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1 Introduction

The Taylor rule in combination with the zero lower bound on nominal interest rates has been

shown to open the door to unintended equilibria in which the economy is stuck in a liquidity

trap with zero nominal rates and inflation and output below target. In this equilibrium,

rational agents wake up each period with a pessimistic economic outlook. Guided by this

sentiment, their demand for goods and services is weak. The central bank tries to counteract

the weakness in aggregate demand by lowering interest rates. However, the zero lower bound

prevents the monetary authority from fully offsetting the public’s lack of confidence. As a

result, the economy ends up with depressed levels of aggregate activity and prices and zero

nominal rates. The next period, agents continue to hold pessimistic sentiments, which are

now validated by the past experience. Thus, by the same mechanism at play in the first

period, the economy ends again in a slump in the second period. Continuing with this logic

yields a stationary environment with all the characteristics of a liquidity trap. This type of

dynamics are sometimes invoked to explain aspects of the prolonged periods of below-target

inflation observed in Japan since the 1990s and in the Eurozone since the onset of the Great

Contraction.

The relevance of the Taylor-rule induced self-fulfilling liquidity trap has been challenged

on the basis that it is not least-square learnable. In this branch of the literature the assump-

tion of rational expectations is replaced by the assumption that agents form expectations by

running regressions of observations of key macroeconomic indicators, such as inflation and

output, onto economic fundamentals such as the natural of interest, productivity, or mon-

etary policy shocks. Agents are assumed to update the regression coefficients recursively

incorporating the new data generated as time goes on. Thus, the previous-period regression

coefficient is a relevant endogenous state of the economy. The central result of this litera-

ture is that under least-square learning the liquidity-trap equilibrium exists, but fails to be

stable. Specifically, it has been shown, that a small deviation of the regression coefficient

from the value consistent with rational expectations triggers expectations dynamics (i.e., a

sequence of regression coefficients) that diverge from the liquidity-trap rational expectations

equilibrium.

In this paper we study the stability of the liquidity-trap equilibrium under an alternative

learning hypothesis. We assume that expectations evolve through social learning. Social

learning includes three realistic elements: tournaments, mutation, and crossover, which are

standard features in genetic algorithms. In the context of an economic environment, these

three elements are meant to describe plausible ways in which individuals change their per-

ceived law of motion of the economy through social interactions. Tournaments reward agents
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with superior forecasting abilities, by allowing them to pass their views to other agents. This

channel captures, for example, the influence exerted by professional economists and forecast-

ers with proven economic models. Mutation allows for agents to have arbitrary revisions of

expectations or new ideas, guaranteeing a variety of views in the population across time.

And crossover incorporates the role of imitation, by permitting agents to adopt parts of

somebody else’s model of the economy. We embed the social learning algorithm in a canoni-

cal new Keynesian model driven by natural-rate shocks. Monetary policy is described by an

active Taylor-type interest-rate feedback rule that respects the zero lower bound on nominal

rates.

Our main finding is that the liquidity-trap equilibrium is stable under social learning. We

show that agents can learn to have pessimistic sentiments about the central bank’s ability

to generate price growth, giving rise to a stochastically stable environment characterized

by deflation and stagnation. Specifically, we show that, starting in the liquidity-trap equi-

librium, after a large perturbation of individual perceived laws of motion, through social

learning the economy returns to a dynamic path that is stable around the liquidity trap.

This result obtains for fairly large initial disturbances to the individual perceived laws of

motion. For example, in one experiment we replace agents’ perceived laws of motion with

the one associated with the intended rational expectations equilibrium (an equilibrium in

which the economy fluctuates around the target levels of output and inflation), and show

that the social learning algorithm leads the economy back to the liquidity trap.

Key in producing stability of the liquidity trap under social learning is the role of tour-

naments. The fittest individuals in the economy are those whose current perceived laws of

motion can best explain historical data. As a result, if the historical data contains observa-

tions generated by the liquidity trap equilibrium, individuals who, for any reason (including

pure luck), have perceived laws of motion close to the one associate with the liquidity-trap

equilibrium will prevail in passing their views to others, causing the economy to gravitate

towards the liquidity trap.

This paper is related to macroeconomic studies of the liquidity trap under rational and

boundedly rational expectations. Benhabib, Schmitt-Grohé, and Uribe (2001) show that the

combination of a Taylor-type interest-rate feedback rule and the zero lower bound constraint

on nominal interest rates gives rise to multiple rational expectations equilibria, including

one in which the economy is perpetually in a liquidity trap. The stability of the ratio-

nal expectations equilibrium in monetary economies with a Taylor rule under least-square

learning has been studied using the stochastic approximation results introduced to macroeco-

nomics by Marcet and Sargent (1989) and the E-stability principle introduced by Evans and

Honkapohja (2001). Bullard and Mitra (2002) and Evans and McGough (2017) show that
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the minimum-state-variable rational expectations equilibrium in a linearized New Keynesian

model with a passive Taylor rule, including a pure interest rate peg, is not E-stable under

decreasing-gain least-square learning. Evans, Guse, and Honkapohja (2008) study a discrete

time version of the liquidity-trap model of Benhabib, Schmitt-Grohé, and Uribe (2001) and

show analytically that the liquidity-trap rational expectations equilibrium is not E-stable un-

der decreasing gain steady state learning for small enough degrees of price stickiness. This

paper is most closely related to Arifovic, Bullard, and Kostyshyna (2012) who show that

in a new-Keynesian model like the one studied here the rational expectations equilibrium is

stable under social learning when the Taylor rule is globally active or globally passive. The

present study differs from this paper along three dimensions. First, the monetary policy

specification in the present model respects the Taylor principle and the zero lower bound on

nominal rates. This means that monetary policy is neither globally active nor globally pas-

sive. Second, Arifovic, Bullard, and Kostyshyna (2012) do not study pure interest-rate pegs.

