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1 Introduction

Governments all over the world attempt to foster innovation. In many countries, they intervene
in the R&D process of private businesses through a wide variety of policies, including tax credits
and deductions, direct grants and funding for research, and subsidies for R&D costs. The sheer
scale of public resources spent on R&D and the variety of policies thus funded raises the question
of how best to design R&D policies.

One major challenge for innovation policy is asymmetric information. The quality of a firm’s
organization, management, processes or ideas–which shape its innovation outcomes conditional
on inputs–are private information and very difficult for outside parties, including the govern-
ment, to observe.1 One approach for addressing this asymmetric information problem is that
adopted by Venture Capitalist firms, which perform very hands-on and thorough screening, and
provide staged financing subject to intense monitoring. But this intensive hands-on approach is
not easily scalable and thus not applicable to large-scale government policies. The innovation
literature has extensively addressed how to deal with spillovers from innovation, but it has not
focused as much on asymmetric information about firms and how to distinguish between firms
that are good at innovation and those that are not.

In this paper, we study the optimal design of taxation and R&D policies under asymmetric
information. We use new methods from the public economics literature, theoretical advances in
mechanism design, and firm-level data matched to patent data to discipline and quantify our
analysis. We build a framework that captures this essential aspect of asymmetric information in
innovation and addresses the following questions both theoretically and quantitatively: Without
restricting the set of policy tools a priori, what are the best policies for promoting innovation?
What key parameters do optimal policies depend on? Are there simple policies that are almost
as good as the unrestricted optimal ones?

In our setting, there are two market failures that leave scope for some form of government
intervention: First, there are technology spillovers between firms, whereby one firm’s innovations
affect other firms’ productivities. Second, innovation is not appropriable and, absent Intellectual
Property Rights (IPR) policy, any firm could use an “idea” embodied in an innovation. However,
IPR policy may create a distortion, as is the case for instance of a patent system that grants firms
monopoly rights.

The main impediment to fixing these market frictions in a non-distortionary way–and the
key feature of our analysis–is asymmetric information. Firms are heterogeneous in their research
productivity and, importantly, this research productivity is private information and unobservable
to the government. A higher research productivity allows a firm to convert a given set of research
inputs into a better innovation output. In addition, while some of the inputs into the R&D
process are observable (we call them “R&D investment”), others are unobservable (“R&D effort”).
The firm’s research productivity evolves stochastically over time. Although the firm has some

1As shown in the empirical literature, reviewed in Section 2.4.
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information about its future productivity, it cannot perfectly foresee it. As a result, when the
firm invests resources in R&D, the innovation outcomes stemming from these investments are
uncertain.

In a world without private information, the government could perfectly correct for the tech-
nology externality through a Pigouvian subsidy, and for the lack of appropriability of innovation
through a prize system. The asymmetric information means that the government needs to take
incentive constraints into account when designing its innovation policies and limits how close
the economy can get to full efficiency. We show that the need to screen firms may starkly modify
the recommendations that arise with observable firm types.

Studying optimal policy under asymmetric information in a dynamic R&D investment model
with spillovers is technically involved: the tractable model presented in Section 2 is one of our
contributions. We pose the problem as one of mechanism design, in which we do not ex ante
restrict the policies that the government can use: in this direct revelation mechanism, the gov-
ernment can directly choose allocations for each firm type, subject only to the asymmetric in-
formation incentive constraints. We build on new mechanism design methods described below
and extend them by offering a new approach to allow for spillovers between agents (firms) in
the presence of asymmetric information. By doing so, we provide an entirely new and gen-
eral framework to study the taxation of firms that captures key elements such as market power,
investments, production, heterogeneity in productivity, intellectual property, and asymmetric
information.

We first characterize the constrained efficient allocations that arise in this direct revelation
mechanism with spillovers. The optimal incentives for R&D trade off a Pigouvian correction for
the technology spillover and a correction for the monopoly distortion against the need to screen
good firms from bad ones. How much R&D should be subsidized depends critically on a key
parameter, namely the complementarity of R&D investment to R&D effort (i.e., the complemen-
tarity between observable and unobservable innovation inputs) relative to the complementarity
of R&D investment to firm research productivity. The more complementary R&D investment is
to unobservable firm research productivity, the more rents a firm can extract if R&D investment
is subsidized. This complementarity puts a brake on how well the government can correct for
the technological spillovers and the monopoly distortion. Optimal screening in this case requires
dampening the first-best corrective policies. On the other hand, if R&D investments are more
complementary to unobservable firm R&D effort, they stimulate the firm to employ more of the
unobservable input, which makes the optimal R&D subsidies larger. The persistence of firms’
research productivity shocks and the strength of spillovers are other key determinants of the
optimal policies. We show that these constrained efficient allocations can be implemented with
a parsimonious corporate income tax function.

We take our model to firm-level data matched to U.S. Patent Office Patent data. This allows
us to measure firms’ inputs into R&D, their production decisions, and their innovation output,
as captured by their patents and citations. Our parameter estimates allow us to quantify the
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optimal policies. We can also study how well simpler innovation policies can approximate the
unrestricted mechanism by comparing the revenue raised from the optimal policies to the revenue
raised under restricted (and simpler) policies.

In the data, we find that R&D investments are highly complementary to a firm’s research pro-
ductivity and that higher productivity firms generate disproportionately more innovation from
a given R&D investment. Since higher productivity firms have a comparative advantage at inno-
vation, it is better to incentivize R&D investments less for lower productivity firms. Otherwise,
it becomes excessively attractive for high productivity firms to pretend to be low productivity
ones (i.e., “to mimic” low productivity firms). We discuss how these incentives translate into
“wedges” and then into actual taxes and subsidies.2

Regarding the wedges, on balance, a higher net incentive for R&D for higher research pro-
ductivity firms is provided with a lower profit wedge at higher profit levels and a lower R&D
wedge at higher R&D levels. Intuitively, higher productivity firms are able to generate more
profits from the same research investments, and an allocation with a lower profit wedge and a
lower R&D wedge is more attractive to high-productivity firms than to low productivity firms.

Regarding taxes and subsidies, a nonlinear, separable Heathcote-Storesletten-Violante (HSV)
type subsidy combined with an HSV-type profit tax performs almost as well as the optimal policy.
It features decreasing marginal profit taxes (increasing marginal profit subsidies) at higher profit
levels, and decreasing marginal R&D subsidies at higher R&D investment levels. This policy
perfectly mimics the shape of the wedges. Quantitatively, the most important feature is the
nonlinearity in the R&D subsidy: making the profit tax linear (and lower) only generates a small
welfare loss. The intuition is that a constant profit tax that is more generous than it should be for
low profit firms, and at about the right level for high profit firms, does reasonably well since the
loss from being too generous to low profit firms is small (because taxing their low profit levels
does not yield much revenues to start with). Thus, linear corporate income taxes–common in
practice– can be very close to optimal for innovating firms if combined with the right nonlinear
R&D subsidy.

Related Literature. There is a long-standing static contract theory literature on the regulation of
firms under private information (Laffont and Tirole, 1986; Baron and Myerson, 1982). Very few
papers consider the regulation of research and innovation: Sappington (1982) does so in a simple
static model.

Some papers study the corrective role of personal income taxes when there are externalities
such as rents (Rothschild and Scheuer, 2016; Piketty et al., 2014; Lockwood et al., 2017). These
models are static, focus on individuals rather than firms, and consider a relatively blunt tool
(income taxation) because the externality-inducing action cannot be directly taxed or subsidized.

We also contribute to the new dynamic public finance literature that uses mechanism design

2Wedges measure the distortion in allocations relative to the laissez-faire economy’s allocations and are thus akin
to implicit taxes and subsidies.
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tools to study the dynamic income taxation of agents under idiosyncratic risk. Methodologically
related papers are, among others, Albanesi and Sleet (2006), Farhi and Werning (2013), Golosov,
Tsyvinski, and Werning (2006), Golosov, Tsyvinski, and Werquin (2014), Sachs, Tsyvinski, and
Werquin (2016), and Werquin (2016). Closest are the papers by Stantcheva (2015) and Stantcheva
(2017), which incorporate endogenous investments in human capital into the (personal) dynamic
tax problem. We build on the mechanism design methodology developed in Pavan, Segal, and
Toikka (2014), which we augment with dynamic spillovers and a realistic, infinite-horizon dy-
namic life-cycle model of innovating firms, with technology spillovers. In our model, the firm’s
asymmetric information about its research productivity evolves stochastically over time. We also
take into account the private market between intermediate and final goods producers. To solve
the model with spillovers, we extend the two-step approach with an “inner” and “outer” prob-
lem proposed by Rothschild and Scheuer (2013) to this dynamic, infinite-horizon firm setting.

Theoretically, our contributions are, first, the addition of spillovers between agents (in our
case, firms). Because of this important extension, the solution methods are different, both the-
oretically and computationally. We are able to capture key elements such as market power,
investments, production, heterogeneity in productivity, intellectual property, asymmetric infor-
mation, and an infinite horizon. This framework is very malleable: we illustrate several possible
extensions in Online Appendix OA.3 and, depending on the question at hand, parts of it can also
be shut off. In particular, our model could be used to study firm taxation more broadly, when
the main goal is not to incentivize innovation, but when firms’ have unobservable and stochastic
productivity types. Computationally, we take the major step of fully estimating this dynamic
model with spillovers in the data, giving precise empirical content to the variables in our model
thanks to the match between patent data and firm-level data.

Grossman et al. (2013) study the optimal time path of R&D subsidies in a standard semi-
endogenous growth model and the welfare loss from implementing the long-run optimal invari-
ant policy. There are several key differences to our setting: the authors adopt a Ramsey-approach
(linear policies) where they parameterize the policies ex ante and have numerical solutions. We
adopt a mechanism design approach. Their model contains neither heterogeneous firm produc-
tivities nor private information about these productivities.

We also use findings from the empirical literature on R&D and productivity to discipline
our model and estimation (Goolsbee, 1998; Bloom et al., 2002; Bloom and Griffith, 2001; Bloom
et al., 2002). Bloom and Van Reenen (2007), Bloom et al. (2012), and Bloom et al. (2013) lends
support to the idea that firms are heterogeneous in terms of the efficiency with which they can
put their resources to productive use, and that these differences may be exceedingly difficult for
the government or regulator to see. Several papers document the gap between the private and
social returns to R&D and spillovers (Jones and Williams, 1998, 2000); we rely on the estimates
from Bloom et al. (2013) to pin down the magnitude of spillovers.

The rest of the paper is organized as follows. Section 2 presents our dynamic model and dis-
cusses its assumptions, providing empirical justification for our focus on asymmetric information
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in innovation. Section 3 sets up and solves the full dynamic model; Section 4 discusses the forces
that shape the optimal policies. Section 5 estimates the model using firm data matched to patent
data and simulates the optimal policies. Section 6 considers the welfare loss from simpler, re-
stricted policies relative to the full optimum. Section 7 points to directions for future research.
The Online Appendix contains all proofs and a description of our computational procedure. A
Supplementary Materials Appendix, attached to the working paper version (Akcigit et al., 2021)
contains a simpler 2-type, one-period version of the model and many sensitivity and robustness
checks for the estimation.

2 A Dynamic Model of R&D Investments

We present a dynamic model of R&D investments with spillovers that is tractable enough to
theoretically study optimal mechanism design with asymmetric information. As mentioned in
the introduction, first, this model can be used to study other types of firm investments with
asymmetric information and spillovers. Second, with our core setup and methodology in place,
we can incorporate additional aspects of R&D investments by firms. Some of these generaliza-
tions are discussed in Section 2.5, together with our modeling choices. Finally, by turning off
certain aspects such as spillovers and specifying a particular market structure between final and
intermediate good producers, our framework is also amenable to studying firm taxation with
heterogeneous firms more generally, even for non-innovating firms.

2.1 Setting

At the core of the model are firms, producing and selling differentiated intermediate goods. They
engage in R&D to improve the quality of their differentiated products through innovation. There
are both observable and unobservable R&D inputs. More precisely, the quality qt at time t of the
intermediate good evolves according to:

qt = H(qt−1, λt),

where λt is the endogenous quality improvement for period t, which we call the “step size:”

λt = λt(rt−1, lt, θt).

The step size depends on three components:

(i) Observable R&D inputs: rt−1 denotes the resources that the firm spent on R&D in period
t − 1. They include the pay of scientists and researchers, lab equipment, material supplies, and
raw materials for research and innovation. Their monetary cost is Mt(rt), with M′

t(rt) > 0 and
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M′′
t (rt) ≥ 0.3 We call these observable inputs “R&D investments.”

(ii) Unobservable R&D inputs: Each firm also needs to provide some unobservable R&D in-
puts, which cannot be directly monitored by the government. One such input is unobservable
research effort, which is required in order to transform the material resources into an innovation
output. We call these unobservable R&D inputs “R&D effort” for concreteness, although they
could include other costly, unobservable actions taken at the organizational level that contribute
to research. These unobservable R&D inputs are denoted by lt and entail a cost ϕt(lt) for the
firm, which is increasing and convex.

(iii) Firm type: Every firm has a type θt that determines the efficiency with which it converts the
observable and unobservable inputs rt−1 and lt into innovation (product quality), called “research
productivity.” For instance, θ may represent the efficiency of management, an interpretation
bolstered by recent papers on the importance and heterogeneity of management practices across
firms (Bloom and Van Reenen (2007), Bloom, Sadun, and Van Reenen (2012), Bloom et al. (2013)).
The type can also be a composite measure of several exogenous characteristics of a firm that shape
its efficiency in producing innovations, such as the quality of its organization, of its business
model, or of its “ideas.” What is key is that firms differ in their ability to produce innovation and
that this ability is hard to observe by a government or regulator.

It is critical to bear in mind that, for policy design purposes, it is equivalent whether a char-
acteristic (such as research productivity) is truly unobservable or whether it is simply impossible
to condition policies on it. In either case, it is necessary to include the incentive compatibility
constraints that will be at the core of our mechanism design problem. In addition, if innovation
output depends on unobservable (or non-verifiable) characteristics such as research productiv-
ity, it also means that there are some unobservable inputs. These unobservable inputs prevent
the government from perfectly “inverting” the innovation outcome (conditional on observable
inputs) to obtain the firm’s productivity type. If all inputs were perfectly observable (i.e., the
firm could not misreport them) there would be no asymmetric information problem. In Section
2.4 we provide abundant empirical evidence on the prevalence of asymmetric information in the
innovation arena.

The type θt evolves over time according to a Markov process f t(θt|θt−1) on Θ = [θ, θ̄]. Denote
by θt the history of type realizations until time t, i.e., θt = {θ1, ..., θt}, and by P(θt) the probability
of that history:

P(θt) := f t(θt|θt−1)... f 1(θ1).

We assume that:

∂λ

∂θ
> 0,

∂λ

∂r
> 0,

∂λ

∂l
> 0, and

∂2λ

∂θ∂l
> 0,

3Taking a broad view of these material inputs is consistent with the fact that many types of material inputs and
expenses are eligible for R&D tax credits or subsidies (Tyson and Linden, 2012).
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so that higher realizations of research productivity θ, higher R&D investments and higher effort
lead to a larger step size, and the marginal returns to effort are higher for higher types of firms
(this assumption will permit screening types).

Let us emphasize the two related, but conceptually very distinct terms used: Firms’ product
quality refers to the product quality qt of the intermediate good produced by the firm. Firm
research productivity refers to the efficiency type of the firm, θt, which affects the innovation
process that produces the product quality qt.4

Note that because the step size depends on lagged R&D investments and on the stochastic
realization of θt, about which the firm has some, but not perfect, advance information at the
time the R&D investment decisions rt−1 are made, the returns to R&D are both stochastic and
heterogeneous across different types of firms. This captures the notion that spending on R&D
has uncertain returns and is not guaranteed to lead to a good innovation. The distinction in the
timing between R&D investments and effort has no technical implications and will not change
our results qualitatively or quantitatively.5 Conceptually, R&D investments can be thought of as
observable investments that–much like physical capital investments–take a while to yield returns
and are determined before the uncertainty is realized. R&D effort can be viewed as inputs that
can more easily be adjusted in response to the current state, i.e., utilization rate of the equipment,
managerial input, process improvements, labor effort of researchers, etc.

Input Complementarity. We can characterize the complementarity between the three different
inputs that enter the step size using the Hicksian coefficient of complementarity (Hicks, 1970),
which will be important for our results. For any two variables (x, y) ∈ {θt, rt−1, lt} × {θt, rt−1, lt},
the Hicksian coefficient of complementarity between variables x and y in the step size creation is
denoted by:

ρxy =

∂2λ
∂x∂y λ

∂λ
∂x

∂λ
∂y

.

The higher coefficient ρxy is, the more inputs x and y are complementary in the production of the
step size. To give a few examples, suppose that the step size function takes the multiplicatively
separable form:

λt(rt−1, lt, θt) = h1
t (rt−1)h2

t (lt)h3
t (θt)

for some increasing functions h1
t , h2

t , and h3
t . Then, ρθl = ρθr = ρlr = 1. On the other hand, an

additively separable step size function

λt(rt−1, lt, θt) = h1
t (rt−1) + h2

t (lt) + h3
t (θt)

4To clarify a sometimes confusing point: once produced, innovations are non-rival and non-appropriable absent
IPR. The inputs into that innovation are, as usual, rival.

5If the timing was contemporaneous, the sums and expectations for the R&D wedge in Proposition 1 should simply
be lagged one period.
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would have ρθl = ρθr = ρlr = 0. Finally, a CES function of the form:

λt(rt−1, lt, θt) = (αrr
1−ρt
t−1 + αθθ

1−ρt
t + αl l

1−ρt
t )

1
1−ρt

has ρθl = ρθr = ρlr = ρt.

Figure 1: Model Summary

Household

Government

Final Goods producer Intermediate Goods producers

Yt =
∫
i Y (qt(i), kt(i))di

• Production

– Quality qt(i), quantity kt(i)

– Demand: p(kt(i), qt(i))

– Spillovers: aggregate quality: q̄t =
∫
i qt(i)di

– π(qt(i), q̄t) = max
k
{p(k, qt(i))k − C(k, q̄t)}

Intellectual
Property Policy

Max consumption

R&D & Tax Policies

Demand p(k(i), q(i))

1

Quality Spillovers. An important element of the model is the presence of spillovers between
firms. One firm’s innovation has a beneficial effect on the production costs of other firms. Such
spillovers can reflect the direct use of better technologies and processes in production and learn-
ing from new technologies to improve one’s production. The specific shape of the knowledge
spillovers in our model is taken from Akcigit and Kerr (2018) to capture the idea of “building
on the shoulders of giants” (Aghion and Howitt, 1992; Romer, 1990). Importantly, however, the
exact shape of the spillovers is not key for our theoretical results and the spillovers could appear
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in different parts of the model, as discussed in more detail below.6 Aggregate quality is given by:

q̄t =
∫

Θt
qt(θ

t)P(θt)dθt.

The production cost of each firm is decreasing in aggregate quality so that the cost of producing
k units of intermediate goods is Ct(k, q̄t).

