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Asset prices go through periods of sustained price increases, followed by busts. To explain

these episodes, economists have developed theories based on disagreement, speculation, and

strategic trading. This literature focuses on the behavior of asset prices in stock markets, but

it is natural to ask whether these ideas can explain housing markets as well. Like any other

financial asset, housing is a traded, durable claim on uncertain cash flows. An enduring

feature of housing markets is booms and busts in prices that coincide with widespread

disagreement about fundamentals (Shiller, 2005), and there is a long history of investors

using real estate to speculate about the economy (Kindleberger, 1978; Glaeser, 2013).

This paper incorporates disagreement into a neoclassical model of housing to examine

whether the insight that disagreement raises stock prices generalizes to the housing market.1

Housing differs in fundamental ways from the typical asset studied in finance. The typical

financial asset is in fixed supply, and its dividends are worth the same to all buyers. Housing

is a good—its value derives from the utility flows it delivers to end users. The dividends

from housing have different values for different people. And because firms can respond to

high prices with new construction, housing supply is not fixed.2

In our model, disagreement raises the price of housing only under certain conditions.

In particular, we find a non-monotonic relationship between land supply and the effect of

disagreement on house prices, with the price of housing being most sensitive to disagreement

for cities at an intermediate level of development. This relationship contrasts with the

intuition that disagreement’s effect on asset prices should fall strictly with asset supply

(Hong, Scheinkman and Xiong, 2006) and that cities where construction is easier experience

smaller house price booms (Glaeser, Gyourko and Saiz, 2008). We also shed light on the

mechanisms driving the house price boom by emphasizing speculation among developers

on the supply-side of the market. Taken together, our findings can explain many puzzling

aspects of the 2000-2006 US housing boom, including why the strongest house price growth

occurred in cities with elastic housing supply.

We study a two-period model of a housing market with two classes of agents, potential

residents and developers. Potential residents receive heterogeneous utility from consuming

housing that accrues only when they own their houses. This non-transferable ownership

utility captures the inefficiencies arising from the separation of ownership and control. Such

1Beginning with Miller (1977), a large literature has used models of disagreement to explain asset pricing
patterns in the stock market. Hong and Stein (2007) survey this literature, which includes Harrison and
Kreps (1978), Morris (1996), Diether, Malloy and Scherbina (2002), Scheinkman and Xiong (2003), Hong,
Scheinkman and Xiong (2006), and Simsek (2013).

2Other papers have applied speculative finance models to housing. Piazzesi and Schneider (2009) and
Burnside, Eichenbaum and Rebelo (2015) incorporate optimism and non-standard learning into search models
of the housing market, Favara and Song (2014) incorporate a rental margin into a model of disagreement
with short-selling constraints, and Giglio, Maggiori and Stroebel (2014) empirically evaluate whether rational
bubbles exist in the housing market. Unlike those papers, our work focuses on housing supply.
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moral hazard inefficiencies have long been recognized in corporate finance (Shleifer and

Vishny, 1997), and Henderson and Ioannides (1983) use them to explain why some residents

choose to own rather than rent. The equilibrium result of ownership utility is that home-

ownership is dispersed among individual residents rather than concentrated among a few

landlords who rent out the housing stock. Dispersed ownership is one of the most salient

aspects of the US housing market, with over 60% of the housing stock owner-occupied.

Developers supply housing in a competitive market, buying land at market prices and

converting it into housing for a constant resource cost. Construction is reversible, which

leads land and house prices to comove in equilibrium. As in Saiz (2010), the amount of

developable land is fixed due to geographic and regulatory constraints. Critically, developers

are forward-looking: housing supply and end-of-period land holdings depend on their expec-

tations of current and future land and house prices. Following the literature on disagreement

in the stock market, we rule out short-selling in land and housing. The case for short-sale

constraints is even stronger in real estate, where a lack of asset interchangeability makes it

impossible to cover a short.

In this two-period setting, we study the effect of an information shock concerning the

number of potential residents who will arrive in the final period. As in Miller (1977), agents

may “agree to disagree” about the quantitative implications of the shock. Morris (1996)

argues that such disagreement best fits unprecedented situations—like unanticipated secular

shifts in housing demand—in which people have not yet been able to engage in rational

learning. As Glaeser (2013) documents, housing booms have historically been accompanied

by unanticipated events like the settlement of new cities or the discovery of new resources.

We first characterize how land and house prices aggregate disparate beliefs about the

shock, partitioning cities in the initial period into three cases. In unconstrained cities,

undeveloped land remains at the end of the initial period and commands a price of zero.

Beliefs do not enter the pricing equation in unconstrained cities, and the price of housing

simply equals the cost of construction. In constrained cities, no undeveloped land remains

at the end of the initial period. The house price in constrained cities combines beliefs among

all potential residents who choose to buy, including pessimists with high ownership utility

whose participation mutes the impact of optimism on prices. Developer beliefs do not affect

pricing in constrained cities because no developers hold land or housing at the end of the

initial period. In intermediate cities, undeveloped land remains at the end of the initial

period but commands a positive price, reflecting the possibility of future constraints. In this

case, equilibrium accords most closely with the predictions in Miller (1977). Only the most

optimistic developers hold land at the end of the initial period and, because they are risk-

neutral and can borrow freely, they elastically demand land at their subjective valuation.

Thus, only the most optimistic developer belief enters the equilibrium pricing equation.
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Building on this result, we prove that an increase in disagreement raises the equilibrium

price of housing most in intermediate cities. Two competing channels deliver this non-

monotonic relationship between the effect of disagreement and land supply. Higher initial

demand increases the importance of the information shock by raising the chance a city will be

constrained in the final period. In opposition to this classical channel, higher initial demand

can move a city from an equilibrium in which optimistic developers take large positions in

the land market to one in which all space is dispersed among homeowners. As a result,

higher initial demand decreases the effect of disagreement by reducing the influence of the

most optimistic beliefs. These channels compete so that the price of housing reponds most

to disagreement in intermediate cities in which land supply is nearly exhausted.

This non-monotonicity contrasts with the existing literature on the relationship between

disagreement and supply in financial markets, in which disagreement’s effect on prices strictly

falls with supply.3 We demonstrate the robustness of this result in several extensions that

relax the model’s assumptions in different ways. First, we consider the case where developers

can issue equity and investors can short-sell that equity. Second, we consider an extension in

which landlords can speculate in the housing market and rent out housing to pessimistic res-

idents. In a final extension, we generalize the model to the case in which the supply elasticity

declines continuously with the level of initial demand.4 We also formally show how disagree-

ment reduces welfare (in the sense of Brunnermeier, Simsek and Xiong, 2014) by reallocating

space from high-flow-utility pessimists to low-flow-utility optimists and developers. Relative

to the stock market, in which case disagreement may lead only to welfare-neutral transfers,

this result demonstrates the potential welfare consequences of disagreement in the housing

market.

In the last part of the paper, we use the model to understand the variation in price

booms across US cities between 2000 and 2006, including those cities that appear as outliers

in the classical supply elasticity framework. Understanding the factors driving these outlier

cities is crucial for evaluating research using supply elasticity as an instrument for price

growth.5 The model predicts that an information-based house price boom is largest in cities

3Hong, Scheinkman and Xiong (2006) show that disagreement raises a stock’s price more when the traded
float is lower relative to the aggregate risk tolerance. Simsek (2013) predicts that the introduction of new
non-redundant financial assets increases the “speculative variance” of portfolio values, but this result does
not apply to our findings because the price of undeveloped land is perfectly correlated with the price of
housing in our equilibrium.

4In this extension, a first-order approximation to the house price equation loads more heavily on the
optimistic developer belief when the supply elasticity during the initial period is greater. The supply elasticity
captures the degree to which developers are the marginal buyers of space, so a higher elasticity leads to a
greater influence of optimistic developer beliefs on the price of housing.

5That the Saiz (2010) local housing supply elasticity predicts low house price growth for these cities
during the boom has been offered as a challenge to studies using this instrument. Complementary to our
analysis, Glaeser, Gyourko and Saiz (2008), Davidoff (2013), and Gao, Sockin and Xiong (2016) document
the puzzling nature of these outlier cities. Many papers have used this identification strategy to instrument
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where developers can build housing easily today but anticipate running out of land in the

near future. As a result, the relationship between current supply elasticity and house price

growth may be non-monotonic.

This theoretical condition—unconstrained in the present, possibly constrained in the

future—likely characterized the set of puzzling high-price-growth, high-construction cities at

the start of the US boom in 2000. Several of these cities face long-run limits to their growth

but little regulation of current construction. For instance, Las Vegas is surrounded by land

owned by the federal government, and Congress passed a law in 1998 prohibiting the sale of

land outside a development ring depicted in Figure 1. During the boom, land investors acted

as if they expected these governments to stop selling land and restrict future development.6

Section 5 shows that land prices rose strongly in these cities, which would not have occurred

had investors anticipated unlimited land in the long run.

We present evidence of land market speculation between 2000 and 2006 from US pub-

lic homebuilders—behavior we term supply-side speculation. These firms tripled their land

holdings during this time, while land prices rose significantly across the country. Statements

by these firms in their financial reports confirm that perceived land supply constraints drove

this behavior. At the same time, the homebuilding industry saw its stocks short-sold more

frequently than 95% of the industries in the United States. Our model predicts these out-

comes for developers in intermediate cities only when disagreement is present.

Our model also offers new predictions for the variation in house price booms within a city.

When some potential residents prefer renting to owning, only the most optimistic landlords

hold rental housing, just as only the most optimistic developers hold land in intermediate

cities. We show that all else equal, the price of housing is larger in constrained cities in types

of housing with greater underlying rental demand, such as condos and multifamily units.

Similarly, neighborhoods where a greater share of housing is rented witness stronger price

increases. This prediction matches the data: house prices increased more from 2000 to 2006

in neighborhoods where the share of rental housing in 2000 was higher.

for house price growth.
6Las Vegas provides a stark illustration of our model. The ample raw land available in the short run

allowed Las Vegas to build more houses per capita than any other large city in the US during the boom. At
the same time, speculation in the land market caused land prices to quadruple between 2000 and 2006, rising
from $150,000 per acre to $650,000 per acre, and then lose those gains. This in turn led to a boom and bust in
house prices. The high price of $150,000 for desert land before the boom and after the bust demonstrates the
binding nature of the city’s long-run development constraint. A New York Times article published in 2007
cites investors who believed the remaining land would be fully developed by 2017 (McKinley and Palmer,
2007). The dramatic rise in land prices during the boom resulted from optimistic developers taking large
positions in the land market. In a striking example of supply-side speculation, a single land development
fund, Focus Property Group, outbid all other firms in every large parcel land auction between 2001 and 2005
conducted by the federal government in Las Vegas, obtaining a 5% stake in the undeveloped land within the
barrier. Focus Property Group declared bankruptcy in 2009.
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1 A Housing Market with Disagreement

Our housing market model contains two periods, t ∈ {0, 1}. We study how news about a

demand shock in period 1 affects the price of housing in period 0. In the model, agents can

disagree about the shock’s future size. Equilibrium outcomes depend on how the market

aggregates these disparate beliefs. The central result is that the effect of disagreement on

the price of housing in period 0 depends on a city’s initial level of development.

Housing Supply and Developer Demand. The city we study has a fixed amount of

space S. At the beginning of period 0, all of this space exists as undeveloped land that can

be used for housing. Housing and land trade in spot markets each period but cannot be sold

short.7 The price of land and housing at t are plt and pht , respectively.

Developers are private firms endowed with the entire supply of land at the beginning of

period 0. Developers can borrow or lend freely in global capital markets at an interest rate

normalized to 0. In each period, a developer makes three decisions: (1) how much land to

buy or sell, (2) how much housing to build, and (3) how much housing to sell. Building a

unit of housing requires one unit of land and a resource cost kt. To simplify equations and

keep the user cost of housing constant over time, we set k0 = 2k and k1 = k for some k > 0.8

At t = 1, the owners of each developer receive the proceeds from liquidation.

Each developer maximizes its subjective expectation of its liquidation value. Denote the

holdings of housing, land, and bonds at the beginning of t by Ht, Lt, and Bt, respectively.

Denote the control variables of home sales, land purchases, and home construction at each

t by Hsell
t , Lbuyt , and Hbuild

t , respectively. At t = 1, the liquidation value π of a developer is

the outcome of the constrained optimization problem:

π(ph1 , p
l
1, H1, L1, B1) = max

Hsell
1 ,Lbuy1 ,Hbuild

1

ph1H
sell
1 − pl1L

buy
1 − kHbuild

1 +B1

subject to Hsell
1 ≤ H1 +Hbuild

1

Hbuild
1 ≤ L1 + Lbuy1 .

The actions (Hsell
1 )∗, (Lbuy1 )∗, and (Hbuild

1 )∗ chosen by the developer maximize this problem.

7Short-sale constraints in the housing market result from a lack of asset interchangeability. Although
housing is homogeneous in the model, empirical housing markets involve large variation in characteristics
across houses. This variation in characteristics makes it essentially impossible to cover a short.

8We abstract from the possibility of overbuilding by allowing developers to build negative amounts of
housing by recouping kt from turning a house into land.
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At t = 0, the developer maximizes its subjective expectation of this liquidation value:

(Hsell
0 )∗, (Lbuy0 )∗, (Hbuild

0 )∗ ∈ arg max
Hsell

0 ,Lbuy0 ,Hbuild
0

Eπ(ph1 , p
l
1, H1, L1, B1)

subject to Hsell
0 ≤ Hbuild

0

Hbuild
0 ≤ L0 + Lbuy0

H1 = Hbuild
0 −Hsell

0

L1 = L0 + Lbuy0 −Hbuild
0

B1 = ph0H
sell
0 − pl0L

buy
0 − 2kHbuild

0 .

At t = 0, developers may differ only in their land endowments L0 and in their beliefs about

ph1 and pl1 (as specified below). The sum of the land endowments across developers equals

S. Developers take prices as given, which is consistent with evidence we discuss in Section

5 on perfect competition in the homebuilding industry.

Individual Housing Demand. Potential residents derive utility from consumption and

from owning and occupying housing. There are two disjoint groups of potential residents:

one arriving at t = 0 and one arriving at t = 1. Upon arrival, each potential resident

decides whether to buy a house. Utility comes from consumption c at t = 1 and any housing

services v received in the period of arrival. Utility is linear and separable in housing and

consumption: u = c + v if the potential resident owns a house in the period of her arrival,

and u = c otherwise.

A potential resident who buys at t = 0 decides whether to sell her house at t = 1. As

with developers, potential residents at t = 0 may borrow in global capital markets at an

interest rate of 0. Denote the control variables of whether or not to buy or sell a house by

Hbuy
t and Hsell

t , restricting these to equal 0 or 1. At t = 1, an arriving potential resident

chooses
(Hbuy

1 )∗ ∈ arg max
Hbuy

1

Hbuy
1 (v − ph1)

subject to Hbuy
1 ∈ {0, 1},

and the utility of potential residents who bought at t = 0 equals

u(ph1 , B1, v) = max
Hsell

1

Hsell
1 ph1 +B1 + v

subject to Hsell
1 ∈ {0, 1},

where the choice (Hsell
1 )∗ maximizes this problem. At t = 0, arriving potential residents
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maximize the subjective expectation of their utility:

(Hbuy
0 )∗ ∈ arg max

Hbuy
0

Hbuy
0 Eu(ph1 , B1, v)

subject to Hbuy
0 ∈ {0, 1}

B1 = −ph0H
buy
0 .

At t = 0, potential residents may differ only in their housing utility v and in their beliefs

about ph1 (as specified below). At t = 1, arriving potential residents may differ only in v.

Denote by D(v) the complementary cumulative distribution function (1 minus the CDF)

of v among arriving potential residents. D(v) is a time-invariant function that encodes

heterogeneity in housing flow utility. We make the following functional form assumption

about D(v):

Assumption 1. There exists ε > 0 such that

D(v) =

1 if v < k

(k/v)ε if v ≥ k.

By Assumption 1, no potential residents have housing utility v less than k. This restriction

implies all potential residents are willing to purchase housing at cost. As a result, no residents

buy housing only because of expected capital gains. In the model, such pure speculators

would instead be classified as developers.9 Assumption 1 also invokes a constant elasticity

of demand for housing, which allows us to derive simple analytic results.

Our utility specification makes two implicit assumptions about resident behavior. First,

because utility is separable and linear in c, potential residents are risk-neutral. As a re-

sult, the purchase decisions of potential residents at t = 0 are not affected by the type of

hedging motives studied by Piazzesi, Schneider and Tuzel (2007). Second, because poten-

tial residents receive utility from only one house, their housing utility displays diminishing

marginal returns. This property leads homeownership to be dispersed among residents in

equilibrium.10

Aggregate Demand and Beliefs. Aggregate resident demand for housing depends on

the number of potential residents and the joint distribution of housing utility and beliefs.

9We explore the interaction between speculative and fundamental motives in related work (DeFusco,
Nathanson and Zwick, 2016).

10This dispersion is partly due to the limitation that potential residents can buy at most one house. Section
4 considers an extension in which potential residents can buy unlimited amounts of housing and rent it to
tenants.
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The number of arriving potential residents at t equals NtS, where Nt > 0. The growth in

Nt between t = 0 and t = 1 is given by

log(N1/N0) = µtruex,

where x ≥ 0 is a shock and µtrue is some constant. At t = 0, all agents observe N0 and x.

They do not observe µtrue, the data needed to map the information shock x to the demand

growth rate. Agents learn the value of µtrue at t = 1. The resolution of uncertainty at t = 1

is common knowledge at t = 0.

At t = 0, agents may disagree about the value of µtrue. Agent beliefs at t = 0 are indexed

by θ ∈ Θ ⊂ R. An agent of type θ believes with certainty that µtrue = µ(θ), where µ : Θ→ R
is a weakly increasing function. When µ(·) is not constant, beliefs vary across residents, and

knowing the beliefs of other residents does not lead to any Bayesian updating. This “agree-

to-disagree” assumption rules out any inference from prices at t = 0. Therefore, for instance,

a developer who holds land in equilibrium can realize that it is the most optimistic developer,

but this realization fails to change the developer’s belief.

As argued by Morris (1996), this heterogeneous prior assumption is most appropriate

when investors face an unusual, unexpected situation like the arrival of the shock we are

studying. Examples in the housing market include the settlement of new cities (like Chicago

in the 1830s) or the discovery of new resources (like the Texas oil boom of the 1970s). In

the case of the US housing boom between 2000 and 2006, we follow Mian and Sufi (2009) in

thinking of the shock as the arrival of new securitization technologies that expanded credit

to homebuyers, although an equally valid interpretation would be demographic shifts leading

to a secular increase in housing demand. The shock to housing demand between 2000 and

2006 is x, and µtrue represents the degree to which this shock persists after 2006. Even

economists disagreed about µtrue during the boom (Gerardi, Foote and Willen, 2010).

Denote by fd and fr the distribution of θ across developers and residents, respectively.

We allow these distributions to differ in order to study the equilibrium effects of developer

and resident beliefs separately. We make two key assumptions about these distributions:

Assumption 2. θ and v are independent for potential residents.

Assumption 3. θmaxj ≡ max supp fj exists for j ∈ {d, r}.

Assumption 2 guarantees that the two sources of heterogeneity among potential residents

at t = 0—their beliefs and their housing utility—are independent from one another.11 As-

sumption 3 guarantees the existence of a most optimistic developer. Given that developers

11Although there exist theories of why consumer beliefs may be driven by preferences (Bénabou and Tirole,
2016), independence of beliefs and preferences seems like a reasonable starting point.
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can access unlimited quantities of financing, an equilibrium would not exist without this

regularity condition. We define µmaxj ≡ µ(θmaxj ) for j ∈ {d, r}.
To study the marginal effects of disagreement on equilibrium, we adopt the specification

µ(θ) = µ+ zθ,

where µ, z ≥ 0.12 To ensure that z > 0 generates disagreement, we assume that there exist

agents with both positive and negative values of θ:

Assumption 4.
∫
θ<0

fj(θ)dθ > 0 and
∫
θ>0

fj(θ)dθ > 0 for j ∈ {d, r}.

Larger values of z generate more disagreement, and z = 0 delivers the special case in which

all agents agree about µtrue.

Land and Housing Market Equilibrium. In an equilibrium, a city is constrained if all

space is used for housing, unconstrained if some space remains as land and the price of land

is 0, and intermediate if some space remains as land but the price of land is positive. This

classification partitions all equilibrium outcomes and will prove useful for describing them.

The land market clears at t if the sum of (Lbuyt )∗ across developers equals 0, and the

housing market clears at t when the sum of (Hsell
t )∗ across developers and potential resi-

dents equals the sum of (Hbuy
t )∗ across potential residents. The prices pl1 and ph1 constitute

an equilibrium when the land and housing markets clear at t = 1. The following lemma

characterizes this equilibrium:

Lemma 1. Given N1, a unique equilibrium at t = 1 exists and is given by

ph1 =

k if N1 < 1 (unconstrained)

kN
1/ε
1 if N1 ≥ 1 (constrained)

and pl1 = ph1 − k.

Denote the prices in this equilibrium by pl1(N1) and ph1(N1).

These simple expressions for equilibrium prices depend on the model’s assumptions in

the following way. Because construction is reversible, ph1 = pl1 + k and initial conditions such

as endowments and the housing stock are irrelevant for prices. Thus only N1, the number of

arriving potential residents, matters for prices at t = 1. If N1 < 1, then the available space

S exceeds the number of potential residents who want to buy at ph1 = k. As a result, land is

free and ph1 = k. If N1 > 1, then more potential residents want to buy at ph1 = k than there

12The restriction µ ≥ 0 implies that agents expect a non-negative growth rate without disagreement and
simplifies our analysis by allowing us to focus on the case of a positive shock to the housing market.
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is available space, so the price of housing rises. In this case, because the elasticity of D(·)
for v ≥ k is assumed to be ε, the pass-through of more potential residents to the house price

equals 1/ε, giving the formula in Lemma 1.

