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1 Introduction

The identification of causal effects depends on explicit or implicit assumptions

which typically form the core of a debate about the quality and credibility of a

particular research design. In regression based strategies, this is the claim that

variation in the regressor of interest is as good as random after conditioning on

a sufficient set of control variables. In instrumental variables models it involves

the assumption that the instrument is as good as randomly assigned. In panel

or differences-in-differences designs it is the parallel trends assumption, pos-

sibly after suitable conditioning. The credibility of a design can be enhanced

when researchers can show explicitly that potentially remaining sources of se-

lection bias have been eliminated. This is often done through some form of

balancing tests or robustness checks.

The research designs mentioned above can all be thought of as variants of

regression strategies. If the researcher has access to a variable for a potentially

remaining confounder, tests for the identifying assumption take two canonical

forms. The variable can be added as a control on the right hand side of the

regression. The identifying assumption is confirmed if the estimated causal

effect of interest is insensitive to this variable addition—we call this the coef-

ficient comparison test. Alternatively, the variable can be placed on the left

hand side of the regression instead of the outcome variable. A zero coefficient

on the causal variable of interest then confirms the identifying assumption.

This is the balancing test which is typically carried out using baseline char-

acteristics or pre-treatment outcomes in a randomized trial or in a regression

discontinuity design.

Researchers often rely on one or the other of these tests. The main point of

our paper is to show that the balancing test, using the proxy for the candidate

confounder on the left hand side of the regression, is generally more powerful.

This is particularly the case when the available variable is a noisy measure

of the true underlying confounder. The attenuation due to measurement error

often implies that adding the candidate variable on the right hand side as a

regressor does little to eliminate any omitted variables bias. The same mea-
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surement error does comparatively less damage when putting this variable on

the left hand side. Regression strategies work well in finding small but relevant

amounts of variation in noisy dependent variables.

These two testing strategies are intimately related through the omitted

variables bias formula. The omitted variables bias formula shows that the

coefficient comparison test involves two regression parameters, the coefficient

from the balancing test and the coefficient from the added regressor in the

outcome equation. If the researcher has a strong prior that the added regressor

ought to matter for the outcome under study, then the balancing test will

provide the remaining information necessary to assess the research design.

This maintained assumption is the ultimate source of the superior power of the

balancing test. However, we show that quantitatively meaningful differences

emerge particularly when there is some substantial amount of measurement

error in the added regressor. We derive the relevant parameters in the presence

of measurement error in Section 3.

Of course, sometimes researchers may be more agnostic about whether the

added regressor matters for the outcome. In case it does not matter, rejecting

balance for this variable is of no consequence for this particular research design.

In this view, only the coefficient comparison test is really relevant while the

balancing test provides no additional information. However, this strikes us as

a narrow view and not one shared by many in the experimental community,

where balancing tests are commonly used. Lack of balance is seen as an

indictment of the randomization in an experiment irrespective of whether the

variable in question affects the outcome. Lack of balance with respect to one

or more observed covariates raises the possibility that there may also be lack

of balance for other unobservables, and would lead a prudent researcher to

reassess the credibility of their research design. The same should be true for

quasi-experimental research based on observational data.

A second point we are making is that the two strategies, coefficient com-

parison and balancing, both lead to explicit statistical tests. The balancing

test is a simple t-test used routinely by researchers. When adding a covariate

on the right hand side, comparing the coefficient of interest across the two re-
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gressions can be done using a generalized Hausman test. In practice, we have

not seen this test carried out in applied papers, where researchers typically

just eye-ball the results.2 We provide the relevant test statistics and discuss

how they behave under measurement error in Section 4. We also show how

the coefficient comparison test is simple to implement for varying identification

strategies. We demonstrate the superior power of the balancing test under a

variety of scenarios in Section 5.

The principles underlying the points we are making are not new but the

consequences do not seem to be fully appreciated in much applied work.

Griliches (1977) is a classic reference for the issues arising when regression

controls are measured with error. A subsequent literature, for example Rosen-

baum and Rubin (1983) and Imbens (2003), has considered omitted variables

bias in non-linear models without measurement error. More closely related is

Battistin and Chesher (2014), as it discusses identification in the presence of

a mismeasured covariate in non-linear models. Like in the literature following

Rosenbaum and Rubin (1983), they discuss identification given assumptions

about a missing parameter, namely the degree of measurement error in the

covariate. We follow Griliches (1977) in framing our discussion around the

omitted variables bias arising in linear regressions, the general framework used

most widely in empirical studies. Unlike this literature, we are less interested

in point identification in the presence of missing information. We go beyond

the analysis in all of these papers in our explicit discussion of testing, which

forms the core of our study.

Altonji, Elder and Taber (2005) discuss an alternative but closely related

approach to the problem. As we noted above, applied researchers often argue

that relative stability of regression coefficients when adding additional con-

trols provides evidence for credible identification. Implicit in this argument is

the idea that other confounders not controlled for are similar to the controls

just added to the regression. The paper by Altonji, Elder and Taber (2005)

formalizes this argument. In practice, adding controls will typically move the

coefficient of interest somewhat even if it is not by much. Altonji et al. (2013)

2An exception is Gelbach (2016), who discusses the Hausman test in this context.
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and Oster (forthcoming) extend the original Altonji, Elder and Taber work by

providing more precise conditions for bounds and point identification in this

case. The approach in these papers relies on an assumption about how the

omitted variables bias due to the observed regressor is related to any remain-

ing omitted variables bias due to unobserved confounders.

The remaining unobserved confounders in this previous work can be thought

of as the source of measurement error in the covariate which is added to the

regression in our analysis. For example, in our empirical example below, we

use mother’s education as a measure for family background but this variable

may only capture a small part of all the relevant family background informa-

tion, a lot of which may be orthogonal to mother’s education. In fact, we show

that our formulation and Oster’s (forthcoming) are isomorphic. This means

that our framework is a useful starting point for researchers who are willing to

make the type of assumptions in Altonji, Elder and Taber (2005) and follow-up

papers as well.

Another related strand of work is by Belloni, Chernozhukov and Hansen

(2014a, b), who tackle the opposite problem from Altonji, Elder and Taber

(2005), namely choosing the best controls when the researcher has a poten-

tially bigger set of candidate controls available than is necessary. This large

dimensional set may come from nonlinearities and interactions among regres-

sors. Belloni, Chernozhukov and Hansen (2014b) use Lasso to select regressors

which are highly correlated with either the treatment or the outcome condi-

tional on other covariates. They then estimate an outcome equation including

as controls all the regressors selected in this preliminary step. In a sense, this is

more closely related to our setup than the Altonji, Elder and Taber approach

as Belloni, Chernozhukov and Hansen (2014b) also postulate that identifica-

tion can be achieved when using a subset of the available covariates as controls.

Their variable selection problem is related to the two testing strategies we dis-

cuss in this paper. However, like Altonji et al. (2013) and Oster (forthcoming),

their ultimate interest is in point identification and inference for the treatment

effects parameter, not in testing whether a particular specification is subject

to remaining confounders. Their setup is also not specifically geared towards
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dealing with control variables which are subject to error, which is our focus.

An older literature by Hausman (1978), Hausman and Taylor (1980), and

Holly (1982) (see also the summary in MacKinnon, 1992, section II.9) considers

the relative power of the Hausman test compared to alternatives, in particular

an F -test for the added covariates in the outcome equation when potentially

multiple covariates are added. This comparison effectively maintains that there

is a lack of balance, and instead tests whether the added regressors matter

for explaining the outcome. While this is a different exercise from ours, this

literature highlights the potential power of the Hausman test when it succinctly

transforms a test with multiple restrictions (like the F -test for the added

covariates) into a test with a single restriction (the coefficient comparison

test). We discuss how to extend our framework to multiple added controls in

Section 5.3. Our basic findings largely carry over to this setting but we also

reach the conclusion that the Hausman test has a role to play when the goal

is to summarize a large number of restrictions.

Griliches (1977) uses estimates of the returns to schooling as example for

the methodological points he makes. Such estimates have formed a staple of

labor economics ever since. We use Griliches’ data from the National Longi-

tudinal Survey of Young Men to illustrate our power results in Section 6. In

addition to Griliches (1977), this data set has been used in a well known study

by Card (1995). It is well suited for our purposes because the data contain

various test score measures which can be used as controls in a regression strat-

egy (as investigated by Griliches, 1977), a candidate instrument for college

attendance (investigated by Card, 1995), as well as a myriad of other useful

variables on individual and family background. The empirical results support

and illustrate our theoretical claims.

2 A Simple Framework

Consider the following simple framework starting with a population regression

equation

yi = αs + βssi + esi (1)
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where yi is an outcome like log wages, si is the causal variable of interest, like

years of schooling, and esi is the regression residual. The researcher proposes

this short regression model to be causal. This might be the case because the

data come from a randomized experiment, so the simple bivariate regression

is all we need. More likely, the researcher has a particular research design

applied to observational data. For example, in the case of a regression strategy

controlling for confounders, yi and si would be residuals from regressions of

the original outcome and treatment variables on the chosen controls. In the

case of panel data or differences-in-differences designs the controls are sets of

fixed effects. In the case of instrumental variables, si would be the predicted

value from a first stage regression. In practice, (1) encompasses a wide variety

of empirical approaches, and should be thought of as a short-hand for these.3

Now consider the possibility that the population regression parameter βs

from (1) may not actually capture a causal effect. There may be a candidate

confounder xi, so that the causal effect of si on yi would only be obtained

conditional on xi, as in the long regression

yi = α + βsi + γxi + ei (2)

and the researcher would like to probe whether this is a concern. For example,

in the returns to schooling context, xi might be some remaining part of an

individual’s earnings capacity which is also related to schooling, like ability or

family background.

Researchers who find themselves in a situation where they start with a pro-

posed causal model (1) and a measure for a candidate confounder xi typically

do one of two things: They either regress xi on si and check whether si is signif-

icant, or they include xi on the right hand side of the original regression as in

(2), and check whether the estimate of β changes materially when xi is added

to the regression of interest. The first strategy constitutes a test for “balance,”

a standard check for successful randomization in an experiment. In principle,

the second strategy has the advantage that it goes beyond testing whether (1)

3Of course, all subsequent regression equations and results also inherit the structure of
the actual underlying research design.
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qualifies as a causal regression. An appreciable change in β suggests that the

original estimate βs is biased. The results obtained with xi as an additional

control should be closer to the causal effect we seek to uncover. In particular,

if xi were the only relevant confounder and if we measure it without error, the

β parameter from the controlled regression is the causal effect of interest. In

practice, there is usually little reason to believe that these two conditions are

met, and hence a difference between β and βs again only indicates a flawed

research design.

The relationship between these two strategies is easy to see. Write the

regression of xi on si, which we will call the balancing regression, as

xi = δ0 + δsi + ui. (3)

The change in the coefficient β from adding xi to the regression (1) is given

by the omitted variables bias formula

βs − β = γδ. (4)

The change in the coefficient of interest β from adding xi consists of two com-

ponents, the coefficient γ on xi in the outcome equation (2) and the coefficient

δ from the balancing regression.

