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“[I]ts all about getting as much customer order flow as possible ... The more trades these

sophisticated machines get to see, the better they become [at] making money for their creators.”

(Reuters, August 14, 2009)

In most sectors, technological progress boosts efficiency. But in finance, information technology and

the new data-intensive trading strategies it has spawned have been blamed for market volatility, illiquidity

and inefficiency. One reason financial technology is suspect is that its rise has been accompanied by a shift

in the nature of financial analysis and trading. Instead of “kicking the tires” of a firm, investigating its

business model or forecasting its profitability, many traders today engage in statistical arbitrage: They

search for “dumb money,” or mine order flow data and develop algorithms to profit from patterns in

others’ trades. It appears that technology makes it easier to detect what others know. If so, does financial

technology deter information production and reduce market efficiency?

Teasing out the effect of technology with data alone is difficult. Many other concurrent trends may

mask the effects. Furthermore, it is not obvious which predictions to test when technological change affects

equilibrium prices and behavior of all market participants. Therefore, we build a model to explore whether

improvements in data processing naturally favor one type of information processing over another, and what

consequences this has for market efficiency.

Our contribution is to sort out what are and what are not logical consequences of long-run informa-

tion technology growth on financial markets. The model explains why, with poor technology, uncovering

fundamental data is more profitable than mining order flow data, even if the technology for doing both

activities is equally poor. As information technology improves, the model teaches us that the incentive to

mine order flow data grows, and can crowd out fundamental data gathering. Contrary to popular wisdom,

this shift in data processing and in trading strategies does not necessarily compromise financial market

efficiency. Efficiency, as measured by price informativeness, continues to rise, even if fundamental data

gathering falls. Efficiency, as measured by the price impact of an uninformed trade (liquidity), stagnates.

Even though order flow data allows investors to identify uninformed trades, and even though investors use

this information to take the opposite side of these trades, market-wide liquidity may not improve.

To explore these forces, our model of the financial economy (in Section 1) requires the following fea-

tures. First, investors choose between styles of financial analysis, observe the data produced from that

analysis, and then invest. Financial analysis here means processing some type of data. One analysis style

is fundamental analysis, which involves processing earnings reports, business model simulations, macro

announcement data etc., that help to predict the future value of a firm. The other style of analysis is

extracting information from the trades (order flow) of others. Modeling the trade-off between analyzing

fundamental and order flow data is new and allows us to explore the market inefficiency argument. Second,

we incorporate long-lived assets. This feature is essential to understand the long-run balanced growth of

fundamental and order flow analysis. Long-lived assets also create the future information risk that com-

promises market liquidity. Third, the driving force behind the model is technological change in the total

flow of data the sector can analyze or process. Of course, other trends, such as a decline in fees, entry

of new investors or assets, digitization, changes in covariance or improvements in order flow execution are

operating during this period as well. We want to take one simple trend, unbiased technological progress in

data processing, and see how much that alone can explain. This simple driving force offers a foundation

for exploring financial technology growth, to which many other ingredients and trends might eventually
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be added. Finally, we also explore biased technological change that only improves the efficiency of order

flow analysis. While the dynamic patterns of information choices change, the basic message does not. The

surge in order flow mining does not undermine price informativeness, nor does it substantially improve

liquidity.

Our theoretical results examine how investors choose to use their growing capacity to process data.

The main mechanism underlying the results is that an increase in total information creates an endogenous

change in the relative value of fundamental versus order-flow information (Section 2). When technology

is poor, information is scarce, and it is very valuable to know about the fundamental value of an asset.

The alternative strategy of processing data to identify uninformed trades is not valuable when so little

of trade is well-informed. When more investors are well-informed, it becomes more valuable to identify

and trade against the remaining non-informational trades. Order flow analysis allows investors to target

these more profitable trades. In fact, for a range of technology levels, the more order flow analysis and

trading is done, the more profitable it is for other investors to pile in with yet more order flow analysis and

trading. This complementarity in trading strategies allows order flow trading to not only catch up with

trading on fundamental information, but actually to surpass it and crowd out much of the fundamental

analysis that was previously done at lower technology levels. And yet, in the long run, as the capacity

for data processing becomes large, fundamental analysis cannot disappear. If it did, there would be no

information to extract from order flow. Instead, eventually, order flow analysis and fundamental analysis

grow together, in proportion to each other.

When we turn to discuss the consequences of this shift in data analysis and trading strategies, it is

useful to see time paths. To produce these, we need to put some plausible numbers to the model. Section

3 calibrates the model to financial market data so that we can explore the growth transition path and its

consequences for market efficiency numerically.

The results on market efficiency offer two surprises. First, even as order flow analysis crowds out

fundamental analysis and reduces the discovery of information about the future asset value, price informa-

tiveness continues to rise. The reason is that order flow information allows order flow traders to extract

fundamental information from prices. That makes the order flow traders, and thus the average trader,

better informed about future asset fundamentals. When the average trader is better informed, prices are

more informative. This might lead one to conclude that price informativeness doesn’t measure financial

efficiency in the way we thought it did. But according to this commonly-used measure, market efficiency

continues to improve as technology progresses.

Second, even though order flow traders systematically take the opposite side of uninformed trades,

the rise of order flow trading does not enhance market liquidity (Section 4). This is surprising because

taking the opposite side of uninformed trades is often referred to as “providing liquidity.” This is one of

the strongest arguments that proponents of activities such as high-frequency trading use to defend their

methods. But if by providing liquidity, we really mean reduce the price impact of uninformed trade, the

rise of order flow trading may not accomplish that. The problem is not order flow trading today, but

the expectation of informed trading of any kind – fundamental or order flow – tomorrow. The fact that

tomorrow’s investors will be well-informed gives rise to future information risk. This is the risk posed by

information that is unknown today, will be learned tomorrow, and will move tomorrow’s price. Because

assets are long-lived, tomorrow’s price uncertainty is today’s payoff risk. So future data processing raises
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the risk of investing in assets today. More risk per share of asset today is what causes the sale of one share

of the asset to have a larger effect on the price.

Thus, the rise in order-flow trading, rise in return uncertainty, and stagnation of liquidity, emerge

as concurrent trends with financial technology as their common cause. For asset returns, the net effect

of future information risk and less uncertainty about dividends today is a slightly lower risk premium,

consistent with empirical equity premia measures.

Finally, Section 5 shows why these trends in market efficiency are relevant for the real economy. This

last section sketches two extensions of the model. One argues that, if firm managers are compensated with

equity, better price informativeness improves their incentives to exert optimal effort. The second extension

shows how the same forces that underlie market liquidity also reduce the cost of equity issuance for a firm

that wants to raise capital for real investment. Thus more liquid markets should also promote efficient real

investment and long-run economic growth.

Contribution to the existing literature Our model combines features from a few disparate literatures.

Long run trends in finance are featured in Asriyan and Vanasco (2014), Biais, Foucault, and Moinas (2015),

and Glode, Green, and Lowery (2012), who model growth in fundamental analysis or an increase in its

speed. Davila and Parlatore (2016) explore a decline in trading costs. Philippon (2015) argues that

increased issuance can explain the growth of the financial sector. Our assumption that there is long-run

growth in information processing is supported by the rise in price informativeness documented by Bai,

Philippon, and Savov (2013).

A small, growing literature examines order-flow information in equilibrium models. In Yang and Gan-

guli (2009), agents can choose whether or not to purchase a fixed bundle of fundamental and order-flow

information. In Yang and Zhu (2016) and Manzano and Vives (2010), the precision of fundamental and

order-flow information is exogenous. Babus and Parlatore (2015) examine intermediaries who observe the

order flow of their customers. Our order flow signals also resemble Angeletos and La’O (2014)’s sentiment

signals about other firms’ production, Banerjee and Green (2015)’s signals about motives for trade, the

signaling by He (2009)’s intermediaries, and the noise in government’s market interventions in Brunner-

meier, Sockin, and Xiong (2017). But none of these papers examines the choice that is central to this

paper: The choice of whether to process more about asset payoffs or to analyze more order flow. Without

that trade-off, these papers cannot explore how the incentives to process each type of information change

as productivity improves. Furthermore, this paper adds a long-lived asset in a style of model that has

traditionally been static.1 The long-lived asset causes growth in future information processing to have

feedback effects on uncertainty and information choices today.

In the microstructure literature, our model contributes a new perspective on what high-frequency

traders do, which complements work by Du and Zhu (2017), Crouzet, Dew-Becker, and Nathanson (2016)

and others. Empirically, Hendershott and Menkveld (2014) and Hendershott, Jones, and Menkveld (2011)

use natural experiments to measure how fundamental and algorithmic trading affects liquidity. By con-

tributing theory to this discussion, we can understand why the shift is taking place.

1Exceptions include 2- and 3-period models, such as Cespa and Vives (2012).
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1 Model

To explore the dynamic evolution of financial analysis style and its consequences, we incorporate informa-

tion choice in a dynamic model with long-lived assets and asymmetric information, as in Wang (1993).

While the long-lived asset assumption is unusual in information choice models, it is crucial for the liquidity

and long-run balanced growth results. The choice of fundamental information precision resembles that in

repeated static models such as Kacperczyk, Nosal, and Stevens (2015). But the new aspect of our informa-

tion choice is that acquiring fundamental information trades off with extracting of information from order

flow. Of course, it would be simpler to assume that the mix of information changes exogenously. But that

would not inform us about why investment strategies are changing. If we took that approach, we might

wrongly attribute the stagnation of market liquidity to an increase in order flow information extraction,

instead of understanding both as outcomes of growth in financial technology.

A key question is how to model information extraction from order flow, which, in practice, can take

many forms. Extraction might take the form of high-frequency trading, where the information of an

imminent trade is used to trade before the new price is realized. It could be mining tweets or Facebook

posts to gauge sentiment. Extraction could take the form of “partnering,” a practice where brokers sell

their order flow to hedge funds, who systematically trade against, what are presumed to be uninformed

traders.2 Finally, it may mean looking at price trends, often referred to as technical analysis, in order to

discern what information others may be trading on. All of these practices have in common that they are not

uncovering original information about the future payoff of an asset. Instead, they are using information to

profit from what others already know (or don’t know). We capture this general strategy, while abstracting

from many of its details, by allowing investors to observe a signal about the non-informational trades of

other traders. This order flow signal allows our traders to profit in three ways. 1) They can identify and

then trade against uninformed order flow; 2) they can remove noise from the equilibrium price to uncover

more of what others know; or 3) they can exploit the mean-reversion of order flow shocks to buy before

price rises and sell before it falls. These three strategies have an equivalent representation in the model

and collectively cover many of the ways investors profit from information technology.

1.1 Setup

Investor preferences and endowments At the start of each date t, a measure-one continuum of

overlapping generations investors is born. Investors born at time t have constant absolute risk aversion

utility over total, end of period t consumption c̃t:

U(c̃t) = −e−ρc̃t (1)

where ρ is absolute risk aversion.We adopt the convention of using tildes to indicate t-subscripted variables

that are not in the agents’ information set when they make time-t investment decisions.

Each investor i born at date t is endowed with an exogenous income that is ẽit units of consumption

goods. Investors can use their income to buy risky assets at the start of the period. But they cannot trade

2Market evidence suggests that hedge funds value the opportunity to trade against the uninformed, as noted by Goldstein
in a 2009 Reuters article: “Right now, ETrade sends about 40% of its customer trades to Citadels market-maker division
. . . Indeed, the deal is so potentially lucrative for Citadel that the hedge fund is willing to make an upfront $100 million cash
payment to the financially-strapped online broker.”
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shares of or any assets contingent on this income.

There is a single tradeable asset.3 Its supply is one unit per capita. It is a claim to an infinite stream

of dividend payments {dt}:

d̃t = µ+Gd̃t−1 + ỹt. (2)

where µ and G < 1 are known parameters. The innovation ỹt ∼ N(0, τ−1
0 ) is revealed and d̃t is paid out

at the end of each period t.

An investor born at date t, sells his assets at price pt+1 to the t + 1 generation of investors, collects

dividends d̃t per share, combines that with the endowment that is left (ẽit − qitpt), times the rate of time

preference r > 1, and consumes all those resources. Thus the cohort-t investor’s budget constraint is

c̃t = r(ẽit − qitpt) + qit(pt+1 + d̃t) (3)

where qit is the shares of the risky asset that investor i purchases at time t and d̃t are the dividends paid

out at the start of period t+ 1. Since we do not prohibit ct < 0, all pledges to pay income for risky assets

are riskless.

The value of endowments is correlated with the dividend: ẽit = ē + hitỹt + ε̃eit, where ē is known and

ε̃eit ∼ N(0, τ−1
e ) is independent across agents and independent of all the other shocks in the economy.

The variable hit governs the correlation of agent i’s endowment with output. That variable has a common

component and an investor-specific component: hit = x̃t+ ε̃hit where x̃t ∼ N(0, τ−1
x ) and ε̃hit ∼ N(0, τ−1

h ).4

This rich, correlated endowment process serves simply to avoid noise traders. For information to have

value, prices must not perfectly aggregate asset payoff information. As in Manzano and Vives (2010), we

inject noise in prices by giving investors both informational and non-informational – hedging – reasons

for trade. Investors have non-financial income risk that they hedge with financial assets. Shocks to this

hedging demand is our source of noise in prices. Equivalently, x̃t could also be interpreted as aggregate

demand, sentiment or noise trading. For now, we assume that x̃t is independent over time. We discuss the

possibility of autocorrelated x̃t in Section 2.4.

Information Choice If we want to examine how the nature of financial analysis has changed over time,

we need to have at least two types of analysis to choose between. Financial analysis in this model means

signal acquisition. Our constraint on acquisition could represent the limited research time for uncovering

new information. But it could also represent the time required to process and compute optimal trades

based on information that is readily available from public sources.

Investors choose how much information to acquire or process about the next-period dividend innovation

ỹt, and also about the hedgers’ demand shocks, x̃t. We call ηfit = ỹt + ε̃fit a fundamental signal and

ηxit = x̃t + ε̃xit an order-flow signal. What investors are choosing is the precision of these signals. In

other words, if the signal errors are distributed ε̃fit ∼ N(0,Ωfit) and ε̃xit ∼ N(0, Ω̂xit), then the precisions

Ωfit and ˆΩxit are choice variables for investor i. For notational convenience, we define Ωxit = τh + Ω̂xit.

Instead of choosing ˆΩxit ≥ 0, we then allow the investor choose Ωxit ≥ τh. Then Ωxit represents the joint

3We describe a market with a single risky asset because our main effects do not require multiple assets. However, we have
some results for the generalized, multi-asset setting.

4The fact that the mean of hit is zero is just for simplification. Assuming a non-zero mean affects the average asset price.
But we have checked that it does not affect our main results.
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signal precision that the investor has both from order-flow analysis and from observing his own endowment

exposure to systemic financial risk.

The constraint that investors face when choosing information is

Ω2
fit + χxΩ2

xit ≤ Kt. (4)

This represents the idea that getting more and more precise information about a given variable is tougher

and tougher. But acquiring information about a different variable is a separate task, whose shadow cost is

additive.

The main force in the model is technological progress in information analysis. Specifically, we assume

that Kt is a deterministic, increasing process.

Information sets and equilibrium First, we recursively define two information sets. The first is all

the variables that are known at the end of period t− 1. This information is {It−1, yt−1, dt−1, xt−1} ≡ I+
t−1.