At t = 0, an agent of type θ believes with certainty that house and land prices at t = 1 will

equal ph1(eµ(θ)xN0) and pl1(eµ(θ)xN0), respectively. Given these beliefs, pl0 and ph0 constitute

an equilibrium when the land and housing markets clear at t = 0. The following lemma

characterizes this equilibrium:

Lemma 2. Given N0, x, and z, a unique equilibrium at t = 0 exists, and in this equilibrium

pl0 = ph0 − 2k.

Denote prices in this equilibrium by pl0(N0, x, z) and ph0(N0, x, z). Sections 2 and 3 fully

characterize these prices in the cases of agreement and disagreement, respectively.

As above, the result that pl0 = ph0 − 2k follows from the reversibility of construction.

If pl0 < ph0 − 2k, then developers would want to buy an infinite amount of land and build

houses to sell; if pl0 > ph0 − 2k, developers would want to buy an infinite amount of housing

to revert to land. Markets would not clear in either case, so neither inequality can hold in

equilibrium.

2 Equilibrium with Agreement

The goal of this paper is to illustrate the effect of disagreement on prices in the housing

market. In this section, we describe the equilibrium house price at t = 0 under agreement.

This special case of the model, in which z = 0, provides the baseline to which we compare the

equilibrium under disagreement, in which z > 0. Proposition 1 characterizes the equilibrium

at t = 0 for land holdings, the price of housing, and the effect of the shock x on the price of

housing, which we call the house price boom.

Proposition 1. In equilibrium, when z = 0 developers hold land at t = 0 if and only if

N0 < 1. The house price at t = 0 equals

ph0(N0, x, 0) =


2k if N0 ≤ e−µx (unconstrained)

k + keµx/εN
1/ε
0 if e−µx < N0 < 1 (intermediate)

k(1 + eµx/ε)N
1/ε
0 if N0 ≥ 1 (constrained)
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and the house price boom

ph0(N0, x, 0)

ph0(N0, 0, 0)
− 1 =


0 if N0 ≤ e−µx (unconstrained)

1
2
(eµx/εN

1/ε
0 − 1) if e−µx < N0 < 1 (intermediate)

1
2
(eµx/ε − 1) if N0 ≥ 1 (constrained)

weakly increases in N0.

The price at t = 0 consists of two terms: one that reflects the housing utility for the

marginal buyer today, and one that reflects the common expectation of this marginal utility

tomorrow. Using Lemma 1, we may write ph0(N0, x, 0) = ph1(N0) + ph1(eµxN0). When N0 ≤
e−µx, agents expect that N1 ≤ 1 and that ph1 = k, leading to a price today of 2k. In the

intermediate case when e−µx < N0 < 1, land is available today but agents agree it will not

be tomorrow. When N0 ≥ 1, housing is constrained both today and tomorrow.

Under agreement, the house price boom rises monotonically in the level N0 of demand at

t = 0. When demand is low, the shock fails to raise prices because agents continue to expect

the city will be unconstrained at t = 1. Cities at an intermediate level of demand experience

intermediate booms, with larger booms in places with more initial demand. Over the range

e−µx < N0 < 1, a larger N0 indicates that the city is closer to being constrained so that a

greater share of the shock x appears in prices at t = 1. When demand is sufficiently high

(N0 ≥ 1), the shock passes through at a constant rate to the price of housing. Pass-through

does not vary with N0 over this range because of the constant elasticity specification of D(v)

in Assumption 1.

3 Equilibrium with Disagreement

This section describes the equilibrium at t = 0 under disagreement about future demand

growth, which holds when x, z > 0 as assumed throughout this section. We study the effect

of disagreement on land holdings and the price of housing, the aggregation of beliefs into

the price of housing, and the variation in house price booms across cities depending on

their initial level of development. The key result is that the house price boom for cities at

intermediate levels of development can exceed the boom for cities with high initial demand.

Disagreement alters the equilibrium allocation of land holdings among agents and can reduce

welfare, as optimistic developers crowd out potential residents.

3.1 Dispersed Homeownership, Land Speculation, and Belief Aggregation

Proposition 2 formally describes the equilibrium allocation of land and housing at t = 0 as

well as the equilibrium house price under disagreement.
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Proposition 2. In equilibrium, housing is held at t = 0 by potential residents of each type

θ ∈ supp fr. For land holdings, there exists N∗0 (x, z) ∈ R>1 ∪ {∞} such that:

• (Unconstrained) If N0 ≤ e−µ
max
d x, then some developers hold land at t = 0, and these

developers may be of any type θ ∈ supp fd.

• (Intermediate) If e−µ
max
d x < N0 < N∗0 (x, z), then some developers hold land at t = 0,

and all of these developers have type θ = θmaxd . Furthermore, there exists L∗ ∈ (0, S)

such that if the sum of L0 across developers for whom θ = θmaxd is less than L∗, then

the sum of (Lbuy0 )∗ across these developers exceeds the sum of (Hbuild
0 )∗ across them.

• (Constrained) If N0 ≥ N∗0 (x, z), then no developers hold land at t = 0.

The equilibrium house price at t = 0 equals

ph0(N0, x, z) =


2k if N0 ≤ e−µ

max
d x

k + keµ
max
d x/εN

1/ε
0 if e−µ

max
d x < N0 < N∗0 (x, z)

k(1 + eµ
agg
r (N0,x,z)x/ε)N

1/ε
0 if N0 ≥ N∗0 (x, z),

where µaggr (N0, x, z) is defined for N0 ≥ N∗0 (x, z) as the unique solution to

1 = N0

∫
Θ

D
(
k(1 + eµ

agg
r x/ε)N

1/ε
0 − ph1(eµ(θ)xN0)

)
fr(θ)dθ.

N∗0 (x, z) =∞ if and only if
∫
θ≥θmaxd

fr(θ)dθ = 0 and
∫
θ<θmaxd

(eµ
max
d x/ε−eµ(θ)x/ε)−εfr(θ)dθ ≤ 1.

In equilibrium, homeownership at t = 0 is dispersed among potential residents of all

beliefs. A potential resident buys a house at t = 0 if v > ph0−Eph1 . The number of homebuyers

of type θ equals N0SD(ph0(N0, x, z)−ph1(eµ(θ)xN0)), which is positive for all θ ∈ Θ. Positivity

depends on Assumption 1, which guarantees that D(v) > 0 for any argument. There exist

potential residents with arbitrarily high flow utility, so no matter how expensive housing

appears to them, some potential residents of each type choose to buy.

This point relates to the work of Cheng, Raina and Xiong (2014), who find that securitized

finance managers did not sell off their personal housing assets during the boom. They

interpret this result as evidence that these managers had the same beliefs as the rest of the

market about future house prices. An alternative interpretation is that the managers did

doubt market valuations, but continued to own housing because they derived sufficiently

high utility from housing to compensate for low expected capital gains.

Developers choose not to hold housing at the end of t = 0 because it is cheaper to hold

land and build a house at t = 1 for k instead of paying 2k at t = 0. In the land market, a
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developer wants to purchase an infinite amount of land if pl0 < Epl1. This situation cannot

hold in equilibrium, so for all θ ∈ supp fd,

pl0(N0, x, z) ≥ pl1(eµ(θ)xN0). (1)

For θ such that (1) holds with equality, a developer of type θ is indifferent to holding land

at t = 0. For θ such that (1) is an inequality, a developer of type θ chooses not to hold

land at the end of t = 0, either by selling it or by building houses using the land and selling

the houses. As a result, only developers for whom pl1(eµ(θ)xN0) = pl1(eµ
max
d xN0) may hold

land at t = 0. This is a simple statement of the result that prices in asset markets with

disagreement and limited short-selling tend to reflect the beliefs of the most optimistic agents

(Miller, 1977).

Under two conditions, undeveloped land remains at the end of t = 0 and is held only

by developers for whom θ = θmaxd . First, developers must disagree about their expectations

of pl1 so that pl1(eµ(θ)xN0) < pl1(eµ
max
d xN0) when θ < θmaxd . Because pl1(·) strictly increases

only on [1,∞), this monotonicity condition holds if and only if N0 > e−µ
max
d x. The second

condition is that some undeveloped land remains at the end of t = 0. This condition is met

if S exceeds potential resident demand at the price that attracts optimistic developers to

hold land:

S > N0S

∫
Θ

D(k + ph1(eµ
max
d xN0)− ph1(eµ(θ)xN0))fr(θ)dθ.

The proof of Proposition 2 shows there exists a cutoff N∗0 (x, z) > 1 such that the above

inequality holds if and only if N0 < N∗0 (x, z). When N∗0 (x, z) < ∞, a sufficiently large

number of potential residents will always outbid the most optimistic developers for space.

Proposition 2 shows how the housing and land markets differ in the concentration of

ownership among optimists. While potential residents of all beliefs own housing, land is

owned only by the most optimistic developers in cities at which the initial level of demand

takes on intermediate values. The idea that real estate speculation transpires largely in land

markets departs from the literature, which has focused mostly on investors in houses.13

Developers can carry land over between t = 0 and t = 1 and thus care about future prices.

This feature raises the possibility they buy land in advance of their immediate construction

needs according to their beliefs about future demand. We refer to this behavior as supply-side

speculation. In the model, if undeveloped land remains and the most optimistic developers

own all of it, then they must have bought more than they used for homebuilding (unless

they were initially endowed with enough land). Proposition 2 formally states this prediction,

which we explore in Section 5 by examining the balance sheets of US public homebuilders

13See, for example, Barlevy and Fisher (2011), Haughwout et al. (2011), Bayer et al. (2015), and Chinco
and Mayer (2015).
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during the boom and bust of the early 2000s.

Proposition 2 shows how the allocation of land and housing among developers and po-

tential residents affects the price of housing at t = 0. There are two important differences

between cities with different initial demand levels in terms of how prices aggregate beliefs.

First, prices in cities with intermediate demand reflect only the beliefs of developers. Recent

research has measured owner-occupant beliefs about the future evolution of house prices.14

In intermediate cities, developer rather than owner-occupant beliefs determine prices. Data

on the expectations of homebuilders would supplement the research on owner-occupant be-

liefs to explain price movements in such areas. In cities with high levels of initial demand,

developers are crowded out of the market, so only potential resident beliefs matter for prices.

The second difference between intermediate-demand and high-demand cities is how they

aggregate the beliefs of the relevant class of agents. In intermediate cities, prices reflect

the most optimistic belief µmaxd . Other than the maximal value of its support, all other

information encoded in the distribution fd of θ across developers is irrelevant for prices. In

contrast, the entire distribution fr of potential resident beliefs matters for house prices when

N0 ≥ N∗0 (x, z). This stark contrast depends on the absence of other constraints on developer

size such as risk aversion or capital constraints. The more general point is that when land is

held by potential residents, prices need not reflect the most optimistic belief. This is because

residents derive utility from housing that may not be correlated with expected capital gains.

Moreover, because these utility benefits exhibit diminishing returns, homeownership will

tend to be more dispersed than land ownership.

For N0 ≥ N∗0 (x, z), the formula for ph0(N0, x, z) is identical to the formula without dis-

agreement given by Proposition 1 except with µ replaced by µaggr (N0, x, z). Here, µaggr (N0, x, z)

aggregates the disparate beliefs of potential residents in the N0 ≥ N∗0 (x, z) regime. This ag-

gregate belief is always less than the most optimistic potential resident belief µmaxr . Under

the following assumption, µaggr (N0, x, z) is also less than the most optimistic developer belief

µmaxd :

Assumption 5. eµ
max
r x/ε − eµmaxd x/ε < 1 and

∫
Θ

(
1 + eµ

max
d x/ε − eµ(θ)x/ε

)−ε
fr(θ)dθ < 1.

Assumption 5 holds when fr = fd, so that the distribution of beliefs is the same for each

class of agents, but it may hold even if some potential residents are more optimistic than

the most optimistic developer. The assumption fails if there is a sufficiently large group of

residents with very optimistic beliefs. We invoke Assumption 5 for the purpose of analyzing

the effect of disagreement on the house price boom at t = 0.

14See Landvoigt (2014), Case, Shiller and Thompson (2012), Burnside, Eichenbaum and Rebelo (2015),
Soo (2013), Suher (2014), and Cheng, Raina and Xiong (2014).
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3.2 The Effect of Disagreement on House Prices

We turn now to the model’s main result, which concerns the effect of disagreement on the

price of housing at t = 0. Proposition 3 formally states the results.

Proposition 3. The effect of disagreement on the house price at t = 0 is given by

ph0(N0, x, z)

ph0(N0, x, 0)
− 1 =



0 if N0 ≤ e−µ
max
d x

1
2
(eµ

max
d x/εN

1/ε
0 − 1) if e−µ

max
d x < N0 ≤ e−µx

(eµ
max
d x/ε−eµx/ε)N1/ε

0

1+eµx/εN
1/ε
0

if e−µx < N0 ≤ 1

(eµ
max
d x/ε−eµx/ε)N1/ε

0 −(N
1/ε
0 −1)

(1+eµx/ε)N
1/ε
0

if 1 < N0 < N∗0 (x, z)

eµ
agg
r (N0,x,z)x/ε−eµx/ε

1+eµx/ε
if N0 ≥ N∗0 (x, z).

The increase is positive for N0 ∈ (e−µ
max
d x, 1] and is strictly maximized at N0 = 1. If

supp fr ⊂ [−µ/z, θmaxd ] and
∫

Θ
θfr(θ)dθ = 0, then the increase is also positive for all N0 > 1,

and the marginal effect of small disagreement on the price of housing,

∂ph0(N0, x, 0)/∂z

ph0(N0, x, 0)
=


0 if N0 < e−µx

θmaxd x

ε

eµx/εN
1/ε
0

1+eµx/εN
1/ε
0

if e−µx ≤ N0 ≤ 1

0 if N0 > 1,

is positive only for e−µx ≤ N0 ≤ 1.

The first part of Proposition 3 calculates the relative effect of disagreement on ph0(N0, x, z)

by comparing the price formulas in Propositions 1 and 2. We now describe the effect of

disagreement on the price of housing in each regime using the expressions in Proposition 3.

When N0 ≤ e−µ
max
d x, all developers agree that ph1 = k because the city will remain

unconstrained at t = 1. Disagreement between developers on how to interpret the shock x is

irrelevant for today’s price. Consistent with basic intuition, a fully unconstrained city reacts

similarly to an expected shock under agreement and disagreement.

When e−µ
max
d x < N0 ≤ e−µx, the most optimistic developers expect the city to be con-

strained so that ph1 > k, but a developer with the average belief does not. As a result,

disagreement raises the price of housing. This increase is larger when N0 is greater because

the price the most optimistic developer expects at t = 1 rises with the level of demand.

The analysis of the e−µx < N0 ≤ 1 case is similar, except that now the average developer

believes the city will be constrained in the future. Within this range, ph1 > k under both
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the average and most optimistic developer belief. The effect of disagreement reflects the

extent to which the optimistic developer belief of ph1 exceeds the average belief, with this

difference appearing in the numerator. As N0 increases, ph0(N0, x, 0) places more weight on

beliefs about t = 1 relative to the user cost at t = 0, so the effect of disagreement on this

price increases as well.

The effect of disagreement is most subtle when 1 < N0 < N∗0 (x, z). In this range,

disagreement changes the equilibrium from one in which potential residents own all space to

one in which the most optimistic developers hold some land. This change alters the house

price in two opposing ways, corresponding to the two terms in the numerator in Proposition 3.

The first term is positive, as beliefs about ph1 rise from keµxN
1/ε
0 to keµ

max
d xN

1/ε
0 . The second

term is negative, as the flow valuation of the marginal buyer at t = 0 falls from kN
1/ε
0 to k.

These terms reflect a change in land ownership at the margin: under agreement, the marginal

buyer is a potential resident whose housing utility equals kN
1/ε
0 ; under disagreement, the

marginal buyer is a developer whose flow value of housing is k. The net price effect strictly

decreases with N0 because utility crowd-out increases relative to N
1/ε
0 as N0 gets larger.

When N∗0 (x, z) < ∞, the effect of disagreement eventually reaches the level given in

the final regime of Proposition 3. The effect is positive when µaggr (N0, x, z) > µ for all

N0 ≥ N∗0 (x, z), the conditions for which are provided in the statement of the proposition.15

When N∗0 (x, z) =∞, for large N0 the effect of disagreement on the house price asymptotes

to (eµ
max
d x/ε − eµx/ε − 1)/(1 + eµx/ε), which the proof of Proposition 3 shows is positive.

The key result is that the effect of disagreement in the N0 ≥ N∗0 (x, z) regime is less

than that at N0 = 1. This comparison depends on Assumption 5, which guarantees that

µaggr (N0, x, z) < µmaxd , and on Assumption 2, which leads to dispersion of homeownership

among potential residents of all beliefs.

The last part of Proposition 3 isolates the effect of disagreement by studying a small

increase in z from z = 0. The restrictions on supp fr imply that the aggregate belief

µaggr (N0, x, z) always exceeds the average belief µ. However, because homeownership is dis-

persed among residents with different beliefs, the appendix shows that when disagreement

is small, the gap between aggregate and average beliefs exists only to the second order, such

that µaggr (N0, x, z)−µ = o(z). In this case, a small increase in disagreement acts as a mean-

preserving spread that does not alter the aggregate resident belief. As a result, the marginal

effect of small disagreement is only positive in the intermediate region of N0.

In summary, disagreement raises the price of housing everywhere except cities where the

15The conditions imply that the mean of µ(θ) among potential residents is µ and that 0 ≤ µ(θ) ≤ µmaxd

for all potential residents, which leads the demand curve for housing to be globally convex with respect
to θ. Global convexity implies that disagreement (holding the price constant) stimulates the demand of
optimists more than it attenuates the demand of pessimists. Thus, Jensen’s inequality implies that the price
that clears the market under disagreement exceeds the market-clearing price with agreement, meaning that
µaggr (N0, x, z) > µ.
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level of demand is very low and possibly cities where the level of demand is very high but

many extreme optimists and pessimists exist. For specifications of the joint distribution of

resident and developer beliefs that satisfy Assumption 5 (such as identical distributions in

the two subpopulations), disagreement raises the price most in cities at an intermediate level

of development. This non-monotonic effect of disagreement on the price of housing is the

model’s main result.

3.3 The Variation in Price Booms across Cities

Proposition 4 characterizes how the house price boom under disagreement varies across cities.

Proposition 4. The house price boom under disagreement,

ph0(N0, x, z)

ph0(N0, 0, z)
− 1 =


0 if N0 ≤ e−µ

max
d x

1
2
(eµ

max
d x/εN

1/ε
0 − 1) if e−µ

max
d x < N0 ≤ 1

1
2
(eµ

max
d x/ε − 2 +N

−1/ε
0 ) if 1 < N0 < N∗0 (x, z)

1
2
(eµ

agg
r (N0,x,z)x/ε − 1) if N0 ≥ N∗0 (x, z),

is strictly maximized at N0 = 1.

As in Proposition 1, we define the price boom as the effect of the shock x on ph0(N0, 0, z).

This boom can be decomposed into the product of ph0(N0, x, 0)/ph0(N0, 0, 0) (the marginal

effect of x when z = 0 given by Proposition 1) and ph0(N0, x, z)/ph0(N0, x, 0) (the marginal

effect of z given by Proposition 3).16 The former monotonically increases in the level of

initial demand N0, whereas the latter strictly peaks at N0 = 1. Proposition 4 shows that

the combined effect also strictly peaks at N0 = 1, meaning that with disagreement the result

that demand shocks raise prices the most in constrained cities no longer holds.

The intuition behind Proposition 4 is similar to that of Proposition 3. Cities with low

initial demand experience no price boom because all developers agree that they will remain

unconstrained at t = 0. For intermediate cities where e−µ
max
d x < N0 ≤ 1, prises rise according

to the beliefs of the most optimistic developer. For intermediate cities with 1 < N0 <

N∗0 (x, z), prices rise less when N0 > 1 because of the utility crowd-out of homeowners by

developers. Finally, prices rise for N0 ≥ N∗0 (x, z) according to the aggregate beliefs of

all potential residents. Under Assumption 5, this aggregate belief falls short of the most

optimistic developer belief, so the price boom is largest when N0 = 1.

To illustrate the variation in the price boom across cities, Figure 2 plots the expression

from Proposition 4 across different values of N0, both for a positive value of z and for

z = 0. We set fr = fd so the conditions of Assumption 5 hold. As can be seen in the figure,

16Here we are using the fact that ph0 (N0, 0, z) = ph0 (N0, 0, 0) because z becomes irrelevant when x = 0.
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disagreement amplifies the boom everywhere except in cities with small initial demand where

disagreement has no effect. The amplification is largest in cities with intermediate values

of initial demand, leading the boom to be largest in the case of disagreement at N0 = 1.

The boom in the case of agreement rises monotonically with respect to the level of initial

demand.

3.4 Disagreement and Welfare

Disagreement can reallocate space from pessimists to optimists. This reallocation destroys

welfare if some of the pessimists are potential residents with high flow utility and some of the

optimists are developers or potential residents with lower flow utility. To formally analyze

the effect of disagreement on welfare, we adopt the “belief-neutral Pareto efficiency” criterion

proposed by Brunnermeier, Simsek and Xiong (2014) as a welfare measure for models with

heterogeneous beliefs. An allocation is belief-neutral Pareto efficient if it is Pareto efficient

under all linear combinations of agent beliefs. Proposition 5 shows that disagreement reduces

welfare in intermediate and constrained cities.