Final Goods Production. The final good is consumed by consumers and is produced compet-
itively using the intermediate goods as inputs. The production technology for the final good
is:

Yt =
∫

Θt
Y(qt(θ

t), kt(θ
t))P(θt)d(θt),

where Y(qt(θt), kt(θt)) is the contribution of the intermediate good of firm θt to the final good,
and depends on the quantity kt(θt) and the quality qt(θt) of the intermediate good of firm θt.
The price of the final good is normalized to one. The demand function for the intermediate good
that arises in the market will depend on the IPR regime.

Patent Protection and Monopoly Power. In this setting, one way of capturing different IPR
regimes is through different demand functions p(qt(θt), kt(θt)). Our benchmark case mirrors
the current state of the world and grants the innovating firm full patent protection. Thus, the
intermediate good producer has monopoly power and faces a downward sloping demand curve
derived from the optimization problem of the final good producer, which is a function of the
quality and quantity, p(q, k) = ∂Y(q,k)

∂k .

Firm Life Cycle. Firms live for an infinite number of periods. We assume a small open economy
with gross interest rate R. Let θt|θ1 denote a history θt such that the period 1 type realization is
θ1 and let P(θt|θ1) be the probability of that history after initial realization θ1. In the laissez-faire
economy, the firm chooses quality qt(θt), quantity kt(θt), R&D investments rt(θt), and R&D effort
lt(θt) to maximize its objective given its initial type θ1, initial quality q0 and R&D investments r0:

∞

∑
t=1

(
1
R

)t−1 ∫

Θt

(
p(qt(θ

t), kt(θ
t))kt(θ

t)− C(kt(θ
t), q̄t)− Mt(rt(θ

t))− ϕt(lt(θ
t))
)

P(θt|θ1)d(θt|θ1) (1)

subject to the law of motion of quality qt(θt) = H(qt−1(θ
t−1), λt(lt(θt), rt−1(θ

t−1), θt)).

Production Decision. Given the demand function p(q, k), let production profits gross of R&D
costs be:

π(qt(θ
t), q̄t) := max

k
{p(qt(θ

t), k)k − C(k, q̄t)}.

6In brief, all our formulas will be expressed at a general level as functions of net output and profits, which will
depend on own quality and aggregate quality. The channel could be through the cost (as here), directly through the
demand function (note that the equilibrium price always depends on aggregate quality), or through the innovation
production function.
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The firm’s maximization pins down the quantity produced for a given quality level. Figure 1
summarizes the model in schematic and static form.

2.2 Social Welfare

Consumer surplus is equal to the consumption of the final good, net of all transfers to firms. The
gross transfer to the firm of type θt in period t is the sum of its production costs (C(kt(θt), q̄t)),
R&D costs (Mt(rt(θt))), and a net transfer denoted by Tt(θt). The exact shape of this net transfer
will be specified depending on the market structure and information structure in each of the cases
considered below (in the laissez-faire case, the gross transfer is just price times quantity and the
firm payoff is as in (1)). Consumer surplus in period t is thus: Y(kt(θt), qt(θt))− (C(kt(θt), q̄t) +

Mt(rt(θt)) + Tt(θt)). Let vt(θt) be the period t payoff (surplus) of a firm with history θt:

vt(θ
t) = Tt(θ

t)− ϕt(lt(θ
t)). (2)

Social welfare (the objective the planner maximizes) is a weighted sum of consumer surplus plus
firm surplus:7

∞

∑
t=1

(
1
R

)t−1 (∫

Θt

(
Y(kt(θ

t), qt(θ
t))− (C(kt(θ

t), q̄t) + Mt(rt(θ
t)) + Tt(θ

t)) + (1 − χ)vt(θ
t)
)

P(θt)d(θt)

)
. (3)

The key benchmark case in the contract theory literature has χ = 1 so that the social objective
becomes maximizing total social surplus (consumer plus firm surplus), minus all informational
rents, the so-called “virtual surplus.” Note also that, even absent any redistributive concerns,
maximizing efficiency essentially amounts to maximizing a weighted sum of surpluses of con-
sumers and firms, if we assume, as is standard in the contract theory literature that the planner
can only raise the money for transfers through some distortionary method (e.g., excise taxes
or distortionary income taxes on households), so that the cost of one unit of transfer is weakly
greater than one (see Laffont and Tirole (1986)).

2.3 Two Market Failures and First Best Allocation

There are two market failures in this setting (in the absence of any government intervention): first,
the lack of appropriability of innovation means that there will be no investment in innovation
as long as producers’ profits are not protected by some IPR. Second, there are non-internalized
technology spillovers that affect others’ production technologies.

Suppose the planner could observe firm types and that transfers are perfectly non-distortionary
(χ = 0).8 Social welfare is then Wfirst-best, equal to total expected discounted output net of pro-

7The final goods producer always has zero payoff because it operates under perfect competition.
8Under full information, type-specific lump-sum transfers and taxes are feasible.
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duction costs, R&D investment costs, and R&D effort costs:

Wfirst-best =
∞

∑
t=1

(
1
R

)t−1 (∫

Θt

(
Y(kt(θ

t), qt(θ
t))− C(kt(θ

t), q̄t)− Mt(rt(θ
t))− ϕt(lt(θt))

)
P(θt)d(θt)

)
.

The first-best maximization program is:

max
{lt(θt),rt(θt),kt(θt)}t,θt

Wfirst-best s.t. qt(θ
t) = H(qt−1(θ

t−1), λt(lt(θ
t), rt−1(θ

t−1), θt))

with q0 and r0 given.
Conditional on a given quality qt(θt), the production choice of the planner is k∗(qt(θt), q̄t).

Denote by Y∗(qt(θt), q̄t) = Y(k∗t (qt(θt), q̄t), qt(θt)) the optimized consumption of the intermediate
good, and by Ỹ∗(qt(θt), q̄t) = Y∗(qt(θt), q̄t)− C(k∗(qt(θt), q̄t), q̄t) consumption net of production
costs for the intermediate good.

For the exposition, we simplify the accumulation equation of quality to be

qt = (1 − δ)qt−1 + λt with 0 < δ < 1,

where δ is the depreciation factor. None of the results depend on this simplification, but the
notation is much lighter.

Firms then choose R&D investment and effort so that their total marginal social benefit equals
their marginal costs:

M′
t(rt(θ

t)) =
1
R

E

(
∞

∑
s=t+1

(
1 − δ

R

)s−t−1 (∂Ỹ∗(qs(θs), q̄s)

∂qs
+

∂Ỹ∗(qs(θs), q̄s)

∂q̄s

)
∂λt+1(θ

t+1)

∂rt(θt)

)

ϕ′
t(lt(θ

t)) = E

(
∞

∑
s=t

(
1 − δ

R

)s−t (∂Ỹ∗(qs(θs), q̄s)

∂qs
+

∂Ỹ∗(qs(θs), q̄s)

∂q̄s

))
∂λt(θt)

∂lt(θt)
,

where the expectation operator is over histories θt.

2.4 Asymmetric Information and Government Policies

Asymmetric Information Structure. The core asymmetry of information, which holds through-
out this paper, is that the history of research productivity realizations θt and the unobservable
R&D effort lt are private information for each firm. In the benchmark case, the government ob-
serves the full histories of R&D investment rt, quality improvements (the step size λt) and the
realized quality qt. To make this more concrete, think of the government observing past patents
granted to each firm and their citations. Quantity k(θt) is unobservable as well, or, equivalently,
cannot be conditioned on by the government. This amounts to saying that the government can-
not intervene directly in the market between the intermediate and final good producer and has
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to take as given their production decisions. In the Supplementary materials S.2, we consider the
case in which the government can intervene in that market because quantity is observable.

Government Policies Considered. We study several types of government policies. First, we take
a mechanism design approach and consider the optimal unrestricted direct revelation mecha-
nism, which is subject only to the incentive compatibility constraints that arise due to asymmet-
ric information on firm type, R&D effort, and quantity produced. We relax the unobservability
of quantity in Section S.2. We do not constrain policy tools ex ante, but rather find the optimal
allocations subject to only incentive compatibility constraints and then show what tax functions
can implement these allocations (Section 4.2). We subsequently study the shape of and revenue
losses from restricted, parametric instruments, which are simpler (Section 6).

The Importance of Asymmetric Information. We now highlight why asymmetric information is
a crucial feature in the innovation process. First, we summarize the abundant literature showing
the prevalence of asymmetric information; second, we show in our data that it is very difficult to
predict a firm’s innovation quality based on observables.

In our model, the productivity type of the firm, θ, embodies elements such as the quality of
the manager, of its organization, business model, or ideas. It is quite clear that these elements
are very hard to observe or, equivalently from the point of view of the government, to condition
policies on.9 A large literature argues that asymmetric information is likely to be a key issue in
innovation. Hall and Lerner (2009) summarize several of these contributions. In their terminol-
ogy, asymmetric information refers to the fact that the innovator has “better information about
the likelihood of success” than anyone else, including investors and the government. Based on
the abundant literature on the asymmetric information between innovators and investors–which
leads to financing frictions and inefficiencies–they argue that such informational frictions are
likely to carry over in an even more pronounced way to the interaction between inventors and
the government. They also caution against trying to reduce information asymmetry by man-
dating fuller disclosure, which can be entirely unproductive in the innovation arena because
innovations can be easily imitated. Thus, revealing one’s productivity (quality of the idea, man-
agement style, or organizational process) to the government runs the risk of revealing it to one’s
competitors, which will distort the quality of the signal provided.

The need for screening is embodied in the existence and size of the venture capitalist (VC)
industry. Gompers (1995) and others have argued that VCs tend to operate in areas where
asymmetric information problems are more common, such as high-technology and innovating
sectors. Kaplan and Stromberg (2001) also document the intensive efforts that VCs put into
screening possible entrepreneurs in order to directly circumvent asymmetric information issues.
The severity of the asymmetric information problem is illustrated by the fact that, “even highly-

9Recall that for policy design purposes, it is equivalent whether a variable is truly unobservable or simply impossi-
ble to condition policies on. In both cases, the incentive compatibility constraints at the core of our mechanism design
problem are needed.
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skilled VCs cannot distinguish in advance the next Google from the other cases” (Kerr et al.,
2014). Given that VCs face asymmetric information problems despite the huge time investment
and detailed involvement in the firms that they fund, it is hard to imagine that the government
would not be facing much larger informational problems when designing a decentralized tax
system that does not micro-manage or directly intervene in firms.

Several papers have also looked at responses of stock prices as another symptom of the
asymmetric information problem inherent in innovation (Zantout, 1997; Alam and Walton, 1995;
Gharbi et al., 2014). Aboody and Lev (2000) show that insider gains are larger at R&D intensive
firms than firms without R&D because that is where asymmetric information is higher.

Finally, the literature also highlights that not all R&D inputs are easily verifiable. Hall and
Van Reenen (2000) call this the “relabeling” problem and offer many examples. Mansfield (1986)
surveys the effects of R&D tax credits in the US, Canada, and Sweden and finds that there is
substantial misreporting. More recently, Chen et al. (2021) document that around 30% of reported
R&D investment by Chinese firms could be due to relabeling.

We can also directly provide some suggestive evidence for asymmetric information in our
data. We study what share of the innovation quality of a firm can actually be predicted based
on observables. We explain our data and measurement in more detail in Section 5. In brief,
we measure the quality of the innovations of a firm by its patent citations, namely all forward
citations that accrue to a firm’s patents until today (Hall et al., 2001). We regress the citations-
weighted patents of a firm on a whole range of controls, such as sector and year fixed effects (or
even the interaction between these two), lagged sales, employment, R&D spending, age, balance
sheet variables, etc. We then look at how well we can predict the quality of the firm’s innovations.
The prediction is quite poor. Even adding such an exhaustive list of control variables, the R-
squared of these regressions barely moves above 0.3. In addition, it is especially difficult to
predict performance based on data from the first few years of a company’s life cycle (when
there is only a short track record available) and very difficult to predict which firms will become
“superstars” i.e., receive highly-cited and influential patents. Again, this set of information is
likely a very generous upper bound on what the government could realistically condition taxes
on. Furthermore, if taxes actually depended on these variables, firms would of course respond
along these margins too (like they do along the profit and R&D margins in this paper), so they
are not tag-like signals that are immutable to taxation.10

2.5 Discussion of the Assumptions and Possible Generalizations

Additional Firm Heterogeneity. Firms may be heterogeneous along many dimensions, such as
their sector or the type of product. If the government or regulator wants to fine tune the policy
for firms according to some observable vector of characteristics X, then the mechanism needs to

10These results are by no means a formal “test” of asymmetric information. It may be that the prediction could be
improved with different, better data or methods and it is always very difficult to disentangle heterogeneity (generating
asymmetric information) from uncertainty (which is consistent with symmetric information).
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condition on X. Since X is observable, this does not require adding any incentive constraints and
only increases the state space to be kept track of. We explicitly discuss heterogeneity in firms’
production productivities in Section OA.3.

Entry and Exit. In principle, firms in our model only make intensive margin decisions about how
much to produce. Exit is captured only through the discount rate R that combines the interest
rate and an exogenously given exit or death rate. The discount rate could also depend on age.
Regarding entry, firms in the model enter jointly with their cohort. Free entry could affect the
size of a cohort and entry barriers could be studied as a policy tool in the model as well.11

The Role of IPR. Our focus is not on IPR, but on the design of R&D policies. However, the
shape and magnitude of optimal R&D policies depend on the IPR policies. Our starting point
is to model the IPR policy as it currently is in the world, namely granting patent protection and
monopoly rights to innovating firms.12 As a result, part of the role of R&D policies will be to par-
tially correct for the monopoly distortion induced by the patent system.13 We also consider two
different cases based on whether the government can intervene in the private market between
intermediate and final good producers, i.e., whether it can observe and make the optimal policy
contingent on the quantity k produced. Our benchmark case is when the government cannot
control quantity. We cover a setting in which the government can control quantity in Supplemen-
tary materials S.2. In this case, given that quality is observable, the government can incentivize
the socially optimal quantity to be produced and thus counteract the monopoly distortion.

Shape of the Spillovers. The exact shape of the spillovers will not be important for our the-
oretical results and will not affect the forces we describe and the key qualitative mechanisms.
Following Akcigit and Kerr (2018), we suppose spillovers affect the costs of production. This
captures the idea of “building on the shoulders of giants” in innovation models. Innovations
improve the productivity of production labor and/or the process with which firms produce.
Think for instance of computers (an innovation from the point of view of one or several firms)
that are then being bought and used in other companies to produce better, cheaper, and faster.
Alternatively, one can think of other innovations in communication technologies, production
technologies, or health improvement, etc. However, our theoretical framework is general enough
that spillovers could appear in other parts. We could instead specify them as directly affecting
the cost of producing innovations: qt = H(qt−1, λt, q̄t). The formulas below are expressed in
terms of general profit functions or net output functions that depend in a reduced-form way on

11For instance, the government could endogenously set a lower bound for θ.
12One may instead consider another system, such as patent for protection for x years or patent protection for a

fraction of the monopoly profits.
13If the world were different, and there was an IPR policy that did not grant monopoly power, e.g., a prize system,

then the R&D policies would not be set to make up for the monopoly distortion. Whenever the product quality is
observable, the optimal IPR is very simple and amounts to paying the innovating intermediate good producer a prize
to buy the innovation, and then produce the socially optimal quantity. An equivalent system is to have full patent
protection, but pay a nonlinear price subsidy to the monopolist that aligns the private valuation of quantity with its
social valuation.
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both own quality and aggregate quality. This is a quite general formulation that will apply for
many types of spillovers, regardless of the specific functional form assumptions. Another possi-
ble variant would be to let lagged aggregate quality q̄t enter either the production cost function
or the innovation production function. This will merely cause a shift in the time indices in the
formulas, but not change anything substantial.

Different Types of Investments with Different Externalities. It is possible to consider differ-
ent types of firm investments that each generate different externalities (see Section OA.3). For
instance, investment in new drug discovery may have larger positive spillovers than investment
aimed at improving machinery that is only used by few firms.

3 A Dynamic Direct Revelation Mechanism with Spillovers

Recall that each firm’s history θt and research effort lt are private information. The government
observes the step size λt, the realized quality qt, and the R&D investment rt. To solve for the
constrained efficient allocations, we imagine that the government designs a direct revelation
mechanism in which, every period, each firm reports a type θ′t(θ

t) as a function of their history
θt. Denote a reporting strategy by σ = {θ′t(θ

t)}∞
t=1. A reporting strategy generates a history

of reports θ′t(θt). The government then assigns allocations of step sizes and R&D investments,
denoted by x(θ′t) = {λ(θ′t), r(θ′t)}Θt and a transfer Tt(θ′t) as functions of the history of reports.
For simplicity, we normalize the starting R&D investment for all agents to be r(θ0) = r0.14 Let
lt(λt(θ′t(θt)), r(θ′t−1(θt−1), θt) denote the R&D effort that would have to be provided for true
type θt who reports θ′t (and, hence, had to invest r(θ′t−1(θt−1) in the previous period and has to
produce a step size of λt(θ′t(θt))). We can make the following assumption for simplicity.

Assumption 1. (lt, rt) belongs to a convex and compact set.

Suppose that the vector of aggregate qualities {q̄t}∞
t=1 is given. The continuation value after

history θt under reporting strategy σ, denoted by Vσ(θt), given allocation rule is:

Vσ(θt) = Tt(θ
′t(θt))− ϕt(lt(λt(θ

′t(θt)), r(θ′t−1(θt−1), θt)) +
1
R

∫

Θ
Vσ(θt+1) f t+1(θt+1|θt)dθt+1.

Vσ(θt) depends on the report-contingent allocations specified by the government, but this de-
pendence is implicit to lighten the notation. Let the continuation value under truthful reporting
be V(θt). Incentive compatibility requires that, after every history, and for all reporting strategies
σ,

V(θt) ≥ Vσ(θt) ∀σ, θt.

14Since r0 is observable, if it were heterogeneous across firms, allocations would need to be specified as functions
of (θt, r0), which does not complicate the problem, but makes the notation heavier.
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Under truth-telling, the continuation utility as of the first period in sequential form is:

V1({λ(θs), r(θs), Ts(θ
s)}∞

s=1 , θ1) =
∞

∑
t=1

(
1
R

)t−1

·
{∫

Θt

{
Tt(θ

t)− ϕt(lt(θ
t))}

}
P(θt|θ1)dθt

}
(4)

with lt(θ
t) := lt(λt(θ

t), rt−1(θ
t−1), θt).

3.1 A First-order Approach

We use a first-order approach, which replaces all the incentive constraints of agents with their
envelope conditions.15 If the agent’s report after history θt is optimally chosen, the envelope
theorem tells us that the change in continuation utility from a change in the type is only equal to
the direct effect of the type on utility (the indirect effect of the type on the allocation through the
report is zero).

We now focus on a Markov process, although many of the results are generalizable to a
broader set of processes. Let I1,t(θ

t) be the impulse response function of the type realization in
period t to a shock in the type realization at time 1, defined as, for any Markov process,

I1,t(θ
t) =

t

∏
s=2


−

∂Fs(θs|θs−1)
∂θs−1

f s(θs|θs−1)


 .

The impulse response function captures the persistence of the stochastic type process. For in-
stance, for an autoregressive process where θt = p̃θt−1 + εt, the impulse response is simply
I1,t(θ

t) = p̃t−1. We now make two technical assumptions that will allow us to apply the first-
order approach, and which are directly adapted from Milgrom and Segal (2002).