In the model studied here, by contrast, the interest rate is pegged at zero (forced by the zero

lower bound) when the economy is in a liquidity trap. And third, as a consequence of the

zero lower bound, the present economy features multiple minimum-state-variable rational

expectations equilibria, including the intended equilibrium and the liquidity trap, whereas

the Arifovic, Bullard, and Kostyshyna (2012) economy features always a unique minimum-

state-variable rational expectations equilibrium. We view the present study as an extension

of the stability results under social learning of Arifovic, Bullard, and Kostyshyna (2012) to

the liquidity-trap model of Benhabib, Schmitt-Grohé, and Uribe (2001).

The remainder of the paper is in seven sections. Section 2 presents the model. Section 3

shows the existence of multiple minimum-state-variable rational expectations equilibria in

an economy driven by natural-rate shocks. Section 4 describes the social learning algorithm

and its calibration. Section 5 presents the main result of the paper, namely, the stability

of the liquidity-trap equilibrium under social learning. Section 6 shows that the intended

equilibrium is also stable under social learning. Section 7 presents a sensitivity analysis, and

section 8 concludes.

2 The Model

The theoretical environment into which we embed social learning is the canonical new-

Keynesian model whose main components are expectations-augmented versions of the IS

and Phillips curves. The linearized form of these two equations are, respectively,

yt = ye
t+1 − σ−1(it − πe

t+1) + σ−1rn
t (1)
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πt = κyt + βπe
t+1, (2)

where yt denotes the output gap, ye
t+1 denotes the period-t expected value of yt+1, πt denotes

the deviation of the inflation rate from target, πe
t+1 denotes the period-t expected value of

πt+1, it denotes the deviation of the nominal interest rate from its steady-state value, denoted

i∗, rn
t is an exogenous and stochastic shock to the natural rate of interest taking on the values

rn
H and rn

L < rn
H with transition probability matrix

[

ρH 1 − ρH

1 − ρL ρL

]

,

where ρi ≡ Prob(rn
t+1 = rn

i |r
n
t = rn

i ) ∈ (0, 1) for i = H, L, and σ > 0, κ > 0, and β ∈ (0, 1)

are parameters.

Letting

zt ≡

[

yt

πt

]

,

we can write the system (1)-(2) as

zt = a + bze
t+1

+ cit + drn
t , (3)

where

a ≡

[

0

0

]

, b ≡ G−1

[

1 σ−1

0 β

]

, c = −d ≡ G−1

[

−σ−1

0

]

, and G ≡

[

1 0

−κ 1

]

.

As we will see shortly, this compact notation facilitates the characterization of model’s

dynamics.

The central bank sets the nominal interest rate according to a Taylor rule, and the interest

rate is bounded below by zero,

it = max{−i∗, φππt + φyyt},

where φπ > 1 and φy > 0 are policy parameters. To see that the specified interest-rate

feedback rule satisfies the zero lower bound on nominal rates, note that because it is the

deviation of the nominal interest rate from its target i∗, the nominal interest rate itself equals

it + i∗, and the zero lower bound constraint is it + i∗ ≥ 0. Following the compact notation

introduced above, the interest-rate feedback rule can be written as

it = max{−i∗, [ φy φπ ]zt}. (4)
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3 Three Rational Expectations Equilibria

In this section we characterize three minimum-state-variable rational expectations (MSV-

RE) equilibria. In the first equilibrium the economy never falls into a liquidity trap (the

intended rational expectations equilibrium), in the second the economy is always in the liq-

uidity trap (the unintended rational expectations equilibrium), and in the third the economy

occasionally falls into a liquidity trap. We derive conditions under which each of these three

rational expectations equilibria exist. In principle, any combination of these equilibria can

coexist, and there may also exist parameter specifications under which none of these equi-

libria exist. Thus, we will also explore the constellation of equilibria that emerges under

different parameter configurations of interest.

3.1 The No-Liquidity-Trap Rational Expectations Equilibrium

Here we consider the existence of a rational expectations equilibrium in which the zero lower

bound constraint on the nominal interest rate is never binding. This equilibrium is the one

intended by the policymaker, because it is the one in which the inflation rate remains close to

the intended target and the output gap fluctuates around zero. We refer to this equilibrium

as the RE-NB equilibrium. The fact that we restrict attention to MSV-RE equilibria means

that equilibrium variables must be functions of the natural rate of interest only. Since rn
t is

assumed to follow a two-state Markov process, zt can take on only two values.

For an RE-NB equilibrium to exist, the nominal interest rate must be strictly positive at

all times, or

Φznb > −i∗, (5)

where znb is a 4×1 vector collecting the values of output and inflation in the states rn
H and

rn
L as follows

znb =

[

znb
H

znb
L

]

with znb
H =

[

ynb
H

πnb
H

]

and znb
L =

[

ynb
L

πnb
L

]

,

and ynb
H , ynb

L and πnb
H , πnb

L denote the equilibrium values of yt and πt when rn
t takes the values

rn
H and rn

L, respectively. The object Φ is a 2×4 matrix of policy parameters given by

Φ ≡

[

ΦH

ΦL

]

; with ΦH =
[

φy φπ 0 0
]

and ΦL =
[

0 0 φy φπ

]

.

Letting znb,e
H denote the expected value of zt+1 conditional on zt = znb

H and using a similar
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definition for z
nb,e
L , we have that under the RE-NB equilibrium

znb,e
H = ρHznb

H + (1 − ρH)znb
L

and

z
nb,e
L = (1 − ρL)znb

H + ρLznb
L .