This is what investors know when they choose what signals to acquire. The second information set is

{It−1, yt−1, dt−1, xt−1, ηfit, ηxit, hit, pt} ≡ I+
t−1. This includes the two signals the investor chooses to see,

information contained in equilibrium prices and the information conveyed by one’s endowed income. This

is the information set the investor has when they make investment decisions. The time 0 information set

includes the entire sequence of information capacity: I0 ⊃ {Kt}∞t=0.

An equilibrium is a sequence of information choices {Ωfit}, {Ωxit} and portfolio choices {qit} by investors

such that

1. Investors choose signal precisions Ωfit and Ωxit to maximize E[ln(E[U(ci,t+1)|It])|I+
t−1], where U is

defined in (1), taking the choices of other agents as given.5 This choice is subject to (4), Ωfit ≥ 0

and Ωxit ≥ τh.

2. Investors choose their risky asset investment qit to maximize E[U(cit)|ηfit, ηxit, hit, pt], taking the

asset price and the actions of other agents as given, subject to the budget constraint (3).

3. At each date t, the risky asset price clears the market:

∫
qitdi = 1 ∀t. (5)

1.2 Solving the Model

There are four main steps to solve the model.

Step 1: Solve for the optimal portfolios, given information sets. Each investor i at date t chooses a

number of shares qit of the risky asset to maximize expected utility (1), subject to the budget constraint

(3). The first-order condition of that problem is

qit =
E[pt+1 + d̃t|Iit]− rpt
ρitV ar[pt+1 + d̃t|Iit]

− hit (6)

5E ln E preferences deliver a simple expression for the objective that is linear in signal precision. It is commonly used in
information choice models (Kacperczyk, Nosal, and Stevens, 2015), (Crouzet, Dew-Becker, and Nathanson, 2016). The same
trade-offs arise with expected utility. Results available on request.
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Step 2: Clear the asset market. Given this optimal investment choice, we can impose market clearing

(5) and obtain a price function that is linear in past dividends dt−1, the t-period dividend innovation ỹt,

and the aggregate component of the hedging shocks x̃t:

pt = At +Bdt−1 + Ctỹt +Dtx̃t (7)

where the coefficients At, B, Ct and Dt solve the following set of equations:

At =
1

r

[
At+1 +

rµ

r −G
− ρV ar[pt+1 + d̃t|It]s̄

]
. (8)

B =
G

r −G
(9)

Ct =
1

r −G
(1− τ0V ar[ỹt|Iit]) (10)

rDt = −ρV ar[pt+1 + d̃t|Iit] +
r

r −G
V ar[ỹt|Iit]

Ct
Dt
τx (11)

where Ωpit is the precision of the information about d̃t, extracted jointly from prices and order flow signals.

V ar[ỹt|Iit] = (τ0 + Ωfit + Ωpit)
−1 (12)

is the posterior uncertainty about next-period dividend innovations and the resulting uncertainty about

asset returns is proportional to

V ar[pt+1 + d̃t|Iit] = C2
t+1τ

−1
0 +D2

t+1τ
−1
x + (1 +B)2V ar[ỹt|Iit]. (13)

Step 3: Compute ex-ante expected utility. When choosing information to observe, investors do not

know what signal realizations will be, nor do they know what the equilibrium price will be. The relevant

information set for this information choice is I+
t−1.

After we substitute the optimal portfolio choice (6) and the equilibrium price rule (7) into utility (1), and

take log and then the beginning of time-t expectation (−E[ln(E[exp(ρcit)|ηfit, ηxit, hit, pt])|I+
t−1]), we get

an time-1 expected utility expression that is similar to most CARA-normal models: ρ r eit+ρE[qit(E[pt+1+

d̃t|Iit]− ptr)|I+
t−1] −ρ2

2 E[q2
itV ar[pt+1 + d̃t|Iit]−1|I+

t−1]. Appendix A shows that the agent’s choice variables

Ωfit and Ωxit show up only through the conditional precision of payoffs, V ar[pt+1+d̃t|Iit]−1. The reason for

this is that the first-moment terms in asset demand – E[pt+1 + d̃t|Iit] and p – have ex-ante expected values

that do not depend on the precision of any given investor’s information choices. In other words, choosing to

get more data of either type does not, by itself, lead one to believe that payoffs or prices will be particularly

high or low. So, information choices amount to minimizing the payoff variance V ar[pt+1 + d̃t|Iit], subject

to the data constraint. The payoff variance, in turn, has a bunch of terms the investor takes as given, plus

a term that depends on dividend variance, V ar[ỹt|Iit]. Equation (12) shows that V ar[ỹt|Iit] depends on

the sum of fundamental precision Ωfit and price information Ωpit. Price information precision is Ωpit =
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(Ct/Dt)
2(τx + Ωxit + τh), which is linear in Ωxit. Thus expected utility is a function of the sum of Ωfit and

(Ct/Dt)
2Ωxit.

Thus, optimal information choices maximize the weighted sum of fundamental and order-flow precisions:

maxΩfit,Ωxit Ωfit +

(
Ct
Dt

)2

Ωxit (14)

s.t. (4), Ωfit ≥ 0, and Ωxit ≥ τh.

Step 4: Solve for information choices. The first order conditions yield

Ωxit =
1

χx

(
Ct
Dt

)2

Ωfit (15)

This solution implies that information choices as symmetric. Therefore, in what follows, we drop the i

subscript to denote an agent’s data processing choice.

The information choices are a function of pricing coefficients, like C and D, which are in turn functions

of information choices. To determine the evolution of analysis and its effect on asset markets, we need to

compute a fixed point to a highly non-linear set of equations. After substituting in the first order conditions

for Ωft and Ωxt, we can write the problem as two non-linear equations in two unknowns.

1.3 Interpreting Order Flow Trading

Why are order flow signals useful? They don’t predict future dividends or future prices. They only provide

information about current demand. The reason that information is valuable is that it tells the investor

something about the difference between price and expected asset value. One can see this by looking at

the signal extracted from prices. Price is a noisy signal about dividends. To extract the price signal, we

subtract the expected value of all the terms besides the dividend, and divide by the dividend coefficient

Ct. The resulting signal extracted from prices is

(pt −At −Bdt−1 −DtE[x̃t|Iit])
Ct

= ỹt +
Dt

Ct
(x̃t − E[x̃t|Iit])︸ ︷︷ ︸
signal noise

. (16)

Notice how order flow shocks x̃t are the noise in the price signal. So information about this order flow

reduce noises in the price signal. In this way, the order flow signal can be used to better extract others’

dividend information from the price. This is the sense in which order flow analysis is information extraction.

Of course, real order flow traders are not taking their orders, and then inverting an equilibrium pricing

model to infer future dividends. But another way to interpret the order flow trading strategy is that

it is identifying non-information trades to trade against. In equation (16), notice that when x̃t is high,

hedging traders are mostly sales. Since (Dt/Ct) < 0, high x̃t makes the expected dividend minus price

high, which leads those with order flow information to buy. Thus, order flow trading amounts to finding the

non-informational trades and systematically taking the opposite side. For simplicity, we gave all investors

informational and hedging motives for trade. But the same forces emerge if the hedging trades are done by

a different class of agents, which we might call uninformed retail investors or liquidations by pension funds.

This trading strategy of trading against uninformed trades is commonly referred to as trading against

“dumb money.”
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The key to the main results that follow is that reducing the noise in x̃t reduces price noise variance

in proportion to (Dt/Ct)
2. Put conversely, increasing precision of information about x̃t (the reciprocal

of variance) increases the precision of dividend information, in proportion to (Ct/Dt)
2. What causes the

long-run shifts is that the marginal rate of substitution of order flow for fundamentals signals, (Ct/Dt)
2,

changes as technology grows.

If we interpret order flow trading as finding dumb money, it is easy to see why it becomes more valuable

over time. If there is very little information, everyone is “dumb,” and finding dumb money is pointless.

But when informed traders become sufficiently informed, distinguishing dumb from smart money, before

taking the other side of a trade, becomes essential.

1.4 Measuring Financial Market Efficiency

To study the effects of financial technology on market efficiency, we assess efficiency in two ways. One

measure of efficiency is price informativeness. The asset price is informative about the unknown future

dividend innovation ỹt. The coefficient Ct on the dividend innovation ỹt in the equilibrium price equation

(7) measures price informativeness. Ct governs the extent to which price reacts to a dividend innovation.

It corresponds to the price informativeness measure of Bai, Philippon, and Savov (2013).

The other measure of market efficiency is liquidity. Liquidity is the price impact of an uninformed

(hedging) trade. That impact is the price coefficient Dt. Note that Dt is negative because a high endowment

of risk correlated with dividends makes an investor less willing to hold risky assets; the reduced demand

lowers the price. So, a more negative Dt represents a higher price impact and a less liquid market.

Increasing (less negative) Dt is an improvement in liquidity.

2 Analytical Results: A Secular Shift in Financial Analysis

Our main objective is to understand how technological progress in information (data) processing affects

financial analysis choices, trading strategies, and market efficiency. In this section, we focus mainly on the

question: How does the decision to analyze fundamental or order flow information change as technology

improves? The information choice results illuminate why the effects of technology on market efficiency are

mixed. Along the way, we learn why both types of information can improve price informativeness and also

why both can create payoff risk and thereby impair market liquidity.

We begin by exploring what happens in the neighborhood near no information processing, K ≈ 0. We

show that all investors prefer to acquire only fundamental information in this region. Thus, at the start of

the growth trajectory, investors primarily investigate firm fundamentals. Next, we prove that an increase

in aggregate information processing increases the value of order flow information, relative to fundamental

information. Fundamental information has diminishing relative returns. But in some regions, order flow

information has increasing returns. What does this mean for the evolution of analysis? The economy starts

out doing fundamental analysis and then rapidly shifts to order flow analysis. We explore this mechanism,

as well as its long run limit, in the following propositions.
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2.1 Analysis Choices when Information Is Scarce

In order to understand why investors with little information capacity use it all on fundamental information,

we start by thinking about what makes each type of information valuable. Fundamental information is

valuable because it informs an investor about whether the asset is likely to have a high dividend payoff

tomorrow. Since prices are linked to current dividends, this also predicts a high asset price tomorrow and

thus a high return. Knowing this allows the investor to buy more of the asset in times when its return will

be high and less when return is likely to be low.

In contrast, order flow information is not directly relevant to future payoff or future price. But one

can still profit from trading on order flow. An investor who knows that hedging demands are high will

systematically profit by selling the asset because high hedging demands will make the price higher than the

fundamental value, on average. In other words, order flow signals allow one to trade against dumb money

The next result proves that if the price has very little information embedded in it, because information is

scarce (Kt is low), then getting order flow data to extract price information is not very valuable. In other

words, if all trades are “dumb,” then identifying the uninformed trades has no value.

Result 1 When information is scarce, order flow analysis has zero marginal value:

As Kt → 0, for any future path of prices (At+j , Bt+j , Ct+j and Dt+1, ∀j > 0), dU1/dΩxt → 0.

The proof (in Appendix B) establishes two key claims: 1) that when K ≈ 0, there is no information in

the price: Ct = 0 and 2) that the marginal rate of substitution of order flow information for fundamental

information is proportional to (Ct/Dt)
2. Thus, when the price contains no information about future

dividends (Ct = 0), then analyzing order flow is has no marginal value (Ct/Dt)
2 = 0. Order flow information

is only valuable in conjunction with the current price pt because it allows one to extract more information

from price. Order flow trading when Kt = 0 is like removing noise from a signal that has no information

content.

This results explains why analysts focus on fundamentals when financial analysis productivity is low.

In contrast, when prices are highly informative, order flow information is like gold because it allows one

to identify exactly the price fluctuations that are not informative and are therefore profitable to trade

on. The next results explain why order flow analysis increases with productivity growth and why it may

eventually start to crowd out fundamental analysis.

As financial technology grows, order flow analysis takes off. The concern with the deleterious

effects of financial technology on market efficiency stemmed from the concern that technology will deter

the research and discovery of new fundamental information. This concern is not unwarranted. Not only

does more fundamental information encourage extraction of information from order flow, but once order

flow analysis starts, it feeds on itself.

The next result shows that, as long as price information is low or order flow analysis is not too large,

both types of analysis increase the ratio of the information content C to the noise D. This increases the

marginal value of order flow information, relative to fundamental information. Thus, fundamental analysis

complements order flow information and order flow information complements itself.

Result 2 Complementarity in order flow analysis:

If Ωxt < τ0 + Ωft and either
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1. Ct/Dt is smaller in absolute value than (2V ar[pt+1 + d̃t|Iit])−1, or

2. V ar[pt+1 + d̃t|Iit] <
√

3

then ∂(Ct/Dt)2

∂Ωft
> 0 and ∂(Ct/Dt)2

∂Ωxt
≥ 0.

Unlike fundamental analysis, the rise in order-flow analysis can increase the value of further order-flow

analysis. For fundamental information, the increase in |Ct/Dt| makes additional fundamental information

less valuable. This result resembles the strategic substitutability in information identified by Grossman

and Stiglitz (1980), in a model with a different information structure. But for order flow information, the

effect is the opposite. More precise average order flow information (higher Ωxt) can increase (Ct/Dt)
2,

which is the marginal rate of substitution of order flow information for fundamental information. The rise

in the relative value of order flow data is what makes investors shift data analysis from fundamental to

order flow when others do more order flow analysis. That is complementarity.6

Complementarity comes from a rise in the price signal-to-noise ratio. From (10), we know that Ct

is proportional to 1 − τ0V ar[ỹt|Iit]. As either type of information precision (Ωft or Ωxt) improves, the

uncertainty about next period’s dividend innovation V ar[ỹt|Iit] declines, and Ct increases. Dt is the

coefficient on noise x̃t. The price impact of uninformative trades Dt may also increase with information,

as we explain below. But conditions (1) and (2) guarantee that Dt does not rise at a rate faster than Ct

so that the ratio Ct/Dt, which is the signal-to-noise ratio of prices, and the marginal value of order flow

precision, increases with more information.

Intuitively, higher signal-to-noise (more informative) prices encourage order flow trading because the

value of order flow analysis comes from the ability to better extract the signal from prices. In this model

(as in most information processing problems), it is easier to clear up relatively clear signals than very

noisy ones. So the aggregate level of order-flow analysis improves the signal clarity of prices, which makes

order-flow analysis more valuable.7

2.2 Market Efficiency and Future Information Risk

To understand how the value of information changes, we consider marginal changes in fundamental and

order flow analysis. We begin by exploring the effect on each price coefficient (Ct, Dt) separately. Then,

we turn to the question of how analysis affects the ratio (C/D)2, which governs the marginal rate of

substitution between order flow and fundamental analysis. Taken together, these results paint a picture of

technological progress having mixed effects on market efficiency. The proofs are in Appendix B.

Result 3 Both fundamental and order flow analysis increase price informativeness. If r−g > 0

and (τx + Ωxt) is sufficiently small, then ∂Ct/∂Ωft > 0 and ∂Ct/∂Ωxt > 0.

