wages.

This does not affect the efficiency results discussed below.
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(1998), with homogeneous agents the density is increasing. Also, again consistent

with conventional wisdom, firms offering higher wages receive more applications.

Allowing multiple applications introduces an element of portfolio choice for

workers, with low-wage applications serving to reduce the downside risk. This

embeds in an equilibrium setting a version of Chade and Smith’s (2006) marginal

improvement algorithm. For a simplified exposition, consider  = 2, so there are

two wages posted, 1 and 2 ≥ 1, with workers sending applications to two

distinct submarkets. If both pan out, they accept the highest wage; if only one

pans out, they take it. Their expected payoff is therefore

 = max
12

{(2)(2 − ) + [1− (2)] (1) (1 − )}  (8)

where  is the tightness in a submarket posting .

Generalizing the above methods, in the low-wage submarket, we solve

1 = max
11

(1)(1 − ) st
[1−  (1)](1)

1
( − 1) =  (9)

where () is the probability a worker rejects 1 if offered. This looks like

the problem with  = 1, except for  (1), since  = 1 implies workers always

accept 1 while here they might get a better offer. Given the solution to (9), we

substitute 1 into (8) to obtain the problem for the high-wage submarket

 = max
22

{(2)(2 − − 1) + 1} st [1− (2)](2)

2
( − 2) =  (10)

This again looks like a problem with  = 1, but now the outside option is +1,

not just . Since a higher outside option raises the posted wage, this is indeed

consistent with 2  1. Thus we support 2 posted wages.

As regards efficiency, in Galenianos and Kircher (2009), a worker who gets a

job at a high wage still enters the queue at lower wages. In the  = 2 example, if

a fraction  of firms post 1 then 1 = , 2 = (1−), (1) = (2)

and  (2) = 0. To characterize equilibrium, one solves (9) and (10) with 

set so that  is the same in the two submarkets. The outcome is not efficient.

Heuristically, since workers obtaining jobs at 2 still enter the queue at 1, they

14



might prevent other workers from getting low-wage jobs (a congestion effect).

Neither the firms posting high wages nor the workers who obtain them take this

into account, implying an unpriced externality.

However, in Kircher (2009), workers who obtain a job at a high wage no

longer enter the queue for low wages, to capture the idea that firms offering jobs

to workers who reject should be able to continue making offers. This implies

 (1) = 0 because any worker in the low-wage queue by construction does not

have a high-wage offer. Again the equilibrium is found by solving the two sub-

market problems and adjusting  to ensure firms get the same payoff in each.

It is no surprise that this arrangement is better than the one in Galenianos and

Kircher (2009); it may be more surprising that it achieves full efficiency, but it

does, because the unpriced externality disappears.

Multiple-application models have a structure similar to our benchmark, and

the efficiency properties carry over if there are no unpriced externalities. In

related work, Wolthoff (2014) constructs a model encompassing Kircher (2009)

and Galenianos and Kircher (2009), and endogenizes firms’ recruitment effort.

Assessing the models’ empirical performance, he concludes multiple submarkets

are crucial for matching the data. Gautier and Holzner (2016) introduce a more

sophisticated process to bid for workers after matching, so no vacancies remains

idle because workers reject them to join firms with more applicants than they

need. This leads to efficiency. It is also intuitively appealing that firms can break

ties among identical workers.

2.3 Summary of the Baseline Models

Table 1 provides comparative statics for goods and labor markets in the bench-

mark model where agents can only search in one submarket. Reported are the

effects on tightness, prices or wages, ex ante payoffs and ex post surpluses, for

three cases: (a) fixed populations; (b) entry by sellers; and (c) entry by buyers.

Most of these are unambiguous, but as explained above some of the effects on 
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or  can go either way. A few cases report +∗ or −∗ to indicate that the signs are
ambiguous, in general, but + or − in the somewhat common case 0 ≤ 0. While
the results are the same for goods and labor markets after re-labeling, both are

provided to facilitate interpretation and avoid having to translate between, e.g.,

 and .

An analogous table for bargaining would be similar, except effects reported as

0 or −0 would be 0, and those reported as +∗ and −∗ would be + and −. We can
get that with a Cobb-Douglas meeting technology, which implies 0 = 0. In gen-

eral, however, parameter changes affect  and the trading probabilities by enough

to move prices in ways that might be counterintuitive without understanding the

theory. Under bargaining the terms of trade do not change with , because while

arrival rates affect expected payoffs, they do not affect the surpluses after traders

meet, and hence are irrelevant in the negotiations. There is a caveat: in some

dynamic models, as discussed below,  affects continuation values and hence the

bargaining outcome. That is different from competitive search, where  affects

the terms of trade even in a static environment.

Table 1.1: Goods Market Table 1.2: Labor Market

(a)  =  fixed (a)  =  fixed

     

 + −0 − + 0 −0
 0 + + + + +

 0 + − − − −

     

 + −0 − + 0 −0
 0 + + + + +

 0 + − − − −
(b) entry by sellers (firms)

     

 + −0 − + 0 −0
 − + + 0 +∗ +

 + +∗ − 0 −∗ −

(b) entry by sellers (households)

     

 + −0 − + 0 −0
 − + + 0 +∗ +

 + +∗ − 0 −∗ −
(c) entry by buyers (households)

     

 − 0 + − −0 0

 + +∗ 0 + + +∗

 − + 0 − −0 −∗

(c) entry by buyers (firms)

     

 − 0 + − −0 0

 + +∗ 0 + + +∗

 − + 0 − −0 −∗
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This concludes the presentation of the basic static models. At the risk of

appearing pedantic, to highlight the main economic results, let us formalize them

as follows:

Proposition 1 In the benchmark model, when agents can search in at most one

submarket, with or without entry, there is a unique equilibrium and it has a single

price or wage. This is efficient. When agents can simultaneously search in   1

submarkets, there is a unique equilibrium and it has  prices or wages. This is

efficient if there are no congestion externalities.

3 Extensions and Applications

We want to move beyond static theory for many reasons, but an important one is

that equilibrium meeting probabilities translate into random durations between

trades, central to the study of employment/unemployment spells in labor eco-

nomics, and also of interest in markets for housing, assets, etc. For goods mar-

kets, we can simply repeat the static version, assuming households trade with

different sellers all the time. As this is easy, we introduce additional features,

including heterogeneity, and embed the market in general equilibrium. Simply

repeating the static model is less compelling for labor, which typically involves

long-term relationships, so the dynamic labor extension is more intricate.12

3.1 Goods Markets

We now embed the Section 2.1 model in dynamic general equilibrium. To do

this easily, we follow Lagos and Wright (2005) and many subsequent papers by

adopting the following structure: Each period in discrete time, infinitely-lived

agents interact in two ways: first there is a decentralized market, or DM, just like

the one analyzed above; then there is a frictionless centralized market, or CM, as

12As it is impossible to cover everything, we neglect the more complicated analysis of nonsta-

tionarity markets, where buyer/seller ratios change over time as agents drop out after trading;

see Peters (1991,1994) and McAfee (1993).
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in general equilibrium theory. One reason for this is that, rather than finalizing

trades for  by paying  in spot transactions, now buyers (sellers) incur (accept)

obligations for payment in the next CM. This deferred settlement arrangement

— i.e., credit — is more interesting than barter or transferable utility in many

applications. Indeed, an alternating-market structure is used heavily in monetary

economics, as discussed in Section 4, so it makes sense to introduce it now.

To this end, continue to let  and  be the DM value functions, and now

let  and  be the CM value functions. In the CM, buyers solve

 () = max


{ ()− + } st  = −  (11)

where  is the discount factor,  is the CM numeraire,  is labor,  is the wage

and  is debt brought over from the previous DM.13 Also let us assume  is

produced one-for-one with , so that in equilibrium  = 1. Then the solution

to (11) has  = ∗, where  0 (∗) = 1, and  = ∗ − . The envelope condition

is  0
 () = −1. The CM problem for sellers is omitted, but similar, and also

implies  0
 () = −1 (although one should expect   0 for them).

For buyers, the DM payoff is

 =  [+()] + (1− )(0) =  (− ) +(0) (12)

because ()−(0) = −, by the envelope condition. Similarly, for sellers

 =  (− ) +(0) (13)

Except for the constants (0) and (0),  and  are identical to the static

model. Hence, extending the benchmark to dynamic general equilibrium is easy,

but is still nice, because, e.g., higher  () now means sellers trade faster, or more

13Having one-period debt means we can avoid tracking the distribution of  across agents as

a state variable, but this is without loss of generality given quasi-linear CM utility and interior

solutions for . In fact, as in Wong (2016), we could use any CM utility function satisfying

1122 = 212, including  =  (1− )

or  = [ + (1− )


]
1
; we use quasi-linearity only

to ease notation. Also, it can be any CM good that enters linearly; we use  because it is

common in applications, and realistic since most people do pay off debt by working. Also, we

can replace  by x in utility and by px in the budget equation, where px ∈ R+.
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often, and not just with higher probability. This fits the theory neatly into the

realm of duration analysis, which has proved useful in much empirical work (e.g.,

Devine and Kiefer 1991). In particular, the expected times for sellers and buyers

to transact are 1 () and  (), respectively.

The next step is to consider two types of buyers, with utilities 1 and 2  1,

and free entry of homogeneous sellers, in which case the market segments into

two distinct submarkets,  = 1 2.14 Then ( ) in submarket  is determined

as above by

 = [ ()− 
0 ()] ( − ) and  = +  ()  (14)

Note that (14) holds for  = 1 2 independently, a feature called block recursivity.

It lets us first solve for  in each submarket  (block 1) regardless of what is

happening in other submarkets; then the number of agents in each submarket is

determined (block 2) so the total number of buyers sums to the number in the

economy, and free entry of sellers ensures market tightness is correct. This comes

up again, and is especially convenient in environments with shocks.

Given 2  1, one can check 2  1 and 2  1. Thus, high-valuation

buyers go to submarket 2, where they pay more but trade faster. Sellers trade

slower in submarket 2 and, in equilibrium, they are indifferent between it and

submarket 1. This is shown in the left panel of Fig. 3, with buyers in submarkets

1 and 2 on indifference curves denoted  ∗1 and  ∗2 , both of which are tangent to

the sellers’ common indifference curve  ∗ = .

Now consider homogeneous buyers and two seller types, now in fixed numbers

1 and 2, with 1 and 2  1 but the same .
15 Suppose  is not too big, so

all sellers participate. As shown in the right panel of Fig. 3, the market segments

14This is discussed further in Section 6, where we go into heterogeneity and sorting in detail;

here we simply provide illustrative examples. A general result is that there will not be two

different types of buyers, or two different types of sellers, in the same submarket, but one type

of buyer, or one type of seller, can go to multiple submarkets.
15Allowing sellers’  to differ (e.g., see Julien et al. 2006a), but otherwise keeping them

homogeneous, has little effect: there will still be only one submarket open, as in the baseline

model, but now we can say which sellers enter — those with  below a threshold ∗.
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Figure 3: Heterogeneous buyers (left) or sellers (right)

into two submarkets where now buyers are indifferent between them. As usual,

( ) is determined by

0 () (− ) =  and  =  ()  + [1−  ()]

Let us normalize  = 1 and let  be the fraction of buyers in submarket 1. Then

the following buyer-indifference condition uniquely determines :

0
µ



1

¶
(− 1) = 0

µ
1− 

2

¶
(− 2) 

where we recall that  is fixed here. One can check 2  1 and 2  1,

so sellers in submarket 2 trade slower, while buyers trade faster but pay higher

prices.

As these examples show, the theory easily accommodates deviations from the

“law” of one price. With heterogeneous buyers, sellers in submarket 1 settle for

1 even though other sellers are getting 2  1 in submarket 2. Why? Obviously

because it takes longer to sell in submarket 2. With heterogeneous sellers, buyers

in submarket 2 pay 2 even though others are getting the good at 1  2 in

submarket 1, for a similar reason. This is related to, yet different from, other

theories of price dispersion. In Burdett and Judd (1983), e.g., buyers see a random

number of prices simultaneously — they call this noisy search — and when they see
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more than one they pick the lowest. In equilibrium, ex ante identical sellers post

different prices yet earn equal profits: those that post lower  earn less per unit,

but make it up on the volume. That much is like our sellers, but Burdett-Judd

buyers do not make a directed choice between paying less or trading faster, as

they do here, so the economics is somewhat different.

Returning to heterogeneous buyers and homogeneous sellers, here is an appli-

cation to housing based on Wright and Zhu (2017). There are a fixed number of

homogeneous houses in the market, but buyers are heterogeneous, with the value

to becoming a home owner distributed continuously across buyers with CDF

 () and support [1 2]. Now equilibrium involves a continuum of submarkets,

one for each buyer type, indexed by ( ) (this is treated more formally below).

In the left panel of Fig. 3, there is now a submarket for every point on sellers’

common indifference curve between (∗1 
∗
1) and (

∗
2 

∗
2), with higher  associ-

ated with higher  and lower . Higher-valuation buyers search where their

trading probabilities and prices are higher, while sellers are indifferent because

of the common-sense notion that listing a house at a higher price means a longer

average time on the market.16

Consider an expansion in demand in terms of a shift in  () in the sense of

first-order stochastic dominance. One can show this shifts the support of the price

distribution to the right at least if 0 () ≤ 0. It also increases ∗1 and decreases ∗2,
tightness in the highest- and lowest-price submarkets. Next consider an increase

in the cost  of selling (e.g., taxes, realtor fees or apartment rents), interpretable

as a contraction in supply. Again the price distribution shifts right, but now ∗1

decreases and ∗2 increases. With the total housing stock fixed, if  contracts

the price distribution also shifts right, but ∗1 and ∗2 both rise. With entry by

sellers, if  goes up the stock on the market contracts endogenously, with a

similar impact.

16While it is no surprise that a big home in a nice neighborhood costs more than a small

one in a bad neighborhood, the interest here is in residual price dispersion, the same way labor

economists are interested in residual wage dispersion. Wright and Zhu (2016) cite empirical

work finding non-negligible dispersion in listed prices for similar homes.
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Disperse prices easily generate sticky prices. If market conditions change,

as in the previous paragraph, the distribution reacts, but if the change is not

too big the old and new supports overlap, and sellers with  in the overlapping

range have no incentive to reprice. If demand falls, e.g., the distribution shifts

left but many sellers can keep the same  — lowering it attenuates the fall in

 but reduces profit in the long run, and equilibrium makes that a matter of

indifference. This is relevant because people claim house prices look sticky in the

data and find this puzzling. As Merlo et al. (2015) say, “conventional wisdom is

that traditional, rational, forward-looking economic theories are unable to explain

extreme price stickiness of this sort, unless there are large menu costs associated

with price revisions.” Others champion behavioral explanations. Here stickiness

emerges without resorting to menu costs or behavioral economics. While Head

et al. (2011) show similar stickiness emerges with noisy (Burdett-Judd) search, as

argued above the economics of directed search is somewhat different.

Whether or not directed search explains every nuance of housing markets,

it is useful for understanding various aspects. This is illustrated by Albrecht

et al. (2016) in a setting where first sellers list prices, then a random number of

buyers show up, as we discuss in Section 5. Each buyer can accept the listed price

or make a counteroffer. If no buyers accept, the seller can accept or reject the

best counteroffer. If exactly 1 buyer accepts, he gets the house at the listed price.

If 2 or more accept, the seller runs an auction among them. This is consistent

with empirical work (see Albrecht et al. 2016 for citations) showing that houses

can sell at, above or below listed prices. More generally, it shows how directed

search captures interesting features of housing markets.

In quantitative work, Diaz and Jerez (2013) build a directed search model

that is consistent with cyclical properties of housing data — e.g., positive (nega-

tive) comovement of prices and sales (time on the market). They also show that

search frictions amplify price volatility and propagate aggregate shocks. Head et

al. (2015) use a directed search model with heterogenous sellers to think about
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mortgages. They show that highly-indebted home owners tend to list high prices

and take longer to sell. Hedlund (2015) develops a directed search model with

heterogenous buyers and sellers, where computation is facilitated by block re-

cursivity, and shows it can quantitatively account for cyclical dynamics in key

macroeconomic housing and mortgage market variables (see also Hedlund 2016

and Garriga and Hedlund 2016). All this shows how the approach provides a

fruitful avenue for future work on housing.17

Moving from houses back to generic goods, let us now make them divisible:

DM buyers get a quantity or quality  in exchange for payment  in the next

CM. Buyers’ utility and sellers’ cost, () and  (), satisfy the usual properties,

plus  (0) =  (0) = 0 and  (̄) =  (̄) for some ̄  0. The efficient  solves

0 (∗) = 0 (∗). One can call ̂ =  the unit price, unless  is unobserved

quality, in which case one might still call  the price. We assume both  and  are

posted, although there are alternatives — e.g., perhaps due to limited commitment,

there may be a posted unit price ̂, and then in a meeting  is chosen unilaterally

by the buyer (Peters 1984) or the seller (Gomis-Porqueras et al. 2016).

We also introduce a limit on how much one can promise to pay,  ≤ . This

debt (or liquidity) constraint is exogenous here, but endogenized in Section 4.

Suppose it is slack. Then, ignoring the constants (0) and (0), we have

 = max


 ()


[()− ] st  () [−  ()] =  (15)

Indeed, when  ≤  is slack, the solution has  = ∗, so the problem is basically

the same as the one with a fixed , and the usual procedure yields (∗ ∗). In

particular, the generalization of (3) is ∗ =  (∗)  (∗) + [1−  (∗)] (∗), and

the constraint is indeed slack iff  ≥ ∗. Clearly,  = 0 when  ≤  is slack.

Without entry, we have ∗ ≈ −, similar to in Table 1.1(a). With entry,
the results are similar to Table 1.1(b) and (c).

17An interesting idea is to interpret the market makers discussed above as realtors, as in

Stacey (2015a). Also, Moen et al. (2016) study the decision to buy-then-sell or sell-then-buy.

A housing model with directed search and two-sided hetreogeneity is Head at al. (2017).
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When   ∗, so the constraint binds, the results are quite different. In

Appendix A we solve (15) and show the SOC’s hold at any solution to the FOC’s.

So there is a unique equilibrium and it implies  =  ( ), where

 ( ) ≡  ()0 ()  () + [1−  ()] 0 () ()
 ()0 () + [1−  ()] 0 ()

 (16)

This condition appears in many models with liquidity considerations and Nash

bargaining (see Section 4), except  () replaces buyers’ share . One can check

that, without entry,  =   0 and  ≈ 0, the latter taking over for

 ≈ −0 from the case where the constraint is slack, since now  cannot

change while  can and does.

With entry by sellers, the equilibrium conditions  =  ( ) and  =

 () [−  ()] imply




 0,




 0,




 0 and




≈ 0 (17)

Again  is ambiguous, similar to  in Table 1.1(b). More complicated

versions of this setup are studied by Rocheteau and Wright (2005), Menzio et

al. (2013) and Choi (2015), sometimes using the methods of monotone compara-

tive statics. Again, to highlight the main results, we formalize them as follows:

Proposition 2 The dynamic equilibrium model with credit yields results simi-

lar to the static model, whether  is endogenous and  is fixed, or vice versa.

Heterogeneity implies submarkets segmented by probabilities, with prices that are

disperse and can look sticky.