Now letting

ΓH ≡

[

ρH 0 1 − ρH 0

0 ρH 0 1 − ρH

]

and ΓL ≡

[

1 − ρL 0 ρL 0

0 1 − ρL 0 ρL

]

,

we have that

z
nb,e

H = ΓHznb

and

z
nb,e
L = ΓLznb.

This allows us to write equation (3) in the states H and L as

znb
H = a + bΓHznb + cΦHznb + drn

H

and

znb
L = a + bΓLznb + cΦLznb + drn

L.

Collecting terms we have

znb = Anb + Bnbznb + Drn,

where

Anb ≡

[

a

a

]

, Bnb ≡

[

bΓH + cΦH

bΓL + cΦL

]

, D ≡

[

d ∅

∅ d

]

, and rn ≡

[

rn
H

rn
L

]

.

Solving for znb yields

znb = (I − Bnb)−1(Anb + D rn).

The rational expectations equilibrium with a never binding zero lower bound (RE-NB) exists

if the value of znb implied by this expression satisfies condition (5).
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3.2 A Rational Expectations Equilibrium With A Perpetual Liq-

uidity Trap

In this equilibrium, which we denote RE-AB, the zero lower bound on the nominal interest

rate is always binding, that is,

it = −i∗

for all t, which means that the nominal interest rate is always zero, and the economy is stuck

in a liquidity trap regardless of the realization of the natural rate. This equilibrium can be

said to be unintended, as inflation is below target and the output gap is negative on average.

Proceeding in a similar fashion as in solving the RE-NB equilibrium, let

zab =

[

zab
H

zab
L

]

, zab
H =

[

yab
H

πab
H

]

, and zab
L =

[

yab
L

πab
L

]

denote the values of zt in the RE-AB equilibrium when the natural rate takes the values rn
H

or rn
L, respectively.

Then using equation (3) we can write the dynamics associated with the RE-AB equilib-

rium as

zab
H = a + bΓHzab − ci∗ + drn

H

and

zab
L = a + bΓLzab − ci∗ + drn

L,

where ΓHzab and ΓLzab denote the expected value of zt+1 when rn
t = rn

H and rn
t = rn

L,

respectively. Combining these two laws of motion yields

zab = Aab + Babzab + Drn, (6)

where

Aab ≡

[

a − ci∗

a − ci∗

]

and Bab ≡

[

bΓH

bΓL

]

.

Solving for zab we have

zab = (I − Bab)−1(Aab + Drn).

The vector zab is an equilibrium if it satisfies,

Φzab ≤ −i∗.
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3.3 A Rational Expectations Equilibrium With An Occasional

Liquidity Trap

We define a rational expectations equilibrium with an occasionally binding (RE-OB) zero

lower bound as a MSV-RE equilibrium in which the economy enjoys high levels of aggregate

activity and inflation near its intended target when the natural rate is high, but falls into a

liquidity trap with zero interest rates, deflation, and depressed levels of aggregate activity

when the natural rate is low.

Let the equilibrium value of the endogenous vector be denoted by zob
L , if rn

t = rn
L and by

zob
H if rn

t = rn
H . Further, let

zob =

[

zob
H

zob
L

]

, zob
H ≡

[

yob
H

πob
H

]

, and zob
L ≡

[

yob
L

πob
L

]

.

The requirement that the zero lower bound bind in the low state but not bind in the high

state implies that

ΦHzob > −i∗

and

ΦLzob ≤ −i∗.

The equilibrium conditions (3) and (4) can then be written as

zob
H = a + bΓHzob + cΦHzob + drn

H

and

zob
L = a + bΓLzob − ci∗ + drn

L.

In turn we can write these two equations as

zob = Aob + Bobzob + Drn, (7)

where

Aob ≡

[

a

a − ci∗

]

and Bob ≡

[

bΓH + cΦH

bΓL

]

.

Solving for zob, we obtain

zob = (I −Bob)−1(Aob + Dobrn).
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The vector zob is a RE-OB equilibrium if

ΦHzob > −i∗ and ΦLzob ≤ −i∗.

3.4 Multiple MSV Rational Expectations Equilibria

As mentioned earlier, in principle, any combination of the three MSV-RE equilibria we just

characterized can coexist. To give an idea of what combinations of equilibria actually arise for

plausible calibrations, we proceed to parameterizing the model. The analysis here builds on

Benhabib, Schmitt-Grohé, and Uribe (2001) who show that in the absence of fundamental

shocks the combination of an active monetary policy stance (φπ > 1) and the zero lower

bound results in two MSV-RE equilibria, namely, the one in which the zero lower bound

never binds (RE-NB) and the one in which the zero lower bound always binds (RE-AB). A

question that we wish to answer before tackling the issue of learning is whether this result

carries over to an economy buffeted by fundamental shocks, in this case natural rate shocks.

Of particular interest, therefore, is to explore how the features of the driving process rn
t

(e.g., its volatility and persistence) can alter the type and combinations of equilibria that

may arise.

To this end, we resort to a parameterization of the new-Keynesian model that is standard

in the related literature. Table 1 summarizes it. We assume that the time unit is one quarter.

We set β = 0.99, σ = 2, κ = 0.02, φy = 0.125, φπ = 1.5, and i∗ = β−1 − 1. The values of β,

σ, and κ are taken from Eggertsson and Woodford (2003), and the parameters of the Taylor

rule, φy and φπ, are standard in the literature. The calibration of i∗ implies that the inflation

target is zero, as assumed in much of the new-Keynesian literature (e.g., Woodford, 2003).