The more information investors have, the more information is reflected in the risky asset price. While

the idea that dividend (fundamental) information improves price informativeness is unsurprising, the ques-

tion of whether order-flow speculation improves or reduces price informativeness is not obvious. It turns

6With a linear information constraint, or a simple cost function for Kt, the same intuition holds. With linearity, there is a
secular shift to order flow information acquisition once Ct

Dt
falls below −1. After that, the equilibrium level of the two types

of information will be such that investors remain indifferent.
7When we consider a marginal change in analysis choice in the infinite future (a change in the steady state), the results

are similar, but with more complex necessary conditions.
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out that they increase the information content because by selling the asset when the price is high for

non-fundamental reasons and buying when the price is erroneously low, they make it easier to extract in-

formation from prices. Better informed traders who learn both from independent signals and from prices,

therefore have better information, take more aggressive positions which in turn, cause the price so reveal

even more information.

Liquidity here is the impact a non-informational trade has on price. A liquid market is one where one

can buy or sell large quantities, in a way that is not correlated with dividends, without moving price by

much. The next two results together show that information today and information tomorrow have opposite

effects on today’s liquidity. These opposite results are why it was important to use a dynamic model to

think about the long run effects on increasing information technology.

Result 4 If order flow is not too volatile, then both fundamental and order flow analysis

improve concurrent liquidity. If τx > ρr/(r − g), then ∂Dt/∂Ωft > 0 and ∂Dt/∂Ωxt > 0.

The contemporaneous effect is that both types of analysis can increase liquidity. The rationale is that

both types of traders trade against non-informational trades and mitigate their price impact. Order flow

investors profit by identifying and trading against non-informational trades. Non-informational trades

that are clearly identifiable, will find eager counterparties, and will have little price impact. Fundamental

traders buy when the price is low, relative to their fundamental information. This is exactly the same

states where hedgers are selling. By taking the other side of the hedging trade, both types of traders

mitigate hedgers’ price impact. Lower price impact is higher liquidity.

Why would this result be reversed if order flow was volatile (τx low)? A low τx means that prices are

very noisy. When information improves, noise trades can be mis-attributed to agents having fundamental

information. This mis-attribution causes prices to move more. In other words, the presence of informed

traders makes others more hesitant to trade against hedging trades, increasing their price impact. Both

components of this contemporaneous effect are present in static models as well.

Another way of understanding liquidity is to think about it as a change in the quantity of risk per

share. More information of either type today makes the dividend less risky – lower conditional variance –

and helps to forecast tomorrow’s price. If one share of the asset involves bearing little risk, then market

investors don’t need much price concession to induce them to hold a little extra risk. When one share

is riskier, then inducing the market to buy one more share requires them to take on lots of risk, which

requires a large price concession. This effect shows up in (11), the formula for Dt, which depends negatively

on V ar[pt+1 + d̃t|Iit]−1, the variance of the asset payoff. Assets with more uncertain payoffs have more

negative Dt, which means selling or buying a share has more price impact. This risk-based interpretation

helps explain the next result about how future information affects today’s liquidity.

Result 5 More future information reduces liquidity today. If |Ct+1/Dt+1| is sufficiently large, then

∂Dt/∂V ar[ỹt+1|Ii(t+1)] < 0.

The reason that future information can reduce liquidity is because it makes future price pt+1 more

sensitive to future information and thus harder to forecast today. If tomorrow, many investors will trade on

precise (t+1) information, then tomorrow’s price will be very sensitive to tomorrow’s dividend information

yt+1 and tomorrow’s order flow information xt+1. In other words, both Ct+1 and Dt+1 will be high.
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But investors today do not know what will be learned tomorrow. Therefore, tomorrow’s analysis makes

tomorrow’s price (pt+1) more sensitive to shocks that today’s investors are uninformed about. Because

tomorrow’s price is a component of the payoff to the asset purchased at date t, today’s investors face high

asset payoff risk (V ar[pt+1 + d̃t|Iit]). This is what we call future information risk. Invoking the logic above,

a riskier asset has a less liquid market. We can see this relationship in the formula for Dt (eq 11) where

V ar[pt+1 + d̃t|Iit] shows up in the first term. Thus, future information reduces today’s liquidity.

At this point, the assumption that assets are long-lived becomes essential. In a repeated static model,

payoffs are exogenous. Without dynamics, information learned tomorrow cannot affect payoff risk today.

Thus, the contribution of using a long-lived asset model to think about information choice is all the results

that depend on future information risk.

We can see the relationship between tomorrow’s price coefficients and future information risk in the

formula for the variance of the asset payoff:

V ar[pt+1 + d̃t|Iit] = C2
t+1τ

−1
0 +D2

t+1τ
−1
x + (1 +B)2V ar[ỹt|Iit] (17)

We know that time-t information increases period-t information content Ct. Similarly, time t+1 information

increases Ct+1. Future information may increase or decrease Dt+1. But as long as Ct+1/Dt+1 is large

enough, the net effect of t + 1 information is to increase C2
t+1τ

−1
0 + D2

t+1τ
−1
x . Since future information

cannot affect today’s dividend uncertainty V ar[ỹt|Iit], the net effect of future information is to raise

today’s payoff variance. What this means economically is that tomorrow’s prices will be more responsive

to tomorrow’s fundamental and order flow shocks. That is what makes the price more uncertain today.

In our dynamic model, information improves today and improves again tomorrow. That means the

static effect and dynamic effect are competing.8 The net effect of the two is sometimes positive, sometimes

negative. But it is never as clear-cut as what a static information model would suggest. What we learn is

that information technology efficiency and liquidity are not synonymous. If fact, because it makes prices

more informative, financial technology can also make markets function in a less liquid way.

2.3 Analysis and Price in the Long-Run

The result that order flow analysis feeds on itself suggests that in the long run, order flow analysis will

crowd out fundamental analysis. But that does not happen. When order flow precision (Ωxt) is high,

the necessary conditions for Proposition 2 break down. The next result tells us that, in the long run as

information becomes abundant, growth in fundamental and order-flow analysis becomes balanced. For this

result, the long-lived asset assumption is crucial.

Result 6 High-Information Limit As Kt →∞, both analysis choices Ωft and Ωxt tend to ∞ such that

(a) Ωft/Ωxt does not converge to 0;

(b) Ωft/Ωxt does not converge to ∞; and

(c) if τ0 is sufficiently large, there exists an equilibrium where Ωft/Ωxt converges to finite, positive constant.

8This variance argument is similar to part of an argument made for information complementarity in Cai (2016a), an
information choice model with only fundamental information.
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See Appendix B for the proof and an expression (90) for the lower bound on τ0.

It is not surprising that fundamental analysis will not out-strip order flow analysis (part (a)). We know

that more fundamental analysis lowers the value of additional fundamental analysis and raises the value

of order flow analysis. This is the force that prompts order flow analysis to explode at lower levels of

information K.

But what force restrains the growth of order flow analysis? The reason that fundamental analysis

cannot become a negligible fraction of order flow analysis (part (b)) is that, if it did, the price signal-

to-noise ratio (Ct/Dt)
2 would fall; this would reduce the incentive to acquire order flow information. In

sum, if fundamental analysis is too scarce, the value of mining order flow falls, and brings the two types of

analysis back to some fixed proportion.

This balanced growth result only arises in a model with long-lived assets. What makes the growth

of (Ct/Dt)
2 slow down as information becomes abundant is the rise of future information risk. Result

5 teaches us that when Kt is high, future information risk (high V ar[pt+1 + d̃t|Iit]) increases the price

impact of uninformed trades |Dt|. That V ar[pt+1 + d̃t|Iit] term does not show up in the equation (10)

for Ct because more uncertain future prices do not increase the weight on dividend signals today. Thus,

it is future information risk, which becomes particularly large at high levels of financial technology, that

causes Dt to grow as fast as Ct, which brings order flow analysis back into proportion with fundamental

analysis. In the Appendix, Lemma 4 shows formally that (Ct/Dt)
2 is bounded above by the inverse of

future information risk. When assets are not long-lived, their payoffs are exogenous, future information

risk is zero, and (Ct/Dt)
2 can growth without bound. Without a long-lived asset, the balanced growth

path does not exist.

2.4 Persistent order flow or information about future events.

A key to many of our results is that the growth of financial technology creates more and more future

information risk. This is the risk that arises because shocks that affect tomorrow’s prices are not learnable

today. This raises the question: What if these shocks could be learned about today? What if order flow

shocks were not independent? What if information about future dividend shocks was available today?

Would future information processing still increase risk?

Yes, as long as there is still some uncertainty and thus something to be learned in the future, future

information will still create risk for returns today. Tomorrow’s price would depend on the new information,

learned tomorrow about shocks that will materialize in t + 2 or t + 3. That new information observed in

t + 1 will affect t + 1 prices. That new future information, only released in t + 1 cannot be known at

time t. This future information becomes a new source of unlearnable risk. The general point is this: As

long as new information keeps arriving, it creates risk. The risk is that before the information arrives, one

does not know it and can not know it, no matter how much analysis is done. And yet, this information

yet to arrive will affect future prices in a uncertain way. When information processing technology is poor,

the poorly-processed information has little price effect. Thus future information poses little risk. When

information processing improves, the risk of unknown future information grows.

Of course, if order flow were persistent, then signals about x̃t would be payoff relevant. The x̃t signal

would be informative about x̃t+1, which affects the price pt+1 and thus the payoff of a time t risky asset.

Learning directly about asset future asset payoffs is fundamentally different than learning about demand
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shocks that only affect the interpretation of the current price. In such a model, agents would attempt

to distinguish the persistent and transitory components of order flow. The persistent, payoff-relevant

component would play the role of dividend information in this model. The transitory component of order

flow would play the role of the i.i.d. x̃t shock in this setting.

3 Parameter Choice

The results so far reveal that low-tech investors do analyze fundamentals; as financial technology develops,

order flow analysis takes off and feeds on itself; and eventually, with advanced technology, both types

of analysis grow proportionately. Although we’ve traced out forces affecting price informativeness and

liquidity, we don’t know whether these effects are large or small and which dominate. To explore these

issues, we need to solve a calibrated model numerically.

Our calibration strategy is to estimate our equilibrium price equation on recent asset price and dividend

data. By choosing model parameters that match the pricing coefficients, we ensure that we have the right

average price, average dividend, volatility and dividend-price covariance at the simulation end point. What

we do not calibrate to is the evolution of these moments over time. The time path of price and price

coefficients are over-identifying moments that we can use to evaluate model performance.

First, we describe the data used for model calibration. Next, we describe moments of the data and

model that we match to identify model parameters. Most of these moments comes from estimating a

version of our price equation (7) and choosing parameters to match the price coefficients in the model with

the data. In the next section, we report the results.

Data We use two datasets that both come from CRSP. The first is the standard S&P 500 market

capitalization index based on the US stock market’s 500 largest companies.9 The dataset consists of:

the value-weighted price level of the index pt, and the value-weighted return (pt + dt)/pt−1, where dt is

dividends. Both are reported at a monthly frequency for the period 1999.12-2015.

Given returns and prices, we impute dividends per share as

dt =

(
pt + dt
pt−1

− pt
pt−1

)
pt−1.

Both the price series and the dividend series are seasonally adjusted and exponentially detrended. As

prices are given in index form, they must be scaled to dividends in a meaningful way. The annualized

dividend per share is computed for each series by summing dividends in 12 month windows. Then, in the

same 12-month window, prices are adjusted to match this yearly dividend-price ratio.

Finally, because the price variable described above is really an index, and this index is an average

of prices, the volatility of the average will likely underestimate the true volatility of representative stock

prices. In order to find an estimate for price volatility at the asset level, we construct a quarterly time

9As a robustness check, we redo the calibration using a broader index: a composite of the NYSE, AMEX and Nasdaq. This
is a market capitalization index based on a larger cross-section of the market - consisting of over 8000 companies (as of 2015).
The results are similar. Moment estimates are within about 20% of each other. This is close enough that the simulations
differ imperceptibly. Results are available upon request.
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series of the average S&P constituent stock price for the period 2000-2015. Compustat gives us the S&P

constituent tickets for each quarter. From CRSP, we extract each company’s stock price for that quarter.

Moments Using the price data and implied dividend series, we estimate the dividend AR(1) process (2)

and the linear price equation (7). We let ỹt and Dxt be regression residuals. We estimate A = 16.03,

C = 7.865 and D = −5.7. We can then map these estimates into the underlying model parameters G, τ−1
x ,

τ−1
0 , µ and χx, using the model solutions (8), (9), (10) and (11), as well as

V ar[pt] = (C2
t +

B2

1−G2
)τ−1

0 +D2
t τ
−1
x .

Of course, in the model, At, Ct and Dt take on different values at different dates t. So we need to choose

a theoretical date t at which to calibrate. Since our model requires solution by backwards induction, we

choose the last date T . Given t+ 1 parameters, we can solve the model and find t parameters. Therefore,

we use the empirical price coefficient estimates to tell us the model coefficients at the end of our simulation,

denoted AT , CT and DT . We use steady state solutions of the model to map these estimated coefficients

back into model parameters.10 Note that B is constant because it is a simple function of fixed parameters.

Table 1: Parameters

G µ τ−1
0 τ−1

x χx r ρ

0.937 0.415 0.245 0.551 0.686 1.03 0.10

The first five parameters in Table 1 are calibrated to match the model and data values of the five

equations above. This is an exactly identified system. The riskless rate is set to match a 3% net return.

The last parameter is risk aversion. Risk aversion clearly matters for the level of the risky asset price. But

it is tough to identify. The reason for the difficulty is that if we change risk aversion, and then re-calibrate

the mean, persistence and variance parameters to match price coefficients and variance at the new risk

aversion level, the predictions of the model are remarkably stable. Roughly, doubling variance and halving

risk aversion mostly just redefines units of risk. Therefore, we use the risk aversion ρ = 0.10 in what follows

and explore other values to show that the results do not depend on this choice. This ρ implies a relative

risk aversion that is 0.65, not particularly high. In the appendix, we show an example of an alternative

parameterization with even lower risk aversion, show how the other parameters change, and show that it

yields similar results. We explore variations in other parameters as well.

Computation The one thing that changes at each date is the total information capacity Kt. We start

the routine with KT = 10.11 In each period prior to that, we reduce Kt by 0.02. So if the last period is

denoted T , then KT−1 = 9.99 and KT−2 = 9.98. We simulate the model in this fashion for 500 periods.

We solve the model by choosing a final date T and using our estimated price function parameters to

initialize the backwards induction algorithm. We use the AT , BT , CT and DT from the data and our

10Steady state solutions means solutions to a model where we believe that forever after that information would remain
constant Kt+1 = Kt and price would have stable coefficients, At+1 = At, Ct+1 = Ct and Dt+1 = Dt.

11We checked the robustness of alternative KT values and found that it makes no difference to our conclusions. For example,
when we used KT = 5, we found that the results look as if we’d simulated the results with KT = 10 and truncated the time
series plot where Kt reaches 5. The other calibrated parameters are identical when we vary K, except for χx, which moves
approximately proportionately with KT . For example, for Kt = 5, χx falls by about one-half, from 0.68 to 0.31.
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calibrated parameters to solve backwards for At, Bt, Ct and Dt, t = T − 1, · · · , 1. Knowing time-t price

coefficients, we can solve for optimal information choices Ωft and Ωxt. Then, we use the time-t solutions

and our model solution to get t− 1 information choices and price coefficients, and so forth. At each date,

we are using a function minimization routine that finds the zeros of a non-linear equation in Ct
Dt

.