Assumption 2. f s(θs|θs−1) > 0 ∀θs, θs−1 ∈ Θ.

This is the full support assumption, which can be relaxed as in Farhi and Werning (2013) to allow
for a moving support over time.

Assumption 3. ∂Fs(θs|θs−1)
∂θs−1

exists, is bounded, and ∂Fs(θs|θs−1)
∂θs−1

≤ 0.

Assumption 3 states that the distribution function is differentiable in θt−1, that its derivative is
bounded, and that a higher type realization in period s increases the realization of the period
s + 1 type in a first-order stochastic dominance sense. If it is satisfied, then Is,t(θt) is well-
defined, non-negative, and bounded. We could replace the boundedness assumptions with the
assumption that Fs(θs|θs−1) is either convex or concave in θs−1 on Θ. All the examples we discuss,
such as an AR(1), log AR(1), iid, or a fully persistent process satisfy this assumption.

We can rewrite the per-period payoff of the firm from (2) as a function of the allocation of
transfer, step size, and past R&D spending and given its true type θt:

vt(Tt, λt, rt−1; θt) = Tt − ϕt(lt(λt, rt−1, θt)).
15See Pavan et al. (2014), Farhi and Werning (2013), and Stantcheva (2017).
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Note that ∂vs
∂θs

= ϕ′(ls(θs)) ∂λ(ls(θs),rs−1(θ
s−1),θs)/∂θs

∂λ(lt(θs),rs−1(θs−1),θs)/∂ls
. Because of Assumption 1 and the continuity of ϕ′

and λ, this expression is bounded. The envelope condition in its derivative form is given by:

∂V(θt)

∂θt
= E

(
∞

∑
s=t

It,s(θ
s)

(
1
R

)s−t ∂vs(θs)

∂θs
| θt

)
. (5)

Let V1(θ1) be the expected continuation utility as of period 1 for agents with initial type θ1. The
participation constraints are for all θ1:

V1(θ1) ≥ 0. (6)

The integral form of this envelope condition at history θt is:

V(θt−1, θt) =
∫ θt

θ

∂V(θt−1, m)

∂m
dm + V(θt−1, θ). (7)

This gives an expression for the informational rent the principal must give to the agent at node
θt to entice the agent to report their true type.

3.2 Planner’s Problem

The planner’s objective is to maximize social welfare in (3) subject to the incentive constraints in
(5) and participation constraints in (6). For simplicity, we set χ = 1.16

Fix a given sequence of aggregate qualities, q̄ = {q̄1, ...q̄T}. The planner cannot directly
choose the quantity, so the intermediate good producer will choose its quantity k(qt(θt), q̄t) to
maximize profits p(qt(θt), k)k − C(k, q̄t). This yields consumption net of production costs equal
to Ỹ(qt(θt), q̄t) = Y(qt(θt), k(qt(θt), q̄t))− C(k(qt(θt), q̄t), q̄t). The objective becomes:

W(q̄) = E

{
∞

∑
t=1

(
1
R

)t−1 {
Ỹ(qt(θ

t), q̄t)− Mt(r(θt))− Tt(θ
t)
}
}

.

Using the expression for V1(θ1) from (4), we can replace the sum of transfers Tt(θt) to obtain:

−E

(
∞

∑
t=1

(
1
R

)t−1

Tt(θ
t) | θ1

)
= −V1(θ1)− E

(
∞

∑
t=1

(
1
R

)t−1

ϕt(lt(θ
t)) | θ1

)
.

Under assumption 3, all that is needed to satisfy all participation constraints is to set V1(θ1) = 0.
Using the expression for the informational rent that needs to be forfeited to each agent from (7),
the expected discounted payoff to the planner is the “virtual surplus,” i.e., the total social surplus

16This is the typical case in the contract theory literature, which aims to maximize total social surplus (efficiency)
and minimize rents. Any χ < 1 will simply appear as a scaling factor in front of the “screening term” in all formulas
below.
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minus informational rents:

W(q̄) = E

{
∞

∑
t=1

(
1
R

)t−1{
Ỹ(qt(θ

t), q̄t)− Mt(r(θt))− ϕt(lt(θ
t))− 1 − F1(θ1)

f 1(θ1)
I1,t

∂vt(θt)

∂θt

}}
.

The planner’s problem can be split into two steps. In the first step, called the “partial” prob-
lem, the sequence of aggregate qualities q̄ = {q̄1, ...q̄T} is taken as given. The planner solves for
the optimal allocations subject to resource and incentive constraints as functions of this conjec-
tured sequence. To ensure that the sum of aggregate qualities that arises is consistent with the
conjectured q̄, the planner must account for a consistency constraint in each period t:

∫

Θt
qt(θ

t)P(θt)dθt = q̄t.

Let ηt be the multiplier on the consistency constraint in period t. The maximum of this problem
is denoted by P(q̄).

Partial problem: The program for a given sequence q̄ is to choose {λt(θt), lt(θt), rt(θt)}Θt so as to
solve

P(q̄) = max W(q̄) s.t.

∫

Θt
qt(θ

t)P(θt)dθt = q̄t and qt(θ
t) = qt−1(θ

t−1)(1 − δ) + λ(lt(θ
t), rt−1(θ

t−1), θt).

Using the expression for ∂vt
∂θt

, we have:

W(q̄) =
∞

∑
t=1

(
1
R

)t−1

{
∫

Θt
{Ỹ(qt(θ

t), q̄t)− Mt(r(θt))− ϕt(lt(θ
t))−

1 − F1(θ1)

f 1(θ1)
I1,t

[
ϕ′(lt(θ

t))
∂λ(lt(θt), rt−1(θ

t−1), θt)/∂θt

∂λ(lt(θt), rt−1(θt−1), θt)/∂lt

]
}P(θt)dθt}.

Full problem: The full program consists in optimally choosing the sequence q̄, given the values
P(q̄) solved for in the first step:

P : max
q̄

P(q̄). (8)

Verifying Global Incentive Constraints. Since the first-order approach is built on only necessary
(but not necessary and sufficient) conditions, we need to perform a numerical ex post verification
to check that the allocations found are indeed (globally) incentive compatible, i.e., that the global
incentive constraints are satisfied.17 We describe the numerical verification procedure in Ap-

17See also Farhi and Werning (2013) and Stantcheva (2017).
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pendix OA.2. For the range of parameters we study in Section 5, the allocations found using the
second-order approach do indeed satisfy the global incentive constraints. In addition, the optimal
allocations in such dynamic models with spillovers cannot easily–at this level of generality–be
shown to be unique. However, we can show uniqueness for the functional forms and parameter
values used in our simulations in Section 5.

3.3 Characterizing the Constrained Efficient Allocation Using Wedges

To characterize the constrained efficient allocations it is very helpful to define the so-called
wedges or implicit taxes and subsidies that apply at these allocations. The wedges measure
the distortions at the optimum relative to the laissez-faire economy with a patent system, i.e., the
hypothetical incentives expressed as implicit taxes or subsidies that would have to be provided to
firms starting from the laissez-faire case in order to reach the allocation under consideration. The
R&D effort wedge τ(θt) measures the distortion on the firm’s R&D effort margin at history θt. It
is equal to the gap between the expected stream of marginal benefits from effort and its marginal
cost, where the expectation is conditional on the history θt. A positive wedge means that the
firm’s effort is distorted downwards. This wedge will interchangeably be called the corporate
tax or the profit wedge, since it will mimic a tax on firms’ profits, gross of R&D investments.
The R&D investment wedge, or R&D wedge for short, s(θt) is defined as the gap between the
marginal cost of R&D and the expected stream of benefits. It is akin to an implicit subsidy: a
positive R&D wedge will mean that, conditional on the effort, the firm is encouraged to invest
more in R&D than under laissez-faire with patent protection.

Definition 1. The corporate wedge and the R&D wedge. The corporate (or profit) wedge is defined
as:

τ(θt) := E

(
∞

∑
s=t

(
1 − δ

R

)s−t ∂πs(qs(θs), q̄s)

∂qs(θs)

∂λt(θt)

∂lt(θt)

)
− ϕ′(lt(θ

t)).

The R&D spending (or R&D) wedge is defined as:

s(θt) := M′
t(rt(θ

t))− 1
R

E

(
∞

∑
s=t+1

(
1 − δ

R

)s−t−1 ∂πs(qs(θs), q̄s)

∂qs(θs)

∂λt+1(θ
t+1)

∂rt(θt)

)
.

To simplify the notation, we use the following definitions.

Πt(θ
t) :=

(
∞

∑
s=t

(
1 − δ

R

)s−t ∂π(q(θs), q̄s)

∂qs(θs)

)
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is the marginal impact on future expected profit flows from an increase in quality qt. Let

Qt(θ
t) =

(
∞

∑
s=t

(
1 − δ

R

)s−t ∂Ỹ(qt(θs), q̄s)

∂qs(θs)

)

be the marginal impact of quality on on future expected output net of production costs, Ỹ.

Q∗
t (θ

t) :=

(
∞

∑
s=t

(
1 − δ

R

)s−t ∂Ỹ∗(q(θs), q̄s)

∂qs(θs)

)

is the marginal impact on future expected output net of production costs from an increase in
quality qt, when quantity is set by the Planner to the socially optimal level.18

4 Optimal Policies

In this section, we characterize the optimal constrained efficient allocations that are the solutions
to the planning problem in Section 3. We then show how these allocations can be implemented
with a parsimonious tax function.

4.1 Optimal Corporate and R&D Wedges

Denote by εxy,t the elasticity of variable x to variable y at time t:

εxy,t :=
∂xt

∂yt

yt

xt
.

For instance, ε l(1−τ),t is the elasticity of R&D effort to the net-of-tax rate 1 − τ. Denote by λx the
partial derivative of the step size λ with respect to variable x. Taking the first-order conditions
of program P(q̄), and rearranging yields the optimal wedge formulas at given q̄ in parts (i) and
(ii) in the next proposition. Solving the full program yields an expression for the multipliers on
the consistency constraints in part (iii), and hence a solution for q̄t.

Proposition 1. Optimal corporate wedge and R&D wedge.

18Note that since the quantity maximizes consumption net of production costs per producer, i.e., reaches
Ỹ∗(q(θs), q̄s), the derivative is just the direct impact of quality (the indirect effect through a change in the quantity is
zero).
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(i) The optimal profit wedge satisfies:

τ(θt) = −E

(
∞

∑
s=t

(
1 − δ

R

)s−t

ηs

)
∂λt

∂lt
︸ ︷︷ ︸

Pigouvian
correction

−E(Qt(θ
t)− Πt(θ

t))
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∂lt︸ ︷︷ ︸
Monopoly quality

valuation correction

(9)

+
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[
1
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1
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]

︸ ︷︷ ︸
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.

(ii) The optimal R&D subsidy is given by:

s(θt) = E
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∑
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.

(iii) The multipliers ηt capturing the spillovers between firms are given by:

∫

Θt

∂Ỹ∗(qt(θt), q̄t)

∂q̄t
P(θt)dθt = ηt.

Proof. See Appendix OA.1.

The optimal wedges in (9) and (10) are determined by the trade-off between maximizing
allocative efficiency and minimizing informational rents. They balance three main effects:

1) Monopoly quality valuation correction. The intermediate good monopolist takes into account
the effect of a quality increase on profits, while the planner values the effect on household con-
sumption. Recall that the wedge is defined as the implicit subsidy (or implicit tax) starting from
the laissez-faire allocation with patent protection. To induce the monopolist to invest more in
quality than they would if they were maximizing profits, this term decreases the profit wedge
and increases the R&D wedge. When quantity is chosen by the intermediate goods producer in
the private market to maximize profits and not social surplus, the effect of a change in quantity
(induced by extra R&D investment or R&D effort) on social welfare (implicit in Qt(θt)) is first-
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order and is proportional to the monopoly distortion, i.e., the gap between price and marginal
cost, summed over all future periods.19 This monopoly quantity correction term is positive and
always makes the profit wedge smaller and R&D subsidy larger relative to a case where there
is no difference between social and private valuation (i.e., no monopoly distortion and the pro-
ducer perfectly internalizes social value on the production side). This is intuitive: the larger the
gap between the monopolist’s value and the social value, the less the monopolist internalizes the
social benefit from an increase in quality, and the more they need to be incentivized to invest in
innovation.

Let’s think of two polar cases. If there is no IPR at all in the laissez-faire economy, profits
are zero and a large subsidy is needed to incentivize innovation. If, on the other hand, the
laissez-faire features a prize system in which the company is entirely paid for the social value
it generates, the monopoly distortion is zero and a smaller subsidy is needed to incentivize the
investment in innovation. In between these polar cases, if profits are a share απ of total net social
value, the remaining gap in value that needs to be incentivized is E

(
(1 − απ)Qt+1(θ

t+1)
)
; απ can

capture in a reduced-form way the share of total value granted to innovating firms by the IPR
system. The closer the company is to capturing the full social surplus and the less additional
incentive provision is needed.

2) Pigouvian correction for the technology spillover. As long as the technological spillover is
positive, the Pigouvian correction term unambiguously increases firms’ R&D effort and invest-
ment relative to laissez-faire. The Pigouvian correction for R&D effort in (9) is increasing in the
effect of effort on the step size ( ∂λt

∂lt ). The correction for R&D spending in (10) is increasing in the
expected effect of R&D investments on the next period’s step size ∂λt+1

∂rt
.

While the monopoly distortion captures the lack of alignment in the valuation of quantity
produced, the Pigouvian correction captures the lack of alignment on how much quality pro-
duced is valued socially and privately. Even if there is no monopoly power at all, this distortion
applies.

3) Screening and incentives. Screening considerations may push in the opposite direction from
the monopoly and Pigouvian corrections. The screening term arises because of asymmetric infor-
mation. Without asymmetric information, this term would be zero and the optimal profit wedge
and the optimal R&D subsidy would be equal to the Pigouvian and monopoly quality valuation
corrections, as in Section 2.3. Externalities would be corrected under full information (and tai-
lored to each research productivity history θt), and there would be no informational rents. With
asymmetric information, there are three effects at play.

The stochastic process for firm type. The initial type distribution times the persistence in types (cap-
tured by the impulse response function I1,t) increases the magnitude of the profit wedge and

19Formally, ∂Ỹ(qt(θt),q̄t)
∂q =

∂Y(qt(θt),kt(qt(θt),q̄t))
∂qt(θt)

+
(

p(qt(θ
t), kt(qt(θ

t), q̄t))− ∂C(kt(qt(θt),q̄t),q̄t)
∂k

)
∂kt(qt(θt),q̄t)

∂qt(θt)
where

kt(qt(θ
t), q̄t) is the quantity chosen to maximize profits by a monopolist with quality qt(θ

t). This derivative also
appears in the Pigouvian correction term: when aggregate quality increases, quantity produced increases, which has
a first-order positive effect on social welfare.
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the R&D investment wedge. More persistent types effectively confer more private information
to firms and, hence, higher potential informational rents. To reduce these informational rents,
allocations have to be distorted more (the typical trade-off between informational rents and effi-
ciency). If shocks were iid, we would have I1,t = 0 for all t > 1, and, hence, the optimal corporate
and R&D wedges would be equal to only the Pigouvian correction term plus the monopoly val-
uation correction term for all t > 1. With AR(1) shocks with persistence parameter p̃, I1,t = p̃t−1

so that the impulse response is fully determined by the persistence parameter. If types are fully
persistent, so that there is only heterogeneity, but no uncertainty, the impulse response I1,t = 1
for all t and the screening term does not decay over time.

A higher inverse hazard ratio 1−F1(θ1)
f 1(θ1)θ1

(implying a larger the mass of firms with research
productivity larger than θ1 relative to the mass of firms with type θ1 ( f 1(θ1))) makes the cost
of inducing a marginal distortion in effort or R&D investments at point θ1 small relative to the
benefit of saving on the informational rent over a mass of 1− F1(θ1) of all firms more productive
than θ1.

The efficiency cost of distorting R&D effort. A higher efficiency cost decreases the optimal effort
wedge.20 The efficiency cost can be decomposed into allocative inefficiency and information
rents. The allocative inefficiency induced by the effort wedge is increasing in the elasticity of
the step size with respect to effort (ε l,1−τ,tελl,t). The informational rent inefficiency increases
in the complementarity of effort to firm research productivity ρθl,t. A high complementarity
between effort and firm type means that it is easy for higher research productivity firms to mimic
lower productivity ones, which increases their potential informational rent, and thus leads to an
optimally higher distortion in the allocation to reduce thse rents. Since the disutility of R&D
effort is indexed by t, the strength of this incentive effect could vary over the life cycle of a firm.

The complementarity between R&D, firm effort, and firm type. For the purposes of screening, observ-
able R&D investments are distorted only in so far as they can indirectly affect the unobservable
R&D effort choice, i.e., can affect the incentive constraint of the high research productivity firm.

How effective R&D investment subsidies are at stimulating unobserved effort depends on the
relative complementarity of R&D expenses with effort and type, (ρlr − ρθr), which determines
the sign of the screening term. Higher R&D expenses lead to more effort by the firm as long as
they increase the marginal return to effort, i.e., as long as ∂2λ(l,r,θ)

∂r∂l > 0 and thus ρlr > 0, as seems
likely. On the other hand, if ρθr > 0, then higher R&D expenses have a higher marginal effect on
the step sizes of high research productivity firms (at any given effort level), which makes it easier
for them to mimic the step sizes allocated to lower productivity firms. This, in turn, increases the
informational rent that needs to be given to these firms to induce them to reveal their true type.
What matters is whether, on balance, the net effect of increasing R&D is positive, i.e., whether
the effect on effort will outweigh the effect on the step size conditional on effort. If yes, then
R&D expenses will relax the firms’ incentive constraints and reduce their informational rents.

20This is naturally reminiscent of the inverse elasticity rule in Ramsey taxation.
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This occurs if (ρlr − ρθr) > 0, i.e., if R&D expenses are more complementary to effort than they
are to firm type.

If the complementarity of R&D with both R&D effort and firm type is the same (ρlr = ρθr),
then the screening term of the optimal R&D subsidy is zero. In this special case, an increase in
R&D has exactly offsetting effects on effort and on the step size conditional on effort, leaving
the informational rents unchanged on balance (i.e., the incentive constraints are unaffected by
changes in R&D investments).

Another way of interpreting ρθr is as the riskiness of R&D, or as its exposure to the intrinsic
risk of the firm. The higher this complementarity, and the more R&D returns are subject to the
stochastic realizations of firm type. Hence, the sign of (ρlr − ρθr) measures the strength of R&D
contribution to firm effort, filtered out of the exposure to firm risk.

In general, there is no reason to think that the Hicksian coefficients of complementarity are
constant. They could vary with the level of effort, R&D, and ability, as well as with firm age.21

Hence, the optimal R&D wedge may change sign over the distribution of types or over the life
cycle of a firm.

4.1.1 Cross-sectional Profile of Optimal Policies

At this level of generality, we cannot pin down how the optimal wedges vary with firm produc-
tivity. However, we can discuss what forces drive each term and the cross-sectional patterns. It is
important to bear in mind that a higher R&D wedge does not mean a higher investment in R&D,
and a lower effort wedge does not mean more R&D effort. It merely means a higher incentive
relative to laissez-faire. This is because firms have heterogeneous benefits and costs from invest-
ments and effort under laissez-faire, so that the same level of incentive will not translate into
the same level of inputs across firms. For instance, in the laissez-faire, low research productivity
firms invest much less than high research productivity firms and this pattern is not overturned
despite the incentive provision.