Proposition 5. The equilibrium allocation is belief-neutral Pareto efficient if z = 0 or

N0 ≤ e−µ
max
d x and is belief-neutral Pareto inefficient otherwise.

The reallocations that improve welfare when z > 0 are as follows. When e−µ
max
d x < N0 <

N∗0 (x, z), there exists a potential resident who chooses not to buy despite having flow utility

v > k. The resource cost of building a house at t = 0 instead of t = 1 is k, so there exists a

cash transfer from this potential resident to a developer that makes them both better off if

the developer builds a house and gives it to the potential resident. For N0 ≥ N∗0 (x, z), there

exist potential residents with flow utilities v1 and v2 such that v1 < v2 and the potential

resident with v = v1 buys whereas the one with v = v2 does not. With a suitable cash

transfer, changing which potential resident owns the house improves the welfare of both.

Under the z = 0 equilibrium allocation, these situations never occur.

4 Extensions and Additional Predictions

Equity Financing. The developers in the baseline model raise any needed funds at t = 0

using debt. Appendix B presents an extension in which developers may raise funds only

through equity offerings. The analysis formalizes results that we explore empirically in

Section 5, in which we examine the market value and short-selling of the equity of public

developers during the 2000-2006 US housing boom.

In this extension, equity investors constitute a third class of agents. Across equity in-

vestors, the distribution of beliefs fi about µtrue satisfies Assumption 3, which guarantees
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the existence of a most optimistic equity investor, and Assumption 4, which ensures dis-

agreement when z > 0. Some of the developers endowed with land at t = 0 may raise funds

by selling claims on their t = 1 liquidation values to these investors.17 Each equity investor

may borrow freely at a rate of 0 to finance positive purchases of these claims. In contrast, to

sell these claims short, equity investors must pay a positive proportional fee. Furthermore,

each equity investor may sell short a limited number of claims. In equilibrium, a price exists

for the claim on each developer able to access the equity market such that the value of the

claims sold by the developer equals the net quantity demanded by equity investors.

The following proposition characterizes the price of housing, the allocation of land hold-

ings, the price of developer equity, and the total short position by equity investors at t = 0.18

We define ph0(N0, x, z, fr, fd) to be the equilibrium value of ph0 in Proposition 2 given the po-

tential resident belief distribution fr and the developer belief distribution fd, and we denote

θmaxi and µmaxi = µ(θmaxi ) to be the type and belief of the most optimistic equity investor.

Proposition 6. If xz = 0, then the aggregate value of short claims equals zero, and there

exists an equilibrium in which no equity issuance nor land purchases occur. If xz > 0:

• if
∑

θ>θmaxi

L0 = 0 then the equilibrium house price equals ph0(N0, x, z, fr, fi);

• if
∑

θ<θmaxi
developers w/o
access to equity

L0/S > e−µ
max
i x then there exists N0 for which the following all hold:

(a) some developers issue equity with positive value,

(b)
∑

(Lbuy0 )∗ >
∑

(Hbuild
0 )∗ across developers issuing equity,

(c) the total short position in this equity is positive for some values of the short fee,

(d) the equity price for each such developer exceeds the price under x = 0, and

(e) the equity price for each such developer falls from t = 0 to 1 iff µmaxi > µtrue.

If none of the developers endowed with land are more optimistic than the most optimistic

equity investor (for example, if the developer and investor belief distributions coincide),

the pricing formula in Proposition 2 carries over to the model with equity financing with

one difference: now the most optimistic equity investor belief replaces the most optimistic

developer belief. The non-monotonicity of the house price boom and disagreement price effect

17The developers who cannot access the equity market represent small firms and nonprofit landowning
entities like governments and Native American tribes that are not able to issue equity.

18In this extension, land that remains undeveloped at the end of t = 0 pays a small positive dividend at
the beginning of t = 1. Proposition 6 reports the limiting equilibrium price as this dividend goes to 0. The
sole purpose of this dividend is to ensure the existence of equilibrium when ph0 (N0, x, z) = 2k.
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also carry over as long as θ ≤ θmaxi for non-landowning developers.19 The most optimistic

investor prices all developer equity because long positions are unlimited while short positions

are costly. When
∑

θ>θmaxi
L0 = 0, all developers are willing to sell equity backed by their

landholdings to investors or to sell their landholdings at the optimistic investor valuation. As

a result, the equilibrium land price coincides with the optimistic investor valuation, leading

to an equilibrium house price of ph0(N0, x, z, fr, fi).
20

Proposition 6 also characterizes quantities in the equity and land markets without and

with disagreement. Without disagreement, short-selling never occurs because all investors

agree on the equity valuations and the short fee is positive. Equity issuance and land pur-

chases by developers are not guaranteed to occur because developers are indifferent between

selling land, selling equity, and holding land until t = 1.

With disagreement, equity issuance, land purchases by equity-issuing developers, and

short-selling of that equity all occur in equilibrium as long as the short fee is small enough

and pessimistic developers without equity market access hold enough land. With enough

pessimistic developers, other developers must raise funds from optimistic investors to buy

out the pessimists and satisfy the expected demand of potential residents. Equity-issuing de-

velopers buy land in excess of their immediate construction needs, resembling the optimistic

developers characterized by Proposition 2.

Housing Rental Market. In the baseline model, potential residents derive housing util-

ity only from owning and may own only one house. To explore the importance of these

restrictions, Appendix C presents an extension in which rental contracts are available and

potential residents may operate as landlords.

In this extension, potential residents may buy any positive amount of housing. They

choose how much housing to lease as landlords and how much to keep as owner-occupied

housing. Potential residents may also choose to rent housing as tenants. A fraction χ of

potential residents receive housing utility v if and only if they occupy at least one unit of

housing as a tenant, and the remaining potential residents receive v if and only if they occupy

at least one unit of housing as an owner-occupant. Rental prices at t = 0 and t = 1 clear the

market, so that the quantity of housing chosen to be leased by landlords equals the quantity

chosen to be rented by tenants.

We define N∗0 (x, z, fr) to be the value of N∗0 in Proposition 2 given the potential resident

belief distribution fr, and we define the distribution fχr by fχr (θ) = χ1θmaxr
+ (1 − χ)fr(θ).

19In this case θmaxd ≤ θmaxi , so Assumption 5 (on which Propositions 3 and 4 rely) holds with µmaxi in
place of µmaxd .

20Appendix B analyzes in detail the case in which
∑
θ>θmax

i
L0 > 0. In this case, some landowning

developers are more optimistic than the most optimistic investor. There may exist values of N0 at which
these optimistic developers hold land in equilibrium, with the t = 0 house price independent of the beliefs
and endowments of all other developers.
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The following proposition describes the t = 0 equilibrium in the rental extension:

Proposition 7. If xz = 0, χ equals the share of the housing stock that is rented. If xz > 0:

• the equilibrium house price equals ph0(N0, x, z, f
χ
r , fd);

• the house price boom is strictly maximized at N0 = 1 for some χ > 0;

• the house price boom depends on χ only if N0 ≥ N∗0 (x, z, fχr ), in which case it increases.

As shown by Proposition 7, the equilibrium house price assigns additional weight to the

optimistic resident belief in proportion to the underlying share of potential residents who

prefer renting. This skewing occurs because only the most optimistic potential residents

become landlords in equilibrium.

Proposition 7 further shows that the non-monotonicity of the house price boom char-

acterized by Proposition 4 carries over to this setting for certain values of χ. As shown in

Appendix C, this restriction on χ operates as follows. If µmaxr < µmaxd , then the house price

boom remains maximized at N0 = 1 for all χ because the developers pricing housing at that

point are more optimistic than the residents pricing housing in markets where developers do

not participate. In the more interesting case when µmaxr ≥ µmaxd , the price boom is maxi-

mized at N0 = 1 only for χ < χ∗(x, z), where χ∗(x, z) > 0. The χ∗(x, z) constraint need not

be very restrictive—if µmaxr = µmaxd , then χ∗(x, z) = 1, so the boom remains non-monotonic

as long as some positive measure of potential residents prefer owner-occupancy to renting.

The last part of Proposition 7 delivers the empirical prediction that among identical cities

where no land remains, cities in which a higher share of housing is rented without disagree-

ment experience larger house price booms with disagreement. We explore this prediction in

Section 5.

Continuous Housing Supply Elasticity. A key statistic used to analyze house price

booms is the elasticity of housing supply (Glaeser, Gyourko and Saiz, 2008; Mian and Sufi,

2009). In the baseline model, this elasticity is zero when all land is used for housing and

infinite when some undeveloped land remains. Disagreement amplifies the house price boom

most when e−µ
max
d x < N0 < N∗0 (x, z), the parameter region in which supply is perfectly

elastic at t = 0 but is expected by the optimistic developers to be perfectly inelastic at t = 1.

This characterization suggests that disagreement amplifies price booms most when supply

is elastic today but expected to be inelastic tomorrow. To see how robust this conclusion

is, Appendix D extends the rental market model to the case in which the supply elasticity

declines continuously with the level of initial demand.

In this extension, developers may rent out undeveloped land on spot markets each period

to firms that use the city’s land as an input. The land demand from these firms at t = 0 and

22



t = 1 is given by a continuously differentiable, decreasing, positive function of the spot rental

rate. The limiting values of this function for small and large rents are sufficiently extreme

that a unique equilibrium exists, and this function becomes weakly more inelastic for larger

rents.

Given a house price pht , a unique partial equilibrium exists in which developers optimize

and the land markets clear. We define the elasticity of supply to be the partial derivative

of the log of the housing stock chosen by developers with respect to pht , all normalized by

the house rent rht .21 As shown in Appendix D, there exists a continuous, decreasing function

εs : R+ → R+ such that the supply elasticity when z = 0 equals εs(Nt).

It is difficult to provide an exact solution for the house price boom (a counterpart for

Proposition 4) in this setting. Instead, the following proposition solves for the marginal

impact of the shock x on the equilibrium house price ph0(N0, x, z, χ) when x and z are small:

Proposition 8. As x, z → 0

∂ph0(N0, x, z, χ)/∂x

ph0(N0, x, z, χ)
=
εs(N0)µmaxd + χεµmaxr + (1− χ)εµ

εs(N0) + ε

(εs(eµxN0) + ε)−1

1 + e−
∫ x
0 (εs(eµx′N0)+ε)−1µdx′

holds to the first order in x and z.

Proposition 8 confirms the intuition from the main model on the distinct roles played

by the supply elasticities at t = 0 and t = 1. The first fraction on the right aggregates

beliefs across market participants. When the current elasticity εs(N0) is higher, more weight

is placed on the optimistic developer belief µmaxd because these developers constitute a larger

share of the marginal buyers in the market. A larger εs(N0) implies a greater influence of

disagreement on the house price today. Similarly, a higher χ increases the share of marginal

buyers who are landlords and raises the weight on the optimistic resident belief µmaxr .

In contrast, a greater value of εs(eµxN0)—the supply elasticity at t = 1 under the mean

belief—lowers the house price at t = 0. A larger supply elasticity at t = 1 implies smaller

pass-through of the shock x to the price at t = 1. This pass-through is given by (εs(eµxN0)+

ε)−1. Similarly, a greater value of εs(eµxN0) lowers the value of the integral, which captures

the expected price tomorrow relative to today. When this ratio is lower, the pass-through of

the shock x to the price at t = 0 is lower.

In summary, the price boom is largest when εs(N0) is large but εs(eµxN0) is small. This

combination occurs when the shock x pushes the city from having a high supply elasticity

21Normalizing by rht instead of pht allows us to use the same function to analyze the supply elasticity at
t = 0 and t = 1. Given the finite horizon of the model, the price at t = 0 is roughly double the price at t = 1,
so supply would be about twice as elastic at t = 0 if we normalized by pht . A unique equilibrium rent exists
for χ > 0; when χ = 0 we choose the rent that obtains as the limit as χ → 0, which is a valid equilibrium
rent for χ = 0.
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in the present to possibly having a low supply elasticity in the future. The possibility of

such a transition amplifies the role of disagreement relative to cases in which transition

to low supply elasticity is unlikely or has already occurred. Thus the intuition from the

baseline model that disagreement affects the size of the house price boom most for cities at

an intermediate level of development translates to this more general setting.

5 Stylized Facts of the US Housing Boom and Bust

This section uses data from the US housing boom between 2000 and 2006 to provide evidence

consistent with the model’s predictions about the house price boom at t = 0. We first

document the importance of the relationship between the price of raw land and the price

of housing across cities, which supports the model’s focus on how disagreement interacts

with potential land constraints. We then describe the speculative behavior in land markets

among public homebuilders, who resemble the optimistic developers in the model extension

in which developers issue equity. Last, we show how the model can be used to understand

the booms in the cross-section of US cities—including those cities that appear as outliers in

the classical supply elasticity framework—as well as across neighborhoods within cities.

5.1 The Central Importance of Land Prices

A key assumption of the model is that housing supply is limited in the long run by devel-

opment constraints. These constraints lead land prices to rise during a housing boom, as

developers anticipate the exhaustion of land. As a result, house prices and land prices rise

in unison as shown by the result in Lemma 2 that ph0 = pl0 + 2k in equilibrium.

Tracing house price increases to land prices distinguishes our model from “time-to-build.”

Traditionally, housing supply has been modeled as inelastic in the short run and elastic in

the long run (DiPasquale and Wheaton, 1994; Mayer and Somerville, 2000). This paradigm

described the US housing market very well for a time. Topel and Rosen (1988) show that

essentially all variation in house prices between 1963 and 1983 in the US came from changes

to the construction cost of structures. Temporary shortages of inputs needed to build a

house, such as drywall and skilled labor, could explain this pattern, with the fluctuations in

these input prices causing house price cycles.

Between 1983 and 2000, a secular shift occurred in housing supply in the US. Land

prices became a much larger share of house prices (Davis and Heathcote, 2007), especially in

certain cities (Davis and Palumbo, 2008). A large literature, surveyed by Gyourko (2009),

has attributed this change to the rise of government regulations restricting housing supply.

These rules bound city growth by limiting the number of building permits that are issued

to developers. When demand to live in the city rises, land prices increase because the city
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cannot expand.

Developers in a city without supply restrictions today might expect them to arrive in the

future. Anticipating these regulatory changes, developers bid up land prices immediately

after a demand shock, even in the absence of current building restrictions. In such a city,

supply is elastic in the short run, but inelastic in the long run—it’s “arrested development.”

In the baseline model, cities at an intermediate development level exhibit an extreme case

of arrested development, with an infinite supply elasticity in period 0 and a zero supply

elasticity in period 1 if all land is developed. The equilibrium presented in Proposition 8

considers a more general case in which the supply elasticity declines continuously with the

level of initial demand.

Under arrested development, a nationwide housing demand shock can increase land prices

everywhere, not just in cities where regulations currently restrict supply. Land prices rise

even in areas with rapid construction. In contrast, time-to-build predicts construction cost

increases and not land price increases. If temporary input shortages are driving house prices,

then land prices, which are fully forward looking, should remain flat.

To assess the relative importance of land prices, we gather data on land prices and

construction costs at the city level between 2000 and 2006. We use land prices measured

directly from parcel transactions during this time. This approach contrasts with that used

by Davis and Heathcote (2007) and Davis and Palumbo (2008), who measure land prices

as the residual when construction costs are subtracted from house prices. A direct measure

of land prices addresses concerns that such residuals capture something other than land

prices between 2000 and 2006. The land price data we use are the indices constructed by

Nichols, Oliner and Mulhall (2013). Using land transaction data, they regress prices on

parcel characteristics and then derive city-level indices from the coefficients on city-specific

time dummies.

We measure construction costs using the R.S. Means construction cost survey. This

survey asks homebuilders in each city to report the marginal cost of building a square foot

of housing, including all labor and materials costs. Survey responses reflect real differences

across cities. In 2000, the lowest cost is $54 per square foot and the highest is $95; the mean

is $67 per square foot and the standard deviation is $9. This survey has been used to study

the time series and spatial variation in residential construction costs (Glaeser and Gyourko,

2005; Gyourko and Saiz, 2006; Gyourko, 2009).

As shown by Lemmas 1 and 2, the assumptions of our model imply that house prices

must equal land prices plus construction costs: pht = plt + kt. Log-differencing this equation

between 2000 and 2006 yields

∆ log ph = α∆ log pl + (1− α)∆ log k,
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where ∆ denotes the difference between 2000 and 2006 and α is land’s share of house prices

in 2000. The factor that matters more should vary more closely with house prices across

cities. Because α and 1 − α are less than 1, the critical factor should also rise more than

house prices do.

Figure 3 plots for each city the real growth in construction costs and land prices between

2000 and 2006 against the corresponding growth in house prices. Construction costs did rise

during this period, but they rose substantially less than land prices, and construction cost

increases display very little variation across cities. The time-to-build hypothesis, then, does

explain some of the level of house price increases in the US during the boom, but none of the

cross-sectional variation. Land prices display the opposite pattern, rising substantially and

exhibiting a high correlation with house prices. Each city’s land price increase also exceeds

its house price increase. This evidence underscores the central importance of land prices for

understanding the cross-section of the house price boom, and broadly supports the relative

contribution of arrested development over time-to-build.

5.2 Supply-Side Speculation by Homebuilders

Proposition 2 predicts that as long as they are not endowed with too much land, optimistic

developers amass land beyond their immediate construction needs at t = 0 in intermediate

cities. Proposition 6 extends this result to the case in which developers finance themselves

with equity and offers additional predictions about the developer equity market. We examine

these predictions among a class of developers for whom rich data are publicly available: public

homebuilders. We focus on the eight largest firms and hand-collect landholding data from

their annual financial statements between 2001 and 2010.22

The eight equity-financed large firms we study nearly tripled their landholdings between

2001 and 2005, as shown in Figure 4(a). Consistent with Propositions 2 and 6(a) and 6(b),

these land acquisitions far exceed land needed for new construction. Annual home sales

increased by 120,000 between 2001 and 2005, while landholdings increased by 1,100,000 lots.

One lot can produce one house, so landholdings rose more than nine times relative to home

sales. In 2005, Pulte changed the description of its business in its 10-K to say, “We consider

land acquisition one of our core competencies.” This language appeared until 2008, when it

was replaced by, “Homebuilding operations represent our core business.”

Having amassed large land portfolios, these firms subsequently suffered significant capital

losses. Figure 4(b) documents the dramatic rise and fall in the total market equity of these

homebuilders between 2001 and 2010. Homebuilder stocks rose 430% and then fell 74% over

this period. By Proposition 6(d), the rise is consistent with a positive shock x > 0 at t = 0.

22Our analysis complements Haughwout et al. (2012), an empirical study of the homebuilding industry
that presents similar facts from different data.
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If we interpret the period between 2006 and 2010 as that between t = 0 and t = 1, then

by Proposition 6(e) the losses are consistent with a realization of µtrue below the optimistic

investor belief µmaxi .

The majority of the losses borne by homebuilders arose from losses on the land portfolios

they accumulated from 2001 to 2005. In 2006, these firms began reporting write-downs to

their land portfolios. At $29 billion, the value of the land losses between 2006 and 2010

accounts for 73% of the market equity losses over this time period. The homebuilders bore

the entirety of their land portfolio losses. The absence of a hedge against downside risk

supports the theory that homebuilder land acquisitions represented optimistic beliefs.

It is hard to argue that this rise and fall of equity prices reflects any monopoly rents

homebuilders earned by building houses during this period. During the boom, homebuilding

was extremely competitive. Haughwout et al. (2012) document that the largest ten home-

builders had less than a 30% market share throughout the boom, with firms outside the

largest sixty constituting over half of market share. Although some consolidation occurred

between 2000 and 2006, these numbers portray an extremely competitive market. If any-

thing, consolidation may reflect purchases by optimistic firms of pessimists who chose to

abstain from land speculation.

Consistent with Prediction 6(c), these homebuilders witnessed heightened short-selling of

their equity during the boom. Figure 4(c) plots the distribution of the average monthly short

interest ratio, defined as the ratio of shares currently sold short to total shares outstanding,

across all industries between 2000 and 2006. The short interest of homebuilder stocks lies

in the 95th percentile, meaning that investors short-sold this industry more than nearly all

others during the boom. As a point of comparison, the short interest in homebuilders was

triple that in investment banks, another industry exposed to housing at this time. The short

interest in homebuilders provides direct evidence of disagreement over the value of their land

portfolios.23

Several recent papers argue that optimism about house prices was widespread between

2000 and 2006. For instance, Foote, Gerardi and Willen (2012) document twelve facts

about the mortgage market during this time inconsistent with incentive problems between

borrowers and lenders, but consistent with beliefs of borrowers and lenders that house prices

would continue to rise. Case, Shiller and Thompson (2012) directly survey homeowners

during the boom and find that they expected continued appreciation in house prices over

the next decade, as opposed to the bust that eventually occurred. Cheng, Raina and Xiong

23An earlier draft of this paper provided the time series of short interest in homebuilder stock from 2001
to 2010. Short interest rose from 2001 to 2006, but rose even further from 2006 to 2009. Homebuilder short
interest was highest as the bust was beginning. This peak may indicate that disagreement reached its peak
after the boom, complicating the idea that disagreement was high during the boom. Alternatively, the late
peak could indicate that shorting is more attractive for pessimists when they anticipate a bust in the near
future.
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(2014) find that securitized finance managers did not sell off their personal housing assets

during the boom, indicating that these managers had similarly optimistic beliefs relative

to the rest of the market. The disagreement our model relies on is in fact consistent with

such widespread optimism. Homeowners and investors can be optimistic on average, with

dispersion in beliefs around this optimistic mean. Furthermore, only the most optimistic

investors price land in the model. Thus, a few extraordinarily optimistic investors have a

large price impact, even when nearly all people agree about the future of house prices.