We adopt a symmetric specification of the natural rate process and set rn
H = −rn

L = 0.0093

and ρH = ρL = 0.675. These parameter values imply that rn
t has a standard deviation of

3.72 percent at an annual rate and a serial correlation of 0.35, as in Woodford (1999). For

this calibration of the natural rate process, there exist two minimum state variable rational

expectations equilibria, one in which the zero lower bound constraint is always binding (RE-

AB) and one in which it is never binding (RE-NB). The numerical equilibrium values of the

laws of motion of output and inflation are

zab =













yab
H

πab
H

yab
L

πab
L













=













0.0022

−0.0099

−0.0123

−0.0103













and znb =













ynb
H

πnb
H

ynb
L

πnb
L













=













0.0064

0.0002

−0.0064

−0.0002













. (8)
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Table 1: Calibration

Symbol Value Description
Structural Parameters

β 0.99 Subjective discount factor
σ 2 Reciprocal of Intertemporal elasticity of substitution
κ 0.02 Output coefficient of the Phillips curve
i∗ 0.0101 Nominal interest rate target (= β−1 − 1)
φπ 1.5 Inflation coefficient of the Taylor rule
φy 0.125 Output coefficient of the Taylor rule

rn
t Process

rn
H 0.0093 Deviation of natural rate from steady state in state H

rn
L −0.0093 Deviation of natural rate from steady state in state L (= −rn

H)
ρH 0.675 Prob(rn

t+1 = rn
H|r

n
t = rn

H)
ρL 0.675 Prob(rn

t+1 = rn
L|r

n
t = rn

L) (= ρH)
Social Learning Algorithm

TIH 100 Length of initial history
T 1000 Length of simulation period
N 300 Number of Agents
pc 0.1 Probability of crossover
pm 0.1 Probability of mutation

Notes. The time unit is one quarter. The matrices Σ and Σm, whose calibration is not included in

the body of the table, are assumed to be diagonal and equal to each other. Their diagonals are set

to [ 0.0123 0.0103 0.0123 0.0103 ]′.
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These vectors indicate that in the intended equilibrium (the RE-NB equilibrium) deviations

of output and inflation from their steady-state values are symmetric and small, 0.64% and

8(= 0.0002×40000) basis points per year, respectively. However, when the economy falls into

a liquidity-trap equilibrium, the RE-AB equilibrium, the economy deviates permanently

and significantly from the intended steady state. The average output gap is -0.5 percent

compared to 0 percent in the intended equilibrium. Thus, in the liquidity trap the economy

experiences a permanent output loss. Similarly, average inflation falls from zero in the

intended equilibrium to a deflation of 4 percent per year in the liquidity trap.

How typical is this combination of equilibria around the assumed values for the param-

eters defining the natural rate process? Figure 1 displays the combinations of MSV-RE

equilibria that arise as one varies the parameters rn
H(= −rn

L) expressed in percent per year,

governing the standard deviation of rn
t , and ρH(= ρL), governing the serial correlation of

rn
t . These two parameters fully define the natural rate process within the two-state sym-

metric family we are considering. Dots indicate that the never-binding and always-binding

equilibria (RE-NB and RE-AB) coexist. It is clear from the figure that this case is by far

the most prevalent one. The baseline calibration for the natural rate process is indicated

with a solid circle. We conclude that the main result of Benhabib, Schmitt-Grohé, and

Uribe (2001), namely that in the absence of fundamental uncertainty, the combination of a

zero-lower-bound and an active interest-rate rule gives rise to two MSV-RE equilibria, the

RE-NB and the RE-AB, extends to an economy subject to natural-rate shocks.

Figure 1 further shows that as the serial correlation of the natural rate increases (ρH =

ρL → 1) other combinations of MSV rational expectations equilibria can arise, including

the never-binding equilibrium together with the occasionally-binding equilibrium and the

combination of all of the three equilibria characterized in the previous subsections (i.e.,

the never-binding, the always-binding, and the occasionally-binding equilibria). There are

also parameterizations for which no MSV-RE equilibrium exists. These cases take place in a

relatively small area of the space (rn
H , ρH), in which natural-rate shocks are highly persistent.

It is noteworthy that if the intended equilibrium (i.e., the never-binding equilibrium) exists

it never does so in isolation, but is always accompanied by at least one other equilibrium in

which the zero lower bound is visited with some probability. This is an indication that the

liquidity trap is a generic feature of this economy.

The analysis conducted thus far serves as a platform for delving into the issue of whether

a liquidity trap is learnable. We take up this issue next.

11



Figure 1: Existence of Multiple MSV Rational Expectations Equilibria in the (rn
H , ρH) Space
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RE−AB and RE−NB co−exist

RE−OB and RE−NB co−exist
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No RE  exists

Baseline

Notes. RE-AB, RE-NB, and RE-OB stand for MSV rational expectations equilibria in which the

zero lower bound on nominal rates is, respectively, always binding, never binding, and occasionally

binding. All parameters other than rn
H(= −rn

L) and ρH(= ρL) take the values shown in table 1.
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4 The Social Learning Algorithm

The learning algorithm follows Arifovic, Bullard, and Kostyshyna (2012). The economy is

inhabited by a finite number of agents, each of which has a perceived law of motion (PLM)

for output and inflation, which they use to form expectations about future values of these two

variables. These laws of motion change over time due to social interaction and purely random

changes in beliefs (mutations). There are two types of social interactions, one in which agents

adopt parts of somebody else’s PLM (crossover) and one in which agents adopt the beliefs

of those who prove to be more successful in explaining observed outcomes (tournaments).

The latter element of the social learning process, which can be conceived as the role played

by professional economists and forecasters in the economy, is the one that contributes the

most to the stability of the rational expectations equilibrium.

