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ABSTRACT

Do information differences across U.S. physicians contribute to treatment disparities? This paper uses
a unique new dataset to evaluate how changes in physician access to a decision-relevant drug database
affect prescribing decisions. Our results indicate that doctors using the reference have a significantly
greater propensity to prescribe generic drugs, are faster to begin prescribing new generics, and prescribe
a more diverse set of products. Notably, physicians using the reference database are not faster to prescribe
new branded drugs. Given that a new generic drug resembles its branded equivalent clinically, these
results are consistent with database users responding primarily to the increased accessibility of non-clinical
information such as drug price and insurance formulary data; the results also suggest improvements
to physician information access have important aggregate implications for the costs and efficiency
of medical care. We address possible selection effects in physician types by relying on within-doctor
variation and an instrument for adoption timing that is based on the marketing strategy of the drug
reference firm.
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1 Introduction

National health expenditures exceed three trillion dollars annually in the United States,

account for nearly twenty percent of U.S. GDP, and are to a considerable extent publicly

funded.1 Yet, research by the Dartmouth Atlas Project and Cooper et al (2015) finds sub-

stantial, systematic disparities in both the extent of health spending and the quality of

medical care across U.S. regions, including threefold per-capita expenditure gaps resulting

from inefficient variations in care—differences consistent neither with patient preferences

nor with underlying medical conditions.2 These findings imply significant gains could be

achieved by improving efficiency in low-peforming regions, but this requires first identify-

ing the specific mechanisms that cause treatment disparities. Among the many potential

mechanisms that have been proposed, which include supply, demand, regulatory, and pric-

ing differences, perhaps the most important and intriguing is that disparities result from

a lack of uniformity in physicians’ information about available therapies.3 The possibility

that information problems underlie observed treatment disparities has inspired calls for the

expanded use of medical decision aids, but the difficulties inherent to measuring information

differences have led to a paucity of systematic evidence on their actual importance.4

To contribute to our understanding of how physicians’ information access impacts treat-

ment choices, we assemble and evaluate a unique, new dataset in which treatment decisions

and access to a decision-relevant database are observed for a panel of over 125,000 individual

doctors during 132 consecutive months.5 Our data cover the universe of U.S. physicians and

capture Medicare patients and the privately insured as well as those with Medicaid or no

coverage.6 To meet the data demands of empirically identifying the influence of information

on treatment choices, which requires a medical context with significant information dynam-

ics, we consider prescribing decisions for cholesterol drugs during January 2000–December

2010, during which 12 nationwide product innovations occurred.7 The differential response

1See https://www.cms.gov/nationalhealthexpenddata.
2The Dartmouth Atlas Project has documented healthcare disparities for Medicare patients over decades

(Wennberg et al 1996, Gawande 2009, and Chernew et al 2009); Cooper et al (2015) finds related disparities
among the privately insured population. See also Wennberg and Wennberg (2003), Dartmouth Atlas (2007).

3For example, Skinner (2012).
4See Phelps (2000), Wennberg and Wennberg (2003), and Arrow (1969).
5The provider of the database is a leading U.S. point-of-care medical applications firm that chose to

remain unnamed in this study. For a description of all major drug references, see Ventola et al (2014).
6These latter categories are new relative to existing evidence on healthcare variations; see note #2 above.
7Cholesterol drugs are very widely used. The Centers for Disease Control and Prevention estimate that

approximately 71 million U.S. adults suffer from chronic hypercholesterolemia and dyslipidemia, conditions
in which abnormal levels of cholesterol or lipids are present in the bloodstream. These conditions are asso-
ciated with heart disease, heart attack risk, and premature death; accordingly, sales of cholesterol therapies
accounted for over $18 billion U.S. dollars in 2011 (Ledford 2013). See also Mozaffarian, et al (2014). Drug
introductions are listed in Table 1.
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across physicians to these repeated drug introductions is essential to our analysis, because it

allows us to isolate the influence of information on treatment decisions, while accounting for

physician characteristics that simultaneously affect both prescribing and database adoption.

Our results indicate physicians that begin using the drug reference database significantly

increase their likelihood of prescribing a generic drug relative to brand-name therapies, and

thus increase their generic prescription share—one of the key efficiency metrics emphasized

in the Dartmouth Atlas in documenting prescription drug variations.8 Database users are

also faster to begin prescribing newly released generics, an effect notably absent for new

branded drugs. These findings suggest database users may be responding primarily to the

increased salience of non-clinical information included in the database—including whether a

particular drug is currently covered by a patient’s insurance plan, and plan-specific pricing—

as a generic drug and its branded equivalent share essentially identical clinical attributes. We

find that treatment differences decline significantly more across database users than across

non-users during the sample period, while the actual diversity of a user’s own prescribing

increases on average following adoption. Access to detailed information about competing

treatments thus appears to raise efficiency and reduce disparities, but importantly, these

effects do not appear to come at the expense of patient-sensitive decision making.

Because access to the drug database is not randomly assigned—doctors choose whether

and when to subscribe— identifying the causal effects of database access is challenging. Pre-

scription patterns of subscribing doctors may look different from those of non-subscribers not

due to any effects of the database itself, but instead due to differences in the types of doctors

who choose to subscribe. With this challenge in mind, our analysis relies heavily on within-

doctor variation: rather than estimating effects by comparing database users to non-users,

we focus on comparisons of a doctor’s own prescriptions before versus after she begins using

the database. To account for the possibility that dynamic prescribing determinants may

be correlated with adoption timing within a location, such as changes in drug advertising,

our main specifications also include zipcode-month effects; we verify that our main results

also hold in the presence of doctor-specific trends. We further evaluate specifications that

treat the timing of doctors’ reference adoption as endogenous. Our approach is guided by

observing that the network of reference users has grown primarily through a ‘word-of-mouth’

marketing strategy, whereby users tell friends and colleagues about its value. Accordingly,

we use neighboring physicians’ lagged reference adoption choices as an instrument that is

plausibly independent of patient-specific prescription decisions. Taken together, these spec-

ifications support a causal interpretation of our main results—i.e., that using the database

caused a small but statistically significant change in prescribing patterns.

Consistent with the regional disparities documented in the Dartmouth Atlas, our data

8See Munson et al (2013).
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reveal substantial prescribing variation across the universe of individual U.S. physicians, par-

ticularly with respect to generics and new drug adoption. Doctors differ widely in generic

prescription shares (mean 56.4 percent, standard deviation 24.3 percent) in December 2010,

and span the full range from no generics (5th percentile) to only generics (95th percentile).9

We find that these generic shares are strongly and positively correlated within physician

across patient insurance types (e.g. private vs. Medicare), suggesting patient cost sharing

is unlikely to explain the observed heterogeneity in prescribing patterns. Moreover, with

respect to drug adoption, some U.S. physicians begin prescribing a newly-approved choles-

terol drug immediately, while others delay for a year or more before prescribing it, a pattern

strongly evident even among new generic drugs. Six months after the introduction of generic

lovastatin, for example, the molecular equivalent of Mevacor, the generic version accounted

for only 83 percent of the drug’s prescriptions; by contrast, the generic share reached essen-

tially 100 percent by December 2010. This delayed substitution is evident for each of the

generic entrants we observe, contributing to wide differences across doctors in the overall

prescription share of generic drugs, and to large corresponding gaps in cost.10

Our empirical analysis indicates that some of this observed prescription heterogeneity

is explained by differences across doctors in information access. Our most conservative esti-

mates indicate that, after obtaining database access, a physician user increases the likelihood

of prescribing a new generic drug within its first market year by 1.4 percent; after correct-

ing for the potential endogeneity of adoption timing, this rises to a 6.4 percent increase.

Regarding diversity, database users increase the number of unique drugs prescribed each

month by a modest but highly significant 0.030 drugs, reducing the prescription Herfindahl-

Hirschman index by 0.001 points. In line with both results, users increase the monthly

likelihood of prescribing new and old generic drugs by 1.6 and 2.4 percent, respectively, af-

ter database adoption, while reducing the likelihood of prescribing a new branded drug by

0.42 percent. Our back-of-the-envelope calculations suggest the resulting increase in users’

generic prescription shares contributes to substantial aggregate cost savings, which amount

to approximately $1 billion annually for prescription drugs alone.11

This paper is related to an extensive literature documenting wide healthcare disparities

across U.S. regions, including the Dartmouth Atlas (e.g. Wennberg et al 1996) and its anal-

ysis of prescription drug use among Medicare patients (Munson et al 2013), and Cooper et al

(2015) for the privately insured. We contribute to this work by first documenting prescription

disparities for the universe of U.S. prescribers and patients with all insurance types within

a major therapeutic area. Second, relying on the unusual level of detail and coverage in the

dataset we have assembled, we identify a highly significant link between observed dispari-

9Table 3.
10See Section 2.4 and Section 7.
11See Section 7.

3



ties and a specific mechanism—physician information differences—that we find is partially

responsible for these disparities. While our data are broader with respect to physician and

patient coverage, our empirical strategy is demanding (our dataset includes over 200 million

observations) and we therefore focus on a single clinical area while Dartmouth Atlas and

Cooper et al (2015) cover a comprehensive set of treatments; aggregating our physician-level

data to Dartmouth Atlas regions, we nevertheless find that locations with high generic pre-

scription shares in our dataset also have high generic shares for Medicare overall (correlation

44.4 percent), as well as lower per-capita medical spending for prescription drugs (correlation

23.9 percent) and non-drug healthcare (correlation 12.4 percent)—patterns that underscore

the highly systematic nature of U.S. disparities in care, and suggest the potential value of

extending our physician-level analysis to other clinical settings.12

Our paper is also closely related to work aimed at evaluating the impact of information

technology on economic decisions and outcomes.13 Agents’ electronic information access can

affect productivity (Solow 1987) and has been specifically shown to improve performance in

emergency healthcare delivery (Athey and Stern 2002). However, in routine medical contexts

the evidence is less clear: Dranove et al. (2014) finds that the adoption of electronic medical

records (EMR) raised hospital costs on average, with an important exception—adopting

locations with an abundance of industrial I.T. did in fact experience cost declines. Our

results complement this latter finding in that the medical decision-support tool we study is

standardized, likely to a greater extent than EMR, yet we observe that both the intensity

and impact of its use differ substantially across physicians in the data. In particular, we find

that the efficiency impact of database use is systematically larger among adopters using the

database intensively to search for information about the cholesterol drugs we study.

In finding that use of an information database tilts prescribing away from branded

drugs and toward generics, our results contribute to important work highlighting the in-

fluence of information on tastes for generic products. Bronnenberg et al (2015) find that

relatively informed buyers are more likely to choose a generic version, for example when pur-

chasing an over-the-counter drug, suggesting consumer misinformation contributes to the

brand premium for health products. Our results add nuance to this finding, suggesting that

even among highly trained and educated U.S. physicians, access to current product infor-

mation including pricing increases the propensity to prescribe a generic and decreases that

for branded drugs. We find that the impact of database access is systematically larger for

12Our data do not include individual patient characteristics, precluding a direct extension of Munson et
al (2013) to non-Medicare patients, as well as a quantitative welfare analysis. This aspect of our dataset
further precludes estimating a model featuring prescription dynamics within each patient-physician pair, as
in Crawford and Shum (2005) or Dickstein (2015).

13See, for example, Attewell (1992); Bresnahan and Greenstein (1996); Black and Lynch (2001); Bresna-
han, Brynjolfsson, and Hitt (2002); Brynjolfsson and Hitt (2003); Hubbard (2003); Forman, Goldfarb, and
Greenstein (2005); Bloom et al. (2009); Bloom, Sadun, and Van Reenen (2012); Agha (2014).
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physicians located far from the information frontier, and that dynamics in the product space

(drug entry) may be important in explaining our results, as database users are also faster to

begin prescribing a newly-introduced generic version. In finding that physicians’ information

access affects decisions made on behalf of patients, and that prescribing is highly correlated

within a physician across patients regardless of insurance coverage, our results are further

aligned with Brot-Goldberg et al (2015) and Cutler et al (2015), which find evidence that

physician preferences are key in explaining treatment decisions.

Our results add to the literature examining the determinants of new medical technology

diffusion. Classic work by Coleman, Katz, and Menzel (1957, 1996) finds that new phar-

maceutical products diffuse unevenly across medical practitioners: physicians that interact

more frequently with other physicians are more likely to adopt early. Relatedly, Skinner and

Staiger (2007) provide evidence that certain U.S. states have a systematic tendency to adopt

early across technology types as varied as beta blockers and hybrid corn (Griliches 1957).

We find that physician access to a digital database also speeds new drug adoption—but only

for generics; and, to account for local differences in the tendency to adopt both drugs and

the database early, which could reflect general differences in unobserved factors such as drug

advertising, we emphasize specifications that include both physician and zipcode-by-month

fixed effects.14 In focusing on individual-level drug adoption, our work is also closely re-

lated to Crawford and Shum (2005) and Dickstein (2015), who estimate models of physician

learning, and Agha and Molitor (2015), who study the diffusion of cancer drugs.15

More broadly, our analysis complements research on general theories of technology

diffusion featuring agents with imperfect information. Such theories can be shown to explain

large existing differences in productivity across locations (Solow 1956, Arrow 1969, Parente

and Prescott 1994, Comin and Hobijn 2004) as identified in Klenow and Rodriguez-Clare

(1997) and Casselli and Coleman (2006), for example.16 We introduce a unique dataset

in which a sequence of technology adoption decisions is clearly observed at the individual

level for the universe of U.S. prescribers, allowing our study to speak both to micro-level

mechanisms driving diffusion and to the aggregate consequences of these mechanisms.

The rest of the paper is organized as follows. Section 2 describes the data used in

our analysis. Section 3 describes a simple model of prescription choice and our estimation

framework. Section 4 presents the empirical results, Sections 5 and 6 discuss interpretation,

and Section 7 concludes.

14We also consider the influence of local differences in mandatory substitution regulations that could be
particularly important for explaining generic diffusion in the data, and find that the effects of database access
are evident among physicians practicing both within and outside states with a mandatory substitution law.

15See also Escarce (1996), who studies physicians’ decisions to adopt a surgical technology.
16The idea that underlying heterogeneity across agents could influence technology diffusion also relates our

work to neoclassical models of technology adoption, e.g. David (1966) and Manuelli and Seshadri (2014).
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2 Data and Descriptive Evidence

Evaluating the influence of information access on new pharmaceutical drug diffusion requires

detailed measures of drug innovations and individual prescribers’ treatment decisions, infor-

mation usage, and characteristics. We introduce each of these measures below and go on to

describe physicians’ prescribing of new and existing pharmaceutical drugs.

2.1 U.S. Innovations in Chronic Hypercholesterolemia and

Dyslipidemia Therapy

At the start of our sample period in January 2000, HMG-CoA reductase inhibitors (statins)

were understood to be the most effective pharmaceutical therapies for hypercholesterolemia,

and there were five such products available: Lescol, Lipitor, Mevacor, Pravachol, and Zo-

cor.17 The most common non-statin used to treat high cholesterol was Niaspan, which is

also included in our sample. Thereafter, twelve new cholesterol or lipid control therapies

were introduced, including new formulations, combinations, and versions.18 These include

three new molecular entities, Crestor, Lovaza, and Zetia; three generic versions, lovastatin

(Mevacor), pravastatin (Pravachol), and simvastatin (Zocor); two new formulations, Alto-

prev (extended-release Mevacor) and Lescol XL (extended-release Lescol); and four new drug

combinations, Advicor (extended-release niacin and Mevacor), Pravigard PAC (aspirin and

Pravachol), Vytorin (Zetia and Zocor), Simcor (extended-release niacin and Zocor). Each

new therapy received nationwide approval by the U.S. Food and Drug Administration (FDA)

on a known, drug-specific date (Table 1). All products are described in Appendix A.1.

While these 18 products are therapeutic substitutes, in that they aim at a similar clini-

cal endpoint—cholesterol or trigliceride reduction—they are only imperfect substitutes: each

product features distinctive characteristics relevant for the prescribing decision. First, many

but not all cholesterol therapies are pure statins, which act to reduce cholesterol synthe-

sis in the liver by inhibiting a specific coenzyme; these include Lescol (fluvastatin), Lipitor

(atorvastatin), Mevacor (lovastatin), Pravachol (pravastatin), Zocor (simvastatin), Crestor

(rosuvastatin), Altoprev (extended-release lovastatin), and Lescol XL (extended-release flu-

vastatin). Other products rely on different mechanisms of action: Zetia (ezetimibe), for

example, is distinct in that it achieves cholesterol reduction by reducing intestinal absorp-

tion of cholesterol. A second distinction involves therapeutic intensity. High doses of Lipitor

and Crestor are more effective at lowering low-density lipoprotein (LDL) cholesterol than

17Cannon et al (2004).
18To ensure adequate coverage in the data, we consider all cholesterol therapies introduced by December

2008, but not those introduced after this date. For the same reason, our analysis excludes Baycol, a drug
that was available in January 2000 but withdrawn from the market in August 2001.
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alternatives (Law et al 2003). Side effects are also relevant; evidence suggests, for example,

that high doses of Lipitor and Crestor may increase the incidence of adverse reactions, while

combination therapies such as Vytorin may in certain cases be more appropriate care for

patients with severe cholesterol abnormalities (Kastelein et al 2008).

More subtly, clinical evidence suggests the benefits and risks associated with statins

are heterogeneous across patients; randomized-controlled trials (RCTs) indicate, for exam-

ple, that the benefits of statin use are higher for patients with diabetes, negligible among

those with prior heart failure, and vary with age; risks and side-effects also vary with statin

intensity, age, weight, comorbidities, and so on (Brooks et al 2014). Adding to this, patients

with ‘complex’ attributes are often underrepresented in RCTs, raising clinical uncertainty

and, accordingly, the likelihood that patient preferences—including willingness to suffer side

effects and to pay for medications—may influence the prescribing choice (Brooks et al 2014).

Physicians’ decisions about which drugs to prescribe are further affected by the evolution

of clinical information as new trials are completed—particularly head-to-head studies aimed

at establishing the relative efficacy of one drug therapy over another.19 These ongoing

changes in clinical evidence, combined with an expanding set of available products and the

accompanying evolution in prices and insurance coverage (e.g. Duggan and Scott Morton

2010), suggest that physicians may turn to drug references that help to ensure patient-specific

prescription decisions are based on accurate information.

2.2 Prescriptions by U.S. Physicians

To measure physicians’ prescribing of new and existing therapies aimed at cholesterol and

lipid control over time, we use physician-level prescription data for the 18 drugs described

above from the IMS Health Xponent database. These data are provided at a monthly

frequency by drug during the period January 2000 through December 2010, and cover each

of the 280,622 U.S. physicians associated with at least ten cholesterol-drug prescriptions

during January to December 2010; this low threshold for inclusion implies that our dataset

captures essentially the universe of U.S. cholesterol drug prescriptions during this period. For

each product and month, we observe the number of prescriptions written by each physician

and filled through a U.S. pharmacy. Beginning in January 2006, the data also include

information on the method of payment used to fill each prescription (Medicaid, Medicare

19For example, an RCT completed in 2004 demonstrated that for patients with severe cholesterol abnor-
mality, the incrementally larger reductions achieved by Lipitor resulted in fewer deaths and major coronary
events relative to patients taking Pravachol (Cannon et al 2004). Another such study released in 2008 found
that, while Vytorin achieved larger cholesterol reductions than simvastatin, the two drugs were observably
identical when it came to the thickness of arterial plaque buildup (atherosclerosis); adding to this, a second
study in 2008 found a positive association between Vytorin and cancer (Rossebo 2008) that was later reversed
(Cannon et al 2015).
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Part D, Cash, or Commercial Third-Party Insurance). Importantly, each physician in the

dataset is identified by a unique medical education number, name (first name, last name,

middle name), and location (a five-digit U.S. zipcode). These identifiers enable us to match

individual prescribers with their observed pharmaceutical information technology use.