5.3 The Cross-Section of Cities

House price increases differed markedly across cities during the 2000-2006 US housing boom.

Propositions 1 and 4 derive house price increases as a function of city development levels

and disagreement. We test these predictions by interpreting them as comparative statics and

then examining them against the empirical variation in house price increases across cities.

Not only are these predictions borne out, but they explain some of the most puzzling aspects

of this cross-city variation.

We document these puzzling cross-sectional facts using city-level house price and con-

struction data. House price data come from the Federal Housing Finance Agency’s metropoli-

tan statistical area quarterly house price indices. We measure the housing stock in each city

at an annual frequency by interpolating the US Census’s decadal housing stock estimates

with its annual housing permit figures. Throughout, we focus on the 115 metropolitan areas

for which the population in 2000 exceeds 500,000. The boom consists of the period between

2000 and 2006, matching the convention in the literature to use 2006 as the end point (Mian,

Rao and Sufi, 2013).24

Figure 5(a) plots construction and house price increases across cities. The house price

increases vary enormously across cities, ranging from 0% to 125% over this brief six-year

period. The largest price increases occurred in two groups of cities. The first group, which

we call the Anomalous Cities, consists of Arizona, Nevada, Florida, and inland California.

The other large price increases happened in the Inelastic Cities, which comprise Boston,

Providence, New York, Philadelphia, and the west coast of the United States.

The history of construction and house prices in the Anomalous Cities before 2000 con-

stitutes the first puzzle. As shown in Figures 5(b) and 5(c), from 1980 to 2000 these cities

provided clear examples of very elastic housing markets in which prices stay low through

rapid construction activity. Construction far outpaced the US average while house prices

24Davidoff (2013) also documents these facts, and we use his approach of comparing construction and house
prices before 2000 to during the boom. Gao, Sockin and Xiong (2015) show that price growth during the boom
display a non-monotonic relationship with respect to Saiz (2010)’s measures of long-run supply elasticity.
They develop a model in which intermediate levels of supply elasticity impede information aggregation in
housing markets, leading the intermediate cities to experience the greatest house price volatility.
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remained constant. In a model like Glaeser, Gyourko and Saiz (2008), in which each city is

characterized by a constant housing supply elasticity, the subsequent surge in house prices

in these cities is impossible. Perfectly elastic supply should meet whatever housing demand

shock arrived in 2000 with higher construction, holding down house prices.

Our model explains this pattern by distinguishing short-run and long-run housing supply

elasticities. Proposition 1 shows that prices rise in intermediate cities in which vacant land

remains because supply is expected to become constrained soon. This phenomenon depends

on the way we have modeled housing supply and holds even without disagreement. Figure 1

demonstrates long-run barriers in Las Vegas. More broadly, the land price increases across

the country shown in Figure 3 indicate the presence of these constraints in other cities, or

at least developers’ anticipation of them.

The second puzzle is that the price increases in the Anomalous Cities were as large as

those in the Inelastic Cities. The Inelastic Cities consist of markets where house prices rise

because regulation and geography prohibit construction from absorbing higher demand. We

document this relationship in Figures 5(b) and 5(c), which show that construction in these

cities was lower than the US average before 2000 while house price growth greatly exceeded

the US average. As shown in Figure 5(a), house prices increased as much in the Anomalous

Cities as they did in the Inelastic Cities. This pattern poses a puzzle for models without

disagreement. Proposition 1 shows that, without disagreement, constrained cities experience

larger house price booms than intermediate and unconstrained cities. Even models such as

Hong, Scheinkman and Xiong (2006), in which investors disagree but the marginal buyer

type does not vary with asset float, cannot easily explain the non-monotonicity in house

price increases.

Proposition 4 explains the pattern. With disagreement z > 0, the same demand shock

x > 0 raises the t = 0 house price most in intermediate cities, not in constrained cities.

According to our model, land availability in the Anomalous Cities facilitated speculation

and thus amplified the increase in house prices. This amplification effect was smaller in the

Inelastic Cities, which featured less undeveloped land. Evidence of disagreement during the

boom comes from the stylized facts about public homebuilders in Section 5.2, as Proposition

6 shows that these facts are guaranteed to hold only with disagreement.

The final puzzle is that some elastic cities built housing quickly during the boom but,

unlike the Anomalous Cities, experienced stable house prices. These cities appear in the

bottom-right corner of Figure 5(a), and are located mostly in the southeastern United States

(e.g., Texas and North Carolina).25 Their construction during the boom quantitatively

matches that in the Anomalous Cities, but the price changes are significantly smaller. Why

25The cities with annual housing stock growth above 2% and cumulative price increases below 25% are
Atlanta, Austin, Charlotte, Colorado Springs, Columbus, Dallas, Denver, Des Moines, Fort Collins, Fort
Worth, Houston, Indianapolis, Lexington, Nashville, Ogden, Raleigh, and San Antonio.
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was rapid construction able to hold down house prices in some cities and not others?

Propositions 1 and 4 explain that what distinguishes these cities are their long-run supply

elasticities. A city can have perfectly elastic short-run supply, yet its long-run supply is

indeterminate. Among the cities with elastic short-run supply, the intermediate cities face

constraints soon while the unconstrained cities do not. The model’s explanation of Figure

5(a) is that the Anomalous Cities are the ones approaching the long-run constraints, whereas

the cities in the bottom right did not face development barriers in the foreseeable future.

Some evidence consistent with this argument comes from the financial statements of

Pulte, one of the homebuilders studied in Section 5.2. In a February 2004 presentation to

investors, Pulte listed several of the Anomalous Cities as “supply constrained markets you

may not have expected”: West Palm Beach, Orlando, Tampa, Ft. Myers, Sarasota, and Las

Vegas (Chicago was also listed). In contrast, Pulte stated that Texas was “the only area of

the country without supply constraints in some form,” and listed many of the non-anomalous

elastic cities (Atlanta, Charlotte, and Denver) as “not supply constrained overall,” although

“supply issues in preferred submarkets” were noted.26 The slides are presented in Appendix

E.27

An alternate explanation for these facts is that the Anomalous Cities simply experienced

much larger demand growth between 2000 and 2006 than the rest of the country. Abnormally

large demand growth would increase prices and construction, leading the Anomalous Cities

to occupy the top-right part of Figure 5(a).28 While our discussion above considers the case

of a common demand shock, Figure 5 makes it clear that demand growth did differ across

cities. The cluster of cities in the bottom left of the graph likely saw low price growth and

construction because demand was flat during this time. The experiences of these cities raise

the possibility that the Anomalous Cities saw abnormally large demand growth just as these

cities saw abnormally small growth.29

We examine whether the Anomalous Cities experienced abnormally large demand shocks,

26Other cities with supply constraints only in submarkets were Phoenix, Jacksonville, Detroit, and Min-
neapolis.

27The Pulte slides provide narrative support for some of the other assumptions and predictions of the
model. Pulte stated that “[Anti-growth efforts] are not new for heavily populated areas (Northeast, Cal-
ifornia) but now are widespread across the country.” This statement indicates that at least one major
developer—the largest public homebuilder at the time—recognized the rise of supply restrictions throughout
the country, consistent with our assumption of finite long-run land supply.

28Another explanation is that the value of the option, described by Titman (1983) and Grenadier (1996),
to develop land with different types of housing may have been largest in the anomalous cities, but many of
these areas consist of homogeneous sprawl (Glaeser and Kahn, 2004), lessening this concern.

29Section 3.3 was silent on the model’s predictions for construction, which we present in Appendix F. The
model is ill-suited to explain construction between 2000 and 2006 because it considers only a shock to news
about future demand and not a shock to current demand. As shown in Appendix F, the shock x does not
alter the equilibrium housing stock, except in intermediate cities with disagreement where x > 0 lowers the
stock relative to the case without disagreement.
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and whether these large shocks are sufficient to account for the extreme price movements

in these cities. Mian and Sufi (2009) argue that the shock was the expansion of credit to

low-income borrowers. It is possible that this shock affected the Anomalous Cities more

than the rest of the nation, for instance because they contained greater shares of low in-

come individuals, and that this greater exposure to the shock led to abnormally large price

increases.

To address this possibility, we calculate the house price booms that would be predicted

from each city’s supply elasticity and relevant demographics in 2000. We construct the

predicted price increases in the following manner. Suppose that between 2000 and 2006, each

city experienced a permanent increase in log housing demand equal to xj. From Proposition

8, the resulting increase in house prices when z = 0 equals

∆ log phj =
µxj

2(εsj + ε)
(2)

to the first order in x, where εsj is city j’s housing supply elasticity. Because we are exploring

a counterfactual without disagreement, this specification assumes that µ does not vary across

cities.

Mian and Sufi (2009) show that the following demographic variables predict the presence

of subprime borrowers at the ZIP-code level: household income (negatively), poverty rate,

fraction with less than high school education, and fraction nonwhite. We measure these

variables at the metropolitan area level in the 2000 US Census, and use them to predict

the unobserved shock xj. We denote this vector of demographics, plus a constant and log

population, by dj. Under the null hypothesis that these demographics alone predict the

shock, we may write µxj/2 = βdj + ηj, where β is the same across cities, and dj ⊥ ηj.

Substituting this expression into equation (2) yields the estimating equation

(εsj + ε)∆ log phj = βdj + ηj. (3)

Estimating β using this equation allows us to calculate the house price boom predicted

by the supply elasticity εsj and the demographics dj. In equation (3), the left represents the

house price increase adjusted by the elasticity of supply, while βdj is the housing demand

shock predicted by the city’s exposure to subprime. We use Saiz (2010)’s supply elasticity

estimates for εsj , and a value of 0.6 for the housing demand elasticity ε. This value lies in

the range of estimates calculated by Hanushek and Quigley (1980). Using these data, we

produce an estimate β̂ using ordinary least squares on equation (3). The resulting house
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price boom predicted from demographics and supply elasticity equals

E
(
∆ log phj | dj, εsj

)
=

β̂dj
εsj + ε

.

Figure 6 plots the actual house price growth against the predicted price growth for each

city in Figure 5(a). The Anomalous Cities remain clear outliers. Abnormal demand growth

from low-income borrowers does not explain the extreme experiences of these cities. In

theory, these predicted price increases could have lined up well with the actual increases

in the Anomalous Cities. This alignment would have held if the subprime demographics

predicted the shocks, these cities were very exposed to subprime, and their housing supply

were inelastic enough. This story fails to explain the anomalous house price booms, which

experienced higher price growth despite elastic supply and even conditioning on observable

drivers of demand. Furthermore, the growth in subprime credit was widespread, with high-

housing supply elasticity cities experiencing large expansions in subprime credit without

house price growth (Mian and Sufi, 2009, Table VII).

5.4 Variation in House Price Booms Within Cities

Proposition 7 of the model predicts larger price increases in market segments within a city

that attract more renters than owners. A sufficient statistic for this effect is χ, the share of

the housing stock that is rented. Proposition 7 holds only among segments with the same N0,

x and z. This “all else equal” assumption is unlikely to hold empirically, so our discussion

focuses on the conceptual predictions about within-city variation made by the model.

We first consider variation in χ across neighborhoods. Neighborhoods provide an example

of market segments because they differ in the amenities they offer. For instance, some

areas offer proximity to restaurants and nightlife, while others provide access to good public

schools. These amenities appeal to different groups of residents. Variation in amenities

hence leads χ to vary across space. Neighborhoods whose amenities appeal relatively more

to renters than to owner-occupants are characterized by a higher value of χ.

We obtain ZIP-level data on χ from the US Census, which reports the share of occupied

housing that is rented, as opposed to owner-occupied, in each ZIP code in 2000. χ varies

considerably within cities. Its national mean is 0.29 and standard deviation is 0.17, while the

R2 of regressing χ on city fixed-effects is only 0.12. We calculate the real increase in house

prices from 2000 to 2006 using Zillow.com’s ZIP-level house price indices. We regress this

price increase on χ and city fixed-effects, and find a positive and highly significant coefficient

of 0.10 (0.026), where the standard error is clustered at the city level. Thus, consistent with

Proposition 7, house prices increased more between 2000 and 2006 in neighborhoods where

χ was higher in 2000.
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This positive relationship between χ and price increases may not be causal. Housing

demand shocks in the boom were larger in neighborhoods with a higher value of χ. The

housing boom resulted from an expansion of credit to low-income households (Mian and

Sufi, 2009; Landvoigt, Piazzesi and Schneider, 2015). As a result, the strong covariance of

ZIP-level income with χ will tend to bias our estimates.30 Furthermore, a city-wide demand

shock might raise house prices most strongly in cheap areas due to gentrification dynamics

(Guerrieri, Hartley and Hurst, 2013), and χ covaries negatively with the level of house prices

within a city.

The appeal of χ is that it predicts price increases in any housing boom in which there

is disagreement about future fundamentals. In general, χ predicts price increases because it

is positively correlated with speculation, not because it is correlated with demand shocks.

Empirical work can test Proposition 7 by examining housing booms in which the shocks are

independent from χ.

The second approach to measuring χ is to exploit variation across different types of

housing structures. According to the US Census, 87% of occupied detached single-family

houses in 2000 were owner-occupied rather than rented. In contrast, only 14% of occupied

multifamily housing was owner-occupied. According to Proposition 7, the large difference in

χ between these two types of housing causes a larger price boom in multifamily housing, all

else equal.

This result squares with accounts of heightened investment activity in multifamily hous-

ing during the boom.31 For instance, a consortium of investors—including the Church of Eng-

land and California’s pension fund CalPERS—purchased Stuyvesant Town & Peter Cooper

Village, Manhattan’s largest apartment complex, for a record price of $5.4 billion in 2006.

Their investment went into foreclosure in 2010 as the price of this complex sharply fell

(Segel et al., 2011). Multifamily housing attracts speculators because it is easier to rent

out than single-family housing. During periods of uncertainty, optimistic speculators bid up

multifamily house prices and cause large price booms in this submarket.

6 Conclusion

In this paper, we argue that disagreement explains an important part of housing cycles.

Disagreement amplifies house price booms by biasing prices toward optimistic valuations.

Our emphasis on how disagreement interacts with long run development constraints allows

us to explain aspects of the boom that are at odds with existing theories of house prices.

30The IRS reports the median adjusted gross income at the ZIP level. We take out city-level means, and
the resulting correlation with χ is −0.40.

31Bayer et al. (2015) develop a method to identify speculators in the data. A relevant extension of their
work would be to look at the types of housing speculators invest in.
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Many of the largest price increases occurred in cities that were able to build new houses

quickly. This fact poses a problem for theories that stress inelastic housing supply as the

sole source of house price booms. But it sits well with our theory, which instead emphasizes

speculation. Undeveloped land facilitates speculation due to rental frictions in the housing

market. In our model, large price booms occur in elastic cities facing a development barrier

in the near future.

Introducing key aspects of the housing market—heterogeneous ownership utility and

the nature of asset supply—extends and clarifies past work in finance that has focused on

disagreement in financial asset markets. In our model, disagreement raises the price of

housing only under certain conditions and the relationship between disagreement and asset

supply can be non-monotonic. The particular setting of housing markets also presents an

important case in which disagreement reduces welfare, as pessimists with high flow utility

may be replaced by optimists with low flow utility.

We document the central importance of land price increases for explaining the US house

price boom between 2000 and 2006. These land price increases resulted from speculation

directly in the land market. Consistent with this theory, homebuilders significantly increased

their land investments during the boom and then suffered large capital losses during the bust.

Many investors disagreed with this optimistic behavior and short-sold homebuilder equity

as the homebuilders were buying land.

In one of the model’s extensions, price booms are larger in submarkets within a city

where a greater share of housing is rented. We present some evidence for this prediction,

but further empirical work is needed to test it more carefully. We also look forward to work

exploring these findings to understand cycles outside the US, in historical episodes, and in

other markets with similar features to housing.
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FIGURE 1
Long-Run Development Constraints in Las Vegas

51Regional Transportation Plan, 2013-2035

1980 1990

Figure 2-9: Las Vegas Valley Development: 1980-2030

20302008

Notes: This figure comes from page 51 of the Regional Transportation Commission of Southern Nevada’s
Regional Transportation Plan 2009-2035 (RTCSNV, 2012). The first three pictures display the Las Vegas
metropolitan area in 1980, 1990, and 2008. The final picture represents the Regional Transportation Com-
mission’s forecast for 2030. The boundary is the development barrier stipulated by the Southern Nevada
Public Land Management Act. The shaded gray region denotes developed land.
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FIGURE 2
House Price Boom for Different Initial Demands
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Notes: The boom size equals ph0 (N0, x, z)/p
h
0 (N0, 0, z)−1 with disagreement and ph0 (N0, x, 0)/ph0 (N0, 0, 0)−1

without disagreement. N0 equals the number of potential residents at t = 0 relative to the amount of space
in the city. The parameter values used to generate this figure are x = 0.5, z = 1, ε = 1, µ = 0.2, and fr = fd
with 90 percent of agents having θ = −1/9 and 10 percent having θ = 1. These parameters are defined in
Section 1.
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FIGURE 3
Input Price and House Price Increases Across Cities, 2000-2006
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Notes: We measure construction costs for each city using the R.S. Means survey figures for the marginal cost
of a square foot of an average quality home, deflated by the CPI-U. Gyourko and Saiz (2006) contains further
information on the survey. Land price changes come from the hedonic indices calculated in Nichols, Oliner and
Mulhall (2013) using land parcel transactions, and house prices come from the second quarter FHFA housing
price index deflated by the CPI-U. The figure includes all metropolitan areas with populations over 500,000 in
2000 for which we have data. For land prices, we have data for Atlanta, Baltimore, Boston, Chicago, Dallas,
Denver, Detroit, Houston, Las Vegas, Los Angeles, Miami, New York, Orlando, Philadelphia, Phoenix,
Portland, Sacramento, San Diego, San Francisco, Seattle, Tampa, and Washington D.C.
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FIGURE 4
Supply-Side Speculation Among U.S. Public Homebuilders, 2001-2010
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Notes: (a), (b) Data come from the 10-K filings of Centex, Pulte, Lennar, D.R. Horton, K.B. Homes,
Toll Brothers, Hovnanian, and Southern Pacific, the eight largest public U.S. homebuilders in 2001. “Lots
Controlled” equals the sum of lots directly owned and those controlled by option contracts. The cumulative
writedowns to land holdings between 2006 and 2010 among these homebuilders totals $29 billion. (c) Short
interest is computed as the ratio of shares currently sold short to total shares outstanding. Monthly data
series for shares short come from COMPUSTAT and for shares outstanding come from CRSP. We compute
mean short interest between 2000 and 2006 for each six-digit NAICS industry and plot the cumulative
distribution of these means. Builder stocks are classified as those with NAICS code 236117 and investment
bank stocks are those with NAICS code 523110.
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FIGURE 5
The U.S. Housing Boom and Bust Across Cities

a) Price Increases and Construction, 2000-2006
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Notes: Anomalous Cities include those in Arizona, Nevada, Florida, and inland California. Inelastic Cities
are Boston, Providence, New York, Philadelphia, and all cities on the west coast of the United States. We
measure the housing stock in each city at an annual frequency by interpolating the U.S. Census’s decadal
housing stock estimates with its annual housing permit figures. House price data come from the second
quarter FHFA house price index deflated by the CPI-U. The figure includes all metropolitan areas with
populations over 500,000 in 2000 for which we have data. (a) The cumulative price increase is the ratio of
the house price in 2006 to the house price in 2000. The annual housing stock growth is the log difference in
the housing stock in 2006 and 2000 divided by six. (b), (c) Each series is an average over cities in a group
weighted by the city’s housing stock in 2000. Construction is annual permitting as a fraction of the housing
stock. Prices represent the cumulative returns from 1980 on the housing in each group.
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FIGURE 6
Anomalous Cities and Differential Demand Shocks, 2000-2006
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Notes: This plot compares actual price growth during the boom to predicted price growth as a function
of city level demographics, where predicted price growth proxies for differential demand shocks. Actual
price growth is the log change in the second quarter FHFA house price index deflated by the CPI-U. We
compute predicted price growth from a cross sectional regression of actual price growth on a set of city
level demographics: log population, log of median household income, percent white, percent white and not
hispanic, percent with less than 9th grade education, percent with less than 12th grade education, percent
unemployed, and percent of families under the poverty line. Demographics come from the 2000 Census.

44



A Proofs

Lemma 1

If ph1 > pl1 + k, then each developer wants to buy an infinite amount of land, build houses with
the land, and then sell the houses. As a result, the land market cannot clear. If ph1 < pl1 + k,
then the reverse holds, meaning that developers want to sell an infinite amount of land. The land
market cannot clear in this case either. In equilibrium, the only possibility is that ph1 = pl1 + k.
At t = 1, demand from arriving potential residents equals N1SD(ph1). Supply from outgoing
residents equals 0 if ph1 < 0 and Qr if ph1 > 0, where Qr is the number of potential residents who
bought at t = 0. Developers are indifferent to how much housing they sell because ph1 = pl1 + k,
but the most they can sell emerges from summing across the two developer constraints to obtain∑
Hsell

1 ≤
∑
H1 +L1 = S−Qr. The sum of Hsell

1 across developers and potential residents cannot
exceed S.

We now consider three possible equilibria. In the first, pl1 < 0. This inequality cannot hold
in equilibrium because developer land demand would be infinite for each developer, and the land
market would not clear. The next possibility is that pl1 = 0. In this case, demand from arriving
potential residents equals N1S. If N1 > 1, then this equilibrium fails because maximal aggregate
home sales equal S. If N1 ≤ 1, then we construct an equilibrium as follows. We cannot have
N1S > L1+H1+Qr for all developers (summing across them delivers a contradiction when N1 ≤ 1),

so consider a developer for whom N1S ≤ L1+H1+Qr. This developer sets Lbuy1 = 0, Hbuild
1 = N1S−

Qr −H1, and Hsell
1 = N1S −Qr. All other developers set Lbuy1 = 0, Hbuild

1 = −H1, and Hsell
1 = 0.