3.2 Labor Markets

While enduring relationships may also be relevant in goods markets — e.g., people

have favorite shops or bars — in labor markets they are ubiquitous. We now work

through Moen (1997), a directed search version of the standard bargaining model

(e.g., Pissarides 2000). Market tightness is now  =  (1− ), the measure of
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vacancies over unemployment, where  is the employment rate with a population

of households normalized to 1. Also, here we use continuous time.18

Let 1 and 0 be firms’ payoffs to having a worker and an open vacancy. In

steady state these satisfy

0 = − +  ()


(1 − 0) (18)

1 =  −  +  (0 − 1)  (19)

where  is the cost of a vacancy,  the discount rate, and  the job destruction

rate.19 In words, (18) says the flow payoff to a vacancy is − plus the arrival rate
of workers,  () , times the gain to filling the position, 1 − 0. Similarly,

(19) says the flow payoff to having a worker is − plus  times the capital loss,

0 − 1. Similarly, for households

0 = +  () (1 − 0)  (20)

1 =  +  (0 − 1)  (21)

Again it does not matter for results if firms or workers post, but the latter is

easier, since 0 = 0 (free entry) combined with (18)-(19) yield what is sometimes

called the job creation curve,

 =  −  ( + ) ()  (22)

Solving (18)-(19) for 0 and inserting  from (22), the relevant problem is

0 = +max


 () ( − )−  ( + ) 

 +  +  ()


The FOC implies  () = 0, where

 () ≡ 0 () ( − )− [ +  +  ()− 0 ()]  (23)

18There is no CM in this environment, but it is interesting to add one (Berentsen et al. 2011;

Gomis-Porqueras et al. 2013; Zhang and Huangfu 2016; Dong and Xiao 2016). Among other

things, this allows firms to pay wages in CM numeraire rather than transferable utility or a

fraction of output, and to finance entry by issuing CM debt or equity.
19In static models, free entry means  = , while here it means 0 = 0 since  is already

in condition (18); not much hinges on this. We do of course need  not too big, so the market

does not shut down. Also,  is exogenous, but can be endogenized using productivity shocks

(see Mortensen and Pissarides 1994), or on-the-job search (see below).
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and one can check  (0)  0   (∞) and  0 ()  0. So there is a unique

solution to  () = 0, and hence a unique equilibrium .

It is straightforward to derive




 0,




 0,




 0,




 0 and




 0 (24)

The effects of ,  and  are consistent with Table 1.2(c), plus there are new effects

of  and , and all accord well with intuition. One can easily show   0,

  0 and   0. Appendix F shows   0 and   0

if 0 ≤ 0, but this is not true in general, something one would miss by focusing
exclusively on bargaining models. This is again similar to Table 1.2(c), and the

economics intuition is basically the same, although in that discussion 0  0 iff

  0, while now it is sufficient but not necessary, indicating there is more

going on in the dynamic than the static models.

Appendix B shows the equilibrium outcome is the same as the solution to a

planner’s problem posed without restricting attention to steady state — i.e., the

efficient  solves  () = 0 at every date, as in the textbook Pissarides model.

This is again block recursivity: at any point in time the measure of vacancies 

depends on , but tightness  =  (1− ) does not. To continue the comparison,

rearrange  () = 0 as

 =
 ()



 () ( − )

 +  +  () [1−  ()]
 (25)

which equates firms’ vacancy cost to their arrival rate times their share,  (), of

the appropriately-discounted surplus of a match,  − . This is the same as the

condition in the Pissarides model, except the elasticity  replaces firms’ share .

It matters: if we change labor-market policy, as long as 0 () 6= 0 the effects here
are different than predicted by bargaining models where  is fixed.

An important extension involves on-the-job search, e.g., Delacroix and Shi

(2006), Garibaldi andMoen (2010), Schaal (2015), Tsuyuhara (2016) and Garibaldi

et al. (2016). This makes workers react differently to wage offers, and generates

direct job-to-job transitions, consistent with the data (Fallick and Fleischman
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2001; Christiansen et al. 2005). Following Delacroix and Shi (2006), let   0 be

workers’ cost of search while employed. If  is large we are back in the baseline

model; for smaller  at least some workers search while employed. As should be

expected, e.g., based on models like Burdett and Mortensen (1998), on-the-job

search generates wage dispersion.

Let  () be the ratio of vacancies to job seekers in a submarket with wage

. The problem of a worker employed at  is

1() =  +  [0 − 1()] + max
0Σ

Σ{ [(0)] [1(0)− 1()]− } (26)

where Σ = 1 (Σ = 0) indicates he engages in (abstains from) search, and if Σ = 1,

0 is the next wage to which he directs his search. An unemployed worker’s value

function is similar to a worker employed at  = , except it is assumed that the

former has no search cost, so 0 = 1() + . Also, a standard result in this

context (see Appendix C) is that workers are more selective in terms of the next

targeted wage 0 when their current wage  is higher.20

Solving for equilibrium requires finding  (). To begin, write

0 = − +  [()]

()
[1()− 0]

1() =  −  + [ + ()] [0 − 1()] 

where the only change from the baseline model is that jobs now end with an

exogenous probability  plus the endogenous probability () that a worker gets

a better offer. Now free entry implies 0 = 0, or

 =
 [()]

()

 − 

 +  + ()
 (27)

Then   0 implies there is a  such that workers employed at  ≥  naturally

stop searching. For firms paying  ≥ , () = 0, and (27) identifies the ()

that coincides with what one gets without on-the-job search.

20The logic is similar to the model with multiple applications in Section 2.2, where a worker

takes more risk applying for a high wage because if he fails he may still get a low wage.
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Next, note that under the hypothetical situation that () is computed this

way everywhere, we can find the lowest wage at which the solution to (26) involves

no search, and that identifies . Then, by way of induction, notice there is a

minimum wage increment 4 that workers require to justify search (again see

Appendix C). Hence, those employed at  ∈ [ − 4 ) only seek jobs with

0 ≥ , for which we have already determined (0). Given , 0 is the unique

solution to (26), denoted 0 = (). Then () =  ◦  ◦ (), where for
any functions  and ,  ◦ () denotes the composite  [ ()]. Knowing ()

∀ ∈ [−4 ), entry condition (27) yields () at these wages. Repeating the

procedure for  ∈ [− 24 −4) yields () and () at those wages, and so
on, until  () and  () are determined for all .

This establishes  () and  () ∀ without reference to the distribution of

employment across , in and out of steady-state, again due to block recursivity.

Starting with higher unemployment, e.g., lots of job seekers search for  = (),

but also lots of firms post  = (), keeping  () as determined above. Thus,

we can first solve for the value functions and decision rules (block 1), then study

the evolution of  from any initial condition (block 2), and only in the second step

does the distribution of employment come into play. Extensions of this insight

allow tractable analysis of business cycle models where aggregate productivity 

is stochastic. In these models, current  is enough to compute tightness in each

submarket, say ( ), which is much easier than it would be if  depended on

the distribution of  across workers. While ( ) is different from the above

construction, because  can change, the basic methods apply.21

To recap, there are  wages, 1  2   . The unemployed apply to

1 = (); workers employed at 1 apply to 2 = (1); and so on, until they

stop searching at . It can be shown that  decreases with search and entry

costs. It can also be shown that simple wage contracts do not induce efficiency.

The situation is similar to the model in Section 2.2 with multiple applications.

21See Shi (2009), Menzio and Shi (2010,2011) and Schaal (2015) for more details. See Li

and Weng (2017) for an extension to incorporate learning.
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With on-the-job search, firms care about both recruitment and retention, and

a single wage is not sufficient to balance the two. This is especially clear when

all matches produce the same , which means on-the-job search is rent seeking

that has a social cost but does not increase output. However, more complicated

contracts that directly specify search activity, or specify that workers compensate

firms when they quit, restore to efficiency. See Menzio and Shi (2011).

Research on labor markets is a vibrant area with many possible extensions.

Parallel to divisible goods in Section 3.1, one idea is to have divisible hours

, with  () output and  () the disutility of work, to study regulations like

 ≤ ̄ or  ≥ ̄, similar to the restriction  ≤ . The effects of unemployment

insurance are also interesting (see below). Another important extension concerns

directed search over the life cycle, where trade-offs between wages and job-finding

rates produce transitions that depend on age (Menzio et al. 2016). But since it

is impossible to cover everything, we end with a summary of the labor models.22

Proposition 3 The dynamic labor model without on-the-job search has a unique

equilibrium and it is efficient. At each point in time,  solves  () = 0 and 

solves (22). The outcome with on-the-job search is similar, except there is wage

dispersion, and efficiency requires more complicated contracts.

4 Monetary Economics

Monetary theory has used random matching at least since Kiyotaki and Wright

(1989), and that model has been recast using directed search by Corbae et

al. (2003). However, since those environments are complicated, we instead start

with Julien et al. (2008), which is simpler. These models have indivisible assets.

We then introduce divisible assets, which involves dealing with an endogenous

22While we earlier downplayed enduring relationships in goods markets, the labor models

show how to handle such phenomena. This is arguably relevant for several reasons discussed

in Gourio and Rudanko (2014), although they do not have directed search. Shi (2016) presents

a directed search model where such relationships arise endogenously when buyers make repeat

purchases, and this improves welfare. It also induces micro price dynamics, including sales,

even when conditions are constant. Pursuing this is another fruitful area for future research.
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distribution. While there are different ways to handle this (see surveys by Nosal

and Rocheteau 2011 and Lagos et al. 2016), we focus on the approach in Lagos

and Wright (2005), but also discuss Menzio et al. (2013), which interesting in this

context because it relies heavily on directed search and block recursivity.

4.1 Indivisible Assets

There is a
£
0 ̄

¤
continuum of ex ante identical agents that live forever in dis-

crete time (it would be interesting to add entry, but we do not do so here). This

environment has no centralized markets, and agents can only meet/trade bilat-

erally, and that is hindered by specialization: there are many different types of

goods, and it is never the case in a pairwise meeting that agent  consumes what

 produces and vice versa, to rule out direct barter. Assumptions on limited

commitment and private information then rule out credit, so that assets have an

essential role as media of exchange (Kocherlakota 2008; Wallace 2010).

Equal measures of agents consume and produce each good, and everyone

has the same utility  () for goods they consume and cost  () for goods they

produce. Goods are nonstorable. There is a storable asset that generates utility 

each period for anyone holding it. If   0 this can be interpreted as a dividend,

as in standard asset-pricing theory going back to Lucas (1978); if   0 it can

be a storage cost, as in Kiyotaki and Wright (1989); and if  = 0 the asset is fiat

money as defined by Wallace (1980). Individual asset holdings are restricted to

 ∈ {0 1}, so given a fixed supply  ∈ ¡0 ̄¢,  agents have  = 1 and act

as buyers while ̄ − have  = 0 and act as sellers.23

A novelty compared to the above models is that after trade the buyer becomes

a seller and vice versa. Letting ∆ =  −  be the value to getting an asset and

23This environment is from of Shi (1995) and Trejos and Wright (1995), but those papers

use random search and symmetric bargaining. This is extended to generalized Nash and Kalai

bargaining by Rupert et al. (2001) and Trejos and Wright (2016). There are also versions with

posting and random search by Curtis and Wright (2004), or posting and noisy search by Burdett

et al. (2016). Wallace (2010) and many reference therein use abstract mechanism design. The

first paper to use posting and directed search is Julien et al. (2008), with recent extensions by

Julien et al. (2016) and He and Wright (2016).
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switching from seller to buyer, in steady state we have

 = +  [ ()− ∆] +  (28)

 =  [∆−  ()] +  (29)

As usual,  =  () and  =  ()  with  = (̄ − ) and  ()

comes from a general meeting technology, although following Kiyotaki andWright

(1991,1993) many papers in this literature use  =
¡
̄ −

¢
̄ . In any case,

these are similar to Section 3.1, except the benefit of producing is having the

asset next period, rather than selling for credit due in the CM.

Directed search plays two roles. First, the economy segments into markets

trading different goods — as opposed to random search, where someone needing

a haircut has the same chance of meeting a plumber or a barber. Second, each

market segments into submarkets based on posted terms of trade. In Appendix

A we take FOC’s for the submarket problem and rearrange to get

∆ =
 ()0 ()  () + [1−  ()] 0 () ()

 ()0 () + [1−  ()] 0 ()
 (30)

The RHS, denoted  ( ) in (16) is again the same as Nash bargaining except

 () replaces ; different from Section 3.1, instead of an exogenous limit , the

value of assets and hence the ability to pay are now endogenous.

To proceed, subtract (28)-(29) and solve for

∆ =
+ () +  ()

 +  + 

 (31)

In equilibrium  =(̄ −) determines ,  and . A stationary monetary

equilibrium, or SME, is then a  equating the RHS’s of (30) and (31), with

 ∈ (0 ̄), where  (̄) =  (̄), as required for voluntary trade. Julien et al. (2008),

Julien et al. (2016) and He and Wright (2016) prove versions of these results:

Proposition 4 For  = 0 there is a unique SME; for   0 there is a unique

SME if  is small, possibly multiple SME if  is intermediate, and no SME if 

is big; for   0 there are multiple SME if || is small and no SME if || is big.
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In addition to monetary equilibria, for  ≤ 0 there is a nonmonetary equilib-
rium where assets stop circulating and agents throw them away, because  ≤ 0
makes them poor stores of value, and if no one is posting   0 assets are useless

as a medium of exchange. They can also stop circulating when   0 is very

big, but now no one throws assets away, because they are always worth at least

their fundamental value, . Instead, buyers hoard them, although that is not

especially robust (as in Berentsen et al. 2002, assets can circulate for any   0,

with buyers getting  in exchange for a probability of handing over assets).

Whenever assets circulate they are worth more than their fundamental value,

as is especially clear for   0 and  ≤ 0, where a poor savings vehicle is valued for
its liquidity — i.e., for its facilitation of transactions. Importantly, monetary and

nonmonetary equilibria can coexist and there can be multiple monetary equilibria:

if other sellers post higher , the asset is more valuable, so in the spirit of directed

search a given seller posts higher  to try to trade faster. Fundamentals still play

a role — e.g.,   0 if SME is unique — but this shows succinctly how liquidity

is at least partly a self-fulfilling prophecy. Moreover, there are equilibria where 

varies over time. Using standard methods He and Wright (2016) show the model

has a continuum of perfect-foresight equilibria starting at different 0  0, where

lim  = 0 or lim   0 depending on parameters, as well as sunspot equilibria

where  fluctuates stochastically.

To emphasize the interplay between directed search and monetary economics,

consider the unique SME with  = 0, and the meeting technology commonly

used in this literature, with ̄ = 1 and  =  (1−). Then  = 12 is

good for trade on the extensive margin, since it maximizes the number of buyer-

seller meetings, but it does less well on the intensive margin, since one can check

 = 12 implies   ∗. Trejos and Wright (1995) show   ∗ at = 12, and

argue that this is a salient feature of monetary exchange, using Nash bargaining

under the assumption  = 12. In competitive search equilibrium, the result

  ∗ at  = 12 follows with no need for any such assumption, because for
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this specification  () = 12 holds automatically at  = 12. Thus, we can

derive similar results with fewer restrictions.

As another example of the connection between directed search and money

economics, one can check   0 in this model if 0  0 but not in general.

The intuition is similar to the discussion of  in Section 2.1 or  in

Section 3.1, on the way resources are allocated by the probabilities plus the terms

of trade, which is again missing in models with bargaining. As a final example,

concerning dynamics, bargaining models also have equilibria where  varies over

time, but one can argue that their microfoundations are shaky compared to ver-

sions with posting.24 Hence, for several reasons, it is useful to study monetary

economics using competitive search. For more discussion and results, see Julien

et al. (2008,2016) and He and Wright (2016).

This is not to suggest that the microfoundations of monetary economics re-

quires competitive search. Indeed, search itself is not critical, even if it may

be natural for capturing the relevant frictions and generating new implications

(Wallace 2016). Search is not critical in the sense that many results hold with the

meeting technology  = min
©
 ̄ −

ª
, which lets agents on the short side

of the market always trade, which with  = ̄2 implies all agents trade. Still,

monetary models with competitive search are important in the development of

the literature, as early work in the area was criticized sharply by those who find

random matching and bargaining unpalatable (recall the comments by Howitt

and Prescott in the Introduction). That critique is misguided, given most in-

sights carry over, and many become sharper, with directed search and posting.25

24In brief, there is a problem in nonstationary equilibrium with the usual demonstration

(Binmore et al. 1986; Binmore 1987) that Nash bargaining is the limit of strategic bargaining.

Indeed, Coles and Wright (1998) argue that using Nash out of steady state with nonlinear

utility is tantamount to having agents bargain myopically. Posting avoids this critique entirely.
25A few results change in interesting ways. With random matching, e.g., in Kiyotaki and

Wright (1989) there can be equilibria where inferior assets are used as money, which they call

“speculative” behavior. Corbae et al. (2003) replace random with directed search and show the

unique equilibrium in a certain class uses only the best assets as money. That is interesting

because it shows “speculation” requires some randomness in the meeting process, but that

hardly invalidates the basic insights and methods.
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4.2 Divisible Assets

We now let agents hold any  ∈ R+ and bring back the frictionless CM that

convenes after each round of DM trade. One reason to have the CM is that

it harnesses the distribution of , which is otherwise complicated. Another is

that the CM allows one to incorporate many elements of mainstream macro in

search-based models, including standard capital and labor markets. Yet another

is that we do not have to say whether agents are buyers or sellers depending on

their current , as in Section 4.1; instead we can have some called buyers that

always want to consume but cannot produce in the DM, while others called sellers

produce but do not consume. This is not a nonstarter with only DM trade — why

would sellers work to get money if they never get to spend it? Here they work

for money in the DM to spend in the CM, exactly as in Section 3.1. See Nosal

and Rocheteau (2011), Lagos et al. (2016) and references therein for more on this

and additional motivation for adopting the alternating CM-DM structure.

Focusing on  = 0 (fiat currency), we write buyers’ CM problem as

 () = max
̂

{ ()− + +1 (̂)} st  = +  (− ̂)−  (32)

where is cash brought in, ̂ is cash taken out,  is its price in terms of numeraire

, and  is a lump sum tax. Other than keeping track of time with the subscript

on +1 (̂), (32) is like (11) with one exception: there buyers get DM goods on

credit due in the next CM; here this is infeasible because of standard issues with

commitment and information, so buyers must use assets as payment instruments.

Still, as in Section 3.1,  0
 () =  and similarly for sellers, making CM payoffs

linear. Sellers do not bring cash to the DM, but buyers might, and their FOC

for ̂  0 is  =  0
+1 (̂). Since  does not appear in this FOC, the ̂ they

take out does not depend on what they bring in to the CM.26

26This history independence, which makes the DM distribution of ̂ across buyers degenerate,

follows from quasilinear utility and the interiority of , but both can be relaxed as discussed

in fn. 13. The distribution is not degenerate in the closely related models of Galenianos and

Kircher (2008) and Dutu et al. (2012), but is still tractable due to history independence.
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In the current CM, (+1 +1 +1) is posted for the next DM, where +1 is

the real value of the monetary payment. Since cash is a poor savings vehicle,

buyers hold just enough so that +1̂ = +1. Once again, it may seem natural to

have sellers post and buyers search, but it is equivalent to assume the opposite.

Ignoring the constants (0) and (0), as we did in (15), as well as the time

subscripts, because now they are all the same, after some algebra we have

 = max


½
 ()


[ ()− ]− 

¾
st  () [−  ()] =  (33)

where  is a nominal interest rate. This nominal rate is defined by the Fisher

equation, 1 +  = +1, describing the return you would need in the next

CM to give up a dollar in this CM. As is standard, in stationary equilibrium

 is constant, so the growth rate of the aggregate money supply pins down

inflation, +1 = +1 . This plus the Fisher equation imply it is equivalent

for monetary policy to peg the money growth, inflation or nominal interest rate.