To ensure that our sample includes only those physicians actively prescribing cholesterol

drugs during the entire sample period, we restrict attention to the 128,043 physicians that

prescribe ten or more statins both during January to December 2000, and during January to

December 2010; this allows us to abstract from potential differences in prescribing that may

surround a physician’s entry into or exit from medical practice, and also ensures that we have

adequate data on database adopters’ pre-adoption and post-adoption prescribing patterns.

The final prescription dataset includes over 200 million observations (132 months × 128,043

physicians × up to 18 drugs). Summary statistics appear in Table 2, and additional details

regarding data assembly and the Xponent database appear in Appendix A.2.

2.3 Drug Information Access by U.S. Physicians

To construct an index for the extent of physicians’ pharmaceutical information access, we

use novel physician-level data from the private firm that owns and operates a prominent

electronic reference for pharmaceutical products. The data include a monthly indicator for

whether a U.S. physician is a registered user of the reference database, and this suggests the

database is widely used: by December 2010, 45.1 percent of sample physicians had established

an individual database account (Table 2). The data also include information about registered

physicians’ actual use of the reference during the sample period: we observe a lower bound on

the number of times a physician looks up a cholesterol drug using the database. This proxy

is 3.83 on average, and the data indicate that, while 24.2 percent of physicians are registered

database users in the average month, only 13.1 percent of physicians use the database to

look up one of the cholesterol drugs considered in our study. It is for this latter group of

physicians that database access is likely to be relevant to the cholesterol-drug prescribing

outcomes we consider; in Section 5, we thus consider whether the observed intensity of

database use explains variation in its impact on prescribing.

The drug reference contains information that is, in principle, relevant for improving the

match between patient characteristics and available pharmaceutical products. At any point

in time, the drug reference contains detailed information about each available U.S. FDA-

approved medication. This information is obtained from the medical literature, specialist

recommendations, clinical guidelines, manufacturer labeling, standard medical references,

and FDA drug safety alerts and is updated continually; the results of this ongoing research

are condensed into drug-specific monographs that may be accessed through the electronic

database interface. Beyond standard clinical information such as contraindications, cautions,
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adverse reactions, safety, monitoring, and pharmacology, the reference monographs also in-

clude a set of additional variables for each product that may affect prescribing decisions.

Specifically, the monographs include retail pricing and formulary status information for each

drug, drug interaction information, FDA warnings, and off-label and pediatric usage guide-

lines. Each physician customizes the tool with respect to formularies, selecting those relevant

to their decision needs; it is then straightforward for any drug to check copay tiers, formu-

lary alternatives, generic substitutions, criteria for prior authorizations, and quantity limits,

facets of a formulary that are subtle but often have significant consequences for patient costs.

The database includes separate entries for each branded product and each generic, based on

product-specific information such as available formulations, dosing, indications, manufac-

turer, and pricing. The database is updated to reflect both the current set of products and

formulary details, as well as the current state of knowledge regarding drug characteristics

and clinical practice. Importantly, information for new drugs becomes available around the

time the drug is released by the FDA for commercial prescription.

Because the drug reference combines available information into a single, current mono-

graph rather than contributing new or proprietary drug information, it is best viewed as a

tool that makes it convenient for physicians to quickly access condensed clinical, insurance,

and pricing information about a drug. Doctors commonly use the reference to check dosages,

contraindications, and coverage details, but rely on other sources, such as medical journals

or more encyclopedic references, for information such as a drug’s results in clinical trials.

For our study, it is critical to understand what drives database adoption. Figure 1 indi-

cates that use of the reference database during the sample period is not random, but differs

according to observable doctor characteristics.20 Throughout the sample period, physicians

are more likely to have adopted the database if they had graduated from a top-ranked U.S.

medical school (Panel A) and had graduated recently (Panel B); males are also more likely

to adopt (Panel C). Doctors in obstetrics and gynecology (Panel E), and those practicing in

the U.S. South (Panel F) appear systematically slower to adopt the database.

Presently, new physician adopters tend to learn about the reference while in medical

school. However, because the physicians in our dataset had all completed medical school

before the database became available, their adoption decisions are more likely to have been

driven by marketing or peer effects. Documents filed along with the reference firm’s initial

public offering state that its marketing strategy was, in fact, an informal ‘word-of-mouth’

approach, and that throughout the sample period, the network of reference users grew over

time primarily through users telling friends and colleagues about its value. The filings state

that this strategy had been both highly effective and inexpensive relative to the alternative

20Physician characteristics were obtained from the Centers for Medicare and Medicaid Services Physician
Compare database, and were matched based on physician first name, last name, and five-digit zipcode.
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of hiring a dedicated sales force.21 Thus, while our data indicate that physicians are visibly

idiosyncratic in their adoption timing, a doctor is much more likely a user if a high share of

other doctors in her zipcode are also users—consistent with the firm’s reported marketing

strategy. Moreover, only 16 percent of the variation in the time to adoption is explained by

zipcode fixed effects, indicating that within-zipcode dynamics are quite important.

Regarding adoption motives, the main reason doctors cite for registering is convenience:

database use reportedly yields meaningful time savings. By contrast, it is unlikely that price

was an important factor in physicians’ adoption decisions. Access was always available

through a free version of the database application, which included the core drug reference

tools (e.g. dosage lookups) that are relevant to our study. Additional features were available

with a paid subscription, but the annual fee for this version was low, never above $200.

It should also be noted that database adoption appears to be mostly an individual

decision, even for doctors in group practices. Large clinics and physician groups sometimes

purchase site licenses for institution-level access to the database as part of broader I.T.

initiatives; however, some of the benefits of using the database require individual registration,

and most doctors therefore have individual accounts even if their group or clinic has a site

license. Nevertheless, to check whether doctors practicing in groups tend to synchronize their

database adoption, which would suggest the influence of a group-level adoption decision, we

used the 2014 CMS Physician Compare database to identify doctors who were likely working

in the same practice during our sample period. Among over 7,000 groups we identified, just

38 were ones in which all doctors in the group adopted the database at the same time. In

light of this, it seems unlikely that site-level access or group adoption decisions are primary

drivers of the physician-level database use we consider.

2.4 Descriptive Evidence

The data provide suggestive indications that incomplete information may affect physicians’

prescribing as well as the rate and extent of new product diffusion, depicted in Figure 2.

Consider the statistics presented in Table 3, which quantify differences in prescribing across

U.S. physicians for the class of cholesterol medications evaluated. The statistics in Panel A

provide evidence for the December 2010 cross section. It is apparent that the pronounced

variation in cholesterol-drug prescribing previously found among Medicare patients (e.g.

Munson et al 2013, Brooks et al 2014) is also present within the overall population both across

zipcodes (columns 5–8) and individual physicians (columns 1–4). The share of prescriptions

accounted for by generics ranges from zero to one in column 4; moreover, while the average

physician prescribes a generic in 56.4 percent of cases, the standard deviation is also large

21By contrast, sales force marketing is standard for new pharmaceuticals. See Datta and Dave (2013).
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(24.3 percent), and spans the full range from zero (5th percentile physician) to 100 percent

(95th percentile). The relative heterogeneity across doctors is even wider for the specific

drugs described in columns 1 through 3, and across all columns, the idiosyncratic behavior

of individual physicians appears to be important: for the vast majority of zipcodes, there is

substantial within-zipcode variation in generic shares across local physicians (Table A.1).

Even if physicians were perfectly informed, variation in prescribing could result from an

uneven distribution of patient characteristics. For example, Lipitor is a high-intensity statin

that may be preferable for patients with a severe cholesterol abnormality, the incidence of

which may cluster geographically. Similarly, risk-averse patients may prefer an established

drug over a new one—even if the new drug is simply a new generic version—if they perceive

the quality of a new product as uncertain relative to another option. Such underlying patient

heterogeneity may partially explain the slow and incomplete diffusion of new drug varieties,

which is apparent for each new drug except simvastatin (Figure 2 and Table 1, column 3).

It may also explain why a substantial fraction of the variation across doctors observed in

columns 1–4 remains even after aggregating to the zipcode level (columns 5–8).

Unobserved patient heterogeneity likely explains some of this variation in prescribing,

but columns 1, 2, and 3 indicate that additional factors are also likely present. Specifically,

these columns assess within-physician changes in the prescription of new generic products.

The advantage of focusing on these columns is that it is possible to compare prescribing of

a branded product with its molecularly-equivalent generic, two distinct drugs that have no

relevant clinical differences. And, by examining changes over time in the generic share of

molecule-specific prescriptions—e.g the share of simvastatin plus Zocor prescriptions that

are accounted for by generic simvastatin—it is possible to determine whether stable patient

heterogeneity is likely to be the only explanation for variations in care. For each of the three

generic drug introductions (lovastatin, pravastatin, and simvastatin), the data indicate that

physicians differ in their use of generics in the short run, six months after generic entry,

and that substitution toward generics is initially incomplete at this point (Panel B). By

contrast, in the long run, physicians differ substantially less: nearly complete substitution

toward generics is observed for each of the three products (Panel C).22 This pattern of

delayed substitution between two molecularly equivalent products strongly suggests factors

other than time-invariant patient heterogeneity contribute to prescribing differences among

cholesterol drugs, and is consistent with the influence of information frictions.

Beyond cost implications, these same factors may impede the diffusion of new non-

generic therapies, with consequences for health outcomes. The data indicate that physicians

are slow to begin prescribing new molecular entities, new drug combinations, and new dosage

22By December 2010, physicians had broadly switched away from prescribing Mevacor, Pravachol, and
Zocor. However, six months after each respective patent expired, generic prescribing was far less prevalent
for each molecule, though the generic version was in each case already substantially less expensive.
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forms—branded products not facing generic competition. Figure 2 shows that diffusion

curves differ considerably across new drugs; Figure 3 plots the gradual diffusion of Crestor

across U.S. zipcodes; and Table 1 describes how the time lag in months between a drug’s

approval and its initial prescription varies across U.S. physicians for each drug introduction.

The average physician delays prescribing a new drug for 20.3 months among the new products

considered in our analysis; the standard deviation is even larger (22.1 months), and this

adoption lag ranges from zero to 122 months, indicating some physicians adopt immediately

and others had yet to adopt the first new drug by the end of our sample period (Table 2).

Unlike the Dartmouth Atlas and Cooper et al (2015) studies, which cover a compre-

hensive set of treatments and analyze regional differences in the cost and quality of care, we

analyze behavior at the physician level and focus on the specific clinical decision of which

cholesterol drug to prescribe. However, it is nevertheless useful to ask whether the patterns

we observe for this context are consistent with the broader treatment patterns documented

by the Atlas. Aggregating our physician-level data to Hospital Referral Regions (HRRs)

and comparing against data from the Dartmouth Atlas project, we find that locations with

high generic prescription shares in our dataset also have high generic shares for Medicare

overall (correlation 44.4 percent), as well as lower per-capita medical spending for prescrip-

tion drugs (correlation 23.9 percent) and non-drug healthcare (correlation 12.4 percent). As

noted above, these patterns underscore the highly systematic nature of U.S. disparities in

care, and suggest that the disparities in physicians’ prescribing of cholesterol drugs may

reflect some of the same factors that drive disparities in treatment decisions more broadly.

3 Empirical Strategy

In this section we provide a conceptual framework indicating how physician information and

prescribing outcomes may be related. We describe the model implications and restrictions

that guide our approach to estimating the treatment impact of physicians’ database access.

3.1 Conceptual Framework

Consider a baseline model in which physician i faces a period-t choice over which drug to

prescribe for each of her patients n = 1, 2, ..., Nit. Like other economic studies of prescribing

decisions, suppose that physician i makes this decision for each patient by selecting the single

drug j ∈ {1, 2, ..., Jt} available at t that maximizes patient utility according to physician-i

information.23 Specifically, suppose that the true utility derived by patient n from drug j

at t is unjt ≡ θjt + Vnjt, which combines the quality of drug j that is both known at t and

23See, for example, Dickstein (2015), Crawford and Shum (2006). Unlike these papers, we do not observe
patient-level information; this precludes estimating a model of learning within each patient-physician pair.
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common across patients (θjt) with the quality of j that is unknown and partially specific

to patient n (Vnjt). The first of these terms (θjt) thus captures the accepted wisdom at t

about the efficacy, costs, side effects, and so on of drug j for the average patient, while the

second reflects novel information that may, in part, be relevant to the match between j and

patient n. In particular, suppose that Vnjt combines two terms: Vnjt ≡ vjt + εnjt, where vjt

is a drug-specific value—a revision to accepted wisdom about the quality of drug j—and

where εnjt reflects the quality of the match between patient n and drug j. We assume the

physician is only partially informed about Vnjt, to a degree indexed by a parameter φit; she

bases her prescribing decision on a partial observation of unjt given by

ûnjt ≡ θjt + (1− e−φit)Vnjt = θjt + (1− e−φit) (vjt + εnjt). (1)

Physicians with a higher value of φit in (1) are more responsive to information about drug

quality that is not commonly known at t (vjt), and about the patient-specific match (εnjt).

In particular, (1) implies physicians with no special information (φit = 0) are insensitive

to Vnjt and thus prescribe the same drug—that with the highest θjt—for all patients, while

physicians who are fully informed (φit →∞) respond to Vnjt perfectly.

If we assume that the εnjt follow an i.i.d. Type-1 Extreme Value distribution, it is

straightforward in this simple setup to show that the probability physician i prescribes drug

j for patient n at t depends on the information index φit as follows

pjt(φit) =
exp

{
θjt

1−e−φit + vjt

}
∑Jt

k=1 exp
{

θkt
1−e−φit + vkt

}
and that, accordingly, the probability Pijt that drug j is prescribed by physician i at least

once during period t is

Pijt(φit) ≡ P{Xijt > 0} = 1− P{Xijt = 0} = 1− (1− pjt(φit))Nit (2)

where Xijt is the number of physician-i prescriptions written for drug j during period t.24

Moreover, starting from the introduction date t0j of a new drug j, the expected number of

periods Tij that lapse before drug j is prescribed at least once by physician i is

24Qualitatively identical results hold under more general assumptions regarding the distribution of εnjt;
the Type-1 Extreme Value assumption is thus imposed here only for expositional simplicity. A realistic
alternative would be to allow for persistence in the εnjt draws, reflecting that the chronic nature of cholesterol
and lipid disorders implies physicians often treat the same patient for multiple successive periods. In our
analysis to follow, we thus consider the possibility that the prescription outcomes we evaluate are persistent.
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E[Tij] =
∞∑
t=t0j

(t− t0j)Pijt(φit)
t−1∏
s=t0j

(1− Pijs(φis))

=
∞∑
t=t0j

(t− t0j)
(

1− (1− pjt(φit))Nit
) t−1∏
s=t0j

(1− pjs(φis))Nis (3)

which also depends on φit, as does the expected number of unique drugs Mit prescribed by

physician i during t,

Et[Mit] ≡ Et

[
Jt∑
j=1

1{Xijt > 0}

]
=

Jt∑
j=1

Pijt(φit) =
Jt∑
j=1

(
1− (1− pjt(φit))Nit

)
. (4)

Within this framework, we regard the electronic database as a technology that increases

a physician’s φit, which is otherwise unobserved. The database is continuously updated, so

users of the database are more likely aware of any new information about the drug, including

price changes, new warnings, or new results about its efficacy for different patient types.

And the database allows doctors to look up a drug’s current formulary status for a specific

patient’s insurance plan, so database users should also be more responsive to differences

in, and changes in, match quality across patient-drug pairs. From (2), if database use

indeed increases φit, it impacts the probability drug j is prescribed: whether Pijt increases

or decreases for drug j depends on the distribution of Vnjt across drugs j and patients

n. In general, Pijt will increase for drugs with high values of vjt relative to other drugs;

alternatively, if all vjt = 0, an increase in φit raises Pijt for all drugs (due to the εnjt) except

for that with the highest θjt. Similarly, (3) implies the expected number of periods that

pass before drug j is prescribed declines in φit whenever Pijt increases in φit. That is, if a

permanent increase in φit causes a permanent increase in Pijt for drug j, then it also causes a

decrease in Tij. The impact of an increase in φit on the number of distinct drugs prescribed

depends on the sum of derivatives ∂Pijt(φit)/∂φit across drugs j in (4). If a higher φit implies

increased sensitivity to patient-specific match quality εnjt, for example, Pijt would increase

for most drugs j, and diversity of prescribing would also rise.25

It is important to note that doctors who regularly prescribe cholesterol medications

will be aware of most drugs’ clinical attributes. However, if patient-specific economic details

such as the pricing and formulary status of a drug evolve substantially over time, or if news

about negative drug interactions and other adverse reactions emerges only gradually, doctors

may prefer to look up these drug attributes prior to writing a prescription. For newer, less

25See also Berndt et al (2015).
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familiar drugs, doctors may also be inclined to look up details like dosage, and it is for these

drugs that one may expect differences between unjt and ûnjt to be particularly relevant.

3.2 Econometric Model

One natural approach to evaluating the influence of increases in φit due to database adoption

would be to directly estimate equations derived from the conceptual model above. However,

the model indicates it is important to control not only for the number of drugs Jt and i’s

prescribing intensity Nit, but also for unobserved drug quality θjt and unobserved determi-

nants of φit. Given the size of the data set, handling the nonlinearity implied by (2) in the

presence of multiple sets of fixed effects is computationally infeasible. We therefore estimate

the effects of database use through specifications that are guided by the model, but linear.

In particular, we consider three main linear specifications corresponding to each of

the three observable outcomes discussed above: the new-drug adoption lag Tij, prescription

diversity Mit, and prescription probabilities Pijt. Our estimation approach does not impose

the restrictions that link Pijt with Tij and Mit in the model; as a result, comparing our

estimates across these outcomes is qualitatively informative regarding the fit of the model.

We first assess the time lapse Tij between the initial market release of drug j and its

first prescription by physician i as in Coleman, Katz, and Menzel (1957) using the following

equation

P{Tij ≤ 12} = ηi + ηzj + βZij + δNit(j)−1 + εij, (5)

where Tij is measured in months, P{Tij ≤ 12} is the probability that j is prescribed by i

within twelve months of release, and where ηzj and ηi are zipcode-drug and physician fixed

effects, respectively. Zij indicates whether doctor i has database access at the time drug

j is first introduced, and Nit(j)−1 is i’s total prescription volume for cholesterol drugs in

the month preceding j’s introduction. We also estimate (5) with closely-related alternative

dependent variables including P{Tij ≤ 6}, P{Tij ≤ 24}, and Tij.
26

Both (3) and (5) are expressed at the doctor-drug level and, but for the functional-form

differences mentioned above, the two equations are connected. The estimating equation

essentially considers φit to be a function of database use (Zit), physician fixed effects (ηi),

and zipcode-month fixed effects (ηzt) reflecting local changes in access to information. We

arrive at (5) by noting that the evolution of time is, in doctor-drug space, marked by the

sequential introduction of each new drug j, and that the ηzj we therefore include take the

place of ηzt while also accounting for the drug quality effects θjt in (3). In addition, like (3),

26With Tij as the dependent variable, it is necessary to address truncation—which is more pronounced
for drugs introduced late in the sample period. To apply a uniform truncation rule, a significant number of
observations must be omitted, hence Tij , though more direct, is not our preferred dependent variable.
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(5) includes i’s prescription volume Nit(j)−1, and Jt is absorbed by the ηzj.

Equation (5) is estimated on the subset of drugs first introduced during the sample

period. Finding that the coefficient of interest β is positive would indicate that when a

physician obtains database access, she significantly increases her likelihood of prescribing

a new drug within its first year, relative to before access began. This would be consistent

with database use increasing φit and the probability Pijt of prescribing a new drug j at t:

∂Pijt(φit)/∂φit > 0. Notice that the inclusion of physician fixed effects implies that β is

identified using within-doctor variation over time: i may be a database user at the time

drug j is first introduced, but may not yet be a user upon the introduction of drug j′.