All developer constraints and optimality conditions are satisfied under these choices, and both the
housing and land markets clear. Finally, we consider the possibility that pl1 > 0. Because ph1 > 0,
the first constraint for the developers binds, so we can rewrite the developer objective function as
ph1H1 + pl1(Hbuild

1 − Lbuy1 ). Because pl1 > 0, the developer maximizes this objective by satisfying

the second constraint and setting Hbuild
1 − Lbuy1 = L1. Because both constraints are satisfied with

equality, summing across them yields
∑
Hsell

1 =
∑
H1 +

∑
L1 +

∑
Lbuy1 . If the land market clears,

the last sum equals 0. The housing market clears when N1SD(ph1) =
∑
H1 +

∑
L1 + Qr = S. If

N1 < 1, then no solution for ph1 exists. If N1 = 1, then the only solutions have ph1 ≤ k, contradicting
the assumption that pl1 > 0. This equilibrium is possible if and only if N1 > 1, in which case the

unique solution is ph1 = kN
1/ε
1 . The optimality conditions and constraints for all developers are

satisfied if they set Hbuild
1 = L1, Hsell

1 = H1 + L1, and Lbuy1 = 0. The land and housing markets
clear under these choices. In summary, a unique equilibrium exists for each value of N1. When

N1 ≤ 1, only pl1 = 0 and ph1 = k are possible, whereas when N1 > 1, only pl1 = kN
1/ε
1 − k and

ph1 = N
1/ε
1 are possible.

Lemma 2

The utility at t = 1 of a resident who bought at t = 0 equals ph1 − ph0 + v if ph1 ≥ 0. Housing
demand from potential residents at t = 0 equals

∫
ΘN0SD(ph0 − ph1(eµ(θ)xN0))fr(θ)dθ. For the same

argument given in the proof of Lemma 1 that ph1 = pl1 + k, ph0 = pl0 + 2k in equilibrium: developers
would want to buy or sell infinite land otherwise. In all of the equilibria characterized in the
proof of Lemma 1, π = ph1H1 + pl1L1 + B1. By making substitutions using the constraints of the
t = 0 developer problem, we see that the objective at t = 0 is to choose H1, L1 ≥ 0 to maximize
(ph1(eµ(θ)xN0) − ph0)H1 + (ph1(eµ(θ)xN0) − ph0 + k)L1 + pl0L0. In all equilibria, all developers choose
finite values of H1 and L1, so the first order conditions imply ph1(eµ(θ)xN0) − ph0 + k ≤ 0 for all
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θ ∈ supp fd. Because ph1(·) increases, either ph0 = ph1(eµ
max
d xN0) + k in which case developers with

θ = θmaxd may choose any L1 ≥ 0, or ph0 > ph1(eµ
max
d xN0)+k in which case L1 = 0 for all developers.

We now consider these two possible equilibria. The first may hold only if potential resident
housing demand does not exceed S (developers cannot build more than this quantity of housing,
and the housing market must clear). This condition reduces to

1 ≥ N0

∫
Θ
D(ph1(eµ

max
d xN0) + k − ph1(eµ(θ)xN0))fr(θ)dθ. (A1)

If (A1) holds, then we construct an equilibrium as follows. Denote Qr =
∫

ΘN0SD(ph1(eµ
max
d xN0) +

k − ph1(eµ(θ)xN0))fr(θ)dθ. For one developer for whom θ = θmaxd , we set Hbuild
0 = Qr, H

sell
0 = Qr,

and Lbuy0 = S − L0. For all other developers, we set Hbuild
0 = 0, Hsell

0 = 0, and Lbuy0 = −L0. All
developer constraints and optimality conditions hold, and the housing and land markets clear.

If (A1) fails, then we must have N0 > 1 because D ≤ 1. As a result, we may define ph0(N0, x, z)
to be the unique solution to

1 = N0

∫
Θ
D(ph0 − ph1(eµ(θ)xN0))fr(θ)dθ. (A2)

To see that a solution to (A2) exists, consider that when ph0 = 2k the right side of the equation equals
N0 > 1. Because the right side goes to 0 (pointwise) as ph0 →∞, by the intermediate value theorem
we may find ph0 satisfying (A2). This solution is unique because the integrand strictly decreases if
ph0−ph1(eµ(θ)xN0) ≥ k; this equation must hold at ph0 = ph0(N0, x, z) for at least some θ ∈ supp fr for
otherwise the right side of (A2) exceeds 1. Because the right side of (A2) weakly decreases in ph0 , if
(A1) fails then ph0(N0, x, z) > ph1(eµ

max
d xN0) + k. As a result, developer constraints and optimality

conditions are satisfied when for all developers Lbuy0 = 0, Hbuild
0 = L0, and Hsell

0 = L0; housing and
land markets clear as well.

In summary, if (A1) holds then the unique equilibrium price is ph0(N0, x, z) = ph1(eµ
max
d xN0)+k;

if (A1) fails, then the unique equilibrium price ph0(N0, x, z) is the unique solution to (A2).

Proposition 1

From the proof of Lemma 2, developers hold at the end of t = 0 if and only if (A1) holds without
equality. When z = 0, µ(θ) = µmaxd for all θ ∈ Θ so (A1) reduces to 1 ≥ N0. As a result, developers
hold land at the end of t = 0 if and only if N0 < 1, as claimed. In this case, ph0(N0, x, 0) =
ph1(eµxN0) + k. If N0 < e−µx, then (from Lemma 1) ph0(N0, x, 0) = 2k; if e−µx ≤ N0 < 1, then

ph0(N0, x, 0) = k(eµx/εN
1/ε
0 − 1). If N0 ≥ 1, then ph0(N0, x, 0) = kN

1/ε
0 + p1(eµxN0) is the unique

solution to (A2). Because µx ≥ 0, in this case ph0(N0, x, 0) = k(1+eµx/ε)N
1/ε
0 , as claimed. The final

equation in the proposition follows from the solution for ph0(N0, x, 0); note that in the intermediate
case, if x = 0, then ph0 = 2k as in the unconstrained case.

Proposition 2

The number of potential residents of type θ who purchase housing equals N0SD(ph0(N0, x, z) −
p1(eµ(θ)xN0)) > 0, so Assumptions 1 and 2 guarantee that residents of each type θ ∈ supp fr hold
housing. To prove the other parts of the proposition about quantities, we show that there exists a
unique N∗0 (x, z) ∈ R>1 ∪ {∞} such that (A1) holds strictly if and only if N0 < N∗0 (x, z) and with
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equality if and only if N0 = N∗0 (x, z). We may rewrite (A1) as

1 ≥



N0 if N0 ≤ e−µ
max
d x∫

Θ1(N0,x,z)
N0fr(θ)dθ +

∫
Θ2(N0,x,z)

e−µ
max
d xfr(θ)dθ

+

∫
Θ3(N0,x,z)

(
N
−1/ε
0 + eµ

max
d x/ε − eµ(θ)x/ε

)−ε
fr(θ)dθ

if N0 > e−µ
max
d x,

where Θ1(N0, x, z) = {θ | θ ≥ θmaxd }, Θ2(N0, x, z) = {θ | θ < θmaxd } ∩ {θ | eµ(θ)xN0 ≤ 1}, and
Θ3(N0, x, z) = {θ | θ < θmaxd } ∩ {θ | eµ(θ)xN0 > 1}. For notational ease, we name the right side of
this inequality φ(N0). We have limN0→0 φ(N0) = 0, and φ strictly increases for 0 < N0 ≤ e−µ

max
d x.

The integrands coincide for θ in the boundary of Θ2 and Θ3, so φ′(N0) for N0 ≥ e−µ
max
d x equals

the sum of the derivatives under the integral signs (the changing limits of integration cancel out).
Therefore φ strictly increases in N0 for all N0 > 0 except those for which Θ2(N0, x, z) = supp fr.
For any such N0, 1 > φ(N0) because µmaxd > µ ≥ 0 given Assumption 4 and given that z > 0. The
increasing nature of φ means that there may exist at most one solution to 1 = φ(N0), and that
(A1) is satisfied strictly for any N0 less than this solution and is not satisfied for any N0 greater
than this solution. We deem the solution N∗0 (x, z). Note that φ(1) < 1 unless

∫
Θ1(1,x,z) fr(θ)dθ = 1,

which is impossible by Assumption 4. Therefore φ(1) < 1 and N∗0 (x, z) > 1. For later proofs, we
note here that limz→0N

∗
0 (x, z) = 1, which is evident because for any N0 > 1, limz→0 φ(N0) > 1,

while φ(1) < 1 for all z > 0.
The existence of N∗0 (x, z) implies that some developers hold land if and only if N0 < N∗0 (x, z). If

N0 < N∗0 (x, z), then the proof of Lemma 2 shows that ph0 = ph1(eµ
max
d xN0) + k and that a developer

of type θ may hold land if and only if ph1(eµ(θ)xN0) + k ≤ ph0(N0, x, z). If N0 ≤ e−µ
max
d x, then

ph1(eµ(θ)xN0) = k for all θ ∈ supp fd, so any developer may hold land at the end of t = 0, as claimed.
If e−µ

max
d x < N0 < N∗0 (x, z), then the only developers for whom ph1(eµ(θ)xN0) ≤ ph1(eµ

max
d xN0) are

those for whom θ = θmaxd due to Lemma 1. As a result, only these developers hold land when N0

satisfies these constraints, as claimed.
We now prove the result on excess land holdings by developers in the intermediate case. Define

Qr to be the quantity of housing held by potential residents in equilibrium. From Lemma 2, Qr
does not depend on the developer land endowments L0, and by the first part of the proposition,
0 < Qr < S for e−µ

max
d x < N0 < N∗0 (x, z). Summing across the constraint on L1 for developers

at t = 0 with θ = θmaxd yields S − Qr =
∑
L1 =

∑
(L0 + (Lbuy0 )∗ − (Hbuild

0 )∗). As a result,∑
((Lbuy0 )∗ − (Hbuild

0 )∗) = S −Qr −
∑
L0, which exceeds zero as long as

∑
L0 < S −Qr ≡ L∗.

We now derive the pricing equations. If N0 < N∗0 (x, z), then (A1) holds and ph0(N0, x, z) =
ph1(eµ

max
d xN0)+k. By applying Lemma 1, we arrive at the first two pricing equations in Proposition

2. The equation for N ≥ N∗0 (x, z) follows immediately from (A2). To prove the existence and
uniqueness of µaggr (N0, x, z), consider that for N0 ≥ N∗0 (x, z), ph0(N0, x, z) ≥ ph1(eµ

max
d xN0) + k

as shown in the proof of Lemma 2. Because µmaxd > µ ≥ 0, ph1(eµ
max
d xN0) = keµ

max
d x/εN

1/ε
0 , so

ph0(N0, x, z) > kN
1/ε
0 . It follows that ph0(N0, x, z) = k(1 + eµ

agg
r (N0,x,z)x/ε)N

1/ε
0 has a unique solution

for µaggr (N0, x, z), as the right side strictly increases from kN
1/ε
0 to ∞ as µaggr (N0, x, z) goes to ∞

(which holds due to the assumption that x > 0).
Finally, if

∫
θ≥θmaxd

fr(θ)dθ > 0, then limN0→∞ φ(N0) = ∞, leading to N∗0 (x, z) < ∞. If∫
θ≥θmaxd

fr(θ)dθ = 0, then limN0→∞ φ(N0) =
∫
θ<θmaxd

(eµ
max
d x/ε − eµ(θ)x/ε)fr(θ)dθ, so N∗0 (x, z) < ∞

in this case if and only if this integral exceeds 1.
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Proposition 3

Substituting the formulas for ph0(N0, x, z) from Proposition 2 and for ph0(N0, x, 0) from Proposition
1 yield the equations in the first part of Proposition 3. For clarity, we prove the remainder of the
claims in Proposition 3 in three parts.

Part 1: Disagreement effect is maximized at N0 = 1

The effect of disagreement on the house price at t = 0 weakly increases in N0 up to N0 = 1
and decreases for 1 ≤ N0 ≤ N∗0 (x, z). The maximum for 0 < N0 ≤ N∗0 (x, z) therefore equals the
value at N0 = 1, which is (eµ

max
d x/ε− eµx/ε)/(1 + eµx/ε). This value exceeds the disagreement effect

for all N0 ≥ N∗0 (x, z) if and only if µmaxd > µaggr (N0, x, z) for all N0 ≥ N∗0 (x, z). We prove this
in two steps. We first show that ph0(N0, x, z), and hence µaggr (N0, x, z), weakly increases in N0 for
N0 ≥ N∗0 (x, z). Second, to show that µaggr (N0, x, z) < µmaxd for all N0 ≥ N∗0 (x, z), we show that
limN0→∞ µ

agg
r (N0, x, z) exists and is less than µmaxd .

We may rewrite (A2) as

1 =

∫
Θ1(N0,x,z)

N0D(ph0 − k)fr(θ)dθ

+

∫
Θ2(N0,x,z)

N0

(
k

ph0 − keµ(θ)x/εN
1/ε
0

)ε
fr(θ)dθ +

∫
Θ3(N0,x,z)

N0fr(θ)dθ,

(A3)

where Θ1(N0, x, z) = {θ | eµ(θ)xN0 < 1}, Θ2(N0, x, z) = {θ | 1 ≤ eµ(θ)xN0 ≤ (ph0/k − 1)ε}, and
Θ3(N0, x, z) = {θ | eµ(θ)xN0 > (ph0/k− 1)ε}. For a given ph0 , the right side of (A3) weakly increases
in N0: each integrand weakly increases in N0 (for each θ), and the integrands coincide at the
boundaries of the limits of integration, meaning that the marginal effect from changing the limits
of integration equals 0. Because the right side of (A2) weakly decreases in ph0 (as shown in the
proof of Lemma 2), it follows that ph0(N0, x, z) weakly increases in N0.

This monotonicity means that for all N0 ≥ N∗0 (x, z), µaggr (N0, x, z) ≤ limN ′0→∞ µ
agg
r (N ′0, x, z).

Substituting ph0(N0, x, z) = k(1 + eµ
agg
r (N0,x,z)x/ε)N

1/ε
0 into (A3) yields

1 =

∫
Θ1(N0,x,z)

(
1 + eµ

agg
r (N0,x,z)x/ε −N−1/ε

0

)−ε
fr(θ)dθ

+

∫
Θ2(N0,x,z)

(
1 + eµ

agg
r (N0,x,z)x/ε − eµ(θ)x/ε

)−ε
fr(θ)dθ +

∫
Θ3(N0,x,z)

N0fr(θ)dθ.

(A4)

Because µaggr (N0, x, z) increases in N0, limN0→∞ µ
agg
r (N0, x, z) either exists and is finite or it

equals ∞. In the latter case, because µ(θ) ≤ µmaxr for all θ ∈ supp fr, each integral goes
to 0 as N0 → ∞, leading to a contradiction. (That the last integral → 0 follows because

θ ∈ Θ3(N0, x, z) if and only if eµ(θ)xN0 ≥ ((1 + eµ
agg
r (N0,x,z)x/ε)N

1/ε
0 − 1)ε, which implies that

µ(θ) ≥ µaggr (N0, x, z) because N0 ≥ N∗0 (x, z) > 1. For all N0 such that µaggr (N0, x, z) > µmaxr ,∫
Θ3(N0,x,z)

fr(θ)dθ = 0.) Thus, limN0→∞ µ
agg
r (N0, x, z) < ∞. In this case, limN0→∞Θ3(N0, x, z) ={

θ | eµ(θ)x/ε ≥ 1 + elimN0→∞ µaggr (N0,x,z)x/ε
}

, whose measure under fr must equal 0 for otherwise

limN0→∞
∫

Θ3(N0,x,z)
N0fr(θ) =∞, a contradiction due to (A4). Because limN0→∞Θ1(N0, x, z) = ∅,

taking the limit of (A4) as N0 →∞ yields 1 =
∫

Θ

(
1 + elimN0→∞ µaggr (N0,x,z)x/ε − eµ(θ)x/ε

)−ε
fr(θ)dθ.

By Assumption 5, this equation implies that limN0→∞ µ
agg
r (N0, x, z) < µmaxd .

Part 2: Positivity of the disagreement effect
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Because µmaxd > µ, the effect of disagreement on prices is positive for e−µ
max
d x < N0 ≤ 1.

Because the effect decreases for 1 ≤ N0 ≤ N∗0 (x, z), it is positive for N0 > 1 if it is positive for
N0 ≥ N∗0 (x, z) in the case that N∗0 (x, z) <∞, or if its asymptote as N0 →∞ is positive in the case
that N∗0 (x, z) =∞.

In the second case, by Proposition 2 and Jensen’s inequality, 1 > (eµ
max
d x/ε − eµx/ε)−ε, which

implies that eµ
max
d x/ε > 1 + eµx/ε. When N∗0 (x, z) = ∞, the effect of disagreement on the house

price asymptotes to (eµ
max
d x/ε − eµx/ε − 1)/(1 + eµx/ε) > 0.

In the first case, we prove that positivity obtains when supp fr ⊂ [−µ/z, θmaxd ] and
∫

Θ fr(θ)dθ =
0. To demonstrate positivity, we show that µaggr (N0, x, z) > µ for N0 ≥ N∗0 (x, z). Adopting the
notation from above, for N0 ≥ N∗0 (x, z), supp fr ∩ Θ1(N0, x, z) = ∅ because µ(θ) ≥ 0. Because
µ(θ) ≤ µmaxd for all θ ∈ supp fr, Assumption 5 implies that µaggr (N0, x, z) < µmaxd . It follows that

supp fr∩Θ3(N0, x, z) is nonempty if and only if eµ
max
d x/εN

1/ε
0 > eµ

max
r x/εN

1/ε
0 > (1+eµ

max
d x/ε)N

1/ε
0 −

1, but this inequality chain always fails because N0 > 1. As a result, supp fr ∩Θ3(N0, x, z) = ∅. It
follows that supp fr ⊂ Θ2(N0, x, z) and that µaggr (N0, x, z) satisfies

1 =

∫
Θ2(N0,x,z)

(
1 + eµ

agg
r (N0,x,z)x/ε − eµ(θ)x/ε

)−ε
fr(θ)dθ. (A5)

The argument of this integral is convex in θ for θ ∈ Θ2(N0, x, z), so Jensen’s inequality implies that
1 > (1 + eµ

agg
r (N0,x,z)x/ε − eµx/ε)−ε, from which it follows that µaggr (N0, x, z) > µ.

Part 3: Marginal effect of small disagreement

For anyN0 < e−µx, we may find z > 0 small enough so thatN0 < e−µ
max
d x because limz→0 µ

max
d =

µ. By the first part of Proposition 3, for such small z, ∂ph0(N0, x, z)/∂z = 0, proving the first part
of formula.

For eµx ≤ N0 ≤ 1, we divide the formula in the first part of Proposition 3 by z and take the
limit as z → 0 to obtain the expression in the second part of the formula.

Last, for each N0 > 1, because limz→0N
∗
0 (x, z) = 1 as shown in the proof of Proposition 2, for

small enough z > 0 we have N0 ≥ N∗0 (x, z). To show that ∂ph0(N0, x, 0)/∂z = 0, we demonstrate
that µaggr (N0, x, z) = µ + o(z) as z → 0. We continue to assume that supp fr ⊂ [−µ/z, θmaxd ], so
(A5) continues to hold. Taking the derivative of (A5) with respect to z and simplifying yield

∂µaggr (N0, x, z)

∂z
=

∫
Θ2(N0,x,z)

θeµ(θ)x/ε
(

1 + eµ
agg
r (N0,x,z)x/ε − eµ(θ)x/ε

)−ε−1
fr(θ)dθ∫

Θ2(N0,x,z)
eµ

agg
r (N0,x,z)x/ε

(
1 + eµ

agg
r (N0,x,z)x/ε − eµ(θ)x/ε

)−ε−1
fr(θ)dθ

.

As z → 0, the denominator goes to eµx/ε, whereas the numerator goes to
∫

Θ e
µx/εθfr(θ)dθ, which

equals 0 because
∫

Θ θfr(θ)dθ = 0 by assumption. Therefore µaggr (N0, x, z) = µ+ o(z) as z → 0.

Proposition 4

As noted in the text, ph0(N0, 0, z) = ph0(N0, 0, 0) because when x = 0, µ(θ) = µ for all θ ∈ Θ, so z
becomes irrelevant for the equilibrium. As a result, we may take the formula for ph0(N0, 0, 0) given
by Proposition 1 in the special case when x = 0 and use it for ph0(N0, 0, z). Combining this formula
with that for ph0(N0, x, z) given by Proposition 3 yields the formulas in Proposition 4. The boom
strictly increases for e−µ

max
d x ≤ N0 ≤ 1 and strictly decreases for 1 ≤ N0 ≤ N∗0 (x, z). Therefore,

it is strictly maximized at N0 = 1 as long as its value at N0 = 1, which equals (eµ
max
d x/ε − 1)/2,

exceeds the boom for all N0 ≥ N∗0 (x, z), which occurs as long as µmaxd > µaggr (N0, x, z) for all
N0 ≥ N∗0 (x, z). This inequality obtains by Assumption 5, as shown in the proof of Proposition 3.
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Proposition 5

As shown in the proof of Lemma 2, in equilibrium the profit (utility for firm owners) of a developer

equals pl0L0 + (ph1 − ph0 + k)L1 and the utility of potential residents equals (v + ph1 − ph0)Hbuy
0 . The

set of possible changes to the allocation are summarized by a cash transfer τ (which may vary

across agents) with
∑
τ = 0 and changes ∆L1 for each developer and ∆Hbuy

0 for each potential

resident such that
∑

∆L1 =
∑

∆Hbuy
0 . For a given realization of ph1 , this change is a Pareto

improvement only if (ph1 −ph0 +k)∆L1 + τ ≥ 0 for all developers and (v+ph1 −ph0)∆Hbuy
0 + τ ≥ 0 for

all potential residents, with at least one strict inequality. Summing these inequalities across agents
gives

∑
k∆L1 +

∑
v∆Hbuy

0 > 0.
We now show that the z = 0 equilibrium (described in the proof of Lemma 2) is Pareto efficient

for any ph1 . If N0 < 1, a potential resident buys if and only if v ≥ ph0(N0, x, z)− ph1(eµ(θ)xN0) = k.