Here we consider the relationship between these two approaches: the bal-

ancing test, consisting of an investigation of the null hypothesis

H0 : δ = 0, (5)

compared to the inspection of the coefficient movement βs − β. The latter

strategy of comparing βs and β is often done informally, but it can be formal-

ized as a statistical test of the null hypothesis

H0 : βs − β = 0, (6)

which we will call the coefficient comparison (CC) test. From (4) it is clear

that (6) amounts to

H0 : βs − β = 0⇔ γ = 0 or δ = 0. (7)
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This highlights that the two approaches formally test the same hypothesis

under the maintained assumption γ 6= 0. We may often have a strong sense

that γ 6= 0; i.e. we are dealing with a variable xi which we believe affects the

outcome, but we are unsure whether it is related to the regressor of interest

si. In this case, both tests would seem equally suitable.4 Nevertheless, in

other cases γ may be zero, or we may be unsure. In this case, the coefficient

comparison test seems to dominate because it directly addresses the question

we are after, namely whether the coefficient of interest β is affected by the

inclusion of xi in the regression.5

Here we make the point that the balancing test adds valuable information

particularly when the true confounder is measured with error. In general, xi

may not be easy to measure. If the available measure for xi contains classi-

cal measurement error, the estimator of γ in (2) will be attenuated, and the

comparison βs − β will be too small (in absolute value) as a result. The esti-

mator of δ from the balancing regression is still consistent in the presence of

measurement error; this regression simply loses precision because the mismea-

sured variable is on the left hand side. Under the maintained assumption that

0 < γ <∞, the balancing test is more powerful than the coefficient compari-

son test. In order to make these statements precise, we collect results for the

relevant population parameters for the case of classical measurement error in

the following section, before moving on to the test statistics.

4One might argue that researchers should only carry out the long regression and not
the short regression if they know that γ 6= 0: if δ 6= 0, not including x in the regression
will lead to omitted variable bias; if δ = 0, both β̂s and β̂ are consistent but β̂s is less
efficient than β̂. As we emphasized in the Introduction, however, the focus of this paper is
on testing whether the treatment is plausibly randomly assigned in an (quasi-)experimental
design. In the analysis of a randomized controlled trial, for example, researchers may include
covariates when estimating the treatment effect but that does not come before a formal test
of covariate balance.

5Equations (4) and (7) highlight that a regressor ought to be included in the long re-
gression when both γ 6= 0 and δ 6= 0. This differs from the selection rule chosen by Belloni,
Chernozhukov and Hansen (2014b), who include a regressor when either γ 6= 0 or δ 6= 0 is
true.
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3 Population Parameters in the Presence of

Measurement Error

The candidate variable xi is not observed. Instead, the researcher works with

the mismeasured variable

xmi = xi +mi. (8)

Here we assume the measurement error mi is classical, i.e. E (mi) = 0,

Cov (xi,mi) = 0. In Section 5 below we also investigate the impact of non-

classical errors. As a result of the measurement error, the researcher compares

the regressions

yi = αs + βssi + esi

yi = αm + βmsi + γmxmi + emi . (9)

Notice that the short regression does not involve the mismeasured xi, so

that βs = β + γδ as before. However, the population regression coefficients

βm and γm are now different from β and γ from equation (2), and they are

related in the following way:

βm = β + γδ
1− λ

1−R2
= β + γδθ

γm = γ
λ−R2

1−R2
= γ (1− θ) (10)

where R2 is the population R2 of the regression of si on xmi and

λ =
V ar (xi)

V ar (xmi )

is the reliability of xmi .6 λ measures the amount of measurement error present

as the fraction of the variance in the observed xmi , which is due to the signal

in the true xi. It is also the attenuation factor in a simple bivariate regression

on xmi . In the multivariate model (9), an alternative way to parameterize the

amount of measurement error is

θ =
1− λ

1−R2
=

σ2
m

σ2
u + σ2

m

.

6Note R2 is also the population R2 of the regression of xmi on si.
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where σ2· denotes the variance of the random variable in the subscript. 1 − θ
is the multivariate attenuation factor. Recall that ui is the residual from the

balancing regression (3).

With the mismeasured xmi , the balancing regression becomes

xmi = δm0 + δmsi + ui +mi, (11)

which implies that

λ = 1− σ2
m

V ar (xmi )
> 1− σ2

u + σ2
m

V ar (xmi )
= R2.

As a result

0 <
1− λ

1−R2
< 1

0 <
λ−R2

1−R2
< λ.

θ is an alternative way to parameterize the degree of measurement error in

xi compared to λ and R2. The θ parameterization uses only the variation in

xmi which is orthogonal to si. This is the part of the variation in xmi relevant

to the estimate of γm in regression (9), which also has si as a regressor. θ

turns out to be a useful parameter in many of the derivations that follow.

The population coefficient βm differs from β but less so than βs. In fact,

βm lies between βs and β, as can be seen from (10). The parameter γm

is attenuated compared to γ; the attenuation is bigger than in the case of

a bivariate regression of yi on xmi without the regressor si if xmi and si are

correlated (R2 > 0).

These results highlight a number of issues. The gap βs − βm is too small

compared to the desired βs − β, directly affecting the coefficient comparison

test. This is a consequence of the fact that γm is biased towards zero. Ce-

teris paribus, this is making the assessment of the hypothesis γ = 0 more

difficult. Finally, the balancing regression (11) with the mismeasured xmi in-

volves measurement error in the dependent variable, which has no effect on

the population parameter δm = δ, but the estimator δ̂m is less efficient than δ̂.
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The results here are also useful for thinking about the identification of β

and γ in the presence of measurement error. Rearranging (10) yields

γ = γm
1−R2

λ−R2

β = βm − δγm 1− λ
λ−R2

. (12)

Since R2 can be estimated from the data, these expressions only involve the

unknown parameter λ. If we are willing to make an assumption about the

measurement error, we are able to point identify β. Even if λ is not known

precisely, (12) can be used to bound β for a range of plausible reliabilities.

Alternatively, (10) can be used to derive the value of λ for which β = 0. These

calculations are similar in spirit to the ones suggested by Oster (forthcoming)

in a setting that is closely related.

4 Inference

In this section, we consider how conventional standard errors and test statis-

tics for the quantities of interest are affected in the homoskedastic case.7 We

present the theoretical power functions for the two alternative test statistics;

derivations are in Appendix A, which also shows that our results carry over

to robust standard errors. We extend the power results to the heteroskedastic

case and non-classical measurement error in simulations. Our basic conclusions

are the same in all these different scenarios.

Start with the standard error of estimator δ̂m from the balancing regression:

√
nŝe

(
δ̂m
)

p→

√
σ2
u + σ2

m

σ2
s

=
1√

1− θ
σu
σs
,

where we use ŝe(·) to denote the estimated standard error of a given estimator.

Let se(·) denote the asymptotic standard error of an estimator, i.e., se(·) ≡
7See Appendix A for the precise setup of the model. The primitive disturbances are si,

ui, ei, and mi, which we assume to be uncorrelated with each other. Other variables are
determined by (2), (3), and (8).
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1√
n
plim{

√
nŝe(·)}. In the case of δ̂m,

se
(
δ̂m
)

=
1√
n

1√
1− θ

σu
σs
.

Comparing the asymptotic standard error of δ̂m to its counterpart in the

case with no measurement error,

se
(
δ̂
)

=
1√
n

σu
σs
,

we have

se
(
δ̂m
)

=
se
(
δ̂
)

√
1− θ

.

Since 0 < θ < 1, the standard error is inflated compared to the case with no

measurement error.

A test based on the t-statistic

tδm =
δ̂m

ŝe
(
δ̂m
)

remains consistent because mi is correctly accounted for in the residual of the

balancing regression (11), but the t-statistic is asymptotically smaller than in

the error free case: As n→∞, the comparison of the scaled t-statistics when

δ > 0 is (without loss of generality, we are assuming that δ is either zero or

positive)
1√
n
tδm

p→
√

1− θ δ(
σu
σs

) < δ(
σu
σs

) p← 1√
n
tδ

This means the null hypothesis (5) is rejected less often. The test is less power-

ful than in the error free case; the power loss is captured by the term
√

1− θ.
We next turn to γ̂m, the estimator for the coefficient on the mismeasured

xmi in (9). The parameter γ is of interest since it determines the coefficient

movement βs − β = γδ in conjunction with the result from the balancing

regression. Let x̃mi be the residual from the population regression of xmi on si.

For ease of exposition, we impose conditional homoskedasticity of emi given si
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and xmi here and leave the more general case to Appendix A.2.3. The standard

error for γ̂m in the limit is

se (γ̂m) =
1√
n

√
V ar (emi )√
V ar (x̃mi )

=
1√
n

√
γ2θσ2

u + σ2
e

σ2
u + σ2

m

=
1√
n

√
1− θ

√
θγ2 +

σ2
e

σ2
u

,

while

se (γ̂) =
1√
n

√
σ2
e

σ2
u

.

se(γ̂m) involves two terms: the first term is an attenuated version of se(γ̂) from

the corresponding regression with the correctly measured xi, while the second

term depends on the value of γ. The parameters in the two terms are not

directly related, so se (γ̂m) ≷ se (γ̂). Measurement error does not necessarily

inflate the standard error here.

The two terms have a simple, intuitive interpretation. Measurement error

attenuates the parameter γm towards zero, the attenuation factor is 1 − θ.

The standard error is attenuated in the same direction; this is reflected in the
√

1− θ factor, which multiplies the remainder of the standard error calcula-

tion. The second influence from measurement error comes from the term θγ2,

which results from the fact that the residual variance V ar (emi ) is larger when

there is measurement error. The increase in the variance is related to the true

γ, which enters the residual.

The t-statistic for testing whether γm = 0 is

tγm =
γ̂m

ŝe (γ̂m)

and it follows that when γ > 0

1√
n
tγm

p→
√

1− θ γ√
θγ2 + σ2

e

σ2
u

<
γ√
σ2
e

σ2
u

p← 1√
n
tγ.
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As in the case of δ̂m from the balancing regression, the t-statistic for γ̂m

is smaller than tγ for the error free case. But in contrast to the balancing test

statistic tδm , measurement error reduces tγm relatively more, namely due to

the term θγ2 in the denominator, in addition to the attenuation factor
√

1− θ.
This is due to the fact that measurement error in a regressor both attenuates

the relevant coefficient towards zero and introduces additional variance into the

residual. Though interestingly, θγ2 captures the additional residual variance

while the factor
√

1− θ now captures the attenuation of γm. In the balancing

test statistic,
√

1− θ accounted for the residual variance. The upshot from

this discussion is that classical measurement error makes the assessment of

whether γ = 0 more difficult compared to the assessment of whether δ = 0.

As we will see, this is the source of the greater power of the balancing test

statistic.

Finally, consider the quantity βs−βm, which enters the coefficient compar-

ison test. To form a test statistic for this quantity we need the expression for

the asymptotic variance of β̂s − β̂m, which we derive through an application

of the delta method to the omitted variables bias formula

β̂s − β̂m = δ̂mγ̂m.