Multiple Equilibria The non-linear equation in Ct
Dt

that characterizes the solution can have multiple

solutions. It turns out, that for the parameter values we explore, this equation has only one real root.

4 Numerical Results

A common concern is that, as financial technology improves, the extraction of information from order flow

will crowd out original research, and in so doing, will reduce the informativeness of market prices. On

the flip side, if technology allows investors to identify uninformed trades and take the other side of those

trades, such activity is thought to improve market liquidity. While both arguments have some grain of

truth in them, countervailing equilibrium effects mean that neither conjecture is correct.

We begin by revisiting the forces that make order flow information more valuable over time, this time,

assigning a magnitude to the effect. Then, we explore why the change from information production to

extraction does not harm price informativeness. Next, we use our numerical model to tease out the reasons

for stagnating market liquidity, despite a surge in activity that looks like liquidity provision. Finally, we

ask whether the model contradicts long-run trend in equity premia and explore the possibility of biased

technological change.

4.1 Transition from Fundamental to Order Flow Analysis

Figure 1: Evolution of fundamental analysis and order flow analysis. What is driving the change over time is an increase
in total information processing K. Fundamental information is the choice variable Ωft, scaled by fundamental variance τ−1

0 .
Order flow information is the part of Ωxt that the investor can choose, Ω̂xt = Ωxt − τh, scaled by non-fundamental order flow
variance τ−1

x .
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Figure 1 shows that order flow analysis is scarce initially. Consistent with Result 1, we see that when
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information processing ability is limited, almost all of that ability is allocated to processing fundamental

information. But once fundamental information is sufficiently abundant, order-flow analysis takes off.

Not only does order flow processing surge, but it increases by so much that, the amount of fundamental

information declines, even though the total ability to process information has improved. Once it takes off,

order flow trading quickly comes to dominate fundamentals-based trading.

Exploring alternative parameter values reveals that this result is quite robust. Ωxt consistently surpasses

Ωft once Ct/Dt crosses
√
χx. There are parameters for which Ct/Dt never exceeds

√
χx, but even in those

cases, Ωxt increases faster, while Ωft is concave. Thus, over time, the growth of fundamental analysis is

slowing down.

Figure 2: Hedge Funds are Shifting Away from Fundamental Analysis.
Source: Lipper TASS. Data is monthly from 1994-2015. Database reports on 17,534 live and defunct funds.
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Related trends in data The shift from fundamental to order flow analysis in our model should show

up empirically as a change in investment strategies. Indeed, there is some evidence that funds have shifted

their strategy over time, in a way that is plausibly consistent with our predictions. In the TASS database,

many hedge funds report that their fund has a “fundamental”, “mixture,” or “quantitative” strategy.

Figure 2 illustrates the evolutions of assets under management, by fund, and in total, for these different

styles of funds. While other trends are also apparent, one clear trend is that fundamental analysis is

waning in recent years, in favor of strategies based on market data. This shift in reported style suggests a

transformation in the way information technologies are used in finance.

Another quite different indicator that points to the growing importance of order flow data comes from

the frequency of web searches. Google trends reports the frequency of searches that involve specific search
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terms. Figure 3 shows that from 2004 to 2016, the frequency of searches for information about “order

flow” has risen roughly 3-fold. This is not an overall increase in attention to asset market information.

In contrast, the frequency of searches for information about “fundamental analysis” fell by about one-half

over the same time period.

Figure 3: Google trends: Fraction of Google searches involving “order flow” or “fundamental analysis.” Source:
Google trends. Data is the weekly fraction of searches involving these search terms. Series is normalized to make the highest
data point equal to 100.
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Figure 4: Algorithmic Trading Growth 2001-2006. Source: Hendershott, Jones, and Menkveld (2011). Their proxy
for algorithmic trading is the dollar volume of trade per electronic message. The rise is more pronounced for largest market
cap (Q1) stocks. Q1-Q5 are the 5 quintiles of NYSE stocks, ordered by size (market capitalization).

Much of the trade against order flow takes the form of algorithmic trading. This happens for a couple

of reasons. First, while firm fundamentals are slow-moving, order flow can reverse rapidly. Therefore,

mechanisms that allow traders to trade quickly are more valuable for fast-moving order flow based strate-

gies. Second, while fundamental information is more likely to be textual, partly qualitative, and varied in

nature, order flow is more consistently data-oriented and therefore more amenable to algorithmic analysis.

Hendershott, Jones, and Menkveld (2011) measure algorithmic trading and find that it has increased, but

it increased most rapidly during the period between the start of 2001 and the end of 2005. During this

six-year window, average trade size fell and algorithmic trading increased, about seven-fold (Figure 4).
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This rapid transition is another feature of the data our model can explain.

4.2 Price Informativeness

Price informativeness measures of financial market efficiency in the sense that efficient prices aggregate

all the information known to market participants about future firm fundamentals. Informative prices are

important because they can inform firm managers’ investment decisions and make equity compensation a

useful incentive tool by aligning firm value and equity compensation. Finally, informative prices allocate

new capital to the most productive firms.

Prices are informative if a change in future dividends is reflected in the price. Our equilibrium price

solution (7) reveals that this marginal price impact dpt/dỹt is Ct. As the productivity of financial analysis

rises, and more information is acquired and processed, the informativeness of the price (Ct) rises. Both

fundamental analysis and order flow analysis have the same objective, to help investors better discern the

true value of the asset. Thus both raise price informativeness.

The solid line labeled Ct in Figure 5 confirms that as financial analysis becomes more productive,

informativeness rises. The effect of a one-unit change in the dividend innovation, which is about 2 standard

deviations, increases the price by between 0 and 8 units. Since the average price level is about 80, this 2

standard deviation shock to dividends produces a negligible price change for very low levels of technology

and a 10% price rise when financial technology becomes more advanced.

Figure 5: Price Informativeness (Ct) Rises and Price Impact of Trades (|Dt|) Stagnates. Ct is the impact
of future dividend innovations on price. (|Dt|) is the price impact of a one-unit uninformed trade. This illiquidity measure
is flat, despite the rise of market-making (order-flow) trades. (Ct/Dt)

2 tells us the marginal value of order-flow information,
relative to fundamental information. The x-axis is time.
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Related trends in data Bai, Philippon, and Savov (2013) measure a long-run rise in equity price

informativeness. They measure price informativeness using a coefficient from a regression of future earnings

(at 1-year, 3-year and 5-year horizons) on the current ratio of market value to book value. Over the period

1960-2010, they find a 60% rise in three-year price informativeness and an 80% rise in five year price

informativeness, both of which are highly statistically significant.
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Our claim is not that our model explains all of this phenomenon, or that we can match the timing

or magnitude of the increase. We only wish to suggest that our predictions are not at odds with other

long-run trends in financial markets. This is a model with only one risky asset, with no frictions, no habits

or low-frequency risks. It is deliberately kept simple, in order to explore the workings of a new mechanism

governing long run shifts in trading strategies. In reality, there are many assets and many sectors, which

each go through the transition from fundamental to order flow research at different times. The rise in

financial technology does not prompt more analysis of all assets at all times. Because of complementarity

in order flow analysis, more information drives up the price of one or a few assets, leaving others unstudied.

Thus, the average rise in price informativeness is overstated by the 1-asset model.12

4.3 Price Impact of Trades (Liquidity)

Market liquidity is an important object of study in finance (Hasbrouck, 2007). Liquidity is particularly

important in the debate on financial technology because it is one of the most common arguments in defense

of order flow based trading strategies. The claim is that traders who identify uninformed order flow and

offer to take the other side of those orders provide market liquidity.

A common metric of market liquidity is the sensitivity of an asset’s price to a buy or sell order. If a

buy order causes a large increase in the asset price and conversely a sell order causes a large fall, then

buying and selling this asset is costly. In such a market, trading strategies that require frequent or large

trades would have a harder time generating a profit. In our model, price impact is the impact of a one-

unit hedging trade (dpt/d(−x̃t)). We consider a hedging trade because the alternative is considering an

information-based trade. The impact of an information-based trade would reflect the fundamental (future

dividend) which must have moved to change the information. That question of how much a change in

the fundamental changes price is one we already explored. That is price informativeness. The linear price

solution (7) reveals that price impact is dpt/d(−x̃t) = −Dt.

Looking at the dashed line in Figure 5, we see that the price impact of hedging trades, −Dt, rises in the

early periods when only Ωft is increasing and then declines as information becomes more abundant. But

what is striking about this result is that the changes are quite small. A hedging trade that is the size of 1%

of all outstanding asset shares would increase the price by 0.05− 0.06 units. Since the average price is 80,

this amounts to a 0.6%− 0.7% (60 - 70 basis point) increase in the price. Exploring different parameters,

we see that the dynamics of market liquidity can vary. But what is consistent is that the changes are small

compared to the change in price informativeness.

Flat liquidity is a result of two competing forces. Recall from Section 2 that the liquidity of a risky asset

is determined by the riskiness (uncertainty) of its payoff. Purchases or sales of assets with more uncertain

payoffs have larger price effects. Result 4 tells us that more information today reduces uncertainty about

dividends d̃t, which in turn reduces the price impact of non-fundamental trades, improving liquidity. But

Result 5 tells us that if information technology is advanced tomorrow, then tomorrow’s shocks will have a

large effect on tomorrow’s price, which makes today’s payoff risky and today’s liquidity low. The reason

liquidity changes so little is that the static force (r/(r − G))V ar[ỹt|Iit](Ct/Dt) and the dynamic force

12Our framework could come closer to the data with multiple assets. What we cannot do with multiple assets is characterize
the long run growth path that is central to this paper’s results. Because of the complementarity in order flow processing,
many such growth paths may exist. Therefore, we stick with our transparent one-asset model, with clear predictions, at the
expense of being able only to make qualitative comparisons with data.
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Figure 6: Liquidity Fragility Grows. Figure plots |Dt| where there are three one-time, zero-probability, unanticipated

uncertainty shocks. Each shock is a change in expected precision τ0,t+1 to 1/2 · τ0, which is then not realized at t+ 1.
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−ρV ar[pt+1 + d̃t|Iit] are nearly cancelling each other out.13

Related trends in data Many empirical researchers have found little in the way of long-run trends in

market liquidity. Studying liquidity over the last century, Jones (2002) finds lots of cyclical variation, but

little trend in bid-ask spreads. Recent work by Koijen and Yogo (2016) however, measures a large fall in

the price impact of institutional traders. This may not be inconsistent with our results for two reasons.

First, our liquidity measure is the price impact of a non-informational trade. That is not the same as the

price impact of an institutional trader who will often be trading on information. Second, in many cases,

the way institutional traders have reduced their price impact is to find uninformed order flow to trade

against. To the extent that reduced price impact reflects more market making and less direct trading on

information, this reduced impact is consistent with our long-run order flow analysis trend.

Fragile Liquidity Although liquidity remains mostly flat as technology improves, liquidity becomes

more fragile, meaning that it is more sensitive to changes in model parameters. For example, suppose

agents face a one-time increase in uncertainty. Specifically, investors find out that the variance of next

period’s dividend innovations τ−1
0,t+1 will be doubled, only for one period, and never again. The actual high

variance shock is never realized, making this a pure belief shock. Figure 6 shows that when information

technology is poor, uncertainty has little effect on liquidity. But when information technology is very

productive, the same change in uncertainty results in a dramatic fall in market liquidity.

Liquidity is fragile in response to other shocks as well. A similar exercise where the cost of order flow

processing (χx) surges for one period produces similar outcomes. See appendix for detailed results.

4.4 Trend in the Equity Premium

Our focus is on how technological change affects trading strategies and market efficiency. But it is useful to

understand whether this mechanism is consistent or at odds with long-run trends in the equity premium.

The idea that information reduces risk, which lowers the return on risky assets is an old one. However,

exploring the magnitude of that decline in our setting offers some insight about the magnitude of the

13A version of this effect can arise in a dynamic model with only fundamental analysis (see Cai (2016b)).
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information trend in the model. If the model’s equity premium needed to fall by some outrageous amount,

in order to see any effect on price informativeness or liquidity, it would diminish the relevance of our

mechanism.

Figure 7: Technological Progress Reduces the Risk Premium Modestly. The risk premium is 1 + d̄
A+Bd̄

− r,
where d̄ = µ/(1−G) is the average dividend payment. The x-axis is time.
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Instead, Figure 7 shows that the decline in the risk premium predicted by the model is quite modest.

The risk premium falls from a maximum of around 6% to 5% by the end. Of course, replicating the level

of the risk premium is not a success. That is nearly a by-product of calibrating the model to match the

price regression coefficients in (7). This calibration approach implies that the model matches the price-

dividend ratio, and by extension, comes close to matching the equity premium. However, the decline in the

premium is related the growth in information processing. It tells us that the amount of information needed

to explain the declining equity premium is consistent with the amount needed to explain growing price

informativeness and flat liquidity. This is an over-identifying moment that lends support to our modeling

and calibration approach.

Related trends in data Jones (2002) documents that the equity premium is 1% lower in the 2000’s

than it was in the early 1900’s. Our results are also a similar magnitude to those of Lettau, Ludvigson, and

Wachter (2008) who report that the price-dividend ratio rose from 3 to 4 in the late 20th century. They

estimate a structural asset pricing model with regime switches in volatility and conclude that, because of

the fall in macro risk in the early 1990’s, the equity premium shifted down by 1.5%.

4.5 Unbalanced technological change

We have modeled technological progress that increases the potential precision of fundamental or order

flow information equally. But it is quite possible that technological progress has not been balanced. The

concern is that the productivity of order flow analysis has grown faster than fundamental analysis, because

fundamental information tends to be more textual or qualitative. To explore this possibility, we take an

extreme view of the imbalance and consider a world where the only efficiency growth is in order flow data

processing. The truth is likely somewhere between this unbalanced growth model and the balanced growth

model we analyzed before.

When only order flow data processing improves, a few things change (Figure 8). First, fundamental

information analysis falls monotonically, rather than rising and then falling. This is simply because when
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order flow analysis becomes more productive, it makes fundamental information processing strictly less

attractive. Also, price informativeness (C/|D|) is mostly flat. In contrast, with balanced growth, it was

steadily increasing. The trajectory of C/|D| is flatter because, while both types of information processing

make prices clearer signals, fundamental information processing improves signal quality by more.

What is surprising is that C/|D| does not fall. Even C alone does not fall. Even though the discovery

of new information about future dividends Ωft falls precipitously, dividend information is still more heavily

weighted (C) and more clearly reflected (C/|D|) in prices. Order flow traders are adept at inferring what

others know from prices. This inference makes them well-informed about ỹt, albeit indirectly. If many

traders have precise knowledge of order flow, the average trader ends up being well-informed about ỹt, even

if less research on ỹt was done by the market. The net result of less research but more learning through

prices is an increase in total information. This shows up in prices as a higher price impact C of changes in

dividend innovations.

In short, our main conclusions are unaltered. Liquidity is still flat. Market efficiency does not plummet,

by either measure, even through order flow analysis crowds out fundamental analysis. The unbalanced

change simply affects the rate at which market efficiency evolves.

Figure 8: Unbalanced Technological Progress: χx falls. Information choices (left) and market efficiency (right) with
progress only in order flow analysis. Ct is the impact of future dividend innovations on price. (−Dt) is the price impact of a
one-unit uninformed trade. (Ct/Dt)

2 tells us the marginal rate of transformation of order-flow and fundamental information.
The x-axis is time. This version of the model reduces χx over time, without changing K.
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5 Real Economic Effects

We’re argued that the growth in financial technology has transformed the financial sector and affected

financial market efficiency in unexpected ways. But why should we care about financial market efficiency?