Problem (33) is the same as (15) but for this important detail: buyers now

must make an ex ante investment in liquidity, at cost +1, before going to the

DM. Taking the FOC for , we get

 () =  () (34)

where  () ≡ [0 ()− 0 ()] 0 (). Often  () is called the liquidity premium;

it is also the Lagrange multiplier on the constraint  ≤ ̂. Whatever we call it,

(34) equates  () to the marginal cost of liquidity , multiplied by the expected

time until it is used, the inverse of the arrival rate  =  () . The FOC for

 yields

 () [1−  ()] =



+



 ()
+  ()  (35)

and the constraint yields  =  ( ), where  is as before. With no entry,  =  ,

(34) determines  and (35) determines . With entry by sellers,  = , and

(34)-(35) determine ( ) jointly.

By way of comparison, consider the planner’s problem with entry by sellers,

max


½
 ()


[ ()−  ()]− 



¾
.
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The FOC’s are

0 () = 0 () (36)

 =  () [1−  ()]  (37)

Clearly, (36) implies  = ∗. From (34) this is the same as equilibrium iff  = 0, the

Friedman rule for eliminating the cost of liquidity and making money equivalent

to perfect credit. Then (37) determines  = ∗, and from (35) this is the same

as equilibrium at  = 0. Competitive search delivers the first-best at  = 0.

Next, consider generalized Nash bargaining. This implies  =  ( ) with 

instead of , plus



 ()
=

0 ()−  ( )

 ( )
(38)

 =
 () (1− ) [ ()−  ()]

0 () + (1− ) 0 ()
 (39)

Now (38) is the same as (34) when  = 1, and then it the same as (36) iff  = 0.

Intuitively, for buyers to make the efficient ex ante investment in liquidity, they

need all the bargaining power in the DM; otherwise,   ∗ with Nash bargaining

even at  = 0. But for sellers to make the efficient ex ante entry decision they

need  =  (), since that makes (39) the same as (37). This situation, described

as “Friedman Meets Hosios” in Berentsen et al. (2007), presents a dilemma: it is

not generally possible to have  =  () and  = 1. So even at  = 0 we cannot

get (∗ ∗) with Nash bargaining due to this double holdup problem.27

In contrast, in competitive search equilibrium  = 0 does achieve  = ∗ and

 = ∗, so we get efficiency on both the intensive and extensive margin. As

in Section 4.1, this suggests that money is intimately related to directed search,

since that allows us to achieve efficiency with the two-sided investments that

27Other solution concepts can do better than Nash bargaining. Aruoba et al. (2007) show

 = ∗ at  = 0 ∀  0 under Kalai bargaining. Hu et al. (2009) and Gu and Wright (2016) can
get  = ∗ when  is not too small even at   0 under more complicated mechanisms, but here
we are taking bargaining as a primitive and not doing mechanism design. Also, since   ∗ at
 = 0 with Nash bargaining and   1, it might seem   0 is desirable — but unfortunately

monetary equilibrium does not exist for   0. This is a New Monetarist version of the “zero

lower bound problem” currently in vogue among New Keynesians.
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are natural in this application. With or without entry, the model makes a host

of interesting predictions. If  =  is fixed, one can show   0 and

  0, while the effects on  are complicated but at least with 0 not too

big (e.g., with Cobb-Douglas) one can show   0 and   0. Things

are more complicated when sellers enter endogenously, but let us suppose that

the SOC’s hold, which is necessarily true when  is not too big. Then one can

show   0,   0. And at least with 0 not too big,   0,

  0,   0 but  is ambiguous.
28

This is the canonical model of a monetary economy with competitive search.

An early application is Lagos and Rocheteau (2005). They fix  =  , but

introduce endogenous search effort by buyers to try to capture the “hot potato”

effect of inflation, which says buyers spend money faster when  is higher. As

they show, this effect does not emerge with bargaining. The reason is that  is

effectively a tax on DM activity, making buyers bring less money in real terms,

which lowers the gains from trade and leads to less search effort; hence they end

up spending their money slower rather than faster. With competitive search,

however, even though higher  lowers the total DM surplus, it can shift the terms

of trade in favor of buyers at least for low , which leads to more search effort and

thus recovers the “hot potato” effect. See Liu et al. (2011) and references therein

for more discussion and alternative ways to generate this effect.

In another early application, Rocheteau andWright (2005) compare the effects

of inflation in three models: competitive search, Nash bargaining, and Walrasian

pricing. We saw above how competitive search delivers (∗ ∗) at  = 0, while

generalized Nash does not, unless  = 1; one can also showWalrasian pricing may

not deliver efficiency in economies with search. Rocheteau and Wright (2009)

calibrate all three models to measure the welfare cost of inflation. With random

search and bargaining, this cost can be large compared to findings in an earlier

literature using money-in-utility or cash-in-advance models: in Lagos and Wright

28See Rocheteau et al. (2016, Appendix C) for formulae for these effects, and for a more

detailed analyze of the case where  = min { }, which of course delivers cleaner results.
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(2005), going from 10% inflation to the optimal policy is worth around 50%

of consumption, compared to around 05% in Lucas (2000). With competitive

search, the number is around 1%, as can be understood from the result that it

delivers (∗ ∗) at  = 0, so a small inflation has only a second-order impact, by

the envelope theorem. Nash bargaining with   1 calibrated to match markup

data does not deliver (∗ ∗) at  = 0, which is a key to the 50% result.

Bethune et al. (2016) pursue the issue using semi-directed search as developed

by Lester (2011). By this we mean posting and directed search apply to informed

buyers, called locals, while random search and bargaining apply to uninformed

buyers, called tourists. In equilibrium some sellers, called local shops, cater to the

informed by posting favorable terms, while others, called tourist shops, serve only

the uninformed at less favorable terms. With the fraction of informed buyers,

and other parameters, disciplined by data, including markup and price dispersion

data, the authors find a low cost of inflation, close to pure competitive search,

despite having only about 14 of buyers informed. However, they also find that

the information distortion is inoperative when this fraction is just over 12, since

then all tourist shops are driven out of business, making 14 not so low. Moreover,

they show that a little inflation can be desirable, as it relatively heavily taxes the

more expensive and less efficient tourist shops.

In other work, Dong (2010) allows inflation to affect the variety of goods sellers

have for sale. Buyers direct their search to sellers posting attractive terms, but

do not know if a seller will have a variety that suits their tastes until they show

up. Inflation reduces variety in equilibrum. Quantitatively, with this effect,

the cost of inflation close to 1% using competitive search, and 5% to 8% using

bargaining. This research, and several related papers, underscore the importance

for quantitative work of carefully modeling the microfoundations of information,

specialization and price formation.29

29In a directed search model with private information about buyers’ types, Ennis (2008) finds

large effects of inflation on welfare (6% to 7%). Faig and Jerez (2006), in a version of Faig and

Jerez (2007) with private information, show competitive search is efficient at  = 0, but at   0

buyers buy too little of a good they like a lot and too much of a good they like less. See also
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Faig and Huangfu (2007) analyze an environment where it matters who posts

the terms of trade, and not for the reasons discussed below in Section 5. Suppose

market makers post terms for their submarkets, to attract buyers and sellers, as

in Section 3.1. Recognizing that carrying currency is costly, given   0, a shrewd

market maker proposes the following scheme: All buyers pay  when they enter

his submarket; if a buyer meets a seller he gets the goods for free; then all sellers

collect  when they exit at the close of the DM. This allows agents to share in

the cost of liquidity by eliminating cash in the hands of buyers who do not meet

sellers, with market makers acting somewhat like the bankers in Berentsen et

al. (2007). As usual, one can concoct assumptions to rule out such arrangements

— perhaps market makers cannot tell who is a buyer and who is a seller — but this

is a nice example of how microstructure matters.

Dong (2011) revisits Rocheteau et al. (2008), which is like the above model

except quasilinearity is replaced by indivisible labor,  ∈ {0 1}. Following Roger-
son (1998), agents in the CM trade  using lotteries, getting wages in exchange

for probabilities of working. As should be well known, with lotteries, given any

utility function agents act as if they are quasilinear, so ̂ is still degenerate.

Lotteries also entail unemployment, and Rocheteau et al. (2007) derive a long-

run Phillips curve fully exploitable by policy. Intuitively, inflation lowers  in the

DM, that raises (lowers)  in the CM if the goods are substitutes (complements),

and employment comoves with . But they can only prove it for  = 1, which

preclude any ex ante investment by sellers. Dong (2011) replaces bargaining with

competitive search, and proves the result with no such restriction. As in Section

4.1, competitive search allows one to get more with less.

In terms of substance, however, these models predicts  = 0 is optimal even

when   0 leads to lower unemployment. In related work on Phillips curve

correlations, Huangfu (2009) has private information about monetary shocks.

Dong and Jiang (2014). In a model that is similar, but with indivisible goods, Carbonari et

al. (2017) get the optimal   0. We do not go into more detail here because private information

entails complications (discussed in Section 7).

39



When there is a positive shock observed only by buyers, they have an incentive

to misrepresent the information to get better terms. To induce truth telling,

sellers offer more output when money growth is high, and so output increases

with monetary shocks. This contrasts with a Walrasian version of her model,

where nominal shocks have no real effects. However, again, just because output

goes up with money growth, that does not mean it is a desirable.

Also pertaining to policy, this time open market operations and quantita-

tive easing, Rocheteau et al. (2016) use directed search to study economies with

currency and liquid bonds. Equilibrium features some submarkets where sellers

accept only cash, and others where they accept both assets. Acceptability is

endogenized using information theory as in Lester et al. (2012): when bonds are

counterfeitable and costly to authenticate, only some sellers make the requisite

investment. In contrast with much of the literature on segmented asset markets

based on cash-in-advance and related constraints (see Chiu 2014 for a recent ex-

ample and primary references), buyers voluntarily visit venders that only take

cash, even if using cash is expensive relative to bonds. The reason is that market

tightness endogenously lets them trade faster with cash. This leads to heteroge-

neous portfolios as choices, not restrictions, and generates novel insights into the

effects of monetary policy. Competitive search is ideal for this application.

Han et al. (2016) consider divisible assets and indivisible DM goods, as op-

posed to Section 4.1, with indivisible assets and divisible goods. This is worth

studying with posting because bargaining in this environment entails extreme

results: buyers bring just enough cash to the DM to compensate sellers for their

cost, and hence capture the entire surplus, irrespective of bargaining power— ef-

fectively, buyers commit to not paying more than sellers’ reservation price by

only bringing that much. Again this precludes any ex ante investment by sell-

ers, including entry. Directed search gets around the problem, because posting

by sellers gives buyers the incentive to bring the right amount of money, with

competition across sellers leading to an efficient split of the surplus.
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Menzio et al. (2013) provide an alternative approach that does not have a

CM and hence has a nondegenerate distribution, yet is still tractable due to

block recursivity. Buyers select into submarkets as follows: those with more ̂

prefer to higher  and  so they can trade sooner rather than later; those with

less ̂ prefer lower  and  even if it takes a little longer. Submarkets cater to

their desires by having different tightness, with sellers indifferent between them.

Since equilibrium separates buyers with different ̂, their choices are independent

of the distribution across individuals, as is tightness in the various submarkets,

due to free entry by sellers. They prove that a unique monetary steady state

exists, and characterize the ̂ distribution. While this has not yet achieved the

popularity of the alternating CM-DM framework, it has some advantages, and

Sun and Zhou (2016) integrate elements of both approaches. In any case, this

further speaks to the usefulness of competitive search in monetary economics.

5 Finite Markets

Directed search theory with finite numbers of agents playing a well-defined game is

developed in a series of papers by Peters (1984,1991,1997,2000). The presentation

here follows Julien et al. (2000) and Burdett et al. (2001). We begin with a market

with  = 2 buyers and  = 2 sellers, then generalize this and describe what

happens in the limit as  and  grow.

5.1 The 2× 2 Market
Consider a market with 2 buyers and 2 sellers. Each seller can produce and each

buyer wants to consume 1 unit of indivisible good , with the latter paying the

former  using a divisible good  that enters payoffs linearly (again this amounts

transferable utility, which, we hope, no one will confuse with money after having

read Section 4). The game proceeds as follows: first sellers post prices; then given

p = (1 2), buyers decide where to go. If both buyers visit the same seller, one

is chosen at random to get the good. Payoffs for buyers and sellers that trade are
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− and − , and we impose  ∈ [ ] without loss of generality. The strategy
of buyer 1 is 1, the probability he goes to seller , and similarly for buyer 2.

Given buyer 2’s strategy, payoffs for buyer 1 from visiting sellers 1 and 2 are

11 =
³
1− 21 +

21
2

´
(− 1) (40)

12 =

µ
21 +

1− 21
2

¶
(− 2)  (41)

In words, (40) says that at seller 1 buyer 1 gets served for sure if buyer 2 goes to

seller 2, which happens with probability 1−21, and gets served with probability

12 if buyer 2 goes to seller 1, which happens with probability 21. Given p, it

is easy to check the best response of buyer 1 is

11 =

⎧⎨⎩ 0 if 21  Γ(p)

[0 1] if 21 = Γ(p)

1 if 21  Γ(p)

(42)

where Γ(p) ≡ (+ 2 − 21)  (2− 1 − 2).

For any p, equilibrium in the stage 2 game between buyers is:

1. If 1 ≥ (+ 2)2 then (11 21) = (0 0) (both buyers go to seller 2).

2. If 1 ≤ 22 −  then (11 21) = (1 1) (both buyers go to seller 1).

3. If (+ 2)2    22 −  there are three possible equilibria:

• (11 21) = (0 1) (buyer 1 goes to seller 2, buyer 2 goes to seller 1);

• (11 21) = (1 0) (buyer 1 goes to seller 1, buyer 2 goes to seller 2);

• 11 = 21 = Γ(1 2) (buyers play symmetric mixed strategies).

Using this, and taking 2 as given, we can write the payoff for seller 1 at stage 1

as a function of 1 as follows:

1. If 1 ≥ (+ 2)2 then 1 = 0 (seller 1 gets no buyers).

2. If 1 ≤ 22 −  then 1 = 1 −  (seller 1 gets both buyers).
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3. If (+ 2)2    22 −  then two things can happen:

• a pure-strategy equilibria with 1 = 1 − ;

• a mixed-strategy equilibrium with 1 = [1− (1− )2] (1 − ), where

 = Γ(1 2), or, after simplification,

1 =
3(− 2)(− 21 + 2)(1 − )

(2− 1 − 2)2
 (43)

Now the set of equilibria in pricing can be described as follows: One possibility

is 1 = 2 = , 11 = 1 and 21 = 0 (for sure buyer 1 goes to seller 1 and buyer

2 goes to seller 2), which is an equilibrium since buyers can do no better at this

p, and sellers can never do better than this. Symmetrically, 1 = 2 = , 11 = 0

and 21 = 1 is an equilibrium. Burdett et al. (2001) show there are also many

asymmetric equilibria supported by triggers.30 Rather than dwelling on these,

we focus on symmetric mixed-strategy equilibria, as in much of the literature, .

This can be motivated by arguing pure strategies rely on a lot of coordination,

which may be reasonable in a 2 × 2 market, but is less so in large markets (see
Bland and Loertscher 2012 or Norman 2016 for more discussion).

Therefore, consider non-coordinated equilibria where buyers mix at stage 2.

From the above discussion, this requires (+ 2)2  1  22− , shown as the

unshaded region in Fig. 4. In this region, choosing 1 to maximize 1 leads to

1 =
2(2 − 2) + (− 2)(2 + 2)

5(− 2) + 2(− )
 (44)

30Here is the idea: Pick any p such that it is an equilibirum for buyer 1 to go to seller 1 and

buyer 2 to go to seller 2 for sure. If any seller deviates, buyers play the following equilibrium

at stage 2: if 1 ≥ ( + 2)2 both go to seller 2; if 1 ≤ 22 −  both go to seller 1; and if

( + 2)2    22 −  they play the mixed equilibrium. Burdett et al. (2001) characterize

the set P such that p ∈ P allows no profitable deviation. Intuitively, there is no profitable

deviation that makes both buyers go to the same seller at stage 2, and it is not easy to find a

profitable deviation that leads to a mixed equilibrium at stage 2, because sellers do poorly in

mixed equilibria, due to the chance that no one shows up. For any p such that profits are not

too low, no seller wants to deviate and trigger mixing at stage 2. Relatedly, Camera and Kim

(2016) consider an infinitely-repeated version of the model, and get multiplicity using trigger

strategies as in standard repeated game theory.
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Figure 4: Best-response in price posting in the 2× 2 Market

(this looks different from Burdett et al. 2001 because we do not normalize  = 1

and  = 0). Now (44) defines seller 1’s best response 1 = (2), and symmetri-

cally 2 = (1) for seller 2. As Fig. 4 shows, there is a unique stage 1 equilibrium

in the class under consideration, 1 = 2 = ( + )2. Then the unique stage 2

equilibrium has 11 = 12 = 12, which means buyers pick sellers at random.
31

In this equilibrium, half the time 2 buyers visit the same seller, meaning

1 buyer and 1 seller do not trade. This is friction as defined by Lagos (2000):

simultaneously some buyers do not get served and some sellers have no customers.

In fact,  = 32 is the expected number of trades, which is inefficient in the sense

that  = 2 is physically feasible. Yet in another sense it is fairly good. Suppose

both buyers go to seller 1 with arbitrary probability . Then the chance they

both go to the same seller is 2 + (1− )2, which is minimized at  = 12. Also,

while the total expected surplus is not maximized, buyers like this equilibrium

because  =  = 3(+ )8, while they get  = 0 in pure-strategy equilibrium

with 1 = 2 = . We summarize these results as follows:

31Although buyers pick sellers randomly in equilibrium, the fact that search can be directed

off the equilibrium path of course disciplines prices on the equilibrium path. This is similar to,

e.g., the threat of rejection disciplining offers, or the threat of default disciplining lending, on

the equilibrium path, in bargaining and in credit arrangements, respectively.
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Proposition 5 In the 2× 2 market there exists a unique non-coordinated equi-
librium, which is  = (+ )2 and  = 12. The expected number of trades is

 = 32 and the individual trading probabilities are  =  = 34.

In addition to posting, Julien et al. (2000) consider auctions: if 1 buyer shows

up he pays the posted price; and if 2 show up they bid, resulting in the Bertrand

price ̄ = . One can think of sellers posting a reserve price, denoted  below.

Given this, the analogs of (40) and (41) are

11 = (1− 21) (− 1)

12 = 21 (− 2) 

because a buyer gets 0 surplus unless he is the only one visiting a seller. A mixed-

strategy equilibrium at stage 2 entails 11 = 21 = (− 1) (2−1−2). Then

one can check sellers have a dominant strategy,  = (+ )2. So in equilibrium,

the reserve price is same as the posted price in the benchmark model. However,

profit is higher:  = (+ )2 with auctions and  = 3(+ )8 with posting.

Coles and Eeckhout (2003) integrate the approaches by letting sellers post 

contingent on the number of buyers that show up, say  ( for queue length).

This nests pure posting with 1 = 2, and auctions with 2 = ̄ =  and 1 = .

One can make assumptions to preclude this — e.g., buyers do not observe  — but

suppose we allow it. Then there is an equilibrium with 1 = 2 = (+ )2, as in

the baseline model, but there are many others, all with 1 = ( + )2 and any

2 ∈ [ ]. They are not payoff equivalent, and profit is highest with auctions. To
see why, note first that a seller is indifferent to posting any pair (1 2) delivering

 to buyers, but not indifferent to his rival’s posting. Suppose, e.g., he lowers

his  to increase the probability customers come to him. That decreases the

probability they go to his rival, so if they go to his rival they are more likely to

get 1 and less likely to get 2. Ergo, stealing business is harder and as a result

profit is higher when sellers post 1  2 rather than 1 = 2.