Specifically, we can relate V ar(β̂s− β̂m) to the asymptotic variances of δ̂m and

γ̂m and their asymptotic covariance:

V ar
(
β̂s − β̂m

)
= γ2 (1− θ)2 V ar

(
δ̂m
)

+ δ2V ar (γ̂m)

+ 2δγ (1− θ)Cov
(
δ̂m, γ̂m

)
. (13)

Using V ar
(
δ̂m
)

and V ar (γ̂m), which we derived above, and the fact that

Cov
(
δ̂m, γ̂m

)
= 0, which we show in Appendix A.2.2, we get

V ar
(
β̂s − β̂m

)
=

1

n
(1− θ)

(
γ2
σ2
u

σ2
s

+ θδ2γ2 + δ2
σ2
e

σ2
u

)
.

It is easy to see that, like V ar (γ̂m), V ar
(
β̂s − β̂m

)
has both an attenuation

factor as well as an additional positive term compared to the case where θ =

14



0, i.e. V ar
(
β̂s − β̂

)
. Measurement error may therefore raise or lower the

sampling variance for the coefficient comparison test.

Before we proceed to discuss the power of the coefficient comparison test,

we note that the covariance term in

V ar
(
β̂s − β̂m

)
= V ar

(
β̂s
)

+ V ar
(
β̂m
)
− 2Cov

(
β̂s, β̂m

)
reduces the sampling variance of β̂s− β̂m. In fact, this covariance term is posi-

tive, and it is generally sizable compared to V ar
(
β̂s
)

and V ar
(
β̂m
)

since the

regression residuals esi and emi are highly correlated. Because 2Cov
(
β̂s, β̂m

)
gets subtracted, looking at the standard errors of β̂s and β̂m alone can poten-

tially mislead the researcher into concluding that the two coefficients are not

significantly different from each other when in fact they are.

The coefficient comparison test itself can be formulated as a t-test as well,

since we are interested in the movement in a single parameter. Define

t(βs−βm) ≡
β̂s − β̂m

ŝe(β̂s − β̂m)

where ŝe(β̂s − β̂m) is a consistent standard error estimator. Since

βs − βm = δγm = δγ (1− θ)

we have

1√
n
t(βs−βm)

p→ δγ (1− θ)√
(1− θ)

(
γ2 σ

2
u

σ2
s

+ θδ2γ2 + δ2 σ
2
e

σ2
u

)
=
√

1− θ δγ√
γ2 σ

2
u

σ2
s

+ θδ2γ2 + δ2 σ
2
e

σ2
u

. (14)

Under the alternative hypothesis (δ 6= 0) and the maintained assumption

γ 6= 0, the limits for the other two test statistics can be written as

1√
n
tδm

p→
√

1− θ δγ√
γ2 σ

2
u

σ2
s

1√
n
tγm

p→
√

1− θ δγ√
θδ2γ2 + δ2 σ

2
e

σ2
u

.
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Hence, using (14), it is apparent that under these conditions the three tests

are asymptotically related in the following way:

plim

(
1

1√
n
t(βs−βm)

)2

= plim

(
1

1√
n
tδm

)2

+ plim

(
1

1√
n
tγm

)2

(15)

These results highlight a number of things. First of all, under the main-

tained hypothesis γ 6= 0, the balancing test alone is more powerful. This is

not surprising at all, since the balancing test only involves estimating the pa-

rameter δ while the coefficient comparison test involves estimating both δ and

γ. Imposing γ 6= 0 in the coefficient comparison test is akin to tγm →∞, and

this would restore the equivalence of the balancing and coefficient comparison

tests. Note that the power advantage from imposing γ 6= 0 exists regardless

of the presence of measurement error.

The second insight is that measurement error affects the coefficient com-

parison test in two ways. The test statistic is subject to both the attenuation

factor
√

1− θ and the term θδ2γ2 in the variance, which is inherited from the

t-statistic for γ̂m. Importantly, however, all these terms interact in the coef-

ficient comparison test. In our numerical exercises below, it turns out that

the way in which measurement error attenuates γm compared to γ is a ma-

jor source of the power disadvantage of the coefficient comparison test. Our

simulations demonstrate that the differences in power between the coefficient

comparison and balancing tests can be substantial when there is considerable

measurement error in xmi . Before we turn to these results, we briefly note how

the coefficient comparison test can be implemented in practice.

4.1 Implementing the Coefficient Comparison Test

The balancing test is a straightforward t-test, which regression software cal-

culates routinely. We noted that the coefficient comparison test is a general-

ized Hausman test. Regression software will typically calculate this as well if

it allows for seemingly unrelated regression estimation (SURE). SURE takes

Cov (esi , e
m
i ) into account and therefore facilitates the test. In Stata, this is
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implemented via the suest command. Generically, the test would take the

following form:

reg y s

est store reg1

reg y s x

est store reg2

suest reg1 reg2

test[reg1 mean]s=[reg2 mean]s

The test easily accommodates covariates or can be carried out with the

variables y, s, and x being residuals from a previous regression (hence facil-

itating large numbers of fixed effects though degrees of freedom may have to

be adjusted in this case).

As far as we can tell, the Stata suest or 3reg commands don’t work for

the type of IV regressions we might be interested in here. An alternative, which

also works for IV, is to take the regressions (1) and (2) and stack them:

[
yi
yi

]
=

[
1 0
0 1

] [
αs

α

]
+

[
si 0
0 si

] [
βs

β

]
+

[
0 0
0 xi

] [
0
γ

]
+

[
esi
ei

]
.

Testing βs−β = 0 is akin to a Chow test across the two specifications (1) and

(2). Of course, the data here are not two subsamples but rather duplicates of

the original data set. To take account of this and allow for the correlation in

the residuals across duplicates, it is crucial to cluster standard errors on the

observation identifier i.

5 Power Comparisons

5.1 Asymptotic and Monte Carlo Results with Classical
Measurement Error

The ability of a test to reject when the null hypothesis is false is described by

the power function of the test. The power functions here are functions of d, the

values the parameter δ might take on under the alternative hypothesis. Because

the joint distribution between the coefficient and standard error estimators is
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difficult to characterize, especially in the case of the coefficient comparison

test, we abstract away from the sampling variation in estimating the standard

errors in the theoretical derivations of this section. The resulting t-statistic

for the null hypothesis that the coefficient δ is zero in the balancing test is

tδm =
δ̂m

se(δ̂m)
=

√
n · δ̂m√
σ2
u+σ

2
m

σs

=

√
n · δ̂m
σu

σs
√
1−θ

.

Similarly, we use

t(βs−βm)(d; γ) =
β̂s − β̂m

se(β̂s − β̂m)
=

√
n(β̂s − β̂m)√
Vβ (d; γ)

where

Vβ (d; γ) = (1− θ)
(
γ2σ2

u

σ2
s

+ θd2γ2 +
d2σ2

e

σ2
u

)
in the derivation of the power function for the coefficient comparison test.

As shown in Appendix A, the power function for a 5% critical value of the

balancing test is

Powertδm (d) = 1− Φ

(
1.96− d

√
nσs
√

1− θ
σu

)
+ Φ

(
−1.96− d

√
nσs
√

1− θ
σu

)
, (16)

where Φ (·) is the standard normal cumulative distribution function. The

power function for the coefficient comparison test is

Powert(βs−βm)
(d; γ) = 1− Φ

(
1.96− d

√
nγ (1− θ)√
Vβ (d; γ)

)

+ Φ

(
−1.96− d

√
nγ (1− θ)√
Vβ (d; γ)

)
. (17)

Note that the power function for the balancing test does not involve the
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parameter γ. Using our results above, for 0 < γ <∞ it can be written as

Powertδm (d) = 1− Φ

(
1.96− d

√
nγ (1− θ)√
Vδ (d; γ)

)

+ Φ

(
−1.96− d

√
nγ (1− θ)√
Vδ (d; γ)

)
, (18)

where

Vδ (d; γ) = (1− θ) γ
2σ2

u

σ2
s

.

It is hence apparent that Vβ (d; γ) > Vδ (d; γ), i.e. the coefficient comparison

test has a larger variance. As a result, when d 6= 08

Powertδm (d) > Powert(βs−βm)
(d; γ) . (19)

In practice, this result may or may not be important. In addition, when

the standard error is estimated, the powers of the two tests may differ from the

theoretical results above. Therefore, we carry out a number of Monte Carlo

simulations to assess the performance of the two tests. Table 1 displays the

parameter values we use as well as the implied values of the population R2

of regression (9). The values were chosen so that for intermediate amounts of

measurement error in xmi the R2s are reflective of regressions fairly typical of

those in applied microeconomics, for example, a wage regression. Note that

the amounts of measurement error we consider are comparatively large. In our

empirical application we use mother’s education and the presence of a library

card in the household as measures of family background. We suspect that

these variables pick up at most a minor part of the true variation of family

background, even in the presence of other covariates, so that values of θ = 0.7

or θ = 0.85 for the measurement error are not unreasonable.

8To see this, define f(t) = 1 − Φ(1.96 − t) + Φ(−1.96 − t) and denote the probability
density function of a standard normal distribution by φ. The f notation allows us to rewrite
the expressions for the power functions Powertδm (d) and Powert(βs−βm)

(d; γ) in equations
(17) and (18) simply as f(t1) and f(t2). When d 6= 0, Vβ (d; γ) > Vδ (d; γ) implies that
|t1| > |t2| > 0. Since f ′(t) = φ(1.96− t)− φ(1.96 + t) is positive for all t > 0 and negative
for all t < 0, f(t1) > f(t2) given |t1| > |t2| > 0, and equation (19) follows.
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In Figure 1, we start by plotting the the theoretical power functions for both

tests for three different magnitudes of the measurement error.9 The black/thin

lines show the power functions with no measurement error. The power func-

tions can be seen to increase quickly with d, and both tests reject with virtual

certainty once d exceeds values of 1. The balancing test is slightly more power-

ful but this difference is small, and only visible in the figure for a small range

of d.

The blue/medium thick lines correspond to θ = 0.7, i.e. 70% of the variance

of xmi is measurement error after partialling out si. Measurement error of that

magnitude visibly affects the power of both tests. The balancing test still

rejects with certainty for d > 1.5, while the coefficient comparison test does

not reject with certainty for the parameter values considered in the figure. This

discrepancy becomes even more pronounced when we set θ = 0.85 (red/thick

lines). The power of the coefficient comparison test does not rise above 0.65

in this case, while the balancing test still rejects with probability 1 when d is

around 2.

The results in Figure 1 highlight that there are parameter combinations

where the balancing test has substantially more power than the coefficient

comparison test. In other regions of the parameter space, the two tests have

more similar power, for example, when d < 0.5.10

Before going on to simulations of more complicated cases, we contrast the

theoretical power functions in Figure 1, based on asymptotic approximations,

to simulated rejection rates of the same tests in Monte Carlo samples. Figure

9The power function for the balancing test in equation (16) is written using the normal
distribution, but we actually calculate it using the t-distribution with n − 2 degrees of
freedom. This is consistent with how Stata version 14 performs the balancing test following
the command reg x s or reg x s, r, even though this distribution choice makes little
difference given our sample size (n = 100).