The screening term will tend to be larger in absolute value for lower productivity firms, by
the logic of screening models: because higher productivity firms want to pretend to be lower
types, lower types’ allocations will be distorted to prevent such deviations while also minimizing
informational rents. For the profit wedge, the screening term is positive, which means that higher
type firms will face a lower profit wedge. For the R&D wedge, the screening term’s sign depends
on ρrl − ρθr. When ρθr > ρrl , the screening term is negative. R&D investments disproportionately
benefit high productivity firms. It is then better not to incentivize R&D investments as much for
lower productivity firms, since this makes their allocations more attractive to high productivity
firms. Since in this case lower productivity firms have no comparative advantage at innovation,
they should not be incentivized as much to invest in R&D, so that high productivity firms can be
incentivized more.

21Although we have dropped this notation for clarity, all elasticities, coefficients of complementarities, and functions
are evaluated at θt, so they can depend on investment size and on age t.
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Regarding the Pigouvian correction term, higher research productivity firms have a higher
positive spillover on other firms as long as ρlr > 0 and ρθl > 0, in which case their marginal
investment in R&D or a higher effort has a higher marginal impact on their step size, and hence
on aggregate quality. The optimal Pigouvian correction would then be increasing in firm type
and warrant a higher profit subsidy, all else equal, for higher productivity firms. The compar-
ative statics of the monopoly valuation correction term are ambiguous. If private valuation is a
constant share of total social valuation, then the monopoly valuation term would be increasing
in firm type as well.

In addition, since high productivity firms invest more in R&D and generate larger profits, the
statements just made about wedges will be the same if expressed in terms of observables, namely
profits and R&D investments.

4.1.2 Age Profile of Optimal Policies

The optimal policies will generically change over firms’ life cycles. The first reason why policies
depend on firm age is that they are set at age 1 under full commitment of the planner. As a result,
it is the time that has passed relative to that initial period that induces age patterns. The screening
term in the optimal corporate and R&D wedges declines in absolute value with age, as long as
the impulse response is below 1 (as is the case with a first-order autoregressive or geometric
autoregressive process with persistence parameter p̃ < 1). This decay towards zero is faster
the lower the persistence in types. From the perspective of period 1, since types are stochastic,
the informational rent to be received after any particular history θt a longer time span away is
worth less to the agent and is less costly to the planner. The smaller effective informational rents
warrant less distortion in the allocations.

Hence, over the life cycle of a firm, the wedges converge to the Pigouvian and monopoly cor-
rection terms. Whether they converge from above or below depends on the sign of the screening
term, which depends on the relative Hicksian complementarities of R&D investments to R&D
effort versus unobserved productivity. If ρθr > ρlr, the screening term is negative and optimal
wedges converge from below to the Pigouvian and monopoly correction terms. They converge
from above if ρθr < ρlr.

The second reason why policies depend on age is that the technological fundamentals, such
as the step size λt, the cost of effort ϕt(l), the distribution of types, and the cost of R&D Mt(rt)

can vary with age. For instance, as a firm gains expertise with age, the cost of unobservable
and observable R&D inputs may decrease. More empirical work could shed light on the lifecycle
patterns of the production and innovation technologies. The age patterns of optimal policies are
thus theoretically ambiguous and will depend on the parameters of the model.
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4.2 Implementation through Taxes and Subsidies

In this section, we show that the optimal allocations can be implemented with a relatively parsi-
monious tax function.22 In general, the optimal policies depend on the histories of R&D inputs
and outputs in a nonlinear and non-separable way. However, there exists a simpler implemen-
tation of the optimal mechanism, which does not depend on histories longer than two periods.
This makes our implementation very different from dynamic income tax models for agents as
in Farhi and Werning (2013) or Stantcheva (2017), where it is in general impossible to cut the
history-dependence of optimal policies except in special cases such as iid shocks (Albanesi and
Sleet, 2006).

Market Structure. The constrained efficient allocations solved for in Section 3 are independent
of the underlying market structure as long as the information set and toolbox of the planner
are as specified there.23 However, the shape and level of the tax function that implements the
constrained efficient allocation depends on the market structure. For instance, the more credit
constrained firms are in the laissez-faire decentralized market, the more generous transfers they
would have to receive early on so as to be able to invest the amount required in the constrained
efficient allocation. The implementation also depends on the IPR policy, which determines the
level of profits under laissez-faire. Finally, the same optimal allocations can often be implemented
with multiple different policies and, hence, the implementation is not unique.

We assume that in the laissez-faire market firms can borrow freely at a constant rate R, and
that they take the price of the final good (normalized to 1) as given. They face the demand func-
tion for their differentiated intermediate goods under a patent system that grants full monopoly
power, as presented in Section 2.

Implementation Result. The tax implementation function can be relatively parsimonious when
the impulse response functions I1,t(θ

t) are independent of the history of types, except through θ1

and θt for all t, as would be the case for any AR(1) process, or a geometric random walk (or, for
any monotonic transformation of an AR(1) process).

The constrained efficient allocation from program P(q̄) is implemented with a comprehensive,
age-dependent tax function that conditions on current quality qt, lagged quality qt−1, current
R&D rt, lagged R&D rt−1, and first-period quality q1, i.e, Tt(qt, rt, qt−1, rt−1, q1). The proof is in

22Until now, we have considered a direct revelation mechanism, in which firms report their type to the planner
every period and the planner assigns allocations as a function of the history of reports received. We would now like to
step away from reporting types and move into the realm of policy implementation. The question of implementation is
whether there is some general tax and transfer function T(q∞, r∞) that depends on the full sequence of all observables,
i.e., on the history of quality q∞ (or, interchangeably, step size λ∞) and R&D investment r∞, such that, if this tax and
transfer rule is in place, optimizing firms will pick allocations equal to the constrained efficient allocation from the
direct revelation mechanism.

23For instance, if firms are credit constrained, the planner will simply increase the transfer in a lump-sum fashion
in earlier periods and make up for it with lower transfers in later periods without affecting the incentive constraints.
However, if the information set of the planner is altered, e.g., if firms could save in a hidden way, then the constrained
efficient allocation would be different.
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the Appendix. Note that because profits are an immediate function of quality qt, the tax function
could instead be written as a function of profits, i.e., T̃t(πt, rt, πt−1, rt−1, π1).

It may at first glance seem as if this result were trivial: if productivity follows a Markov
process, it appears to make sense that one only needs to condition on allocations one period
back in addition to the current allocations. However, this intuition is not correct. Even with
Markov shocks, most dynamic tax problems (Farhi and Werning, 2013; Stantcheva, 2017) require
conditioning on full histories. What is different here is that the past stock of quality can serve as
a sufficient statistic for past investments, in the sense that it fully determines the future benefit
from more innovation investments (together with rt and rt−1).

The link between the wedges and the tax function is as follows, where the arguments of the
tax function are evaluated at their optimal values for history θt,

s(θt) = − 1
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Generically, the optimal wedges in Proposition 1 depend nonlinearly and non-separably on
the choice variables. Few general statements can be made without specifying the underlying
functional forms. However, it is clear from the optimal wedge formulas that the degree of non-
linearity of the profit tax and R&D subsidy depend crucially on the shape of the step size func-
tion. In particular, profit taxes will be far from linear if the marginal effect of R&D effort is very
nonlinear. If the step size is close to linear in R&D effort, on the contrary, then profit taxes will
also be closer to linear. The same applies to the R&D wedge with respect to the marginal effect of
R&D investment on the step size. Similarly, nonseparabilities in the tax function between profits
and R&D investment will be quantitatively important if the step size features strong complemen-
tarities between R&D effort and investment.

In Appendix OA.2, we work out a very simple functional form example that generates con-
stant marginal profit taxes and constant R&D subsidies, which only depend on the degree of
market power (β) and the strength of the spillover (ζ).

5 Quantitative Investigation

In this section and the next one, we provide empirical content to the theoretical model by es-
timating it and numerically illustrating the optimal policies. We present and discuss estimated
values of the key parameters, such as the complementarity between R&D and firm research pro-
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ductivity ρθr, the persistence p̃, and the externality strength ζ. We also document the age and
cross-sectional patterns of optimal policies and allocations. Finally, we assess the losses from
simpler policies.

5.1 Data and Summary Statistics

The theory developed in this paper can be applied to different datasets, and our model could
be estimated for different countries, industries, and types of firms to inform the specific optimal
policies for each setting or sample under consideration. The benchmark data we chose is the
Census Bureau’s Longitudinal Business Database and Census of Manufacturers, matched to the
U.S. Patent and Trademark Office (USPTO) patent data from the NBER database (as described
in detail in Hall et al. (2001)), containing over three million patents with their forward citations.
This data match is done and used by Acemoglu et al. (2018) and Akcigit and Kerr (2018). We
externally calibrate some parameters of our model using estimates provided in the literature, as
described below. We then internally estimate the remaining parameters.

An alternative dataset is the firm-level accounting data from COMPUSTAT matched to the
NBER patent database. As argued in Bloom, Schankerman, and Van Reenen (2013), these firms
represent a large fraction of the innovation in the U.S. For completeness, we provide numerical
results based on the COMPUSTAT sample in the Supplementary materials S.3.

Map between the Model and the Data. One advantage of the patent data matched to firm-
level data is that there is a natural mapping between the variables in the model and the data.
R&D spending M(r) can directly be measured as reported R&D expenses in the accounting data.
The step size λt, i.e., the flow of new quality of a firm in year t, can be measured by the forward
citations received on all innovations patented in year t. The quality qt is the depreciation-adjusted
stock of citations per patent to date, qt = (1 − δ)qt−1 + λt. We can also directly measure profits
and sales.

5.2 Estimation

We first parameterize the model as summarized in Table I. Some of the parameters are calibrated
exogenously, following the earlier innovation literature. This reduces the size of the parameter
vector to be estimated. We report these parameters in the upper panel of Table II. In Section 5.5
we provide sensitivity analyses for each parameter. The lower panel of Table II reports the key
parameters of our model, which are estimated internally to best match important moments in the
data presented in Table III. In Table IV, we check that the estimation does a good job matching
non-targeted moments to assess the fit. We describe our estimation procedure in more detail
now.

The Status Quo Economy. To be able to consistently estimate the parameters of the model by
matching moments in the data, we need to subject firms in our model to the same policies (R&D
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subsidy and corporate tax) as in the U.S. We call our baseline setting the status quo economy. This
setting has the same primitives as the setting considered until now, but instead of optimal policies
it features the current policies in place in the U.S. We approximate real-world R&D subsidies with
a linear R&D subsidy rate. We estimate the effective subsidy rate on R&D investments by firms
using the total spending of the government on firm R&D through all programs (R&D tax credits,
direct grants, etc.) divided by total private business spending on R&D. This yields an average
effective subsidy rate of 19%. The details for this computation are in the Online Appendix. The
average effective corporate tax rate is set at 23%. Reassuringly, the estimation procedure for our
key parameters is not very sensitive to the choice of these effective rates.

Functional Forms. The cost function depends on aggregate quality q̄t, and the strength of the
externality is measured by ζ. The step size is multiplicatively separable in R&D effort lt and
takes a constant elasticity of substitution (CES) form in type θt and R&D investment rt−1. In
this case, ρθl = ρlr = 1. We specify this functional form for tractability; given the data, it would
be very difficult to empirically discipline ρlr. Given that the sign of ρlr − ρθr determines the
sign of the screening term in the optimal R&D subsidy (as shown in Proposition 1), the key
question for whether screening will lead to a higher or lower subsidy on R&D will be whether
ρθr ≥ 1 or ρθr < 1. The costs of R&D effort and R&D investments are iso-elastic. Finally,
the stochastic process for firm research productivity type is a geometric random walk, with
persistence p̃ (additional shock processes are in the Supplementary materials). The shock εt

follows a normal distribution with mean zero and variance σε.

Table I: Functional Forms

Function Notation Functional Form

Consumer valuation Y(qt, kt)
1

1−β qβ
t k1−β

t

Cost function Ct(k, q̄t)
k
q̄ζ

t

Quality accumulation H(qt−1, λt) qt = (1 − δ)qt−1 + λt

Step size λt(rt−1, lt, θt) (αr1−ρθr
t−1 + (1 − α)θ

1−ρθr
t )

1
1−ρθr lt

Disutility of effort ϕt(lt) κl
l1+γ
t

1+γ

Cost of R&D Mt(rt) κr
r1+η

t
1+η

Stochastic type process f t(θt|θt−1) log θt = p̃ log θt−1 + (1 − p̃)µθ + ϵt

Distribution of heterogeneity θ1 f 1(θ1) f 1(θ1) =
IΘ1 (θ1)

θ1[θ1−θ̄1]

Initial quality level q0 0

Notes: IΘ1 (θ1) denotes the indicator function equal to 1 if θ1 is in the set Θ1 = [θ1, θ̄1].

Externally Calibrated Parameters. We take the externally calibrated parameters from reputable
papers in the innovation and growth literatures, but we also provide many sensitivity analyses
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in Section 5.5.

The profit parameter β is set to 0.15 as in Guner et al. (2008). The exponent on the R&D
cost function, η, is set as in Akcigit and Kerr (2018). The depreciation parameter δ is a standard
feature of empirical innovation work, as taken from Hall et al. (2005). This depreciation reflects
the idea that, from the point of view of each individual innovation-producing firm, knowledge
can become obsolete unless it is updated, which carries a cost. The long-run discount rate R
reflects the interest rate plus the probability of exit (or death). The average level of research
productivity is normalized to µθ = 0, while the initial R&D stock is set to r0 = 1.

Moments and Identification. Table III lists the data moments that we match. The second column
provides the value of the moment in the simulations, the third column gives the target value of
each moment in the data, and the fourth column shows the standard error. In this section, we
discuss the identification of the parameters in our model.

Let the vector of the nine endogenously estimated parameters be denoted by

X = (α, ρθr, σε, p, κl , κr, γ, ζ, Θ1).

In our benchmark estimation, we chose the parameters to minimize the loss function:

L(X) =
9

∑
k=1

(
momentmodel

k (χ)− momentdata
k

momentdata
k

)2

,

where momentmodel
k is the value of moment k in the model and momentdata

k is the value of the
moment in the data. In the Supplementary materials, we estimate the parameters using a two-
step GMM-type weighting.

Since we are minimizing the weighted distance between the theoretical and empirical moments,
all parameters are identified jointly. Nevertheless, given the dynamics in our model, we can
provide a heuristic discussion of identification.

Elasticity of Patent Quality wrt. R&D, M1: The first moment is the elasticity of patent quality
with respect to R&D spending, where patent quality is measured as citations per patent. This
moment measures how effective R&D spending is at generating successful innovations. It has
been estimated in the literature since Griliches (1998). Not surprisingly, this moment informs
the complementarity (or elasticity of substitution) parameter ρθr in the innovation production
function.

R&D Intensity, M2: The second moment is the mean ratio of R&D spending to firm sales,
which is a measure of the R&D intensity of a firm. It is computed by Acemoglu et al. (2018) and
is consistent with other papers. The R&D share in the step size, α, affects the marginal return to
R&D investment rt and therefore has a direct impact on firms’ R&D/Sales ratio.

Sales Growth, M3: The third moment we include is firms’ sales growth. Firm growth is
determined by R&D investments. These are in turn driven by the firms’ first order condition that
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Table II: Parameter Values

Parameter Symbol Value Standard Error

External Calibration
Interest rate R 1.05
Intangibles depreciation δ 0.1
Knowledge share β 0.15
R&D cost elasticity η 1.5
Level of types µθ 0.00
Initial R&D stock r0 1.0
Program horizon T 30

Internal Calibration
R&D share α 0.483 (0.025)
R&D-type substitution ρθr 1.88 (0.126)
Type variance σϵ 0.320 (0.014)
Type persistence p̃ 0.63 (0.022)
Scale of disutility κl 0.69 (0.050)
Scale of R&D cost κr 0.055 (0.003)
Effort cost elasticity γ 0.86 (0.052)
Support width for θ1 Θ1 1.91 (0.097)
Production externality ζ 0.018 (0.001)

Table III: Moments

Moment Target Simulation Standard Error

M1. Patent quality-R&D elasticity 0.88 0.97 (0.0009)
M2. R&D/Sales mean 0.041 0.035 (0.0025)
M3. Sales growth (DHS) mean 0.06 0.07 (0.005)
M4. Within-firm patent quality coeff of var 0.63 0.76 (0.0017)
Across-firm patent quality coeff of var:

M5. Young firms 1.06 1.05 (0.0012)
M6. Older firms 0.99 0.81 (0.0016)

M7. Patent quality young/old 1.04 1.08 (0.0048)
M8. Spillover coefficient 0.191 0.192 (0.046)
M9. Elasticity of R&D investment to cost - 0.35 -0.35 (0.101)

sets the marginal return from R&D investment equal to its marginal cost. Therefore, the scale
parameter of the cost function, κr, has a first-order impact on the average growth rate of the firm.

Within-firm Patent Quality Variation, M4: The fourth to sixth moments are specific to our
model, which highlights the role of firm heterogeneity and the role of uncertainty over time.
Moment four considers the variation in a firm’s quality (again, as measured by its citations per
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patent) over time. This within-firm measure helps assess the uncertainty facing a firm, which is
captured by the persistence parameter p̃ in our model.

Across-firm Patent Quality Variation by Age, M5–M6: The fifth and sixth moments capture the
variation in quality across firms. This cross-sectional variability measure gauges the degree of
heterogeneity across firms and is computed separately for young and old firms. “Young” firms
are defined–both in the data and in the model–as those of age 0–5 years. “Old” firms are older
than 5 years (we tried alternative definitions of young and old, with cutoffs at 3 or 10 years, with
extremely similar results). These moments are mainly determined by the dispersion σϵ and the
width of the support of the type distribution Θ1.

Patent Quality Ratio (young/old), M7: The seventh moment is the ratio of patent quality between
young and old firms and measures the decline in invention quality that occurs with firm age.

Spillover Coefficient, M8: One of the key moments, M8, targets the estimate of technological
spillovers in Bloom, Schankerman, and Van Reenen (2013). These authors estimate spillovers by
regressing the sales of a firm on the R&D of other firms in the economy, weighted by the extent of
technological proximity with these other firms. They instrument for this R&D using exogenous
variation in effective R&D tax credit rates at the firm level. We estimate the spillover parameter ζ

in our model through indirect inference. More precisely, we replicate their instrumental variable
regression by exogenously shocking q̄t and generating simulated economies. We then regress
the sales in the model on the R&D of other firms in the economy and match the regression
coefficient to the one in Bloom, Schankerman, and Van Reenen (2013). We obtain a very close fit.
This process helps us identify the spillover strength ζ.

Elasticity of R&D investment to R&D costs, M9: The final moment is the elasticity of R&D
investments to R&D costs, taken from Bloom et al. (2002). They find an elasticity of R&D to user
costs of -0.35, which our model is able to match very closely.