Suppose that there are N individuals indexed by i = 1, . . . , N. Assume that individual i

has the perceived law of motion (PLM)

ziH ≡

[

yiH

πiH

]

and ziL ≡

[

yiL

πiL

]

,

where yiH denotes the value of the output gap that agent i believes obtains when the natural

rate takes the value rn
H . Similar definitions apply to πiH, yiL, and πiL. Individual i is assumed

to know the current realization of the natural rate shock, rn, and its transition probability

matrix. Thus, individual i forms expectations as follows

ze
iH = ρHziH + (1 − ρH)ziL

and

ze
iL = (1 − ρL)ziH + ρLziL,

where ze
iH and ze

iL denote agent i’s expectation of the value of z in the next period conditional

on the current value of rn being rn
H or rn

L, respectively.

Aggregate conditional expectations, denoted ze
H and ze

L, are defined as the cross-sectional

averages of individual expectations, that is,

ze
H =

1

N

N
∑

i=1

ze
iH (9)

and

ze
L =

1

N

N
∑

i=1

ze
iL. (10)

13



To obtain the actual law of motion (ALM), denoted zH ≡ [ yH πH ]′ and zL ≡ [ yL πL ]′,

use (9) and (10) to eliminate ze
H and ze

L from equations (3) and (4), which yields

zH = a + bze
H + ciH + drn

H (11)

and

iH = max{−i∗, [φy φπ]zH} (12)

if rn = rn
H , and

zL = a + bze
L + ciL + drn

L (13)

and

iL = max{−i∗, [φy φπ]zL} (14)

if rn = rn
L.

Expressions (11) and (12) constitute a system of three equations in three unknowns, yH,

πH, and iH, given ze
H and rn

H . Similarly, (13) and (14) are a system of three equations and

three unknowns, yL, πL, and iL, given ze
L and rn

L. Each system can be solved separately each

period. The way to solve each system is to first assume that the zero bound does not bind.

If the solution satisfies the zero lower bound, then the equilibrium has been found. If the

solution violates the zero lower bound, then set i equal to −i∗ and solve again.

At this point, the social learning algorithm updates the individual PLMs by applying the

three social improvements, crossover, mutation, and tournaments, in this order.

4.1 Crossover

All agents are randomly matched into pairs without replacement. Matched agents exchange

each element of their PLMs with probability 0.5. That is, each matched pair flips a coin

4 times, once for each element of the PLM, exchanging the corresponding element of their

PLMs if the toss results in, say, tail. More specifically, suppose agent i1 is matched with

agent i2. Let the PLM of agent i1 be the quadruple {yi1H , πi1H, yi1L, πi1L}, and the PLM of

agent i2 the quadruple {yi2H , πi2H, yi2L, πi2L}. Then, if, for example, the first and fourth coin

tosses resulted in tails, elements 1 and 4 of their PLMs crossover, resulting in the following
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transformations of PLMs:

old PLM of agent i1 = {yi1H, πi1H , yi1L, πi1L}

new PLM of agent i1 = {yi2H, πi1H , yi1L, πi2L}

old PLM of agent i2 = {yi2H, πi2H , yi2L, πi2L}

new PLM of agent i2 = {yi1H , πi2H, yi2L, πi1L}.

However, not all matched agents will engage in crossovers. With exogenous probability

1 − pc matched agents walk away with their original PLMs. The parameter pc denotes the

probability that a matched pair of agents engage in crossover, so that each period about

pc×100 percent of the matches engage in crossover and the remaining (1−pc)×100 percent

retain their original PLMs.

4.2 Mutation

In the assumed social learning algorithm, mutation follows crossover. A mutation in the

PLM of individual i is modeled as follows. Let zi ≡ [yiH πiH yiL πiL]′ denote the PLM of

individual i prior to a mutation and let z′
i denote the PLM of individual i after a mutation.

The mutation follows a random walk process. Specifically,

z′
i = zi + Σmεi,

where εi is a 4 × 1 random vector with a standard normal distribution and Σm is a 4 × 4

diagonal matrix with positive diagonal elements. The matrix Σm is assumed to be the same

for all agents i. We assume that not all individuals or all elements of an individual’s PLM

will be affected by a mutation in a given period. Specifically, we assume that with exogenous

probability pm an element of an individual’s PLM experiences a mutation. This probability

is assumed to be independent across agents and across elements of the PLM.

4.3 Tournament Selection

The third mechanism by which the perceived law of motion in period t is updated is tourna-

ment selection. The purpose of this element of the social learning algorithm is to promote

the opinion (PLM) of agents with higher in-sample forecasting accuracy. The tournament se-

lection process is based on a fitness measure for each individual PLM constructed as follows.

In period t, individuals know the current and past realizations of all aggregate endogenous

and exogenous variables, that is, they know zk and rn
k for k = 1, . . . , t. Suppose in period t
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individual i has the PLM ziH and ziL. Based on this (period-t) perceived law of motion, in

period k individual i would have forecasted output and inflation in period k to be

yf
i,k =

{

ρHyiH + (1 − ρH)yiL if rn
k−1

= rn
H

(1 − ρL)yiH + ρLyiL if rn
k−1

= rn
L

and

πf
i,k =

{

ρHπiH + (1 − ρH)πiL if rn
k−1

= rn
H

(1 − ρL)πiH + ρLπiL if rn
k−1

= rn
L

.

Then the fitness of the period-t PLM of agent i for output and inflation is defined as

F y
i,t = −

1

t− 1

t
∑

k=2

(

yk − yf
i,k

)2

and

F π
i,t = −

1

t− 1

t
∑

k=2

(

πk − πf
i,k

)2

,

respectively. This fitness measure has the interpretation of the squared-sum of one-period-

ahead forecast errors. In each period, N matches of two individuals are formed with replace-

ment. (Recall that N is the population size.) For each match the PLM for inflation and

output, separately, that produced the better fitness measure is adopted. That is, the new

beliefs that emerge from the social interaction of two individuals may have the PLM for in-

flation from one of them but the PLM for output from the other. This makes sense, because

different economic agents might have different abilities at forecasting different variables.