10While we highlight the consequences of measurement error throughout the paper, we
should note that formally any particular value of θ can be mimicked by an appropriate
combination of values for γ and σ2

u. This is an immediate consequence of the fact that
the classical measurement error model is underidentified by one parameter. In that sense
“measurement error” is simply a label for a certain set of parameter values. It is always
difficult to choose empirically relevant values for simulations and we take comfort from the
fact that the results emerging from this section are also reflected in the empirical example
in Section 6.
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2 shows the power functions for the two tests without measurement error

(θ = 0) and with (θ = 0.85), as well as their simulated counterparts.11 Without

measurement error, the theoretical power functions are closely aligned with the

empirical rejection rates (black lines). Adding measurement error, this is also

true for the balancing test (solid red and blue/thick lines) but not for the

coefficient comparison test (broken red and blue/thick lines).

Figure 2 reveals that the empirical rejection rates of the coefficient com-

parison test in the presence of measurement error deviate substantially from

the power function calculation based on the asymptotic approximation. This

discrepancy is almost completely explained by the fact that we use the asymp-

totic values of standard errors in the calculations but estimated standard errors

in the simulations. The empirical test is severely distorted under the null; it

barely rejects more than 1% of the time for a nominal size of 5%. While this

problem leads to too few rejections under the null, it is important to note that

the same issue arises for positive values of d until about d < 1.5. For larger

values of d the relationship reverses. In other words, for moderate values of d

the coefficient comparison test statistic is biased downwards under the alter-

native, and the test has too little power. This highlights another advantage

of the balancing test—a standard t-test where no such problem arises. We

note that this is a small sample problem, which goes away when we increase

the sample size (in unreported simulations). We suspect that this problem is

related to the way in which the coefficient comparison test effectively combines

the simple tδm and tγm test statistics in a non-linear fashion, as can be seen in

equation (15), and the fact that tγm sometimes is close to 0 in small samples

despite the fact that we fix γ substantially above 0.

5.2 Monte Carlo Results beyond the Benchmark Model

The homoskedastic case with classical measurement error might be highly

stylized and not correspond well to the situations typically encountered in

empirical practice. We therefore explore some other scenarios using simulations

11We did 25,000 replications in these simulations, and each repeated sample contains 100
observations.
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in this section. Figure 3 shows the original theoretical power functions for the

case with no measurement error from Figure 1. It adds empirical rejection

rates from simulations with heteroskedastic errors ui and ei of the form

σ2
u,i =

(
e|si|

1 + e|si|

)2

σ2
0u

σ2
e,i =

(
e|si|

1 + e|si|

)2

σ2
0e.

We set the baseline variances σ2
0u and σ2

0e so that the unconditional variances

σ2
u = 3 and σ2

e = 30 match the variances in Figure 1. The test statistics used in

the simulations employ robust standard errors. We plot the rejection rates for

data with no measurement error and for the more severe measurement error

scenario given by θ = 0.85. As can be seen in Figure 3, both the balancing and

the coefficient comparison tests lose some power with heteroskedastic residuals

and a robust covariance matrix compared to the conventional, homoskedastic

baseline (black/thin lines). Otherwise, the main findings look very similar

to those in Figure 1. Heteroskedasticity does not seem to alter the basic

conclusions appreciatively.

Next, we explore mean reverting measurement error (Bound et al., 1994).

We generate measurement error as

mi = κxi + µi

where κ is a parameter and Cov (xi, µi) = 0, so that κxi captures the error

related to xi and µi the unrelated part. When −1 < κ < 0, the error is mean

reverting, i.e. the κxi-part of the error reduces the variance in xmi compared

to xi.

The case of mean reverting measurement error captures a variety of ideas,

including the one that we may observe only part of a particular confounder

made up of multiple components. Imagine we would like to include in our

regression a variable xi = w1i + w2i, where w1i and w2i are two orthogonal

variables. We observe xmi = w1i. For example, xi may be family background,

w1i is mother’s education and other parts of family background correlated
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with it, and w2i are all relevant parts of family background which are uncorre-

lated with mother’s education. As long as selection bias due to w1i and w2i is

the same, this amounts to the mean reverting measurement error formulation

above. Note that λ = V ar (xi) /V ar (xmi ) > 1 in this case, so the mismeasured

xmi has a lower variance than the true xi. This scenario is also isomorphic to

the model studied by Oster (forthcoming). See Appendix B for details.

Notice that xmi can now be written as

xmi = (1 + κ) δ0 + (1 + κ) δsi + (1 + κ)ui + µi,

so this parameterization directly affects the coefficient in the balancing regres-

sion, which will be smaller than δ for a negative κ. As a result, the balancing

test will reject less often. At the same time, a negative κ offsets and possibly

reverses the attenuation bias on γ. This should bring the power functions of

the balancing and coefficient comparison tests closer together.

For the simulations we set κ = −0.5, so the error is mean reverting. We

also fix σ2
µ in the simulations. However, it is important to note that the

nature of the measurement error will change as we change the value of d under

the alternative hypotheses. xi depends on δ and the correlated part of the

measurement error depends in turn on xi. We show results for two cases

with σ2
µ = 0.75 and σ2

µ = 2.25. Under the null, these two parameter values

correspond to λ = 2 and λ = 1, respectively. The case λ = 2 corresponds

to the Oster (forthcoming) model just described with V ar (w1i) = V ar (w2i).

These models exhibit relatively large amounts of mean reversion. Figure 4

demonstrates that the balancing test again dominates. The gap is small for

the σ2
µ = 0.75 case but grows with σ2

µ, the classical portion of the measurement

error. This finding is not surprising as mean-reverting measurement error does

less damage in terms of biasing the estimate of γ.

A particular case of mean reverting measurement error is the one where xi

is a dummy variable, so we provide some simulation results for this case. In

this case, the balancing equation is a binary choice model, and hence inherently

non-linear. While we assume that the researcher continues to estimate (3) as
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a linear probability model, we generate xi as follows:

Pr (xi = 1) = Φ (δsi) , (20)

where Φ (·) is the normal distribution function as before. Measurement error

takes the form of misclassification, and we assume the misclassification rate to

be symmetric:

Pr (xmi = 1|xi = 0) = Pr (xmi = 0|xi = 1) = τ.

Compared to the baseline parameters in Table 1, we set σ2
s = 0.25, and τ = 0.1

in our simulations. The model remains the same in all other respects. We use

robust standard errors in estimating (9) and (11).

Various issues arise from the nonlinear nature of (20). One is the fact that

plim
(
δ̂
)

from estimating (11) linearly is not going to equal the δ we generated

in the probit equation (20) to generate x. The relationship between plim
(
δ̂
)

and δ is concave. In Figure 5, we plot rejection rates against values of δ,

although the quantity plim
(
δ̂
)

is probably more comparable to what we put

on the x-axis in the previous figures that summarize the simulation results

from linear models. We note that results look qualitatively very similar when

we plot rejection rates against the empirical averages of δ̂ from estimating (11)

as a linear probability model.

Another issue is that measurement error in xi will now lead to a biased

estimate of δ in estimating (11). This is true even if we were to use a probit

and estimated a model like (20). The bias takes the form of attenuation, just

as in the case of a binary regressor with measurement error (see Hausman,

Abrevaya and Scott-Morton, 1998). This is the corollary of our result that

mean reverting measurement error also reduces the power of the balancing

test. Of course, we know from the relationship (15) between the test statistics

that the coefficient comparison test will also suffer from the same power loss.

The black/thin lines in Figure 5 reveal a sizable power advantage for the

balancing test even without any misclassification. This result is in stark con-

trast to the linear models we have analyzed, where a large power loss for the
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coefficient comparison test only resulted once we introduced measurement er-

ror. In fact, it is possible to think of the binary nature of xi itself as a form of

mismeasurement. Equation (20) defines Pr (xi = 1) as a latent index, but the

outcome regression (2) uses a coarse version of this variable in the form of the

binary xi.

In our parameterization, the coefficient comparison test never reaches a

rejection rate of 1, and the power function levels off at a far lower level. As

d increases, the power of the balancing test goes to 1. In the linear model,

the rejection rate of tγ is independent of d. Because of the nonlinear nature

of (20) this is no longer true here, and the average value of tγ across repeated

samples actually falls for higher values of d. Drawing on (15), the power of the

coefficient comparison test will equal the power of tγ when tδ →∞. This is not

a specific feature of the binary case but is generally true for the relationship

between the three test statistics. However, in the binary case this implies that

the power of the coefficient comparison test may decline with d.12

Adding measurement error to the binary regressor xi makes things worse

as is visible from the red/thick lines in Figure 5. The power loss of the balanc-

ing test is comparatively minor for the relatively low misclassification rate of

τ = 0.1 we are using. Much of the loss for the balancing test results from the

binary nature of the xi variable in the first place. The coefficient comparison

test is affected by misclassification error to a much higher degree because tγ

is affected, the Hausman, Abrevaya and Scott-Morton (1998) result notwith-

standing.

5.3 Multiple Controls

So far we have concentrated on the case of a single added regressor xi. Often

in empirical practice we may want to add a set of additional covariates at once.

12The reason for the decline of tγ with d in our parameterization is as follows: the standard
error of γ̂ depends on the residual variance of the long regression, which is independent of
d, and on the variance of the residual from regressing xi on si (because si is partialled out
in the long regression). When d = 0, this latter residual is just equal to xi itself, which is
binary. But si is continuous, so as d increases, partialling out si transforms the binary xi
into a continuous variable, which has less variance than in the d = 0 case. As the effective
variance in this regressor falls, the standard error of γ̂ goes up and tγ goes down.
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It is straightforward to extend our framework to that setting. In this section,

we describe this multivariate extension, and provide some simulation results.

Some interesting new issues arise in this analysis.

Suppose there are k added regressors, i.e. xi is a k × 1 vector, and

yi = α + βsi + x′iγ + ei

xi = δ0 + δsi + ui (21)

βs − β = γ ′δ

where γ, δ0, δ and ui are k × 1 vector analogs of their scalar counterparts

in Section 2. Lee and Lemieux (2010) suggest a balancing test for multiple

covariates in the context of evaluating regression discontinuity designs. Let

x(j) denote the n× 1 vector of all the observations on the j-th x-variable. We

can stack all the x-variables on the left-hand-side of the regression to obtain
x(1)

x(2)

...
x(k)

 =


ιδ01
ιδ02
...
ιδ0k

+


s 0 0 0
0 s 0 0
0 0 ... 0
0 0 0 s



δ1
δ2
...
δk

+


u(1)

u(2)

...
u(k)

 ,
where ι is an n × 1 vector of ones, s = [s1, s2, ..., sn]′, and u(j) the vector of

residuals corresponding to covariate x(j). We can then perform an F -test for

the joint significance of the δ coefficients. This left-hand-side (LHS) balancing

test is similar to the way we implemented the coefficient comparison test above

in Section 4.1.