These effects are important if stable, unobserved physician characteristics determine both

physician-specific database use Zij and the rate of drug adoption Tij (e.g. early adopters).

Possible common unobserved random shocks that are local and correlated with database

adoption are further accounted for by clustering standard errors at the zipcode level.

Nevertheless, even with these fixed effects and clusters, there could be time-varying

factors such as local technology adoption propensities (Skinner and Staiger 2007) or phar-

maceutical advertising that jointly determine, or are correlated with, both physician i’s

database use and her rate of new drug adoption. The ηzj in (5) partially address this by

accounting for differences across zipcode-drug pairs in doctors’ average first-prescription tim-

ing, which in this context would be correlated with Zij. However, if the omitted factor is

idiosyncratic across physicians, even within a zipcode, then Cov(Zij, εij) 6= 0 and (5) will fail

to yield a consistent estimate of β. We return to this in describing our instrumental-variables

estimates in Section 5.

Second, building from (4), we consider the possibility that information access could

affect physician i’s knowledge about the match quality between drug j and patient n, in-

ducing better-informed physicians to prescribe a more diverse set of products than less-

informed peers. To assess this possibility, we determine the number of unique drug products

Mit ≡
∑

j∈Jt 1{Xijt > 0}, where 1{Xijt > 0} is an indicator for whether physician i writes

at least one prescription for drug j during month t, and evaluate the following specification

Mit = ηi + ηzt + βZit + δNit−1 + εit, (6)

where all variables are as defined above. Mit is low when the prescriptions of physician

i are concentrated within a narrow subset of products during month t, and is high when

prescribing is diverse. Finding that β is positive in (6) would thus indicate that database

access is associated with higher product diversity among physician i’s prescriptions; notice

that, through (4), this occurs only when the period-t prescription probability Pijt rises more,

on average, than it falls—that is, when
∑Jt

j=1 ∂Pijt(φit)/∂φit > 0. Setting aside functional

forms, the connection between (6) and (4) again rests on the idea that the information index
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φit is a function of database use, physician fixed effects, and zipcode-month fixed effects. We

control for Nit−1 directly, and for Jt through ηzt. Standard errors are clustered by zipcode-

month to allow for local unobserved shocks correlated with database adoption Zit.

We also estimate (6) replacing Mit with the Herfindahl-Hirschman index (HHIit) as an

alternative dependent variable; an advantage of this alternative is that it simultaneously

captures both intensive- and extensive-margin effects of information on prescribing. Notice

that β in (6) is again identified using within-physician variation over time in information

access Zit. The zipcode-month fixed effects further help to account for changes over time

in unobserved, location-specific determinants of prescribing diversity; these are particularly

important if patient characteristics—such as insurance coverage, mandatory substitution

laws, patient preferences, and disease severity—or other local factors evolve in ways that

affect prescribing and are correlated with measured physician technology adoption.

Finally, we evaluate directly the impact of information access on Pijt, the probability

that drug j is prescribed by doctor i at t. It is of particular interest to understand how

database users’ Pijt values across new and old drugs j change after database adoption.

Moreover, because new patent-protected products differ from new generics in both cost and

novelty, access to the database may also tilt prescribing based on the patent status of a

product. We thus evaluate whether physicians using the database are more or less likely to

prescribe a product of a given type using the following specification

P{Xijt > 0} = ηjt + ηi + ηzt + δNit−1 + [β0Genj + β1(1−Genj)]× Zit ×Newτjt
+ [β2Genj + β3(1−Genj)]× Zit × (1−Newτjt) + εijt, (7)

where P{Xijt > 0} is the probability that physician i writes at least one prescription for drug

j during month t, Genj is an indicator that is equal to 1 if product j is a generic variety,

and Newτjt indicates whether drug j is within τ months of its initial approval for U.S. sale.

The main coefficients of interest β0, β1, β2, and β3 jointly capture the association between

database use Zit and prescribing propensity for both new drugs (β0, β1) and established

products (β2, β3), where finding β0 > 0 would indicate that database users are more likely

to prescribe a given drug j that is both new (within τ months of initial market release) at

t and generic, relative to other physicians. Similarly, finding that β1 > 0 would indicate

that database users are more likely to prescribe a new, branded product j. Note that the

estimates of (7) have implications for Tij and Mit through (3) and (4) above.

Equation (7) includes three sets of fixed effects, in line with (2). Drug-month effects

ηjt account for the average perceived quality of drug j across physicians at t (θjt), which

may depend on factors such as drug potency and side effects known at t, as well as the

average expected pharmacy price at t. As with our other estimating equations, we further

17



include physician fixed effects ηi that absorb any individual characteristics affecting φit or the

prescribing propensity such as location, patient composition, and physician age, education,

and medical specialty. The coefficients of interest β are thus identified primarily from within

doctor variation over time in information access Zit. Zipcode-month fixed effects ηzt absorb

any dynamic, location-specific determinants of φit or prescribing that may be correlated with

physicians’ database use; standard errors are adjusted for clustering at the zipcode-month

level, and we control for Nit−1 directly.

4 Main Results

4.1 Time to First Prescription

We begin by evaluating the relationship between a physician’s database use and whether

she adopts a new drug j within a year of its release. The model indicates that physician

i is faster to begin prescribing j if she is a database user, for any new drug j satisfying

∂Pijt(φit)/∂φit > 0. For these drugs, we thus expect a positive coefficient on Zij (Databaseij),

where Zij takes a value of 1 if physician i has access to the drug reference database at the

time a new drug j receives approval for sale in the U.S. market, and is otherwise zero.27

Estimates of (5) appear in Table 4. Columns 1 and 2 support the idea that database

users are more likely, on average, to begin prescribing newly-approved drugs early, within

their first year. The estimated coefficient on Zij is positive and highly significant in both

columns, suggesting users are 1.91 percentage points more likely than non-users to write

their initial prescription for a new drug within its first year (column 1); the estimate changes

to 0.89 percentage points if we include physician fixed effects (column 2).28 The data also

confirm that doctors with large prescription volumes Nit−1 are also significantly faster to

begin prescribing a new drug, consistent with the model’s qualitative predictions.

Columns 3 and 4 assess potential differences between new brand-name and new generic

drugs. With prescriber fixed effects in column 4, we find that the estimated effect for generics

(Databaseij ×Genericj) remains positive and significant, while that on branded products is

indistinguishable from zero. Specifically, physicians using the database are 2.13 percentage

points more likely to prescribe a new generic within its initial year, but are no faster in the

case of new branded drugs.29 That database use may tilt prescribing toward faster generic

27Throughout Section 4, Databaseij (Zij) is the Database and Use Indicator described in Table 2.
28For comparison, we replicate Table 4 using lnTij as the outcome variable. Truncation in Tij is addressed

by limiting the duration of analysis to a window of 54 months following each new drug introduction and
omitting Simcor; 54 months is the time span between the release of simvastatin and December 2010. The
results are qualitatively similar to those in Table 4, and imply that database users begin prescribing a newly-
approved drug 1.2 months or 0.83 months sooner, on average, than non-users. We also consider P{Tij ≤ 6}
and P{Tij ≤ 24} as alternatives, and find results for each that are qualitatively identical to those in Table 4.

29Notice that the zipcode-drug fixed effects ensure that this result is not explained by differences in local
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adoption has potentially significant aggregate cost implications given the size of the market

for cholesterol therapies and the chronic nature of the condition they treat.30 Moreover,

because generic drugs share identical clinical attributes with branded versions, these results

strongly suggest database users may be responding to the increased salience of non-clinical

information—in particular, price and insurance formulary data.

While the estimates in columns 1–4 rely on the full sample of U.S. physicians, these

results may be sensitive to differences across database users and non-users in the evolution of

prescription outcomes. To better isolate the within-doctor impact of database use, columns

5 and 6 restrict the physician sample, including only those that both register for and use the

drug database during the sample period. Doctors that have yet to adopt the database by

December 2010 are thus omitted. With this restriction, the estimates in column 6 suggest,

as in column 4, that database users are indeed significantly faster to begin prescribing new

generics, but show no significant effects on the adoption of new branded drugs.

Across all columns, zipcode-drug fixed effects absorb variation across locations and over

time in a) access to other drug information sources (e.g. advertising), b) physicians’ tendency

to adopt new technology, c) patient characteristics affecting the price or match quality of

drug j, and d) competition. Any component of factors a) through d) that is stable over time

is further captured by physician fixed effects in columns 2, 4, and 6.

4.2 Prescription Diversity

To evaluate the impact of physicians’ database use on the diversity of prescribing, Table

5 provides estimates of (6) for two outcome variables: the number of unique drugs Mit

prescribed by physician i at t (columns 1 and 3), and the associated Herfindahl-Hirschmann

index, HHIit (columns 2 and 4). The coefficient of interest is on Databaseit (Zit), which takes

a value of 1 if physician i has access to the drug database at t, and is otherwise zero.

In the model, prescribing diversity increases when a physician adopts the drug database

if the prescription probability Pijt rises more, on average, than it falls—that is, if adoption

induces an increase in φit and if
∑Jt

j=1 ∂Pijt(φit)/∂φit > 0. The results in columns 1–4

are strongly consistent with this. In column 1, the estimated coefficient on physician-i

database access Zit is indeed positive and highly significant, and indicates that database users

prescribe, on average, 0.123 additional unique drug varieties each month relative to a non-

user.31 In column 2, we find that HHIit is also strongly responsive to database adoption: the

estimate −0.006 is negative and highly significant, indicating that database users’ prescribing

mandatory substitution laws. We nevertheless provide additional results regarding the effects of substitution
laws on prescribing outcomes in Section 5.

30See Section 7.
31Because Mit is a count variable, we re-estimate the coefficients in columns 1 and 3 using both Poisson

and Negative Binomial estimators, and find qualitatively identical results.

19



is substantially less concentrated across drugs j. Consistent with the model, we also find that

prescription diversity increases significantly in a physician’s monthly prescription volume.

In columns 3–4, physicians differ only in their respective drug reference adoption dates,

yet the estimates are qualitatively identical to those in columns 1–2: prescription diversity

increases significantly when physicians adopt the drug database. The estimates in columns

3–4 are considerably smaller than the full-sample results, however. This suggests the possible

influence of unobserved factors, correlated with Zit, that influence prescription diversity. We

discuss this concern in more detail in Section 5 below.

4.3 Prescription Propensity

We report estimates of the propensity equation (7) in Table 6, again for all physicians (column

1) and for the sample restricted to eventual database users (column 2). The outcome variable

1{Xijt > 0} is binary, indicating whether physician i writes at least one prescription for drug

j at t, and the main coefficients of interest β0 and β1 correspond to Databaseit (Zit) and its

interaction with indicators for new generic and branded drugs, respectively.32 We define j

to be new while it is within τ = 24 months of its initial market approval.

As described above, the model predicts that the coefficients β0, β1, β2, and β3 could

be positive or negative depending on the distribution across drugs in the unobserved quality

terms vjt and εnjt about which physicians learn as φ increases. Pijt will tend to increase in φit

for drugs with high vjt values, but will generally fall if vjt is relatively low. Whether database

adoption increases or decreases prescribing for a particular drug type is thus an empirical

question. It is, however, one to which we can partially predict the answer, given the model

and results in Tables 4 and 5 above. First, Table 4 indicates physicians using the database

are faster to begin prescribing new generics, but mildly slower to adopt new branded drugs; if

the model is correct, this suggests, through (3), that β0 > 0 and β1 < 0. Second, prescription

diversity increases with database adoption in Table 5; in (4), this implies that the sum across

β0, β1, β2, and β3, weighted by the number of drugs per category, is positive.

Across both columns in Table 6, it is clear that physicians with database access are

substantially more likely to prescribe generic products, regardless of vintage: β0 > 0 and

β2 > 0. Specifically, these estimated coefficients are positive and highly significant, indicating

the likelihood physician i prescribes a new generic drug is 1.62 percentage points higher when

she has access to the database, and 2.40 percentage points higher for an older generic product

in the restricted sample (column 2). The coefficients on branded drugs are much smaller

32The estimates in Table 6 span January 2000 through December 2010. To manage the computational
burden of the sample size, we include only observations in January 2000 and each subsequent June and
December in estimating the coefficients. The results are not qualitatively or quantitatively sensitive to this
sample size reduction.
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in magnitude, but still precisely estimated: users are 0.15 percentage points more likely

to prescribe an old, branded product (β3 > 0), and are 0.42 percentage points less likely

to prescribe a new, branded product (β1 < 0). Viewed through the lens of the model,

the estimated coefficients β̂0 and β̂1 are thus exactly aligned with the results in Table 4.

Moreover, the coefficients in Table 6 are consistent with the diversity estimates in Table

5. Accounting for the distribution of drug types in the data, the weighted sum across the

coefficients β in column 2 is always positive. The predictions of the model, in light of the

estimates in Tables 4 and 5, are thus strongly consistent with the results in Table 6.

Importantly, the estimates in Table 6 provide additional suggestive evidence regarding

the mechanism through which database adoption may influence prescribing. That the impact

of database access is apparent not only for new, but also older products suggests that there

could be important reasons for doctors to continually reference the drugs in question—

possibly to learn about aspects of a drug that are either time-varying or patient specific. This

ongoing process of information acquisition could thus be an important factor in explaining

why a significant fraction of a new drug’s diffusion occurs beyond its first two years (Figure

2), a feature of technology diffusion that has fascinated economists for decades (Manuelli

and Seshadri 2014). Second, the estimated coefficients of interest are again consistent with

responsiveness to economic information—price and formulary status—the inclusion of which

is a distinctive feature of the drug database we consider. In particular, users tilt prescribing

away from new, branded products—for which prices are generally high—and strongly toward

generic products, for which prices are low. That the estimated increases in generic propensity

(β0, β2) are so large in magnitude relative to those for branded products further suggests the

response to price information is economically important—which is not only surprising, but

also indicates database adoption could therefore have significant implications for aggregate

prescription costs.

5 Interpreting the Results

The results in Tables 4 through 6 above indicate that physicians using the point-of-care

reference begin prescribing new generics sooner than non-users, prescribe a more diverse

set of drugs than non-users, and more often prescribe a generic drug. Because database

adoption is not randomly assigned, however, a key question that remains is whether a causal

interpretation of our results is supported by the data. Our fixed-effects approach helps rule

out certain alternative explanations including cases in which ‘early-adopters’ or physicians

facing intense local advertising exposure begin both using the database and prescribing a new

drug sooner than other physicians—for reasons unrelated to the actual impact of database

use. A limitation of this approach arises when database adoption is either correlated with, or
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involves selection on, time-varying, idiosyncratic physician characteristics that are relevant

to the prescribing outcomes we consider.

In the case of advertising, for example, if an individual physician’s database adoption

timing were to be correlated with the idiosyncratic change in her own exposure to detailing—

that is, the component not accounted for by zipcode-month effects—our estimates of the

impact of adoption could be confounded with the influence of drug advertising. Without

granular data on detailing, it is not possible to know whether there are meaningful shocks to

detailing efforts that differ substantially across physicians within a U.S. zipcode-month for

the drugs we consider. It is important to note, however, that, our results indicate database

adopters are primarily quicker to prescribe new generic drugs, which are not advertised.33

Relatedly, it is possible in Table 5 that a physician’s decision to adopt the database

is partially determined by the underlying, idiosyncratic rate of increase in her prescribing

diversity: naturally, adopting the database today could be a more attractive option for a

physician who anticipates prescribing a wider range of products in the future, than for a

physician in the opposite situation.34 In this section we describe additional results in order

to clarify the degree to which a causal interpretation is warranted and to determine which

alternative interpretations can be ruled out.

5.1 Endogenous Database Adoption

One approach to handling the endogeneity of database adoption is to find an instrument that

generates quasi-random variation in a physician’s database adoption decision, and to estimate

the impact of information access relying on variation in this instrument. We have considered

three such instruments: 1) a measure of location-year specific hospital I.T. use from Dranove

et al (2014), and 2) a measure of location-year specific high-speed internet penetration, and

3) the doctor-month specific share of other local physicians that have adopted the reference

database; all three are factors that could influence doctors’ database adoption decisions while

being plausibly unrelated to choices over which anti-cholesterol drugs to prescribe. While we

find that the first two instruments are only weak predictors of database adoption, resulting in

second-stage estimates highly sensitive to small specification changes, the third instrument

is a robust predictor of database adoption.

We therefore reassess the results in Tables 4, 5, and 6 using this third instrument.

Estimates appear in Tables 7, 8, and 9, respectively. The logic underlying the first stage is

33The data studied by Larkin et al (2017) show that detailing is almost exclusively done for branded drugs.
34While U.S. physicians always face the same set of drugs approved for prescription, and in that sense do

not differ in changes to the range of products available, their exposure to such changes may differ due to the
potentially distinct characteristics of the specific patients they treat. To the extent that these distinctions
are time-varying and correlated with database adoption, even across doctors practicing in the same zipcode-
month, our fixed effects estimator could yield biased estimates.
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identical across all three specifications. Consider Table 5: the first stage corresponding to a

version of (6) that replaces ηzt with ηt is

Zit = αSz(i)t−1 + νi + νt + ξNit−1 + uit, (8)

where Sz(i)t−1 is the share of physicians, excluding i, that are located in i’s zipcode z(i)

and are database users at t − 1.35 The identification restriction is that the instrument is

conditionally uncorrelated with the error term in (6): Cov(Sz(i)t−1, εit|ηi, ηt, Nit−1) = 0.

Most explanations linking neighbors’ database adoption decisions would suggest α > 0

in (8). One possible mechanism is that neighboring physicians are likely to share information

about tools and techniques that improve professional performance; alternatively, physicians

interacting locally may simply observe a peer accessing the database, and may decide to

adopt on that basis. As discussed above, the reference firm’s public statements indicate

that such informal peer effects were the most important driver of database adoption among

doctors during the sample period. Regarding excludability, it does not seem likely that

the database adoption decisions of physicians neighboring i would directly affect i’s own

prescription decisions, as patient medical information is privacy-protected by law.36

Whether the bias in our baseline estimates is upward or downward hinges on the rela-

tionship between the omitted factor and database adoption (Zit). One possibility is that a

physician makes an unobserved decision to move closer to the efficiency frontier by adopting

new generic drugs quickly, prescribing them more often in place of a branded drug, and

increasing the influence of patients’ diverse characteristics on prescription choice—and that

as a result of this unobserved decision, the doctor now finds it profitable to begin using

the database to assist her increasingly complex prescription choices. This would suggest

Cov(Zit, εit) ≥ 0 in (6) and a corresponding upward bias in our baseline estimate of β. On

the other hand, if time-constrained physicians choose among multiple sources of drug infor-

mation, those adopting the reference we consider (with Zit = 1) may do so at the expense

of relying on a substitute resource that could affect prescribing similarly.37 This would tend

35Notice that this instrument is not valid in the presence of zipcode-month fixed effects ηzt. With ηzt,
identification through the instrument comes from comparing two doctors i and i′ in the same zipcode and
month that have different adoption shares Sz(i)t−1 and Sz(i′)t−1. However, such a difference arises only when
exactly one of the two has adopted the database. But in this case, the instrument for i directly reflects
Zit−1, which is correlated with Zit and thus also with the prescription outcome Mit. We therefore replace
the ηzt (or ηzj) with ηt (or ηj) in the instrumented specifications.