Goodness of Fit: Non-targeted Moments. To check whether the fit of our estimated model is
good even for non-targeted moments, we provide the values of four important and non-targeted
moments in the data and the model in Table IV, which pertain to the lifecycle of firms or to the
skewness and tails of the sales and R&D distributions. These are the sales growth of the bottom
90% firms versus the sales growth of the top 10% firms (as ranked by sales growth in their first 5
years); the ratio of sales for old versus young firms; and the R&D intensities (i.e., R&D divided by
sales) for the bottom 90% versus top 10% firms. The fit is quite good, lending further credibility
to our estimation and confirming that we are able to capture the more detailed tail behavior of
the data.

5.3 Results

Table II shows the estimated parameters of the model. Focusing on some of the key parameters
that were highlighted in Section 4, we see that based on the data, R&D investments are highly
complementary to firm research productivity: highly productive firms are disproportionately
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Table IV: Goodness of Fit for Non-Targeted Moments

Data Model

Sales growth bottom 90% vs. top 10% 0.03 0.04
R&D/Sales for bottom 90% 0.038 0.034
R&D/Sales for top 10% 0.052 0.042
Ratio sales for old firms vs. young firms 1.73 2.32

good at transforming R&D inputs into innovation. The type persistence is moderate, with p̃ =

0.63. We can now simulate the optimal allocations and wedges, which we presented in analytical
form in Section 4.

Gross Incentives and Net Incentives. A brief discussion of gross and net incentives for R&D is
useful here (and in practice) when thinking about the magnitudes of incentives or disincentives
actually provided for R&D. Let us illustrate the difference with linear taxes, to make the discus-
sion simpler. If the profit tax applies to profits gross of R&D spending, i.e., if R&D expenses
are not deductible from the corporate tax base, the gross subsidy rate s̃ is such that the firm’s
per-period payoff is:

π(1 − τ)− (1 − s̃)M(r).

The net incentive on R&D– the rate that would apply to R&D expenses if they were also de-
ductible from the profit tax base–is denoted by s and is defined such that the payoff of the firm
is:

(π − M(r))(1 − τ)− (1 − s)M(r).

With a gross subsidy s̃, the net incentive is not captured by the subsidy rate itself, since the profit
tax captures part of the return to R&D investments. Thus, a share of the gross subsidy simply
goes towards cancelling out the disincentive effect from the profit tax. The net incentive is driven
by the difference between the gross linear subsidy s̃ and the tax τ: s = s̃ − τ. Put differently,
there are two ways to incentivize R&D: either tax its returns less (the −τ term), or subsidize its
costs more (the s̃ term). As we will see, for screening purposes one way may be better than the
other. Converting the combination of corporate income taxes and subsidies to a “net incentive”
is also of great practical use, since different countries’ systems load incentives on different parts
of the tax code.

To highlight this distinction, in the figures below, in addition to depicting s(θt), we also show
the “gross” R&D wedge s̃(θt), namely the gap between marginal costs and marginal benefits of
R&D, taking into account the R&D effort wedge, i.e., that there is simultaneously a tax on profits.
Furthermore, to facilitate an interpretation of the wedges as tax and subsidy rates, we slightly
redefine the profit and R&D wedges as fractions of profits and R&D costs. The R&D subsidy
rate s̃(θt) is now the fraction of the cost M(r) that the firm does not have to pay, while the profit
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wedge τ̃(θt) is the fraction of profits that the firm pays:24

s̃(θt) = 1 − 1
R
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In the linear example above, s is directly comparable to the wedge s(θt)/M′(r) from Section 4,
while s̃ is comparable to s̃(θt).

5.3.1 Cross-sectional Patterns of the Optimal Allocations

Panels C and D of Figure 2 plot the optimal profit wedge τ̃(θt), the gross R&D wedge s̃(θt),
and the corresponding net R&D wedge s(θt)/M′(r) for firms of different profit levels and R&D
investments for ages t = 2, 5, and 15. Panels E and F also depict these same wedges, but against
unobservable productivity on the horizontal axis.

The wedges on profits are negative, while those on R&D investment are positive. This means
that, on both the effort and R&D investment side, firms are incentivized to provide more of
these inputs than they would under laissez-faire. Thinking back to the optimal wedge formulas
in Section 4, this is to account for the monopoly distortion effect (incentivize monopolists to
produce more indirectly) and the Pigouvian correction effect (to correct for the spillover), while
still screening firms. It is worth clarifying that these are of course akin to marginal taxes (or
subsidies), not average or total taxes. On balance, the government is still raising positive net
revenues and consumers still get to consume a positive net output.

Let’s consider how wedges vary by firm type, profit levels, and R&D expenses, remembering
the theoretical discussion in Section 4. Incentives are described by the profit wedge and the net
R&D wedge s(θt). For any given levels of the monopoly distortion and the Pigouvian correction
terms, the screening term is larger in absolute value for lower type firms. This is the logic of
screening models: since higher type firms are tempted to pretend to be lower types, lower types
firms’ allocations are distorted to prevent higher types from lying. For the profit wedge, the
screening term is positive, which means that higher productivity firms will face a lower profit
wedge (i.e, a less positive marginal profit tax or a higher marginal profit subsidy). For the R&D
net wedge, the screening term’s sign depends on 1 − ρθr. According to our estimation ρθr > 1,

24 s̃(θt) and τ̃ are related to the wedges from Proposition 1 through
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so the screening term is negative. Hence, the net R&D wedge is larger for higher type firms.
When ρθr > 1, R&D investments disproportionately benefit high productivity firms. It is better
to incentivize R&D investments less for the lower productivity firms, as this makes mimicking
more attractive for high productivity firms.25 In short, lower productivity firms that have no
comparative advantage at innovation are not incentivized as much to invest in R&D, so that
high productivity firms can be incentivized more. Naturally, they are still incentivized to some
(possibly even to a large) extent because of the monopoly and Pigouvian corrections.

This logic is illustrated in Panels E and F, where the screening terms of the very high type
firms converge almost entirely to the monopoly and the Pigouvian correction terms. Since high
type firms also invest more in R&D and have larger profits, the wedges follow the exact same
pattern when plotted against observables, namely profits (panel C) and R&D investments (panel
D). Recall that the net wedge summarizes the incentive provision for innovation. However, the
gross wedge more closely matches the intuitions that come from explicit subsidies or taxes. The
gross wedge is smaller for higher type firms, because it is partially compensating for the (lower)
profit wedge, but the net incentive for R&D provided is larger for higher productivity firms.

High productivity firms are on net more incentivized to invest in innovation, and this incentive
comes from a lower profit wedge rather than from a higher gross R&D wedge. This is the best
mechanism for screening: higher productivity firms will be able to generate more profits from
the same research investments, so the way to attract them to a given allocation that features more
R&D investments (without attracting low productivity firms) is by letting the profit wedge at
that allocation be lower, rather than by making the R&D wedge higher. This will encourage high
productivity firms to put in more of the unobserved innovation input, which cannot be directly
subsidized. In some sense, this is “performance-based” taxation, where good performance, rather
than simply more (observable) inputs is rewarded.

Keep in mind, however, that this discussion is still about wedges. When it comes to the
(approximate) implementation using simpler policies that we consider in Section 6, a low profit
wedge for higher research productivity firms can approximately be achieved in several ways. The
most immediate policy that perfectly mirrors the wedges features a lower marginal profit taxes
on more profitable firms and a lower marginal subsidy at higher levels of R&D investments.
But other implementations may work almost as well, if the loss from fine-tuning is small. For
instance, a constant profit tax that is more generous than it should be for low profit firms, and at
about the right level for high profit firms, could do reasonably well if the loss from giving low
profit firms an excessively generous tax is quantitatively small.

Panels C and D of Figure 3 shows the optimal inputs for firms of different productivities
for different ages. Higher research productivity firms should optimally provide more effort
and invest more in R&D. Given that the estimated parameters imply that ρlθ > 0 and ρrθ > 0,

25Recall that a higher R&D wedge does not mean a higher investment in R&D; it just means a higher incentive
relative to the laissez-faire. Under laissez-faire, low research productivity firms already invest much less than high
research productivity firms and this pattern is not overturned despite the incentive provision.
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effort and R&D expenses for higher productivity firms have higher marginal benefits in terms of
innovation, and, in turn, their investments of R&D and effort generate more spillovers for other
firms.

5.3.2 Age Patterns of the Optimal Allocations

As explained in Section 4, age patterns can in principle arise for two reasons: the fact that
screening policies are set at age one with full commitment and a possible age-dependency of the
primitives of the model. Panels A and B from Figure 2 plot the optimal wedges, averaged over
firm type at a given age.

Younger firms simultaneously have their profits taxed at a higher rate (i.e., subsidized at a
lower rate here) and their R&D investment expenses on net subsidized less. When types are less
than fully persistent (the estimated persistence parameter is 0.63), the screening terms in Propo-
sition 1 are largest in absolute values early in life when the firm has the most private information
and decay with time, at a rate that is decreasing in the persistence. Hence, it is optimal to distort
the allocations more among young firms in order to reduce overall informational rents. Over
time, as the screening term decays, the wedges for firms of different productivities converge to
the Pigouvian correction and the monopoly valuation term. Because the screening term on the
R&D wedge is negative, this means that the net R&D wedge converges to these corrective terms
from below, while the profit wedge converges from above.

5.4 Comparative Statics: The Role of Persistence, Complementarity and the Strength
of the Spillover

In Figure 4, we quantify the effect of the key parameters. Panels A and B depict the optimal
wedges when ρθr = 0.8 < ρlr = 1. When ρθr is smaller, the optimal R&D wedge is larger,
especially for lower productivity firms. In this case, since it is not just high productivity firms
that benefit from R&D investments, there is no need to reduce the innovation incentives provided
to low productivity firms by as much to prevent high productivity firms from mimicking them.
In addition, the closer ρθr is to 1, the flatter the net wedge is for different firm ages.

The persistence of the firm’s research productivity process affects the optimal policies very
significantly, in particular the age pattern. Panels C and D depict the wedges for a higher value
of persistence than our benchmark case, namely for p̃ = 0.9. With a higher persistence, wedges
decay at a lower rate. We provide several more comparative statics and robustness checks on
the value and shape of the persistence in the Supplementary materials, such as a first-order au-
toregressive process instead of the benchmark logarithmic autoregressive process, an increasing
persistence over the life cycle that has the same average value as our benchmark estimate, a
lower persistence (p = 0.5), and a higher persistence (p = 0.9). The speed of convergence to the
Pigouvian and monopoly correction terms is strongly shaped by the type process. Yet, although
the persistence of this stochastic process affects the rate of decay of the wedges very significantly,
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it does not change our qualitative findings. In addition, a more persistent process increases the
planner’s ability to provide dynamic incentives and improves the allocations: there are higher
levels of effort and R&D investment for firms of all productivities.

Finally, panels E and F depict the wedges when there is no spillover (ζ = 0.0). In this case,
the wedges simply correct for the monopoly distortion. Unsurprisingly, a lack of spillover leads
to lower R&D effort and smaller investment wedges.

5.5 Robustness Checks and Sensitivity Analysis

We provide many robustness checks and sensitivity analyses in the Supplementary Materials S.5:
We perform a type of two-step GMM estimation with weights taken from the variance-covariance
matrix of data moments. Furthermore, we explore the role of the stochastic type process as-
sumed, as discussed above. We also vary the value of β, where higher β represents more market
power. At the same time, a higher β also means that the quality of each differentiated product is
more valued by consumers. On balance, there is more investment in R&D and more effort at the
optimum when β is higher. In addition, we consider higher rates of depreciation of innovation,
δ = 0.15 and δ = 0.3. The higher the rate of depreciation, the larger the wedges have to be to
induce firms to invest (relative to what they would do if left to choose). Naturally, the higher
the rate at which knowledge depreciates and the lower the optimal investments, step sizes, and
resulting innovation that can be stimulated. We also show what happens when the cost of R&D
is less convex, i.e., when η = 1. This barely changes the wedges, as they represent the share of
costs that is subsidized. However, the level of R&D effort and incentives that can be incentivized
are larger when costs are less convex. Finally, we re-restimate the model only on publicly-traded
firms from COMPUSTAT matched to patent data and show what happens with a finite firm life
cycle, in which case the horizon becomes important.

6 Simpler Innovation Policies

Until now we have considered a fully unrestricted mechanism that does not place constraints
other than incentive compatibility on the policies. In this section, we consider restricted, simpler
policies. We solve for the optimal policy within each of the restricted classes of policies consid-
ered, using the estimated parameters from Section 5. We then compute the welfare loss relative
to the welfare obtained with the unrestricted mechanism. Table V shows our results. Each panel
considers a separate class of policies, ranging from linear to nonlinear and non-separable poli-
cies. The two columns show, respectively, the welfare achieved from the optimal policy in each
class relative to (i) our benchmark optimal planner solution and (ii) the limit case in which there
is no spillover (ζ = 0) so that only the monopoly distortion has to be corrected.

The first row shows the welfare level from the current policies in the U.S., i.e., approximated
with a linear 23% effective corporate tax rate and a 19% effective R&D subsidy rate. Current

38



Table V: Welfare from Optimal Simpler Policies

Policy Type Welfare Achieved Relative to Full Optimum

Benchmark No spillovers

A. Current US policy

T′(π) = 0.23 S′(M) = 0.19 18% 31.1%

B. Optimal Linear

T′(π) = τ0 S′(M) = s0 89% 88.5%

C. Linear with Interaction Term

T′(π, M) = τ0 + τ1M S′(M) = s0 93.5% 93.7%

D. Heathcote-Storesletten-Violante (HSV)

T′(π) = τ0 − τ1πτ2 S′(M) = s0 − s1Ms2 97.4% 98.2%

E. HSV Tax on Profits and Linear Subsidy

T′(π) = τ0 S′(M) = s0 − s1Ms2 94.7% 95.6%

F. HSV Subsidy on R&D and Linear Profit Tax

T′(π) = τ0 S′(M) = s0 − s1Ms2 97.3% 97.4%

G. HSV with Interaction Term

T′(π, M) = τ0 + τ3Ms2 − τ1πτ2 97.4% 98.3 %
S′(M) = s0 − s1Ms2

Notes: The table shows the share of welfare from the full unrestricted optimum that is achieved by the optimal
policy within each class. Each panel shows a different class. Column (1) shows the welfare relative to the benchmark
optimum; Column (3) for the benchmark optimum but when there is no spillover ζ = 0).

policies only achieve 18% of the gain relative to our benchmark planner problem. If there were
no spillovers at all, current policies would do less poorly and achieve 31.1% of the welfare of the
optimum.
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The next rows show progressively more complex policies. The optimal policy within the
linear class with a linear profit tax and a linear subsidy (Panel B) does much better than the
current policy and yields 89% of the welfare gain from the full optimum, and 88.5% if there is
no spillover. Adding an interaction term between the marginal tax rate and the level of R&D
spending (Panel C) further improves welfare gains.

The biggest gain comes from a nonlinear Heathcote-Storesletten-Violante (HSV) policy, as
used by Heathcote et al. (2017) and Heathcote et al. (2020). The HSV policy is a parsimonious
parameterized tax function, with one parameter controlling the average level of taxes, and an-
other controlling the progressivity. We extend the HSV policy to allow for a constant component
of the marginal tax rate τ0, and we parameterize both the profit tax and the R&D subsidy with
this HSV-type function. The optimal HSV policy reaps a full 97.4% of the full welfare gain of
the optimal mechanism (and up to 98.2% in the case with no spillover). Once this nonlinearity is
allowed for, additional nonseparability between profits and R&D expenses brings no further gain
(panel G). The marginal profit tax and the marginal R&D subsidy implied by this HSV function
exactly mimic the patterns of the profit and the gross R&D wedges in Panels C and D of Figure
2, with lower marginal taxes (higher marginal profit subsidies) on higher profit firms and lower
marginal R&D subsidies for higher levels of R&D investments.

One may further ask whether it is the nonlinearity in the profit tax or the nonlinearity in the
subsidy that matters most. We answer this question by simplifying either the subsidy to be linear
(Panel E) or the tax to be linear (Panel F) while leaving the other function to be HSV-type as in
Panel D. The most important gain comes from a nonlinear R&D subsidy: A linear subsidy plus
HSV tax system yields 94.7% of the full gain. On the contrary, linearizing the profit tax generates
only a very small welfare loss relative to the fully nonlinear HSV policy and achieves 97.3% of the
welfare from the full optimum. Thus, in our estimated model, the most important quantitative
features are, first, the nonlinearity in the R&D subsidy that takes a HSV form and which provides
lower marginal subsidies for higher levels of R&D investment. Second, although the constant
profit tax in this case provides excessively generous incentives to the low profitability firms (and
just about the right level for high profitability firms), that loss is quantitatively very small since
less profitable firms make low profits to start with. This is a particularly useful finding because
corporate taxes are typically more or less linear. On the other hand, one can easily imagine a
more nuanced HSV-type R&D subsidy scheme being implemented, where the marginal subsidy
depends on the investment level.

Does this mean that it is in general optimal to subsidize profits at the margin or have (weakly)
lower marginal profit taxes on more profitable firms? Of course, this is the right corporate tax
system for innovating firms, and not all firms in the economy are innovating. The reasons to tax
or subsidize non-innovating firms would be different. This case could be nested in our model
if spillovers are shut off and the model is appropriately calibrated. Our framework for firm
taxation is malleable and quite general, and we think it can be used to study firm taxation more
broadly. If the government can set different corporate tax systems based on whether a firm is
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in an innovating sector, the tax system presented in this paper would apply to the innovative
sectors. If the government cannot distinguish between innovating and non-innovating sectors,
then the optimal tax system would be a mix of the optimal tax systems for the non-innovating
and innovating sectors, allowing for possible shifting between the two. This would be a great
avenue for future research, leveraging the methods in this paper to address more complex issues
in corporate taxation.

7 Conclusion

In this paper, we study how to most efficiently use tax policy to stimulate R&D investments when
there are spillovers between firms. Our core contribution is to introduce asymmetric information
in a dynamic firm taxation model with spillovers.

With our core setup and methodology in place, additional aspects of R&D investments and
innovation by firms can be incorporated, and we discussed some possible generalizations and
extensions. Even though we motivate our analysis specifically with R&D investments, our results
and the theoretical and numerical solution methods are much more broadly applicable to the
provision of firm incentives in dynamic settings with asymmetric information and with other
types of investments with or without spillovers. To this end, we wrote our formulas in the
most generic form possible. R&D investments are just one of the potential applications of this
framework. Our framework provides a new way to think about innovation, but also about firm
taxation more generally. Introducing asymmetric information and heterogeneous, stochastic firm
types captures many features of the real world and could allow researchers to fruitfully address
important questions in policy design for firms.