The drawback of the LHS test is that stacking equations is non-standard,

and requires some extra programming to carry it out. It therefore seems

appealing to consider the alternative of regressing s on the covariates x

si = π′xi + vi

and test whether the coefficient vector π is significantly different from zero.

This is a standard F -test. We refer to this test as the right-hand-side (RHS)

balancing test. Applied researchers sometimes use this RHS balancing test;

for example, Bruhn and McKenzie (2009) report it being used in some exper-

imental studies in development economics.
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While putting the balancing variables on the RHS might at first glance

seem unusual, it turns out that the LHS and RHS tests deliver very similar

results. In the case of a single covariate xi (i.e. k = 1) the LHS and the

RHS tests using a conventional covariance matrix for homoskedastic residuals

are numerically identical.13 This is no longer true with multiple covariates

(k > 1). However, the scaled F -statistics of the two tests have the same

probability limit in the special case where the LHS regression has a spherical

error structure var(ui) = σ2Ik and the RHS regression is homoskedastic, as

we show in Appendix C.

How do the balancing tests with multiple covariates perform in practice?

Figure 6 shows simulations using a similar design as described in Table 1 for all

k balancing equations. However, with multiple covariates there are different

ways of specifying the alternative hypotheses now. The null hypothesis may

fail for one, various, or all of the k covariates. We show rejection rates under

two polar versions of the alternative hypothesis: first, for the case where all

covariates are unbalanced, i.e. δ1 = δ2 = . . . = δk = d, and then for the case

where only the first covariate is unbalanced while the others remain balanced,

i.e. δ1 = d, δ2 = . . . = δk = 0. We generate normally distributed, spherical

errors and impose homoskedasticity and independence when performing the

joint test of the δj’s or the π′js. There are four panels in Figure 6: the top row

has 4 added covariates, and the bottom row 8; the left hand column shows the

case where all covariates are unbalanced while the right hand column displays

the case where only the first covariate is unbalanced.

Figure 6 highlights a number of results. The LHS and RHS balancing tests

are indeed very similar as their power functions virtually lie on top of each

other in all four panels. When all covariates are unbalanced and when mea-

surement error is absent, the Hausman test turns out to be an efficient test

13The F -test in this case amounts to the overall F -test for the significance of the regression.
This, in turn, is a function of the R2 of the regression. Since only two variables xi and si are
involved, this is the square of the correlation coefficient between the two. But the correlation
coefficient is not directional, so the forward and reverse regression have to deliver the same
F -statistic (in the case when there other covariates present in the regression, replace the R2

and correlation coefficient with their partial equivalents in this argument).
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in combining the k separate hypotheses into one single test-statistic, which is

generated from the estimates of only two parameters, the long and short β’s.

The balancing tests, on the other hand, have to rely on the estimation of k

parameters.14 In this case, the rejection rates for the coefficient comparison

test (black/thin broken lines) therefore lie above the ones for both the balanc-

ing tests (black/thin solid and dash-dot lines), as can be seen in the left-hand

panels. In the presence of measurement error, however, the balancing tests are

again more powerful than the coefficient comparison test as can be seen from

the juxtaposition of the thicker red lines.

This power advantage of the balancing tests is greater when only one co-

variate is unbalanced. Both tests are less powerful in this case, but the power

loss for the coefficient comparison test is now much more pronounced. This

is particularly noticeable in the case with measurement error in the covariates

(red/thick lines) but the balancing tests outperform the coefficient comparison

test even without measurement error in this case. Empirically relevant cases

may often lie in between these extremes. Researchers may be faced with a set

of potential controls to investigate, some of which may be unbalanced with

the treatment while others are not. Figure 6 demonstrates that the balancing

tests will frequently be the most powerful tools in such a situation, but the

coefficient comparison test also has a role to play in the multivariate case.

The simulations reveal a number of further insights. With measurement

error, the small sample issue of the coefficient comparison test, which we high-

lighted in Figure 2, arises again. On top of this, we found in unreported

simulations that both the LHS and RHS balancing tests with robust stan-

dard errors (clustered standard errors across equations for the LHS test and

heteroskedasticity-robust standard errors for the RHS test) have a size dis-

tortion under the null hypothesis and reject too often. This is the standard

small sample distortion of these covariance matrices discussed in the literature

(MacKinnon and White, 1985; Chesher and Jewitt, 1987; Angrist and Pis-

14The analyses in Hausman (1978), Hausman and Taylor (1980), Holly (1982), and MacK-
innon (1992) section II.9, which compare the power of the coefficient comparison test to the
F -test for γ = 0, highlight a similar result.
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chke, 2009, chapter 8). We find that the bias tends to get worse when more

covariates are added. Applied researcher may be most interested in the test-

ing strategies discussed here when k is large (so that a series of single variable

balancing tests is unattractive), and will want to rely on a robust covariance

matrix. An upward size distortion may be less of an issue for a conservative

researcher in a balancing test (where it means the researcher will falsely de-

cide not to go ahead with a research design where the covariates are actually

balanced) than in a test for the presence of non-zero treatment effects (where

the same bias leads to false discoveries). Nevertheless, we suspect that most

applied researchers would prefer a test with a correct size under the null and

a steep power function. As a result, research on remedies for the bias problem

in multivariate tests is therefore particularly important.15

While we find few differences between the power of the LHS and RHS

tests in our simulations, we know from the theoretical analysis in Appendix

C that the test statistics will differ asymptotically when the third and fourth

moments of the underlying data deviate from the normally distributed case.

It is therefore interesting to probe how the two tests perform in an example

with real data.

We therefore pooled data from the 2010 - 2014 American Community Sur-

veys (ACS). Our data set consists of white and African American individuals

15We find in unreported simulations that the classic small sample corrections HC2 and
HC3 by MacKinnon and White (1985) still have size distortions under the null. There
is currently an active literature on how to better deal with this small sample bias of the
robust or clustered covariance estimator. For example, Young (2016) suggests an adjustment
of the degrees of freedom of hypothesis tests but this adjustment is only implemented for
one coefficient at a time, so does not work for testing multiple linear restrictions at once.
Cattaneo, Jansson and Newey (2017) present an adjustment of the entire covariance matrix
but only consider the case of heteroskedasticity and do not allow for clustering. As a result,
neither of these can currently be applied to our LHS balancing test.

Another alternative is to rely on a series of single coefficient tests and adjust the resulting
test statistics for multiple testing. Akin to the size distortion of robust test statistics,
without adjustment such multiple testing will reject too often under the null as first noted
by Bonferroni (1935). There is a sizable literature in statistics and theoretical econometrics
on this topic with modern approaches based either on the influential work by Westfall and
Young (1993) or by Benjamini and Hochberg (1995). Examples of empirical applications in
economics are Kling, Liebman and Katz (2007), Anderson (2008), and Duflo, Dupas and
Kremer (2017). But these examples remain rare, and no clear choices among the multitude
of theoretical alternatives have yet emerged among applied researchers.
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aged 21 to 64 with non-missing annual earnings. This data set has 5,644,865

observations. We generated a binary treatment si according to

Pr(si = 1) = ωF (educi) + (1− ω)U.

educi is the years of schooling of individual i, F (educi) is its cumulative dis-

tribution function, U is a uniform random variable, and ω is a weight akin

to the parameter d in our earlier Monte Carlo experiments. Under the null

hypothesis, ω = 0, and the treatment si consists solely of the generated noise

U . For values of ω > 0, the treatment si is related to the education level of

the individual, which in turn is correlated with other individual covariates xi.

Our vector of covariates (xi) contains the six variables: female, black, age, age

squared, log family size, and log income. These variables take on very different

distributions from simple binary for female and black to skewed distributions

for family size and income. They are also the types of variables researchers

will likely use to check for balance when working with individual household

data. The bigger the ω, the more likely the balancing test relating si and xi

should reject. In our simulations, we draw samples of size 1,000 with replace-

ment from the original 5,644,865 observations in the ACS dataset. We perform

10,000 replications and carry out the LHS and RHS tests for various values of

ω. Figure 7 shows the results for the two balancing tests. The rejection rates

are virtually indistinguishable. We find no evidence that the performance of

the two tests differs in this setting.16 This does not mean that the LHS and

RHS test statistics are identical in any given sample. Particularly under the

null we sometimes find sizable disparities in p-values.

The upshot is that it is in principle straightforward to extend the balancing

test to multiple covariates. An interesting finding is that a RHS test offers a

computationally simple alternative that closely mimics the performance of the

more standard LHS balancing test. Yet, at this point implementation issues

related to the small sample bias of robust covariance estimators also hamper

our ability to confidently carry out balancing tests for multiple covariates.

16We have also experimented with basing selection into treatment si on income and in-
cluding education among the added covariates instead. The results are very similar.
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Moreover, sometimes we are interested in the robustness of the original results

when the number of added regressors is very large. An example would be a

differences-in-differences analysis in a state-year panel, where the researcher is

interested in checking whether the results are robust to the inclusion of state

specific trends. The balancing test does not seem to be the right framework

to deal with this situation. The coefficient comparison test has an important

role to play in this scenario.

6 Empirical Analysis

We illustrate the theoretical results in the context of estimating the returns

to schooling using data from the National Longitudinal Survey of Young Men

(NLS). This is a panel study of about 5,000 male respondents interviewed

from 1966 to 1981. The data set has featured in many prominent analyses of

the returns to education, including Griliches (1977) and Card (1995). We use

the NLS extract posted by David Card and augment it with the variable on

body height measured in the 1973 survey. We estimate regressions similar to

equation (2). The variable yi is the log hourly wage in 1976 and si is the

number of years of schooling reported by the respondent in 1976. Our samples

are restricted to observations without missing values in any of the variables

used in a particular table or set of tables.

We start in Table 2 by presenting simple OLS regressions controlling for

experience, race, and past and present residence. The estimated return to

schooling is 0.075. This estimate may not reflect the causal effect of edu-

cation on income because important confounders, such as ability or family

background, are not controlled for.

In columns (2) to (5) we include variables which might proxy for the respon-

dent’s family background. In column (2) we include mother’s education, in

column (3) whether the household had a library card when the respondent was

14, and in column (4) we add body height measured in inches. Each of these

variables is correlated with earnings, and the coefficient on education moves

moderately when these controls are included. Mother’s education captures an
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important component of a respondent’s family background. The library card

measure has been used by researchers to proxy for important parental atti-

tudes (e.g. Farber and Gibbons, 1996). Body height is a variable determined

by parents’ genes and by nutrition and disease environment during childhood.

It is unlikely a particularly powerful control variable but it is predetermined

and correlated with family background, self-esteem, and ability (e.g. Persico,

Postlewaite and Silverman, 2004; Case and Paxson, 2008). The return to edu-

cation falls by 0.1 to 0.2 log points when these controls are added. In column

(5) we enter all three variables simultaneously. The coefficients on the controls

are somewhat attenuated, and the return to education falls slightly further to

0.071.