4.4 Calibration of the Social Learning Algorithm

The calibration of the hyperparameters governing the social learning algorithm is as shown

in the bottom panel of table 1. We set N denoting the number of individual agents to

300. This number ensures a significant variety of beliefs when we perturb the individual

PLMs in the stability tests. To investigate the stability of the RE-AB equilibrium under

social learning we assume that the economy has been operating under rational expectations

for TIH quarters, the initial history, during which all agents share the same PLM, which

coincides with the one associated with the RE-AB equilibrium. That is, during the initial

history, zi = zab for all i = 1, . . . , N . We set TIH = 100 quarters. Immediately after the

initial history, in period TIH + 1, individual PLMs are perturbed, and the simulation period

with social learning begins. We set the simulation period, denoted T , equal to 1000 quarters.

The perturbation of individual PLMs has mean zero and is independently distributed across
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agents. Specifically, in period TIH + 1, the perceived law of motion of individual i is given

by

zi ≡













yiH

πiH

yiL

πiL













= zab + Σ νi, (15)

where νi denotes a vector of standard normal random variables independently distributed

across time and agents. The diagonal matrix Σ defines the standard deviation of the initial

individual PLMs. We base the calibration of the diagonal of Σ on the maximum absolute

values of the output gap and inflation in the RE-AB equilibrium, which are 0.0123 and

0.0103, respectively (see equation (8)), that is, we set

Σ =













0.0123 0 0 0

0 0.0103 0 0

0 0 0.0123 0

0 0 0 0.0103













.

We follow Arifovic, Bullard, and Kostyshyna (2012) and set the probability of crossover

and mutation to 10 percent, pm = pc = 0.1. Also following these authors, we assume that

the standard deviations matrix, Σm, which governs the size of mutations, is equal to Σ.

However, we assume that Σm is constant, whereas Arifovic, Bullard, and Kostyshyna (2012)

assume that its diagonal elements decrease over time. Our maintained assumption is more

conservative, because mutation, while ensuring variety of beliefs over time, has also been

found to be a destabilizing force in genetic learning algorithms.

5 Stability of the Liquidity Trap Under Social Learning

We are now ready to address the central question of this paper, namely, whether the liquidity

trap, i.e., the RE-AB equilibrium, is stable under social learning. As explained above, the

way in which we gauge stability under social learning is to assume that all agents start with

PLMs that are consistent with the liquidity-trap equilibrium (the RE-AB equilibrium). The

economy runs under these PLMs for TIH quarters. In period TIH + 1 the random pertur-

bation to the PLMs given in equation (15) takes place and the social learning algorithm

begins. Convergence is assessed by checking in different ways whether through social learn-

ing the perceived laws of motion return to a neighborhood of their rational-expectations

counterparts. Under social learning, by construction, PLMs never converge to a constant
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value, because of the randomness introduced by mutation. Thus, the criterion for stability

is whether individual PLMs fluctuate around the rational-expectations PLM.

Figure 2 displays a simulated time path of the cross-sectional distribution of the perceived

law of motions of output and inflation in states H (top panels) and L (bottom panels). The

length of the simulation is TIH +T = 1100 quarters, and we drop the first TIH = 100 quarters.

To facilitate the visualization of the transitional dynamics, the left column displays the initial

15 quarters after TIH, and the right column displays the entire 1000 quarters after TIH. Each

panel shows the cross-sectional mean and a two-standard deviation band centered around

the mean. The two-standard-deviation band of the initial cross-sectional distribution of

PLMs is shown with crosses. As a point of reference, each panel also displays two horizontal

lines indicating the law of motion associated with the liquidity-trap rational expectations

equilibrium (the RE-AB equilibrium), the solid horizontal line, and the intended rational

expectations equilibrium (the RE-NB equilibrium), the broken horizontal line.

Figure 2 shows that the PLMs fluctuate around the ones associated with the liquidity-

trap rational-expectations equilibrium. By comparing the initial distribution of PLMs (the

crosses) with the rest of the distribution, we see that the dispersion of beliefs shrinks quickly

to its stationary level. These finding suggests that, at least in the particular simulation

shown in the figure, the RE-AB equilibrium is stable under social learning.

Figure 2 provides information about the evolution of the perceived laws of motion for

one particular simulation. Because both the social learning algorithm and the economy itself

are subject to random shocks, the results will vary across simulations. To ascertain whether

the pattern of stability under learning suggested by figure 2 holds more broadly, we consider

next 1000 simulations of the economy under social learning, each of length TIH +T quarters.

The results are shown in figure 3. Each dot corresponds to one simulation. The horizontal

axis measures the cross sectional average absolute percent deviation of the individual PLMs

from the liquidity-trap rational expectations PLM in period TIH + 1. For example, the

horizontal axis in the top left panel measures 1

N

∑N

i=1

|yiH,TIH+1−yab
H

|

|yab
H

|
× 100 and is denoted ∆1.