We hope that future research will build on this fruitful combination of macro-level policy
questions, with newly developed mechanism design techniques, which are guided by firm-level
micro data, to study many important issues. First, the competition structure in the intermediate
goods market could be made endogenous to tax policy: firms would then enter, exit, and steal
products from their competitors in response to the tax incentives. Second, one could study
optimal R&D policies when there is a noisy signal about product quality that firms may be able
to manipulate. Third, a more extended structural estimation focusing on the identification of
the key parameters we emphasized (complementarities, persistence, and strength of spillovers)
for different sectors and types of products could shed further light on optimal sector-specific
policies.
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Figure 2: Optimal Profit and R&D Wedges

(a) Profit Wedge by Age (b) R&D Wedges by Age
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(e) Profit Wedge as Function of Type θt (f) R&D Wedges as Functions of Type θt
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Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure 3: Optimal Allocations

(a) Investments and Effort by Age (b) Step Size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.
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Figure 4: Comparative Statics: Optimal Profit and R&D Wedges

(a) Profit Wedge with ρθr = 0.8 (b) R&D Wedges with ρθr = 0.8
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(c) Profit Wedge with p̃ = 0.9 (d) R&D Wedges with p̃ = 0.9

10 20 30 40 50
Firm Profit

1.5

1.0

0.5

0.0

0.5
t = 2
t = 5
t = 15

5 10 15 20 25
R&D Investment

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Net, t = 2
Net, t = 5
Net, t = 15
Gross, t = 2
Gross, t = 5
Gross, t = 15
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and (f) show the wedges for ζ = 0.
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Online Appendix for “Optimal Taxation and R&D Policies”

by Ufuk Akcigit, Douglas Hanley, and Stefanie Stantcheva

OA.1 Proofs of the Propositions in the Main Text

Proof of Proposition 1:
Taking the FOC of program P in (8) with respect to rt(θt) yields:

[r(θt)] :
1
R

E

(
∞

∑
s=t+1

(
1 − δ

R

)s−t−1 ∂Ỹ∗(θs, q̄s)

∂qs

∂λ(θt+1)

∂rt

)

− 1
R

E

(
1 − F1(θ1)

f 1(θ1)
ptϕ′

t+1(l(θ
t+1))

λθλr

λλl
[ρθr − ρlr]

)
−M′

t(r(θ
t)) + E

(
∞

∑
s=t+1

(1 − δ)s−t−1ηs
∂λ(θt+1)

∂rt

)
= 0.

Using the definition of the R&D wedge as:

s(θt) = M′
t(r(θ

t))− 1
R

E

(
∞

∑
s=t+1

(
1 − δ

R

)s−t−1 ∂πs(θs)

∂qs

∂λt+1

∂rt

)

to substitute for the marginal cost M′
t(rt(θt)) in the FOC, we obtain formula (10).

Taking the FOC with respect to lt(θt) yields:

[lt(θ
t)] : E

(
∞

∑
s=t

(
1 − δ

R

)s−t ∂Ỹ∗(θs, q̄s)

∂qs

∂λ(θt)

∂lt

)

−1 − F1(θ1)

f 1(θ1)
pt−1 ∂

∂lt

[
ϕ′

t(lt(θ
t))

∂λ(θt)/∂θt

∂λ(θt)/∂lt

]
−ϕ′

t(lt(θ
t)) + E

(
∞

∑
s=t

(1 − δ)s−tηs
∂λ(θt)

∂lt

)
= 0.

Transform the derivative of the envelope condition:

∂

∂lt

[
ϕlt

λθt

λlt

]
=

(
ϕll,t − ϕlt

λll,t

λlt

)
λθt

λlt
+ ϕlt

λθl,t

λlt
=

ϕltλθt

λt


(

ϕll,t − ϕlt
λll,t
λlt

)
ϕlt

λt

λlt
+

λθl,tλt

λθtλlt


=

ϕltλθt

λt

[
1

ε l,1−τ

λt

λltlt
+ ρθl,t

]
=

ϕltλθt

λt

[
1

ε l,1−τ

1
ελl,t

+ ρθl,t

]
.

Using the definition of the wedge τ(θt) to substitute for ϕ′
t(lt(θt)) yields the formula in the

text.
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Proof of Implementation Result:
For every period, define the following objects:

Ds(θ
s−1, θs) = E

(
∞

∑
t=s

I(s),t

(
1
R

)t−s ∂vt

∂θt
|θs

)

Qs(θ
s−1, θs) =

∫ θs

θ
Ds(θ

s−1, q)dq,

where the expectation is explicitly conditioned on history θt.
With a stochastic process such that the impulse response is independent of θt except through

θ1 and θt, we have that I(s),t = i(θ1, θt, t) for some function i(). In addition, ∂vt
∂θt

= ϕ′
t(lt(θt))

∂λ(θt)
∂θt

∂λ(θt)
∂lt

,

so that:

Ds(θ
s−1, θs) = E

(
∞

∑
t=s

(
1
R

)t−s

i(θ1, θt, t)ϕ′
t(lt(θ

t))
∂λ(θt)/∂θt

∂λ(θt)/∂lt
|θs

)
.

In the unrestricted mechanism, the transfers provided every period are:

Tt(θ
t) = Qt(θ

t−1, θt)−
1
R

Et(Qt+1(θ
t, θt+1)) + ϕ(lt(θ

t)). (OA1)

Given the time separable utility and the assumption on the impulse response functions, the
transfer hence depends on λt, rt−1, θt, and θ1 (and, naturally, on age t). Denote it by T∗

t (λt, rt−1, θt, θ1).
With the price subsidy in place, the total price faced by the monopolist is Y(q,k)

k . Hence, con-
ditional on qt, the monopolist maximizes social surplus from production and the choice will be a
deterministic function of quality, denoted by kt(qt). As a result, profits earned are a deterministic
function of quality, denoted by πt(qt).

Note that in period 1, since r0 and q0 are given and observed, the realization

q1 = H(q0, λ1(l(θ1), r(θ0), θ1))

can be inverted to obtain θ1 (at the optimal allocation, under incentive compatibility) as long as
for every θ1 there is a uniquely optimal l(θ1). Hence, we will use conditioning on q1 instead
of θ1. Let Θt(q1, rt−1, qt−1) be the set of all histories (including θt) that are consistent with q1 in
period 1, and rt−1 and qt−1. For each θt in this set, the optimal allocations and transfer are the
same (independent of what exactly happened in the full past). Let r∗t (θ), l∗t (θ) be the optimal
allocations given to each θ in this set (they are equal for each such θ by inspection of the wedge
formulas at the optimum). The implied optimal quality is then q∗t (θ) = qt−1 + λt(rt−1, l∗t (θ), θ).

We now have to make the tax system such that allocations which do not arise in the Planner’s
solution are very unattractive to the agent. First, we can rule out allocations that never occur
for any θ in Θt(q1, rt−1, qt−1) by making the transfer at points q∗t (θ), r∗t (θ) following qt−1, rt−1, q1

highly negative. We can also directly rule out histories qt−1 and rt−1 which should never occur

2



in the Planner’s problem in the same way.

For all remaining consistent histories and for each θ in Θt(q1, rt−1, qt−1), the tax or transfer
given as a function of the observables needs to be such that:

Tt(q∗t (θ), r∗t (θ), qt−1, rt−1, q1) + πt(q∗t (θ)) = T∗
t (λt(rt−1, l∗t (θ), θ), rt−1, θ).

Consider the firm’s choice. First, for given rt−1, qt−1, and θ1, the firm should rationally only
select a pair q∗t , r∗t that is consistent with some θ ∈ Θt(q1, rt−1, qt−1) or else the transfer it receives
would be very negative. For each rt−1, qt−1, and θ1, if the firm chooses q∗t (θ) and r∗t (θ) meant for
type θ in the planner’s problem, it receives the utility it would get from reporting to be type θ in
the planner problem. By incentive compatibility, the firm will choose the allocation meant for its
true type realization.

OA.2 Worked Example with Constant Markups

Production

We can specialize the functional form to one that delivers constant markups. Let the cost
of production be C(k, q̄) = k

q̄ζ , and the output as valued by consumers be Y(qt(θt), kt(θt)) =
1

1−β qt(θt)βkt(θt)1−β. The demand function under a patent system that grants monopoly rights is
then:

p(qt(θ
t), kt(θ

t)) = qt(θ
t)βkt(θ

t)−β

and the quantity chosen by the monopolist is:

k(qt(θ
t), q̄t) = [(1 − β)q̄t

ζ ]
1
β qt(θ

t).

At the optimum, the price is a constant markup over marginal cost equal to:

p(q̄t) =
1

(1 − β)q̄t
ζ

.

Profits are then given by:

π(qt(θ
t), q̄t) = qt(θ

t)(1-β)
1−β

β · β · q̄t
ζ

1−β
β .

Y(qt(θt), q̄t), the output from the private producer in the laissez-faire with a monopoly right, is:

Y(qt(θ
t), q̄t) = Y(qt(θ

t), k(qt(θ
t), q̄t)) =

1
1 − β

qt(θ
t)((1 − β)q̄ζ

t )
1−β

β .

3



Hence, the final good in the private market equilibrium is given by:

Yt =
∫

Θt
Y(qt(θ

t), q̄t)P(θt) =
∫

Θt

1
1 − β

qt(θ
t)[(1-β)q̄t

ζ ]
1−β

β P(θt)dθt.

Conditional on a given quality qt(θt), the production choice of the planner would be such
that:

k∗(qt(θ
t), q̄t) = q̄t

ζ
β qt(θ

t) > k(qt(θ
t), q̄t).

A Special Case with Very Simple Wedges
We can impose additional restrictions to obtain particularly easy characterizations of the

wedges. Assume the functional forms in Table II, but also assume the special case in which
ρθr = ρrl = 1, so that the screening term in the R&D wedge is zero.

Let

Be = 1 + ζ

(
1 − β

β

)
Bm =

2 − β

1 − β

and

Gt = H1(θ1)pt−1(1 + γ)(1 − α).

Then, we can show that in this special case,

τt

1 + Gt
= −

(
1 − 1

Be

)
− 1

Be

(
1 − 1

Bm

)
st =

(
1 − 1

Be

)
+

1
Be

(
1 − 1

Bm

)
and so the profit wedge τt depends only on time t and the initial state θ1 and tends to a

constant profit subsidy −
(

1 − 1
Be

)
− 1

Be

(
1 − 1

Bm

)
< 0 over time. The net subsidy wedge is

constant over time and type and equal to exactly −τt. Both wedges are increasing in absolute
value when the strength of the spillover (ζ) increases.

OA.3 Extensions

OA.1 Heterogeneity in Production Efficiency

Suppose that firms are also heterogeneous in their production productivities, denoted by θp, with
realization θ

p
t and history θp,t. For instance, production costs could be C(k, q̄t, θ

p
t ). Allocations

are now specified as functions of the full set of histories (θt, θp,t). If production productivity is
observable, the planner will simply condition on it for each history of research productivities
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θt. In fact, as long as quality q and quantity k are observable, the planner can perfectly infer
θp,t from the observed production choices. Net output is then Ỹ(qt(θt, θp,t), q̄t, θ

p
t ) and profits are

π(qt(θt, θp,t), q̄t, θ
p
t ). Similarly to before, we can define Πt(θt, θp,t) :=

(
∑∞

s=t
( 1−δ

R

)s−t ∂π(qs(θs,θp,s),q̄s,θp
s )

∂qs

)
as the marginal impact on future profit flows from an increase in quality. Let Qt(θt, θp,t) =

∑∞
s=t
( 1−δ

R

)s−t ∂Ỹ(qs(θs,θp,s),q̄s,θp
s )

∂qs
be the marginal impact of quality on on future expected output net

of production costs.

Then, the optimal profit wedge can be set for each history (θt, θp,t) and satisfies:

τ(θt, θp,t) = −E

(
∞

∑
s=t

(
1 − δ

R

)s−t

ηs

)
∂λt

∂lt

−E(Qt(θ
t, θp,t)− Πt(θ

t, θp,t))
∂λt

∂lt

+
1 − F1(θ1)

f 1(θ1)
I1,t(θ

t)
ϕ′

tλθt

λt

[
1

ε l,1−τ

1
ελl,t

+ ρθl,t

]
and the optimal R&D subsidy is given by:

s(θt, θp,t) = E

(
∞

∑
s=t+1

(
1 − δ

R

)s−t−1

ηs
∂λt+1

∂rt

)

+E

((
Qt+1(θ

t+1, θp,t+1)− Πt+1(θ
t+1, θp,t+1)

) ∂λ(θt+1)

∂rt

)
+

1
R

E

(
1 − F1(θ1)

f 1(θ1)
I1,t+1(θ

t+1)ϕ′
t+1(l(θ

t+1))
λθλr

λλl
(ρlr − ρθr)

)
.

The productivity differences only enter the monopoly valuation term, as they only affect how
effectively each firms can transform the quality into output. As a result, productivity differences
in production do not really change the previous results.

More generally, any additional heterogeneity that is observable can be treated in a similar
way, by conditioning the optimal policies on it. The problem becomes much more complicated
if there is additional unobservable heterogeneity that is correlated with research productivity
θ. Already in much simpler static settings without spillovers, Rochet and Choné (1998) show
that with two-dimensional heterogeneity there are barely any general results. Incorporating non-
trivial two-dimensional heterogeneity in a dynamic model with spillovers like this one (and being
able to estimate it) would be an important big step for future research.

Empirically, we do not let this additional observable heterogeneity (such as production sector,
technology sector, or business-cycle induced effects) contaminate the results and filter it out from
the variables thanks to fixed effects before computing our data moments. What could be quite
interesting for future research would be to actually specifically estimate the model and simu-
late differentiated optimal policies, allowing explicitly for different sectors, different technology
classes, or different parts of the business cycles.
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OA.2 Different Types of Observable R&D Investments

Suppose that there are several types of observable R&D investments that firms can make, denoted
by r1, ...rj, ..., r J . A natural interpretation would be the investments in different technology classes.

The step size is determined as a function of the observable R&D investments, unobservable
R&D effort, and firm research productivity:

λt = λt(r1
t−1, ...rj

t−1, ..., r J
t−1, lt, θt).

We can define the Hicksian complementarity of each R&D type with firm effort and research
productivity as:

ρ
j
θr,t :=

∂2λt

∂rj
t−1∂θt

λt

∂λt
∂θt

∂λt

∂rj
t−1

and ρ
j
lr,t :=

∂2λt

∂rj
t−1∂lt

λt

∂λt
∂lt

∂λt

∂rj
t−1

.

Different types of R&D investments can have very different complementarity profiles with R&D
effort and firm type (or, equivalently, their exposure to risk as embodied by the stochastic type).
Some investments may generate returns with high certainty, regardless of the type realization,
while others may only yield returns when firms are particularly good or in period of good
realizations of the stochastic type.

Let the subsidy on investment rj
t be denoted by sj(θt). At the optimum, formula (10) holds

separately for each type of R&D investment wedge sj(θt). The wedge sj(θt) will be increasing
in the effect of investment j on the step size (in the Pigouvian correction term), as well as in the
relative complementarity of that investment to unobservable R&D effort relative to its comple-
mentarity with respect to firm research productivity, ρ

j
θl − ρ

j
θr.

The lesson is that, while it is optimal to subsidize investments with higher externalities at
a higher rate, it is not as beneficial if these investments are also highly sensitive to the firm
productivity and firm research productivity is unobservable.

OA.3 Different Externalities from Different Types of Research

It is also possible to directly incorporate different externalities from each type of R&D invest-
ments by letting the cost function be decreasing in each aggregate investment type:

C(k, q̄1, .., q̄J) with q̄j =
∫

Θt
qj

t(θ
t)dθt and qj

t(θ
t) = qj

t(θ
t−1)(1 − δ) + λ

j
t(r

j
t−1, lt, θt).

This is important in order to be able to speak to the very different spillovers from different types
of research such as basic and applied research. Basic research may only add little to the total
quality of a firm’s product, but if its effect on the costs of production of other firms is important,
it will suffer from a large under-investment in the laissez-faire, as highlighted in Akcigit et al.
(2021), and will warrant a large Pigouvian correction.
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At the firm level, the (single) product quality is given by

qt = (1 − δ)qt−1 +
J

∑
j=1

λ
j
t(r

j
t−1, lt, θt).

We have to impose j consistency constraints in the partial program in each period t, each with
multiplier η

j
t . Formula (10) then tells us that R&D investments with the highest spillovers (highest

η
j
t =

∫
Θt

∂Ỹ∗(qt(θt),q̄1
t ,...,q̄J

t )

∂q̄j
t

P(θt)dθt) are the ones that should be subsidized most (bearing in mind

that their complementarities with effort and firm research productivity may dampen the benefits
from subsidizing them).

OA.4 Computational Appendix

OA.1 Computational Procedure

All code is written is standard Python 3, and depends only on common numerical and scien-
tific modules such as numpy, scipy, pandas, statsmodels, patsy, and matplotlib. The parameter
estimation and optimal policy calculations are done using either the Nelder-Mead algorithm or
simulated annealing.

Because of the staggered nature of research spending and firm effort decisions, we find the
optimal decisions for a log-uniform grid of possible (θt, θt+1) values. In addition, in the case
of the optimal mechanism, one also tracks the initial type θ1, as this bears on the constraints
imposed by informational limitations.

When solving for both the optimal mechanism and the linear tax equilibrium outcome, the
solution method is constructed as a fixed point problem on the path of q̄. Because q̄ evolves
according to a firm’s research decisions and these decisions are made based on expectations that
condition on the future path of q̄, the decisions made by firms are in a sense both forward and
backward looking.

Given a certain candidate path for q̄, we can find the optimal choices for research spend-
ing and firm effort (for either the firm or the planner), which itself amounts to solving a one-
dimensional equation for each point in the type space in each time period. Using these decisions,
one can construct an updated path for q̄. When this process reaches a fixed point, we have found
the equilibrium path for q̄. In practice, as the equations characterizing firm choices are analytical
but not closed form, it is more efficient to formulate the problem as a fixed point over both the
path of q̄ and firm choices for r and l for each type. Updating is then done only using the M′(r)
and ϕ′(l) terms in the first order conditions. Additionally, it is useful to dampen the updating
process to avoid any numerical instabilities.

Moving to non-linear policies considerably complicates matters. In this case, the relevant
state space of the firm must include the actual value of q. As a result, we must track the joint
distribution of qt, θt, and θt+1. Conceptually the convergence process and criterion are similar to
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the linear case, but the run time is much longer. The advantage is that we can entertain tax and
subsidy policies that are arbitrary (differentiable) functions of firm profit and R&D investment.

To generate simulated moments for parameter estimation, we simulate a large number of
firms (215 = 32768) for the entirety of their life cycle and compute various statistics on this
panel of simulated data. All of the moments are relatively straightforward to calculate, with the
notable exception of the coefficients for the spillover regression (M8) and the R&D-cost elasticity
regression (M9), which are used to identify the externality parameter and various cost elasticities.

For the spillover regression (M8), we actually re-solve and re-simulate the model for a variety
of different scenarios in which innovations contribute an additional boost to average productivity
q̄, which we interpret as innovation spillovers between firms. We perform this exercise for a
variety of boost parameters centered around unity (the baseline model value). We interpret each
simulated economy as representing a particular industry with a particular level of innovation
spillovers. This mimics the exogenous variation used to identify the spillovers in the Bloom
et al. (2013) paper. Using this variation, we then run a regression of firm sales on the amount of
research spending undertaken by the firm as well as the average research spending by all firms
in that time period and industry. We then match this to an analogous regression run by Bloom
et al. (2013).

Similarly, for the R&D-cost regression (M9), we simulate a variety of economies having dif-
ferent values of the R&D cost parameters κr centered at the baseline value. These differences
can represent actual differences in cost, or alternatively, differences in R&D subsidy levels or tax
credits. We then run a firm-level regression across time and industry of R&D investment on the
level of κr.

To generate estimates for the standard errors of our parameter estimates, we take 100 draws
from the distribution induced by our data moment means and variances, fully re-estimate the
parameters of our model for each of these draws, then report the standard deviation of these
estimates. Because some of our data moments (in particular, moments M8 and M9) come from
different sources, it is not clear what the interpretation of off-diagonal elements would be. A
natural choice is to set them to zero, using a diagonal matrix for the data moment standard
errors.