36There are channels through which Sz(i)t−1 could be correlated εit in the second-stage equation. Changes
in neighbors’ database adoption could reflect changes in the proximity of their location to the technology
frontier, possibly due to advertising; this could manifest itself not only in a high early rate of database
adoption but also a high early rate of new drug adoption. Neighboring physicians that share information
about database use could also share information about new drugs, affecting prescribing even if patient-
specific details are not discussed. Such cases are better addressed by the baseline specification (6), which
includes zipcode-month fixed effects that absorb local changes of these types.

37For example, relevant alternatives include the Micromedex and UpToDate Lexicomp databases.
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to result in Cov(Zit, εit) ≤ 0 in (6), placing downward pressure on the estimate of β.

The estimates in Tables 7 through 9 are largely in line with the latter interpretation.

Based on our preferred second-stage estimates in Table 7, column 6, database users are

6.10 percentage points more likely to begin prescribing a new generic within its initial year,

relative to a non-user, with no significant effects among new branded drugs. The magnitude

of the effect for generics is larger than in Table 4, suggesting a bias toward zero for this

coefficient; the coefficients for branded products are statistically indistinguishable. In Table

8, column 4 similarly suggests that the true impact of database adoption on diversity is an

order of magnitude larger than in Table 5; however, this result is limited to prescription

concentration HHIit, with the effect on Mit insignificant in Table 8, column 3. Table 9

suggests that Table 6 understates the impact of the database on generic prescribing by

a factor of four for new generics (β0) and a factor of ten for old generics (β2).
38 However,

database adopters are less likely to prescribe old branded drugs (β3 < 0). Each table includes

the first-stage estimates and reports the F statistic, which in every case is substantially higher

than its weak-instrument threshold value.

Overall, the IV estimates reported in Tables 7–9 confirm a pattern of database impacts

that is similar to the corresponding OLS estimates, but with larger estimated magnitudes.

We view these as a set of robustness checks, with results that lend credibility both to the

qualitative effects estimated above, and to a causal interpretation of these effects. Never-

theless, it is worth noting that our leave-out mean instrument relies on variation in group

composition that in many applications leads to small-sample bias from weak instruments,

and that could confound interpretation in certain cases (Angrist 2014). Regarding the for-

mer, we have confirmed the strength of the instrument, aided by the fact that the instrument

varies over 13,000 zipcodes × 131 months = 1.7 million observations, across which there is

sufficient heterogeneity for identification. Regarding the latter concern, that groups with

high database adoption rates could also have different prescribing tendencies due to factors

other than actual database access, three observations are useful. First, such an unobserved

factor would need to cause a correlation between zipcodes’ database adoption timing and

increased generic prescribing in the absence of effects on brand-name drug adoption; second,

provided this unobserved factor varies by zipcode-month, then it is reassuring that the base-

line estimates including these fixed effects are qualitatively similar (Tables 4–6); third, we

find that the results in tables 7–9 are essentially unchanged when defining the instrument at

a broader geographic unit (three digit zipcodes).

38In the interest of space, first-stage estimates for Table 6 appear in Appendix Table A.2.
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5.2 Timing the Impact of Database Adoption

For an important class of alternative explanations, physicians either adopt the reference

database in response to pre-existing changes in prescribing, or are influenced by omitted,

dynamic factors that simultaneously affect both prescribing and database adoption. A symp-

tom that would likely appear where these influences are active is adopters who exhibit a trend

toward the predicted outcomes, even before accessing the database. To account for this pos-

sibility, we consider variants of (6) and (7) that include a full set of physician-specific time

trends. The results appear in Tables 10 and 11. Considering the estimates in Table 10, it

is clear that including doctor trends reduces the estimated impact of database adoption in

the overall sample (columns 1 and 2) relative to the baseline estimates in Table 5; however,

the impact increases within our preferred specifications (columns 3 and 4) that include only

eventual database adopters. Relative to Table 6, the results in Table 11 are essentially iden-

tical. Accounting for physician-specific trends thus leaves unchanged the main qualitative

implications of Tables 5 and 6.

5.3 The Intensity of Database Use

The model proposes a specific mechanism: physicians’ prescription outcomes are influenced

by database access because the information obtained through the database is important, yet

otherwise unknown. If this proposed mechanism is correct, then if we observe physicians

using the database to search for cholesterol drugs with different intensities, those search-

ing more intensely should have correspondingly larger prescription responses. There could

certainly be other explanations linking search intensity with the prescribing outcomes we

consider, but this evaluation is informative nevertheless: if intensity and response are not

linked in the data, it would strongly suggest the proposed mechanism is invalid.

With these considerations in mind, we make use of a key feature of the data that

allows us to observe not only a physician’s database registration date, but also a proxy for

the extent of her drug-month specific database use, conditional on adoption. The variable

is unfortunately not an exact lookup count, as the database company changed the way it

maintained lookup data over time; given this, we aggregate the lookup proxy into a coarser

measure reflecting a lower bound for each physician’s overall intensity of database use. We

then divide the sample of physicians into three groups based on this lower bound, and re-

assess the results in Tables 4, 5, and 6 allowing different coefficients for each intensity group:

low-intensity users are database adopters for whom the lower bound on cholesterol drug

lookups is zero; the high-intensity group includes doctors whose total lookup proxy is in the

top decile. The results appear in Tables A.3, A.4, and A.5 in the Appendix.

The estimates in Table A.3, columns 1 and 2, reveal that the impact of database adop-
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tion is systematically and monotonically increasing in the intensity of usage. In column 1,

the low-intensity users are 0.32 percentage points more likely to adopt new drugs within one

year of release, while high-intensity users are 3.41 percentage points more likely to do so;

both coefficients are strongly significant, but reveal meaningful heterogeneity across database

adopters in its prescribing impact. Column 2 reveals a similar pattern of increasing impact,

and column 6 confirms the finding in Table 4 that database use systematically speeds adop-

tion of new generic products.

Analogous results obtain in Tables A.4 and A.5. The estimates in Table A.4 indicate

that diversity increases with database adoption only for high-intensity users; Table A.5 sug-

gests that the highest-intensity users are the most responsive to database access in switching

away from branded drugs and toward generic products. Taken together, these results are

consistent with the mechanism we propose in the model.

5.4 Mandatory Substitution Laws

To encourage cost savings, many U.S. states impose regulations mandating generic substitu-

tion where available; in most cases, such laws have been in force since the 1970s (Grabowski

and Vernon 1979) and were thus in effect during the sample period. This means that phar-

macists dispense the generic version of a drug even if the physician prescribed the branded

version. Since our IMS data are collected from pharmacies and are based on prescrip-

tions dispensed, a possible concern is that the patterns in our data reflect pharmacists’

behavior rather than physicians’ prescribing behavior—for example if the implementation of

mandatory substitution laws differs across states and over time in a manner correlated with

physicians’ adoption of the drug database.

On this point it is important to note that all of our baseline results include zipcode-drug

or zipcode-month fixed effects that absorb any impact of mandatory substitution laws on the

prescription outcomes we consider—even where these laws may be correlated with physicians’

database adoption choices. Nevertheless, to further check the robustness of our results to this

potential concern, we re-estimate the regressions reported in Table 4, replacing the zipcode-

drug fixed effects with a set of drug fixed effects, and splitting the sample between doctors

in states with vs. without mandatory substitution laws. We also consider triple-interacted

specifications in which the effect of database adoption is allowed to depend on whether the

doctor is in a mandatory substitution state. The results, shown in Table A.6, indicate that

database adoption is associated with faster adoption of new generics regardless of whether

the physician is in a mandatory substitution state.
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5.5 Pharmaceutical Innovation

Physicians practicing in locations known for pharmaceutical innovation may have access to

frontier knowledge regarding pharmaceutical development and pricing, limiting the potential

for the reference database we observe to influence prescribing decisions. Within the concep-

tual framework outlined in section 3, proximity to the frontier could imply physicians have

initially high φit parameters that are either minimally or not responsive to database use. If

so, database use has little potential to affect prescribing. The zipcode-drug or zipcode-month

fixed effects included in the baseline specifications account for the innovativeness of a physi-

cian’s local environment. To assess whether location-specific differences in innovativeness

impact the mechanism, we therefore replace these effects with either drug or month fixed

effects, and use patent data from the NBER U.S. Patent Citations Data File (Hall, Jaffe,

and Trajtenberg 2001) to measure the number of pharmaceutical patents granted between

1975 and 1999 by zipcode. We then re-evaluate the adoption-lag specifications in Table 4

separately for two samples corresponding to the top and bottom five percent across zip-

codes based on the number of pharmaceutical patents granted. We also consider interacted

specifications that account for differences in pharmaceutical patenting across locations.

The estimates appear in Table A.6, and suggest that physicians plausibly located near

the knowledge frontier—that is, physicians in zipcodes among the top five percent by drug

patenting—indeed respond to drug information differently than their more distant peers.

Specifically, the estimates indicate that while use of the database in the least-innovative

locations is associated with a larger impact on the likelihood of new drug adoption within

one year (columns 2 and 6) relative to the most innovative locations (columns 1 and 5).

Considering the full sample, columns 3 and 7 both indicate that the database speeds generic

adoption on average, but has especially pronounced effects among the least-innovative loca-

tions that are likely to be far from the information frontier. Columns 4 and 8 confirm this

result using a continuous measure of local patenting. Innovative areas adopt generics more

quickly regardless of database adoption, but on average, a physician using the database in

these locations is significantly less responsive to the information in terms of new generic drug

adoption. The database nevertheless has an independent effect, speeding the adoption of

new generic drugs regardless of patenting.

5.6 Other Robustness Checks

We re-estimate the results involving the count variable Mit in Table 5 using Poisson or

Negative Binomial regressions, and we estimate specifications involving the binary variables

in Tables 4 and 6 using logistic fixed effects regressions. We reevaluate Table 6 including

doctor-drug fixed effects and zipcode-month-drug type fixed effects. To allow for persistence
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in prescription outcomes, we also control for the first lag of each outcome in Tables 5 and

6.39 Each of these robustness checks reveals qualitatively similar results.40

Finally, a physician’s decision to prescribe a generic drug may be related to the insur-

ance coverage of her patient population. We therefore evaluate split-sample estimates based

on whether physicians receive a high or low share of Medicare and Medicaid patients, rela-

tive to the privately insured; separately, we repeat this split-sample analysis, distinguishing

physicians based on whether a high or low share of their patients pay for prescriptions with

cash. In both cases, we find negligible differences across groups.

6 Physician Heterogeneity

As a final point, we consider whether the data are broadly consistent with the idea that

incomplete information contributes to disparities in prescribing behavior across physicians.

If indeed these disparities partially reflect systematic informational differences, then physi-

cians sharing access to a common source of drug information, like the reference database in

our study, should tend to exhibit observable homogenization relative to other doctors. We

consider this possibility using a simple approach. We first assign each physician to one of

two groups based on her database registration status in December 2010. Then, within each

group, we measure the extent of prescribing heterogeneity across physicians: specifically, we

determine the vector of prescription shares for each prescriber i in December 2010, and then

compute the Euclidean distance between this physician-i vector and the average vector of

prescription shares among physicians in her group (database users or non-users).

These within-group similarity measures are reported in Table A.8, Panel A. The pre-

scription shares of database users are indeed more homogeneous than those of non-users.

The average Euclidean distance between the physician-i prescription vector and the group-

specific average is 0.152 for users and 0.176 for non-users, and the difference (-0.0236) is

highly statistically significant. Importantly, note that database users prescribe a signifi-

cantly more diverse set of products than non-users, as shown above in Table 5; the relative

homogeneity of database users’ prescribing patterns thus does not imply a loss of variation

in therapies generally. Rather, the result implies that physicians who are connected to the

same information source resemble each other more closely in spite of the fact that they tend

to prescribe a more diverse set of drugs.

Of course, the fact that database users’ prescribing patterns are less heterogeneous could

reflect selection rather than any causal effect of information access. Indeed, Panel B of Table

A.8 shows that eventual database users’ prescribing exhibited greater homogeneity than non-

39Structural persistence could arise in the presence of persistent patient specific match quality εnjt terms
in the model, given the chronic nature of the relevant medical condition.

40Detailed results available on request.
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users’ even in January 2000, before anyone was using the database. But, the changes by

group between 2000 and 2010, summarized in Panel C, indicate that while a) both groups

(users and non-users) exhibit homogenization over time, with the average Euclidean distance

declining by 0.052 for users and by 0.040 for non-users, b) the difference in differences is also

highly significant—i.e., significantly more within-group homogenization is observed among

database users than among non-users, even when controlling for physician fixed effects.41

Our data cannot definitively say whether the faster convergence for database users was

directly caused by the database: unlike the regression analyses reported in Section 4, the

results described in Table A.8 are based on across-group comparisons rather than within-

doctor comparisons, so the stronger trend toward homogenization among adopters could

reflect other characteristics that are correlated with the decision to adopt. Nevertheless, we

view these results as suggestive of the idea that database use could reduce disparities in

care—an idea that merits exploration in future research.

7 Conclusion

This paper has empirically examined how physicians’ prescribing decisions are affected by

access to a drug reference database at the point of care. Using a novel dataset that includes

prescription choices and drug reference use for over 125,000 individual U.S. physicians, we

find that after adopting the database, users increase the likelihood of prescribing a generic

drug, are faster to begin prescribing a newly-released generic, and yet also significantly in-

crease the diversity of products prescribed each month. These results are consistent with the

predictions of a simple, incomplete-information model of prescription choice, and are robust

across specifications that control for physician and location-month unobserved prescribing

determinants and that treat the timing of physicians’ database adoption as endogenous.

While the magnitude of database users’ estimated shift toward generic drugs is mod-

est at the prescriber level, the implied aggregate impact on drug spending is economically

significant. U.S. pharmacies filled approximately 170 million cholesterol drug prescriptions

in 2010, for example, a year during which roughly 45 percent of sample physicians were

users of the drug reference database, and during which the average price difference between

branded and generic cholesterol-drug prescriptions was around $94.42 If 45 percent of these

prescriptions correspond to database users, and if users’ generic shares increase by even half

41For clarity, Panel C reports coefficients from a least-squares regression of the Euclidean distance to the
mean Dit for doctor i at t = {January 2000, December 2010} on an indicator I2010 for December 2010, its
interaction Z2010 × I2010 with an indicator Zi,2010 for physician-i database access in December 2010, and
physician fixed effects.

42Assuming each prescription is for a standard 30-day supply, this estimated price difference based on
Marketscan data for December 2009 is conservative; CMS data indicate the price gap corresponding to
Medicare and Medicaid patients is substantially wider.
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a percentage point—approximately the magnitude of the measured effect of database use

in our data—the implied annual cost savings of database usage would exceed $35 million

for cholesterol drugs alone.43 If effects of the same magnitude apply to all drug classes, the

implied savings would be on the order of $1 billion annually.

More importantly, our study speaks to policy debates regarding the efficiency of U.S.

healthcare provision, particularly those concerning unwarranted disparities in the observed

cost and quality of medical care (Wennberg et al 1996) including that involving prescription

drugs (Munson et al 2013). Our results provide new, systematic evidence that information

differences contribute significantly to treatment variation across U.S. physicians, and suggest

that connecting physicians to common, high-quality information sources has the potential

to meaningfully increase the efficiency of health care delivery.

REFERENCES

[1] Agha, Leila. 2014. “The Effects of Health Information Technology on the Costs And Quality
of Medical Care.” Journal of Health Economics, vol. 34, pp. 19–30.

[2] Agha, Leila and David Molitor. 2015. “The Local Influence of Pioneer Investigators in
Technology Adoption: Evidence from New Cancer Drugs.” Review of Economics and Statistics,
forthcoming.

[3] Angrist, Joshua D. 2014. “The Perils of Peer Effects.” Labour Economics, vol. 30, pp. 98–108.

[4] Arrow, Kenneth J. 1969. “Classificatory Notes on the Production and Transmission of Tech-
nological Knowledge.” American Economic Review, Papers and Proceedings, vol. 59, no. 2, pp.
29–35.

[5] Athey, Susan, and Scott Stern. 2002. “The Impact of Information Technology on Emergency
Health Care Outcomes.” RAND Journal of Economics, vol. 33, no. 3, pp. 399–432.

[6] Attewell, Paul. 1992. “Technology Diffusion and Organizational Learning: The Case of Busi-
ness Computing.” Organizational Science, vol. 3, no. 1, pp. 1–19.

[7] Berndt, Ernst R., Robert S. Gibbons, Anton Kolotilin, and Anna Levine Taube.
2015. “The Heterogeneity of Concentrated Prescribing Behavior: Theory and Evidence from
Antipsychotics.” Journal of Health Economics, vol. 40, pp. 26–39.

[8] Black, Sandra E., and Lisa M. Lynch. 2001. “How To Compete: The Impact of Workplace
Practices and Information Technology on Productivity.” Review of Economics and Statistics,
vol. 83 no. 3, pp. 434–445.

43To determine the relationship between physicians’ generic prescription share and database use, we esti-
mate a version of equation (7) that replaces Mit with the share of physician-i prescriptions in month t that
are accounted for by generics. The estimated coefficient on Zit is 0.0061 (standard error 0.00021).

30



[9] Bloom, Nicholas, Luis Garicano, Raffaella Sadun, and John Van Reenen. 2009. “The
Distinct Effects of Information Technology and Communication Technology on Firm Organiza-
tion.” National Bureau of Economic Research Working Paper 14975.

[10] Bloom, Nicholas, Raffaella Sadun, and John Van Reenen. 2012. “Americans Do IT
Better: US Multinationals and the Productivity Miracle.” American Economic Review, vol. 102,
no. 1, pp. 167–201.

[11] Bresnahan, Timothy F., Erik Brynjolfsson, and Lorin M. Hitt. 2002. “Information
Technology, Workplace Organization, and the Demand for Skilled Labor: Firm-Level Evidence.”
Quarterly Journal of Economics, vol. 117, no. 1, pp. 339–76.

[12] Bresnahan, Timothy F., and Shane Greenstein. 1996. “Technical Progress and Co-
invention in Computing and in the Uses of Computers.” Brookings Papers on Economic Activity
Microeconomics: pp. 1–8.

[13] Bronnenberg, Bart J., Jean-Pierre Dubé, Matthew Gentzkow, and Jesse M.
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Appendix

A.1 Medical Innovation

Innovation in hypercholesterolemia and dyslipidemia therapy: Information about the
evolving set of pharmaceutical therapies available for prescription was obtained from the U.S. Food
and Drug Administration (FDA) for the period January 2000 through December 2010. Twelve
new statin or lipid-lowering drugs, including new formulations, combinations, and versions, intro-
duced during this period and are described below. These include three new molecular entities
Crestor, Lovaza, and Zetia; three generic versions lovastatin (Mevacor), pravastatin (Pravachol),
and simvastatin (Zocor); two new formulations Altoprev (extended-release Mevacor) and Lescol XL
(extended-release Lescol); and four new drug combinations Advicor (extended-release niacin and
Mevacor), Pravigard PAC (aspirin and Pravachol), Vytorin (Zetia and Zocor), Simcor (extended-
release niacin and Zocor). A description of each drug innovation appears below based on publicly
available data including approval letters and administrative, medical, and pharmacological review.
Baycol was withdrawn early in the sample period in August 2001 and is thus omitted.