What are the consequences for real economic activity? In this section, we provide a sketch of two chan-

nels through which changes in informativeness and price impact can alter the efficiency of real business

investment.
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5.1 Manager incentive effects

The key friction in the first spillover model is that the manager’s effort choice is unobserved by equity

investors. The manager exerts costly effort only because he is compensated with equity. The manager only

has an incentive to exert effort if the value of his equity is responsive to his effort. Because of this, the

efficiency of the manager’s effort choice depends on asset price informativeness.

Of course, this friction reflects the fact that the wage is not an unconstrained optimal contract. The

optimal compensation for the manager is to pay him for effort directly or make him hold all equity in the

firm. We do not model the reasons why this contract is not feasible because it would distract from our main

point. Our stylized sketch of a model is designed to show how commonly-used compensation contracts

that tie wages to firm equity prices (e.g., options packages) also tie price informativeness to optimal effort.

Time is discrete and infinite. There is a single firm whose profits d̃t depend on a firm manager’s labor

choice lt. Specifically, d̃t = g(lt) + ỹt, where g is increasing and concave and ỹt ∼ N(0, τ−1
0 ) is unknown at

t. Because effort is unobserved, the manager’s pay wt is tied to the equity price pt of the firm: wt = w̄+pt.

However, effort is costly. We normalize the units of effort so that a unit of effort corresponds to a unit of

utility cost. Insider trading laws prevent the manager from participating in the equity market. Thus the

manager’s objective is

Um(lt) = w̄ + pt − lt (18)

The firm pays out all its profits as dividends each period to its shareholders. Firm equity purchased at

time t is a claim to the present discounted stream of future profits {d̃t, d̃t+1 . . .}.
The preferences, endowments, budget constraint and information choice sets of investors are the same

as before. Order flow signals are defined as before. Fundamental analysis now generates signals of the

form ηfit = g(lt) + ỹt + ε̃fit, where the signal noise is ε̃fit ∼ N(0,Ωft). Investors choose the precision Ωft

of this signal, as well as their order flow signal Ωxt. Equilibrium is defined as before, with the additional

condition that the manager effort decision maximizes (18).

Solution As before, the asset market equilibrium has a linear equilibrium price:

pt = At + Ct(g(lt) + ỹt) +Dtx̃t (19)

Notice that since dividends are not persistent, dt−1 is no longer relevant for the t price

The firm manager chooses his effort to maximize (18). The first order condition is Ctg
′(lt) = 1, which

yields an equilibrium effort level lt = (g′)−1(1/Ct). Notice that the socially optimal level would set the

marginal utility cost of effort equal to the marginal product g′(lt) = 1. When Ct is below one, managers

under-provide effort, relative to the social optimum because their stock compensation moves less than

one-to-one with the true value of their firm.

Similar to before, the equilibrium level of price informativeness C is

Ct =
1

r
(1− τ0V ar[g(lt) + ỹt|Iit]) . (20)

Thus, as more information is analyzed, dividend uncertainty (V ar[g(lt)+ỹt|Iit]) falls, Ct rises and managers

are better incentivized to exert optimal effort. While the model is stylized and the solution presented here
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is only a sketch, it is designed to clarify why trends in financial analysis matter for the real economy.

The most obvious limitation of the model is its single asset. One might wonder whether the effect would

disappear if the asset’s return was largely determined by aggregate risk, which is out of the manager’s

control. However, if there were many assets, one would want to rewrite the compensation contract so that

the manager gets rewarded for high firm-specific returns. This would look like benchmarked performance

pay. If the contract focused on firm-specific performance, the resulting model would look similar to the

single asset case here.

In short, this model suggests that trends in the financial sector are all positive for real economic efficiency

because more analysis of either type makes price more informative and thereby improves incentives.

5.2 Equity Issuance Cost

The second real spillover highlights a downside of financial technology growth. More information technology

creates future information risk, which raises the risk of holding equity, making capital more costly for firms.

Suppose that a firm has a profitable investment opportunity and wants to issue new equity to raise

capital for that investment. For every dollar of capital invested, the firm can produce an infinite stream of

dividends dt. Dividends follow the same stochastic process as described in the original model. However,

the firm needs funds to invest and raises those finds by issuing equity. The firm chooses a number of shares

s̄ to maximize the total revenue raised (maximize output). Each share sells at price p, which is determined

by the investment market equilibrium, minus an investment or issuance cost:

E[s̄p− c(s̄)|If ]

The firm makes its choice conditional on the same prior information that all the investors have. But does

not condition on p. It does not take price as given. Rather, the firm chooses s̄, taking into account its

impact on the equilibrium price. The change in issuance is permanent and unanticipated. The rest of the

model is the same as the dynamic model in section 1.

Solution Given the new asset supply s̄, the asset market solution and information choice solution to the

problem are the same as before. But how the firm chooses s̄ depends on how new issuance affects the asset

price. When the firm issues new equity, all asset market participants are aware that new shares are coming

online. Equity issuance permanently changes the known supply of the asset s̄. Supply s̄ enters the asset

price in only one place in the equilibrium pricing formula, through At. Recall from 8 that

At =
1

r

[
At+1 +

rµ

r −G
− ρV ar[pt+1 + d̃t|I]s̄

]
. (21)

Taking At+1 as given for the moment, dAt/ds̄ = −ρV ar[pt+1 + d̃t|I]/r. In other words, the impact of a

one-period change in asset supply depends on the conditional variance (the uncertainty about) the future

asset payoff, pt+1 + d̃t. Recall from the discussion of price impact of trades in Section 4.3 that in a dynamic

model, more information analysis reduces dividend uncertainty but can result in more uncertainty about

future prices. These two effects largely offset each other.

Figure 9 plots the modest increase and decrease in payoff risk from these competing effects on the price

impact of issuing new equity. To give the units of the price impact some meaning, the issuance cost is
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Figure 9: Payoff Risk and The Cost of Raising Capital. The left panel shows payoff risk, which is V ar[pt+1 + d̃t|It].
The right panel shows the absolute price impact of a one-unit change in issuance, normalized by the average level of dividends.
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scaled by the average dividend payment so that it can be interpreted as the change in the price-dividend

ratio from a one-unit change in equity supply. Thus a one-unit increase in issuance reduces the asset price

by an amount equal to 4 months of dividends, on average.

We learn that technological progress in information analysis – of either type – initially makes asset

payoffs slightly more uncertain, which makes it more costly to issue new equity. When we now take into

account that the increase in asset supply is permanent, the effect of issuance is amplified, relative to the

one-period (fixed At+1) case. But when analysis becomes sufficiently productive, issuance costs decrease

again, as the risk-reducing power of more precise information dominates.

Again, a key limitation of the model is its single asset. With multiple assets, one firm’s issuance is a

tiny change in the aggregate risk supply. But the change in the supply of firm-specific risk looks similar to

this problem. If one were to evaluate this mechanism quantitatively, the magnitude would depend on how

much the newly issued equity loads on idiosyncratic risk versus aggregate risk.

6 Conclusion

Technological progress is the driving force behind most models of long-run economic growth. Yet it is

surprisingly absent in models of the financial economy. We explore the consequences of a simple deter-

ministic increase in the productivity of information processing in the financial sector. While studies have

documented an increase in price informativeness (Bai, Philippon, and Savov, 2013), we know of no theories

that explore the consequences of such changes on market equilibrium or efficiency.

We find that when the financial sector becomes more efficient at processing information, it changes the

incentives to acquire information about future dividends (fundamentals) versus order flow (non fundamental

shocks to price). Thus a simple rise in information processing productivity can explain a transformation

of financial analysis from a sector that primarily investigates the fundamental profitability of firms to a

sector that does a little fundamental analysis but mostly concentrates on acquiring and processing client

order flow. This is consistent with suggestive evidence that the nature of financial analysis and associated

trading strategies have changed.
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Many feared that this technological transformation was harming market efficiency, while others argued

that markets are more liquid/efficient than ever before. The concern was that the decline of fundamental

analysis would compromise price informativeness. We do not find that to be the case. Although funda-

mental analysis declines, price informativeness continues to rise. The reason is that even if many traders

are extracting others’ information, this still makes the average trader better informed and the price more

informative. But the benefits of the technological transformation may also be overstated. The promise

that traders standing ready to take the other side of uninformed traders would improve market liquidity

is only half the story. What this narrative misses is that more informed traders in the future make prices

react more strongly to new information, which makes future asset values riskier. This increase in risk

makes traders move market prices by more and pushes market liquidity back down. The net effect could

go either way and is likely to be small.

Of course, there are many other features one might want to add to this model to speak to other

related trends in financial markets. One might make fundamental changes more persistent than order

flow innovations so that different styles of trade were associated with different trading volumes. Another

possibility is to explore regions in this model where the equilibrium does not exist and use the non-existence

as the basis for a theory of market breakdowns or freezes. Another extension might ask where order flow

signals come from. In practice, people observe order flow because they intermediate trades. Thus, the value

of the order flow information might form the basis for a new theory of intermediation. In such a world,

more trading might well generate more information for intermediaries and faster or stronger responses of

markets to changes in market conditions. Finally, one might regard this theory as a prescriptive theory

of optimal investment, compare it to investment practice, and compute expected losses from sub-optimal

information and portfolio choices. For example, a common practice now is to blend fundamental and

order flow trading by first selecting good fundamental investment opportunities and then using order flow

information to time the trade. One could construct such a strategy in this model, compare it to the optimal

blend of trading strategies, and see if the optimal strategy performs better on market data.

While this project with its one simple driving force leaves many question unanswered, it also provides

a tractable foundation on which to build, to continue exploring how and why asset markets are evolving,

as financial technology improves.
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A Model Solution Details

A.1 Bayesian Updating

To form the conditional expectation, E[fit|Iit], we need to use Bayes’ law. But first, we need to know what signal investors

extract from price, given their observed endowment exposure ht and their order-flow signal ηx. We can rearrange the the linear

price equation (7) to write a function of the price is the dividend innovation plus mean zero noise: ηpit = ỹt + (Dt/Ct)(x̃t −
E[x̃t|ηxit]), where the price signal and the signal precision are

ηpit ≡ (pt −At −Bdt−1 −Dt E[x|ηxit])/Ct (22)

Ωpt ≡ (Ct/Dt)
2(τx + Ωxt) (23)

For the simple case of an investor who learned nothing about order flow (E[x] = 0) the information contained in prices is

(pt−At−Bdt)/Ct, which is equal to ỹt +Dt/Ctx̃t. Since x̃t is a mean-zero random variable, this is an unbiased signal of the

asset dividend innovation ỹt. The variance of the signal noise is V ar[D/Cx] = (D/C)2τ−1
x . The price signal precision Ωpt is

the inverse of this variance.

But conditional on hit and ηxit, x̃t is typically not a mean-zero random variable. Instead, investors use Bayes’ law to

combine their prior that x̃t = 0, with precision τx with their endowment and order flow signals: hit with precision τh and ηxit

with precision Ωxit. The posterior mean and variance are

E[x|hit, ηxit] =
τhhit + (Ωxit − τh)ηxit

τx + Ωxit
(24)

V [x|hit, ηxit] =
1

τx + Ωxit
(25)

Since that is equal to ỹt + Dt/Ct(x̃t − E[x̃t|ηxit]), the variance of price signal noise is (Dt/Ct)
2V ar[x̃t|ηxit]. In other words,

the precision of the price signal for agent i (and therefore for every agent since we are looking at symmetric information choice

equilibria) is Ωpit ≡ (Ct/Dt)
2(τx + Ωxit).

Now, we can use Bayes’ law for normal variables again to form beliefs about the asset payoff. We combine the prior µ,

the price/order-flow information ηpit, and the fundamental signal ηfit into a posterior mean and variance:

E[ỹt|Iit] = (τ0 + Ωpit + Ωfit)
−1 (τ0µ+ Ωpitηpit + Ωfitηfit) (26)

V [ỹt|Iit] = (τ0 + Ωpit + Ωfit)
−1 (27)

Average expectations and precisions: Next, we integrate over investors i to get the average conditional expectations. Begin

by considering average price information. The price informativeness is Ωpit ≡ (Ct/Dt)
2(τx + Ωxit). In principle, this can vary

across investors. But since all are ex-ante identical, they make identical information decisions. Thus, Ωpit = Ωpt for all

investors i. Since this precision is identical for all investors, we drop the i subscript in what follows. But the realized price

signal still differs because signal realizations are heterogeneous. Since the signal precisions are the same for all agents, we

can just integrate over signals to get the average signal:
∫
ηpitdi = (1/Ct)(pt −At −Bdt−1)− (Dt/Ct)V ar(x̃t|I)Ωxtx̃t. Since

Ω−1
pt = (D/C)2V ar(x|I), we can rewrite this as∫

ηpidi =
1

C
(pt −At −Bdt−1)− Ct

Dt
Ω−1
pt Ωxtx̃t (28)

Next, let’s define some conditional variance / precision terms that simplify notation. The first term, Ωt, is the precision

of future price plus dividend (the asset payoff). It comes from taking the variance of the pricing equation (7). It turns out

that the variance Ω−1
t can be decomposed into a sum of two terms. The first, V̂ , is the variance of the dividend innovation.

This variance depends on information choices Ωft and Ωxt. The other term Zt depends on future information choices through

t+ 1 price coefficients.

V̂t ≡ V ar(ỹt|I) = (τ0 + Ωf + Ωpt)
−1 = (τ0 + Ωf + (C/D)2(τx + Ωxt))

−1 (29)

Ω−1
t ≡ V ar[pt+1 + d̃t|I] = C2

t+1τ
−1
0 +D2

t+1τ
−1
x + (1 +B)2V̂ (30)
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Zt =
ρ

r
(r −G)(C2

t+1τ
−1
0 +D2

t+1τ
−1
x ) (31)

Ω−1
t =

r

ρ(r −G)
Zt + (

r

r −G )2V̂ (32)

The last equation (32) shows the relationship between Ω, V̂ and Zt. This decomposition is helpful because we will repeatedly

take derivatives where we take future choices (Zt) as given and vary current information choices (V̂ ).

Next, we can compute the average expectations∫
E[ỹt|Iit] di = V̂t

[
Ωftỹt + Ωpt

(
1

C
(pt −At −Bdt−1)− Ct

Dt
Ω−1
pt Ωxtx̃t

)]
(33)

= V̂

[
Ωftỹt + Ωpt

1

C
(pt −At −Bdt−1)− Ct

Dt
Ωxtx̃t

]
(34)

∫
E[pt+1 + d̃t|Iit]

di = At + (1 +B)E[d̃t|Iit] = At + (1 +B) (µ+Gdt−1 + E[ỹt|Iit]) . (35)

A.2 Solving for equilibrium prices

The new price conjecture is

pt = At +Btdt + Ctỹt +Dtx̃t (36)

where the sequence of pricing coefficients is known at every date. The signals ηfit and ηxit are the same as before, except that

their precisions Ωft and Ωxt may change over time if that is the solution to the information choice problem.