An exceptional case is the Coles-Eeckhout equilibrium where 2 =  is at
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its minimum value. In this equilibrium a buyer gets the same expected payoff,

(− ) 2, whether or not the other one shows up, with the expectation taken

before it is determined who gets the good if both show up. Hence, a seller’s

deviation does not affect buyers’ expected payoffs when they visit his rival, and

the strategic effect in the previous paragraph is inoperative — so one might say

the market utility approach is valid. We say more on this in Section 5.3, after

generalizing the environment to allow any numbers of buyers and sellers.

But first we mention a way around the Coles-Eeckhout indeterminacy, due to

Dutu et al. (2011), in monetary economies. They show there is an equilibrium

with 1 = ( + )2 and any 2 ∈ [ ] at  = 0. By continuity, for   0

there is an equilibrium with 1 close to ( + )2, but more care is needed to

determine 2, as buyers must decide in the CM how much ̂ to bring to the DM.

Consider equilibrium where some bring ̂ = 1 and others ̂ = 2, and they

are indifferent, taking into account the cost ̂. This provides an additional

equilibrium condition to pin down 2. Hence, the indeterminacy in Coles and

Eeckhout vanishes in a monetary economy — although, as usual, the introduction

of monetary considerations can engender other types of multiplicity, for different

reasons. Again, directed search and monetary economics are intimately related.

5.2 The  ×  Market

Consider any integer numbers of buyers and sellers,  and . A pure price

posting strategy for seller  is  ∈ [ ], and we let p = (1 ). A search

strategy for buyer  is γ =
¡
1 

¢
, with  the probability he visits seller ,

and we let γ = (γ1 γ
). An equilibrium is a (pγ) such that no one wants to

deviate, and a symmetric equilibrium is one with  =  and  = 1. To check

for equilibrium we need to know what happens after a seller deviates. Starting at

a symmetric p = ( ), suppose some seller, say  = 1, deviates to 1 so that

p = (1p−1). We now check if this is profitable, given buyers play a symmetric

equilibrium after the deviation.
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Let the probability any buyer visits seller 1 after his deviation be 1 =

1(1p−1). A symmetric subgame-perfect equilibrium is described by  and

1 (1p−1) satisfying the following conditions: (a) 1 = maximizes 1 (1p−1);

(b) ∗1 (1p−1) constitutes an equilibrium in the subgame for any 1 and p−1 =

( ); and (c) on the equilibrium path  = 1, while after a deviation buy-

ers go to seller 1 with probability 1 = 1(1p−1) and all other sellers with

probability ̄1 = (1− 1)( − 1).

Proposition 6 In an  ×  market, let  =  and  = 1 − 1. Then
there exists a unique non-coordinated equilibrium, and in this equilibrium every

seller sets

 =
(1−  − −1)+ 

1−  − −1 + 
 (45)

while every buyer visits each seller with probability 1. The expected number of

trades is

 = ( ) =  (1− )  (46)

Proof : Start at p = (  ), let seller 1 deviate, and consider symmetric

equilibria where 1 = 1 (1p−1). Let the probability that at least one buyer

visits seller 1 be 1 = 1 (1p−1). Since he gets no customers with probability

(1− 1)
 , clearly,

1 = 1− (1− 1)
  (47)

Let the probability a buyer trades if he visits seller 1 be 1 = 1 (1p−1).

Notice 11 = 1, as the LHS is the expected number of buyers who get

served by seller 1 and the RHS is his expected number of sales. This and (47)

imply

1 =
1− (1− 1)



1
 (48)

Now the profit of the deviant seller is

1 (1p−1) = 1(1 − ) = [1− (1− 1)
] (1 − ) (49)
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and the payoff to a buyer visiting him is

1 (1p−1) = 1(− 1) =
1− (1− 1)



1
(− 1) (50)

Also, the payoff to a buyer visiting seller  6= 1 is

 (1p−1) =
1− (1− ̄1)



̄1
(− ) (51)

Given this, the FOC for maximizing 1 is

0 =
1

1
= 1 + (1 − )

1

1
= 1 + (1− 1)

−1(1 − )11 (52)

In a symmetric mixed equilibrium in the subgame, buyers are indifferent be-

tween visiting any seller, which means 1 satisfies

1− (1− 1)


1
(− 1) =

1− (1− ̄1)


̄1
(− ) (53)

Over the range 1 ∈ (0 1), we can derive 11 and insert it into (52), then
simplify using 1 =  and 1 = 1 to verify that a deviation is not profitable iff

 solves (45). Hence there is a unique symmetric equilibrium where buyers mix.

Galenianos and Kircher (2012) prove there are no asymmetric equilibrium where

buyers mix and sellers use pure strategies. All that remains is to show  satisfies

(46), but that follows directly from (47) and (48) with 1 = 1. ¥
Several remarks are in order. First, (45) endogenously gives  as a weighted

average of  and , which might not be apparent from Burdett et al. (2001)

because they normalize  = 1 and  = 0. In fact, the weight on  is the probability

a seller gets at least 2 buyers, and the weight on  is probability he gets just 1.

Second, as in the 2× 2 game, in equilibrium buyers visit sellers at random, but

the fact that search can be directed still disciplines prices. Third, notice that 

is a smooth function of  and , which we think is nice. To say why, let 

be large, and note that as  goes from  − 1 to  + 1 frictionless equilibrium
theory predicts  jumps from  to . As shown in Fig. 5, with competitive search

the discrete jump gets smoothed out by the frictions, which is one reason Peters

(1984,1991) and others advocate the approach in the first place.

48



Figure 5: Price and market tightness

Fourth, (46) endogenously gives ( ) as an urn-ball meeting technology,

used in economics at least since Butters (1977) and Hall (1979). The name reflects

the fact that the number of buyers up at a seller is binomially distributed, like

putting  balls in  urns in elementary probability theory, which converges to a

Poisson distribution as   →∞ for fixed  = , with − the probability

a seller gets no buyers.32 Also note that ( ) displays DRS for finite  and

, but quickly converges to CRS as  and  grow. Finally, while we appeal

to Galenianos and Kircher (2012) to claim uniqueness with homogeneous sellers,

Kim and Camera (2014) extend this to heterogeneity. These papers also consider

more general meeting technologies, risk aversion and private information.

Versions of the above results can be found in Peters (2000), Julien et al. (2000)

or Burdett et al. (2001). Using standard formulae, they also imply:

32From this it should be evident that it can matter who posts and who searches in finite

markets, since throwing  balls into  urns is not the same as throwing  balls into 
urns (Kultti 2000; Halko et al. 2008). Indeed, it matters even when   →∞, where (based
on Proposition 7 below) the number of matches is  =  (1− ) if sellers post and  =


¡
1− 1

¢
if buyers post. As Delacroix and Shi (2016) point out, in this case    iff

  , and hence we generate more meetings when the short side posts and the long side

searches. They also show it does not matter when the matching function is symmetric in the

sense that the number of meetings  ( ) does not depend on who posts and who searches,

which is a maintained assumption in the baseline models. Delacroix and Shi (2016) also consider

asymmetric technologies and other generalizations.
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Proposition 7 Let   →∞ holding  =  fixed. Then

( )→ [1− ()]+ () (54)

where () = − (1− −) is the usual elasticity, and

( )→
¡
1− −

¢
 and ( )→ 1− − (55)

As they did for the 2 × 2 market, Julien et al. (2000) also consider auctions
in  ×  markets. They show that as   → ∞ the reserve price goes to

 = , and payoffs are the same as under posting (see Appendix D for details).

They also consider a dynamic labor market version, which generates steady state

unemployment and wage dispersion. Also, we mention that Julien et al. (2000)

and Burdett et al. (2001), with entry, equilibrium is not efficient in the × case,
because the reserve price is positive, and because the matching functioni exhibits

decreasing returns to scale for finite numbers. See Julien et al. (2005,2006b,2011)

for a discussion how this relates to efficiency in Mortensen (1982b).

5.3 Issues, Applications and Extensions

The above methods allows us to determine  without an exogenous bargaining

solution, and to determine  and  without an exogenous meeting technology.

While this is attractive, we keep an open mind. For the terms of trade, bargaining

better captures situations without commitment and hence with holdup problems.

For the trading probabilities, (55) is a special case of models where  and 

come from a general meeting technology, which is relevant empirically to the

extent that urn-ball functions can perform poorly when confronted with data

(Petrongolo and Pissarides 2001). There are trade-offs, and different approaches

may be appropriate in different applications.

Having said that, one clear advantage to finite numbers concerns off-equilibrium

beliefs: all we need is subgame perfection. With a continuum, however, things

gets tricky. Given a candidate equilibrium p, if one seller from a continuum de-

viates, what is the best response of buyers? If the deviator is measure 0 there is
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no response. The market utility approach skirts this issue in a way that is not

entirely satisfactory. As an alternative, Galenianos and Kircher (2009) posit a set

of artificial sellers with measure  that exogenously post every  in the relevant

range. They then properly evaluate deviation payoffs for   0, and focus on

equilibria that obtain when  → 0. This works, but is slightly cumbersome.

An alternative going back to Montgomery (1991) is to use the market utility

approach in  ×  markets by solving

 = max


(− ) st (− ) =  (56)

In (56),  is the probability a seller gets at least 1 buyer,  is the probability a

buyer visiting the seller gets served, and both depend on the probability buyers

visit the seller , as derived in Section 5.2. Eliminating  using the constraint

and taking the FOC with respect to , we get (1− )−1 = . In symmetric

equilibrium, all sellers post the same  and  = 1. Hence  = −1, where

as above  = 1− 1, and the constraint yields

 =
(1−  − −1)+ −1

1− 
 (57)

This is nice, but not quite right — in a 2×2market, e.g., (45) gives  = (+)2
while (57) gives  = (+ 2) 3. To be fair, Montgomery solves the 2× 2 model
correctly, and acknowledges it is a “short cut” in the general case to take  as

given after a seller deviates. The difference between (45) and (57) is the presence

of −−1+ in the denominator of the former, so the Burdett et al. price is

higher than the Montgomery price, because it is less attractive for a seller to lower

his  when he recognizes this increases buyers’ utility. However, as   → ∞
holding  fixed, this consideration vanishes, so Montgomery’s approach gives the

right answer in large markets. In small markets, his approach can be misleading —

e.g., it yields efficiency in versions with entry or where sellers are heterogeneous,

but only because it neglects relevant strategic effects.33

33Galenianos et al. (2011) show the correct approach with heterogeneous sellers implies too
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Galenianos et al. (2011) and Galenianos and Kircher (2012) propose a hybrid

approach, solving (56) with  =  (). This means sellers must offer buyers

their market utility, but recognizes that it should be computed after a deviation.

Given a symmetric mixed equilibrium after the deviation, and using (51) and

̄ = (1− )( − 1), we have

 () =
1−

³
1− 1−

−1

´


³
1−
−1

´ (− ∗)  (58)

Solving (56) with this , then imposing equilibrium, we get the  in (45), which

is correct for any ( ). Hence we get the right result for small markets, but

the method and notation are similar to the earlier analysis of large markets.

Norman (2016) offers another approach, based on population uncertainty (My-

erson 1998,2000). Suppose  and  are independently drawn from Poisson dis-

tributions, where sellers do not see the realization, while buyers see  and prices

when they choose search strategies. This justifies the usual focus on symmetric

equilibrium, where buyers use mixed strategies, since he shows any equilibrium

is payoff equivalent to that (thus eliminating the other equilibria mentioned in

fn. 30). The Poisson assumption makes the model tractable. Also, this model be-

longs to a general class in which prices are strategic complements, which implies

there is a unique equilibrium if there is a unique symmetric equilibrium. As well,

as usual, as   → ∞ his outcome approaches our benchmark results. More

generally, Norman’s ostensibly minor change in the environment generates many

results in a tractable way, as should be useful in future applications.34

On a less technical note, Burdett et al. (2001) consider two types of sellers

with different capacity: 1 of them have 1 unit for sale; 2 have 2 units; and

much trade at high-cost sellers because the strategic effects increase prices more at low-cost

sellers. Price ceilings (or minimum wages in a labor market) can restore efficiency.
34He also generalizes Galenianos and Kircher (2012) and Kim and Camera (2014). First, he

shows sellers’ profit is strictly concave in the relevant range. Then he shows his reduced-form

game is supermodular under more general conditions than previous authors. This is useful

because supermodular games have a smallest and largest equilibrium, and the existence of pure

strategy equilibrium is simple. Because profit is strictly concave, mixed strategies by sellers are

ruled out. He also provides a simple test for uniqueness with symmetric sellers.
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 = 1 + 22 is the total quantity on the market. This implies a matching

function  ( 1 2), which in general does not reduce to a function of only

( ). Intuitively, the coordination friction is worse when there are more sellers

with 1 unit and fewer with 2, holding  constant. In a labor application, this

helps account for a changing Beveridge curve in the data, as the relationship

between unemployment and total vacancies depends shifts with the mix of big

and small employers. .Lester (2010) lets firms choose how many positions to

create, making the distribution of vacancies endogenous. He derives the matching

function and studies the implications of various shocks, depending on whether

job creation occurs via entry by new firms or expansion by existing firms.35

In another application, Lester (2011) introduces semi-directed search: some

buyers, called locals, are informed and direct their search to sellers posting fa-

vorable terms; others, called tourists, are uninformed and search randomly. He

has free entry of sellers. In a large market, equilibrium features two types of

sellers: local shops post low prices to attract the informed; tourist shops exploit

the uninformed. In fact, there are at most two types of sellers, since if the frac-

tion of informed buyers is above a threshold, which is strictly below 1, no tourist

shops opens. Lester also analyzes markets with small numbers, but only under a

parameter restriction that guarantees no tourist shops open, so there is only one

price posted. Recently, Huang (2016) makes progress on relaxing this restriction,

at least for  = 2. He shows there is a unique equilibrium, and it involves sellers

randomizing over  in discrete infinite set {1 2 } ⊂ [ ].
The setup is useful for studying changes in information. Lester (2011) shows

that increasing the fraction of informed buyers can increase or decrease prices,

depending on parameters. This is contrary to conventional wisdom, and to sev-

eral papers where prices fall when consumers are better informed (Salop and

Stiglitz; Varian 1980; Burdett and Judd 1983; Stahl 1989). However, Lester’s

result requires finite numbers: the fraction of informed buyers actually does not

35See .Tan (2012), Li and Tain (2013), Kultti and Mauring (2014) and Godenhielm and Kultti

(2015) for more on this topic.
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affect prices with a continuum. Gomis-Porqueras et al. (2015) pursue this when

the number of informed buyers is endogenized by costly advertising. They show

more information can raise prices even in large markets. Bethune et al. (2016)

also show more information can raise or lower prices in large markets in monetary

economies (see also Dong et al. 2016). Intuitively, if buyers’ bargaining power is

low at tourist shops, they get more from a marginal dollar at local shops. With

better information, the fraction of local shops rises, and in response buyers bring

more money, which allows sellers to raise prices.

This is relevant because, as Ellison and Ellison (2005) say, “evidence from

the Internet... challenged the existing search models, because we did not see the

tremendous decrease in prices and price dispersion that many had predicted.”

Similarly, according to Baye et al. (2006), “Reductions in information costs over

the past century have neither reduced nor eliminated the levels of price dispersion

observed.” As the previous paragraph indicates, not all search models predict

prices fall with information. And it is even more obvious that price dispersion

need not fall with information: when the fraction of informed buyers is 0 or 1,

we are in a pure random or a pure directed search world, and both have no

dispersion; when the fraction is between 0 and 1 there is price dispersion; and so

it is obviously nonmonotone in information.

Let us now return to Coles and Eeckhout (2003), by allowing sellers to post

 where  is the number of buyers that show up. As in the 2 × 2 market,
indeterminacy obtains.36 However, Selcuk (2012) perturbs the environment by

having risk-averse buyers, so  = E
³




´
, where 


 =

¡
− 

¢
 is buyers’

surplus when  buyers show up. He shows that  00  0 eliminates the indeter-

minacy: there is a unique equilibrium, and it features  =  ∀. In particular,
36Related to the discussion at the end of Section 5, there is one exceptional equilibrium where

buyers’ expected payoff is independent of . Thus, a seller’s deviation does not affect buyers’

expected payoff at his rivals, so one might say the market utility approach is valid. Moreover,

if we add entry, e.g., it will be efficient, even with finite numbers, because the strategic impact

of pricing is inoperative in this equilibrium.
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if  () =  with  ∈ (0 1), in a market with  =  all sellers post

 =
(1− − − −)+ −
1− − − − + −



Notice   0, and  →  as  → 0. Also notice that  = 1 implies  is the

same as (54). Risk aversion seems an important extension to many applications

of directed search, some of which are discussed further below.

In fact, posting a contingent  is still restrictive — why can’t buyers make

or receive transfers even if they do not get served? Again, one might make

assumptions to preclude this, but suppose we allow it. As in Jacquet and Tan

(2012), for any mechanism in a general class, the outcome can be implemented by

having a buyer who gets the good pay  and having others that show up pay ,

which can be positive or negative. If  = − then buyers are fully insured: their
payoff is the same whether or not they get served. Jacquet and Tan (2012) show

that when buyers are risk averse there is a unique equilibrium and it features full

insurance,  =  − . Thus one might say the market utility assumption holds,

and that this provides strategic foundation for the results in Montgomery (1991),

including his efficiency results (recall fn. 33).

Returning to risk neutrality, Geromichalos (2012) explores several additional

extensions in  ×  markets. First, he gives sellers the capacity to each serve

up to  customers, and post mechanisms announcing the number they will serve,

which cannot exceed  but could be less. He also allows  to be contingent

on the queue of buyers that show up, and allows payments from those who get

served and those who do not. As in the previous paragraph, it suffices to consider

mechanisms where buyers that get served pay  while buyers that show up but

do not get served pay . He then shows that in a particular sense this does not

matter in large markets — it is payoff equivalent to have sellers simply post one

price, as in the baseline model.

To illustrate his methods, let us set capacity to  = 1. Then, as shown in
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Appendix F, in the limit as   →∞ with  =  fixed, equilibrium satisfies

(− )
¡
1− −

¢
+  = (− )

¡
1− − − −

¢
 (59)

This pins down  = (− ) (1− − − −), which is the same as the outcome

described in Proposition 6. Intuitively, any combination ( ) satisfying (59) is

payoff equivalent to the outcome when each seller simply posts . However, this

needs to be reconciled with Virag (2011), who shows that for any market size, and

the same type of mechanism ( ), there is always an equilibrium where sellers

extract the entire surplus and market utility is 0. Hence, it is not true that all

equilibria converge to the limit in (59). The difference stems from the fact that

Geromichalos (2012) excludes the possibility of infinite : as Virag (2011) makes

clear, the convergence does apply if there is a bound on , in which case the limit

in (59) is valid.

Geromichalos (2014) is a sequel on the Bertrand paradox — the idea that

duopoly models often have an equilibrium where price equals marginal cost (this

is a paradox because one might expect that to require many sellers). A poten-

tial resolution discussed in the literature involves capacity constraints: if a firm

cannot meet market demand, a rival charging more can still get customers. He

argues this is a special case of the idea that buyers’ payoffs might fall with realized

demand at a given location, and considers three examples: capacity constraints;

congestion effects; and prices that depend on  as in Coles and Eeckhout (2003).

These all resolve the paradox by making buyers’ payoffs at a seller’s location fall

with the number that show up, so buyers may not all go to a seller just because

his  is lower. As Geromichalos says, while the related literature on industrial

organization typically specifies demand exogenously, directed search theory gen-

erates it endogenously as a function of strategic behavior, and is therefore ideal

for studying these issues.
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6 Heterogeneity and Sorting

We now discuss in more depth heterogeneity on one or both sides of the market.