OA.2 Ex Post Verification Procedure

To perform the ex post verification, we start with the allocations under truth-telling in the optimal
mechanism, λ(θt), r(θt), and T(θt) (where the transfers T(θt) are constructed following (OA1)).
These allocations are defined for all histories θt which could arise along the equilibrium path
by the optimal mechanism– thus any history θt that can never arise given the distribution of
stochastic shocks is ruled out (with, for instance, infinitely negative transfers T(θt)).

For every history θt−1, we can compute the allocations that would be assigned to an agent
of type θ who reports θ′ (not necessarily truthfully) among the feasible types in the space Θ at
time t. Under any report θ′, the agent will be assigned the allocations λ(θt−1, θ′), r(θt−1, θ′) and
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T(θt−1, θ′), which are meant for the “true” type (θt−1, θ′). The agent whose true type realization
is θ chooses the report θ′ that will maximize his expected discounted payoff which is:

max
θ′

T(θt−1, θ′)− ϕ(λ(θt−1, θ′)/w(rt−1(θ
t−1), θ)) +

1
R

∫
ω(θt−1, θ′, θt+1) f t+1(θt+1|θ).

The ex post verification consists in checking whether the agent will, in fact, choose θ′ = θ (i.e.,
report his true type) when faced with the set of allocations that can arise for any type at the
optimum. Note that this amounts to checking that the global incentive constraints are satisfied
at the optimal allocations derived using the first-order approach.
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SUPPLEMENT TO
“OPTIMAL TAXATION AND R&D POLICIES”

by Ufuk Akcigit, Douglas Hanley, and Stefanie Stantcheva

S.1 Optimal Policies in a Simple Two-type, One-Period Model

In this section, we illustrate the underlying logic of the optimal mechanism in a very simple
two-type, one-period model.

Suppose that firms can be of the high research productivity type θ2 or of the low productivity
type θ1. The fractions in the population of firms of types high and low are, respectively, f2 and
f1, with f2 = 1 − f1. The problem is static: Firms enter period 1 with a knowledge of their type
realization, chose R&D investments r(θi) and R&D effort l(θi) at the beginning of the period. The
step size is λ(θi) = λ(r(θi), l(θi), θi) and quality is q(θi) = q0 + λ(θi), where q0 is given. At the
end of the period firms receive a transfer T(θi) from the government. For the exposition, suppose
that the step size takes the form:

λ(r, l, θi) = w(r, θi)l

for an increasing and concave function w. The market structure between the intermediate goods
and the final goods producer generates a demand function p(q, k) for the intermediate goods.
With full patent protection in place, the intermediate good producer faces the monopolist price.
Profits are denoted by π(q, q̄) as a function of quality q and aggregate quality q̄ = f1q(θ1) +
f2q(θ2).

In the planning problem, the planner sets a menu of contracts (r(θi), l(θi), T(θi)) for i = 1, 2
and lets firms self-select allocations from this menu. For simplicity, we set χ = 1.1 For any
quality, the firm will choose the privately optimal quantity, leading to output net of production
costs Ỹ(q(θi), q̄) for type θi. The remaining components of the menu (r(θi), l(θi), T(θi))i=1,2 and q̄
are chosen to maximize social welfare defined in (3), and which in this simple case becomes:

W = f1
(
Ỹ(q(θ1), q̄)− M(r(θ1))− T(θ1)

)
+ f2

(
Ỹ(q(θ2), q̄)− M(r(θ2))− T(θ2)

)
,

subject to q(θi) = q0 + λ(θi) with q0 given, and subject to firms’ participation constraints:

T(θi)− ϕ(l(θi)) ≥ 0.

We can also allow for some different thresholds in the participation constraint, such that T(θi)−
ϕ(l(θi)) ≥ V(θi). In the first best, firm type is observable, χ = 0, and the planner makes each firm
invest the efficient level of effort and inputs, such that the marginal effort and R&D investment
costs equal the social impact, as in section 2.3, and surplus is extracted in a lump-sum fashion
from the firms, i.e.,2

T(θi) = ϕ(l(θi)).
1This is without loss of generality: a χ ̸= 1 would simply appear as a scaling factor in front of the screening term

in the formulas below.
2More precisely,

M′(r(θi)) =

(
∂Ỹ(q(θi), q̄)

∂q
+

(
f1

∂Ỹ(q(θ1), q̄)
∂q̄

+ f2
∂Ỹ(q(θ2), q̄)

∂q̄

))
∂λ(r(θi), l(θi), θi)

∂r(θi)

ϕ(l(θi))

w(r(θi), θi)
=

∂Ỹ(q(θi), q̄)
∂q

+

(
f1

∂Ỹ(q(θ1), q̄)
∂q̄

+ f2
∂Ỹ∗(q(θ2), q̄)

∂q̄

)
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The second-best problem imposes an incentive constraint for each type i:

T(θi)− ϕ(l(θi)) ≥ T(θj)− ϕ

(
w(r(θj), θj)l(θj)

w(r(θj), θi)

)
∀(i, j).

Given that the goal is to minimize total transfers to the firms, one can show that the incentive
constraint of type θ2 and the participation constraint of type θ1 will be binding.3 Indeed, at
the first-best allocations and transfer levels, high research productivity firms will be tempted to
pretend that they are low productivity firms. This is because they have to forfeit all their surplus
to the planner, but, since they are able to reach any step size at a lower R&D effort cost than low
research productivity firms, they could achieve a positive surplus by selecting the low research
productivity firm’s first-best allocation. To prevent this from happening, the allocation of the
low research productivity firms needs to be distorted so as to make it less attractive to high
productivity firms.

The transfers then have to satisfy:

T(θ1) = ϕ (l(θ1))

T(θ2)− ϕ (l(θ2)) ≥ T(θ1)− ϕ

(
w(r(θ1), θ1)l(θ1)

w(r(θ1), θ2)

)
.

Substituting these expressions into the social objective, we obtain the so-called virtual surplus,
which is social surplus minus the informational rent forfeited to the high type θ2 to induce him
to truthfully reveal his type. The social optimum will maximize allocative efficiency (the first line
below) while trying to reduce the informational rent forfeited to the high type (the second line):

W = f1
(
Ỹ(q1(θ1), q̄)− M(r(θ1))− ϕ (l(θ1))

)
+ f2

(
Ỹ(q(θ2), q̄)− M(r(θ2)− ϕ (l(θ2))

)
− f2

(
ϕ (l(θ1))− ϕ

(
w(r(θ1), θ1)l(θ1)

w(r(θ1), θ2)

))
. (S1)

Characterization of the Optimal Allocation in Terms of Wedges. The constrained efficient allo-
cation can be described using so-called wedges or implicit taxes and subsidies, which measure
the deviation of the allocation relative to the laissez-faire economy with patent protection. In
the laissez-faire economy with patent protection, profits are a function of the product’s quality
and aggregate quality, π(q(θi), q̄), as defined in Section 2. The effort wedge, τ(θi) on type θi is
defined as the gap between the marginal private benefit of effort and its cost, while the R&D in-
vestment wedge is defined as the gap between the marginal cost of R&D and its marginal private
benefit. Thus, a higher effort wedge means a lower incentive for R&D effort, while a higher R&D
investment wedge means a higher incentive for R&D investments. Formally:

s(θi) = M′(r(θi))−
∂π(q(θi), q̄)

∂q(θi)

∂λ(r(θi), l(θi), θi)

∂r(θi)

(1 − τ(θi))
∂π(q(θi), q̄)

∂q(θi)

∂λ(r(θi), l(θi), θi)

∂l(θi)
= ϕ′(l(θi)).

In the implementation below, it will be clear that there is a very natural map between the wedges
(i.e., implicit taxes and subsidies) and the explicit marginal tax rates of the implementing tax
function.

3As is usual in these types of screening problems, the slackness of the low type’s omitted incentive constraint can
be checked ex post.
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Taking the first-order conditions of the social objective with respect to r(θi) and l(θi) for
i = 1, 2 and using the definitions of the wedges, we obtain that for the low research productivity
type, the allocations are distorted just enough to balance the informational rent forfeited to the
high type and the loss in allocative efficiency.

Proposition 1. Optimal Allocations for Low Research Productivity Firms.
i) The optimal R&D investment wedge on the low research productivity type is given by:

s(θ1) =

(
f1

∂Ỹ(q(θ1), q̄)
∂q̄

+ f2
∂Ỹ(q(θ2), q̄)

∂q̄

)
∂w(r(θ1), θ1)

∂r
l(θ1)︸ ︷︷ ︸

Pigouvian corection

+

(
∂Ỹ(q(θ1), q̄)

∂q(θ1)
− ∂π(q(θ1), q̄)

∂q(θ1)

)
∂w(r(θ1), θ1)

∂r
l(θ1)︸ ︷︷ ︸

Monopoly quality valuation correction

+
f2

f1

1 −
∂ log(w(r(θ1),θ2))

∂ log(r)
∂ log(w(r(θ1),θ1))

∂ log(r)


︸ ︷︷ ︸

Complementarity

∂w(r(θ1),θ1)
∂r l(θ1)

w(r(θ1), θ2)
ϕ′

(
w(r(θ1), θ1)l(θ1)

w(r(θ1), θ2)

)

︸ ︷︷ ︸
Screening term

. (S2)

ii) The optimal R&D effort wedge on the low productivity firm is given by:

τ(θ1)
∂π(q(θ1), q̄)

∂q(θ1)
= −

(
∂Ỹ(q(θ1), q̄)

∂q(θ1)
− ∂π(q(θ1), q̄)

∂q(θ1)

)
−

(
f1

∂Ỹ(q(θ1), q̄)
∂q̄

+ f2
∂Ỹ(q(θ2), q̄)

∂q̄

)
+

f2

f1

(
1

w(r(θ1), θ1)
ϕ′(l(θ1))−

1
w(r(θ1), θ2)

ϕ′
(

w(r(θ1), θ1)l(θ1)

w(r(θ1), θ2)

))
︸ ︷︷ ︸

Screening term: Cost differential between high and low productivity firms

. (S3)

Proof. Taking the first-order conditions of the planner’s problem in (S1) with respect to l(θi) and
r(θi) for each i = 1, 2 and using the definitions of the wedges yields the formulas.

The optimal implicit subsidy on R&D investment in (S2) and the R&D effort wedge in (S3)
balance three considerations.

1) Pigouvian correction for technology spillovers: Incentives are increasing in the Pigouvian cor-
rection that aligns private incentives with the social benefit from R&D technology spillovers,
which are the key reason for the government to intervene. This correction is larger when the
marginal return to R&D investments

(
∂w(r(θ1),θ1)

∂r

)
is larger.

2) Monopoly quality valuation correction: Starting from a laissez-faire with patent protection,
the monopolist values each marginal increase in quality less than its marginal social value: this
difference in quality valuation must also be corrected for in the optimal planning problem. This
is the second term in each of the wedge formulas. The distortions in the R&D investment and
effort are modified so as to indirectly compensate for the under-provision of quantity of the
monopolist. The effect of a change in quantity (induced by extra investment in R&D investment
or R&D effort) on social welfare, implicit in ∂Ỹ(q(θi),q̄)

∂q(θ) , is first-order and is proportional to the

monopoly distortion, i.e., the gap between price and marginal cost.4 The pre-existing monopoly

4Formally, ∂Ỹ(q(θi),q̄)
∂q(θi)

=
∂Y(q(θi),k(q(θi),q̄))

∂q(θi)
+

(
p(q(θi), k(q(θi), q̄))− ∂C(k(q(θi),q̄),q̄)

∂k

)
∂k(q(θi),q̄)

∂q(θi)
where k(q(θi), q̄) is the

quantity chosen to maximize profits by a monopolist with quality q(θi).
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distortions amplify the direct impact of R&D effort and investment on output and the indirect
impact through the technology spillover, pushing the R&D effort wedge down and the R&D
investment wedge up. The optimal R&D policies hence depend on the IPR policies in place. If
there was no monopoly distortion in the laissez-faire economy, i.e., if there was for instance a
prize system, then there would be no need to correct for it and this term would disappear from
the optimal wedge formulas.5

3) Screening term: The screening term (the third term in each formula) captures the modifica-
tion to the first-best incentive that is induced by the asymmetric information. It is decreasing in
the fraction of high research productivity firms over low research productivity firms: the lower
the fraction of low productivity firms, and the less costly it is to distort their effort or invest-
ments for the sake of reducing the informational rent of the (more frequently encountered) high
productivity firms.

The screening term depends on the relative complementarity of R&D investments with R&D
effort versus firm research productivity. Since the step size is assumed here to be multiplicatively
separable, the elasticity of the step size to R&D effort for both types is just 1, the first term in
the “complementarity” term. The relative elasticity of the return to effort w(r, θ) with respect to
R&D for the high and the low type, ∂ log(w(r(θ1),θ2))

∂ log(r) / ∂ log(w(r(θ1),θ1))
∂ log(r) measures how complementary

R&D investments are to firm research productivity: if the elasticity is increasing in type, then
R&D investments benefit disproportionately high research productivity firms. The more elastic
the high type’s return is to R&D, the less the R&D investment of the low type can be subsidized,
as this makes it more tempting for the high type to pretend to be low type. Put differently,
increasing R&D investments of the low type when the relative elasticity is high means tightening
the high type’s incentive constraint and giving that firm more informational rent. As a special
case, if the elasticities of the high and low types are the same, then R&D investments of the low
type do not affect the high type’s incentive constraint. As a result, the screening term drops out
and the optimal marginal R&D subsidy is set solely to correct for the technology spillover and
the monopoly distortion.

Stimulating R&D investments is beneficial when there is a high complementarity of R&D
investments with unobservable R&D effort, because it stimulates the unobservable input, but is
detrimental when there is a high complementarity with firm research productivity, as it then
tightens the incentive constraint of the high research productivity firm. The basic logic is that
investments in R&D are distorted only in so far as they (beneficially) affect the incentive con-
straint of the high research productivity firm, i.e., as long as they can indirectly stimulate the
unobservable R&D effort choice.

For the R&D effort wedge, the efficiency cost of distorting the low research productivity firm’s
R&D efforts depends on the comparative productive advantage of the high type relative to the
low type. The efficiency cost depends on the difference in the marginal cost ϕ′(l) of producing
the step size assigned to the low research productivity firm (which is λ(θ1)) between the low
and the high research productivity firm. Since the cost function ϕ(l) is convex, this difference
is always positive. The smaller this difference, the more tempting it is for the high research
productivity firm to imitate the low research productivity one and the more the R&D effort of
low productivity firms should be reduced. This increases the optimal effort wedge τ(θ1) on the
low productivity firm’s R&D effort.

On the other hand, the high research productivity firms’ allocations are set based on the

5Naturally, larger wedges (i.e., distortions relative to the laissez-faire) do not imply in any sense that there is more
investment in effort or R&D relative to a situation with smaller wedges.

4



monopoly valuation and Pigouvian correction terms only. The screening term is zero since the
low type’s incentive constraint is not binding. Section S.1 explains two possible implementations
of the optimal allocations in this simple model and provides expressions for the marginal tax
rates and the marginal subsidy rate in the case in which this implementing tax system can be
made differentiable.

R&D Policies when Production can be Controlled. Imagine now that the government can also
intervene in the private market between intermediate and final goods producers and make the
policies contingent on the quantity produced. As a result, for any quality, the socially optimal
quantity can be enforced and output net of production costs is Ỹ∗(q(θi), q̄) for type θi. This is
because the optimal quantity to be produced is only conditional on quality and there is no reason
to distort it (although the quality decision itself will still be distorted relative to the first best). The
planning problem, and hence the optimal wedges, are the same, but with Ỹ∗(q(θi), q̄) replacing
Ỹ(q(θi), q̄) in (S2) and (S3). Since the optimal quantity can now be implemented, the value of
each incremental quality improvement is even larger (relative to private firm profits) and it is
optimal to foster innovation even more with larger R&D wedges and lower corporate wedges.
Another way of putting this is that when quantity can be controlled, the planner will optimally
make the firm deviate even more from the allocation it would have picked in the laissez-faire.

S.1 Implementation

We illustrate here the two implementations in the case in which quantity can also be controlled.
The benchmark case where quantity cannot be controlled is treated in detail in Section 4.2.

Tax Implementation. First, the government can subsidize the price of production at a nonlinear
rate sp(k, q) as a function of the quantity and quality of the good sold to the final good producer,
such that the post subsidy price is (1 + sp(k, q))p(k, q) = Y(k,q)

k , and in addition levy a profit
tax (which could be negative) T(π, r) that depends nonlinearly on profits and R&D investments.
Firms choose quantity to maximize profits conditional on quality, which, thanks to the price
subsidy, becomes equivalent to maximizing household consumption net of production costs.
Note that under a constant monopoly price markup (as arises for instance under the functional
form assumptions in Section 5 where Y(q, k) = 1

1−β qβk1−β), the price subsidy needed to align
the monopolist’s post-tax price with social marginal valuation of quantity is constant and equal
to β

1−β . With this price subsidy, profits will be equal to Ỹ∗(q0 + λ(r, l, θi), q̄). The maximization
problem of a firm of type θi with respect to the remaining choices of l and r is then:

max
l,r

{Ỹ∗(q0 + λ(r, l, θi), q̄)− T(Ỹ∗(q0 + λ(r, l, θi), q̄), r)− ϕ(l)− M(r)}.

The first-order conditions of the firm with this tax implementation are:

− ∂T(Ỹ∗(q(θi), q̄), r(θi))

∂r(θi)

+
∂Ỹ∗(q(θi), q̄)

∂q
∂λ(r(θi), l(θi), θi)

∂r(θi)

(
1 − ∂T(Ỹ∗(q(θi), q̄), r(θi))

∂π

)
= M′(r(θi))(

1 − ∂T(Ỹ∗(q(θi), q̄), r(θi))

∂π

)
∂Ỹ∗(q(θi), q̄), r(θi))

∂q
∂λ(r(θi), l(θi), θi)

∂l(θi)
= ϕ′(l(θi)).
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We can use the first-order conditions of the firms into the optimal wedge formulas to obtain a
characterization of the optimal (explicit) marginal tax and subsidy:

− 1
∂w(r(θ1),θ1)

∂r l(θ1)

∂T(Ỹ∗(q(θ1), q̄), r(θ1))

∂r(θ1)
=

∂T(Ỹ∗(q(θi), q̄), r(θi))

∂π

∂Ỹ∗(q(θi), q̄)
∂q

+

(
f1

∂Ỹ∗(q(θ1), q̄)
∂q̄

+ f2
∂Ỹ∗(q(θ2), q̄)

∂q̄

)
+

f2

f1

1 −
∂ log(w(r(θ1),θ2))

∂ log(r)
∂ log(w(r(θ1),θ1))

∂ log(r)

 1
w(r(θ1), θ2)

ϕ′
(

w(r(θ1), θ1)l(θ1)

w(r(θ1), θ2)

)

∂T(Ỹ∗(q(θi), q̄), r(θi))

∂π

∂Ỹ∗(q(θi), q̄), r(θi))

∂q
= −

(
f1

∂Ỹ∗(q(θ1), q̄)
∂q̄

+ f2
∂Ỹ∗(q(θ2), q̄)

∂q̄

)
− f2

f1

(
1

w(r(θ1), θ2)
ϕ′

(
w(r(θ1), θ1)l(θ1)

w(r(θ1), θ2)

)
− 1

w(r(θ1), θ1)
ϕ′(l(θ1))

)
.