The vertical axis displays the same measure in period TIH +T and is denoted ∆T . The other

three panels are constructed in a similar fashion for the remaining elements of the PLM. As

a reference, each panel displays the 45-degree line. The first thing to notice is that the initial

average absolute disturbance of PLMs we impose is large in percentage terms, ranging from

about 80 percent for πH to about 500 percent for yH. The main result that emerges from

the figure is that in each panel the cloud of points is well below the 45-degree line, which

means that over the simulation period the economy returns to the liquidity-trap rational

expectations law of motion. This result suggests that the liquidity trap is stable under social

learning.
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Figure 2: Learning the Liquidity Trap: Evolution of the Cross-Sectional Distribution of
PLMs
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Notes. Both columns display the same objects, except that the first column displays only the

first 15 periods of the simulation. Each panel in a given column shows the cross-sectional mean
of individual PLMs and a two-standard deviation band around the mean. The solid horizontal
line corresponds to the PLM associated with the liquidity-trap equilibrium (RE-AB equilibrium)

and the broken horizontal line corresponds to the PLM associated with the intended equilibrium
(RE-NB equilibrium). The two-standard-deviation band associated with the initial distribution of

individual PLMs is shown with crosses.
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Figure 3: Percent Deviations of Perceived Laws of Motion from the Liquidity-Trap Equilib-
rium in Periods 1 and T
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Note. ∆1 and ∆T stand for the cross-sectional average percent absolute deviation of individual

perceived laws of motion from the liquidity-trap rational expectations equilibrium in periods 1 and

T = 1000, respectively. Each dot corresponds to one simulation, and there are 1000 simulations.

The length of each simulation is TIH + T quarters, and the first TIH quarters are dropped. The

solid line corresponds to the 45-degree line.
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6 Stability of the Intended Equilibrium Under Social

Learning

It is of use to compare the convergence of the economy to the liquidity-trap rational expec-

tations equilibrium (the RE-AB equilibrium) with the convergence to the intended rational

expectations equilibrium (the RE-NB equilibrium) to see if the transition dynamics differ in

important ways. To this end, now assume that during the initial history (i.e., until period

TIH) the economy operates with all individual PLMs equal to the one associated with the

intended rational expectation equilibrium, znb. In period TIH +1 the individual PLMs suffer

the same perturbation as the one applied in the analysis of the liquidity-trap equilibrium,

that is, the distribution of PLMs in period TIH + 1 is given by

zi ≡













yiH

πiH

yiL

πiL













= znb + Σ νi =













0.0064

0.0002

−0.0064

−0.0002













+













0.0123 0 0 0

0 0.0103 0 0

0 0 0.0123 0

0 0 0 0.0103













νi.

All structural parameters and hyperparameters of the social learning algorithm take the val-

ues given in table 1. Figures 4 and 5 suggest that the intended equilibrium is stable under

social learning. Importantly, the transitional dynamics of the learning process are quali-

tatively and quantitatively similar to those associated with the liquidity-trap equilibrium

shown in figures 2 and 3. Notice that in figure 5 the percentage deviations from the intended

rational expectations equilibrium appear much larger than in the liquidity-trap equilibrium.

This is due to the fact that deviations are expressed in percent and that the level values of

the endogenous variables (especially inflation) are smaller in the intended equilibrium than

in the liquidity trap (see equation (8)). We conclude that the liquidity-trap equilibrium is

not more difficult to learn than the intended rational expectations equilibrium.

To summarize, the main result of this section is that both the intended equilibrium (the

RE-NB equilibrium) and the liquidity-trap equilibrium (the RE-AB equilibrium) are stable

under social learning. The key source of stability is tournaments. This element of the

learning algorithm allows agents with better forecasting ability to pass their perceived laws

of motion to other agents. This is particularly important at the beginning of the transitional

dynamics, because, since fitness is a backward-looking statistic, the fittest agents are those

whose PLMs are closer to the rational expectations PLM in the beginning of the learning

process (i.e., near period TIH + 1). In this regard, an important characteristic of the fitness

measure is that it is a decreasing-gain average of squared forecast errors. Here the emphasis
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Figure 4: Learning the Intended Equilibrium: Evolution of the Cross-Sectional Distribution
of PLMs
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Notes. Each panel shows the cross-sectional mean of individual PLMs and a two-standard deviation

band around the mean. The solid horizontal line corresponds to the PLM associated with the
inteneded equilibrium (RE-NB) and the broken horizontal line corresponds to the PLM associated

with the liquidity-trap equilibrium (RE-AB). The two-standard-deviation band associated with the
initial distribution of individual PLMs is shown with crosses.
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Figure 5: Percent Deviations of Perceived Laws of Motion from the Intended Equilibrium in
Periods 1 and T
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Note. ∆1 and ∆T stand for the cross-sectional average percent absolute deviation of individual

perceived laws of motion from the intended rational expectations equilibrium in periods 1 and

T = 1000, respectively. Each dot corresponds to one simulation, and there are 1000 simulations.

The length of each simulation is TIH + T quarters, and the first TIH quarters are dropped. The

solid line corresponds to the 45-degree line.
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is on decreasing gain. This property can be seen from the fact that because all forecast

errors are assigned the same weight, the most recent forecast error receives a smaller weight

over time. We can show that this feature of tournaments is an important determinant of

the learnability of the liquidity trap. Modeling fitness as an average of past forecasts with

constant gain can make the liquidity trap non-learnable, at least for the relatively large

dispersion of beliefs (embodied in the diagonal elements of the matrix Σ) considered in our

numerical analysis. This result obtains for different specifications of constant gains, including

geometric averaging and averaging over a fixed number of past periods.

7 Sensitivity Analysis

In this section we present two types of sensitivity tests. One consists in changing the various

hyperparameters that define the social learning algorithm. The other consists in replacing

the initial random disturbance in individual PLMs for one in which all agents are given the

PLM corresponding to the intended rational expectations equilibrium.

7.1 Varying the Hyperparameters of the Social Learning Algo-

rithm

Figure 6 presents a number of robustness checks of the stability of the liquidity trap under

learning, with a focus on the hyperparameters of the social learning algorithm. This analysis

is motivated by the fact that for these parameters there is little, if any, empirical information

backing their calibration. Each row of the figure redoes figure 3 for a different value of one

hyperparameter. All other structural and hyperparameters are set at the values shown in

table 1. As a point of reference, the first row of the figure reproduces from figure 3 the

predictions of the model under the baseline calibration.