The presentation starts with an abstract formulation and definition of equilib-

rium, then covers specific applications from the literature.37

6.1 General Framework

Consider any two-sided market with heterogeneous agents: there are types 1 and

2 on each side of the market, with distributions 1(1) and 2(2) on supports

T1 and T2. This encompasses buyers and sellers with heterogeneous valuations or
costs, workers and firms with heterogeneous productivity, and a general theory

of partnership formation when agents have heterogeneous attributes. The type

distributions are fixed for now, but can be determined by entry. Also, we focus

mainly on the case where types are drawn ex ante, before decisions are made,

but mention how to have types drawn after meeting counterparties.

Each agent from side 1 posts a mechanism  ∈ S, which includes all informa-
tion side 2 sees. Thus, e.g., with pure price posting  =  and S = R+, while

if side 1 also states his type then  = ( 1) and S = R+ × T1, where for nota-
tional convenience he can state any 1 ∈ T1, but when types are observable we
assign payoff −∞ to lying. Richer mechanisms include auctions, where agents in

meetings have actions like bidding. In such cases, an action for side  is denoted

 ∈ A. We assume mechanisms can be ordered, and for side 1 let 1( 1 1) be

the mass of types weakly below 1 posting  or lower, and who play action 1 or

lower if matched. With a slight abuse of notation, let 1() be the marginal, i.e.,

the mass posting  or lower. Similarly, distributions for side 2 indicate where they

direct their search and what they do if matched. Then the equilibrium concept is

based on the theory of large games (e.g., Mas-Collel 1984), where an individual’s

37While some of this material is quite technical, at least relative to Sections 2-4, we think

it is important to be precise at this point. Also, we think it is best to see this framework

after the finite models in Section 5, which can be somewhat messy, but at lest they avoid some

measure-theoretic complications dealt with here.
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payoff is determined by his behavior, and the distribution of others’ behavior

described here by 1 and 2, but not on the behavior of any other particular

individual.

As applied to competitive search by Eeckhout and Kircher (2010) and Peters

(2010), a key variable is tightness in the submarket with mechanism , determined

on the equilibrium path by the ratio of side 2 to side 1 agents in this submarket.

If a submarket attracts a mass of agents on both sides, this ratio is determined

in the obvious way. If one lets these masses shrink to have 0 measure, as is

often natural in applications, the limit is the Radon-Nikodym derivative, () =

2()1().
38 Other keys variables are the set of types on side 1 posting any ,

and the set on side 2 searching for . Let ( ; ) be the distribution of types

from side  playing action  in submarket . For the mechanisms that are posted

in equilibrium, this has to be consistent with the conditional of (  ) on ,

and is almost everywhere uniquely determined by 1 and 2, as is .
39 However,

this does not determine  and  off the equilibrium path, as discussed below.

In sum, in addition to his own type, an agent cares about these objects in

a submarket: the probability of trade; the distribution of types on the other

side; and payoffs within matches. These depend on: his choice of  and ; the

expected number of other traders determined by ; and the distribution of types

and actions of other traders determined by . Consider type  from side  in a

submarket with mechanism , expecting tightness  and distribution . Denote

his probability of trade by ̃(  ; ), his payoff in a pair  = (1 2) given

 = (1 2) by (  ), and his payoff from not trading by (  ). His

38Technically the Radon-Nikodym derivative ensures that for any subset S 0 ⊆ S the integralR
∈S0 ()1() is the same as the associated number of side 2 agents searching for  ∈ S 0,R
∈S0 2(). Whenever we have masses of agents on both sides, the Radon-Nikodym derivative
represents the ratio correctly. As it is never optimal for side 1 to post an  that attracts no one

from side 2, we can assume sup1() is a subset of sup2(), where sup() is the support of

, which is necessary for the Radon-Nikodym derivative to be well-defined.
39Note that (  ) can have a mass larger than 1 if there are more than a unit measure

of agents on side i. Let ̄ be the total mass of agents attempting to trade on side  Then

( ; ) has to be a distribution of (  )̄ conditional on  While 2 might not be

almost everywhere determined if there is a positive measure of mechanisms that are not visited

by anyone, in this case the matching probability is zero and beliefs do not matter.
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expected payoff is then

(  ; ) = ̃(  ; )E(  ) + [1− ̃(  ; )]E(  )

(60)

where expectations are with respect to  on the other side of the market.

As elsewhere in this survey, off-equilibrium is tied to the notion of subgame

perfection. Let the market utility (2) be the supremum of 2( 2 2; ) over

 posted in equilibrium and actions 2 ∈ . We capture this notion by:

Condition P: If ()  0 then the support of 2(2 2; ) is non-empty

and includes only (2 2) ∈ T2 ×A2 st 2( 2 2; ) = (2).

Thus, a positive number of side 2 agents can only be expected if those agents get

their market utility, and beliefs include only such agents. It is also convenient to

impose that beliefs exclude strictly-dominated combinations:40

Condition B: The support of beliefs 1 does not allow combinations

(1 1; ) such that (1 ) is strictly dominated for 1 whenever there

is (01; ) that is not dominated for some 
0
1.

Equilibrium is defined as a distribution of strategies — what to post and where

to search — plus tightness and type distributions in every submarket satisfying

the natural conditions. To make this precise, let sup be the support of , let

0 be a fictitious mechanism that yields zero utility, the outside option, and let

S0= S∪{0} be the set of mechanisms plus this option. Then we have:

Definition 1 Equilibrium is a list of functions h1 2  1 2 i such that:

1. (maximization) (  ; ) ≥ (
0 0 ; ) ∀(  ) ∈ sup and

(0 0)∈S0 ×A;

40Even when there are large costs to lying, some restriction is necessary to ensure that agents

believe announcements off the equilibrium path, and excluding strictly dominated combinations

does the trick. Other standard refinements from signalling theory can also be used, although

we note in passing that signalling has not received that much attention in the directed search

literature.
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2. (consistency)  is consistent with the conditional distributions of 1 and 2,

while  is consistent with their Radon-Nikodym derivative;

3. (perfection) Conditions P and B hold;

4. (feasibility) ∀T 0 ⊆ TZ
S×A×T 0

(  ) ≤
Z
T 0
(),

with = if max()∈S×A
(  ; )  0 for almost all  ∈ T 0 

To be clear, the first condition says that agents participate in submarkets that

maximize their payoffs given their beliefs. The second says beliefs are consistent

with these strategies. The third captures off-equilibrium behavior. The inequality

in the fourth says that the measure of agents in submarkets can never exceed their

measure in the population, but could be less if some agents abstain from trade

and take their outside options; if there are strictly positive returns, they do not

abstain, and this holds with equality.

While the above definition does not incorporate entry, that can easily be

amended — e.g., with entry by side 1 at cost  (1), we replace their maximization

condition by 1( 1 1; ) ≤ (1), with = if ( 1 1) ∈ sup1. Also, this
setup assumes types are drawn ex ante, but we can alternatively have side 2

draw their types after making search decisions. Consider 2( 2 2). If type

is realized after entering a submarket, its conditional 2(2 2|) must have a
marginal equal to the distribution of types 2(2)2, where 2 is the total

mass of type 2. Among possible conditional distributions, consider the one that

maximizes the expectation of 2( 2 2; ) over 2 and 2, and let  be the

highest such expectation across . Then the analog to Condition P is this: for

 off the equilibrium path, 2 has to coincide with one of these maximizers, and

the maximal value equals market utility  if tightness is strictly positive. Also,

the maximization condition for side 2 is adjusted as follows: if  is in the support

of 2() then E2(22|)2( 2 2; ) =  , which says that on the equilibrium

path market utility is achievable.
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6.2 Sorting

Consider the case of a bilateral meeting technology and price posting, as in Sec-

tions 2-4, where types are known ex ante and observable, and a mechanism lists

a price, the type of agent 1 and the type of agent 2 he aims to attract.41 In our

general notation,  = ( 1 2) from set S = R+ × T1 × T2. There are no actions
because in a meeting agents simply trade at the posted price. This is relatively

tractable since trading probabilities only depend on  and types are observed,

implying ̃1 [( ) 1 2; ] = 1() and ̃2 [( ) 1 2; ] = 2(), where

1() =  () and 2() =  () , as in the baseline model.

Here trade yields a surplus (1 2) that depends on the types, while no

trade yields 0 utility. Let (1 2) be the surplus of side , which allows private

valuations, (1 2) = . In this case, and, more generally, whenever one side’s

payoffs do not directly depend on the other side’s type, it is not actually necessary

for the mechanism to specify this type. Another interesting case is pure public

goods, 1(1 2) = 2(1 2) = (1 + 2) 2, where the absence of contractual type

specification can lead to adverse selection, as discussed below. Unless otherwise

noted, payoffs are increasing in type. Since side 2 ends up paying  to side 1,

and assuming transferable utility, the actual payoff from trade for each side is

1 [( )  ] = 1(1 2) +  and 2 [( )  ] = 2(1 2)− .

Again, assume for now that agents get utility −∞ from lying, to capture

observable types with our formalization. Then side 1 agents reveal their types

and are approached only by the desired types from side 2. Hence, we can treat

beliefs 1 and 2 as degenerate, and the expected transfer is simply the trading

41Shi (2001) studies this for a specific matching function; our exposition follows the gen-

eralization in Eeckhout and Kircher (2010). Davoodalhosseini (2015) modifies Eckhout and

Kircher by introducing free entry and private information about side 2’s type, which affects side

1’s payoff. See also Jerez (2014) and Mortensen and Wright (2003), where the latter actually

studies a dynamic model, with endogenous flows into the market, but only considers additively

separable payoffs. The treatment mainly focuses on bilateral meetings and heterogeneity with

observable types. Less is known about the case of multilateral meetings, with a few exceptions,

like Shimer (2005), Julien et al. (2005) or Albrecht et al. (2014).
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probability times price:

1 [( 1 2) 1 1; ] = () [1(1 2) + ] (61)

2 [( 1 2) 2 2; ] =
()


[2(1 2)− ]  (62)

An announcement by type 1 maximizes (61) given that type 2 gets (2), his

market utility, where the endogenous variables are the type 2 of the counterparty,

the price , and tightness :

max
2

() [1(1 2) + ] st
()


[2(1 2)− ] = (2)

Introducing a change of variable,  = 2(1 2)− , we rewrite this as

max
2

() [(1 2)− ] st
()


 = (2) (63)

As in Shi (2001), side 1 gets the total surplus and compensates side 2 through a

transfer , further reducing the problem to

max
2

()(1 2)− (2) (64)

A difference from earlier applications is that 2 is now an argument of  (2).

Nevertheless, one can show  (2) is increasing, and hence differentiable almost

everywhere, so the solution is still described by the FOC’s.

As a special case, consider first one-sided heterogeneity, where only agents on

side 2 differ. Then 1() = () = 2 and 2() = 0, so that side 1 reaps all the

gains from trade, and compensation  in the transformed problem coincides with

the true transfer price.42 The FOC’s are then

0()− (2) = 0 (65)

()−  0(2) = 0 (66)

Each type 2 is associated with a (2) and  (2) solving these conditions, similar

to Section 3.1.

42Since only the joint surplus () matters in (64) the analysis is unchanged under private

valuation, 1(1 2) = 0 and 2(1 2) = 2, except  in this case does not correspond to the

actual price.
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To proceed, notice that (65) and (66) hold ∀2, so we can differentiate the
former and use the result to eliminate  0(2) from the latter, resulting in

0(2) = −[(2)](2)
()2

 (67)

with () and  () are the elasticity and the elasticity of substitution of the

matching function, respectively, as in the baseline model. This differential equa-

tion determines (2) up to a constant. Clearly 0(2)  0, so higher 2 select

into submarkets with lower tightness, and hence trade faster, as in Section 3.1,

but still the compensation  is higher under mild conditions on the matching

function, because side 1 collects all the surplus in the transformed problem but

rewards better partners with higher compensation and matching prospects.

For a example with () = , we can explicitly solve (2) = 
−
2 up to the

constant   0. Adding entry, 1 = , we pin down  = 1,  (2), and the rest

of the variables in each submarket. Without entry,  comes from market clearing,Z
(2)

−12(2) = 1 (68)

where the RHS is the number of agents on side 1, and the LHS integrates tightness

over side 2. Along with (67), this fully characterizes equilibrium. Given  = 2−,
in this example, substitution of (65) into the constraint in (63) yields  = 2.

Thus, each submarket satisfies the relevant version of the Hosios condition, and

this entails efficiency.

With heterogeneity only on side 1 rather than side 2, as mentioned in Section

3.1, identical agents from side 2 have to be compensated for matching with differ-

ent agents on side 1. Since again better types (now on side 1) are matched faster,

the agents they match with trade slower. So for side 2 higher compensation is

negatively related to the trading probability, the opposite of the previous case.

Intuitively, prices have two roles, managing heterogeneity and trading probabili-

ties. Hence, the relationship between the terms of trade and probability of trade

generally depends on the type of heterogeneity.
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Two-sided heterogeneity makes this even more clear. When there are non-zero

continuous densities on both sides, the analysis remains tractable when it can be

compressed into a differential equation, as above, but the issue of who trades

with whom is more complicated. One concern in the literature is assortative

matching (see Chade et al. 2016 for a survey). In particular, when do we get

positive (negative) assortative matching, which means higher types on one side

match with higher (lower) types on the other?

With two-sided heterogeneity, the FOC’s from problem (64) for type 1 are

0()(1 2)− (2) = 0 (69)

()2(1 2)−  0(2) = 0 (70)

where 2 is the partial derivative. Let 
∗
1(2) indicate the type on side 1 that

matches with type 2 on side 2, and ∗(2) the associated tightness, solving (69)-

(70). Positive sorting means ∗01 (2)  0. The SOC’s reduce to

∗01 (2)

½
12
12

−  [∗(2)]

¾
≥ 0 (71)

Hence positive sorting obtains if the expression in braces is positive; one can also

show the converse is true (Eeckhout and Kircher 2010). If the total surplus dis-

plays CRS, (71) is especially tractable, and nicely illustrates a trade-off between

the elasticity of substitution in the surplus and the elasticity of substitution in

the matching function.

Many standard market models (again Chade et al. 2016) imply positive sorting

under a condition known as supermodularity, 12 ≥ 0. In the present formu-
lation, (71) is stronger, because standard assumptions implies   0, as well as

 1  2  0. Indeed, if (1 2) = 1 + 2, which is weakly supermodular, we

get negative sorting. Intuitively, this is because it does not matter for the surplus

who matches with whom, but higher types should match with a higher probabil-

ity, which requires a lower probability for the other side. The losses from reduced

matching prospects are minimized if the agents on the other side are low types.43

43How much supermodularity is needed to overturn this effect depends on the matching
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This holds if more potential partners increases one’s matching prospects, but

ceases to apply if the matching function approaches the inelastic limit,  → 0, in

which case the sorting condition (71) becomes standard.

As Eeckhout and Kircher (2010) discuss, this characterization also holds

for finite numbers 1 and 2 of types on each side. Since each combination of

types trades in a different submarket, in principle there could be up to 1 × 2

submarkets. Sorting reduces this complexity substantially, however, since only

adjacent types trade — i.e., if there is sorting, and 1 trades with both 2 and 02,

then all types 002 in between also trade only with 1. This implies that there are

no more than 1 + 2 submarkets.

With a continuum of types the system again reduces to a differential equation:

totally differentiating (69) and using (70), we get

∗0 = −
∙
 (∗)
 (∗)

2(
∗
1 2) +

0(∗)
00(∗)

1(
∗
1 2)

∗0
1

¸
∗

(∗1 2)
 (72)

where ∗ and ∗1 are functions of 2, generalizing (67) from the case of one-sided

heterogeneity. As in Shi (2001), feasibility implies

 0
2(2) =  0

1 [
∗
1 (2)] 

∗0
1 (2)

∗ (2)  (73)

where  0
1 and  0

2 are the type densities. The system (72)-(73) with positive

sorting has the end-point requirements that the highest agents are matched, and

either all the agents are matched or the last unmatched type obtains 0 payoff.

Shi (2001) proves the planner’s problem yields the same results.

The above sorting conditions can be discussed independent of prices. To see

how the transfer  varies by type, notice from (69) that the increase in side 2 payoff

is the marginal contribution of another such agent to those on side 1, which is

the increase in matching probability times the payoff. Jerez (2014) exploits this

to extend existence results from standard sorting theory. Also notice that the

constraint in (63) yields ∗(2). Thus, ∗(2) =  [∗(2)] [∗1(2) 2], similar to the

one-sided case, but depending on both types. Since ∗(2) = 2 [
∗
1(2) 2]−∗(2),

function — e.g., it requires root-supermodularity with urnball, and more with Cobb-Douglas.
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this yields the price paid by 2. It is elegant (or at least comforting) to see that

this reduces to the homogeneous-agent baseline with 1 = − and 2 = , in

which case ∗(2) = ∗ = [1− (∗)]+ (∗).

If the type distributions and matching function are symmetric and sorting is

positive, types pair up perfectly, and every submarket has ∗(2) = 1. In this case

all agents trade with equal probability despite different prices. While it may seem

desirable to match higher side 1 types at a higher rate, they are being paired with

higher side 2 types, and we do not want to lower their matching probabilities.

In general, the relationship between prices and probabilities can be complex.

Starting from symmetric type distributions, where all agents are matched at the

same rate, if we spread out types on one side it becomes more important to match

them with higher probability, and hence to match their potential partners with

lower probability. A interesting research agenda concerns links between outcomes

(prices, payoffs, etc.) and dispersion, or other properties of the distributions, on

both sides. See Chang (2014) and Mangin (2017) for applications, to asset and

labor markets, respectively.

7 Private Information

The next step is to consider private information about types, including workers

with better knowledge than their employers about their skills (or vice versa),

and sellers with better knowledge than buyers about their wares (or vice versa).

Directed search is a natural way to study these markets. We present this in two

parts, corresponding to match-specific and individual-specific (i.e., ex post and ex

ante) heterogeneity. Also, for now the focus is on bilateral meetings; multilateral

meetings are deferred to Section 8.

7.1 Match-Specific Models

There are several competitive search models in this first category: Faig and Jerez

(2005) study static goods markets where buyers have private information about
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their valuation of match-specific goods; Moen and Rosen (2011) study steady

state in labor markets where workers have private information about match qual-

ity and effort; and Guerrieri (2008) analyzes dynamics in labor markets where

workers have private information about the match-specific disutility from work.

Among other issues, these studies ask if equilibrium is efficient. In the baseline

models analyzed above, competitive search equilibria are typically constrained

efficient, but it is less clear what happens under private information. Faig and

Jerez (2005) show in some settings that equilibrium is inefficient. Guerrieri (2008)

shows it is efficient in steady state but (generically) not in equilibrium when the

economy is not in steady state.44

Consider match-specific private information in the simple goods market of

Section 2.1, where side 1 agents are sellers and side 2 buyers. Sellers are homoge-

nous, and can produce one unit at zero cost; buyers get utility 2 from the good,

randomly drawn and privately observed after matching. There is a continuous

distribution of buyer types 2 with density (2), CDF  (2) and support T2,
and total mass normalized to 1. The mass 1 of sellers is endogenized by entry

at cost . Since all heterogeneity is on the seller side, we drop the subscript for

side 2 when there is no risk of confusion.