The conditional expectation and variance of ỹt (26) and (27) are the same, except that the Ωpt term gets a t subscript now

because Ωpt ≡ (Ct/Dt)
2(τx + Ωxt). Likewise the mean and variance of x̃t (24) and (25) are the same with a time-subscripted

Ωxt. Thus, the average signals are the same with t-subscripts:∫
ηpidi =

1

Ct
(pt −At −Btdt)−

Dt
Ct
V ar(x|I)Ωxtx̃t (37)

Since Ω−1
pt = (Dt/Ct)

2V ar(x|I), we can rewrite this as∫
ηpidi =

1

Ct
(pt −At −Btdt)−

Ct
Dt

Ω−1
pt Ωxtx̃t (38)

Solving for non-stationary equilibrium prices To solve for equilibrium prices, start from the portfolio first-order

condition for investors (6) and equate total demand with total supply. The total risky asset demand (excluding hedging

shocks) is ∫
qitdi =

1

ρ
Ωt

[
At+1 + (1 +Bt+1)

(
µ+Gdt + V̂t

[
Ωftỹt + Ωpt

1

Ct
(pt −At −Btdt)−

Ct
Dt

Ωxtx̃t

])
− ptr

]
. (39)

The market clearing condition equates the expression above to the residual asset supply x̄+ x̃t. The model assumes the

asset supply is 1. We use the notation x̄ here for more generality because then we can apply the result to the model with

issuance costs where asset supply is a choice variable. Rearranging the market clearing condition (just multiplying through

by ρΩ−1
t and bringing p terms to the left) yields

[r − (1 +Bt+1)V̂tΩpt
1

Ct
]pt = −ρΩ−1

t (x̄+ x̃t) +At+1 (40)

+(1 +Bt+1)(µ+Gdt) + (1 +Bt+1)V̂tΩftỹt − (1 +Bt+1)V̂tΩpt
1

Ct
(At +Btdt)− (1 +Bt+1)

Ct
Dt

V̂tΩxtx̃t

Solving for p and matching coefficients yields

At = [r − (1 +Bt+1)V̂tΩpt
1

Ct
]−1[At+1 + (1 +Bt+1)µ− ρΩ−1

t x̄− (1 +Bt+1)V̂tΩpt
1

Ct
At] (41)

Multiplying both sides by the inverse term:

rAt − (1 +Bt+1)V̂tΩpt
1

Ct
At = At+1 + (1 +Bt+1)µ− ρΩ−1

t x̄− (1 +Bt+1)V̂tΩpt
1

Ct
At (42)
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and cancelling the 1 +B term on both sides leaves

At =
1

r

[
At+1 + (1 +Bt+1)µ− ρΩ−1

t x̄
]

(43)

Matching coefficients on dt yields:

Bt = [r − (1 +Bt+1)V̂tΩpt
1

Ct
]−1

[
(1 +Bt+1)G− (1 +Bt+1)V̂tΩpt

Bt
Ct

]
(44)

Multiplying on both sides by the inverse term

rBt − (1 +Bt+1)V̂tΩpt
1

Ct
Bt = (1 +Bt+1)G− (1 +Bt+1)V̂tΩpt

Bt
Ct

(45)

and cancelling the last term on both sides yields

Bt =
1

r
(1 +Bt+1)G (46)

As long as r and G don’t vary over time, it seems that a stationary solution for B at least exists. That stationary solution

would be (9).

Next, collecting all the terms in ỹt

Ct = [r − (1 +Bt+1)V̂tΩpt
1

Ct
]−1(1 +Bt+1)V̂tΩft (47)

multiplying both sides by the first term inverse yields rCt − (1 +Bt+1)V̂tΩpt = (1 +Bt+1)V̂tΩft. Then dividing through by r

and collecting terms in V̂ (1 +Bt+1) yields Ct = (1/r)(1 +Bt+1)V̂t(Ωpt + Ωft). Next, using the fact that V̂ −1 = τ0 + Ωpt + Ωf ,

we get Ct = 1/r(1 + Bt+1)(1− τ0V̂t). Of course the V̂ term has Ct and Dt in it. If we use the stationary solution for B (if r

and G don’t vary) then we can simplify to get

Ct =
1

r −G (1− τ0V̂t). (48)

Lemma 1 If Ωft > 0, then Ct > 0.

Proof: Using equation (48), it suffices to show that 1/(r −G) > 0 and (1− τ0V̂t) > 0. From the setup, we assumed that

r > 1 and G < 1. By transitivity, r > G and r − G > 0. For the second term, we need to prove equivalently that τ0V̂t < 1

and thus that τ0 < V̂ −1
t . Recall from (29) that V̂ −1 = τ0 + Ωft + Ωpt. Since Ωft and Ωpt are defined as precisions, they must

be non-negative. Furthermore, we supposed that Ωft > 0. Thus, τ0 < V̂ −1
t , which completes the proof. �

Finally, we collect terms in x̃t.

Dt = [r − (1 +Bt+1)V̂tΩpt
1

Ct
]−1[−ρΩ−1

t − (1 +Bt+1)
Ct
Dt

V̂tΩxt] (49)

multiply by the inverse term, and the use Ωpt = (Ct/Dt)
2(τx + Ωxt) to get

rDt − (1 +Bt+1)V̂t
Ct
Dt

(τx + Ωxt) = −ρΩ−1
t − (1 +Bt+1)

Ct
Dt

V̂tΩxt (50)

Then, adding (1 +B)C/DV̂ Ωx to both sides, and substituting in B (stationary solution), we get

Dt −
1

r −GV̂tτx
Ct
Dt

= −ρ
r

Ω−1
t (51)

Of course, Dt still shows up quadratically, and also in V̂t. The future coefficient values Ct+1 and Dt+1 show up in Ωt.

Lemma 2 Dt < 0

Proof: Start from equation (53) in the LongRunEvolution Nov2016, substitute in (29) but does not set Ωf = 0. Since we will

often treat the signal-to-noise ratio in prices as a single variable, we define

ξ ≡ Ct
Dt

(52)

Also let: α ≡ ρr
r−G . This gives the general version of (56):
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ξ3(Ztτx + ZtΩx) + ξ2(Ωx) + ξ(α+ Ztτ0 + ZtΩf ) + Ωf = 0 (53)

Then, use the budget constraint to express the first order conditions as (15). One can solve for both Ωx and Ωf in terms of ξ:

Ωf =
( K

χf
(
1 +

χf

χx
ξ4
)) 1

2
(54)

Ωx =
(K
χx

(
1− 1

1 +
χf

χx
ξ4

)) 1
2

=
( K

χf

χx

χx
(
1 +

χf

χx
ξ4
)) 1

2
ξ2 =

ξ2χf
χx

( K

χf
(
1 +

χf

χx
ξ4
)) 1

2
(55)

Now I can substitute both of these into equation (53), which fully determines ξ, in terms of exogenous variables.

ξ
(
ξ2Ztτx + α+ Ztτ0

)
+ ξ2Ωx(1 + ξZt) + Ωf (1 + ξZt) = 0 (56)

First note that

Ωf + ξ2Ωx = −ξ(ξ
2Ztτx + α+ Ztτ0)

(1 + ξZt)

where the left hand side is the objective function. So we know the maximized value of objective function solely as a function

of ξ = C
D

. Keep in mind that since we already imposed an optimality condition (??), this latter equation holds only at the

optimum.

Substituting in for Ωft and Ωxt from (54) and (55) yields an equation that implicitly defines ξ as a function of primitives,

K and future equilibrium objects, embedded in Zt.

ξ
(
ξ2Ztτx + α+ Ztτ0

)
+ (1 + ξZt)(1 +

χf
χx
ξ4)
( K

χf
(
1 +

χf

χx
ξ4
)) 1

2
= 0

ξ3Ztτx + ξ(α+ Ztτ0) + (1 + ξZt)(
K

χf
)
1
2 (1 +

χf
χx
ξ4)

1
2 = 0 (57)

The left hand side must equal zero for the economy to be in equilibrium. However, all the coefficients K,χf , χx, τ0, τx are

assumed to be positive. Furthermore, Zt is a variance. Inspection of (31) reveals that it must be strictly positive. Thus, the

only way that the equilibrium condition can possibly be equal to zero is if ξ < 0. Recall that ξ = Ct/Dt. The previous lemma

proved that Ct > 0. Therefore, it must be that Dt < 0.

A.3 Solving Information Choices

Details of Step 3: Compute ex-ante expected utility. Note that the expected excess return (E[pt+1 + d̃t|Iit]− ptr) depends on

fundamental and supply signals, and prices, all of which are unknown at time t = 0. Because asset prices are linear functions

of normally distributed shocks, E[pt+1 + d̃t|Iit]−ptr, is normally distributed as well. Thus, (E[pt+1 + d̃t|Iit]−ptr)Ω(E[pt+1 +

d̃t|Iit]− ptr) is a non-central χ2-distributed variable. Computing its mean yields the expression in the text.

Details of Step 4:

Solve for fundamental information choices. Note that in expected utility (14), the choice variables Ωft and Ωxt enter

only through the posterior variance Ω−1 and through V [E[pt+1 + d̃t|Iit] − ptr|I+
t−1] = V [pt+1 + d̃t − ptr|I+

t−1] − Ω−1
t . Since

there is a continuum of investors, and since V [pt+1 + d̃t − ptr|I+
t−1] and E[E[pt+1 + d̃t|Iit] − ptr|I+

t−1] depend only on t − 1

variables, parameters and on aggregate information choices, each investor takes them as given. If the objective is to maximize

an increasing function of Ω, then information choices must maximize Ω as well.

34



Internet Appendix: Not for Publication

B Proofs

The next lemma proves the following: If no one has information about future dividends, then no one’s trade is based on

information about future dividends, thus the price cannot contain information about future dividends. Since Ct is the price

coefficient on future dividend information, Ct = 0 means that the price is uninformative. In short, price cannot reflect

information that no one knows.

Lemma 3 When information is scarce, price is uninformative: As Kt → 0, for any future path of prices (At+j , Bt+j , Ct+j

and Dt+1, ∀j > 0), the unique solution for the price coefficient Ct is Ct = 0.

Proof: Step 1: As Ωft → 0, prove Ct is always a solution.

Start with the equation for Dt (11). Substitute in for Ω using (32) and 1 +B = r/(r −G) and rewrite it as

Dt =
1

r −GV̂t
[
τx
Ct
Dt
− ρr

(r −G)
− ZtV̂ −1

t

]
(58)

Then, express Ct from (48) as Ct = 1/(r−G)V̂t(V̂
−1
t − τ0) and divide Ct by Dt, cancelling the V̂t/(r−G) term in each to get

Ct
Dt

=
V̂ −1
t − τ0

τx
Ct
Dt
− ρr

(r−G)
− ZtV̂ −1

t

(59)

If we substitute in V̂ −1
t = τ0 + Ωpt + Ωft from (29) and then set Ωft = 0, we get

Ct
Dt

=
Ωpt

τx
Ct
Dt
− ρr

(r−G)
− Zt(τ0 + Ωpt)

(60)

Then, we use the solution for price information precision Ωpt = (C/D)2(τx + Ωx) and multiply both sides by the denominator

of the fraction to get

Ct
Dt

[
τx
Ct
Dt
− ρr

(r −G)
− Zt(τ0 +

(
Ct
Dt

)2

(τx + Ωx))

]
=

(
Ct
Dt

)2

(τx + Ωx) (61)

We can see right away that since both sides are multiplied by C/D, as Ωft → 0, for any given future price coefficients Ct+1

and Dt+1, C = 0 is always a solution.

Step 2: prove uniqueness.

Next, we investigate what other solutions are possible by dividing both sides by C/D:

τx
Ct
Dt
− ρr

(r −G)
− Zt(τ0 +

(
Ct
Dt

)2

(τx + Ωx))−
(
Ct
Dt

)
(τx + Ωx) = 0 (62)

This is a quadratic equation in C/D. Using the quadratic formula, we find

Ct
Dt

=
Ωxt ±

√
Ω2
xt − 4Zt(τx + Ωxt)(ρr/(r −G) + τ0Zt)

−2Zt(τx + Ωxt)
(63)

If we now take the limit as Ωxt → 0, the term inside the square root becomes negative, as long as r−G > 0. Thus, there

are no additional real roots when Ωxt = 0.

Similarly, if Ωx is not sufficiently large, there are no real roots of (63), which proves that: As Ωft → 0, if we take Ct+1

and Dt+1 as given, and Ωxt is sufficiently small, then the unique solution for the price coefficient C is C = 0. �

Proof of Result 1 From lemma 3, we know that as Ct = 0. From the first order condition for information (15), we see

that the marginal utility of order flow information relative to fundamental information (marginal rate of substitution) is a

positive constant times (Ct/Dt)
2. If Ct = 0, then ∂Uit/∂Ωxit is a positive constant time zero, which is zero.
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Proof of Result 3

Claim: If r − g > 0 and (τx + Ωxt) is sufficiently small, then ∂Ct/∂Ωft > 0 and ∂Ct/∂Ωxt > 0.

From (48), Ct = 1
r−G (1− τ0V̂t).

From (29), V̂t is defined as

V̂ = [τ0 + Ωft +

(
Ct
Dt

)2

(τx + Ωxt)]
−1 (64)

Notice that Ct shows up twice, once on the left side and once in V̂ . Therefore, we use the implicit function theorem to

differentiate. If we define F ≡ Ct − 1
r−G (1− τ0V̂ ), then ∂F/∂Ct = 1 + 1

r−Gτ0∂V̂ /∂Ct. Since τx and Ωxt are both precisions,

both are positive. Therefore, ∂V̂ −1/∂Ct = 2Ct/D
2
t (τx + Ωxt). This is positive, since we know that Ct > 0. That implies that

the derivative of the inverse is ∂V̂ /∂Ct = −V̂ 22Ct/D
2
t (τx + Ωxt), which is negative. The ∂F/∂Ct term is therefore one plus

a negative term. The result is positive, as long as the negative term is sufficiently small: 2
r−Gτ0V̂

2Ct/D
2
t (τx + Ωxt) < 1. We

can express this as an upper bound on τx + Ωxt by rearranging the inequality to read: (τx + Ωxt) < 1/2(r−G)τ−2
0 V̂ −2D2

t /Ct.

Next, we see that ∂V̂ −1/∂Ωft = 1. Thus, ∂V̂ /∂Ωft < 0. Since ∂F/∂V̂ > 0, this guarantees that ∂F/∂Ωft < 0.

Likewise, ∂V̂ −1/∂Ωxt = (Ct/Dt)
2. Since the square is always positive, ∂V̂ /∂Ωxt < 0. Since ∂F/∂V̂ > 0, this guarantees

that ∂F/∂Ωxt < 0.

Finally, the implicit function theorem states that ∂Ct/∂Ωft = −(∂F/∂Ωft)/(∂F/∂Ct). Since the numerator is positive,

the denominator is negative and there is a minus sign in front, ∂Ct/∂Ωft > 0. Likewise, ∂Ct/∂Ωxt = −(∂F/∂Ωxt)/(∂F/∂Ct).

Since the numerator is positive, the denominator is negative and there is a minus sign in front, ∂Ct/∂Ωxt > 0. �

Proof of Result 4, part 1

Claim: If τx > ρr/(r −G) and Dt < 0, then ∂Dt/∂Ωft > 0.