It might be tempting to conclude from the relatively small change in the

estimated returns to schooling that this estimate should be given a causal

interpretation. We provide a variety of evidence that this conclusion is unlikely

to be a sound one. Below the estimates in columns (2) to (5), we display the

p-values from the coefficient comparison test, comparing each of the estimated

returns to education to the one from column (1). Although the coefficient

movements are small, the tests all reject at the 5% level, and in columns (4)

and (5) they reject at the 1% level. These results might not be expected from

the size of the coefficient movements and the individual standard errors on

the years of education coefficients alone, highlighting the importance for the

formal coefficient comparison test.

The results in columns (6) to (8), where we regress maternal education,

the library card, and body height on education, further magnify the concern.

The education coefficient is positive and strongly significant in all three re-

gressions, with t-values ranging from 4.4 to 13.1, and both the LHS and RHS

joint balancing tests reject the hypothesis that all three controls are balanced

with a p-value of virtually zero. The magnitudes of the coefficients are sub-

stantively important. It is difficult to think of these results as causal effects:

the respondent’s education should not affect predetermined proxies of family

background. Instead, these estimates reflect selection bias. Individuals with

more education have significantly better educated mothers, were more likely
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to grow up in a household with a library card, and experienced more body

growth when young. Measurement error leads to attenuation bias when these

variables are used on the right-hand side which renders them fairly useless as

controls. The measurement error matters less for the estimates in columns (6)

to (8), and these are informative about the role of selection. Comparing the

p-values at the bottom of the table to the corresponding ones for the coefficient

comparison test in columns (2) to (4) demonstrates the superior power of the

balancing test.

The following tables have the same general layout. In Table 3 we change

the baseline specification by including the respondent’s score on the Knowl-

edge of the World of Work test (KWW), a variable used by Griliches (1977) as

a proxy for ability. The sample size is reduced due to the exclusion of missing

IQ values in the test score for consistency with a subsequent table. Estimated

returns without the KWW score in this restricted sample (unreported) are

very similar to those in Table 2. Adding the KWW score reduces the coeffi-

cient on education by almost 20%, from 0.075 to 0.061. Adding our additional

controls maternal education, the library card, and body height to this new

specification does very little to the estimated returns to education. The coef-

ficient comparison test indicates that none of the small changes in the returns

to education are statistically significant. Controlling for the KWW scores has

largely knocked out the library card effect but done little to the coefficients

on maternal education and body height. The relatively small and insignifi-

cant coefficient movements in columns (2) to (5) suggest that the specification

controlling for the KWW score might solve the ability bias problem.

Columns (6) to (8), however, show that the three covariates are still mostly

unbalanced with respect to education even when the KWW score is in the

regression. This raises the possibility that the estimated returns in columns

(1) to (5) might remain biased by selection. The estimated coefficients on

education for the three controls are on the order of half their value from Table 2,

and the body height measure is now only significant at the 10% level. But the

relationship between mother’s and own education is still sizable, so that this

measure continues to indicate the possibility of important selection. Balance
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in library card ownership is rejected despite the fact that a comparison of the

coefficients in columns (1) and (3) indicates no role for this variable at all. A

joint balancing test with all three controls strongly rejects the hypothesis that

they are balanced. The results in this table illustrate the message of our paper

in a powerful fashion.

While the KWW score might be a potent control, it is likely also measured

with substantial error, for example, due to testing noise. Griliches (1977) pro-

poses to instrument this measure with an independent IQ test score variable,

which is also contained in the NLS data, to eliminate at least some of the

consequences of this measurement error. In Table 4, we take the specification

one step further by instrumenting the KWW score with IQ. The coefficient

on the KWW score almost triples, in line with the idea that an individual

test score is a very noisy measure of ability. The education coefficient now

falls to only about half its previous value from 0.061 to 0.034. This might be

due to positive omitted variable bias present in the previous regressions which

is eliminated by IQ-instrumented KWW (although there may be other possi-

ble explanations for the change as well, like measurement error in schooling).

Both the coefficient comparison tests and the balancing tests (individual and

joint) indicate no evidence of selection any more. This is due to a combination

of lower point estimates and larger standard errors. We note that the joint

LHS and RHS balancing tests produce somewhat different test statistics in

this case, although both p-values are well above conventional rejection levels.

The contrast between Tables 3 and 4 highlights the usefulness of the balancing

test: it warns about the Table 3 results, while the coefficient comparison test

delivers insignificant differences in either case.

Finding an instrumental variable for education is an alternative to control

strategies, such as using test scores. In Table 5 we follow Card’s (1995) analysis

and instrument education using distance to the nearest college, while dropping

the KWW score. We use the same sample as in Table 2, which differs from

Card’s sample.17 Our IV estimates of the return to education are slightly higher

17Unlike Card, who uses two dummies for proximity to a two- and a four-year college,
we use a single dummy variable for whether there is a four-year college in the county as
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than in Table 2 but lower than in Card (1995) at around 8%. The IV returns

estimates are relatively noisy, with a t-statistic of about 2. Columns 1-5 of

Table 5 show that the IV estimate on education, while bouncing around a bit,

does not change significantly when maternal education, the library card, or

body height is included. In particular, if these three controls are included at

the same time in column (5), the point estimate is indistinguishable from the

unconditional estimate in column (1) both substantively and statistically.

IV regressions with pre-determined variables on the left hand side can be

thought of as a test for random assignment of the instruments. In this case the

selection regressions in columns (6)-(8) are imprecise, just like the IV returns

estimates, and as a result less informative. The coefficients in the regressions

for mother’s education and body height have the wrong sign but confidence

intervals cover anything ranging from zero selection to large positive amounts.

Only the library card measure is large, positive, with a p-value of around 0.06,

possibly indicative of some remaining potential for selection even in the IV

regressions. However, with p-values of around 0.29, both the LHS and RHS

joint balancing tests fail to reject the null hypothesis that all three controls are

balanced. In other words, the college distance instrument passes the balancing

test, but the data do not speak clearly in this particular case.

7 Conclusion

Using predetermined characteristics as dependent variables offers a useful spec-

ification check for a variety of identification strategies popular in empirical

economics. We argue that this is the case even for variables which might be

poorly measured and are of little value as control variables. Such variables

should be available in many data sets, and we encourage researchers to per-

form such balancing tests more frequently. We show that this is generally a

more powerful strategy than adding the same variables on the right hand side

of the regression as controls and looking for movement in the coefficient of

instrument, and we instrument experience and experience squared by age and age squared.
We restrict Card’s sample to non-missing values in maternal education, the library card,
and body height.

35



interest.

We have illustrated our theoretical results with an application to the re-

turns to education. Taking our assessment from this exercise at face value, a

reader might conclude that the results in Table 4, returns around 3.5%, can

safely be regarded as causal estimates. Of course, this is not the conclusion

reached in the literature, where much higher IV estimates like those in Table

5 are generally preferred (see e.g. Card, 2001 or Angrist and Pischke, 2015,

chapter 6). This serves as a reminder that the discussion here is focused on

sharpening one particular tool in the kit of applied economists. Successfully

passing the balancing test should be a necessary condition for a successful

research design but it is not sufficient.

The balancing test and other statistics we discuss here are useful for gaug-

ing selection bias due to observed confounders, even when they are potentially

measured poorly. It does not address any other issues which may also haunt a

successful empirical investigation of causal effects. One possible issue is mea-

surement error in the variable of interest, which is also exacerbated as more

potent controls are added. Griliches (1977) shows that a modest amount of

measurement error in schooling may be responsible for the patterns of returns

we have displayed in Tables 2 to 4. Another issue, also discussed by Griliches,

is that controls like test scores might themselves be influenced by schooling,

which would make them bad controls. For all these reasons, other approaches

like IV estimates of the returns may be preferable.
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Figure 1: Theoretical Rejection Rates
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Figure 2: Theoretical and Simulated Rejection Rates
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Note: Comparison of asymptotic rejection rates with rejection
rates based on Monte Carlo simulations. Baseline refers to the
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Figure 3: Simulated Rejection Rates with Heteroskedasticity
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bust standard errors.
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Figure 4: Simulated Rejection Rates with Mean Reverting Measurement Error
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Note: Comparison of baseline rejection rates (from Figure 1) with
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Figure 5: Simulated Rejection Rates with Binary Control and Misclassification
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Note: Rejection rates for a binary control variable that is misclas-
sified (i.e. its binary value is flipped) with probability τ .
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Figure 6: Simulated Rejection Rates with Multiple Controls
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Figure 7: Rejection Rates with Multiple Controls in Actual Data from the
ACS
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Table 1: Parameters for Power Calculations and Implied R2s

𝜎𝜎𝑠𝑠2 = 1  β = 1  
𝜎𝜎𝑢𝑢2 = 3  γ = 3  
𝜎𝜎𝑒𝑒2 = 30  n = 100  

 
d 

R2 
θ = 0 θ = 0.7 θ = 0.85 

0 0.48 0.16 0.09 
0.5 0.53 0.23 0.16 
1.0 0.59 0.33 0.27 
1.5 0.66 0.44 0.39 
2.0 0.72 0.54 0.50 

 
Note: The implied population R2’s do not depend on n, but the
subsequent power calculations do.
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A Power Functions

A.1 The Balancing Test

The desired balancing regression is

xi = δ0 + δsi + ui,

but xi is measured with error

xmi = xi +mi.

Effectively, we run the balancing regression

xmi = δm0 + δmsi + ui +mi.

As mentioned in Section 5.1, in the theoretical derivation of the power func-

tions we abstract away from the sampling variation in estimating the standard

errors by treating σu, σm and σs as known constants. In this case, the asymp-

totic variance of δ̂m can be directly calculated, and the resulting test statistic

for the null hypothesis that the balancing coefficient δ is zero is

tδm =
δ̂m

se
(
δ̂m
) =

δ̂m

1√
n

√
σ2
u+σ

2
m

σs

.

Define

θ =
σ2
m

σ2
u + σ2

m

⇒ σ2
u + σ2

m =
σ2
u

1− θ

Hence

tδm = δ̂m
√
nσs
√

1− θ
σu

.
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The rejection probability when δ = d and when using critical value C is

Pr (|tδm | > C) = Pr (tδm > C) + Pr (tδm < −C)

= Pr

 δ̂m

se
(
δ̂m
) > C

+ Pr

 δ̂m

se
(
δ̂m
) < −C


= Pr

 δ̂m − d

se
(
δ̂m
) > C − d

√
nσs
√

1− θ
σu


+ Pr

 δ̂m − d

se
(
δ̂m
) < −C − d√nσs√1− θ

σu


≈ 1− Φ

(
C − d

√
nσs
√

1− θ
σu

)
+ Φ

(
−C − d

√
nσs
√

1− θ
σu

)
when n is large. This is the power function of the balancing test

Powertδm (d) = 1−Φ

(
1.96− d

√
nσs
√

1− θ
σu

)
+Φ

(
−1.96− d

√
nσs
√

1− θ
σu

)
.

A.2 The Coefficient Comparison Test

The short and long regressions are

yi = αs + βssi + esi

yi = α + βsi + γxi + ei,

and

xi = δ0 + δsi + ui.