The sensitivity test of greatest interest is the one that varies the probability of mutation,

pm. The reason is that large values of this parameter can compromise the convergence of the

learning algorithm, as discussed in, for example, Lux and Schornstein (2002) and Arifovic,

Bullard, and Kostyshyna (2012). The baseline value of 0.1 is taken from the latter study.

The second row of figure 6 displays the stability test for a value of pm of 0.5. As expected,

the cloud of points moves closer to the 45-degree line, meaning that there is substantial

dispersion of beliefs even after 1000 quarters. This is in part a mechanical outcome, since

exogenously 50 percent of the population is assumed to revise their beliefs in an arbitrary

and random fashion every quarter. It is reassuring, however, that in spite of the high degree

of mutation the equilibrium dynamics under learning continue to be stable, as reflected by

24



Figure 6: Learning the Liquidity Trap: Sensitivity Analysis
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Note. All parameters other than the one indicated in each row are kept at the values shown in

table 1. See also note to figure 3.
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the fact that the clouds of points for all elements of the perceived laws of motion remain

below the 45-degree line.

Another sensitivity test of interest is to increase the length of the simulation period,

because divergence can be slow to build up. The third row of figure 6 displays the stability

test for T = 2000 quarters, a simulation period twice as long as in the baseline test. Com-

paring the first and third rows of the figure reveals that the equilibrium dynamics remain

stable after doubling the simulation period, suggesting absence of divergence. The last two

sensitivity tests we perform are increasing the size of the population from 300 to 500 (row 4

of figure 6) and to increase the probability of crossover from 0.1 to 0.5 (row 5 of figure 6).

Increasing the population size yields a richer variety of beliefs at every point in time, since

mutation affects more agents. And an increase in the probability of crossover does not di-

rectly affect the aggregate perceived law of motion because the latter is an arithmetic mean

of the individual PLMs. But it can affect the learning process indirectly by altering the

fitness of individual PLMs. The stability of the liquidity trap under learning appears to be

robust to both parameter changes.

7.2 Convergence from the Intended Equilibrium to the Liquidity

Trap

Thus far, we have considered experiments in which the initial perturbation in the distribution

of PLMs is mean preserving. Specifically, as described by equation (15), in period TIH +1 the

distribution of PLMs is centered around the one associated with the liquidity-trap rational

expectations equilibrium, zab. We now test the stability of the liquidity trap under social

learning by imposing a noncentered initial distribution of PLMs. To discipline the exercise,

we pick a degenerate initial distribution in which all agents are assigned the PLM associated

with the intended rational expectations equilibrium, znb.

The top panels of figure 7 display the transitional dynamics of the cross-sectional distri-

bution of PLMs associated with this experiment for one simulation of 1000 quarters. The

single cross that appears in period 1 in each plot indicates the corresponding element of

znb. The figure shows that, as in the case of a mean-preserving initial PLM perturbation,

the economy converges quickly to a stable distribution of PLMs around the liquidity-trap

equilibrium. This finding is confirmed for 1000 simulations in the second row of panels,

which shows the result of the convergence test described in section 5. By construction all

1000 points line up in a column, since all simulations start from the same degenerate cross-

sectional distribution of PLMs. The fact that the column of points lies below the 45-degree

line implies that for all simulations the economy is closer to the liquidity trap at the end of
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Figure 7: Convergence from the Intended Equilibrium to the Liquidity Trap
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Note. See notes to figures 2 and 3.

27



the simulation period than it was at the beginning, suggesting stability of the liquidity trap

equilibrium.

Why does the economy not stay at the intended equilibrium in spite of the fact that,

as shown in section 6, this equilibrium is stable under social learning? The reason is that

under social learning, history matters. And in the economy considered in this experiment,

the history is one of an economy stuck in the liquidity trap. History matters in determining

which members of the population will win tournaments, that is, convince other agents that

they have the superior model of the economy. Immediately after the perturbation in period

TIH + 1, all agents have the same PLM. However, the mutations that follow will, by chance,

make some agents’ PLMs closer to the one associated with the liquidity-trap equilibrium

than others. Agents with PLMs closer to the liquidity-trap PLM will enjoy a better fit,

since the historical data on which PLMs are evaluated stems from the liquidity-trap rational

expectations equilibrium. Over time, these PLMs will spread across the population and

dominate the beliefs in the economy.

8 Conclusion

The main strength of the Taylor principle is that, by promising to change interest rates by

more than one-for-one with inflation, it ensures countercyclical real rates, which in turn, are

conducive to aggregate stability. The main weakness of the Taylor principle is that it opens

the door to unintended liquidity traps. Large enough downward revisions in inflationary

expectations can lead the monetary authority, by the sheer active nature of the policy rule,

to lower interest rates to zero, placing the economy in a liquidity trap, from which it might

be difficult to escape.

The relevance of the Taylor-rule-induced liquidity trap has been put in doubt by a number

of recent studies showing that it lacks stability when agents form expectations through least-

square learning. This result can be placed in the context of theories that depart from the

rational expectations hypothesis. There are multiple ways in which expectation formation

can depart from rationality. The set of possibilities can be large even if one restricts attention

to departures that converge to rationality. The contribution of this paper is to show that

the liquidity-trap equilibrium is stable under social learning. The relevance of this result,

lies in the view that social learning is no less appealing as a description of how agents form

expectations in the real world than least square learning, especially given the fact that, as

has been amply documented in the education and evolutionary sciences, learning has an

important social component.

We believe that going forward a promising line of research is to devise ways to discipline
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the choice of expectations formation mechanisms. As in any model selection problem, the

guiding principle should be to confront with actual data the predictions of models that

incorporate different assumptions of how expectations are formed and to discriminate on the

basis of goodness of fit.
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