Proof:

From market clearing:

Dt = [r − (1 +B)V̂ + Ωp
1

C
]−1[−ρΩ−1

t − (1 +B)
C

D
V̂ Ωx] (65)

Use Ωp = (C
D

)2(Ωx + τx) to get Dtr − (1 +B)V̂t
C
D

(τx) = −ρΩ−1
t . Then, use the stationary solution for B : 1 +B = r

r−G :

Dt −
1

r −GV̂t
C

D
τx = −ρ

r
Ω−1
t (66)

Then use (32) to substitute in for Ω−1
t :

Dt = − 1

r −GZt −
rρ

(r −G)2
V̂ +

1

r −GV̂t
Ct
Dt

τx (67)

In the above, the RHS, less the last term, is the loading on Xt+1, and the last term represents price feedback. We then

define F ≡ L.H.S. of (67) − R.H.S. of (67). So that we can apply the implicit function theorem as ∂Dt/∂Ωf = − ∂F
∂Ωf

/ ∂F
∂Dt

.

We begin by working out the denominator.

∂F

∂Dt
= 1 + 0 +

rρ

(r −G)2

∂V̂

∂Dt
− 1

r −G
∂V̂ + Ct

Dt

∂Dt
τx (68)

∂V̂

∂Dt
=

∂V̂

∂V̂ −1

∂V̂ −1

∂Dt
= −V̂ 2[−2C2

t

D3
t

(τx + Ωx)] = 2
C2

D3
V̂ 3
t (τx + Ωx) (69)

∂V̂ Ct
Dt

∂Dt
=
Ct
Dt

∂V̂t
∂Dt

+ V̂ (− C

D2
) (70)
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=
C

D2
V̂ [2

Ct
Dt

(τx + Ωx)− 1] (71)

∂F

∂Dt
= 1 +

rρ

(r −G)2
· 2C

2

D3
V̂ 3
t (τx + Ωx)− τx

r −G
C

D2
V̂t[2

Ct
Dt

(τx + Ωx)− 1] (72)

∂F

∂Ωf
= 0− 0 +

rρ

(r −G)2

∂V̂

∂Ωt
− 1

r −G
Ct
Dt

τx
∂V̂

∂Ωt
(73)

Recall the definition V̂t ≡ [τ0 + Ωft + Ct
Dt

2
(τx + Ωx)]−1. Differentiating V̂ , we get

∂V̂

∂Ωf
=

∂V̂t

∂V̂ −1
t

· ∂V̂
−1
t

∂Ωf
= −V̂ 2

t
∂V̂ −1

t

∂Ωf
= −V̂ 2

t (74)

substituting this in to (73) yields

∂F

∂Ωf
=

1

r −GV̂
2
t [
Ct
Dt

τx −
rρ

r −G ] (75)

Substituting in the derivative of V̂ , we get

∂Dt
∂Ωf

= −
1

r−G V̂
2
t [Ct

Dt
τx − rρ

r−G ]

1 2rρ
(r−G)2

C2

D3 V̂
2
t (τx + Ωx)− τx

r−G
C
D2 V̂t[2

C
ρ

(τx + Ωx)− 1]
(76)

Observe that if Ct
Dt

< 0, and r > G, then the numerator is positive (including the leading negative sign).

The denominator is positive if the following expression is positive:

r −G
C
D2 V̂

+ 2ρ
r

r −G
Ct
Dt

V̂t(τx + Ωx)− τxV̂t[
2C

D
(τx + Ωx − 1)] > 0 (77)

This is equivalent to

r −G
V̂t

D2

C
+ 2V̂t

Ct
Dt

(τx + Ωx)[
rρ

r −G − τx] + τxV̂t > 0. (78)

Lemma 2 proves that D < 0. That makes the middle term potentially negative. However, if [ rρ
r−G − τx] < 0 as well, the

product of this and D is positive. Thus the middle term is positive. That inequality can be rearranged as τx >
rρ
r−G . Since

the rest of the terms are squares and precisions, the rest of the expression is positive as well.

Thus if τx >
rρ
r−G , then ∂Dt

∂Ωt
> 0. �

Proof of Result 4, part 2

If τx > ρr/(r − g) and Dt < 0, then ∂Dt/∂Ωxt > 0.

Proof: Begin with the implicit function theorem: ∂Dt/∂Ωx = − ∂F
∂Ωx

/ ∂F
∂Dt

. The previous proof already proved that if

τx >
rρ
r−G , the denominator is positive. All that remains is to sign the numerator.

∂F

∂Ωx
= 0 + 0 +

rρ

(r −G)2

∂V̂

∂Ωx
− 1

r −G
Ct
Dt

τx
∂V̂

∂Ωx
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where ∂V̂ /∂Ωx = −V̂ 2(C2)/(D2). Substituting the partial of V̂ into the partial of F yields

∂F

∂Ωx
= V̂ 2 C

2

D2
(− rρ

(r −G)2
+

1

r −G
Ct
Dt

τx).

Combining terms,

∂Dt
∂Ωx

= −
V̂ 2 C2

D2 (− rρ
(r−G)2

+ 1
r−G

Ct
Dt
τx)

∂F
∂Dt

We know from lemmas 1 and 2 that Ct
Dt

< 0. Since r > G, by assumption, ∂F/∂Ωx is negative (i.e., the C2

D2 factor does

not change the sign). Applying the implicit function theorem tells us that ∂Dt/∂Ωxt > 0. �

Proof of Result 2

The strategy for proving this result is to apply the implicit function theorem to the price coefficients that come from

coefficient matching in the market-clearing equation. After equating supply and demand and matching all the coefficients on

x̃t, we arrive at (11). Rearranging that equation gives us the expression for Ct/Dt in (59). If we subtract the right side of

(59) from the left, we are left with an expression that is equal to zero in equilibrium, which we’ll name F :

F =
Ct
Dt
− V̂ −1

t − τ0
τx

Ct
Dt
− ρr

(r−G)
− ZtV̂ −1

t

We compute ∂C/D
∂Ωx

= −
(

∂F
∂C/D

)−1
∂F
∂Ωx

and ∂C/D
∂Ωf

= −
(

∂F
∂C/D

)−1
∂F
∂Ωf

. In particular, we have:

∂F

∂C/D
= 1−

(
2
Ct
Dt

(τx + Ωx)

)(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−1

+(V̂ −1 − τ0)

(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−2(
τx − Zt

(
2
Ct
Dt

(τx + Ωx)

))
= 1−

(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−2

[(
2
Ct
Dt

(τx + Ωx)

)(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)
− (V̂ −1 − τ0)

(
τx − Zt

(
2
Ct
Dt

(τx + Ωx)

))]

∂F

∂Ωf
= −(1)

(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−1

+ (V̂ −1 − τ0)

(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−2

(−Zt)

= −
(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−2 [(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)
+ Zt(V̂

−1 − τ0)

]

We notice that ∂F
∂Ωx

=
(
Ct
Dt

)2
∂F
∂Ωf

since

∂F

∂Ωx
=

∂F

∂V̂ −1

∂V̂ −1

∂Ωx
=

∂F

∂V̂ −1

(
Ct
Dt

)2
∂V̂ −1

∂Ωf
=

(
Ct
Dt

)2
∂F

∂Ωf

.

Then:

∂C/D

∂Ωf
=

(
τx

Ct
Dt
− ρr

r−G − ZtV̂
−1
)

+ Zt(V̂
−1 − τ0)(

τx
Ct
Dt
− ρr

r−G − ZtV̂ −1
)2

−
[(

2Ct
Dt

(τx + Ωx)
)(

τx
Ct
Dt
− ρr

r−G − ZtV̂ −1
)
− (V̂ −1 − τ0)

(
τx − Zt

(
2Ct
Dt

(τx + Ωx)
))]
(79)

Result 2, part 1: If C/D ≤ 0, Ωx < τ0 + Ωf and C/D > −Zt/2 , then ∂C/D
∂Ωf

< 0 and ∂C/D
∂Ωx

≤ 0

The numerator of (79) is(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)
+ Zt(V̂

−1 − τ0) = τx
Ct
Dt
− ρr

r −G − Ztτ0 < 0
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The inequality holds since we’ve proven that Ct/Dt < 0 and r > G.

In the denominator, however, not all the terms are negative. The denominator of (79), divided by by
(
τx

Ct
Dt
− ρr

r−G − ZtV̂
−1
)

+

Zt(V̂
−1 − τ0) is:

(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)
−
(

2
Ct
Dt

(τx + Ωx)

)
+ (V̂ −1 − τ0)

(
τx − Zt

(
2
Ct
Dt

(τx + Ωx)

))(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−1

(80)

The only positive term is −2Ct
Dt

Ωx. Then, is it easy to see that if C/D is sufficiently close to zero, then −2Ct
Dt

Ωx <
ρr
r−G +

Zt(τ0 + Ωf ), so (80) is negative.

Thus, the numerator is negative and if C/D is sufficiently close to zero the denominator is positive, so ∂C/D
∂Ωf

< 0 and

∂C/D
∂Ωx

=
(
Ct
Dt

)2
∂C/D
∂Ωf

< 0 if C/D < 0 and ∂C/D
∂Ωx

= 0 if C/D = 0. �

Proof of Result 2, part 2 Claim: If C/D ≤ 0, and C/D < − 2Z−1
t
3

, then ∂C/D
∂Ωf

< 0 and ∂C/D
∂Ωx

≤ 0

To see this, we analyze if under these new condition inequality (80) holds. We have:

− ρr

r −G − Zt(τ0 + Ωf )− 2
Ct
Dt

Ωx − 3Zt

(
Ct
Dt

)2

(τx + Ωx)

= − ρr

r −G − Zt(Ωx)− Ct
Dt

Ωx

(
2− 3Zt

Ct
Dt

)
− 3Zt

(
Ct
Dt

)2

τx

So if C/D < − 2Z−1
t
3

, we can prove the above claim:

= − ρr

r −G − Zt(Ωx)− Ct
Dt

Ωx

(
2− 3Zt

Ct
Dt

)
− 3Zt

(
Ct
Dt

)2

τx

< − ρr

r −G − Zt(Ωx)− 3Zt

(
Ct
Dt

)2

τx

< 0

Now, combining the two previous claims, we have that if Ωx < τ0 + Ωf and Zt >
1√
3
, then ∂C/D

∂Ωf
< 0 and ∂C/D

∂Ωx
≤ 0. The

condition Zt >
1√
3

implies that −Zt
2

< − 2Z−1
t
3

so with claims 3, 4 and 5 we have guaranteed the result for the entire support

of C/D and thus proved result 2.

Proof of Result 6a: Ωft/Ωxt does not converge to 0

If Ωft/Ωxt converges to ∞, then by the first order condition, it must be that ξ →∞. It is sufficient to show that ξ →∞
violates equation (57). Rearrange (57) to get

[
ξZt
(
ξ2τx + (

K

χf
)
1
2 (1 +

χf
χx
ξ4)

1
2 + τ0

)
+ ξα

]
+ (

K

χf
)
1
2 (1 +

χf
χx
ξ4)

1
2 = 0 (81)

The term in square brackets is negative and the one outside is positive. Assume ξ → ∞. If Zt does not go to zero, then the

negative term grows faster and the equality cannot hold. So it must be that Zt → 0. Using equation (31) of the draft, that

requires that both Ct+1 → 0 and Dt+1 → 0. In order for Ct+1 to go to zero, V̂ → τ−1
0 . But since ξ →∞, from equation (29)

in the main draft, V̂ → 0, which is a contradiction.

Proof of Result 6b: As K →∞, Ωft/Ωxt does not converge to ∞
If Ωft/Ωxt did converge to ∞ as K → ∞, then by the first-order condition (15), it would have to be that ξ → 0. So it

suffices to show that Ωft/Ωxt =∞ is inconsistent with ξ = 0, in equilibrium.

Start from the equilibrium condition (56), which must be zero in equilibrium. If ξ → 0, then the first term goes to zero.

The proof of lemma 4 proves, along the way, that (1 + ξZt) > 0. (Otherwise, (56) can never be zero because it is always

negative.) Thus the second term Ωxtξ
2(1 + ξZt) must be non-negative.

The third term Ωft(1 + ξZt) also converges to ∞ because Ωft →∞ and (1 + ξZt) > 0. How do we know that Ωft →∞?

In principle, Ωft/Ωxt could become infinite either because Ωft became infinite or because Ωxt goes to zero. But if Ωxt goes to
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zero and Ωft is finite, then the information processing constraint (3), which requires that the weighted sum of Ωft and Ωxt

be K cannot be satisfied as K →∞.

Since one term of (56) becomes large and positive and the other two are non-negative in the limit, the sum of these three

terms cannot equal zero. Therefore, Ωft/Ωxt →∞ cannot be an equilibrium.

Proof of Result 6c: there exists an equilibrium where Ωft/Ωxt converges to a constant.

By the first order condition (15), we know that Ωft/Ωxt converges to a constant, if and only if ξ converges to a constant.

Thus, it suffices to show that there exists a constant ξ that is consistent with equilibrium, in the high-K limit.

Suppose ξ and Zt are constant in the high-K limit. In equation (57) as K → ∞, the last term goes to infinity, unless

ξ → 1
Zt

. If the last term goes to infinity and the others remain finite, this cannot be an equilibrium because equilibrium

requires that the left side of (57) is zero. Therefore, it must be that ξ → −1
Zt

. The question that remains is whether ξ and Zt

are finite constants, or whether one explodes and the other converges to zero, in the high-K limit.

Suppose ξ = − 1
Zt

, which is constant (ξ = ξ̄). Then Zt = Z̄ is constant too. The rest of the proof checks to see if such a

proposed constant- ξ̄ solution is consistent with equilibrium. We do this by showing that ξ does not explode on contract as

K increases. In other words, for ξ = −1
Zt

to be stable and thus the ratio of fundamental to technical analysis to be stable, we

need that ∂ξ/∂K → 0, in other words, ξ and therefore Ωft/Ωxt converges to a constant as K →∞.

Step 1: Derive dξ/dK: Start from the equilibrium condition for ξ (57) and apply the implicit function theorem:(
3Ztτxξ

2 +A+ Ztτ0
)
dξ +

1

2
(

1

Kχf
)
1
2 (1 + ξZt)(1 +

χf
χx
ξ4)

1
2 dK

+

[
1

2
(
K

χf
)
1
2 (1 + ξZt)(1 +

χf
χx
ξ4)−

1
2 (4

χf
χx
ξ3) + Zt(

K

χf
)
1
2 (1 +

χf
χx
ξ4)

1
2

]
dξ = 0

So we have

dξ

dK
=

1

2
(

1

Kχf
)
1
2

−(1 + ξZt)(1 +
χf

χx
ξ4)

1
2

3Ztτxξ2 +A+ Ztτ0 + 2
χf

χx
( K
χf

)
1
2 (1 + ξZt)(1 +

χf

χx
ξ4)−

1
2 ξ3 + Zt(

K
χf

)
1
2 (1 +

χf

χx
ξ4)

1
2

Use equation 57 to write the numerator as

(1 + ξZt)(1 +
χf
χx
ξ4)

1
2 = −(

χf
K

)
1
2 ξ(ξ2Ztτx +A+ Ztτ0) (82)

Now use this to rewrite dξ
dK

as

dξ

dK
=

1

2K

1
3Ztτxξ2+A+Ztτ0
ξ(ξ2Ztτx+A+Ztτ0)

− 2
χf

χx
(1 +

χf

χx
ξ4)−1ξ3 − Zt

(1+ξZt)

(83)

Step 2: Show that dξ/dK → 0 as K →∞, as long as X(·) 6 →0

As K → ∞, it is clear that 1/2K → 0. As long as the term that multiplies 1/2K stays finite, the product will converge

to zero. Since the numerator is just 1, the second term will be finite, as long as the denominator does not go to zero. Define

X(ξ, Zt) =
3Ztτxξ

2 +A+ Ztτ0
ξ(ξ2Ztτx +A+ Ztτ0)

− 2
χf
χx

(1 +
χf
χx
ξ4)−1ξ3 − Zt

(1 + ξZt)
(84)

which is the denominator of the second fraction on the rhs of equation (83). Then if X 6→ 0, 1/X is finite, then 1/2K ∗ 1/X

goes to zero as K gets large. Thus, we get that ∂ξ/∂K → 0 as K →∞.