The only feasible ∆Hbuy
0 are −1 for someone with Hbuy

0 = 1 and 1 for someone with Hbuy
0 = 0.

Because
∑

∆L1 =
∑

∆Hbuy
0 , either one of these changes does not increase the welfare criterion

given above. When N0 ≥ 1, L1 = 0 for all developers and a potential resident buys only if

v ≥ ph0(N0, x, z) − ph1(eµ(θ)xN0) = kN
1/ε
0 ≥ k. The only feasible ∆L1 are positive, and the only

feasible changes to ∆Hbuy
0 are 1 for v ≤ kN

1/ε
0 and −1 for v ≥ kN

1/ε
0 . The change to the welfare

criterion above can never be positive resulting from these changes. As a result, the allocation under
the z = 0 equilibrium is Pareto efficient for any ph1 , meaning that it is belief-neutral Pareto efficient.

When N0 ≤ e−µ
max
d x, potential residents buy when v ≥ ph0(N0, x, z) − ph1(eµ(θ)xN0). This

difference is no greater than k because ph0(N0, x, z) = 2k and ph1(eµ(θ)xN0) ≥ k. Because all
potential residents have v ≥ k by Assumption 1, buyers all have v ≥ k, and all potential residents
with v > k buy. For the same argument given in the z = 0 equilibrium above, there does not exist a
reallocation that improves welfare for each ph1 , meaning that the equilibrium under the equilibrium
with z > 0 is belief-neutral Pareto efficient when N0 ≤ e−µ

max
d x.

When e−µ
max
d x < N0 < N∗0 (x, z), L1 > 0 for at least one developer. If z > 0, then by

Assumption 4 there exists a positive measure of potential residents for whom θ < θmaxd . These
potential residents buy only if v ≥ ph0(N0, x, z) − ph1(eµ(θ)xN0) > ph0(N0, x, z) − ph1(eµ

max
d xN0) = k,

where the latter equality uses an equilibrium condition from the proof of Lemma 2. It follows that
there exists a positive measure of potential residents with v > k who do not buy. For a given ph1 , we
improve the allocation by setting ∆L1 = −1 and τ = τ∗ for a developer holding land and setting
∆Hbuy

0 = 1 and τ = −τ∗ for a potential resident with v > k who does not buy a house, where
k + ph1 − ph0 ≤ τ∗ ≤ v + ph1 − ph0 .

WhenN0 ≥ N∗0 (x, z), potential residents buy only if v ≥ k(1+eµ
agg
r (N0,x,z)x/ε)N

1/ε
0 −ph1(eµ(θ)xN0).

Due to Assumption 4, z > 0 implies that µ(θ) varies across potential residents. Because N0 > 1
and µ ≥ 0, ph1(eµ(θ)xN0) varies across potential residents. It follows that the purchase cutoff varies

across potential residents, meaning that we can find a potential resident with Hbuy
0 = 1 and v = v1

and a potential resident with Hbuy
0 = 0 and v = v2 with v1 < v2. Setting ∆Hbuy

0 = −1 and τ = τ∗

for the first potential resident and ∆Hbuy
0 = 1 and τ = −τ∗ for the second potential resident strictly

increases the welfare objective if v1 + ph1 − ph0 ≤ τ∗ ≤ v2 + ph1 − ph0 .
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Internet Appendix

B Equity Extension

Developers who can access the equity market choose a share αsell ∈ [0, 1] of the claim to their total
t = 1 liquidation value to sell at t = 0. The price of this claim equals pπ0 , which may vary across
developers. Each of these developers may also pay itself a dividend δ at t = 0 using its available
cash flow. Finally, land that remains undeveloped at the end of t = 0 pays a dividend kl > 0 at
t = 1; we focus on the limiting equilibria as kl → 0.32 The optimal behavior for such a developer
is to choose δ∗, (αsell)∗, (Hsell

0 )∗, (Lbuy0 )∗, and (Hbuild
0 )∗ from

arg max
δ,αsell,Hsell

0 ,Lbuy0 ,Hbuild
0

δ + (1− αsell)Eπ(ph1 , p
l
1, H1, L1, B1)

subject to αsell ∈ [0, 1]

Hsell
0 ≤ Hbuild

0

Hbuild
0 ≤ L0 + Lbuy0

H1 = Hbuild
0 −Hsell

0

L1 = L0 + Lbuy0 −Hbuild
0

B1 = ph0H
sell
0 − pl0L

buy
0 − 2kHbuild

0 + αsellpπ0 − δ
0 ≤ B1

0 ≤ δ.

Developers who cannot access the equity market face the same problem with the additional con-
straint αsell = 0. For all developers, the t = 1 problem remains the same as before.

A unit measure of equity investors chooses a share αbuy of the claim to each developer’s t = 1
liquidation value to buy at t = 0. The chosen αbuy may differ for each investor-developer pair.
Each investor faces a proportional cost ks ∈ (0, 1) for each dollar invested in a negative position,
and the most negative position that can be taken is −α, where α > 0. For a given developer, an
equity investor chooses (αbuy)∗ from

arg max
αbuy

αbuyEπ(ph1 , p
l
1, H1, L1, B1)−max(αbuy, (1− ks)αbuy)pπ0

subject to −α ≤ αbuy

H1 = (Hbuild
0 )∗ − (Hsell

0 )∗

L1 = L0 + (Lbuy0 )∗ − (Hbuild
0 )∗

B1 = ph0(Hsell
0 )∗ − pl0(Lbuy0 )∗ − 2k(Hbuild

0 )∗ + (αsell)∗pπ0 − δ∗,

where E denotes the equity investor’s expectation and δ∗, (αsell)∗, (Hsell
0 )∗, (Lbuy0 )∗, and (Hbuild

0 )∗

denote the actions chosen by the developer.
The potential resident problems remain the same. Prices ph0 , pl0, and pπ0 constitute an equi-

librium when, in addition to the clearing of land and housing markets described in Section 1, the

32This dividend leads to a positive land price at t = 0 that guarantees the existence of equilibrium when
Epl1 = 0 for all equity investors but Epl1 > 0 for some developers. The proof of Proposition 6 further discusses
this issue.
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following holds: for each developer, (αsell)∗ equals the sum across equity investors of (αbuy)∗.
We now characterize equilibrium. The first lemma simplifies the objective of each developer:

Lemma B1. In equilibrium, each developer chooses αsell and L1 ≥ 0 such that pl0(L0 − L1) +
αsellpπ0 ≥ 0 to maximize pl0(L0 − L1) + αsellpπ0 + (1− αsell)E(pl1 + kl)L1.

Proof. In all of the t = 1 equilibria characterized in the proof of Lemma 1, π = ph1H1 + (pl1 +
kl)L1 +B1 (pl1 is the ex-dividend price). At t = 0, the developer maximizes δ+ (1−αsell)E(ph1H1 +
(pl1 + kl)L1 + B1). From substituting the H1 and L1 constraints into the B1 constraint, we have
B1 = −ph0H1 + pl0(L0 − L1) + (ph0 − pl0 − 2k)Hbuild

0 + αsellpπ0 − δ. In equilibrium ph0 = pl0 + 2k, for
otherwise each developer would want to build a positively or negatively infinite amount of housing.
Therefore B1 = −ph0H1 +pl0(L0−L1) +αsellpπ0 − δ. The developer maximizes δ+ (1−αsell)E((ph1 −
ph0)H1 + (pl1 + kl − pl0)L1 + pl0L0 + αsellpπ0 − δ) by choosing H1, L1 ≥ 0, αsell ∈ [0, 1], and δ such
that B1 ≥ 0. Because ph1 − ph0 = pl1− pl0− k < pl1 + kl− pl0, in equilibrium all developers set H1 = 0
(if H1 > 0 is optimal, then the developer wants an infinite L1). The objective weakly increases in
δ for αsell ∈ [0, 1], so it is maximized at δ = −ph0H1 + pl0(L0 − L1) + αsellpπ0 , the largest possible
value given the B1 ≥ 0 constraint. The δ ≥ 0 constraint produces pl0(L0 − L1) + αsellpπ0 ≥ 0. The
objective simplifies to pl0(L0 − L1) + αsellpπ0 + (1− αsell)E(pl1 + kl)L1, as claimed.

The developer objective consists of three terms: profits from current land sales, revenues from
equity offerings, and profits expected at t = 1 from end-of-period land holdings. The next lemma
delivers the equilibrium price of equity:

Lemma B2. In equilibrium, pπ0 = (pl1(eµ
max
i xN0) + kl)L1 for any developer for whom (αsell)∗ > 0.

Proof. As shown in the proof of Lemma B1, each developer setsH1 = 0 and setsB1 = 0 when αsell >
0. The liquidation value of the developer becomes π = (pl1 + kl)L1. If pπ0 < (pl1(eµ

max
i xN0) + kl)L1,

then the equity investors for whom θ = θmaxi want to set αbuy arbitrarily large. The equity market
cannot clear in this case because the maximal aggregate short position across equity investors is
bounded at −α. Therefore pπ0 ≥ (pl1(eµ

max
i xN0) +kl)L1. If this inequality is strict, then (αbuy)∗ ≤ 0

for all equity investors, preventing clearing in the equity market. The only equilibrium outcome is
the one given in the lemma.

The price of any traded claim equals the most optimistic equity investor valuation of the land held
by that developer at the end of t = 0. In this sense, traded developers act like land hedge funds by
raising equity against speculative land investments. To make this point clear, the following lemma
relates the equilibrium prices of developer equity and the land they hold:

Lemma B3. In equilibrium, pπ0 = pl0L1 for any developer for whom (αsell)∗ > 0.

Proof. We prove this claim by delineating all possible choices by developers in equilibrium. By
substituting Lemma B2 into Lemma B1, we rewrite the developer problem as choosing

L∗1, (α
sell)∗ ∈arg max

L1,αsell
pl0L0 +

(
αsellpl1(eµ

max
i xN0) + (1− αsell)pl1(eµ(θ)xN0) + kl − pl0

)
L1

subject to pl0L1 ≤ pl0L0 + αsell(pl1(eµ
max
i xN0) + kl)L1

0 ≤ L1

αsell ∈ [0, 1] (with access to equity market)

αsell = 0 (without access to equity market).
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A developer that cannot access the equity market sets (αsell)∗ = 0 and chooses

L∗1 = L0 if pl0 < pl1(eµ(θ)xN0) + kl

L∗1 ∈ [0, L0] if pl0 = pl1(eµ(θ)xN0) + kl

L∗1 = 0 if pl0 > pl1(eµ(θ)xN0) + kl

if pl0 > 0. If pl0 ≤ 0, then L∗1 does not exist because the developer always increases its objec-
tive function without violating the constraints by increasing L1 beyond L0. Similarly, if pl0 <
pl1(eµ

max
i xN0) + kl then L∗1 does not exist for developers with access to the equity market. With

αsell = 1, increasing L1 always increases the objective function while obeying the constraints. If
pl0 = pl1(eµ

max
i xN0) + kl, then the optimal choices for developers with access to the equity market

are

L∗1 =
L0

1− (αsell)∗
and (αsell)∗ ∈ [0, 1) if pl1(eµ

max
i xN0) < pl1(eµ(θ)xN0)

L∗1 ≥ 0 and (αsell)∗ = 1

or if pl1(eµ
max
i xN0) = pl1(eµ(θ)xN0)

L∗1 ∈
[
0,

L0

1− (αsell)∗

]
and (αsell)∗ ∈ [0, 1)

L∗1 = 0 and (αsell)∗ ∈ [0, 1)

or if pl1(eµ
max
i xN0) > pl1(eµ(θ)xN0).

L∗1 ≥ 0 and (αsell)∗ = 1

The first case follows because if αsell < 1, the objective strictly increases in L1 and so is maximized
at L∗1 = L0/(1−αsell) with a value of (pl1(eµ(θ)xN0) +kl)L0. This value exceeds pl0L0, the objective
function value obtained when αsell = 1. In the second case of the optimal developer choices, the
objective is independent of L1 and αsell, so the developer may choose any feasible combination.
In the third case, the objective decreases in L1 if αsell < 1, leading to L∗1 = 0; if αsell = 1, then
the objective is independent of L1, permitting the developer to choose any feasible value for L∗1.
Finally, if pl0 > pl1(eµ

max
i xN0) + kl then

L∗1 = L0 and (αsell)∗ = 0 if pl0 < pl1(eµ(θ)xN0) + kl

L∗1 ∈ [0, L0] and (αsell)∗ = 0

or if pl0 = pl1(eµ(θ)xN0) + kl

L∗1 = 0 and (αsell)∗ ∈ [0, 1]

L∗1 = 0 and (αsell)∗ ∈ [0, 1] if pl0 > pl1(eµ(θ)xN0) + kl

are the optimal choices for developers with access to the equity market. In the first case, the
value of the objective function at the given choices equals (pl1(eµ(θ)xN0) + kl)L0. For αsell ≥
(pl1(eµ(θ)xN0) + kl − pl0)/(pl1(eµ(θ)xN0) − pl1(eµ

max
i xN0)), the coefficient in the objective function

on L1 is non-positive, meaning that it is maximized at L∗1 = 0 with a value of pl0L0, which is
less than the maximized value when L∗1 = L0 and (αsell)∗ = 0. For αsell ∈ (0, (pl1(eµ(θ)xN0) +
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kl − pl0)/(pl1(eµ(θ)xN0)− pl1(eµ
max
i xN0))), the coefficient on L1 in the objective function is positive,

meaning that it is maximized at L1 = pl0L0/(p
l
0−αsell(pl1(eµ

max
i xN0)+kl)) with a value of pl0L0(1−

αsell)(pl1(eµ(θ)xN0)+kl)/(p
l
0−αsell(pl1(eµ

max
i xN0)+kl)). This value is less than the maximized value

when (αsell)∗ = 0 because for such αsell, (1 − αsell)pl0 < pl0 − αsell(pl1(eµ
max
i xN0) + kl). We have

proved that the given choices are optimal in the first case. The proof that the choices are optimal
in the second case is similar. The maximized objective equals pl0L0. If αsell > 0, then the coefficient
on L1 in the objective is negative, leading to L∗1 = 0. If αsell = 0, then the coefficient on L1 in the
objective is 0, leading to any feasible choice of L∗1. Finally, in the third case, the coefficient on L1

in the objective is negative for all αsell, leading to L∗1 = 0, in which case (αsell)∗ does not affect the
objective.

In all of the equilibrium choices we have just listed, (αsell)∗ > 0 only if L∗1 = 0 or if pl0 =
pl1(eµ

max
i xN0) + kl. In either case, pπ0 = pl0L1 by Lemma B2.

We now use Lemmas B1 and B2 to formulate and prove a lemma that characterizes the equilib-
rium house price at t = 0 as kl → 0. The lemma relies on the following definitions: µmaxi = µ(θmaxi )
is the belief of the most optimistic equity investor, θsupd = sup{θ ∈ supp fd | L0 > 0} is the least
upper-bound of the beliefs of developers endowed with land, and N∗0 (x, z, fr, θ

max
d ) is the value of

N∗0 (x, z) in Proposition 2 given fr and θmaxd .

Lemma B4. Suppose that x, z > 0. If
∑

θ>θmaxi
L0 = 0, then the limit of the equilibrium house

price at t = 0 as kl → 0 equals

ph0(N0, x, z) =


2k if N0 ≤ e−µ

max
i x

k + keµ
max
i x/εN

1/ε
0 if e−µ

max
i x < N0 < N∗0 (x, z, fr, θ

max
i )

k(1 + eµ
agg
r (N0,x,z)x/ε)N

1/ε
0 if N0 ≥ N∗0 (x, z, fr, θ

max
i ).

If
∑

θ>θmaxi
L0 > 0, then the limit of the equilibrium house price at t = 0 as kl → 0 equals

ph0(N0, x, z) =


2k if N0 ≤ min(e−µ

max
i x, N∗∗0 (x, z))

k + keµ
max
i x/εN

1/ε
0 if e−µ

max
i x < N0 < N∗∗0 (x, z)

k + keµ
agg
d (N0,x,z)x/εN

1/ε
0 if N∗∗0 (x, z) < N0 < N∗0 (x, z, fr, θ

sup
d )

k(1 + eµ
agg
r (N0,x,z)x/ε)N

1/ε
0 if N0 ≥ N∗0 (x, z, fr, θ

sup
d ).

Here µaggd (N0, x, z) increases in N0 and depends on the beliefs and endowments of only those
developers for whom θ > θmaxi and L0 > 0, and N∗0 (x, z, fr, θ

sup
d ) ≥ N∗∗0 (x, z) ∈ R≥0 ∪ {∞}

with equality if and only if N∗∗0 (x, z) = ∞, which occurs if and only if
∫
θ≥θmaxi

fr(θ)dθ = 0 and∫
θ<θmaxi

(eµ
max
i x/ε − eµ(θ)x/ε)−εfr(θ)dθ ≤

∑
θ≤θmaxi

L0/S.

Proof of Lemma B4. The proof of Lemma B3 fully characterized developer choices of end-of-period
landholdings at t = 0 given pl0. The land price constitutes an equilibrium when the space demanded
by potential residents given pl0 plus the sum of L1 across developers equals S (the proof of Lemma
B1 shows that H1 = 0 for all developers). If pl0 = pl1(eµ

max
i xN0) + kl, then the total L1 across

developers can take on any value at least
∑

θ|pl1(eµ
max
i

xN0)<pl1(eµ(θ)xN0)
L0. Equilibrium holds in this

case if and only if∑
θ|ph1 (eµ

max
i

xN0)≥ph1 (eµ(θ)xN0)

L0/S ≥
∫

Θ
N0D(ph1(eµ

max
i xN0) + k + kl − ph1(eµ(θ)xN0))fr(θ)dθ. (B1)
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By the same argument about the right side of (A1) in the proof of Proposition 2, the right side of
(B1) weakly and continuously increases in N0 and → 0 as N0 → 0. The left side of (B1) equals

∑
θ|ph1 (eµ

max
i

xN0)≥ph1 (eµ(θ)xN0)

L0/S =


1 if N0 ≤ e−µ

max
d x

1−
∑

θ|eµ(θ)xN0>1 L0/S if e−µ
max
d x ≤ N0 ≤ e−µ

max
i x

1−
∑

θ>θmaxi
L0/S if N0 ≥ e−µ

max
i x,

which weakly decreases in N0 and is left-continuous. As a result, there is N∗∗0 (x, z, kl) ∈ R≥0∪{∞}
such that (B1) holds if and only if N0 ≤ N∗∗0 (x, z, kl). Because the right side of (B1) decreases in
kl, N

∗∗
0 (x, z, kl) increases in kl, meaning that N∗∗0 (x, z) ≡ limkl→0N

∗∗
0 (x, z, kl) exists.

We pause here to prove two needed facts about N∗∗0 (x, z, kl). As a point of notation, define
N∗0 (x, z, fr, θ

max
d , kl) to be the value ofN∗0 (x, z) obtained from (A1) with k+kl in place of k inside the

integral. First: if
∑

θ>θmaxi
L0 = 0, then the left side of (B1) reduces to 1. It follows from comparison

with (A1) that N∗∗0 (x, z, kl) = N∗0 (x, z, fr, θ
max
i , kl) and N∗∗0 (x, z) = N∗0 (x, z, fr, θ

max
i ) in this case.

Second: by the same argument used in Proposition 2 to analyze (A1), the limit of the right side of
(B1) as N0 →∞ equals ∞ if

∫
θ≥θmaxi

fr(θ)dθ ≥ 0 and equals
∫
θ<θmaxi

(eµ
max
i x/ε − eµ(θ)x/ε)−εfr(θ)dθ

otherwise. It follows that N∗∗0 (x, z) =∞ if and only if the conditions given in Lemma B4 hold.
In the second possible equilibrium, pl0 > pl1(eµ

max
i xN0) + kl. In this case, the total L1 across

developers may take on any value between
∑

θ|pl0<pl1(eµ(θ)xN0)+kl
L0 and

∑
θ|pl0≤pl1(eµ(θ)xN0)+kl

L0.

Equilibrium holds if potential residents demand for space at ph0 = pl0 + 2k equals the remaining
land not held by developers; that is, if ph0 satisfies∑

θ|ph0>ph1 (eµ(θ)xN0)+k+kl

L0/S ≤
∫

Θ
N0D(ph0 − ph1(eµ(θ)xN0))fr(θ)dθ ≤

∑
θ|ph0≥ph1 (eµ(θ)xN0)+k+kl

L0/S.