Each seller decides on whether to enter the market and, if so, what contract

to post. Thanks to the revelation principle, without loss of generality, a contract

can be restricted to the set of incentive compatible, individually rational, direct

revelation mechanisms S. The action  required from the buyer is to report his

type. A contract  : T 7→ [0 1] × R+ specifies a menu of trading probabilities
() and transfers () for each matched buyer who reports utility type  ∈ T .
The probabilities () must be specified since in general lotteries may be used

— even after matching, trade may occur with probability  ()  1. Buyers ob-

serve posted contracts () = [() ()]∈T ∈ S and decide where to direct their
44In related work, Guerrieri (2007) shows that introducing match-specific heterogeneity in the

labor market, with or without private information, does not help to amplify volatility relative

to a representative-agent benchmark.
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search; the set of sellers posting the same  and buyers searching for it consti-

tutes a submarket with tightness (). Given heterogeneity is match-specific, the

matching probabilities in each submarket are simply () and ().

In a match, the buyer’s utility realization leads to a decision to trade or not.

Entry implies that equilibrium seller profits equal , while  is a buyers’ ex ante

market utility and (  ) his ad interim utility if he matches at , draws  and

reports ,

(  ) = ()[− ()]

A mechanism  ∈ S is incentive compatible and individually rational if45

(  ) ≥ (  ) ∀  ∈ T (74)

(  ) ≥ 0 ∀ ∈ T (75)

In this environment the equilibrium can be characterized by a value for buy-

ers’ market utility  , a set of posted mechanisms S = S, and a tightness
function () defined on S, such that the following conditions are satisfied:
∀() = [() ()]∈T ∈ S we have:

a) seller maximization and entry,

 [()]

Z
∈T

()() ()−  ≤ 0 (76)

with equality if  ∈ S ;

b) buyer maximization,

 [()]

()

Z
∈T

()[− ()] () ≤  (77)

and () ≥ 0 with complementarity slackness, where

 = max


 [()]

()

Z
∈T

()[− ()] ()

45To link this to the definition of equilibrium in Section 6.1, observe that incentive compati-

bility ensures that sellers’ beliefs about the action of buyers place all mass on truthtelling. With

slight abuse of notation we therefore drop beliefs about actions, and the only relevant beliefs

concern type. But since types are drawn ex post, () =  () independent of the posted .
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These are immediate implications of the maximization condition in the general

definition. Note also that feasibility is not stated explicitly, since free entry

ensures that sellers enter to satisfy the desired market tightness. Perfection would

additionally fix (77) at equality even off equilibrium (whenever possible), but here

this does not provide additional bite. And consistency is ensured by () =  ()

Generalizing the results in the baseline model, one can show that the equilib-

rium can be characterized by maximizing buyer’s payoff subject to (74), (75) and

the entry condition. Appendix 10 reduces the dimensionality of the constraints

following methods in mechanism design (e.g., Myerson 1981). Then one can show

there is a unique equilibrium, and only one type of contract () = [() ()] is

posted, where the nondecreasing trading probability () and associated market

tightness solve

 = max
()

()



Z
∈T

() ()

st ()

Z
∈T

()

∙
− 1−  ()

()

¸
 () ≥ 

Entry by sellers implies buyers get the entire surplus. Equilibrium maximizes the

surplus, given we cover sellers’ entry cost, subject to buyers getting the informa-

tion rents required for them to truthfully reveal their types. In equilibrium only

buyers that draw  ≤ ̂ trade, with ̂ endogenous. In this static environment,

equilibrium is constrained efficient; in a dynamic extension of the model, when

the economy is not in steady state, equilibrium is generically not constrained

efficient (Guerrieri 2008).

7.2 Individual-Specific Models

The literature on competitive search with private information about ex ante char-

acteristics focuses on adverse selection, and either signalling or screening, depend-

ing on whether the informed or uninformed side posts. Guerrieri et al. (2010),

Shao (2014), Chang (2014), Guerrieri and Shimer (2014,2015), Chen et al. (2016),

Williams (2016) and Davoodalhosseini (2017) all consider screening problems à
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la Akerlof (1970). Consider Guerrieri et al. (2010), which involves a static envi-

ronment with, in a language they adopt, homogenous principals on side 1 and

heterogeneous agents on side 2. Type is private information and has common

value for principals and agents. Principals post contracts, and agents decide

where to search, given beliefs about submarkets’ tightness and composition of

types. Guerrieri et al. (2010) show that there exists a fully separating equilib-

rium, and it is unique.46

Consider a simple extension of the basic model in Section 2.1, where side 1

agents are buyers and side 2 sellers. Buyers are ex ante homogenous and can

enter at cost . A mass 1 of heterogenous sellers can provide an indivisible good

at 0 cost, where a fraction  produce high quality and  = 1 −  produce

low quality, with respective values ̃1 and ̃1  ̃1 to buyers. Quality is private

information to sellers before trade. If a seller does not trade he gets ̃2 or ̃

2,

depending on quality, where ̃2  ̃1,  ∈ { }, so there are always gains from
trade. Each buyer in the market posts  ∈ S = [0 1] × +, and sellers choose

where to search. A contract  = ( ) specifies a trading probability  and a

transfer  without loss of generality — the same outcome obtains if buyers post

menus of contracts,
£
( ) ( )

¤
.

Any  is associated with a submarket with tightness  () and a fraction

(; ) of type  sellers, with (; ) + (; ) = 1, so the probability a seller

matches is  [()], and the probability a buyer matches with a seller of type  is

 [()](; )(). For  = ( ) define

1() = (̃1 − ) and 2() = + (1− ) ̃2

where 2() and 1() are the payoffs of type  sellers in submarket  conditional

on meeting a buyer, and the payoffs of buyers in submarket  conditional meeting

a type  seller.

46This constitutes an alternative solution to the non-existence problem in Rothschild and

Stiglitz (1976), based on the combination of a capacity constraint and an endogenous rationing

rule emerging from the competitive search setting. Papers exploring related competitive equi-

librium notions are Gale (1992), Dubey and Geanakoplos (2002), Inderst and Wambach (2002),

Inderst (2005).
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In this relatively simple setting, equilibrium can be defined by a pair of sellers’

market utilities [() ()], a market tightness function () and a market com-

position function (; ), both defined over S, a CDF 1(), and a set of posted

contracts S ∈ S, satisfying the following conditions:47

a) buyer maximization and entry,

 [()]

()

X
={}

(; )1 ()−  ≤ 0

∀ ∈ S, with equality if  ∈ S ;

b) seller maximization,

 [()] 2 () + {1−  [()]} ̃2 ≤ ()

∀ ∈ S and  ∈ { }, with equality if () ∞ and (; )  0, where

() = max
∈S

 [()] 2 () + {1−  [()]} ̃2;

c) and feasibility, Z
S

(; ) () 1 () ≤ 

∀, with equality if ()  0.

Guerrieri et al. (2010) prove that equilibrium is fully separating and charac-

terized by two simple problems: Any seller  ∈ { } chooses a contract  and
faces tightness , where ( ) solves

() = max
∈S

 () 2 () + [1−  ()] ̃2 (78)

st
 ()


1 () ≥  and  () 

0
2 () + [1−  ()] ̃

0
2 ≤ (0) for 0  

47The first two conditions are direct consequences of maximization in the general definition of

equilibrium in Section 6.1 coupled with perfection. Notice the second one requires maximization

on and off equilibrium — if a buyer expects a seller of a given type to search for a given contract,

even off equilibrium, it must be weakly optimal for that seller to do so. This delivers uniqueness.

In contrast to Section 7.1, we must specify feasibility here because free entry of buyers alone is

not sufficient to ensure the right market tightness per type. It also ensures consistency.
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As might be expected with adverse selection (going back to Mirelees 1971), in-

dividually rational is binding for low quality sellers, incentive compatibility is

binding for high quality sellers, and equilibrium features less trade in the sub-

market with high quality. Equilibrium is not generally efficient, although taxes

can be used to correct the inefficiencies along both the extensive and intensive

margins (Davoodalhosseini 2017).

Guerrieri and Shimer (2014) build on this general tucture to study dynamic

markets with heterogenous assets. Intuitively, by selling in a “less liquid” market,

sellers convey that their assets have higher value. They then analyze financial

crises resulting from increases in information frictions, and show how this can gen-

erate a fire sale and flight to quality. Also, asset prices in these models depend

on the dynamics, since investors expect to resell assets in the future and hence

value liquidity, and buyers can shift demand to classes of assets less susceptible

to informational problems. Guerrieri and Shimer (2015) introduce another di-

mension of private information, albeit in a static setting. Namely, investors may

not know the quality of assets nor the impatience of sellers. This more complex

problem generates multiple equilibria with interesting efficiency implications.

Chang (2014) analyzes similar issues in dynamic financial markets, where

again private information reduces liquidity and can generate fire sales. She has a

second type of private information, as in Guerrieri and Shimer (2015), but she col-

lapses the two dimensions of private information into one, which avoids multiple

equilibria. In general, we think this is a very promising approach to information

issues in labor, asset and other markets, and encourage more research along these

lines. Especially for asset markets, future work could profit from connecting these

kinds of models more closely to the theories of liquidity summarized in Section 4

above.48

48Davoodalhosseini (2012) studies directed search when sellers have private information about

the quality of their wares, and some buyers are uninformed while others are informed, similar

to the random search model of Williamson and Wright (1994). See also Kurlat (2015). Other

related work with random search includes Inderst (2005), Chiu and Koeppl (2011) and Camargo

and Lester (2012).

72



These papers focus on screening: the uninformed party posts the contracts.

Delacroix and Shi (2014) study a signalling model where price-posting sellers

have private information about their quality , chosen prior to meetings. In this

environment, the price a seller posts can signal quality and direct buyers’ search.

They find a unique equilibrium and it is separating. When the quality differential

is large, it is also efficient; otherwise, the quality of goods or the amount of trade

can be inefficient, interestingly, due to a conflict between the roles of prices in

directing search and signaling quality. Clearly, these are interesting issues, and

even with some impressive progress, there is more work to be done on signalling

and directed search.

8 Meetings and Mechanisms

Here we consider private information with multilateral meetings, first with a focus

on competing auctions, and then on more general mechanisms.

8.1 Private Information and Multilateral Meetings

For this discussion we merge individual- and match-specific private information,

and focus mostly on one-sided heterogeneity. Consider a distribution 2(2) with

support [0 ̄2] on side 2, and a mass 1 of homogeneous agents on side 1, again

with side 1 called sellers and side 2 buyers. We also stick with private valuations,

2() =   0 and 1() = 0, assume a buyer’s type  is private information,

and focus on sellers using mechanisms that do not specify types, like auctions. In

this relatively simple environment the literature is mainly concerned with the case

where payoffs can be replicated using direct revelation mechanisms: in a meeting,

the buyer reports , and payoffs are delivered as a function of the report.49

Here is the issue: with bilateral meetings, it is standard that sellers do not

need to post anything more complicated than a price (e.g., Riley and Zeckhauser

49It is possible to have buyers with more information than their own type, e.g., which mech-

anisms are posted, and in principle a seller could try to elicit this, but that requires a broader

notion of type; see McAfee (1993), Epstein and Peters (1999) and Peters (1999).
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1983); but with multilateral meetings, under mild assumptions a seller should run

an auction with reserve price  that generally can depend on the type distribution.

Now, a priori one might think it is inefficient if sellers extract rents via reserve

prices, since it is possible that all the buyers that show up have   0 but

  . Are their gains from trade left on the table? Extracting rents via standard

price posting, as in previous sections, does not resolve this, because that would

not generally deliver the good to the buyer with highest valuation. In fact, the

results depend on the way that buyers and sellers meet.50

In the approach used by McAfee (1993), Peters (1997) and Peters and

Severinov (1997), each buyer directs his search toward mechanisms they most

prefer, with multilateral meetings and coordination frictions as in Section 5.

Given , with probability 0() = − a seller gets no buyers, with probabil-

ity 1() = − he gets one, and with probability () = −! he gets 

buyers. These authors show that restricting attention to standard auctions with

reserve prices is without loss of generality for an individual seller, independent

of the mechanisms posted by other sellers. Hence we proceed by having sellers

use auctions with reserve prices, and refer to the mechanism simply by , with

no further actions for sellers.

For each buyer, let 2 be his bid. In a first price auction, his payoff conditional

on trading is 2( 2 ) =  − 2, and the seller’s payoff is 1( 2 ) = 2 if

2 ≥  as specified in , and the payoff from no trade is 0. Now 2( 2; ) is the

probability a buyer who directs his search to  has a type weakly below  and bids

weakly less than 2. Let 2(2; T2) be the corresponding marginal probability
that any type who approaching mechanism  bids weakly below 2 Equivalently,

let the probability any buyer bids weakly above 2 be Φ2(2; T2). The queue of
buyers who pay at least  is Φ2(; T1), and since a seller trades as long as he
50With random matching   0 would be the seller’s revenue-maximizing choice. The analysis

reduces to the well-studied problem of a monopolist seller.
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meets at least one such buyer,

̃1( ;Φ2) = 1− 0
£
Φ2(;  T1)

¤
= 1− −Φ2(;T1) (79)

For buyers the probability of trade is 0 if 2  ; otherwise it is ̃2( 2 ; ) =

0
£
Φ2(;  T1)

¤
= −Φ2(2;T1), assuming here that  does not have a mass point

at 2 (see Kim and Kircher 2015 for the general case).

Peters and Severinov (1997) start with finite numbers, then take the limit,

as in Section 5. As discussed above, there are two cases: (i) buyers draw value

 before deciding where to search; (ii) they draw  after meeting a seller. In

equilibrium, in the limit as the market gets large, case (i) implies sellers post a

reserve price equal to their outside option,  = 0. This validates the finding in

McAfee (1993), who considers a finite economy but ignores market power, as we

discussed in Section 5. Peters and Severinov (1997) conjecture that in case (ii)

sellers post   0, but Albrecht et al. (2012) prove  = 0 in that case as well.51

They also show this with second price auctions, for both cases (i) and (ii), in large

markets, and they show that entry by sellers is efficient. Second price auctions

where bids trivially coincide with types can be captured here if the payoff  is

allowed to depend on  and . The actions of the other buyers not only affect

the meeting probability but also the transfer price conditional on meeting. In

this context Mangin and Julien (2016) generalize the Hosios condition to explain

efficiency results in Albrecht et al. (2014).

The result  = 0 is striking, as it implies auctions are in fact efficient: it is

never the case that all buyers at a given seller have   0 but   . Even though

buyers are locked in at the time of bidding, the fact that they choose where to

search based on the posted  dissipates sellers’ monopoly power — they still earn

rents due to the frictions, but the usual monopoly considerations vanish.

51The efficiency of the reserve price is shown by Julien et al. (2000) in large markets with

homogeneous agents. With heterogeneous sellers Julien et al. (2005) show that a market where

all sellers use efficient reserve price induces buyers to make efficient choices across sellers, even

with finite numbers. Taking all strategic considerations into account, this carries over to 2× 2
markets (Julien et al. 2002), but not  ×  markets (Kim and Kircher 2015).
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The main driving force behind Peters and Severinov’s argument for case (i) can

be illustrated as follows: Suppose all sellers offer the same   0. Then any seller

trades with probability less than 1 due to the frictions. Now a deviating seller

posting − attracts additional buyers, those with type above − for whom the
original  is too high. In a large market the deviant seller’s trading probability

jumps, since there are many of such buyers, making the deviation profitable.

Hence, the only possibility in a large market is  = 0. This coincides with the

planner’s outcome, since the most trade occurs if buyers visit sellers at random,

if the goes good to the highest type, without precluding anyone outright from the

market. Interestingly, even though in case (ii) there is ex ante information that

can be used when selecting where to search, the efficient equilibrium outcome

(random search and where the good goes to the highest bidder) does not use

that information. Thus, even in the less informative case (ii), the same outcome

occurs. Competitive search is efficient, independent of when types are drawn,

which is especially nice here because the efficient mechanism is so simple:  does

not depend on the distribution of .52

In case (i) where types are known ex ante, it is useful to expand on the ben-

efit of random visits, which contrasts with the finding that it is beneficial to

separate types into different submarkets with bilateral meetings. With multi-

lateral meetings, it is beneficial to have multiple types in the same submarket.

With urn-ball meetings, e.g., a seller can first consider all the buyers, then trade

with the one having the highest valuation. Separation would place many high 

buyers in the same submarket, leading to congestion. As Eeckhout and Kircher

(2010) emphasize, with two types, high valuation buyers trade even if low val-

uation buyers are present because they outbid them. If there are ̄2 high types

and they trade with a subset ̄1 ≤ 1 of sellers, their matching probability is¡
1− −̄2̄1

¢

¡
̄2̄1

¢
, which is maximized at ̄1 = 1, when all sellers trade

52While many insights from the homogeneous seller model carry over to heterogeneous sellers,

the equivalence between ex ante and ex post type revelation does not. In this case, buyers sort

if they know their type ex ante, as discussed below.
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with high types. Also, the total number of trades is maximized when buyers

are allocated randomly due to the concavity of the matching function. Hence, if

buyers search randomly, the number of trades by high types and the total number

of trades are both maximized.53

Random assignment is only sensible when sellers are identical, however. If

they differ in cost 1 with support [1 0] and payoff 1(  ) = 2 + 1, trades

between types with negative total surplus (1 2) = 2+1  0 are not beneficial.

Yet the main insights discussed above still apply, and in particular, in equilibrium

sellers use a reserve price equal to their cost. One can prove a notion of sorting:

each buyer type 2 has a cutoff seller type 
∗
1(2) and trades randomly with all types

1 ≥ ∗1(2). Higher 2 buyers are willing to pay more, so 
∗0
1 (2)  0 (Peters 1997).

This is similar to Section 6.2, but now sorting is imperfect because a buyer not

only trades with seller ∗1(2), but with all higher types. This corresponds to the

planner’s outcome where the chance of trading is increased by spreading these

buyers across sellers.

The result obtains whether buyers only observe the reserve price, or also the

type of seller, since given  they do not care about the latter. It also obtains if they

can only see , given a penalty for lying, and not also . Clearly sellers accept the

highest bid, unless they are all below cost, and buyers do not submit bids with 2+

1  0, which would be rejected. Effectively this is like a first price auction with

∗(1) = 1 (Julien et al. 2005). Finally, even if there is no penalty for lying, and

messages are cheap talk, there is an still equilibrium where sellers truthfully reveal

type.54 This highlights the efficiency role of cheap talk without commitment,

as in housing and labor markets where advertised prices and wages might send

53Note that pooling multiple types into one submarket in this way is efficient even though

separation satisfies a Hosios condition, because that condition does not allow for pooling. Man-

gin and Julien (2016) show that pooling types in one market, using a selection process among

buyers like a second price auction, satisfies their generalized Hosios condition.
54It is important that buyers know the correct type 1 to know where to attempt to trade and

what to bid. In a cheap talk environment sellers post only a message  ∈ T1 about their type,
but there is no penalty from lying. The question is whether there is an equilibrium in which

sellers send truthful messages in the first stage. Indeed this exists and it attains the efficient

sorting of the fully competitive model (Kim and Kircher 2015).
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messages but are typically not binding (Albrecht et al. 2016). Attaining full using

efficiency only cheap talk depends on details, but some room for directing search

seems to be a common feature (Menzio 2005).

These results concern private information about buyer types, but the trading

patterns are unchanged if buyer types are observable and sellers post menus

of prices, one for each buyer type, plus a priority rule determining who gets

served when many show up. This is studied by Shi (2002) and Shimer (2005),

who find that mixing types in a submarket is a robust outcome. With strict

supermodularity, 12  0, Shimer (2005) shows the following: if sellers of type

1 attract a strictly positive ratio of buyers of type 2, then sellers of type 
0
1  1

attract a lower ratio of such buyers. In the limiting case (1 2) = 1 + 2,

however, the ratios stay constant, as in the private valuation case discussed above.

In either case, output is maximized, because auctions ensure the highest valuation

buyers get the goods. General conditions for higher type sellers being more likely

to match with higher type buyers are not yet established for a general  (1 2)

and multilateral meetings.