Existing therapies available in January 2000:
1. Lescol (fluvastatin) is a statin marketed by Novartis since its FDA approval as a new molecular
entity on December 31, 1993; its patent protection expired in 2012. Like other statins, its mechanism
of action is to limit a specific enzyme in the liver, preventing cholesterol synthesis.
2. Lipitor (atorvastatin) is a statin marketed by Pfizer. Its mechanism of action is similar to that
of fluvastatin, but unlike other statins, atorvastatin is a synthetic compound. The therapy was
approved by the FDA as a new molecular entity on December 17, 1996. Between 1996 and 2012,
Lipitor was the best-selling drug globally; its patent expired in November 2011.
3. Mevacor (lovastatin) is the first statin to receive FDA approval. The drug was approved as a
new molecular entity on August 31, 1987 for sale in the United States by Merck. The therapy was
protected by patents through June 2001.
4. Niaspan (extended-release niacin) is vitamin B3, or nicotinic acid, and is marketed by Abbott
Laboratories. Extended-release niacin was approved for sale in the United States on July 28, 1997.
5. Pravachol (pravastatin) is a statin marketed by Bristol Myers Squibb since its FDA approval on
October 31, 1991. In addition to inhibiting cholesterol synthesis, Pravachol also inhibits low-density
lipoprotein synthesis. Two clinical trials, each completed in November 2003, suggest Pravachol is
outperformed by both Zocor and Lipitor. Patent protection expired in June 2006.
6. Zocor (simvastatin) is a statin marketed by Merck since its FDA approval as a new molecu-
lar entity on December 23, 1991. Zocor outperformed Pravachol in its prevention of cholesterol
synthesis in a clinical trial completed in November 2003. Patent protection expired in April 2006.

New chemical entities, January 2000–December 2010:
1. Crestor (rosuvastatin calcium) is a new molecular entity approved by the FDA for sale in the
United States by Astra Zeneca Pharmaceuticals on August 12, 2003. The molecule acts by reducing
intestinal absorption of cholesterol and related phytosterols, and is thereby distinct relative to
other statin therapies. The drug was approved for use in treating primary hypercholesterolemia
and mixed dyslipidemia (by reducing total-C, LDL-C, and Apo B), and as an adjunct to other
lipid-lowering treatments. It was thus approved for use alone or with other statins. A 2008 clinical
trial revealed additional evidence supporting the superior performance of Crestor compared with a
placebo treatment. Patent protection expires in January 2016.
2. Lovaza (omega-3-acid ethyl esters) is a new molecular entity introduced by Abbott labs and
approved by the FDA on November 10, 2004. It was initially introduced under the trade name
Omacor. Unlike statins, Lovaza is aimed at reducing tricylerides rather than low-density lipopro-



teins and may thus be combined with a statin as an adjunct therapy. Patent protection expired in
September 2012.
3. Zetia (ezetimibe) is a new molecular entity introduced by Schering and approved by the FDA on
October 25, 2002 for sale in the United States. The molecule acts by reducing intestinal absorption
of cholesterol and related phytosterols, and is thus distinct from statins. The drug was initially
approved for use in treating hypercholesterolemia for use alone or with other statins. In January
2008, a clinical trial found Zetia performed poorly compared with other therapies, and it was at
that time recommended that Zetia not be prescribed except in cases for which all other cholesterol
drugs had previously failed. Patent protection expires in April 2017.

New generic versions, January 2000–December 2010:
1. Lovastatin is the generic equivalent of Mevacor, and was initially approved by the FDA for sale
in the United States by Geneva Pharmaceuticals applied on December 17, 2001.
2. Pravastatin is the generic equivalent of Pravachol, and was initially approved by the FDA for
sale in the United States by Teva Pharmaceuticals on April 24, 2006.
3. Simvastatin is the generic equivalent of Zocor, and was initially approved by the FDA for sale
in the United States by Teva Pharmaceuticals on June 23, 2006.

New dosage forms, January 2000–December 2010:
1. Altoprev (extended-release lovastatin) is a new dosage form and was approved by the FDA
on June 26, 2002 for sale in the United States, following a new drug application by Aura Phar-
maceuticals, Inc. of March 30, 2001. The approval is for use of Altoprev for lowering cholesterol
and LDL-C to target levels along with diet and exercise, to slow the progression of atherosclerosis
in patients with coronary heart disease, and to reduce total-C, LDL-C, Apo B, and triclycerides
and to increase HDL-C in patients with dyslipoproteinemia. The drug was found to outperform
Mevacor (lovastatin). Altoprev is protected by patents though at least December 2017.
2. Lescol XL (extended-release Lescol) is a new dosage form and was approved by the FDA for sale
in the United States by Novartis on October 6, 2000. Patent protection expired in 2012.

New drug combinations, January 2000–December 2010:
1. Advicor (Mevacor and extended-release Niacin) is a new drug combination approved by the
FDA on December 17, 2001 for sale in the United States by Kos Pharmaceuticals. Advicor was
approved for use in treating primary hypercholesterolemia and mixed dyslipidemia in two types of
patients: a) those treated with lovastatin who require further triglyceride lowering or HDL raising
who may benefit from adding niacin to their regimen, and b) patients previously treated with niacin
who require further LDL lowering and may benefit from having lovastatin added to their regimen.
Thus, Advicor was not approved as an initial therapy for lowering LDL levels. Moreover, in clinical
trials, Advicor was found to perform no better than Mevacor as a first-line agent.
2. Pravigard PAC (Pravachol and aspirin) is a new drug combination approved by the FDA on
June 24, 2003 for sale in the United States by Bristol Myers Squibb.
3. Vytorin (Zetia and Zocor) is a new drug combination approved by the FDA for use, along
with diet or with other lipid-lowering treatments to reduce total C, LDL-C and raise HDL-C, on
July 23, 2004 by MSP Singapore company, LLC. The drug combination was more effective at
lowering lipids, but was also associated with more adverse events (both serious and leading to
discontinuation) than either monotherapy. In January 2008, a completed clinical trial revealed
Zetia, a component of Vytorin, performed poorly relative to other therapies.
4. Simcor (simvastatin and extended-release niacin) is a new drug combination approved by the
FDA on February 15, 2008 for sale in the United States by Abbott Laboratories. Like Advicor,
Simcor is approved only as a second-line treatment for cases in which the monotherapy is considered
to be inadequate.



A.2 Data

U.S. Prescriptions for Hypercholesterolemia and Dyslipidemia Therapies: Prescription
data for U.S. medical practitioners and each of the products described above were obtained from the
IMS Health Xponent database. IMS Health draws its prescription data from a large but non-random
sample of over 70 percent of U.S. pharmacies. As of the time our data were assembled, Xponent
included direct information from over 38,000 retail stores, including approximately 119 mail-service
pharmacies and 820 long-term care facilities; this compares with a universe of approximately 57,000
retail pharmacies, 327 mail-service outlets, and 3,000 long-term care facilities. In addition to
observing directly dispensed prescription volumes (or “sell-out”) for each sample pharmacy, IMS
Health observes prescription drug purchase volumes (or “sell-in”) for the universe of U.S. pharmacies
and drugs—that is, including both sample and non-sample stores. To correct for sampling error
and to ensure the data are representative, IMS Health has applied a proprietary procedure that
a) combines sell-in and sell-out data for sample pharmacies to determine what ratio of purchased
product is actually dispensed for each drug and store, b) uses this ratio (or “projection factor”),
appropriately weighted by store type and proximity, to estimate the dispensed volume by drug for
any store reporting sell-in but not sell-out volumes. Importantly, this projection and weighting
procedure applies only to strictly positive prescription levels, but does not apply to zeros, enabling
us to accurately track the initial adoption of new products over time for each physician.

The data IMS Health provided include prescriptions by 280,622 unique U.S. physicians for
each product in each month during January 2000 through December 2010. To avoid studying
physicians specialized outside cardiovascular care, we restrict analysis to physicians that prescribe
at least some cholesterol products. Specifically, for a physician to be included in the dataset, he
or she needs to have written at least ten filled prescriptions for cholesterol therapies during the
calendar year 2010. The data provide precise identifying information for each prescribing physi-
cian, including the unique, 11-digit American Medical Association Medical Education Number, the
first name, last name, and middle name, and the five-digit zipcode corresponding to the medical
practice of the physician. From January 2006 through December 2010, the data provide additional
detail regarding prescriptions: for each drug, a separate prescription count is observed for each
of four payment methods, including Medicare Part D, Fee-for-Service Medicaid, cash, and com-
mercial insurance. In the data, approximately half of dispensed prescriptions for cholesterol drugs
correspond to individuals with commercial insurance; 34 percent obtain products through Medicare
Part D, ten percent purchase medications with cash, and the remaining six percent are covered by
Medicaid.

To prepare the data for analysis, we reshaped the files provided so that each row corresponds
to a doctor-drug-month triplet. With guidance from IMS Health, zeros were explicitly introduced in
this step for missing observations corresponding to existing products not associated with positive
prescriptions in the IMS data. Starting in 2006, we aggregated prescriptions across methods of
payment to arrive at a single number of prescriptions written by physician, drug, and month. We
combined prescriptions for “Pravastatin” and “Pravastatin SOD”, which are the same product, and
did likewise for “Lovaza” and “Omacor”, which are the same product. We dropped Baycol from the
dataset. For some years, due to the projection calculation described above, the prescription variable
was not a whole number; with guidance from IMS Health, we rounded the number of prescriptions
to the nearest whole number. To abstract from physician entry during the sample period, we impose
a sample restriction in addition to that described above: specifically, each physician included must
prescribe at least ten cholesterol drugs during the calendar year 2000. Finally, we used information
from the U.S. FDA to determine the approval date for each therapy. The first month after this
date was determined to be the first month of a drug’s market life in the United States. We created
indicator variables for drugs that are new corresponding to the first six months of the drug’s market



life in the United States, and separately, to the first 24 months of the drug’s market life in the United
States. We created indicator variables for generic products lovastatin, pravastatin, and simvastatin.

Electronic Database Use for Hypercholesterolemia and Dyslipidemia Therapies, by
U.S. Physicians: We obtained data on individual physicians’ information access from the leading
U.S. point-of-care medical applications firm. For each physician, we observe the corresponding
initial database registration date; this is used to construct the indicator variable Zit that takes
on a value of one for registered users, and that is otherwise zero. For each physician-product-
month triplet, we also observe a proxy for the number of lookups completed. We use this proxy
to construct a physician-specific indicator for database use that is equal to 1 if the doctor records
at least one cholesterol drug lookup during the sample period, and that is otherwise zero. During
January 2000 through December 2010, the share of sample physicians registered as database users
rose from 0.003 to 0.451. Our analysis is thus based on a sample combining a) physicians that first
registered during or before the sample period, and b) physicians that registered before the sample
period, and c) physicians that never registered. Each physician is identified in the data by a unique,
11-digit American Medical Association Medical Education Number, first name, last name, middle
name, and five-digit zipcode. These characteristics form the basis for a merge with the prescription
information described above.



Drug  Name Release  Date FDA  Approval  Category Mean St  Dev

(1) (2) (3)

Lescol  XL October  2000 Dosage  form 28.89 23.56 0.620
Advicor December  2001 Combination 64.77 15.38 0.295
lovastatin December  2001 Generic  version 19.87 22.66 0.923
Altoprev June  2002 Dosage  form 42.62 24.07 0.151
Zetia October  2002 Molecular  entity 15.13 17.34 0.928
Pravigard  PAC June  2003 Combination 7.30 5.94 0.037
Crestor August  2003 Molecular  entity 22.67 21.83 0.923
Vytorin July  2004 Combination 13.10 13.48 0.891
Lovaza November  2004 Molecular  entity 34.98 17.08 0.659
pravastatin April  2006 Generic  version 7.41 12.30 0.909
simvastatin June  2006 Generic  version 3.05 7.33 0.982
Simcor February  2008 Dosage  form 12.33 9.18 0.230

Notes:  This  table  summarizes  the  variation  across  individual  U.S.  physicians  in  the  initial  prescription  of  twelve  new  pharmaceutical  products,  
each  aimed  at  controlling  blood  cholesterol  or  lipid  levels.    Each  product  was  approved  for  sale  in  the  United  States  on  the  date  indicated.    
New  drug  approvals  are  categorized  by  the  FDA  based  on  whether  the  product  is  a  new  molecular  entity,  a  new  drug  combination,  a  new  
dosage  form,  or  a  new  generic  equivalent.    The  distribution  of  initial  prescription  dates  across  the  set  of  U.S.  physicians  that  prescribe  the  drug  
at  least  once  by  December  2010  is  described  by  the  mean  (1)  and  standard  deviation  (2)  in  months  from  initial  FDA  approval  to  the  first  
prescription  filled  at  a  U.S.  pharmacy.    The  share  of  physicians  that  prescribe  the  product  at  least  once  by  December  2010  (3)  ranges  from  3.7  
percent  (Pravigard  PAC)  to  98.2  percent  (simvastatin).    Prescription  data  are  from  IMS  Health.  

Months  to  First  Prescription,  
Conditional  on  Prescription Adoption  Share  

December  2010

Table  1:  Descriptive  Statistics,  U.S.  Cholesterol  Drug  Introductions,  January  2000—December  2008



Variable Mean St  Dev Min Max

Physician-­Drug-­Month  Level:
Number  of  Prescriptions 4.429 12.721 0 700
Indicator  for  Positive  Prescriptions 0.355 0.479 0 1

Physician-­Month  Level:
Drug  Database  Indicator 0.248 0.432 0 1
Drug  Database  and  Use  Indicator 0.133 0.340 0 1
Drug  Database  Other  Adoption  Share  in  Zipcode  t -­1 0.131 0.132 0 1
Proxy  for  Intensity  of  Database  Use 3.829 11.04 0 1268
Number  of  Unique  Drugs  Prescribed 5.304 2.775 1 16
Prescription  Herfindahl-­Hirschman  Index  (HHI) 0.438 0.223 0.097 1
Prescription  Volume 65.79 66.31 1 2503

Physician-­Drug  Level:
Months  to  First  Prescription 19.12 21.95 0 122
First  Prescription  Within  Initial  Year  Indicator 0.352 0.478 0 1

Drug-­Month  Level:
Indicator  for  New  Drug,  24  months 0.155 0.363 0 1

General:
Number  of  Physicians   128043
Number  of  Drugs,  January  2000 6
Number  of  Drugs,  January  2000  -­  December  2010 18

Table  2:  Regression  Summary  Statistics

Notes:  This  table  summarizes  the  data  on  physician-­level  prescriptions  and  database  access  used  in  the  analysis.    
Statistics  correspond  to  U.S.  physicians  that  prescribe  a  minimum  of  ten  statin  or  lipid-­lowering  products  both  during  
January-­December  2000  and  January-­December  2010  and  that  work  in  a  zipcode  hosting  three  or  more  prescribing  
physicians.    The  Drug  Database  indicator  varies  by  physician-­month  and  is  equal  to  one  for  physicians  that  are  registered  
users  of  the  drug  database;;  Drug  Database  and  Use  indicates  that  a  physician  both  has  database  access  and  is  observed  
using  it  to  search  for  information  about  at  least  one  of  the  18  cholesterol  drugs  during  the  sample  period.    Drug  Database  
Other  Adoption  Share  in  Zipcode  varies  by  physician-­month  and  is  the  fraction,  in  the  previous  month,  of  other   physicians  
practicing  in  the  same  zipcode  for  which  Drug  Database  and  Use  is  equal  to  one.    The  intensity  of  use  proxy  is  a  lower-­
bound  on  the  number  of  physician-­specific  database  queries  corresponding  to  the  cholesterol  drugs  considered  in  this  
analysis.    Prescription  diversity  by  physician-­month  is  summarized  by  the  number  of  unique  drugs  prescribed  and  the  
corresponding  Herfindahl-­Hirschman  index.    First  Prescription  Within  Initial  Year  Indicator  takes  a  value  of  one  for  doctors  
that  prescribe  the  new  drug  within  its  initial  market  year  and  is  otherwise  zero.    Drugs  are  considered  New  if  within  24  
months  of  market  approval  by  the  U.S.  Food  and  Drug  Administration.    Prescription  variables  are  from  IMS  Health  and  
database  registration  data  are  from  a  leading  U.S.  point-­of-­care  medical  applications  firm.  



Product:     lovastatin pravastatin simvastatin Generic lovastatin pravastatin simvastatin Generic
Variable (1) (2) (3) (4) (5) (6) (7) (8)

Panel  A
Final  month,  December  2010

Mean 0.059 0.091 0.414 0.564 0.065 0.098 0.427 0.591
St  Dev 0.116 0.135 0.238 0.243 0.083 0.094 0.159 0.161
5th  Percentile 0 0 0 0 0 0 0.180 0.336
25th  Percentile 0 0 0.258 0.427 0.017 0.041 0.335 0.502
Median 0.016 0.047 0.410 0.581 0.041 0.078 0.423 0.596
75th  Percentile 0.066 0.121 0.551 0.719 0.084 0.129 0.515 0.687
95th  Percentile 0.271 0.338 0.858 1 0.209 0.259 0.271 0.834

Panel  B
Six  months  after  generic  release
Molecule-­specfic  branded  drug Mevacor Pravachol Zocor Mevacor Pravachol Zocor

Mean 0.828 0.820 0.862 0.822 0.827 0.870
St  Dev 0.338 0.279 0.208 0.192 0.197 0.150
5th  Percentile 0 0 0.448 0.491 0.490 0.582
25th  Percentile 1 0.714 0.800 0.737 0.756 0.819
Median 1 1 0.949 0.861 0.866 0.914
75th  Percentile 1 1 1 1 1 0.977
95th  Percentile 1 1 1 1 1 1

Panel  C
Final  month,  December  2010
Molecule-­specfic  branded  drug Mevacor Pravachol Zocor Mevacor Pravachol Zocor

Mean 1.000 0.993 0.997 1.000 0.995 0.998
St  Dev 0.019 0.059 0.028 0.005 0.030 0.011
5th  Percentile 1 1 0.995 1 0.976 0.990
25th  Percentile  and  above 1 1 1 1 1 1

Generic  Rx  Share,  by  Zipcode-­Molecule

Generic  Rx  Share,  by  Zipcode-­Molecule

Zipcode  Level
Table  3:  Descriptive  Statistics

Notes:  This  table  describes  prescription  heterogeneity  across  U.S.  physicians  and  the  U.S.  zipcodes  they  occupy.  Panel  A  describes  prescribing  in  December  2010  
across  all  physicians  (columns  1-­4),  and  across  U.S.  zipcodes  (columns  5-­8).    Panels  B  and  C  describe  physicians'  within-­molecule  substitution  toward  generics  for  
lovastatin  (column  1),  pravastatin  (column  2),  and  simvastatin  (column  3);;  columns  5,  6,  and  7  provide  analogous  statistics  by  U.S.  zipcode.    Panel  B  describes  this  
substitution  six  months  after  the  generic  release  in  question,  while  Panel  C  describes  prescribing  in  the  final  sample  period,  December  2010.    The  upper-­left  number  in  
Panel  A  (mean,  lovastatin,  0.059)  is  the  average,  across  physicians,  in  the  fraction  of  cholesterol  drug  prescriptions  prescriptions  in  December  2010  that  are  accounted  
for  by  generic  lovastatin;;  the  upper-­left  number  in  Panel  B  (mean,  lovastatin,  0.828)  is  the  average,  across  physicians,  in  the  fraction  of  Mevacor  plus  generic  lovastatin  
prescriptions  that  are  accounted  for  by  generic  lovastatin  in  October  2002,  six  months  after  expiration  of  the  Mevacor  patent;;    the  upper-­left  number  in  Panel  C  is  the  
analogous  statistic  for  December  2010.  Generic  approval  dates  are  from  the  U.S.  Food  and  Drug  Administration;;  all  other  variables  are  from  IMS  Health.    