Adding measurement error in xi:

xmi = xi +mi,

we have

yi = αs + βssi + esi

yi = αm + βmsi + γmxmi + emi

xmi = δ0 + δsi + ui +mi.
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Treat si, ui, ei, and mi as the underlying random variables which determine

xi, yi, e
s
i and emi . We normalize si to a mean zero variable. For the derivations

in the remainder of this section, we make the following assumptions:

Assumption A1: si, ui, ei and mi are mutually independent;

Assumption A2: E[u3i ] = 0.

Note that Assumptions A1 and A2 are satisfied in the DGP’s we adopt

for the Monte Carlo simulations underlying Figure 2, that is, when si, ui,

ei, mi follow a joint normal distribution with the first two moments specified

according to 
si
ui
ei
mi

 ∼



0
0
0
0

 ,

σ2
s 0 0 0

0 σ2
u 0 0

0 0 σ2
e 0

0 0 0 σ2
m


 . (A1)

A.2.1 Population Parameters

In this subsection, we derive the expressions of population regression coeffi-

cients βm and γm in terms of the model parameters, as discussed in Section 3.

Performing an anatomy to the multiple regression (9), we have

γm =
Cov(yi, ui +mi)

V ar(ui +mi)
= γ

σ2
u

σ2
u + σ2

m

, (A2)

where ui+mi is the residual from the population regression of xmi on si. Using

θ as defined above, equation (A2) becomes

γm = γ(1− θ). (A3)

By the omitted variable bias formula, we have

βs = β + γδ

βs = βm + γmδ,

and therefore

βm = β + γδθ. (A4)
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As mentioned in the main text, an alternative representation of θ is

θ =
1− λ

1−R2
, (A5)

where

λ =
V ar (xi)

V ar (xmi )

is the reliability of xmi , and R2 is the population R2 of the regression of xmi on

si. To see why (A5) holds, notice that

V ar(xi) = δ2σ2
s + σ2

u

V ar(xmi ) = δ2σ2
s + σ2

u + σ2
m

R2 = 1− σ2
u + σ2

m

δ2σ2
s + σ2

u + σ2
m

,

from which equation (A5) mechanically follows.

A.2.2 Asymptotic Variance in the Coefficient Comparison Test un-
der Homoskedasticity

For the coefficient comparison test βs − βm = 0, the test statistic is

t(βs−βm) =
β̂s − β̂m√

V ar(β̂s − β̂m)
,

which is asymptotically standard normal. As mentioned in Section 4, we rely

on the delta method equation (13) to derive V ar(β̂s − β̂m). We have already

shown in the previous subsection that

V ar(δ̂m) =
1

n

σ2
u

(1− θ)σ2
s

, (A6)

and we derive V ar (γ̂m) and Cov
(
δ̂m, γ̂m

)
in the remainder of this subsection.

For simplicity of exposition, we make an additional assumption:

Assumption A3: V ar(emi |si, xmi ) is constant.

Like Assumptions A1 and A2, Assumption A3 is also satisfied in the DGP’s

underlying Figure 2. In the subsection below, we also derive the general ex-

pression of V ar(β̂s − β̂m) when Assumption A3 is relaxed.
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In order to derive V ar(γ̂m), first note that

V ar (γ̂m) =
1

n

V ar (emi )

V ar (ui +mi)
, (A7)

where, as mentioned above, ui +mi is the residual from the population regres-

sion of xmi on si. Since V ar (ui +mi) = σ2
u+σ2

m, the missing piece in equation

(A7) is V ar (emi ). Plugging (A3) and (A4) into (9), we get

yi = αm + βmsi + γmxmi + emi

= αm + (β + γδθ) si + γ (1− θ)xmi + emi

= (αm + γ (1− θ) δ0) + (β + γδ) si + γ (1− θ) (ui +mi) + emi

Since

yi = α + βsi + γ (δ0 + δsi + ui) + ei

= (α + γδ0) + (β + γδ) si + γui + ei,

matching residuals yields

γui + ei = γ (1− θ) (ui +mi) + emi

emi = γθui − γ (1− θ)mi + ei

V ar (emi ) = γ2θ2σ2
u + γ2 (1− θ)2 σ2

m + σ2
e

= γ2

((
σ2
m

σ2
u + σ2

m

)2

σ2
u +

(
σ2
u

σ2
u + σ2

m

)2

σ2
m

)
+ σ2

e

= γ2θσ2
u + σ2

e .

So

V ar (γ̂m) =
1

n

γ2θσ2
u + σ2

e

σ2
u + σ2

m

=
1− θ
n

(
γ2θ +

σ2
e

σ2
u

)
. (A8)

As for Cov(δ̂m, γ̂m), first note that

δ̂m − δ =

∑
i(ui +mi)(si − s̄)∑

i(si − s̄)2
(A9)

γ̂m − γm =

∑
emi (x̃mi − ¯̃x

m
)∑(

x̃mi − ¯̃x
m)2 (A10)
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where s̄ and ¯̃x
m

are the sample averages of si and x̃mi with x̃mi = xmi − δ̂0− δ̂msi
being the residual from regressing xmi on si. By Assumption A1 along with

the fact that δ̂0
p→ δ0 and δ̂m

p→ δ, the asymptotic joint distribution of the

numerators in equations (A9) and (A10) is

1√
n

[ ∑
i(ui +mi)(si − s̄)∑
i e
m
i (x̃mi − ¯̃x

m
)

]
d−→N

(
0,

[
(σ2

u + σ2
m)σ2

s E[si(ui +mi)
2emi ]

E[si(ui +mi)
2emi ] E[(ui +mi)

2(emi )2]

])
.

By Assumptions A1 and A2,

E[si(ui +mi)
2emi ] = E[si(ui +mi)

2(γθui − γ (1− θ)mi + ei)]

= 0.

Since the denominators of equations (A9) and (A10) converge in probability

to positive constants,

Cov(δ̂m, γ̂m) = 0. (A11)

Plugging equations (A6), (A8) and (A11) into (13) yields

V ar(β̂s − β̂m) ≡ 1

n
Vβ (d; γ)

=
1

n
(1− θ)

(
γ2σ2

u

σ2
s

+ θδ2γ2 +
δ2σ2

e

σ2
u

)
. (A12)

Recall that

βs − βm = δγm = δγ (1− θ) ,

so the power function of the coefficient comparison test is

Powert(βs−βm)
(d; γ) = 1−Φ

(
1.96− d

√
nγ (1− θ)√
Vβ (d; γ)

)
+Φ

(
−1.96− d

√
nγ (1− θ)√
Vβ (d; γ)

)
.

A.2.3 Relaxing Assumption A3

In this subsection, we provide the expression for V ar(β̂s − β̂m) while relaxing

the conditional homoskedasticity of emi , i.e. Assumption A3. Our derivation
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of this asymptotic variance expression still relies on equation (13). Since equa-

tions (A6) and (A11) are not affected by Assumption A3, we will only need

the general expression for V ar (γ̂m).

Representing model (9) in matrix form,

yi = W′
iΓ + emi ,

where Wi = (1, si, x
m
i )′ and Γ = (αm, βm, γm)′. The asymptotic variance-

covariance matrix of the regression estimator Γ̂ is

1

n
E[WiW

′
i]
−1E[WiW

′
i(e

m
i )2]E[WiW

′
i]
−1.

Expressing E[WiW
′
i] in terms of the fundamental model parameters is straight-

forward:

E[WiW
′
i] = E

 1 si xmi
si s2i six

m
i

xmi six
m
i (xmi )2


=

 1 0 δ0
0 σ2

s δσ2
s

δ0 δσ2
s δ20 + δ2σ2

s + σ2
u + σ2

m

 .
As before, we set E[si] = 0, which sacrifices no generality since the mean does

not enter the variance calculation in any case.

Writing out the entries in the matrix E[WiW
′
i(e

m
i )2]:

E[WiW
′
i(e

m
i )2]

= E



(emi )2︸ ︷︷ ︸
(i)

si(e
m
i )2︸ ︷︷ ︸

(ii)

xmi (emi )2︸ ︷︷ ︸
(iii)

si(e
m
i )2 s2i (e

m
i )2︸ ︷︷ ︸

(iv)

six
m
i (emi )2︸ ︷︷ ︸
(v)

xmi (emi )2 six
m
i (emi )2 (xmi )2(emi )2︸ ︷︷ ︸

(vi)


.

Below we express quantities (i) to (vi) in terms of the fundamental model

parameters. Letting κm = E[m4
i ] and κu = E[u4i ] and utilizing Assumptions 1

and 2, we have the expressions for (i) to (vi):

E[(emi )2] = E[(γθui − γ(1− θ)mi + ei)
2]

= γ2θ2σ2
u + γ2(1− θ)2σ2

m + σ2
e , (i)
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E[si(e
m
i )2] = E[si(γθui − γ(1− θ)mi + ei)

2]

= 0, (ii)

E[xmi (emi )2] = E[(δ0 + δsi + ui +mi)(e
m
i )2]

= δ0E[(emi )2] + δE[si(e
m
i )2]

= δ0(γ
2θ2σ2

u + γ2(1− θ)2σ2
m + σ2

e), (iii)

E[s2i (e
m
i )2] = E[s2i (γθui − γ(1− θ)mi + ei)

2]

= σ2
s(γ

2θ2σ2
u + γ2(1− θ)2σ2

m + σ2
e), (iv)

and

E[six
m
i (emi )2] = E[si(δ0 + δsi + ui +mi) · (emi )2]

= δ0E[si(e
m
i )2] + δE[s2i (e

m
i )2]

+ E[siui(γθui − γ(1− θ)mi + ei)
2]

+ E[simi(γθui − γ(1− θ)mi + ei)
2]

= δσ2
s(γ

2θ2σ2
u + γ2(1− θ)2σ2

m + σ2
e). (v)

Finally, for the expression of (vi)

E[(xmi )2(emi )2] = E[(δ0 + δsi + ui +mi)
2(emi )2]

= δ20E[(emi )2] + δ2E[s2i (e
m
i )2]

+E[u2i (γθui − γ(1− θ)mi + ei)
2]

+E[m2
i (γθui − γ(1− θ)mi + ei)

2]

+2δ0δE[si(e
m
i )2] + 2δ0E[ui(e

m
i )2]

+2δ0E[mi(e
m
i )2] + 2δE[siui(e

m
i )2]

+2δE[simi(e
m
i )2] + 2E[uimi(e

m
i )2].

Note that

E[si(e
m
i )2] = 0

E[ui(e
m
i )2] = E[mi(e

m
i )2] = 0

E[siui(e
m
i )2] = E[simi(e

m
i )2] = 0,
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and we only need to find the expressions for

E[u2i (γθui − γ(1− θ)mi + ei)
2]

= E[u2i {γ2θ2u2i + γ2(1− θ)2m2
i + e2i

−2γ2θ(1− θ)uimi + 2γθuiei − 2γ(1− θ)miei}]

= γ2θ2E[u4i ] + γ2(1− θ)2σ2
uσ

2
m + σ2

uσ
2
e

= γ2θ2κu + γ2(1− θ)2σ2
uσ

2
m + σ2

uσ
2
e ,

E[m2
i (γθui − γ(1− θ)mi + ei)

2]

= E[m2
i {γ2θ2u2i + γ2(1− θ)2m2

i + e2i

−2γ2θ(1− θ)uimi + 2γθuiei − 2γ(1− θ)miei}]

= γ2θ2σ2
uσ

2
m + γ2(1− θ)2κm + σ2

mσ
2
e ,

and

E[uimi(e
m
i )2] = E[uimi(γθui − γ(1− θ)mi + ei)

2]

= E[uimi{γ2θ2u2i + γ2(1− θ)2m2
i + e2i

−2γ2θ(1− θ)uimi + 2γθuiei − 2γ(1− θ)miei}]

= −2γ2θ(1− θ)σ2
uσ

2
m.