The relation between observable types and private information requires pri-

vate values. Auster and Gottardi (2017) consider adverse selection with urn-ball

meetings. Given low- and high-quality traders on side 2, they show all agents

from side 1 post the trading mechanism. The good is always given to those on

side 2 who report low quality, unless no such agents show up. Even in that case,

high-quality agents may not trade with probability 1, for incentive reasons. Most

interesting is the question whether one should allow for arbitrary mechanisms or

restrict attention to price posting, which then is the same as the bilateral setting

studied earlier. They show that adverse selection can make the bilateral setup —

i.e., requiring price posting and the random selection of the agent that trades —

better than general mechanisms that distinguish between traders based on their

announcements, even if the underlying matching is multilateral.

Julien and Roger (2016) combine adverse selection and moral hazard, assum-
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ing a stochastic relationship between output and unobserved effort. Homogeneous

principals post menus of contracts to attract heterogeneous agents, with bilateral

or multilateral meetings. This can be captured in our framework with actions

for side 2, with 1(1 2 ) = E (|)− E() and 2(1 2 ) = E()− (; 2).

Contracts depend on realized output, and on the number of agents if meetings

are multilateral. These contracts also select one of the agents at random when

multiple agents show up, but, unlike Moen and Rosen (2011), here agents are risk

averse and do not have limited liability. The unique equilibrium contract actually

does not depend on the number of agents who show up, and all principals offer

the same menu. Equilibrium is constrained efficient on the intensive (effort) and

extensive (entry) margins, assuming we can make transfers to agents who show

up but are not selected (similar to Jacquet and Tan 2012).

Relatedly, Tsuyuhara (2016) considers a dynamic version with moral hazard

and on-the-job search. He shows the existence of block recursive equilibrium,

where wages and worker effort increase with tenure, while (voluntary and in-

voluntary) job separation decrease with tenure. Other interesting work includes

Lester et al. (2016), where sellers compete on posted asking prices where agents

can trade immediately or wait for an auction (as is an option on Ebay). This com-

bines elements of optimal stopping models and competitive search. By expanding

the set of mechanisms that sellers can use, they generate multiple equilibria, but

they are payoff equivalent and efficient. Kennes and Schiff (2008) assume sell-

ers have private information about the quality of their goods, and multilateral

meetings. A intermediary verifying quality sells information to buyers and sells

accreditation to sellers. This can be welfare improving or reducing. Again, this

is interesting work but there is more to be done in this important area.

8.2 Mechanism Design

There is a large literature on mechanism design and auctions, where competi-

tion for buyers is a nontrivial element, but less work on how the meeting process
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matters. In the private valuation case, with multilateral meetings, we saw com-

petition for buyers results in a standard auction with reserve price equal to cost,

 = 0. This is nice and simple, but raises concerns: why don’t sellers use two

margins, one to attract buyers and one to guarantee buyers who show up reveal

their types? Why does competition stop at  = 0 price, rather than   0, which

attracts even more buyers? Should there be an entry payment to attract buyers

and a reserve price to select the best type? When does it suffice to have only an

entry payment or simply post a price?

The general issue is to know how mechanism design is affected by the way

agents meet. While this has not attracted much attention, we can review some

advances in settings with ex ante private values for buyers, 2() = 2, and

homogeneous sellers, 1() = 0, again dropping the type subscript. Following

Eeckhout and Kircher (2010), Lester et al. (2015) and Cai et al. (2015,2016),

consider a general meeting function (), instead of urn-ball. This is natural

e.g., if each buyer approaches one seller but the latter seller only has time to deal

with a random subset of  buyers. If  = 1 this is a bilateral meeting technology;

if  =∞ it is urn-ball; and other intermediate case may be equally plausible.

To see how this affects the optimal mechanism choice, two observations are

key: First, posting an optimal entry payment and a standard auction with a

reserve price is as least as profitable as any direct revelation mechanism, so we

can focus on a second price auction, where buyers pay an entry fee and then bid.

Second, equilibrium is constrained efficient, which means the reserve price equals

cost, and the surplus added across sellers is maximized. Consider seller  facing

tightness  and a distribution of buyers 2(; ), where we sometimes suppress .

His expected surplus is55

∞X
=1

()

Z
∈T2

2() =

Z
∈T2

"
1−

∞X
=1

()

2()

#


55The first expression says that if there are  bidders the one with the highest valuation gets

the good, which has distribution 2(), and this is added over all possible number  of bidders.

The second interchanges integration and summation.
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Letting (̂ ) = 1−Σ()(1− ̂), we have

1 =

Z
∈T2

( [1− 2()]  ) (80)

In a submarket with tightness , and ̂ high types, (̂ ) is the chance a

seller meets at least one high buyer type. Simple restrictions on the meeting

function imply  is concave in each variable, if not jointly. Knowing () ∀( )
implies knowing , and vice versa. Given this, consider two buyers, a lower type

 and a higher type . Suppose there is a measure 12 of sellers in a submarket

with ̂1 high types and 1 buyers in total, and another measure 12 of sellers

in a submarket with ̂2 high type and 2. By (80), the surplus per seller is

( ) +
¡
− 

¢
(̂ ), where the first term says that as long as the seller

meets someone he creates at least value , while the second says that if he meets

a high type he creates additional − . The expected surplus in this market is

12

2X
=1

£
( ) +

¡
− 

¢
(̂ )

¤


If instead we sent buyers randomly to sellers the expected surplus would be

(
1 + 2

2

1 + 2

2
) +

¡
− 

¢
(
̂1 + ̂2

2

1 + 2

2
)

If (̂ ) is concave then pooling everyone in one submarket is better. This

is a good insight: concavity of  implies buyers should be assigned randomly.

Moreover, the result holds for arbitrary distributions of types. If  is not globally

concave, there are always type distributions for which segregation rather than

random matching is desirable under mild conditions.

This can be illustrated in the example where sellers can deal with up to 

buyers, where the resulting  is never globally concave except when  =∞. Here
the lack of concavity is more severe with small . Markets in which sellers are

more constrained in their meetings are naturally more inclined to separation, in

which case they can opt for simple price posting. Eeckhout and Kircher (2010)

highlight a natural role for simple price posting: if sellers are more constrained
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in their meetings, they want to segregate buyer types into different submarkets,

and since they can then infer buyer type they have no need for complicated

mechanisms at the time of meeting (see also Auster and Gottardi 2017). However,

to ensure price posting is optimal for any distribution of buyer types, we need

bilateral meetings (Cai et al. 2015).

Another question concerns the importance of entry fees. Cai et al. (2016) show

it is optimal for a seller that attracts  to post auctions with no reserve price

but an entry payment  . One can show  = 0 if 2 = 0 everywhere, a feature

Lester et al. (2015) call invariance. When this applies, it is optimal to pool types,

intuitively, because it means meetings between high type buyers and sellers are

not reduced by having more low type buyers in the submarket. Pooling is then

optimal because competition between high and low types is dealt with by the

mechanism rather than the meeting process — meeting externalities are absent.

In sum, the meeting process has substantial implications for mechanism choice,

and we need more work on these issues.

9 Other Topics

We now touch on a few important topics not covered above.

9.1 The Nash Program

The quest for strategic foundations for axiomatic bargaining is dubbed “the Nash

program” by Binmore (1987). As Serrano (2005) nicely puts it, “Similar to the

microfoundations of macroeconomics, which aim to bring closer the two branches

of economic theory, the Nash program is an attempt to bridge the gap between

the two counterparts of game theory (cooperative and non-cooperative). This is

accomplished by investigating non-cooperative procedures that yield cooperative

solutions as their equilibrium outcomes.” See also Osborne and Rubinstein (1990).

Directed search and posting can be viewed from this perspective: it provides an

explicit description of a market, with finite numbers of participants, or in limiting
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cases with large numbers, where traders end up sharing the gains from trade in a

way that can be interpreted in terms of generalized Nash, with bargaining powers

and threat points determined by market conditions. In an  ×  market, (45)

gives  as a weighted average of  and , where the weight on  is the probability

a seller gets at least 2 buyers; in particular, in a 2 × 2 market,  = (+ ) 2,

consistent with the original Nash solution.

This provides an alternative to demonstrating that generalized Nash is the

limit of a non-cooperative game, with bargaining power and threat points deter-

mined by details like the probability a player gets to make the next offer or how

much he loses from delay (Binmore et al. 1986). Competitive search is therefore

a contribution to the Nash program. Note that with bargaining the share para-

meter  is typically assumed to be structural. Competitive search demonstrates

that the division of the surplus is not generally constant, but changes with eco-

nomic conditions, including changes in policy. Ignoring that can be problematic,

although it can also be justified in some cases — e.g., with a Cobb-Douglas match-

ing technology the shares of the surplus are indeed invariant. Still, one ought to

acknowledge that this is a special case.

Similarly, in competitive search equilibrium the shares of the surplus will

vary in the cross section, not only with respect to time or policy, with a different

split in different submarkets into which traders select. This is interesting and

important. Typically, in markets with two-sided ex ante investments, there is

no single value of  that delivers efficiency independent of other parameters —

i.e., there is not way to satisfy more than one Hosios condition with a single

choice of . Competitive search delivers efficiency endogenously in many of these

situations. Hence it not only provides a microfoundation for sharing the surplus,

as assumed in bargaining models, it dominates bargaining as a mechanism. Of

course, competitive search (usually) assumes commitment, but at least it is good

to know what we are buying into.
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9.2 Large Firms

Most of the literature on labor search, directed or otherwise, concentrates on jobs

rather than firms: they treat each job as an entity unto itself without specifying

how collections of jobs aggregate into firms. This is fine for many purposes but

not, e.g., to discuss observations on firm size or growth. Davis et al. (2013)

show that matching efficiency varies substantially, and linearly, with a firm’s

growth rate. To speak to such facts, a promising avenue is to postulate that if

a firm has  workers it produces (), and can post  vacancies at cost (),

generalizing the baseline formulation where  = (1) is the cost of posting a

single vacancy. At the level of an individual vacancy the model is unchanged,

but aggregation differs, and if  is strictly concave or  strictly convex then firms

grow to a finite endogenous size. Hawkins (2013) presents such a model with

finite numbers, which complicates the analysis. Most subsequent work assumes

the law of large number applies, so that a firm posting any number of vacancies

gets a deterministic number of new workers.

In Kaas and Kircher (2015), a strictly concave () leads to a slow growth

path for firms, and those that want to grow faster post both higher wages and

more vacancies. The former induces more hires per vacancy, consistent with the

above-mentioned facts in Davis et al. (2013). Also, they decentralize the appro-

priate planner’s problem, in contrast to models with multi-worker bargaining

(Stole and Zwiebel 1996; Smith 1999; Brugemann et al. 2015). Menzio and Moen

(2010) show how incomplete contracts that specify the wage but do not guar-

antee employment imply wage floors that insure workers with respect to modest

shocks but not large shocks. As in Kaas and Kircher (2015), they use an extended

version of block recursivity to achieve tractability. Garibaldi and Moen (2010),

Schaal (2015) and Garibaldi et al. (2016) incorporate on-the-job search, but only

if  or  are linear; the general case is still outstanding.

In other work along these lines, Eeckhout and Kircher (2016) introduce two-

sided heterogeneity into a large-firmmodel with linear  but convex  to study the
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sorting and wage implications. Julien et al. (2016) study large firms as production

teams in a competitive search setting, related to the “island matching” model in

Mortensen (2009). In each period, a firm can post one or more vacancies and

may loose one or more workers, and may temporarily shut down if a minimum

number of workers is necessary to operate profitably. The optimal size of a firm

(team) depends on the extent of frictions, and the complementarity between

workers within a team leads to wage dispersion, suggesting that the proliferation

of human resource management emphasizing team production can contribute to

increasing wage inequality. While there is not that much work with large firms in

this literature, what there is suggests it is an interesting area for future research.

9.3 Evidence

There are several ways in which directed and random search can differ empiri-

cally. Obviously, both are stark, and neither captures every detail of the under-

lying market, but there are differences that can serve as hypotheses for testing.

One commonly noted difference is that the number of applications firms receive

should not vary with their wages under random search, and should increase with

their wages under directed search, holding other things equal (it is important to

consider applications rather than hires, since higher wage firms might be more

successful in hiring even under random search). The main challenge in testing

this is to find a situations where two otherwise similar vacancies offer different

wages, since if the vacancies are not otherwise similar, they may require different

qualifications, hours, etc.

We first mention that many workers do not seem in a position to bargain over

wages, but take offers as given. This is the case reported by more than two thirds

of workers both in the US and Germany, according to Hall and Kruger (2012)

and Brenzel et al. (2014). Hall and Kruger also highlight that nearly half of the

workers in their sample report that even before their applications they were highly

certain about wages. This is particularly pronounced for lower-qualification jobs,
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and bodes well for directed search. Obviously, whether or not a firm posts a wage

is an observable component and will differentially attract applicants. Michelacci

and Suarez (2006) study a setting where firms can post either wages or commit

to bargain, and predict that posting is used for jobs where qualifications matter

less while bargaining is used when qualifications are matter more, as then firms

need wage flexibility to deal with quality differentials in the applicant pool.

Regarding the relation between wages and the number of applications, non-

experimental evidence is mixed and depends importantly on the ability to control

for variations in wages that are unrelated to job requirements. Using survey ev-

idence on a limited number of US firms in the 1980s, Holzner et al. (1991) and

Faberman and Menzio (2015) do not find support for the number of applications

increasing with the wage, controlling for occupational code and other observables.

Faberman and Menzio even find higher wages are associated with fewer applica-

tions, but the effect shrinks with the inclusion of more observables. This raises

the possibility that different jobs are targeted to different groups of applicants

and higher wages mainly compensate for higher skills.56

This raises the question whether one can obtain better controls to make job

requirements more comparable. Marinescu andWolthoff (2015) use a much larger

data set of online job postings at the US website careerbuilder.com and control

for job titles, which are orders of magnitude finer than the two-digit occupational

codes used in the above-mentioned work. They find that applications increases

with wages. They also highlight that other features of the job description, es-

pecially qualifiers such as “senior” or “experienced” seem to convey substantial

information about the attractiveness of the job and explain a large part of wage

variation. This is related to work on cheap talk, where messages like “senior” or

“experienced” can signal the eventual wage that can be obtained (Menzio 2005;

Kim and Kircher 2015). In any case, search among similar jobs seems to be pos-

itively geared to higher posted wages, and to other identifiers that are correlated

56In a directed search model with homogeneous firms and workers differing in productivity,

higher wages can attract fewer but better applicants.
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with the attractiveness of the job.

Banfi and Villena-Roldan (2016) have information on posted wages on a

Chilean job-search website, plus intended wages, even if these are not shown

to job seekers. They show that higher intended wages substantially increase the

number of applicants after controlling for job title. This highlights the idea that

employers are able to communicate effectively throughout job descriptions, even

if they do not include it outright. Effects are larger for publicly posted wages,

though, suggesting a significant direct channel.

To make sure wages are not capturing other elements of the job, e.g., skill

requirements, one approach is to randomize wages. This ensures orthogonality at

least to the observed dimensions of the job advertisement. Dal Bo et al. (2013)

exploit truly randomized wage offers for civil servant positions in Mexico, and

find higher wages attract more and better applicants. Belot et al. (2016) use

randomized wages in a small online job market and also find higher wages attract

substantially more interest from job seekers. These observations can be taken

as further support for directed search. However, while this evidence is hard to

reconcile with the simplest random search models, minor extensions of that model

could help.57

The reservation wage property is pervasive in random search, but not directed

search, where workers typically cannot apply to all the jobs they like. Because

they cannot, they are selective, and may apply to low wages even if they are

aware of higher wage options, because they understand that it is harder to get

latter. A test between theories can therefore directly focus on the reservation

wage property. Belot et al. (2016) conduct a field experiment where otherwise

identical jobs offer different wages. They find more workers apply to high wage

57Suppose workers encounter vacancies at random and observe the wage, as in random search

with posting (e.g., Burdett and Mortensen 1998), with a slight twist: workers only bother to

apply for jobs if they would actually accept them. This has no effect on actual hires, but now

applications are only recorded by the firm if the job exceeded their reservation wage, which can

explain the findings mentioned in the text because firms with higher wage offers are more likely

to meet workers’ reservation wages.
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jobs, but a significant share apply only to the low wage job, even though they

see the high wages on their search engine. This lends support to the idea that

workers are selective in where they apply.

Directed search has also been studied in laboratory experiments. Cason and

Noussair (2007) ask if the strategic considerations in the finite market models

discussed in Section 5 are important. The answer is yes — their experiments with

small numbers of traders are broadly consistent with on Burdett et al. (2001),

although there are some discrepancies, e.g., prices can exceed the equilibrium

prediction when there are two sellers. In Anbarci and Feltovich (2013), in one

treatment sellers post as in Burdett et al., and in another they post as in Coles

and Eeckhout (2003), with prices contingent on the number of buyers that show

up. They consider 2× 2, 2× 3 and 3× 2 market versions, and find that allowing
contingent pricing does not affect seller payoffs. See also Anbarci and Feltovich

(2017). Moen et al. (2015) vary both the capacity constraints and information,

and find that observed play corresponds closely to equilibrium. Kloosterman

(2016) finds that firms offer wages close to, if a little lower than, the theory’s

predictions, but are highly variable. Also, workers apply more often to high

wages although not quite to the extent predicted.

Godoy and Moen (2011) study another difference between directed and ran-

dom search in the context of on-the-job search. In random search, a worker who

is currently employed at 1 will take any   1 that he encounters. A similar

worker employed at 2 will do the same with and   2. If we see both move

to a new job with wages above 1 and 2, the wage distribution upon moving for

both should be identical. As discussed above, that is not the case with directed

on-the-job search, since workers who are employed at a higher  tend to target

new jobs at still higher wages. Their evidence supports this prediction. In a

similar vein, Braun et al. (2016) study whether unemployment insurance affects

subsequent wages beyond the reservation wage, and also find evidence of directed

search.
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Li et al. (2015) show how a directed search model can be used to understand

worker transitions. The theory is a dynamic extension of Peters (2010) in which

workers have privately known types that are observable to firms once they apply.

It shows how the wage offer distribution can be derived from the accepted wage

distribution and the employment distribution by solving a differential equation.

This relationship is used to derive an outcome distribution that can be used to

study transitions and test the theory. Li et al. (2015) use a similar approach

to show that for any smooth wage distribution there is an equilibrium where

unemployed workers choose reservation wages as a strictly increasing function

of their type, then apply with equal probability to all positions that offer more

than that wage. They show two results. First, workers’ wages throughout their

lives are correlated, but very imperfectly because equilibrium involves a lot of

mismatch. Second, the variance of future income is a decreasing function of the

current wage, i.e., high wage workers have more stable lifetime income.