Note that the monopoly quality valuation correction term does not enter the optimal tax and
subsidy because the monopoly quantity distortion is taken care of by the price subsidy in this
implementation. The profits that the firm maximizes are exactly equivalent to Ỹ∗, the socially
valued output net of production costs.

Implementation with a Prize Mechanism. The government can also simply purchase the in-
novation directly from the firm in exchange for a prize G(λ, r) that depends on the step size
(or, interchangeably, on the realized quality q) and on R&D investment. If the prize function is
differentiable in its two arguments, the formulas for the marginal change in prize with respect to
the step size or R&D investments can immediately be obtained by substituting for the wedges in
the planner’s first-order conditions, using the link between the wedges and the marginal prize
with respect to product quality and R&D expenses.

s(θi) =
∂G(λ(r(θi), l(θi), θi), r(θi))

∂r(θi)
+

∂G(λ(r(θi), l(θi), θi), r(θi))

∂λ

∂λ(r(θi), l(θi), θi)

∂r(θi)

τ(θi)
∂π(q(θi), q̄)

∂q(θi)

∂λ(r(θi), l(θi), θi)

∂l(θi)
=

∂G(λ(r(θi), l(θi), θi), r(θi))

∂λ

∂λ(r(θi), l(θi), θi)

∂l(θi)
.

S.2 Controlling Quantity

In the main part of the paper, the government is assumed to be unable to control the quantity of
production. This means that the government takes the demand function and the price for each
unit of quality as given. There is a tight link between this and the ability to control IPR policy.
Not being able to control quantity produced essentially amounts to taking the patent system as
given. The main paper thus considers what the optimal corporate tax and R&D policies should
be in the presence of a patent system. Here, we consider the case in which the government is
free to set the quantity of production conditional on quality, which means the government can in
fact freely set the intellectual property policy as well, which in this case is a prize system through
which the government directly purchases the innovation from the producer.

If the government were also able to intervene in the output market and control the quantity
produced, the planning problem is identical to P in (8), except that the impact of quality improve-
ments on the net output produced by the monopolist, Ỹ(qt(θs), q̄s), is replaced everywhere with
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the impact of quality improvement on net output as would optimally be chosen by the planner,
for every quality level, i.e. Ỹ∗(qt(θs), q̄s). Accordingly, in the optimal wedge formulas in Propo-
sition (1), Qt+1(θ

t+1) is replaced by Q∗
t+1(θ

t+1). All else equal, when the planner is also able to
control quantity, wedges are larger because the planner is able to make the firm deviate more
relative to what it would (suboptimally) do in the laissez-faire. Because being able to control
quantity implies removing a constraint in the planner’s problem, total output net of all costs will
be higher than when quantity cannot be controlled.

Implementation. The constrained efficient allocation from program P(q̄) (when quantity is ob-
servable) can then be implemented in two ways, which from a theoretical point of view are
equivalent. The first implementation features a price subsidy sp(k, q) such that the post-subsidy
price perceived by the intermediate good producer is p(k, q)(1 + sp(k, q)) = Y(k,q)

k . In this case,
the private producer will maximize profits equal to Y(k, q)− C(k, q̄) conditional on q, which is
exactly the social surplus from production k. This price subsidy should be combined with a com-
prehensive, age-dependent tax function Tt(qt, rt, qt−1, rt−1, q1) that conditions on current quality
qt, lagged quality, qt−1, current R&D, rt, lagged R&D rt−1, and first-period quality q1.

Second, the government could set up a prize mechanism, through which it purchases the new
innovation flow (i.e., the step size) λt from the firm in each period, and produces the socially
optimal quantity of the good of quality qt = (1 − δ)qt−1 + λt. Here, the government becomes the
central owner of the intellectual property and keeps adding to its stock every period, in exchange
for a prize. The prize amount Gt(λt, rt, rt−1, q1) paid for an innovation λt depends on firm age,
current and lagged R&D investments, and the initial quality q1.

S.1 Numerical Simulation: Optimal Allocations and Wedges When Quantity can be
Controlled

When quantity can also be controlled, the planner has an additional lever that can also be made
part of the contract. As a result, the planner can make firms deviate even more from their laissez-
faire allocations to induce a better allocation. Accordingly, the wedges are larger in absolute
value, as illustrated in Figure S1. Overall, the innovation inputs and step sizes are larger, as
shown in Figure S2.

S.2 Welfare Gains from Simpler Policies When Quantity can be Controlled

Table S.I shows the welfare gains from simpler policies relative to the optimal contract when
quantity can be controlled. In this table, each panel considers a separate class of policies, ranging
step-by-step from linear to nonlinear and non-separable ones. We show the welfare achieved
from the optimal policy in each class relative to the planning problem in which quantity can be
controlled. The first row shows the welfare level achieved by the current policies in the U.S.,
which are approximated with a linear 23% effective corporate tax rate and a 19% effective R&D
subsidy rate.

S.3 Compustat Data Matched to Patent Data

In this section, we redo our analysis on the sample made of only publicly traded firms, based
on COMPUSTAT data matched to patent data. For this purpose, we select our sample so as to
make it as close as possible to the one in Bloom, Schankerman, and Van Reenen (2013). The
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Table S.I: Welfare from Optimal Simpler Policies when Quantity can Be Con-
trolled

Policy Type Welfare Achieved Relative to Full Optimum

A. Current US policy

T′(π) = 0.23 S′(M) = 0.19 7%

B. Optimal Linear

T′(π) = τ0 S′(M) = s0 92.4%

C. Linear with Interaction Term

T′(π, M) = τ0 + τ1M S′(M) = s0 95.1%

D. Heathcote-Storesletten-Violante (HSV)

T′(π) = τ0 − τ1πτ2 S′(M) = s0 − s1Ms2 96.3%

E. HSV Tax on Profits and Linear Subsidy

T′(π) = τ0 S′(M) = s0 − s1Ms2 95.8%

F. HSV Subsidy on R&D and Linear Profit Tax

T′(π) = τ0 S′(M) = s0 − s1Ms2 96.2%

G. HSV with Interaction Term

T′(π, M) = τ0 + τ3Ms2 − τ1πτ2 96.4 %
S′(M) = s0 − s1Ms2

Notes: The table shows the share of welfare from the full unrestricted optimum when quantity can be controlled that
is achieved by the optimal policy within each class. Each panel shows a different class.
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sample selection procedure that follows Bloom, Schankerman, and Van Reenen (2013) keeps all
firms who patent at least once since 1963, so that they can at least at some point be matched to
the patent data (this is natural also in light of our theory, which focuses on innovating firms).
The final unbalanced panel contains 736 firms that are observed at least four times in the period
1980 to 2001 and is essentially identical to the sample in Bloom, Schankerman, and Van Reenen
(2013).6 Table S.II provides some summary statistics from the data.

Table S.II: Summary Statistics in the Compustat and Patent Data

Variable Mean Median

Sales (in mil. USD) 3133 494
Citations per patent 7.7 6
Patents per year 18.5 1
R&D spending / sales 0.043 0.014
Number of employees (000’s) 18.4 3.8

Number of firms 736

Note: The sample is selected to match as closely as possible the one in Bloom, Schankerman, and Van Reenen (2013),
who keep firms that patent at least once since 1963 and which are observed for at least four years between 1980 and
2001.

S.4 Policies with a Finite Firm Life Cycle

One reason for time-dependent policies that is not covered in the paper is if firms have a finite
lifecycle, i.e., if the maximum age is T < ∞. This leads to life cycle considerations such as
the shorter horizon for any investments made later in firms’ lives. Here the relevant issue is
the distance of the period under consideration to the final period T. Both the laissez-faire and
the socially optimal investments would naturally decline over a firm’s life-cycle, all else equal,
as earlier investments contribute to research productivity for more periods. If the technology
spillover is positive, as seems natural, the Pigouvian correction term is always positive and, all
else constant, will decline over time as the horizon shortens. This age-driven channel is fully
eliminated by letting the horizon go to infinity, as we do in our benchmark case. Here, we
provide the optimal policies with a finite life cycle.

Figures S5 and S6 show what happens when the life cycle is finite, with a given death and
exit rate. In this case, the age paths of optimal inputs are hump-shaped, driven by the balance of
the screening considerations and the life cycle considerations. In the first part of the life cycle, the
screening considerations dominate; in the latter part, the dominant forces are the finite life cycle
and the approach of the terminal period, which make investments less lucrative, privately and
socially. Thus, with a finite life cycle, young firms, up to mid-life, should optimally provide an
increasing amount of effort and investments for R&D. After mid-life, the effort and investment
are declining given the shortening horizon left to reap the benefits.

6The results are robust to this sample selection. We repeated the analysis on a much broader sample of 6,400 firms
over the period 1976 to 2006 that could be matched to the patent data for any year (without restricting to firms that
are observed for at least four years). The results on this alternative sample are similar and are available upon demand.

9



S.5 Robustness Checks on Parameters and Moments

We provide here robustness checks and sensitivity analyses for our estimation.
In Figures S7 and S8, we perform a type of two-step GMM estimation with weights taken from

the variance-covariance matrix of moments. The reason this is not our benchmark is because we
do not have the full variance-covariance matrix as moments M8 and M9 are taken from other
papers (based on good identification strategies, e.g. to identify spillovers). We hence assume the
off-diagonal terms are zero. Table S.IV shows the match for the targeted moments and Table S.III
the estimated parameter values. The results are very similar to our benchmark ones.

In the remaining figures we change the externally calibrated parameters. In all these cases,
it is important bearing in mind that wedges represent the gap between what firms would do in
the laissez-faire and what the planner induces them to do in the optimal mechanism. Variations
in any of these parameters not only change the optimal allocation, they also change what firms
would optimally do in the laissez-faire, often in the same direction. As a result, the wedges
may not change that much from a change in these parameters; however, the allocations induced
could be very different. This is why we show all the wedges and the allocations for each set of
parameter values. In addition, total revenues raised by the government and consumer welfare
would also be very different since they depend not just on the total innovation produced, but
also on the share that goes to consumers.

In Figures S9 to S16, we explore the role of the stochastic type process assumed, some of
which was already discussed in the main text. More precisely, Figures S9 and S10 show the
wedges for a first-order autoregressive process; Figure S11 and S12 an increasing persistence
over the life cycle; Figures S13 to S16 respectively have p = 0.5 and p = 0.9. The persistence
of this stochastic process affects the rate of decay of the wedges very significantly, but not the
qualitative findings described above. In addition, a more persistent process increases the ability
of the planner to provide dynamic incentives and improves the allocations: there are higher levels
of effort and R&D investment for firms of all productivities.

Figures S17 to S20 show the changes induced by higher or lower values of β. Higher β
represents a higher degree of market power, as it increases the markup over marginal costs that
the intermediate good producer can charge. At the same time, it also means that the quality of
each differentiated product is valued more by consumers. On balance, there is more investment
in R&D and more effort at the optimum when β is higher.

Figures S21 and S24 consider higher rates of depreciation of innovation, of δ = 0.15 and δ =
0.3 respectively. The higher the rate of depreciation, the higher the wedges have to be to induce
firms to invest sufficiently much (relative to what they would do if left to choose). Naturally,
the higher the rate at which knowledge depreciates and the lower the optimal investments, step
sizes, and resulting innovation that can be stimulated.

Finally, Figures S27 and S28 show what happens when the cost of R&D is less convex, i.e.,
when η = 1. This barely changes the wedges, as they represent the share of costs that is subsi-
dized. However, as expected, the level of R&D effort and incentives that can be incentivized are
larger when costs are less convex.
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Table S.III: Parameter Values using Two-step GMM

Parameter Symbol Value

External Calibration
Interest rate R 1.05
Intangibles depreciation δ 0.1
Knowledge share β 0.15
R&D cost elasticity η 1.5
Level of types µθ 0.00
Initial R&D stock r0 1.0
Program horizon T 30

Internal Calibration
R&D share α 0.48
R&D-type substitution ρθr 1.84
Type variance σϵ 0.342
Type persistence p̃ 0.69
Scale of disutility κl 0.72
Scale of R&D cost κr 0.061
Effort cost elasticity γ 0.94
Support width for θ1 Θ1 1.75
Production externality ζ 0.018

Table S.IV: Moments using Two-step GMM

Moment Target Simulation Standard Error

M1. Patent quality-R&D elasticity 0.88 0.96 (0.0009)
M2. R&D/Sales mean 0.041 0.034 (0.0025)
M3. Sales growth (DHS) mean 0.06 0.07 (0.005)
M4. Within-firm patent quality coeff of var 0.63 0.79 (0.0017)
Across-firm patent quality coeff of var:

M5. Young firms 1.06 1.04 (0.0012)
M6. Older firms 0.99 0.89 (0.0016)

M7. Patent quality young/old 1.04 1.03 (0.0048)
M8. Spillover coefficient 0.191 0.190 (0.046)
M9. Elasticity of R&D investment to cost - 0.35 -0.34 (0.101)

References

Bloom, Nicholas, Mark Schankerman, and John Van Reenen (2013). Identifying Technology
Spillovers and Product Market Rivalry. Econometrica 81(4), 1347–1393.
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Figure S1: Optimal Profit and R&D Wedges with Quantity Control

(a) Profit Wedge by Age (b) R&D Wedges by Age
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(c) Profit Wedge as Function of Profits (d) R&D Wedges as Functions of R&D Investments
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(e) Profit Wedge as Function of Type θt (f) R&D Wedges as Functions of Type θt
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Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure S2: Optimal Allocations with Quantity Control

(a) Investments and Effort by Age (b) Step Size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.
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Figure S3: Optimal Profit and R&D Wedges for COMPUSTAT Publicly Traded

Firms

(a) Profit Wedge by Age (b) R&D Wedges by Age
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(c) Profit Wedge as Function of Profits (d) R&D Wedges as Functions of R&D Investments
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(e) Profit Wedge as Function of Type θt (f) R&D Wedges as Functions of Type θt
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Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure S4: Optimal Allocations for COMPUSTAT Publicly Traded Firms

(a) Investments and Effort by Age (b) Step Size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.
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Figure S5: Optimal Profit and R&D Wedges for Finite Firm Life Cycle T = 15

(a) Profit Wedge by Age (b) R&D Wedges by Age
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(c) Profit Wedge as Function of Profits (d) R&D Wedges as Functions of R&D Investments
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(e) Profit Wedge as Function of Type θt (f) R&D Wedges as Functions of Type θt
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Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure S6: Optimal Allocations for Finite Firm Life Cycle T = 15

(a) Investments and Effort by Age (b) Step Size and Profits by Age

2 4 6 8 10 12 14
Firm Age

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R&D effort (r)
Manager effort ( )

2 4 6 8 10 12 14
Firm Age

0

2

4

6

8

10
Step size ( )
Profit ( )

(c) Effort by Type (d) R&D Investments by Type

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Firm Type log( )

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 t = 2
t = 5
t = 15

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Firm Type log( )

0

2

4

6

8

10

12

Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.
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Figure S7: Optimal Profit and R&D Wedges using Two-step GMM

(a) Profit Wedge by Age (b) R&D Wedges by Age
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(c) Profit Wedge as Function of Profits (d) R&D Wedges as Functions of R&D Investments
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(e) Profit Wedge as Function of Type θt (f) R&D Wedges as Functions of Type θt
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Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure S8: Optimal Allocations using Two-step GMM

(a) Investments and Effort by Age (b) Step Size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.
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Figure S9: Optimal Profit and R&D Wedges with an Autoregressive Process

(a) Profit Wedge by Age (b) R&D Wedges by Age
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1.5 1.0 0.5 0.0 0.5 1.0 1.5
Firm Type log( )

1.5

1.0

0.5

0.0

0.5
t = 2
t = 5
t = 15

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Firm Type log( )

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Net
Gross

Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure S10: Optimal Allocations with an Autoregressive Process

(a) Investments and Effort by Age (b) Step Size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.
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Figure S11: Optimal Profit and R&D Wedges with Increasing Persistence p

(a) Profit Wedge by Age (b) R&D Wedges by Age
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Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.

22



Figure S12: Optimal Allocations with Increasing Persistence p

(a) Investments and Effort by Age (b) Step Size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.

23



Figure S13: Optimal Profit and R&D Wedges with Persistence p = 0.5

(a) Profit Wedge by Age (b) R&D Wedges by Age
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Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure S14: Optimal Allocations with Persistence p = 0.5

(a) Investments and Effort by Age (b) Step Size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.

25



Figure S15: Optimal Profit and R&D Wedges with Persistence p = 0.9

(a) Profit Wedge by Age (b) R&D Wedges by Age
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Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure S16: Optimal Allocations with Persistence p = 0.9

(a) Investments and Effort by Age (b) Step Size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.
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Figure S17: Optimal Profit and R&D Wedges for β = 0.10

(a) Profit Wedge by Age (b) R&D Wedges by Age
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Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure S18: Optimal Allocations for β = 0.10

(a) Investments and Effort by Age (b) Step Size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.
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Figure S19: Optimal Profit and R&D Wedges for β = 0.25

(a) Profit Wedge by Age (b) R&D Wedges by Age

5 10 15 20 25 30
Firm Age

1.4

1.2

1.0

0.8

0.6

0.4

0.2

5 10 15 20 25 30
Firm Age

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Net
Gross

(c) Profit Wedge as Function of Profits (d) R&D Wedges as Functions of R&D Investments

20 40 60 80
Firm Profit

1.5

1.0

0.5

0.0

0.5 t = 2
t = 5
t = 15

5 10 15 20 25
R&D Investment

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Net
Gross

(e) Profit Wedge as Function of Type θt (f) R&D Wedges as Functions of Type θt

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Firm Type log( )

1.5

1.0

0.5

0.0

0.5 t = 2
t = 5
t = 15

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Firm Type log( )

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Net
Gross

Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure S20: Optimal Allocations for β = 0.25

(a) Investments and Effort by Age (b) Step Size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.
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Figure S21: Optimal Profit and R&D Wedges for δ = 0.15

(a) Profit Wedge by Age (b) R&D Wedges by Age
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Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure S22: Optimal Allocations for δ = 0.15

(a) Investments and Effort by Age (b) Step Size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.
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Figure S23: Optimal Profit and R&D Wedges for δ = 0.3

(a) Profit Wedge by Age (b) R&D Wedges by Age
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Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure S24: Optimal Allocations for δ = 0.3

(a) Investments and Effort by Age (b) Step Size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.
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Figure S25: Optimal Profit and R&D Wedges, Overweighting Moment 1

(a) Profit Wedge by Age (b) R&D Wedges by Age
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(e) Profit Wedge as Function of Type θt (f) R&D Wedges as Functions of Type θt
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Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure S26: Optimal Allocations, Overweighting Moment 1

(a) Investments and Effort by Age (b) Step Size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.
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Figure S27: Optimal Profit and R&D Wedges, with η = 1

(a) Profit wedge by age (b) (b) R&D wedges by age
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Notes: Panel (a) plots the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure S28: Optimal Allocations for η = 1

(a) Investments and Effort by Age (b) Step Size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.
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