(B2)
Such a ph0 exists if and only if (B1) fails. Indeed, suppose (B1) holds. The left side of (B2)
weakly increases in ph0 , while the middle strictly decreases for ph0 ≥ ph1(eµ

max
i xN0) + k + kl because

θ < 0 < θmaxi for a positive measure of potential residents (Assumption 4). If (B1) holds, then the
left side of (B2) is at least the middle when ph0 = ph1(eµ

max
i xN0) + k + kl, meaning that for larger

ph0 , the left strictly exceeds the middle in violation of (B2). Now suppose that (B1) fails. Then the
middle of (B2) exceeds the right side at ph0 = ph1(eµ

max
i xN0) + k + kl. Because the middle strictly

and continuously decreases to 0 with ph0 ≥ ph1(eµ
max
i xN0) + k + kl, there exists a unique solution

to (B2), which we deem ph0(N0, x, z, kl). Existence and uniqueness follow from the fact that the
greatest lower bound of the ph0 for which the left inequality fails equals the lowest upper bound of
the ph0 for which the right inequality fails.

We further partition this possible equilibrium into two cases. Set µsupd = µ(θsupd ). In the first
case,

1 ≥
∫

Θ
N0D(ph1(eµ

sup
d xN0) + k + kl − ph1(eµ(θ)xN0))fr(θ)dθ. (B3)

At ph0 = ph1(eµ
sup
d xN0) + k + kl, the right side of (B2) equals 1. As a result, if (B3) fails, then

ph0(N0, x, z, kl) satisfies (A2). If (B3) holds, then if ph0 > ph1(eµ
sup
d xN0) + k+ kl, the left and right of

(B2) equal 1 while the middle is less than 1. As a result, ph0(N0, x, z, kl) ≤ ph1(eµ
sup
d xN0) + k + kl.

By the same argument given in the proof of Proposition 2 concerning (A1), (B3) holds if and only
if N0 ≤ N∗0 (x, z, fr, θ

sup
d , kl).

In summary, a unique equilibrium house price at t = 0 exists. If N0 ≤ N∗∗0 (x, z, kl), then
we have ph0(N0, x, z, kl) = ph1(eµ

max
i xN0) + k + kl. If N∗∗0 (x, z, kl) < N0 < N∗0 (x, z, fr, θ

sup
d , kl),
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then ph1(eµ
max
i xN0) + k + kl < ph0(N0, x, z, kl) ≤ ph1(eµ

sup
d xN0) + k + kl. If N0 > N∗∗0 (x, z, kl) and

N0 ≥ N∗0 (x, z, fr, θ
sup
d , kl), then ph0(N0, x, z, kl) satisfies (A2).

If
∑

θ>θmaxi
L0 = 0, then µsupd ≤ µmaxi . In this case, N∗∗0 (x, z, kl) = N∗0 (x, z, fr, θ

max
i , kl) ≥

N∗0 (x, z, fr, θ
sup
d , kl), where the equality was proved earlier and the inequality follows because N∗0

increases in its fourth argument. As a result, the equilibrium house price in this case equals

ph0(N0, x, z, kl) =


2k + kl if N0 ≤ e−µ

max
i x

k + keµ
max
i x/εN

1/ε
0 + kl if e−µ

max
i x < N0 < N∗0 (x, z, fr, θ

max
i , kl)

k(1 + eµ
agg
r (N0,x,z)x/ε)N

1/ε
0 if N0 ≥ N∗0 (x, z, fr, θ

max
i , kl).

Taking the limit as kl → 0 yields the formula in Lemma B4.
If
∑

θ>θmaxi
L0 > 0, then µsupd > µmaxi . From comparing (B1) to (B3), we see that N∗∗0 (x, z, kl) ≤

N∗0 (x, z, fr, θ
sup
d , kl) andN∗∗0 (x, z) ≤ N∗0 (x, z, fr, θ

sup
d ), with equality in each if and only if the respec-

tive left side equals ∞. If N∗∗0 (x, z, kl) < N0 ≤ N∗0 (x, z, fr, θ
sup
d , kl), then ph1(eµ

max
i xN0) + k + kl <

ph0(N0, x, z, kl) ≤ ph1(eµ
sup
d xN0) + k + kl. Over this range, the only developers on which (B2) de-

pends are those with positive land holdings and beliefs in {θ | ph1(eµ
max
i xN0) < ph1(eµ(θ)xN0)} =

{θ | θ > θmaxi }. It follows that ph0(N0, x, z, kl) in this range depends on only these develop-

ers. Because ph1(eµ
sup
d xN0) = keµ

sup
d x/εN

1/ε
0 in this range, there exists a unique µaggd (N0, x, z, kl) ∈

[− log(N0)/x, µsupd ] such that on this range of N0, ph0(N0, x, z, kl) = k+ keµ
agg
d (N0,x,z,kl)x/εN

1/ε
0 + kl.

Because ph0(N0, x, z, kl) increases in k1 and is bounded on this range, limkl→0 µ
agg
d (N0, x, z, kl) ex-

ists; we deem it µaggd (N0, x, z). The middle of (B2) increases in N0, as shown in the the proof of
Proposition 2, so µaggd (N0, x, z) increases in N0. Putting everything together, we have that

ph0(N0, x, z, kl) =


2k + kl if N0 ≤ min(e−µ

max
i x, N∗∗0 (x, z, kl))

k + keµ
max
i x/εN

1/ε
0 + kl if e−µ

max
i x < N0 < N∗∗0 (x, z, kl)

k + keµ
agg
d (N0,x,z,kl)x/εN

1/ε
0 + kl if N∗∗0 (x, z, kl) < N0 < N∗0 (x, z, fr, θ

sup
d , kl)

k(1 + eµ
agg
r (N0,x,z)x/ε)N

1/ε
0 if N0 ≥ N∗0 (x, z, fr, θ

sup
d , kl).

when
∑

θ>θmaxi
L0 > 0. Taking the limit as kl → 0 yields the formula in Lemma B4.

The only point at which kl > 0 was used is for the existence of equilibrium when ph0(N0, x, z, kl) =
2k + kl. In this case, pl0(N0, x, z, kl) = kl, but we showed earlier that pl0 = 0 never can be an equi-
librium. This equilibrium exists only as a limit as kl → 0.

The case when
∑

θ>θmaxi
L0 > 0 and N∗∗0 (x, z) < N0 < N∗0 (x, z, fr, θ

sup
d ) deserves some expla-

nation, as the equilibrium house price in this region looks quite different than any of the prices
in Proposition 2. This case occurs when demand from potential residents is at least equal to the
space held by developers for whom θ ≤ θmaxi , but is not as large as the entire space S. In such
an equilibrium, developers for whom θ > θmaxi become the marginal owners of space and hold
some land in equilibrium. The equilibrium house price aggregates the beliefs of such landowning
developers through µaggd . This case always occurs unless demand from potential residents when the
optimistic equity investors price space is never large enough to cut into the landholdings of these
very optimistic developers; this condition is precisely the one at the end of Lemma B4.

Finally, we build on the proof of Lemma B4 to prove Proposition 6.

Proof of Proposition 6. The claim that the equilibrium house price equals ph0(N0, x, z, fr, fi) when∑
θ>θmaxi

L0 = 0 follows immediately from comparing the pricing formula in Lemma B4 to that in
Proposition 2.
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To prove the remaining claims, we first solve for the optimal equity purchases for investors.
By Lemma B2, the objective function for an equity investor with respect to a given developer is
to maximize αbuy(pl1(eµ(θ)xN0) + kl)L1 −max(αbuy, (1 − ks)αbuy)(pl1(eµ

max
i xN0) + kl)L1 subject to

αbuy ≥ −α. If L1 > 0, then the optimal choice for the equity investor is

(αbuy)∗ ≥ 0 if pl1(eµ(θ)xN0) = pl1(eµ
max
i xN0)

(αbuy)∗ = 0 if pl1(eµ(θ)xN0) ∈
(

(1− ks)pl1(eµ
max
i xN0)− kskl, pl1(eµ

max
i xN0)

)
(αbuy)∗ ∈ [−α, 0] if pl1(eµ(θ)xN0) = (1− ks)pl1(eµ

max
i xN0)− kskl

(αbuy)∗ = −α if pl1(eµ(θ)xN0) < (1− ks)pl1(eµ
max
i xN0)− kskl.

When xz = 0, pl1(eµ(θ)xN0) = pl1(eµ
max
i xN0) > (1 − ks)pl1(eµ

max
i xN0) − kskl because ks > 0, so

(αbuy)∗ ≥ 0 for all equity investors and developers for whom L1 > 0. The claim that the aggregate
value of short claims equals zero when xz = 0 is proved. For the second claim about the xz = 0
case, first consider the possibility that pl0 > pl1(eµxN0) + kl. Then the proof of Lemma B4 shows
that L∗1 = 0 for all developers and that (αsell)∗ = 0 is possible for all developers, meaning that an

equilibrium exists in which no equity issuance occurs and in which (Hbuild
0 )∗ = L0 and (Lbuy0 )∗ = 0

for all developers. Now consider the other possibility, that pl0 = pl1(eµxN0) + kl. Then by the proof
of Lemma B4, each developer may choose (αsell)∗ = 0 and L∗1 ≤ L0. As a result, no equity is
issued, and the sum of L∗1 across developers can take on any value between 0 and S, meaning that

we may find an equilibrium in which (Lbuy0 )∗ = 0 for all developers and (Hbuild
0 )∗ is chosen to clear

the housing market.
We turn now to the remaining claims about the xz > 0 case. We define N∗∗∗0 (x, z, kl) to be the

least upper bound of N0 such that∑
θ<θmaxi

developers w/o
access to equity

L0/S >

∫
Θ
N0D(ph1(eµ

max
i xN0) + k + kl − ph1(eµ(θ)xN0))fr(θ)dθ. (B4)

As discussed in the proof of Lemma B4, the right side of (B4) continuously increases in N0 and
limits to 0 as N0 → 0, so N∗∗∗0 (x, z, kl) ∈ R≥0 ∪ {∞} exists. Because the right side of (B4) is
continuous in kl, we may define N∗∗∗0 (x, z) = limkl→0N

∗∗∗
0 (x, z, kl) = N∗∗∗0 (x, z, 0). Furthermore,

substituting N0 = e−µ
max
i x into the right side of (B4) when kl = 0 yields e−µ

max
i x, so because the

left side exceeds e−µ
max
i x, we must have N∗∗∗0 (x, z, kl) ≥ N∗∗∗0 (x, z) > e−µ

max
i x (N∗∗∗0 decreases in

kl). The left side of (B4) is less than or equal to the left side of (B1) as shown in the analysis after
(B1), so N∗∗∗0 (x, z, kl) ≤ N∗∗0 (x, z, kl) and N∗∗∗0 (x, z) ≤ N∗∗0 (x, z).

We prove the remaining claims about the xz > 0 case for N0 such that e−µ
max
i x < N0 <

N∗∗∗0 (x, z). Such N0 satisfy e−µ
max
i x < N0 < N∗∗0 (x, z, kl) given the inequalities above. By the

proof of Lemma B4, pl0 = pl1(eµ
max
i xN0)+kl in equilibrium for such N0. Assume for a contradiction

that (αsell)∗L∗1 = 0 for all developers. The largest possible sum of L∗1 across all developers equals∑
θ≥θmaxi

L0. An equilibrium is possible only if the housing demand from potential residents is at
least equal to the remaining land. This condition is∑

θ<θmaxi

L0/S ≤
∫

Θ
N0D(ph1(eµ

max
i xN0) + k + kl − ph1(eµ(θ)xN0))fr(θ)dθ,

which fails for N0 < N∗∗∗0 (x, z) due to (B4), providing the necessary contradiction and proving that
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the aggregate value of issued equity is positive.
From one of the developer constraints, (Lbuy0 )∗ − (Hbuild

0 )∗ = L∗1 −L0, so the sum of the former
across equity-issuing developers equals the sum of the latter across them. Assume for a contradiction
that the latter sum is ≤ 0. For all developers not issuing equity, L∗1 ≤ L0, with L∗1 = 0 for developers
without access to the equity market for whom θ < θmaxi . As a result, the total demand for space may
equal S only if the precise opposite of (B4) holds. Because N0 < N∗∗∗0 (x, z), we have a contradiction
that proves that developers who issue equity in the aggregate buy land beyond construction needs.

We now prove the statement about shorting of equity-issuing developers. Pick any θ′ < θmaxi

such that
∫
θ≤θ′ fi(θ)dθ > 0, where fi is the distribution of θ across equity investors (Assumption 4

guarantees the existence of θ′). We will show that we can find ks small enough so that (αbuy)∗ = −α
for all θ ≤ θ′. If eµ(θ)xN0 ≤ 1, then (αbuy)∗ = −α if and only if k < (1 − ks)keµ

max
i x/εN

1/ε
0 − kskl.

As ks → 0, the right side limits to something greater than k, so we can find ks > 0 small enough so
that (αbuy)∗ = −α for all θ with eµ(θ)xN0 ≤ 1. Now consider θ ≤ θ′ with eµ(θ)xN0 > 1. An equity

investor with such θ sets (αbuy)∗ = −α if and only if keµ(θ)x/εN
1/ε
0 < (1− ks)keµ

max
i x/εN

1/ε
0 − kskl.

This equation holds if keµ(θ′)x/εN
1/ε
0 < (1− ks)keµ

max
i x/εN

1/ε
0 − kskl. Because θ′ < θmaxi , the right

side limits to something greater than the left as ks → 0, so we may choose ks small enough so that
the inequality holds. We may pick ks small enough so that (αbuy)∗ = −α for all θ ≤ θ′, as desired.

From Lemma B2, the price of the claim on a developer for whom (αsell)∗ > 0 and L∗1 > 0 equals

pπ0 = (keµ
max
i x/εN

1/ε
0 + kl)L

∗
1. This expression increases strictly in x, as claimed. The price at t = 1

equals pπ1 = (pl1(eµ
truexN0) + kl)L

∗
1, which is strictly less than pπ0 if and only if µtrue < µmaxi .

C Rental Extension

A share χ ∈ [0, 1) of residents are of type a = 1 and get flow utility only from renting; the remainder
are of type a = 0 and get flow utility only from owning.33 The type a is distributed independently
from v and θ. All residents can act as landlords, but developers cannot (the developer problem

remains the same as before). We denote Rbuyt the quantity of housing rented as a tenant and Rsellt

the quantity rented as a landlord. The rental price of housing equals prt . At t = 1, an arriving
potential resident chooses (Hbuy

1 )∗, (Rbuy1 )∗, (Rsell1 )∗ from

arg max
Hbuy

1 ,Rbuy1 ,Rsell1

(
aι(Rbuy1 ) + (1− a)ι(Hbuy

1 −Rsell1 )
)
v − ph1H

buy
1 − pr1(Rbuy1 −Rsell1 )

subject to 0 ≤ Hbuy
1

0 ≤ Rbuy1

0 ≤ Rsell1

Rsell1 ≤ Hbuy
1 ,

33We rule out χ = 1 because fχr does not satisfy Assumption 4 when χ = 1, meaning that the expressions
ph0 (N0, x, z, f

χ
r , fd) and N∗

0 (x, z, fχr ) that appear in Proposition 7 are not well-defined. The existence of
equilibrium does not depend on χ 6= 1, so by continuity the χ = 1 equilibrium equals the limiting equilibrium
as χ→ 1.
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where ι(R) = 1 if R ≥ 1 and 0 otherwise. The utility u(ph1 , B1, v, a,H
buy
0 , Rbuy0 , Rsell0 ) at t = 1 of a

potential resident of type a and v who arrived at t = 0 and chose Hbuy
0 , Rbuy0 , and Rsell0 equals

arg max
Hsell

1

(
aι(Rbuy0 ) + (1− a)ι(Hbuy

0 −Rsell0 )
)
v +Hsell

1 ph1 +B1

subject to 0 ≤ Hsell
1

Hsell
1 ≤ Hbuy

0 .

At t = 0, arriving potential residents maximize the subjective expectation of their utility by choosing
(Hbuy

0 )∗, (Rbuy0 )∗, and (Rsell0 )∗ from

arg max
Hbuy

0 ,Rbuy0 ,Rsell0

Eu(ph1 , B1, v, a,H
buy
0 , Rbuy0 , Rsell0 )

subject to 0 ≤ Hbuy
0

0 ≤ Rbuy0

0 ≤ Rsell0

Rsell0 ≤ Hbuy
0

B0 = −ph0H
buy
0 − pr0(Rbuy0 −Rsell0 ).

Equilibrium is the same as before with the addition of the condition that the sum of (Rbuyt )∗ across
all residents equals the sum of (Rsellt )∗ across them at each t. The following lemma characterizes
this equilibrium at t = 1:

Lemma C1. A unique equilibrium at t = 1 exists and coincides with that given by Lemma 1.

Proof. A potential resident arriving at t = 1 of type a = 1 gets utility v− pr1 from setting Rbuy1 = 1

and utility 0 from setting Rbuy1 = 0 (all other choices are dominated). The sum of (Rbuy1 )∗ therefore
equals χN1SD(pr1).

Increasing Hbuy
1 and Rsell1 the same amount increases utility of pr1 > ph1 and decreases utility if

pr1 < ph1 . The former cannot hold in equilibrium, as it leads to unlimited housing demand, which
cannot be matched by the limited supply. The latter cannot hold in equilibrium if χ > 0, as it
leads to zero rental supply, which cannot be matched by rental demand, which is positive if χ > 0.
If χ = 0, then pr1 < ph1 can hold in equilibrium if (Rsell0 )∗ = 0 for all potential residents. Therefore
ph1 = pr1 or χ = 0 and pr1 < ph1 .

If χ > 0, then a potential resident arriving at t = 1 of type a = 1 sets (Hbuy
1 )∗ = (Rsell1 )∗.

Arriving potential residents of type a = 0 set (Rbuy1 )∗ = 0 because pr1 = ph1 ≥ k > 0 in the case
that χ > 0, or because clearing of the rental market in the case that χ = 0 and pr1 < ph1 requires
it (the equilibrium possibilities are then pr1 ∈ [0, ph1)). Setting Rsell1 = 0 in the case that χ = 0 and

pr1 < ph1 , arriving potential residents of type a = 0 get utility v−ph1 if Hbuy
1 −Rsell1 = 1 and utility 0

if Hbuy
1 −Rsell1 = 0 (all other choices of Hbuy

1 −Rsell1 are dominated). The total of (Hbuy
1 )∗− (Rsell1 )∗

across these potential residents equals (1− χ)N1SD(ph1).

The total of (Hbuy
1 )∗ − (Rsell1 )∗ + (Rbuy1 )∗ across all residents equals N1SD(ph1). Because the

rental market clears, the total of (Hbuy
1 )∗ equals N1SD(ph1), which coincides with housing demand

in the model of Section 1. As shown in the proof of Lemma 1, the sum of (Hsell
1 )∗ across departing

residents is irrelevant for equilibrium prices at t = 1, so we are done.

9



We now prove Proposition 7.

Proof of Proposition 7. For clarity, we divide the proof into three parts.

Part 1: Equilibrium house price at t = 0

Consider potential residents for whom a = 1. If Rbuy0 ∈ [0, 1), then utility is Hbuy
0 (ph1(eµ(θ)xN0)−

ph0) + (Rsell0 − Rbuy0 )pr0. If pr0 < 0, then Rbuy0 cannot be chosen to maximize utility, so pr0 ≥ 0
in equilibrium. As a result, utility weakly increases in Rsell0 , so it is maximized when Rsell0 =

Hbuy
0 and Rbuy0 = 0 at Hbuy

0 (ph1(eµ(θ)xN0) + pr0 − ph0). If Rbuy0 ≥ 1, then utility equals v +

Hbuy
0 (ph1(eµ(θ)xN0)−ph0) + (Rsell0 −Rbuy0 )pr0, which is maximized when Rbuy0 = 1 and Rsell0 = Hbuy

0 at

v − pr0 +Hbuy
0 (ph1(eµ(θ)xN0) + pr0 − ph0). Thus, unless pr0 = 0 (which we consider below), the sum of

(Rbuy0 )∗ across potential residents of type a = 1 equals χN0SD(pr0), and the sum of (Rsell0 )∗ across

them equals the sum of (Hbuy
0 )∗ across them.

Consider the problem for potential residents with a = 0. If Hbuy
0 − Rsell0 ∈ [0, 1), then utility

equals Hbuy
0 (ph1(eµ(θ)xN0) − ph0) + (Rsell0 − Rbuy0 )pr0. Utility is maximized when Rsell0 = Hbuy

0 at

Hbuy
0 (ph1(eµ(θ)xN0) + pr0− ph0). If ph1(eµ(θ)xN0) + pr0− ph0 > 0 for any θ ∈ supp fr, then utility cannot

be maximized. As a result, ph1(eµ(θ)xN0)+pr0−ph0 ≤ 0 for all θ ∈ supp fr, and utility is maximized at

0. If Hbuy
0 −Rsell0 ≥ 1, then utility equals v+Hbuy

0 (ph1(eµ(θ)xN0)−ph0)+(Rsell0 −R
buy
0 )pr0, which weakly

rises in Rsell0 . Utility is maximized when Rsell0 = Hbuy
0 − 1 at v− pr0 +Hbuy

0 (ph1(eµ(θ)xN0) + pr0− ph0).
Because ph1(eµ(θ)xN0) + pr0 − ph0 ≤ 0 for all θ ∈ supp fr, utility is maximized when Rsell0 = 0 and

Hbuy
0 = 1 at v − ph0 + ph1(eµ(θ)xN0). Thus, unless pr0 = 0, the sum of (Rbuy0 )∗ across these potential

residents equals 0, and the sum of (Hbuy
0 )∗ across them exceeds the sum of (Rsell0 )∗ across then by

(1− χ)N0S
∫

ΘD(ph0 − ph1(eµ(θ)xN0))fr(θ)dθ.

Combining the two cases, we see that if pr0 > 0, the sum of (Hbuy
0 )∗ across potential residents

equals χN0SD(pr0) + (1 − χ)N0S
∫

ΘD(ph0 − ph1(eµ(θ)xN0))fr(θ)dθ due to the clearing of the rental
market.