Putting these terms together,

E[(xmi )2(emi )2] = δ20E[(emi )2] + δ2E[s2i (e
m
i )2]

+ E[u2i (γθui − γ(1− θ)mi + ei)
2]

+ E[m2
i (γθui − γ(1− θ)mi + ei)

2]

+ 2E[uimi(e
m
i )2]

= δ20{γ2θ2σ2
u + γ2(1− θ)2σ2

m + σ2
e}

+ δ2σ2
s(γ

2θ2σ2
u + γ2(1− θ)2σ2

m + σ2
e)

+ {γ2θ2κu + γ2(1− θ)2σ2
uσ

2
m + σ2

uσ
2
e}

+ {γ2θ2σ2
uσ

2
m + γ2(1− θ)2κm + σ2

mσ
2
e}

− {4γ2θ(1− θ)σ2
uσ

2
m}. (vi)
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Now that we have the expression for both E[WiW
′
i] and E[WiW

′
i(e

m
i )2], we

can compute the asymptotic variance of γ̂m

V ar (γ̂m) =
1

n

{
(1− θ)

(
γ2θ +

σ2
e

σ2
u

)

+ γ2
[

(κu − 3σ4
u)θ

2

(σ2
m + σ2

u)
2

+
(κm − 3σ4

m)(1− θ)2

(σ2
m + σ2

u)
2

]
︸ ︷︷ ︸

(a)

 .

Compared to its expression under homoskedasticity (A8), we have an extra

term (a) that accounts for the excess kurtosis of the u and m distributions. It

follows that

1

n
Vβ (d; γ) = V ar

(
β̂s − β̂m

)
=

1

n

{
(1− θ)

(
γ2σ2

u

σ2
s

+ θδ2γ2 +
δ2σ2

e

σ2
u

)
+γ2δ2

[
(κu − 3σ4

u)θ
2

(σ2
m + σ2

u)
2

+
(κm − 3σ4

m)(1− θ)2

(σ2
m + σ2

u)
2

]}
.

Note that when ui and mi are normal, κu − 3σ4
u = 0 and κm − 3σ4

m = 0,

and the variance expression above simplifies to that of equation (A12). Since

V ar
(
β̂s − β̂m

)
increases in κu and κm and that the balancing test is unaffected

by the heteroskedasticity of em, the power advantage of the balancing test is

larger when ui and mi have thicker tails than a normal distribution.

B Comparison with Oster (forthcoming)

The Oster (forthcoming) formulation of the causal regression takes the form

yi = α + βsi + ρw1i + w2i + ei,

where w1i is an observed covariate and w2i is an unobserved covariate, uncor-

related with w1i. To map this into our setup, think of the true xi as capturing

both w1i and w2i, i.e. xi = ρw1i + w2i. Furthermore, there is equal selection,

i.e.
Cov(si, ρw1i)

ρ2σ2
1

=
Cov(si, w2i)

σ2
2

,
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where σ2
1 and σ2

2 are the variances of w1i and w2i, respectively. Then, Oster’s

(forthcoming) regression can be written as

yi = α + βsi + xi + ei,

which is our regression with γ = 1 (the scaling of xi is arbitrary of course; it

could be xi = w1i + w2i/ρ instead and γ = ρ or anything else).

Our observed xmi = ρw1i, so measurement error mi = −w2i. Measurement

error here is mean reverting, i.e.

mi = κxi + µi (A13)

with κ < 0. Notice that

Cov (mi, xi) = −σ2
2,

and hence

κ =
−σ2

2

ρ2σ2
1 + σ2

2

(A14)

and

µi = −w2i − κ (ρw1i + w2i)

= −κρw1i − (1 + κ)w2i

=
σ2
2

ρ2σ2
1 + σ2

2

ρw1i −
ρ2σ2

1

ρ2σ2
1 + σ2

2

w2i.

It turns out that µi implicitly defined in (A13) and κ given by (A14) imply

Cov(xi, µi) = 0 and Cov(si, µi) = 0. Hence, these two equations represent

mean reverting measurement error as defined in the body of the manuscript.

However, note that Cov(si, µi) = 0 depends on the equal selection assumption.

With proportional selection, i.e.

φ
Cov(si, ρw1i)

ρ2σ2
1

=
Cov(si, w2i)

σ2
2

,

and φ 6= 1 we would have Cov(si, µi) 6= 0.
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C Comparison of the LHS and RHS Balancing

Tests

We compare the LHS and RHS balancing tests introduced in Section 5.3. The

F -statistic of the LHS balancing test is

FLHS =
1

k
δ̂
′
v̂ar(δ̂)−1δ̂

and the variance estimator v̂ar(δ̂) is

v̂ar(δ̂) =


∑

i s
2
i 0 · · · 0

0
∑

i s
2
i · · · 0

...
...

. . .
...

0 0 · · ·
∑

i s
2
i


−1

·


∑

i s
2
i û

2
(1)i

∑
i s

2
i û(1)iû(2)i · · ·

∑
i s

2
i û(1)iû(k)i∑

i s
2
i û(2)iû(1)i

∑
i s

2
i û

2
(2)i · · ·

∑
i s

2
i û(2)iû(k)i

...
...

. . .
...∑

i s
2
i û(k)iû(1)i

∑
i s

2
i û(k)iû(2)i · · ·

∑
i s

2
i û

2
(k)i

 ·

∑

i s
2
i 0 · · · 0

0
∑

i s
2
i · · · 0

...
...

. . .
...

0 0 · · ·
∑

i s
2
i


−1

,

which allows for correlations in the error terms across covariates. Under the

multivariate analog of Assumption A1,

nv̂ar(δ̂)
p→ 1

σ4
s

E[s2iuiu
′
i] =

1

σ2
s

E[uiu
′
i]

Hence,
k

n
FLHS

p→ σ2
sδ
′(E[uiu

′
i])
−1δ. (A15)

On the other hand, the F -statistic for the RHS balancing test following the

regression

si = π′xi + vi
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is

FRHS =
1

k
π̂′v̂ar(π̂)−1π̂ (A16)

The probability limit of π̂ is

π = Ωx
−1ς (A17)

where Ωx = var(xi) and ς = cov(xi, si). The probability limit of the variance

estimator is

nv̂ar(π̂)
p→ Ωx

−1E[(xix
′
i)(si − π′xi)2]Ωx

−1. (A18)

Plugging (A17) and (A18) into (A16), the probability of the scaled F -stat of

the RHS balancing test is

k

n
FRHS

p→ ς ′E[(xix
′
i)(si − π′xi)2]−1ς

= σ4
sδ
′E[(xix

′
i)(si − π′xi)2]−1δ (A19)

The probability limits (A15) and (A19) are in general different. An analytical

comparison between the two is complicated, as it depends on the higher mo-

ments of s and u. However, we show below that the two scaled F -statistics

have the same probability limits, in the special case where the LHS balancing

regression has a spherical error structure and the RHS balancing regression is

homoskedastic. As mentioned in Section 5.3, we conduct additional investiga-

tions of the relative powers of the two tests via simulation using ACS data.

C.1 Special Case: Spherical LHS Error Structure and
Homoskedastic RHS Regression

We consider the special case where the RHS regression is homoskedastic and

the LHS balancing regression has a spherical error structure, i.e.

var(ui) = σ2
uIk,

which is satisfied if s and u are both normally distributed. Substituting this

into (A15), the LHS F -statistic simplifies to

k

n
FLHS

p→σ2
sδ
′δ

σ2
u

65



Appendix (For Online Publication Only)

For the RHS F -statistic, homoskedasticity allows us to write

E[(xix
′
i)(si − π′xi)2] = E[xix

′
i]E[(si − π′xi)2]

To find the expression of E[xix
′
i]E[(si − π′xi)2], first note that

σ2
s = var(π′xi) + E[(si − π′xi)2]

so

E[(si − π′xi)2] = σ2
s − var(π′xi)

with

var(π′xi) = π′Ωxπ

= ς ′Ωx
−1ς

= σ4
sδ
′Ωx

−1δ. (A20)

Since rank(δδ′) = 1 and tr[(σ2
sδδ

′)( 1
σ2
u
Ik)
−1] = σ2

s

σ2
u
δ′δ, by Miller (1981) we have

Ωx
−1 =

1

σ2
u

I − 1

1 + σ2
s

σ2
u
δ′δ

1

(σ2
u)

2
σ2
sδδ

′

=
1

σ2
u

I − σ2
s

(σ2
u)

2 + σ2
uσ

2
sδ
′δ
δδ′. (A21)

Plugging (A21) into (A20):

var(π′xi) =
σ4
sδ
′δ

σ2
u

− σ6
s(δ
′δ)2

(σ2
u)

2 + σ2
uσ

2
sδ
′δ

=
σ4
sδ
′δ[(σ2

u)
2 + σ2

uσ
2
sδ
′δ]− σ6

s(δ
′δ)2σ2

u

(σ2
u)

2[σ2
u + σ2

sδ
′δ]

=
σ4
sδ
′δ(σ2

u)
2

(σ2
u)

2[σ2
u + σ2

sδ
′δ]

=
σ4
sδ
′δ

σ2
u + σ2

sδ
′δ
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It follows that

E[(si − π′xi)2] = σ2
s − var(π′xi)

= σ2
s −

σ4
sδ
′δ

σ2
u + σ2

sδ
′δ

=
σ2
s [σ

2
u + σ2

sδ
′δ]− σ4

sδ
′δ

σ2
u + σ2

sδ
′δ

=
σ2
sσ

2
u

σ2
u + σ2

sδ
′δ

As a result, the probability limit of k
n
FRHS is

σ4
sδ
′E[(xix

′
i)]
−1E[(si − π′xi)2]−1δ

=σ4
sδ
′Ω−1

x

σ2
u + σ2

sδ
′δ

σ2
sσ

2
u

δ

=σ4
sδ
′
(

1

σ2
u

I − σ2
s

(σ2
u)

2 + σ2
uσ

2
sδ
′δ
δδ′
)
σ2
u + σ2

sδ
′δ

σ2
sσ

2
u

δ

=σ4
s

(
δ′δ(σ2

u + σ2
sδ
′δ)

σ2
sσ

4
u

− (δ′δ)2σ2
s

σ2
sσ

4
u

)
=σ4

s

(
δ′δσ2

u

σ2
sσ

4
u

)
=
σ2
sδ
′δ

σ2
u

Therefore,

plim
k

n
FLHS = plim

k

n
FRHS.
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