Physician  Level

Share  in  Total  Rx,  by  Physician

Generic  Rx  Share,  by  Physician-­Molecule

Generic  Rx  Share,  by  Physician-­Molecule

Share  in  Total  Rx,  by  Zipcode



Dependent  Variable:    

(1) (2) (3) (4) (5) (6)

Database  ij 0.0191*** 0.0089*** 0.0136*** 0.0015 -­0.0049** -­0.0037
0.0015 0.0020 0.0016 0.0022 0.0019 0.0025

Database  ij   x  Generic  j 0.0192*** 0.0213*** 0.0157*** 0.0140***
0.0023 0.0023 0.0035 0.0036

Prescription  Volume  it(j)-­1   0.0075*** 0.0034*** 0.0075*** 0.0034*** 0.0069*** 0.0029***
0.0001 0.0000 0.0001 0.0000 0.0002 0.0001

Physician  FE N Y N Y N Y
Zipcode-­Drug  FE Y Y Y Y Y Y

Observations 1513408   1513408   1513408   1513408   313699 313699
R2 0.4556 0.5690 0.4556 0.5690 0.4876 0.5937

Table  4:  Time  to  First  Prescription  of  a  New  Drug,  U.S.  Physicians,  2000—2010

Indicator  for  prescription  within  first  year  of  drug  introduction

                                                                    All  physicians                                                                                       Eventual  users                  

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-­squares  estimates  of  equation  (5)  for  U.S.  physicians'  
prescription  of  twelve  cholesterol  drugs  first  approved  for  U.S.  sale  during  January  2000—December  2008  (Table  1).    The  
binary  dependent  variable  captures  the  time  lapse  between  FDA  approval  of  drug  j  and  physician  i 's  initial  prescription  of  it,  
taking  a  value  of  1  if  initial  prescription  occurs  within  a  year  of  FDA  approval;;  specifications  are  included  for  the  full  sample  of  
physicians  (columns  1-­4)  and  for  the  subset  of  physicians  that  eventually  adopt  and  use  the  electronic  reference  to  search  
for  information  about  cholesterol  drugs  (columns  5-­6).    Database  is  the  Drug  Database  and  Use  indicator  variable  described  
in  Table  2,  and  takes  a  value  of  1  for  a  physician  user  with  database  access  at  the  time  drug  j   receives  FDA  approval.    
Generic  indicates  the  products  pravastatin,  lovastatin,  and  simvastatin.    Regressions  include  zipcode-­drug  (columns  1-­6)  
and  physician  (columns  2,  4,  6)  fixed  effects  as  well  as  the  cholesterol  drug  prescription  volume  for  physician  i   in  the  month  
prior  to  drug  j's  introduction.    Results  are  robust  to  Poisson  and  Negative  Binomial  estimation,  and  are  qualitatively  identical  
when  replacing  the  dependent  variable  with  an  indicator  for  first  prescription  within  six  months,  an  indicator  for  first  
prescription  within  two  years,  or  a  continuous  measure  for  the  time  to  first  prescription  (corrected  for  censoring).  Standard  
errors  clustered  by  zipcode  appear  below  each  point  estimate;;  results  are  robust  to  clustering  errors  by  physician.  
                    
                    



Dependent  Variable:    
Number  of                
Unique  Drugs         Prescription  HHI    

Number  of        
Unique  Drugs         Prescription  HHI    

(1) (2) (3) (4)

Database  it 0.1231*** -­0.0059*** 0.0298*** -­0.0012***
0.0029 0.0003 0.0036 0.0004

Prescription  Volume  it-­1 0.0233*** -­0.0008*** 0.0228*** -­0.0007***
0.0000 0.0000 0.0001 0.0000

Physician  FE Y Y Y Y
Zipcode-­Month  FE Y Y Y Y

Observations 15510386 15510386 3013086 3013086
R2 0.8327 0.6317 0.8572 0.6775

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-­squares  estimates  of  equation  (6)  for  cholesterol  drug  
prescriptions  by  U.S.  physicians  during  January  2000  through  December  2010,  including  all  sample  physicians  (columns  1-­2)  
and  the  subset  of  physicians  that  eventually  adopt  and  use  the  electronic  reference  to  search  for  information  about  
cholesterol  drugs  (columns  3-­4).    The  dependent  variable  in  columns  1  and  3  captures  the  prescription  diversity  of  physician  i  
as  the  number  of  unique  drugs  j  that  are  prescribed  by  i   during  month  t .  The  dependent  variable  in  columns  2  and  4  is  the  
prescription  Herfindahl-­Hirschman  index  for  physician  i   in  month  t .    Database  is  the  Drug  Database  and  Use  indicator  
variable  described  in  Table  2,  and  takes  a  value  of  1  for  a  physician  user  with  database  access  in  month  t ;;  it  is  otherwise  
zero.    All  regressions  include    physician-­specific  time  trends,  physician  and  zipcode-­month  fixed  effects,  and  the  cholesterol  
drug  prescription  volume  for  physician  i   in  month  t -­1.    Results  in  columns  1  and  3  are  robust  to  Poisson  and  Negative  
Binomial  estimation;;  all  columns  are  robust  to  including  doctor-­specific  time  trends  and  the  first  lag  of  the  dependent  variable.  
Standard  errors  clustered  by  zipcode-­month  appear  below  each  point  estimate.  
                    
                    

Table  5:  Prescription  Diversity,  U.S.  Physicians,  2000—2010

                              Eventual  users                                                                All  physicians                                  



Table  6:  Prescription  Propensity,  U.S.  Physicians,  2000—2010

Dependent  Variable:    

All  physicians Eventual  users

(1) (2)

Database  it   x  New  jt   x  Generic  j 0.0240*** 0.0162***
0.0012 0.0021

Database  it   x  New  jt   x  Branded  j -­0.0103*** -­0.0042***
0.0008 0.0010

Database  it   x  Old  jt   x  Generic  j 0.0308*** 0.0240***
0.0011 0.0022

Database  it   x  Old  jt   x  Branded  j -­0.0015*** 0.0015***
0.0006 0.0007

Prescription  Volume  it-­1 0.0013*** 0.0013***
0.0000 0.0000

Physician  FE Y Y
Zipcode  x  Month  FE Y Y
Drug  x  Month  FE Y Y

Observations 36238793 7674288
R2 0.5193 0.5393

1{(prescriptions  of  drug  j  by  i  at  t )  >  0}

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-­squares  estimates  of  equation  (7)  for  
prescriptions  of  cholesterol  drugs  by  U.S.  physicians  during  January  2000  through  December  2010,  including  all  
sample  physicians  (column  1)  and  the  subset  of  physicians  that  eventually  adopt  and  use  the  electronic  reference  
to  search  for  information  about  cholesterol  drugs  (column  2).    The  dependent  variable  is  an  indicator  for  whether  
the  doctor  i   prescribes  drug  j  during  month  t.   Database  is  the  Drug  Database  and  Use  indicator  variable  described  
in  Table  2,  and  takes  a  value  of  1  for  a  physician  user  with  database  access  in  month  t ;;  it  is  otherwise  zero.    New  
is  an  indicator  that  is  equal  to  1  if  drug  j   is  within  24  months  of  its  initial  approval  by  the  U.S.  FDA  in  month  t ;;  drug  
j  is  otherwise  Old.    Generic  indicates  the  products  pravastatin,  lovastatin,  and  simvastatin;;  other  drugs  are  
Branded.    All  regressions  include  physician,  zipcode-­month,  and  drug-­month  fixed  effects,  as  well  as  the  
cholesterol  drug  prescription  volume  for  physician  i   in  month  t -­1.    Results  are  robust  to  logit  estimation,  and  to  
including  doctor-­specific  time  trends,  the  first  lag  of  the  dependent  variable,  doctor-­drug  type  fixed  effects,  and  
zipcode-­month-­drug  type  fixed  effects.    For  computational  ease,  the  estimates  above  rely  only  on  observations  in  
January  2000  and  every  subsequent  June  and  December.    Standard  errors  clusterd  by  zipcode-­month  appear  
below  each  point  estimate.    
                    



(1) (2) (3) (4) (5) (6)

Panel  A                                     Dependent  Variable:

Database  ij   -­0.0022 0.0260**   -­0.0247** 0.0023   -­0.0133 -­0.0032
0.0102 0.0111 0.0121 0.0120 0.0109 0.0102

Database  ij   x  Generic  j 0.0771*** 0.0693*** 0.0755*** 0.0642***
0.0146 0.0143 0.0163 0.0168

Panel  B

Adoption  Share  in  Zipcode  it(j) -­1   0.8102*** 0.7099*** 0.8260*** 0.7082***   1.1455*** 1.1773***
0.0025 0.0024 0.0030 0.0026 0.0084 0.0082

Adoption  Share  in  Zipcode  it(j)-­1   x  Generic  j   -­0.0517*** 0.0045* -­0.3212*** -­0.1399***
0.0054 0.0026 0.0150 0.0088

Panel  C

Adoption  Share  in  Zipcode  it(j) -­1   -­0.0001 -­0.0503*** 0.0000 -­0.0871***
0.0016 0.0027 0.0042 0.0068

Adoption  Share  in  Zipcode  it(j)-­1   x  Generic  j   0.7744*** 0.7899*** 0.8253*** 0.8618***
0.0029 0.0027 0.0076 0.0072

Drug  FE Y Y Y Y Y Y
Physician  FE N Y N Y N Y
Prescription  Volume  it(j)-­1   Y Y Y Y Y Y

Observations 1513408 1513408 1513408 1513408 313699 313699
R2 0.4339 0.5534 0.4337 0.5533 0.4521 0.5669
First-­Stage  F   Statistic   46646 89203 51292 44601 8526   7598

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  two-­stage  least  squares  of  equation  (5)  for  U.S.  physicians'  
prescription  of  cholesterol  drugs  first  approved  for  U.S.  sale  during  January  2000—December  2008  (Table  1).    The  binary  
dependent  variable  captures  the  time  lapse  between  FDA  approval  of  drug  j  and  physician  i 's  initial  prescription  of  it,  taking  a  
value  of  1  if  initial  prescription  occurs  within  a  year  of  FDA  approval;;  specification  are  included  for  the  full  sample  of  
physicians  (columns  1-­4)  and  for  the  subset  of  physicians  that  eventually  adopt  and  use  the  electronic  reference  to  search  
for  information  about  cholesterol  drugs  (columns  5-­6).    Database  is  the  Drug  Database  and  Use  indicator  variable  described  
in  Table  2,  and  takes  a  value  of  1  for  a  physician  user  with  database  access  at  the  time  drug  j  receives  FDA  approval.    The  
instrument  for  Database  at  drug  j 's  introduction  is  the  share  of  physicians  other  than  i   that  are  located  in  i's  zipcode  and  
have  adopted  the  database  by  or  before  the  month  immediately  preceding  drug  j 's  introduction.    The  sample  is  thus  
restricted  to  include  only  zipcodes  with  at  least  three  physician  prescribers  (two  physicians  other  than  i).    Generic  indicates  
the  products  pravastatin,  lovastatin,  and  simvastatin.    Regressions  include  drug  fixed  effects  (columns  1-­6)  and  physician  
fixed  effects  (columns  2,  4,  6),  as  well  as  the  cholesterol  drug  prescription  volume  for  physician  i  in  the  month  prior  to  drug  j 's  
introduction.    Second-­stage  estimates  are  in  Panel  A;;  first-­stage  estimates  appear  in  Panels  B  and  C.    Standard  errors  
clustered  by  zipcode  appear  below  each  point  estimate;;  results  are  qualitatively  identical  when  clustering  by  physician.    
                    

First  stage  for  Database  ij

First  stage  for  Database  ij   x  Generic  j

Table  7:  Time  to  First  Prescription  of  a  New  Drug,  Two-­Stage  Least  Squares,  U.S.  Physicians,  2000—2010

Indicator  for  prescription  within  first  year  of  drug  introduction

                                                                    All  physicians                                                                                      Eventual  users                  



(1) (2) (3) (4)

Panel  A  
Number  of  
Unique  Drugs     Prescription  HHI  

Number  of  
Unique  Drugs     Prescription  HHI  

Database  it 0.4124*** -­0.0309*** -­0.0869 -­0.0428***
0.0477 0.0056 0.0607 0.0072

Panel  B

Adoption  Share  in  Zipcode  it -­1 0.1294*** 0.1294*** 0.1945*** 0.1945***
0.0007 0.0007 0.0024 0.0024

Physician  FE Y Y Y Y
Month  FE Y Y Y Y
Prescription  Volume  it-­1 Y Y Y Y

Observations 15510386 15510386 3013086 3013086
R2 0.8785 0.5812 0.8112 0.5777
First-­Stage  F   statistic 36569 36569 6407 6407

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  two-stage  least  squares  estimates  of  equation  (6)  for  
cholesterol  drug  prescriptions  by  U.S.  physicians  during  January  2000  through  December  2010,  including  all  sample  
physicians  (columns  1-­2)  and  the  subset  of  physicians  that  eventually  adopt  and  use  the  electronic  reference  to  search  for  
information  about  cholesterol  drugs  (columns  3-­4).    The  dependent  variable  in  columns  1  and  3  captures  the  prescription  
diversity  of  physician  i  as  the  number  of  unique  drugs  j  that  are  prescribed  by  i  during  month  t .  The  dependent  variable  in  
columns  2  and  4  is  the  prescription  Herfindahl-­Hirschman  index  for  physician  i  in  month  t .    Database  is  the  Drug  Database  
and  Use  indicator  variable  described  in  Table  2,  and  takes  a  value  of  1  for  a  physician  user  with  database  access  in  month  t ;;  
it  is  otherwise  zero.    The  instrument  for  Database  at  t   is  the  share  of  physicians  other  than  i   that  are  located  in  i 's  zipcode  
and  have  adopted  the  database  by  or  before  month  t -­1.  The  sample  is  thus  restricted  to  include  only  zipcodes  with  at  least  
three  physicians  (two  physicians  other  than  i )  that  prescribe  cholesterol  drugs.    All  regressions  include  physician  and  month  
fixed  effects,  as  well  as  the  cholesterol  drug  prescription  volume  for  physician  i   in  month  t -­1.  Second-­stage  estimates  are  in  
Panel  A;;  first-­stage  estimates  appear  in  Panel  B.    Standard  errors  clustered  by  zipcode-­month  are  reported  below  each  point  
estimate.  

  All  physicians     Eventual  users  

First  stage  for  Database  it

Table  8:  Prescription  Diversity,  Two-­Stage  Least  Squares,  U.S.  Physicians,  2000—2010



Table  9:  Prescription  Propensity,  Two-­Stage  Least  Squares,  U.S.  Physicians,  2000—2010

Dependent  Variable:  

All  physicians Eventual  users

(1) (2)

Database  it   x  New  jt   x  Generic  j 0.0258*** 0.0506***
0.0032 0.0070

Database  it   x  New  jt   x  Branded  j -­0.0425*** -­0.0303***
0.0020 0.0033

Database  it   x  Old  jt   x  Generic  j 0.0547*** 0.2279***
0.0021 0.0132

Database  it   x  Old  jt   x  Branded  j -­0.0189*** -­0.0210***
0.0013 0.0026

Physician  FE Y Y
Drug  x  Month  FE Y Y
Prescription  Volume  it-­1 Y Y

Observations 36238793 7674288
R2 0.5149 0.5262
First-­Stage  F   statistic 7.9e+05 95593

1{(prescriptions  of  drug  j  by  i  at  t )  >  0}

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  two-stage  least  squares  estimates  of  equation  (7)  
for  prescriptions  of  cholesterol  drugs  by  U.S.  physicians  during  January  2000  through  December  2010,  including  
all  sample  physicians  (column  1)  and  the  subset  of  physicians  that  eventually  adopt  and  use  the  electronic  
reference  to  search  for  information  about  cholesterol  drugs  (column  2).      The  dependent  variable  is  an  indicator  for  
whether  the  doctor  i   prescribes  drug  j  during  month  t .  Database  is  the  Drug  Database  and  Use  indicator  variable   
described  in  Table  2,  and  takes  a  value  of  1  for  a  physician  user  with  database  access  in  month  t ;;  it  is  otherwise  
zero.    The  instrument  for  Database  at  t   is  the  share  of  physicians  other  than  i   that  are  located  in  i 's  zipcode  and   
have  adopted  the  database  by  or  before  month  t -­1.  The  sample  is  thus  restricted  to  include  only  zipcodes  with  at  
least  three  physicians  (two  physicians  other  than  i )  that  prescribe  cholesterol  drugs.    New  is  an  indicator  that  is  
equal  to  1  if  drug  j  is  within  24  months  of  its  initial  approval  by  the  U.S.  FDA  in  month  t ;;  drug  j  is  otherwise  Old.     
Generic  indicates  the  products  pravastatin,  lovastatin,  and  simvastatin;;  other  drugs  are  Branded.    All  regressions  
include  physician  and  drug-­month  fixed  effects,  as  well  as  the  cholesterol  drug  prescription  volume  for  physician  i  
in  month  t -­1.    First  stage  estimates  appear  in  Appendix  Table  A.2.    Standard  errors  clustered  by  zipcode-­month   
are  reported  below  each  point  estimate.  



Dependent  Variable:    
Number  of                
Unique  Drugs         Prescription  HHI    

Number  of        
Unique  Drugs         Prescription  HHI    

(1) (2) (3) (4)

Database  it 0.0426*** -­0.0037*** 0.0350*** -­0.0027***
0.0029 0.0003 0.0034 0.0004

Physician  FE Y Y Y Y
Zipcode-­Month  FE Y Y Y Y
Prescription  Volume  it-­1 Y Y Y Y
Physician  x  t   trends Y Y Y Y

Observations 15510386 15510386 3013241 3013241
R2 0.8785 0.7114 0.8941 0.7484

Table  10:  Prescription  Diversity,  Physician  Trends,  U.S.  Physicians,  2000—2010

                              All  physicians                                                                 Eventual  users                                  

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-­squares  estimates  of  a  variant  of  equation  (6)  that  
includes  a  full  set  of  physician-­specific  time  trends.    The  sample  includes  all  physicians  (columns  1-­2)  and  the  subset  of  
physicians  that  eventually  adopt  and  use  the  electronic  reference  to  search  for  information  about  cholesterol  drugs  (columns  
3-­4).    The  dependent  variable  in  columns  1  and  3  captures  the  prescription  diversity  of  physician  i   as  the  number  of  unique  
drugs  j  that  are  prescribed  by  i   during  month  t .  The  dependent  variable  in  columns  2  and  4  is  the  prescription  Herfindahl-­
Hirschman  index  for  physician  i   in  month  t .    Database  is  the  Drug  Database  and  Use  indicator  variable  described  in  Table  2,  
and  takes  a  value  of  1  for  a  physician  user  with  database  access  in  month  t ;;  it  is  otherwise  zero.    All  regressions  include  
physician  and  zipcode-­month  fixed  effects,  as  well  as  the  cholesterol  drug  prescription  volume  for  physician  i   in  month  t -­1.    
Standard  errors  clustered  by  zipcode-­month  appear  below  each  point  estimate.  
                    



Table  11:  Prescription  Propensity,  Physician  Trends,  U.S.  Physicians,  2000—2010

Dependent  Variable:  

All  physicians Eventual  users

(1) (2)

Database  it   x  New  jt   x  Generic  j 0.0266** 0.0158***
0.0013 0.0020

Database  it   x  New  jt   x  Branded  j -­0.0089*** -­0.0051***
0.0008 0.0012

Database  it   x  Old  jt   x  Generic  j 0.0351*** 0.0240***
0.0012 0.0022

Database  it   x  Old  jt   x  Branded  j 0.0019*** 0.0013*
0.0006 0.0007

Physician  FE Y Y
Zipcode  x  Month  FE Y Y
Drug  x  Month  FE Y Y
Prescription  Volume  it-­1 Y Y
Physician  x  t   trends Y Y

Observations 36238793 7674288
R2 0.5277 0.7179

1{(prescriptions  of  drug  j  by  i  at  t )  >  0}

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-­squares  estimates  of  a  variant  of  equation  
(7) that  includes  a  full  set  of  physician-­specific  time  trends.  The  sample  includes  all  physicians  (column  1)  and
the  subset  of  physicians  that  eventually  adopt  and  use  the  electronic  reference  to  search  for  information  about
cholesterol  drugs  (column  2).    The  dependent  variable  is  an  indicator  for  whether  the  doctor  i   prescribes  drug  j
during  month  t.   Database  is  the  Drug  Database  and  Use  indicator  variable  described  in  Table  2,  and  takes  a
value  of  1  for  a  physician  user  with  database  access  in  month  t ;;  it  is  otherwise  zero.    New  is  an  indicator  that  is
equal  to  1  if  drug  j   is  within  24  months  of  its  initial  approval  by  the  U.S.  FDA  in  month  t ;;  drug  j  is  otherwise  Old.
Generic  indicates  the  products  pravastatin,  lovastatin,  and  simvastatin;;  other  drugs  are  Branded.    All  regressions
include  physician,  zipcode-­month,  and  drug-­month  fixed  effects,  as  well  as  the  cholesterol  drug  prescription
volume  for  physician  i   in  month  t -­1.    For  computational  ease,  the  estimates  above  rely  only  on  observations  in
January  2000  and  every  subsequent  June  and  December.    Standard  errors  clustered  by  zipcode-­month  appear
below  each  point  estimate.