Step 3: X(·) 6→ 0.

To complete the proof, we need to show that ξ̄ = − 1
Z̄

which satisfies the equilirium condition (89) as K →∞, does not cause

X(·) = 0. We can check this directly: in equation (84), if ξ = − 1
Zt

, the denominator of the last term becomes zero; so last

term becomes infinite. The only term in (84) with opposite sign is the middle term, which is finite if ξ = C
D

is finite (the

running assumption). If the last term of X tends to infinity and the only term of opposite sign is finite, the sum cannot be 0.

Thus, for ξ̄ = − 1
Z̄

, which is the limit attained in the limit as K →∞, we have that X(ξ̄) 6= 0.
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Step 4: As K →∞, if (90) holds, the real, finite-ξ solution exists.

From equations (29-32), as K →∞ at least one of the two information choices goes to ∞, so with finite, non-zero C
D

:

lim
K→∞

V̂ = 0 (85)

lim
K→∞

Ω−1
t =

r

ρ(r −G)
Zt = D2

t+1(ξ2
t+1τ

−1
0 + τ−1

x ) (86)

lim
K→∞

Dt = −ρ
r

Ω−1
t = − 1

(r −G)
Zt (87)

A word of interpretation here: Equation (32), which defines Ω−1 is the total future payoff risk. As V̂ → 0, it means the

predictable part of this variance goes away as information capacity gets large. Zt, which is the unpredictable part, remains

and governs liquidity, Dt.

Next, solve (86) for Dt+1, backdate the solution 1 period, to get an expression for Dt, and equate it to the expression for

Dt in (87). This implies that limK→∞D = D̄ is constant and equal to both of the following expressions

D̄2 =
−rZt

ρ(r −G)ξ̄(ξ̄2τ−1
0 + τ−1

x )
=

Zt

(r −G)2ξ̄2
(88)

We can cancel Zt on both sides, which delivers a quadratic equation in one unknown in ξ̄:

ξ̄2τ−1
0 +

r(r −G)

ρ
ξ̄ + τ−1

x = 0. (89)

In order for ξ̄ to exist equation (89) requires that the expression inside the square root term of the quadratic formula (often

written as (b2 − 4ac)) not be negative. This imposes the parametric restriction

(
r(r −G)

ρ

)2

− 4τ−1
0 τ−1

x ≥ 0. (90)

Rearranging this to put τ0 on the left delivers τ0 ≥ τ , where τ = 4τ−1
x ρ2(r(r −G))−2. If we instead rearrange this to put τx

on the left delivers τx ≥ τ , where τ = 4τ−1
0 ρ2(r(r −G))−2.

Lemma 4 Balanced growth path depends on future information risk and long-lived assets. |Dt| ≥ ρ(r−G)
r

Ct
(
C2
t+1τ

−1
0 +D2

t+1τ
−1
x

)
,

with strict inequality if K > 0.

Proof. Use equation (57) to write

(1 + ξZt)(1 +
χf
χx
ξ4)

1
2 = −(

χf
K

)
1
2 ξ(ξ2Ztτx + α+ Ztτ0) (91)

Since we’ve proven that ξ ≤ 0 (lemma 2). And we know from lemma 1 that if K > 0, then Ct > 0 so that ξ < 0 with strict

inequality. The other terms on the right side are strictly positive squares or positive constants, with a negative sign in front.

Thus, the right hand side of the equation (82) is positive. On the left, since (1 +
χf

χx
ξ4)

1
2 is a square root, and therefore

positive, this implies that (1 + ξZt) must be positive as well for the equality to hold. (1 + ξZt) > 0 implies that Zt < −1/ξ

Substitute for Zt to get the result. This result puts a bound on how liquid the price can be. The liquidity is bounded by the

product of price informativeness and un-learnable, future risk.

To get from this result to balanced growth requires the following steps: The result says that Ct/|Dt| <
(
ρ ((r −G)/r) (C2

t+1τ
−1
0 +D2

t+1τ
−1
x )
)−1

.

The first term is just fixed parameters. The second term, (C2
t+1τ

−1
0 +D2

t+1τ
−1
x ) is the variance of the part of tomorrow’s price

that depends on future shocks, xt+1 and yt+1. This is the future information risk. It converges to a large, positive number as

K grows. When information is abundant, high future information risk pushes Ct/|Dt| down, toward a constant.

In contrast, if order flow analysis were to keep growing faster than fundamental analysis (Ωft/Ωxt were to fall to zero), by

the first order condition (15), it means that (Ct/Dt)
2 keeps rising to infinity. But if (Ct/Dt)

2 is converging to infinity, then at

some point, it must violate the inequality above because the right side of the inequality is decreasing over time. Thus, order

flow analysis cannot grow faster than fundamental analysis forever.
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The only solution that reconciles the first order condition, with the equilibrium price coefficients, is one where (Ωft/Ωxt)

stabilizes and converges to a constant. If fundamental analysis grows proportionately with order flow analysis, the rise in

the amount of fundamental analysis makes prices more informative about dividends: Ct increases. Proportional growth in

fundamental and order flow analysis allows Ct to keep up with the rise in Dt, described above. Therefore, as information

technology grows (K → ∞), a stable Ct/Dt rationalizes information choices (Ωxt, Ωft) that grow proportionately, so that

Ωxt/Ωft converges to a constant.

C Robustness of Numerical Results

We want to investigate the effect of changing parameters on the predictions of the numerical model. First, we show how

re-calibrating the model with different risk aversion affects the values of other calibrated parameters. Then we show how

changes in risk aversion and other parameters have modest effects on results. We consider changes to the exogenous, yet

important parameters of time preference, risk aversion and terminal capacity, first. Then, we consider altering endogenous,

calibrated parameters of dividend innovation variance, hedging innovation variance and relative cost of order-flow information.

Lower risk aversion The steady state coefficients with low risk aversion ρ = 0.05 are We find AT = 16.03, CT = 7.865

and DT = −3.0. AT and CT are unchanged, while DT changed from = −5.7, for high risk aversion to 3.0. Table 2 shows

the original calibration and a lower-risk aversion calibration to highlight how the other parameters adjust when risk aversion

changes.

Table 2: Parameters

low risk av high risk av

G 0.9365 0.9365
µ 0.235 0.4153

τ−1
0 0.2575 0.2445
τ−1
x 1.9850 0.5514
χx 10.6625 0.6863

r 1.03 1.03
ρ 0.05 0.1

Similarly, after re-calibrating, risk aversion makes only a minor difference. With ρ = 0.05, order flow analysis still outstrips

fundamental analysis between periods 4 and 5. But if falls slightly more slowly. The ending value of Ωft is 1.8, instead of 1.6.

Changes to fixed parameters We consider lower/higher time preference, risk aversion and terminal capacity. When-

ever a parameter is changed, all other parameters are re-calibrated to match that new value and the numerical model is

simulated again.
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Figure 10: Results with different rates of time preference. The first row is information acquisition, the second row
is capacity allocation and the third row are the price coefficients. Column 1 is the baseline calibration used in the paper,
corresponding to r = 1.03. Column 2 displays the path with r = 1.01 and column 3 with r = 1.05.
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(c) r = 1.05

Figure 11: Results with different risk premia. The first row is capacity allocation and the second row is the price coefficients.
Column 1 is the baseline calibration used in the paper, corresponding to ρ = 0.1. Column 2 displays the path with ρ = 0.05
and column 3 with ρ = 0.2.
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Figure 12: Results with different terminal capacities. The first row is capacity allocation and the second row is the price
coefficients. Column 1 is the baseline calibration used in the paper, corresponding to KT = 10. Column 2 displays the path
with KT = 5 and column 3 with KT = 15.

0 50 100 150 200 250 300 350 400 450 500

time

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350 400 450 500

time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350 400 450 500

time

0

5

10

15

Total Information Kt

Fundamental Analysis +ft

Order-.ow Analysis +xt

0 50 100 150 200 250 300 350 400 450 500

time

0

1

2

3

4

5

6

7

8

(a) Baseline KT = 10
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(c) KT = 15

Changes to calibrated parameters We consider lower/higher dividend shock variance, hedging shock variance

and relative cost of order-flow information. As these parameters are determined jointly by the calibration, we cannot simply

change them and re-calibrate as above. Rather, we calibrate to the baseline then change the parameter of interest for the

experiment and then recover the model’s terminal values associated with that new parameter of interest. It is important to

note that we do not re-calibrate the other parameters when we make changes here.

Figure 13: Results with different terminal values of τ0. The first row is capacity allocation and the second row is the price
coefficients. Column 1 is the baseline calibration used in the paper. Column 2 displays the path for a lower τ0 and column 3
for a higher τ0.
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Figure 14: Results with different terminal values of τx. The first row is capacity allocation and the second row is the price
coefficients. Column 1 is the baseline calibration used in the paper. Column 2 displays the path for a lower τx and column 3
for a higher τx.
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(c) χ∗x = 1.2τx

Figure 15: Unbalanced growth model under different terminal values of χx. The first row is capacity allocation and the
second row is the price coefficients. Column 1 is the baseline calibration used in the paper. Column 2 displays the path for a
lower χx and column 3 for a higher χx.
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Liquidity Fragility

The main text shows that liquidity becomes more sensitive to one-period changes in future expected dividend variance. A

similar degree of liquidity fragility arises from changes in the cost χx of order flow data processing. Figure 16 shows the

reaction of liquidity |Dt| to a one-time, unexpected doubling of χx. Notice that an equal sized movement in χx has a small

effect when technology is low and a larger effect as financial technology progresses.

Figure 16: Fragility of Liquidity: Cost of Order Flow Processing
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Asset price and return data for calibration Calibrating the numerical model requires some price and dividend

series that accurately represents the market as a whole. However, it is not clear what the best method for defining this

representative asset it. One option is to pick some historically representative stock, such as General Electric, or Apple, but

even though these stocks may be the best available representative, that does not mean that they capture the market as a

whole. Another option is to take an index, such as the S&P500, as a representative of the market. While using an index

may capture more about the market, its realizations in levels are not representative of actual prices or dividends, but rather

just a tracking mechanism of the evolution of the market. Aware of the deficiencies in both approaches, we choose the added

information of the S&P500 index and live with the difficulty of normalizing prices and dividends to better fit a representative

asset.

We use CRSP’s monthly S&P500 data from 2000-2015 to calibrate the steady-state of our model. Cleaning and normalizing

the data takes several steps:

1. Impute dividends In order to impute a dividend series for the market as a whole, we use the price, return including

dividends and return excluding dividends series.

dt = pt
(pt+1 + dt

pt
− pt+1

pt

)
2. Clean up data We log de-trend and deseasonalize the price and dividend series and then normalize the dividend series

to 1.

3. Normalize dataIn order to match the price series to dividends in a meaningful way, we take price-dividend (PD) ratios

from CRSP for all S&P500 members and calculate an annual market cap.-weighted PD ratio. Then, prices are normalized

year-by-year to match that observed PD ratio.

It turns out that this normalization process loses little of the dynamics of the index series, while also being far more

accurate in terms of the describing the level relationship between prices and dividends for a representative asset of the market.

Figure 18(a) displays the normalized price series with the actual price-index series. Figure 18(b) displays the normalized

dividend series with the imputed dividend series described above.
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Figure 17: Comparison of normalized series with actual series. Source: CRSP
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(b) Dividend comparison

Hedge Fund Data: Lipper TASS Database The figure showing the shift over time in investment strategies

is based on hedge fund data from Lipper. Lipper TASS provides performance data on over 7,500 actively reporting hedge

funds and funds of Hedge Funds and also provides historical performance data on over 11,000 graveyard funds that have

liquidated or stopped reporting. In addition to performance data, data are also available on certain fund characteristics, such

as investment approach, management fees, redemption periods, minimum investment amounts and geographical focus. This

database is accessible from Wharton Research Data Services (WRDS).

Though the database provides a comprehensive window into the hedge fund industry, data reporting standards are low.

There is a large portion of the industry (representing about 42% of assets) that simply do not report anything (Edelman,

Fund, and Hsieh, 2013). Reporting funds regularly report only performing assets (Bali, Brown, and Caglayan, 2014). While

any empirical analysis must be considered with caution, some interesting stylized facts about the current state and evolution

of the hedge fund industry do exist in these data.

All hedge fund data is monthly and come from Lipper TASS. In total, the database reports on 17,534 live and defunct

funds. Data are from 1994-2015, as no data was kept on defunct funds before 1994. A significant portion of this total consists

of the same fund reported in different currency and thus are not representative of independent fund strategies (Bali, Brown,

and Caglayan, 2014). Therefore, we limit the sample to only U.S.-based hedge funds and remove funds of funds. This limits

the sample size to 10,305 funds. As the focus is to gain insight into the division between fundamental and quantitative strategy

in the market, We further limit the sample to the 7093 funds who explicitly possess these characteristics, described below.

Firms are born and die regularly throughout the sample. There are never more than 3000 existing, qualifying funds at any

point in time. By the end of 2015, there were just over 1000 qualifying funds.

Lipper TASS records data on each fund’s investment strategies. In total, there are 18 different classifications and most

of these classifications have qualities of both fundamental and quantitative analysis. An example of a strategy that could

be considered both, “Macro: Active Trading strategies utilize active trading methods, typically with high frequency position

turnover or leverage; these may employ components of both Discretionary and Systematic Macro strategies.” However, 4

strategy classifications explicitly denote fund strategy as being fundamental or quantitative. They are:

• Fundamental: This denotes that the fund’s strategy is explicitly based on fundamental analysis.

• Discretionary: This denotes that the fund’s strategy is based upon the discretion of the fund’s manager(s).

• Technical: This denotes that the fund deploys a technical strategy.

• Systematic Quant: This denotes that funds deploy technical/algorithmic strategy.

Using these classifications, it is possible to divide hedge fund strategy into three broad groups:

• Fundamental: Those funds whose strategy is classified as fundamental and/or discretionary, and not technical and/or

sytematic quant.

• Quantitative: Those funds whose strategy is classified as technical and/or systematic quant, and not technical and/or

sytematic quant.

• Mixture: Those funds whose strategy is classified as having at least one of fundamental or discretionary and at least

one of technical or systematic quant.
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From 2000-2015, the assets under management (AUM) has systematically shifted away from fundamental firms to firms that

deploy some sort of quantitative analysis in their investment approach. In mid-2000, the assets under management per

fundamental firm was roughly 8 times the size of that in a quantitative or mixture firm, but this had equalized by 2011,

representing a true shift away from fundamental analysis and towards quantitative analysis in the hedge fund industry.
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