Herkenhoff (2013) develops a quantitative model with directed search and risk

aversion to study how raising credit access among the unemployed affects business

cycles. He has directed search in labor and credit markets, and models easier

access to credit as an increase in matching efficiency. As credit expanded over

the last 40 years, better access to credit this slows business cycle recoveries, but is

still welfare improving. Since the model is block recursive, he can estimate it and

solve for transitions. Relatedly, Herkenhoff et al. (2016) develop a sorting model

of risk aversion and credit, which is again tractable due to directed search. In

particular, workers with low assets search for easy-to-find jobs, but these may be

poor matches. Estimating the model, they find that credit constraints tightening

as they did in 2007-2009 generates enough mismatch to depress productivity by

0.25%, which persists over time, and is equivalent to a 425 million dollar reduction

in output per annum.58

58As regards related work, we already mentioned Menzio et al. (2016), who combine life cycle

considerations with directed search in the labor market. They study how the trade-offs between

wages and job-finding rates, and hence transitions, depend on age. See also Carillo-Tudela and

Visschers (2014).
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All of this suggests directed search can help rationalize several features of the

data. Whether it can fully account for the observations, or whether perhaps a

hybrid solution with both random and directed search is more suitable, awaits

empirical scrutiny. The estimation in Engelhard and Rupert (2016) may suggest

the need for a hybrid approach, since they largely reject the implications of a

simple competitive search model, although they fail to reject directed search

with heterogeneous workers. terms of submarket search and efficient surplus

sharing. Alternatively, as they acknowledge, this might simply reflect the need to

incorporate elements like on-the-job search and differences in productivity, which

are crucial in rationalizing wage dispersion in other models (e.g., Hornstein et

al. 2011). There is ample unexplored territory for empirical work on directed

search, in general, and on comparing it to random search, in particular.

9.4 Miscellany

Lester et al. (2014) study over-the-counter financial markets in a generalized ver-

sion of Duffie et al. (2005) using directed search. Watanabe (2010,2015) considers

directed search in a model of intermediaries (middlemen). His middlemen have

large inventories, so they are less likely to stock out, similar to the situation when

some sellers has multiple units for sale in Burdett et al. (2001). In particular, if

two firms could merge, then if one gets 2 customers and the other 0, and if they

can share them, it would a profitable venture. Another related paper is Gautier et

al. (2016), who use directed search to analyze two types of middleman, those who

hold inventories they get from sellers to retrade to buyers, and those who offer

platforms for buyers and sellers to trade with each other. This is very interesting,

but it seems there is much more to do on directed search and middlemen.

Gonzalez and Shi (2009) study differences in worker arrival rates that are not

known — they have to learn over time. This pioneers new ways to analyze dy-

namic markets, and rationalizing a discouraged worker effect. Chade et al. (2014)

and Nagypal (2004) develop equilibrium models of directed college choice where
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applicants can simultaneously send out many applications. All these interesting

applications can serve as guides for future research.

Some papers study markets with two-sided investment, including Acemoglu

and Shimer (1999), Masters (2011) and Jerez (2016). In the latter, competitive

search entails both commitment to and advertising of payoff relevant character-

istics. An example from labor is when workers and firms invest in human and

physical capital prior to entering the market. When the characteristics of jobs and

workers are posted, efficiency obtains. However, commitment without advertising

leads to unravelling and inefficiency.

Some papers study in detail the impact of unemployment insurance using

direted search, including Acemoglu and Shimer (1999), Geromichalos (2015)

and Golosov et al. (2013). In Geromichalos (2015) workers that do not match

receive  from the government, financed by a lump sum tax on firms. This makes

it cheap for firms to be aggressive in posting, because they know their competitors

all contribute to the unemployment caused by attracting more workers than they

want to hire In equilibrium wages are too high and entry is too low. This can

be corrected by experience rating (making taxes depend the unemployment a

firm causes). It is also corrected without taxes if firms post contracts as in

Jacquet and Tan (2012), with one payment to those hired and another to those not

hired. Golosov et al. (2013) study optimal unemployment insurance (Acemoglu

and Shimer 1999 only maximize output). They find it is optimal to insure

workers against the risk of not getting hired, but not to redistribute across workers

applying to different types of jobs. Clearly directed search raises new issues in

this important application, and hence merits even more research.

10 Conclusion

This completes our directed tour through the theories and applications of di-

rected search. Like search theory in general, the models contribute substantially

to our understanding of phenomena like the coexistence of unemployment and
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vacancies, the fact that some shops have unsold inventories while others stock

out, price dispersion and price stickiness, and random durations in the time to

execute trades in many markets. Different from traditional search, in competitive

search equilibrium the terms of trade are posted and agents use this to target

counterparties. In particular, posted prices have an allocative role, and this typ-

ically leads to efficiency, at least without additional complications like private

information or liquidity considerations.

To quote from the survey on labor markets by Rogerson et al. (2005): “Al-

though there are several important modeling decisions in equilibrium search the-

ory... two questions are paramount. First, how do agents meet? In particular, is

search random, so that unemployed workers are equally likely to locate any job

opening, or directed, so that for example firms can attract more applicants by

offering higher wages? Second, exactly how are wages determined? Do matched

workers and firms bargain, or are wages posted unilaterally before they meet?”

As that survey says, competitive search offers particular answers to both ques-

tions that can avoid the “black box” of bargaining and (sometimes) of matching

functions. And, obviously, this applies not just to labor, but too many if not

most markets.

Competitive search can be more tractable and can yield cleaner results than

alternatives. It is also arguably more realistic, depending on the application. It

also lets us study both finite markets and limiting large markets, where we reiter-

ate that the frictions do not go away in the latter case. Again, the theory captures

the idea that if you post more favorable terms then potential customers come to

you with a higher probability, but not generally with probability 1. Agents on

both sides of the market trade off prices and trading probabilities, which nicely

generalizes general equilibrium theory. In particular, with homogeneous buyers

and sellers the price and probability of trade are the same everywhere, but the

out-of-equilibrium options to post different terms and to search differently dis-

ciplines in-equilibrium behavior. For these reasons and more, it seems easy to
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predict a bright future for the directed search approach. We hope this essay

inspires readers to learn more about the field, and to contribute to its ongoing

development.
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Appendix A

We consider two scenarios. The first has indivisible , like our baseline model,

but does not necessarily have perfectly transferable utility: if a buyer makes

a payment  to a seller, the latter gets  () while former gets − (), where
 (0) =  (0) = 0,  0 ()  0, 0 ()  0,  00 () ≤ 0 and 00 () ≥ 0 ∀  0.

Transferable utility, as in Section 2.1 is the special case,  () =  () = . The

generalization of problem (1) is

 = max


 () [ ()− ] st
 ()


[−  ()] = 

Form the Lagrangian

L =  () [ ()− ] + Λ

½
 ()


[−  ()]− 

¾


The FOC’s are:

L = 0 ( − ) +
Λ (− ) (0 − )

2
= 0

L =  0 − Λ


0 = 0

LΛ =
 ()


(− )−  = 0

Notice L = 0 implies Λ =  00. Then L = 0 implies  ( − ) 0 =

(1− ) (− )  0, like generalized Nash bargaining except  = 0 ()  () re-

places . At any solution to the FOC’s, the bordered Hessian is

 =

⎡⎢⎣
00(−)0

0 +
2(1−)(−)0

20
0


−(1−)(−)
2

0


(000−000)
0 −0



−(1−)(−)
2

−0


0

⎤⎥⎦
and its determinant, after simplification, is

|| = −
³


´2
(− )

"
00 00


+

 (1− )
2
(− ) (0 00 −  000)

20

#


Standard assumptions on ,  and  imply ||  0, so the SOC’s hold. As a

special case this applies to  () =  () = . Also, the same method applies to

the dual problem (4).
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Now consider divisible goods with  fixed, as in Section 3.1’s credit model

with a binding constraint, where  = , or Section 4.1’s monetary model with

indivisible assets, where  = ∆. Form the Lagrangian

L =  () [−  ()] + Λ

½
 ()


[ ()− ]− 

¾


With  is fixed, the FOC’s are:

L = 0 (− ) +
Λ (− ) (0 − )

2
= 0

L = −0 + Λ


0 = 0

LΛ =
 ()


(− )−  = 0

Now L = 0 implies Λ = 00. Then L = 0 implies  (− )0 =

(1− ) (− ) 0, or  =  ( ) with  ( ) given by (16), again like gener-

alized Nash except  replaces . At any solution to the FOC’s, the bordered

Hessian is

 =

⎡⎢⎣ 00(−)


0
0 +

2(1−)(−)
2

0
0 −0


−(1−)(−)

2

−0


(000−000)
0

0


−(1−)(−)
2

0


0

⎤⎥⎦
and its determinant is

|| = −
³


´2
(− )

"
0000


+

 (1− )
2
(− ) (000 − 000)

20

#


Standard assumptions imply ||  0, so again the SOC’s hold. The same method
applies to the dual problems. ¥

Appendix B

Recall the continuous-time planner problem in Section 3.2. Normalizing the mea-

sure of households to  = 1, we let the state variable be employment , and

let the control be the measure of vacancies posted . The law of motion is

̇ = (1− ) ()− , where  =  (1− ). Denote the value function by  ()

and write the problem as

 () = max


½
 + (1− ) −  +  0 ()

∙
(1− )

µ


1− 

¶
− 

¸¾
 (81)
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In case it is not obvious, we derive this, following Shimer (2004). Consider the

integral form of the problem

 [ ()] =

Z ∞



−(−) { ()  − [1−  ()] − } 

The objective function is household utility net of vacancy posting costs. Differ-

entiating with respect to time, we get

 0 [ ()] ̇ () = − ()  − [1−  ()] +  [ ()] 

Using this to replace ̇ () in the objective function, we arrive at (81).

One can show the value function is linear,  () = 0+1. This is easiest in

discrete time, as in Rogerson et al. (2005), where it is easy to check the mapping

analogous to (81) is a contraction, with  () its unique fixed point. It is also easy

to check that this mapping takes linear functions into linear functions. Since the

set of linear functions is closed, the fixed point  () is linear. To get the result in

continuous time one can taking the limit of the discrete time model as the period

length shrinks to 0, a standard technique in search theory (e.g., Mortensen 1986).

See Wright (2001) for more details.

Therefore the FOC is

 = 1
0
µ



1− 

¶
 (82)

which implies  =  (1− ) is independent of . Differentiating (81), we get

1 =  − −1

∙


µ


1− 

¶
− 0

µ


1− 

¶


1− 
+ 

¸
 (83)

Using (83) to eliminate 1 from (82), we arrive at  () = 0, the steady state

equilibrium condition in the text. Hence, at every point in time, the planner’s 

is the same as the steady state equilibrium . ¥

Appendix C

Recall on-the-job search from Section 3.2. We claim there is a  such that

workers employed at  ≥  stop searching. To begin, for a worker employed at

1 searching for 
0
1 and another employed at 2  1 searching for 

0
2, the fact

that both are behaving optimally implies

 [(02)] [1(
0
2)− 1(2)] ≥  [(01)] [1(

0
1)− 1(2)]

 [(02)] [1(
0
2)− 1(1)] ≤  [(01)] [1(

0
1)− 1(1)] 
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Now subtraction implies

 [(02)] [1(1)− 1(2)] ≥  [(01)] [1(1)− 1(2)] 

Since 1() is strictly increasing, 1(1)  1(2) and hence  [(02)] 

 [(01)]. So the worked employed at 2 searches in a submarket with a higher

wage and lower success rate than the worker employed at 1.

We now show there is a minimum wage increment4 workers require to justify

search cost . The gain 1(0) − 1() is bounded by (
0 − )  (+ ), the

difference in wages over the maximum time on a job until exogenously destroyed.

A employed worker that searches needs a gain that at least makes up for the

cost, 1(0)−1() ≥ . Hence,  ≤ (0 − )  (+ ), or ∆ ≥  (0 − ). In

particular, if  is high enough, a worker stops searching. ¥

Appendix D

Consider auctions instead of posting in the  ×  market. For seller  the

payoff is  −  unless only 1 buyer shows up, in which case it is  − , or no

buyers show up, in which case it is 0. Therefore,

 =  (1− )
−1 (−)+

£
1−  (1− )

−1 + (1− )

¤
(−) (84)

For a buyer the payoff from visiting seller  is − if he is alone, and 0 otherwise.
In equilibrium where buyers mix, therefore,

(1− )
−1 (− ) =

¡
1− 

¢−1
(− ) (85)

Suppose seller  deviates to . Given buyers mix symmetrically, 1 + ( −
1) = 1, and

(1− )
−1 (− ) =

µ
1− 1− 

 − 1
¶−1

(− ) (86)

Implicit differentiation and simplification implies




= − (1− )( − 1)
( − 1)(− )

around the equilibrium values of  =  and  = 1. Taking the FOC from

maximizing  with respect to  and simplifying, we get

 =
(− 1


)+ ( − 2 + 1


)

+  − 2 
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As   →∞ holding  fixed, →  and  → (1− − − −)(− ). This is

the same as the payoff under posting. ¥

Appendix E

Consider any CRS technology (1 2) and let  = 12. We claim () ≷
1⇔ 0() ≷ 0, where  () = 0 ()  (), and  () is the elasticity of substi-

tution,

() =


 (21)

21


 (87)

As in standard production theory,  measures the degree of complementarity be-

tween inputs. Clearly, (1 2) = 2() = 1(), which implies 1 = 0()

and 2 = ()−0(). Therefore, 21 = ()0()− and  (21)  =

−()00()0()2. Given this, (87) implies

() = − 0()2

()00()
()− 0()

0()
= −

0() [1− ()]

00()


Now algebra implies

0() =
[00()+ 0()]()− 0()0()

()2

=
0()
()

[1− ()] [1− 1()] 

This proves 0() ≷ 0⇔ () ≷ 1.
For the specification (1 2) = 2(1−−12) discussed in Section 5, () =

1− − and () = − (1− −). Moreover,

() =
1− − − −

(1− −)
 1

0() =
−(1− − − )

(1− −)2
 0

because 1 − −  . As discussed in Section 4, another common specification

is the Kiyotaki-Wright matching function, (1 2) = 12 (1 + 2). This

implies () =  (1 + ), () = 12, () = 1 (1 + ) and 0() = −1(1 +
)2  0. The CES function is (1 2) = (


1 + 1)

1, where  ∈ (−∞ 1). This

implies () = (1 + )1, () = 1 (1− ) and () =  (1 + ). Clearly,

 T 1⇔  T 0⇔ 0() = −1(1 + )2 T 0, providing a simple example with
0  0. A special case is the Cobb-Douglas function, (1 2) = 1

1−
2 , which

implies () = ,  () = 1 and 0() = 0. ¥
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Appendix F

Consider the model in Section 3.2. From (22),




= 1− ( + )  (1− )







=
00( − + ) + 0 ( + )  (1− )

00( − + )


Ignoring terms that do not affect the sign and using  () = 0 to eliminate , we

get




≈ −00( − + )− 0 ( + )  (1− )

≈ −00 ( +  + )− 02 ( + ) (1− )

≈ − ( +  + ) 0 + 0 (1− ) + ( + )0 (1− )
2


where the last line follows from eliminating 00 using 0 = (0 + 00 − 02) 2

and simplifying. Hence, 0 ≤ 0⇒   0. The proof for  is similar. ¥

Appendix G

Standard results imply the incentive compatibility and individual rationality

constraints can be rewritten

(2 2) = (2 2) +

Z 2

2

() (88)

plus (2 2) ≥ 0 and () nondecreasing. Using (88), we obtainZ
∈T

(2 2)2(2) = (2 2) +

Z
∈T

Z 2

2

()2(2)2

After integrating the last term by parts, we rewrite this asZ
∈T

(2 2)2(2) = (2 2) +

Z
∈T

1−2(2)

2(2)
(2)2(2)

Using this and the definition of (2 2), we rewrite (2 2) ≥ 0 asZ
∈T

()

∙
− ()− 1−2(2)

2(2)

¸
2(2) ≥ 0
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Hence, the relevant problem is:

 = max
()()

()



Z
2∈T

(2) [2 − (2)] 2(2)

st

Z
2∈T

(2)

∙
2 − (2)− 1−2(2)

2(2)

¸
2(2) ≥ 0

()

Z
2∈T

(2)(2)2(2) = 

Using the second constraint to eliminate (2), we reduce this to the problem

discussed in the text. ¥

100



References

1. John M. Abowd, Francis Kramarz and David N. Margolis (1999) “High

Wage Workers and High Wage Firms,” Econometrica 67, 251-333.

2. Daron Acemoglu and David Autor (2016) Lectures in Labor Economics,

mimeo.

3. Daron Acemoglu and Robert Shimer (1999) “Holdups and Efficiency with

Search Frictions,” IER 40, 827-850.

4. Daron Acemoglu and Robert Shimer (1999) “Efficient Unemployment In-

surance,” JPE 107, 893-928.

5. Daron Acemoglu and Robert Shimer (2000) “Productivity Gains from Un-

employment Insurance,” EER 44, 1195-1224.

6. James W. Albrecht, Pieter A. Gautier, Serene Tan and Susan Vroman

(2004) “Matching with Multiple Applications Revisited,” Econ Letters.

7. JamesW. Albrecht, Pieter A. Gautier and Susan B. Vroman (2003) “Match-

ing with Multiple Applications,” Econ Letters 78, 67-70.

8. James W. Albrecht, Pieter A. Gautier and Susan B. Vroman (2006) “Equi-

librium Directed Search with Multiple Applications,” RES 73, 869-891.

9. JamesW. Albrecht, Pieter A. Gautier and Susan B. Vroman (2012) “ANote

on Peters and Severinov, ‘Competition Among Sellers who Offer Auctions

Instead of Prices’,” JET 147, 389-392.

10. James W. Albrecht, Pieter A. Gautier and Susan B. Vroman (2014) “Effi-

cient Entry in Competing Auctions,” AER 104, 3288-3296.

11. James W. Albrecht, Pieter A. Gautier and Susan B. Vroman (2016) “Di-

rected Search in the Housing Market,” RED 19, 218-231.

12. Nejat Anbarci and Nick Feltovich (2013) “Directed Search, Coordination

Failure, and Seller Profits: An Experimental Comparison of Posted Pricing

with Single and Multiple Prices” IER 54, 873-884.

13. Nejat Anbarci and Nick Feltovich (2017) “Pricing in Competitive Search

Markets: The Roles of Price Information and Fairness Perceptions,” Man-

agement Science.

14. S. Boragan Aruoba, Guillaume Rocheteau and Christopher Waller (2007)

“Bargaining and the Value of Money,” JME 54, 2636-55.

101



15. Sarah Auster and Piero Gottardi (2017) “Competing Mechanisms in the

Markets for Lemons,” mimeo.

16. Stefano Banfi and Benjamin Villena-Roldan (2016) “Do High-Wage Jobs

Attract more Applicants? Directed Search Evidence from the Online Labor

Market,” mimeo.

17. M. Baye, J. Morgan, P. Scholten et al. (2006) “Information, Search, and

Price Dispersion,” Handbook on Economics and Information Systems 1,

323-375.

18. Michele Belot, Philipp Kircher and Paul Muller (2016) “How Wage An-

nouncements Affect Job Search Behavior — A Field Experiment,” mimeo.

19. Aleksander Berentsen, Gabriele Camera and Christopher Waller (2007)

“Money, Credit, and Banking,” JET 135, 171-95.

20. Aleksander Berentsen, Guido Menzio and Randall Wright (2011) “Inflation

and Unemployment in the Long Run,” AER 101, 371-98.

21. Aleksander Berentsen, Miguel Molico and Randall Wright (2002) “Indivis-

ibilities, Lotteries and Monetary Exchange,” JET 107, 70-94.

22. Aleksander Berentsen, Guillaume Rocheteau and Shouyong Shi (2007) “Fried-

man Meets Hosios: Efficiency in Search Models of Money,” Econ Journal

117, 174-95.

23. Zachary Bethune, Michael Choi and Randall Wright (2016) “Frictional

Goods Markets,” mimeo.

24. Kenneth Binmore (1987) “Nash Bargaining Theory I, II,” in K. Binmore

and P. Dasgupta, eds., The Economics of Bargaining.

25. Kenneth Binmore, Ariel Rubinstein and Asher Wolinsky (1986) “The Nash

Bargaining Solution in Economic Modelling,” Rand Journal 17, 176-88.

26. J. Bland and S. Loertscher (2012) “Monotonicity, Non-Participation, and

Directed Search Equilibria,” mimeo.
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