Panel  A   —  By  school  rank Panel  B   —  By  graduation  year

Panel  C   —  By  sex Panel  D   —  By  monthly  prescription  volume  

Panel  E   —  By  medical  specialty Panel  F   —  By  U.S.  region

Notes:    This  figure  plots  the  fraction  of  the  approximately  67,000  sample  U.S.  physicians  included  in  the  CMS  Physician  
Compare  database  that  are  also  registered  users  of  the  electronic  drug  reference  database  by  the  date  indicated,  and  shows  
the  extent  to  which  adoption  rates  differ  across  physicians  according  their  observable  characteristics.    Database  registration  
data  are  from  the  drug  reference  database  firm.    Medical  school  rank  is  determined  based  on  data  from  the  U.S.  News  and  
World  Report  service,  and  all  other  variables  are  from  the  CMS  Physician  Compare  database.
                    

Figure  1:  Drug  Database  Diffusion  Curves,  U.S.  Physicians,  January  2000—December  2010



Figure  2:  Drug  Diffusion  Curves,  by  Drug,  U.S.  Physicians,  January  2000—December  2010

Notes:    This  figure  plots  the  fraction  of  the  128,043  sample  U.S.  physicians  that  are  associated  with  at  least  one  prescription  of  the  new  drug  
indicated  by  the  date  marked  on  the  horizontal  axis,  and  shows  the  extent  to  which  adoption  rates  differ  across  products.    Market  approval  dates  
by  drug  are  listed  in  Table  1.  The  prescription  data  cover  January  2000  through  December  2010  at  a  monthly  frequency  and  are  from  IMS  Health.  
                    



Panel  A   —  One  Month  After  Release Panel  B   —  Three  Months  After  Release

Panel  C   —  Six  Months  After  Release Panel  D   —  Thirty-­Six  Months  After  Release

Notes:  This  figure  illustrates  the  gradual  diffusion  of  a  new  pharmaceutical  drug,  the  statin  Crestor,  across  zipcodes  within  the  continental  United  States.    Dark  
shades  indicate  zipcodes  in  which  at  least  one  prescription  of  Crestor  has  been  written  and  filled,  light  shades  indicate  zipcodes  in  which  Crestor  has  not  yet  
been  prescribed;;  areas  shaded  white  contain  no  data.    The  four  panels  correspond  to  four  points  in  time  following  the  initial  market  introduction  of  Crestor  in  
August  2003.    These  four  points  are  September  2003  (Panel  A),  November  2003  (Panel  B),  February  2004  (Panel  C),  and  August  2006  (Panel  D).    
Prescription  data  are  from  IMS  Health.
                    

Figure  3:  Heterogeneity  in  the  Initial  Use  of  a  New  Medical  Technology,  by  U.S.  Zipcode



Appendix

A.1 Medical Innovation

Innovation in hypercholesterolemia and dyslipidemia therapy: Information about the
evolving set of pharmaceutical therapies available for prescription was obtained from the U.S. Food
and Drug Administration (FDA) for the period January 2000 through December 2010. Twelve
new statin or lipid-lowering drugs, including new formulations, combinations, and versions, intro-
duced during this period and are described below. These include three new molecular entities
Crestor, Lovaza, and Zetia; three generic versions lovastatin (Mevacor), pravastatin (Pravachol),
and simvastatin (Zocor); two new formulations Altoprev (extended-release Mevacor) and Lescol XL
(extended-release Lescol); and four new drug combinations Advicor (extended-release niacin and
Mevacor), Pravigard PAC (aspirin and Pravachol), Vytorin (Zetia and Zocor), Simcor (extended-
release niacin and Zocor). A description of each drug innovation appears below based on publicly
available data including approval letters and administrative, medical, and pharmacological review.
Baycol was withdrawn early in the sample period in August 2001 and is thus omitted.

Existing therapies available in January 2000:
1. Lescol (fluvastatin) is a statin marketed by Novartis since its FDA approval as a new molecular
entity on December 31, 1993; its patent protection expired in 2012. Like other statins, its mechanism
of action is to limit a specific enzyme in the liver, preventing cholesterol synthesis.
2. Lipitor (atorvastatin) is a statin marketed by Pfizer. Its mechanism of action is similar to that
of fluvastatin, but unlike other statins, atorvastatin is a synthetic compound. The therapy was
approved by the FDA as a new molecular entity on December 17, 1996. Between 1996 and 2012,
Lipitor was the best-selling drug globally; its patent expired in November 2011.
3. Mevacor (lovastatin) is the first statin to receive FDA approval. The drug was approved as a
new molecular entity on August 31, 1987 for sale in the United States by Merck. The therapy was
protected by patents through June 2001.
4. Niaspan (extended-release niacin) is vitamin B3, or nicotinic acid, and is marketed by Abbott
Laboratories. Extended-release niacin was approved for sale in the United States on July 28, 1997.
5. Pravachol (pravastatin) is a statin marketed by Bristol Myers Squibb since its FDA approval on
October 31, 1991. In addition to inhibiting cholesterol synthesis, Pravachol also inhibits low-density
lipoprotein synthesis. Two clinical trials, each completed in November 2003, suggest Pravachol is
outperformed by both Zocor and Lipitor. Patent protection expired in June 2006.
6. Zocor (simvastatin) is a statin marketed by Merck since its FDA approval as a new molecu-
lar entity on December 23, 1991. Zocor outperformed Pravachol in its prevention of cholesterol
synthesis in a clinical trial completed in November 2003. Patent protection expired in April 2006.

New chemical entities, January 2000–December 2010:
1. Crestor (rosuvastatin calcium) is a new molecular entity approved by the FDA for sale in the
United States by Astra Zeneca Pharmaceuticals on August 12, 2003. The molecule acts by reducing
intestinal absorption of cholesterol and related phytosterols, and is thereby distinct relative to
other statin therapies. The drug was approved for use in treating primary hypercholesterolemia
and mixed dyslipidemia (by reducing total-C, LDL-C, and Apo B), and as an adjunct to other
lipid-lowering treatments. It was thus approved for use alone or with other statins. A 2008 clinical
trial revealed additional evidence supporting the superior performance of Crestor compared with a
placebo treatment. Patent protection expires in January 2016.
2. Lovaza (omega-3-acid ethyl esters) is a new molecular entity introduced by Abbott labs and
approved by the FDA on November 10, 2004. It was initially introduced under the trade name
Omacor. Unlike statins, Lovaza is aimed at reducing tricylerides rather than low-density lipopro-



teins and may thus be combined with a statin as an adjunct therapy. Patent protection expired in
September 2012.
3. Zetia (ezetimibe) is a new molecular entity introduced by Schering and approved by the FDA on
October 25, 2002 for sale in the United States. The molecule acts by reducing intestinal absorption
of cholesterol and related phytosterols, and is thus distinct from statins. The drug was initially
approved for use in treating hypercholesterolemia for use alone or with other statins. In January
2008, a clinical trial found Zetia performed poorly compared with other therapies, and it was at
that time recommended that Zetia not be prescribed except in cases for which all other cholesterol
drugs had previously failed. Patent protection expires in April 2017.

New generic versions, January 2000–December 2010:
1. Lovastatin is the generic equivalent of Mevacor, and was initially approved by the FDA for sale
in the United States by Geneva Pharmaceuticals applied on December 17, 2001.
2. Pravastatin is the generic equivalent of Pravachol, and was initially approved by the FDA for
sale in the United States by Teva Pharmaceuticals on April 24, 2006.
3. Simvastatin is the generic equivalent of Zocor, and was initially approved by the FDA for sale
in the United States by Teva Pharmaceuticals on June 23, 2006.

New dosage forms, January 2000–December 2010:
1. Altoprev (extended-release lovastatin) is a new dosage form and was approved by the FDA
on June 26, 2002 for sale in the United States, following a new drug application by Aura Phar-
maceuticals, Inc. of March 30, 2001. The approval is for use of Altoprev for lowering cholesterol
and LDL-C to target levels along with diet and exercise, to slow the progression of atherosclerosis
in patients with coronary heart disease, and to reduce total-C, LDL-C, Apo B, and triclycerides
and to increase HDL-C in patients with dyslipoproteinemia. The drug was found to outperform
Mevacor (lovastatin). Altoprev is protected by patents though at least December 2017.
2. Lescol XL (extended-release Lescol) is a new dosage form and was approved by the FDA for sale
in the United States by Novartis on October 6, 2000. Patent protection expired in 2012.

New drug combinations, January 2000–December 2010:
1. Advicor (Mevacor and extended-release Niacin) is a new drug combination approved by the
FDA on December 17, 2001 for sale in the United States by Kos Pharmaceuticals. Advicor was
approved for use in treating primary hypercholesterolemia and mixed dyslipidemia in two types of
patients: a) those treated with lovastatin who require further triglyceride lowering or HDL raising
who may benefit from adding niacin to their regimen, and b) patients previously treated with niacin
who require further LDL lowering and may benefit from having lovastatin added to their regimen.
Thus, Advicor was not approved as an initial therapy for lowering LDL levels. Moreover, in clinical
trials, Advicor was found to perform no better than Mevacor as a first-line agent.
2. Pravigard PAC (Pravachol and aspirin) is a new drug combination approved by the FDA on
June 24, 2003 for sale in the United States by Bristol Myers Squibb.
3. Vytorin (Zetia and Zocor) is a new drug combination approved by the FDA for use, along
with diet or with other lipid-lowering treatments to reduce total C, LDL-C and raise HDL-C, on
July 23, 2004 by MSP Singapore company, LLC. The drug combination was more effective at
lowering lipids, but was also associated with more adverse events (both serious and leading to
discontinuation) than either monotherapy. In January 2008, a completed clinical trial revealed
Zetia, a component of Vytorin, performed poorly relative to other therapies.
4. Simcor (simvastatin and extended-release niacin) is a new drug combination approved by the
FDA on February 15, 2008 for sale in the United States by Abbott Laboratories. Like Advicor,
Simcor is approved only as a second-line treatment for cases in which the monotherapy is considered
to be inadequate.



A.2 Data

U.S. Prescriptions for Hypercholesterolemia and Dyslipidemia Therapies: Prescription
data for U.S. medical practitioners and each of the products described above were obtained from the
IMS Health Xponent database. IMS Health draws its prescription data from a large but non-random
sample of over 70 percent of U.S. pharmacies. As of the time our data were assembled, Xponent
included direct information from over 38,000 retail stores, including approximately 119 mail-service
pharmacies and 820 long-term care facilities; this compares with a universe of approximately 57,000
retail pharmacies, 327 mail-service outlets, and 3,000 long-term care facilities. In addition to
observing directly dispensed prescription volumes (or “sell-out”) for each sample pharmacy, IMS
Health observes prescription drug purchase volumes (or “sell-in”) for the universe of U.S. pharmacies
and drugs—that is, including both sample and non-sample stores. To correct for sampling error
and to ensure the data are representative, IMS Health has applied a proprietary procedure that
a) combines sell-in and sell-out data for sample pharmacies to determine what ratio of purchased
product is actually dispensed for each drug and store, b) uses this ratio (or “projection factor”),
appropriately weighted by store type and proximity, to estimate the dispensed volume by drug for
any store reporting sell-in but not sell-out volumes. Importantly, this projection and weighting
procedure applies only to strictly positive prescription levels, but does not apply to zeros, enabling
us to accurately track the initial adoption of new products over time for each physician.

The data IMS Health provided include prescriptions by 280,622 unique U.S. physicians for
each product in each month during January 2000 through December 2010. To avoid studying
physicians specialized outside cardiovascular care, we restrict analysis to physicians that prescribe
at least some cholesterol products. Specifically, for a physician to be included in the dataset, he
or she needs to have written at least ten filled prescriptions for cholesterol therapies during the
calendar year 2010. The data provide precise identifying information for each prescribing physi-
cian, including the unique, 11-digit American Medical Association Medical Education Number, the
first name, last name, and middle name, and the five-digit zipcode corresponding to the medical
practice of the physician. From January 2006 through December 2010, the data provide additional
detail regarding prescriptions: for each drug, a separate prescription count is observed for each
of four payment methods, including Medicare Part D, Fee-for-Service Medicaid, cash, and com-
mercial insurance. In the data, approximately half of dispensed prescriptions for cholesterol drugs
correspond to individuals with commercial insurance; 34 percent obtain products through Medicare
Part D, ten percent purchase medications with cash, and the remaining six percent are covered by
Medicaid.

To prepare the data for analysis, we reshaped the files provided so that each row corresponds
to a doctor-drug-month triplet. With guidance from IMS Health, zeros were explicitly introduced in
this step for missing observations corresponding to existing products not associated with positive
prescriptions in the IMS data. Starting in 2006, we aggregated prescriptions across methods of
payment to arrive at a single number of prescriptions written by physician, drug, and month. We
combined prescriptions for “Pravastatin” and “Pravastatin SOD”, which are the same product, and
did likewise for “Lovaza” and “Omacor”, which are the same product. We dropped Baycol from the
dataset. For some years, due to the projection calculation described above, the prescription variable
was not a whole number; with guidance from IMS Health, we rounded the number of prescriptions
to the nearest whole number. To abstract from physician entry during the sample period, we impose
a sample restriction in addition to that described above: specifically, each physician included must
prescribe at least ten cholesterol drugs during the calendar year 2000. Finally, we used information
from the U.S. FDA to determine the approval date for each therapy. The first month after this
date was determined to be the first month of a drug’s market life in the United States. We created
indicator variables for drugs that are new corresponding to the first six months of the drug’s market



life in the United States, and separately, to the first 24 months of the drug’s market life in the United
States. We created indicator variables for generic products lovastatin, pravastatin, and simvastatin.

Electronic Database Use for Hypercholesterolemia and Dyslipidemia Therapies, by
U.S. Physicians: We obtained data on individual physicians’ information access from the leading
U.S. point-of-care medical applications firm. For each physician, we observe the corresponding
initial database registration date; this is used to construct the indicator variable Zit that takes
on a value of one for registered users, and that is otherwise zero. For each physician-product-
month triplet, we also observe a proxy for the number of lookups completed. We use this proxy
to construct a physician-specific indicator for database use that is equal to 1 if the doctor records
at least one cholesterol drug lookup during the sample period, and that is otherwise zero. During
January 2000 through December 2010, the share of sample physicians registered as database users
rose from 0.003 to 0.451. Our analysis is thus based on a sample combining a) physicians that first
registered during or before the sample period, and b) physicians that registered before the sample
period, and c) physicians that never registered. Each physician is identified in the data by a unique,
11-digit American Medical Association Medical Education Number, first name, last name, middle
name, and five-digit zipcode. These characteristics form the basis for a merge with the prescription
information described above.



Table  A.1:  Descriptive  Statistics,  Within-­Zipcode  Prescribing  Variation  Across  Physicians

Product:     lovastatin pravastatin simvastatin Generic
Variable (1) (2) (3) (4)

Panel  A
Final  month,  December  2010

Mean 0.079 0.103 0.196 0.191
St  Dev 0.077 0.082 0.094 0.096
5th  Percentile 0.003 0.011 0.046 0.043
25th  Percentile 0.027 0.049 0.133 0.122
Median 0.057 0.085 0.196 0.191
75th  Percentile 0.107 0.134 0.248 0.249
95th  Percentile 0.225 0.249 0.349 0.349

Panel  B
Six  months  after  generic  release
Molecule-­specfic  branded  drug Mevacor Pravachol Zocor

Mean 0.276 0.225 0.142
St  Dev 0.186 0.157 0.115
5th  Percentile 0 0 0
25th  Percentile 0.112 0.115 0.059
Median 0.315 0.219 0.118
75th  Percentile 0.417 0.326 0.202
95th  Percentile 0.535 0.500 0.355

Panel  C
Final  month,  December  2010
Molecule-­specfic  branded  drug Mevacor Pravachol Zocor

Mean 0.001 0.014 0.006
St  Dev 0.014 0.051 0.022
5th  Percentile 0 0 0
25th  Percentile 0 0 0
Median 0 0 0
75th  Percentile 0 0 0.004
95th  Percentile 0 0.260 0.029

Notes:  This  table  describes  the  distribution  across  U.S.  zipcodes  of  within-­zipcode  prescribing  variation  across  
local  physicians.  As  in  Table  3,  Panel  A  describes  within-­zipcode  prescribing  variation  in  December  2010;;  
Panels  B  and  C  describe  the  local  variation  in  physicians'  within-­molecule  substitution  toward  generics  for  
lovastatin  (column  1),  pravastatin  (column  2),  and  simvastatin  (column  3).    Panel  B  describes  this  variation  in  
substitution  six  months  after  the  generic  release  in  question,  while  Panel  C  describes  variation  in  prescribing  in  
the  final  sample  period,  December  2010.    The  upper-­left  number  in  Panel  A  (mean,  lovastatin,  0.079)  is  the  
average,  across  zipcodes,  of  the  standard  deviation  across  local  physicians  in  the  fraction  of  their  total  
December  2010  prescriptions  that  are  accounted  for  by  generic  lovastatin;;  the  upper-­left  number  in  Panel  B  
(mean,  lovastatin,  0.276)  is  the  average,  across  zipcodes,  of  the  standard  deviation  across  local  physicians  in  
the  fraction  of  their  total  Mevacor  plus  generic  lovastatin  prescriptions  that  are  accounted  for  by  generic  
lovastatin  in  October  2002,  six  months  after  expiration  of  the  Mevacor  patent;;    the  upper-­left  number  in  Panel  C  
is  the  analogous  statistic  for  December  2010.  Generic  approval  dates  are  from  the  U.S.  Food  and  Drug  
Administration;;  all  other  variables  are  from  IMS  Health.    