If ph1(eµ
max
r xN0) + pr0 − ph0 < 0, then (Rsell0 )∗ = 0 for all potential residents. The rental market

can clear only if χN0SD(pr0) = 0, which can hold only if χ = 0. In this case, rental supply and
demand equals 0 for all potential residents (or pr0 = 0), in which case the rental market becomes
irrelevant and the equilibrium reduces to that analyzed in Section 3. Therefore, for the rest of
the proof we assume that χ > 0. In this case, (Rsell0 )∗ > 0 for some potential residents, so
ph1(eµ

max
r xN0) + pr0 − ph0 = 0.

As shown in the proof of Lemma 2, either ph0 = k + ph1(eµ
max
d xN0) in which case developers for

whom ph1(eµ(θ)xN0) = ph1(eµ
max
d xN0) may choose any L1 ≥ 0, or ph0 > k + ph1(eµ

max
d xN0) in which

case L1 = 0 for all developers. The former may hold in equilibrium if and only if the resulting
housing demand falls short of S:

1 ≥ χN0D(ph1(eµ
max
d xN0)− ph1(eµ

max
r xN0))

+ (1− χ)N0

∫
Θ
D(ph1(eµ

max
d xN0)− ph1(eµ(θ)xN0))fr(θ)dθ.

(C1)

This inequality is the same as (A1) but with fr replaced by fχr , so (C1) holds if and only if
N0 ≤ N∗0 (x, z, fχr ). For such N0, ph0 = k+ph1(eµ

max
d xN0) = ph0(N0, x, z, f

χ
r , fd). If N0 > N∗0 (x, z, fχr ),

then ph0 must equate total housing demand with S, meaning that it is the unique value satisfying

1 = χN0D(ph0 − ph1(eµ
max
r xN0)) + (1− χ)N0

∫
Θ
D(ph0 − ph1(eµ(θ)xN0))fr(θ)dθ. (C2)
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This equation coincides with (A2) but with fχr in place of fr, so the equilibrium house price at
t = 0 equals ph0(N0, x, z, f

χ
r , fd) for N0 ≥ N∗0 (x, z, fχr ).

Part 2: Non-monotonicity of house price boom

According to Proposition 4, the boom is strictly maximized at N0 = 1 if Assumption 5 holds
when applied to fχr in place of fr. The first condition in the assumption, eµ

max
d x/ε > eµ

max
r x/ε − 1,

continues to hold because the maxima of fr and fχr coincide. The second condition applied to fχr
is

1 > χ
(

1 + eµ
max
d x/ε − eµmaxr /ε

)−ε
+ (1− χ)

∫
Θ

(
1 + eµ

max
d x/ε − eµ(θ)x/ε

)−ε
fr(θ)dθ. (C3)

This inequality holds for χ = 0 by assumption. The right side of (C3) increases continuously in χ
because µmaxr > µ(θ) for all θ < θmaxr , so (C3) holds for all χ if and only if it holds for χ = 1. When
χ = 1, (C3) reduces to µmaxr < µmaxd . If µmaxr ≥ µmaxd , then by the intermediate value theorem
there exists χ∗(x, z) ∈ (0, 1] such that (C3) holds if χ < χ∗(x, z). When µmaxr = µmaxd , (C3) holds
as an equality, so χ∗(x, z) = 1.

Part 3: House price boom and rental share

As shown earlier in this proof,∑
(Rbuy0 )∗∑
(Hbuy

0 )∗
=

χD(ph0(N0, x, z, χ)− ph1(eµ
max
r xN0))∫

ΘD(ph0(N0, x, z, χ)− ph1(eµ(θ)xN0))fχr (θ)dθ
.

If xz = 0, then µ(θ) = µmaxr for all θ, so this fraction equals χ.
We now fix a value of N0 and consider the case when xz > 0. The right side of (C1)

weakly increases in χ, so N∗0 (x, z, fχr ) weakly and continuously decreases in χ. As a result,
if N0 < N∗0 (x, z, χ), then a marginal increase in χ has no bearing on ph0(N0, x, z, f

χ
r , fd), as

this equilibrium price is independent of χ for N0 < N∗0 (x, z, fχr ). If N0 ≥ N∗0 (x, z, fχr ), then
ph0(N0, x, z, f

χ
r , fd) solves (C2). Because N0 ≥ N∗0 (x, z, fχr ) > 1, the integral in (C2) evaluated at

ph0 = ph0(N0, x, z, f
χ
r , fd) must be less than 1. It follows that D(ph0(N0, x, z, χ) − ph1(eµ

max
r xN0)) >∫

ΘD(ph0(N0, x, z, χ) − ph1(eµ(θ)xN0))fr(θ)dθ, so an increase in χ increases the right side of (C2)
holding ph0 = ph0(N0, x, z, f

χ
r , fd) constant. Because the right side of (C2) weakly decreases in ph0 , it

follows that ph0(N0, x, z, f
χ
r , fd) strictly increases in χ, as desired.

D Supply Elasticity Extension

Developers may rent out undeveloped land on spot markets each period to firms, such as banana
stands, that use the city’s land as an input. We denote the land rent rlt. Spot land demand of firms
equals SDl(rlt), where Dl satisfies the following:

Assumption D1. Dl : R+ → R+ is continuously differentiable and decreases, −r(Dl)′(r)/Dl(r)
weakly decreases, and limr→0D

l(r) ≥ 1 > limr→∞D
l(r).

The positivity of Dl guarantees that some vacant land exists in equilibrium, a property that makes
analyzing the equilibrium easier. The condition on r(Dl)′/Dl means that land demand becomes
weakly less elastic as its spot price rises so that it is weakly costlier to use each marginal unit of
land. The first limit implies that land demand is at least equal to available space when land is free
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and leads to a positive spot price in equilibrium. The second limit implies that land demand falls
below available space at a high enough price and leads to the existence of equilibrium.

Each developer chooses the quantity Lrentt of land to rent on the spot market. At t = 1, the
liquidation value π of a developer is the outcome of the constrained optimization problem

π(ph1 , p
l
1, r

l
1, H1, L1, B1) = max

Hsell
1 ,Lbuy1 ,Hbuild

1 ,Lrent1

ph1H
sell
1 − pl1L

buy
1 − kHbuild

1 + rl1L
rent
1 +B1

subject to Hsell
1 ≤ H1 +Hbuild

1

Hbuild
1 ≤ L1 + Lbuy1 − Lrent1 .

The actions (Hsell
1 )∗, (Lbuy1 )∗, (Hbuild

1 )∗, and (Lrent1 )∗ chosen by the developer maximize this prob-

lem. At t = 0 each developer chooses (Hsell
0 )∗, (Lbuy0 )∗, (Hbuild

0 )∗, and (Lrent0 )∗ from

arg max
Hsell

0 ,Lbuy0 ,Hbuild
0 ,Lrent0

Eπ(ph1 , p
l
1, r

l
1, H1, L1, B1)

subject to Hsell
0 ≤ Hbuild

0

Hbuild
0 ≤ L0 + Lbuy0 − Lrent0

H1 = Hbuild
0 −Hsell

0

L1 = L0 + Lbuy0 −Hbuild
0

B1 = ph0H
sell
0 − pl0L

buy
0 − 2kHbuild

0 + rl0L
rent
0 .

The potential resident problems are the same as in Appendix C. Equilibrium is the same as before
with the addition of the condition that the sum of (Lrentt )∗ across developers equals SDl(rlt) at each
t. The following lemma characterizes this equilibrium at t = 1:

Lemma D1. Given N1, a unique equilibrium at t = 1 exists, and in it ph1 − k = pl1 = rl1 > 0.

Proof. If rl1 6= pl1, then developers cannot maximize π because holding Lbuy1 − Lrent1 constant and

increasing Lbuy1 and Lrent1 always increases π if rl1 > pl1 and decreases π if rl1 < pl1. So pl1 = rl1 in any
equilibrium. For the same reasons given in the proof of Lemma 1, ph1 = pl1 + k in any equilibrium.

From the proof of Lemma C1, housing demand from arriving potential residents at t = 1 equals
SN1D(ph1). Land demand from firms equals SDl(rl1). If rl1 ≤ 0, then demand for space is either not
defined or exceeds S. Therefore, in any equilibrium rl1 > 0. It follows that (Lrent1 )∗ + (Hbuild

1 )∗ =

L1 + (Lbuy1 )∗ for all developers. Similarly, (Hsell
1 )∗ = H1 + (Hbuild

1 )∗ for all developers. Therefore
the sum of (Hsell

1 )∗ + (Lrent1 )∗ across developers equals the sum of H1 + L1 across them. All
space other than H1 + L1 is owned by departing potential residents at the beginning of t = 1.
The clearing of the land spot market and the housing market therefore imply that in equilibrium,
1 = Dl(rl1) +N1D(ph1). Substituting rl1 = ph1 − k yields

1 = Dl(ph1 − k) +N1D(ph1). (D1)

Because rl1 > 0, ph1 > k, so both Dl and D strictly decrease for possible ph1 . The right side exceeds
1 as ph1 → k. As ph1 → ∞, the right side limits to something less than 1 by Assumption D1. It
follows that a unique value of ph1 satisfies this equation.

We denote equilibrium prices ph1(N1), pl1(N1), and rl1(N1). The first two should not be confused
with the functions defined after Lemma 1 that use the same notation.

The next lemma establishes the existence of a unique equilibrium at t = 0.
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Lemma D2. Given N0, x, z, and χ, a unique equilibrium at t = 0 exists.

Proof. For the same reasons given in the proof of Lemma D1, rl0 > 0 in any equilibrium. In the
equilibrium at t = 1, π = ph1H1 + pl1L1 +B1. By making substitutions using the constraints of the
t = 0 developer problem, we see that the objective at t = 0 is to choose H1, L1 ≥ 0 to maximize
(ph1(eµ(θ)xN0) − ph0)H1 + (ph1(eµ(θ)xN0) − ph0 + k + rl0)L1 + pl0L0 and that (Lrent0 )∗ = L1 for each
developer. Because k+rl0 > 0, it follows that H1 = 0 for all developers. If ph1(eµ(θ)xN0)−ph0 +k+rl0 <
0 for all developers, then L1 = 0 for all of them, but then (Lrent0 )∗ = 0, leading to a failure of market-
clearing in the land spot market because Dl(rl0) > 0. If ph1(eµ(θ)xN0) − ph0 + k + rl0 > 0 for any
developer, then the objective function cannot be maximized. It follows that ph0 = ph1(eµ

max
d xN0) +

k + rl0. Market-clearing in all markets implies that spot land demand plus total housing demand
from arriving potential residents equals S. Using the equations for housing demand from the proof
of Proposition 7, we form the equilibrium condition

1 = Dl(ph0 − ph1(eµ
max
d xN0)− k) + χN0D(ph0 − ph1(eµ

max
r xN0))

+ (1− χ)N0

∫
Θ
D(ph0 − ph1(eµ(θ)xN0))fr(θ)dθ.

(D2)

The right side strictly decreases in ph0 wherever it is defined. It is defined for ph0 > k+ph1(eµ
max
d xN0).

As ph0 approaches this value, Dl is at least 1, whereas the remainder of the right side is positive. It
follows that the entire right side exceeds 1 in the limit. As ph0 →∞, the terms involving D go to 0,
and the term involving Dl limits to something less than 1 according to Assumption D1. It follows
that a unique solution exists to this equation.

We denote this unique equilibrium price ph0(N0, x, z, χ), which should not be confused with the
equilibrium price given by Proposition 7.

We turn now to defining the elasticity of housing supply. The proof of Lemma C1 showed that
rh1 = ph1(N1) is the unique equilibrium rent when χ > 0 and is an equilibrium rent when χ = 0. We
define rh1 (N1) = ph1(N1). Because the housing stock at t = 1 equals S − SDl(ph1 − k), the elasticity
of housing supply at t = 1 is

εs1(N1) = −r
h
1 (N1)(Dl)′(ph1(N1)− k)

1−Dl(ph1(N1)− k)
.

Similarly, the proof of Proposition 7 showed that rh0 = ph0(N0, x, z, χ)− ph1(eµ
max
r xN0) is the unique

equilibrium rent when χ > 0 and is an equilibrium rent when χ = 0. We define rh0 (N0, x, z, χ) =
ph0(N0, x, z, χ)− ph1(eµ

max
r xN0). Because the housing stock equals S − SDl(ph0 − ph1(eµ

max
d xN0)− k)

at t = 0, the elasticity of housing supply at t = 0 equals

εs0(N0, x, z, χ) = −r
h
0 (N0, x, z, χ)(Dl)′(ph0(N0, x, z, χ)− ph1(eµ

max
d xN0)− k)

1−Dl(ph0(N0, x, z, χ)− ph1(eµ
max
d xN0)− k)

.

The next lemma characterizes these elasticities.

Lemma D3. There exists a continuous, decreasing function εs : R+ → R+ such that εs0(N0, x, 0, χ) =
εs(N0) and εs1(N1) = εs(N1).

Proof of Lemma D3. We define the function εs(·) by

εs(N) ≡ −p
h
1(N)(Dl)′(ph1(N)− k)

1−Dl(ph1(N)− k)
. (D3)
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Given (D1), the denominator equals ND(ph1(N)) > 0. As shown by Lemma D1, ph1(N) > k, so the
numerator is negative and well-defined. It follows that εs(N) > 0 for all N > 0. Because ph1(N) > k,
the implicit function theorem applied to (D1) implies that ph1(·) is continuous; Assumption D1 them
implies that εs(·) is continuous. To show that εs decreases, we rewrite (D3) as

εs(N) =
−(ph1(N)− k)(Dl)′(ph1(N)− k)

Dl(ph1(N)− k)

ph1(N)

ph1(N)− k
Dl(ph1(N)− k)

1−Dl(ph1(N)− k)
. (D4)

It is clear from (D1) that ph1(N) strictly increases in N because Dl and D both strictly decrease
over the domains relevant in that equation. It follows that each fraction on the right of (D4)
strictly decreases in N , with the result about first fraction following from Assumption D1. Because
rh1 (N1) = ph1(N1), εs1 = εs(N1). When z = 0, it is clear from (D1) that ph0 = ph1(N0) + ph1(eµxN0)
solves (D2). Therefore rh0 (N0, x, 0, χ) = ph1(N0) and ph0(N0, x, 0, χ) − ph1(eµ

max
x N0) = ph1(N0) when

z = 0. it follows that εs0(N0, x, 0, χ) = εs(N0).

Next, we prove Proposition 8.

Proof of Proposition 8. Differentiating (D1) and simplifying yields

∂ph1(eµ(θ)xN0)

∂x
=
µ(θ)ph1(eµ(θ)xN0)

εs(eµ(θ)xN0) + ε
.

Using this equation, we differentiate (D2) with respect to x and simplify to obtain

∂ log ph0(N0, x, z, χ)

∂x
=
c1p

h
1(eµ

max
d xN0)

ph0(N0, x, z, χ)

µmaxd

εs(eµ
max
d xN0) + ε

+
c2p

h
1(eµ

max
r xN0)

ph0(N0, x, z, χ)

µmaxr

εs(eµmaxr xN0) + ε

+

∫
Θ

c3p
h
1(eµ(θ)xN0)

ph0(N0, x, z, χ)

µ(θ)

εs(eµ(θ)xN0) + ε
fr(θ)dθ,

where ci = γi/(γ1 + γ2 + γ3) for i ∈ {1, 2, 3} and the γi are defined as follows:

γ1 = (Dl)′(ph0(N0, x, z, χ)− ph1(eµ
max
d xN0))

γ2 = χN0D
′(ph0(N0, x, z, χ)− ph1(eµ

max
r xN0))

γ3 = (1− χ)N0

∫
Θ
D′(ph0(N0, x, z, χ)− ph1(eµ(θ)xN0))fr(θ)dθ.

To prove that the equation in the proposition holds to the first order, we show that it holds exactly
when x = 0 or z = 0. When x = 0, rh0 (N0, x, z, χ) = ph0(N0, x, z, χ) − ph1(eµ(θ)xN0) for all θ, so
γ1 = εs(N0)/(εs(N0) + ε), γ2 = χε/(εs(N0) + ε), and γ3 = (1 − χ)ε/(εs(N0) + ε). We also have
ph0(N0, 0, z, χ) = ph1(N0)/2. It follows that

∂ log ph0(N0, 0, z, χ)

∂x
=

1

2

εs(N0)µmaxd + χεµmaxr + (1− χ)εµ

εs(N0) + ε

1

εs(N0) + ε
,

which coincides with the formula in the text. When z = 0, µ(θ) = µ for all θ and ph0(N0, x, z, χ) =
ph1(N0) + ph1(eµxN0) as shown in the previous proof. It follows that

∂ log ph0(N0, x, 0, χ)

∂x
=

ph1(eµxN0)

ph1(N0) + ph1(eµxN0)

µ

εs(eµxN0) + ε
.
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This expression coincides with the formula in the text because

ph1(eµxN0)

ph1(N0)
= exp

(∫ x

0

∂ log ph1(eµx
′
N0)

∂x′
dx′

)
= exp

(∫ x

0

µdx′

εs(eµx′N0) + ε

)
.

Figure D1 plots the t = 0 pass-through 1/(εs(N0)+ ε) and t = 1 pass-through 1/(εs(eµxN0)+ ε)
as well as the pass-though of x to log ph0(N0, x, z, χ) with and without disagreement. Disagreement
amplifies the price impact of x most when the short-run elasticity is high and the long-run elasticity
is low.

E Pulte Investor Presentation

Figure E1 presents slides from a 2004 presentation to investors by Pulte, one of the large public
homebuilders studied in Section 5.2. These slides provide some evidence that builders viewed supply
constraints as binding in the long run across many cities during the housing boom, and also that
our partition of cities in Figure 5 matches that considered by builders contemporaneously with the
boom.

F Construction Analysis

To analyze the effect of the shock x on construction, we define Qr(N0, x, z) to be the quantity of
housing held by potential residents at t = 0 in equilibrium. The following lemma characterizes the
response of Qr to x:

Lemma F1. Qr(N0, x, z) < Qr(N0, 0, z) if e−µ
max
d x < N0 < N∗0 (x, z) and z = 0. Qr(N0, x, z) =

Qr(N0, 0, z) otherwise.

Proof. By Proposition 2, Qr(N0, x, z) = 1 when N0 ≥ N∗0 (x, z). By (A1) in the proof of Lemma 2,
Qr(N0, x, z) = SN0

∫
ΘD(ph1(eµ

max
d xN0) + k − ph1(eµ(θ)xN0))fr(θ)dθ when N0 < N∗0 (x, z).

When z = 0, ph1(eµ
max
d xN0) = ph1(eµ(θ)xN0) for all θ ∈ Θ, so Qr(N0, x, 0) = SN0 for N0 <

N∗0 (x, 0). Because N∗0 (x, 0) = 1 as shown by Proposition 1, Qr(N0, x, 0) = Qr(N0, 0, 0).
When z > 0 and N0 ≤ e−µ

max
d x, ph1(eµ(θ)xN0) ≥ ph1(eµ

max
d xN0) for all θ ∈ Θ, so by Assumption

1 Qr(N0, x, z) = SN0. Thus Qr(N0, x, z) = Qr(N0, 0, z) in this case as well.
When z > 0 and N0 ≥ N∗0 (x, z), Qr(N0, x, z) = 1 and Qr(N0, x, 0) = 1 because N0 ≥ N∗0 (x, z) >

N∗0 (x, 0) = 1. Again Qr(N0, x, z) = Qr(N0, 0, z) in this case.
We divide the final case in which e−µ

max
d x < N0 < N∗0 (x, z) and z > 0 into two subcases. If

1 ≤ N0 < N∗0 (x, z), then 1 = N∗0 (0, z) ≤ N0 < N∗0 (x, z). It follows that Qr(N0, x, z) < 1 =
Qr(N0, 0, z), as claimed. If e−µ

max
d x < N0 < 1, then Qr(N0, 0, z)−Qr(N0, x, z) = SN0

∫
θ<θmaxd

(1−
D(ph1(eµ

max
d xN0) + k − ph1(eµ(θ)xN0)))fr(θ)dθ. For all θ < θmaxd , the integrand is positive because

eµ
max
d xN0 > 1. By Assumption 4,

∫
θ<θmaxd

fr(θ)dθ > 0, so Qr(N0, 0, z) > Qr(N0, x, z), as claimed.

Lemma F1 shows that the shock x only affects the equilibrium quantity of housing in inter-
mediate cities with disagreement, in which case the shock lowers the housing stock. Because the
shock does not change the current demand N0, it does not alter housing supply in most cases. It
only does so when optimistic developers set prices so high that the number of potential residents
choosing to buy falls. This scenario occurs in intermediate cities with disagreement.
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FIGURE D1
Comparative Statics with Respect to Initial Demand
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Notes: N0 equals the number of potential residents at t = 0 relative to the city size. Supply elasticities
are given by εs0 = εs(N0) and εs1 = εs(eµxN0), where εs(·) is defined by Lemma D3. The pass-through of
x to log ph0 equals the expression for ∂ log ph0 (N0, x, z, χ)/∂x given by Proposition 8. The parameters used
to generate this figure are k = 1, x = 1, z = 1, ε = 1, χ = 0, µ = 1, fr = fd = (0.9)1−1/9 + (0.1)11, and

Dl(r) = 0.01k/r, with z = 0 used in the “without disagreement” graph.
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FIGURE E1
Land Supply Slides from Pulte’s 2004 Investor Conference

Notes: Slides excerpted from a presentation by Pulte Homes, Inc., on February 26, 2004, to investors and
disclosed under SEC Regulation FD requirements. Last accessed on March 15, 2015, at
http://services.corporate-ir.net/SEC.Enhanced/SecCapsule.aspx?c=77968&fid=2633894.
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