St  Dev  of  Generic  Rx  Share,  by  Zipcode

St  Dev  of  Generic  Rx  Share,  by  Zipcode

Within-­Zipcode  Variation,  Zipcode  Level

St  Dev  of  Share  in  Total  Rx,  by  Zipcode



Table  A.2:  Prescription  Propensity,  Two-­Stage  Least  Squares,  First-­Stage  Estimates,  U.S.  Physicians,  2000—2010

All  physicians Eventual  users All  physicians Eventual  users

(1) (2) (3) (4)

Panel  A

Adoption  Share  in  Zipcode  it -­1   x  New  jt  x  Generic  j 0.9578*** 0.9800*** -­0.0044*** 0.0297***
0.0005 0.0012 0.0009 0.0015

Adoption  Share  in  Zipcode  it -­1   x  New  jt  x  Branded  j -­0.0032*** 0.0309*** -­0.0035*** 0.0278***
0.0004 0.0008 0.0006 0.0010

Adoption  Share  in  Zipcode  it -­1   x  Old  jt  x  Generic  j -­0.0034*** 0.0385*** 0.9613*** 0.5601***
0.0003 0.0008 0.0006 0.0010

Adoption  Share  in  Zipcode  it -­1   x  Old  jt  x  Branded  j -­0.0033*** 0.0358*** -­0.0039*** 0.0364***
0.0002 0.0005 0.0004 0.0006

Panel  B

Adoption  Share  in  Zipcode  it -­1   x  New  jt  x  Generic  j -­0.0112*** 0.1483*** -­0.0577*** 0.4793***
0.0008 0.0021 0.0015 0.0037

Adoption  Share  in  Zipcode  it -­1   x  New  jt  x  Branded  j 0.9454*** 1.2834*** -­0.0520*** 0.4466***
0.0006 0.0014 0.0011 0.0025

Adoption  Share  in  Zipcode  it -­1   x  Old  jt  x  Generic  j -­0.0106*** 0.1640*** -­0.0541*** 0.5915***
0.0005 0.0014 0.0010 0.0024

Adoption  Share  in  Zipcode  it -­1   x  Old  jt  x  Branded  j -­0.0106*** 0.1559*** 0.9081*** 1.2694***
0.0004 0.0009 0.0006 0.0015

Physician  FE Y Y Y Y
Drug  x  Month  FE Y Y Y Y
Prescription  Volume  it -­1 Y Y Y Y

Observations 36238793 7674288 36238793 7674288
First-­Stage  F  statistic 7.9e+05 95954 7.9e+05 95954

First  stage  for  Database  it  x  Old  jt  x  Generic  j

First  stage  for  Database  it  x  Old  jt  x  Branded  j

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  first-­stage  estimates  corresponding  to  equation  (7)  and  the  second-­stage  estimates  in  Table  9.    All  
regressions  include  physician  and  drug-­month  fixed  effects,  as  well  as  the  cholesterol  drug  prescription  volume  for  physician  i   in  month  t -­1.  Standard  errors  appear  below  
each  point  estimate.    
                    

First  stage  for  Database  it  x  New  jt  x  Generic  j

First  stage  for  Database  it  x  New  jt  x  Branded  j



Dependent  Variable:    

(1) (2) (3) (4) (5) (6)

Database  ij   x  Low  Usage  i 0.0032** 0.0046** 0.0022 0.0049** -­0.0128*** 0.0022
0.0016 0.0019 0.0019 0.0022 0.0021 0.0023

Database  ij   x  Medium  Usage  i   0.0067*** 0.0042 0.0018 -­0.0011 -­0.0125*** -­0.0044
0.0018 0.0027 0.0020 0.0029 0.0022 0.0032

Database  ij   x  Intense  Usage  i 0.0341*** 0.0154*** 0.0275*** 0.0056* 0.0136*** 0.0026
0.0020 0.0030 0.0023 0.0033 0.0024 0.0033

Database  ij   x  Low  Usage  i   x  Generic  j 0.0039 0.0005 0.0019 -­0.0054
0.0026 0.0026 0.0036 0.0037

Database  ij   x  Medium  Usage  i   x  Generic  j 0.0172*** 0.0156*** 0.0149*** 0.0096**
0.0031 0.0032 0.0041 0.0042

Database  ij   x  Intense  Usage  i   x  Generic  j 0.0232*** 0.0282*** 0.0205*** 0.0222***
0.0034 0.0034 0.0042 0.0044

Physician  FE N Y N Y N Y
Zipcode-­Drug  FE Y Y Y Y Y Y
Prescription  Volume  it(j)-­1 Y Y Y Y Y Y

Observations 1513408   1513408   1513408   1513408   480869 480869
R2 0.4557 0.5690 0.4557 0.5690 0.4759 0.5845

Table  A.3:  Time  to  First  Prescription  of  a  New  Drug,  Intensity  of  Use,  U.S.  Physicians,  2000—2010

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-squares  estimates  for  a  variant  of  (5).    The  binary  dependent  variable  captures  
the  time  lapse  between  FDA  approval  of  drug  j  and  physician  i 's  initial  prescription  of  it,  taking  a  value  of  1  if  initial  prescription  occurs  within  a  year  
of  FDA  approval;;  specification  are  included  for  the  full  sample  of  physicians  (columns  1-­4)  and  for  the  subset  of  physicians  that  eventually  adopt  
and  use  the  electronic  reference  to  search  for  information  about  cholesterol  drugs  (columns  5-­6).    Database  is  the  Drug  Database  indicator  variable  
described  in  Table  2,  and  takes  a  value  of  1  for  a  physician  user  with  database  access  at  the  time  drug  j  receives  FDA  approval.    Generic  indicates  
the  products  pravastatin,  lovastatin,  and  simvastatin.    Low,  medium,  and  intense  usage  denote  non-­overlapping  categories  of  physicians  who,  
conditional  on  adoption,  use  the  database  to  look  up  cholesterol  drugs  to  differing  extents;;  the  usage  proxy  is  zero  for  low-­intensity  users,  between  
zero  and  14  for  medium-­intensity  users,  and  above  14  for  high-­intensity  users.    Regressions  include  zipcode-­drug  (columns  1-­6)  and  physician  
(columns  2,  4,  6)  fixed  effects  as  well  as  the  cholesterol  drug  prescription  volume  for  physician  i   in  the  month  prior  to  drug  j 's  introduction.    
Standard  errors  clustered  by  zipcode  appear  below  each  point  estimate;;  results  are  qualitatively  identical  when  errors  are  clustered  by  physician.  

Indicator  for  prescription  within  first  year  of  drug  introduction

All  physicians                     Eventual  adopters                  



Dependent  Variable:    
Number  of                

Unique  Drugs         Prescription  HHI    
Number  of        

Unique  Drugs        Prescription  HHI    

(1) (2) (3) (4)

Database  it   x  Low  Usage  i 0.0605*** -­0.0032*** -­0.0082*** 0.0007***
0.0027 0.0003 0.0030 0.0003

Database  it   x  Medium  Usage  i   0.0618*** -­0.0034*** -­0.0092*** -­0.0000
0.0037 0.0004 0.0039 0.0005

Database  it   x  Intense  Usage  i 0.2283*** -­0.0104*** 0.1543*** -­0.0060***
0.0043 0.0005 0.0046 0.0005

Physician  FE Y Y Y Y
Zipcode-­Month  FE Y Y Y Y
Prescription  Volume  it-­1 Y Y Y Y

Observations 15510386 15510386 6727828 6727828
R2 0.8328 0.6317 0.8441 0.6523

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-­squares  estimates  for  a  variant  of  (6)  for  cholesterol  
drug  prescriptions  by  U.S.  physicians  during  January  2000  through  December  2010,  including  all  sample  physicians  
(columns  1-­2)  and  the  subset  of  physicians  that  eventually  adopt  the  electronic  reference,  but  need  not  use  it  to  search  
for  information  about  cholesterol  drugs  (columns  3-­4).    The  dependent  variable  in  columns  1  and  3  captures  the  
prescription  diversity  of  physician  i   as  the  number  of  unique  drugs  j  that  are  prescribed  by  i   during  month  t .  The  
dependent  variable  in  columns  2  and  4  is  the  prescription  Herfindahl-­Hirschman  index  for  physician  i   in  month  t .    
Database  is  the  Drug  Database  indicator  variable  described  in  Table  2,  and  takes  a  value  of  1  for  a  physician  user  with  
database  access  in  month  t ;;  it  is  otherwise  zero.    Low,  medium,  and  intense  usage  denote  non-­overlapping  categories  
of  physicians  who,  conditional  on  adoption,  use  the  database  to  look  up  cholesterol  drugs  to  differing  extents;;  the  usage  
proxy  is  zero  for  low-­intensity  users,  between  zero  and  14  for  medium-­intensity  users,  and  above  14  for  high-­intensity  
users.    All  regressions  include  physician  and  zipcode-­month  fixed  effects,  as  well  as  the  cholesterol  drug  prescription  
volume  for  physician  i   in  month  t -­1.    Standard  errors  clustered  by  zipcode-­month  appear  below  each  point  estimate.  
                    

Table  A.4:  Prescription  Diversity,  Intensity  of  Use,  U.S.  Physicians,  2000—2010

                              All  physicians                                                                 Eventual  adopters                        



Dependent  Variable:  

All  physicians Eventual  adopters

(1) (2)

Database  it    x  New  jt     x  Generic  j
x  Low  Usage  i 0.0092*** 0.0059***

0.0014 0.0018
x  Medium  Usage  i 0.0153*** 0.0122***

0.0018 0.0021
x  High  Usage  i 0.0395*** 0.0356***

0.0020 0.0023
Database  it    x  New  jt     x  Branded  j

x  Low  Usage  i 0.0046*** 0.0059***
0.0009 0.0010

x  Medium  Usage  i -­0.0021*** -­0.0009
0.0012 0.0012

x  High  Usage  i -­0.0198*** -­0.0197***
0.0015 0.0016

Database  it    x  Old  jt     x  Generic  j
x  Low  Usage  i 0.0119*** 0.0091***

0.0013 0.0017
x  Medium  Usage  i 0.0127*** 0.0101***

0.0016 0.0020
x  High  Usage  i 0.0592*** 0.0555***

0.0018 0.0022
Database  it    x  Old  jt     x  Branded  j

x  Low  Usage  i 0.0021*** 0.0035***
0.0006 0.0006

x  Medium  Usage  i 0.0002 0.0015*
0.0008 0.0009

x  High  Usage  i -­0.0034*** -­0.0030***
0.0011 0.0011

Physician  FE Y Y
Zipcode  x  Month  FE Y Y
Drug  x  Month  FE Y Y
Prescription  Volume  it-­1 Y Y

Observations 28103453 12623365
R 2 0.5187 0.5271

1{(prescriptions  of  drug  j   by  i   at  t )  >  0}

Table  A.5:  Prescription  Propensity,  Intensity  of  Use,  U.S.  Physicians,  2000—2010

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-­squares  estimates  for  a  variant  of  (7)  for  all  
sample  physicians  (column  1)  and  the  subset  of  physicians  that  eventually  adopt  the  drug  reference  (column  2).    
The  dependent  variable  is  an  indicator  for  whether  the  doctor  i  prescribes  drug  j  during  month  t.  Database  is  the  
Drug  Database  indicator  variable  described  in  Table  2.    New  denotes  a  drug  j   that  is  within  24  months  of  its  initial  
FDA  approval  in  month  t ;;  drug  j  is  otherwise  Old.    Generic  indicates  the  products  pravastatin,  lovastatin,  and  
simvastatin;;  other  drugs  are  Branded.    Low,  medium,  and  intense  usage  denote  non-­overlapping  categories  of  
physicians  who,  conditional  on  adoption,  use  the  database  to  look  up  cholesterol  drugs  to  differing  extents;;  the  
usage  proxy  is  zero  for  low-­intensity  users,  between  zero  and  14  for  medium-­intensity  users,  and  above  14  for  high-­
intensity  users.  All  regressions  include  physician,  zipcode-­month,  and  drug-­month  fixed  effects,  as  well  as  the  
cholesterol  drug  prescription  volume  for  physician  i   in  month  t -­1.  For  computational  ease,  the  estimates  above  rely  
only  on  observations  in  January  2000  and  every  subsequent  June  and  December.    Standard  errors  clustered  by  
zipcode-­month  appear  below  each  point  estimate.    



Dependent  Variable:    

Yes No All Yes No All
(1) (2) (3) (4) (5) (6)

Database  ij 0.0022 -­0.0018 -­0.0005 -­0.0016 -­0.0062 -­0.0042
0.0036 0.0025 0.0025 0.0041 0.0029 0.0028

Database  ij   x  Mandatory  Substitution  i 0.0001 -­0.0014
0.0043 0.0043

Database  ij   x  Generic  j 0.0264*** 0.0251*** 0.0236*** 0.0257*** 0.0180*** 0.0172***
0.0038 0.0026 0.0026 0.0060 0.0041 0.0040

Database  ij   x  Generic  j  x  Mandatory  i 0.0058 0.0100
0.0045 0.0068

Generic  j  x  Mandatory  i 0.0175*** 0.0129**
0.0017 0.0054

Drug  FE Y Y Y Y Y Y
Physician  FE Y Y Y Y Y Y
Prescription  Volume  it(j)-­1   Y Y Y Y Y Y

Observations 500158 1013050 1513261 99631 212685 313646
R2 0.5566 0.5525 0.5535 0.5713 0.5656 0.5673

All  physicians Eventual  users

Table  A.6:  Time  to  First  Prescription,  Mandatory  Substitution  Laws,  U.S.  Physicians,  2000—2010

Indicator  for  prescription  within  first  year  of  drug  introduction

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-squares  estimates  for  (5)  and  a  variant  thereof.    The  binary  dependent  
variable  captures  the  time  lapse  between  FDA  approval  of  drug  j  and  physician  i 's  initial  prescription  of  it,  taking  a  value  of  1  if  initial  prescription  
occurs  within  a  year  of  FDA  approval;;  specification  are  included  for  the  full  sample  of  physicians  (columns  1-­4)  and  for  the  subset  of  physicians  
that  eventually  adopt  and  use  the  electronic  reference  to  search  for  information  about  cholesterol  drugs  (columns  5-­6).    Database  is  the  Drug  
Database  and  Use  indicator  variable  described  in  Table  2,  and  takes  a  value  of  1  for  a  physician  user  with  database  access  at  the  time  drug  j  
receives  FDA  approval.    Generic  indicates  the  products  pravastatin,  lovastatin,  and  simvastatin.  Estimates  are  presented  for  two  subsamples:  
physicians  located  in  states  with  active  mandatory  substitution  laws  (columns  1,4)  in  the  initial  period  and  those  without  such  laws  (columns  2,5);;  
the  full-­sample  results  in  columns  3  and  6  include  interactions  with  an  indicator  for  whether  physician  i's  state  has  an  active  mandatory  
substitution  law.    Regressions  include  drug  (columns  1-­6)  and  physician  (columns  2,  4,  6)  fixed  effects,  as  well  as  the  cholesterol  drug  prescription  
volume  for  doctor  i   in  the  month  prior  to  drug  j 's  introduction.    Standard  errors  clustered  by  physician  appear  below  each  point  estimate.  

Mandatory  Substitution  Law Mandatory  Substitution  Law



Dependent  Variable:    

High Low All All High Low All All
(1) (2) (3) (4) (5) (6) (7) (8)

Database  ij   -­0.0000 0.0015 -­0.0008 0.0074 -­0.0095 -­0.0139 -­0.0048* 0.0029
0.0096 0.0090 0.0022 0.0050 0.0209 0.0109 0.0025 0.0051

Database  ij     x  High  Patents  i -­0.0038 -­0.0037
0.0096 0.0095

Database  ij     x  Low  Patents  i 0.0116 0.0084
0.0090 0.0092

Database  ij     x  Patents  i -­0.0016* -­0.0015
0.0009 0.0009

Database  ij     x  Generic  j 0.0274*** 0.0347*** 0.0246*** 0.0343*** 0.0276* 0.0383** 0.0194*** 0.0359***
0.0096 0.0095 0.0022 0.0053 0.0152 0.0156 0.0035 0.0080

Database  ij     x  Generic  j     x  High  Patents  i -­0.0009 -­0.0089
0.0097 0.0145

Database  ij     x  Generic  j     x  Low  Patents  i 0.0139 0.0288**
0.0097 0.0144

Database  ij     x  Generic  j     x  Patents  i -­0.0019* -­0.0032**
0.0009 0.0015

Generic  j    x  High  Patents  i 0.0158*** 0.0253**
0.0037 0.0116

Generic  j    x  Low  Patents  i -­0.0119*** -­0.0259**
0.0036 0.0113

Generic  j    x  Patents  i 0.0035*** 0.0050***
0.0004 0.0012

Drug  FE,  Physician  FE Y Y Y Y Y Y Y Y
Prescription  Volume  it(j)-­1   Y Y Y Y Y Y Y Y
Observations 74766 78995 1513408 1513408 15412 15090 313699 313699
R 2 0.5516 0.6167 0.5535 0.6220 0.5750 0.6350 0.5672 0.6359

Table  A.7:  Time  to  First  Prescription,  Pharmaceutical  Innovation,  U.S.  Physicians,  2000—2010

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-­squares  estimates  for  (5)  and  a  variant  thereof.    The  binary  dependent  variable  captures  the  time  lapse  between  
FDA  approval  of  drug  j  and  physician  i 's  initial  prescription  of  it,  taking  a  value  of  1  if  initial  prescription  occurs  within  a  year  of  FDA  approval;;  specification  are  included  for  the  full  
sample  of  physicians  (columns  1-­4)  and  for  the  subset  of  physicians  that  eventually  adopt  and  use  the  electronic  reference  to  search  for  information  about  cholesterol  drugs  
(columns  5-­6).    Database  is  the  Drug  Database  and  Use  indicator  variable  described  in  Table  2,  and  takes  a  value  of  1  for  a  physician  user  with  database  access  at  the  time  drug  j  
receives  FDA  approval.    Generic  indicates  the  products  pravastatin,  lovastatin,  and  simvastatin.  Estimates  in  columns  1,  2,  5,  and  6  are  for  subsamples:  High  includes  all  physicians  
in  U.S.  4-­digit  zipcodes  that  are  in  the  top  five  percent  based  on  the  number  of  USPTO  medical  patents  granted  (columns  1,5),  Low  includes  those  in  the  bottom  five  percent  
(columns  2,6).  Full-­sample  results  include  interactions  with  indicators  for  High  and  Low  medical  patenting  (columns  3  and  7)  and  the  log  number  of  medical  patents  (columns  4  and  
8).    All  regressions  include  drug  and  physician  fixed  effects,  as  well  as  the  cholesterol  drug  prescription  volume  for  doctor  i   in  the  month  prior  to  drug  j 's  introduction.    Standard  
errors  clustered  by  physician  appear  below  each  point  estimate.  
                    

Medical  Patents Medical  Patents

Indicator  for  prescription  within  first  year  of  drug  introduction

All  physicians Eventual  users



Database  i   =  0         Database  i   =  1         All

(1) (2) (3)

Panel  A

Mean 0.1762 0.1522
Estimated  difference  in  means     -­0.0236***
Standard  error 0.0014

Panel  B

Mean 0.2162 0.2037
Estimated  difference  in  means     -­0.0093***
Standard  error 0.0015

Panel  C

Difference  in  means   -­0.0400 -­0.0515
Estimated  difference  in  differences   -­0.0107***
Standard  error   0.0017
Estimated  average  change   -­0.0447***
Standard  error   0.0011

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  summarizes  prescription  heterogeneity  across  U.S.  physicians  and  
over  time.    Columns  1  and  2  indicate  the  average  Euclidean  distance  (norm)  between  a)  the  vector  of  physician-­i  
prescription  shares  across  drugs  j  and  b)  the  vector  of  average  prescription  shares,  in  December  2010  (Panel  A)  and  in  
January  2000  (Panel  B)  for  physicians  without  access  to  the  electronic  database  in  December  2010  (column  1)  and  for  
physicians  with  access  in  December  2010  (column  2).    Column  3  presents  estimates  from  two  cross-­section  regressions  
in  which  the  mean  Euclidean  distance  between  physician  i  and  his  group  average  is  the  dependent  variable,  regressed  
on  an  indicator  for  database  access  in  December  2010  and  zipcode  fixed  effects.    Panel  C  provides  difference-­in-­
differences  estimates  with  two  time  periods  (January  2000  and  December  2010);;  the  dependent  variable  is  as  in  Panels  
A  and  B,  and  is  regressed  on  an  indicator  for  December  2010,  its  interaction  with  the  indicator  for  database  access,  and  
physician  fixed  effects.    Standard  errors  appear  below  each  point  estimate.      

Table  A.8:  Prescribing  Heterogeneity,  U.S.  Physicians,  January  2000  and  December  2010

Euclidean  Distance  Between  i's  Prescriptions  and  the  Average

December  2010

January  2000

December  2010  and  January  2000




