
NBER WORKING PAPER SERIES

LEVERAGE DYNAMICS WITHOUT COMMITMENT

Peter DeMarzo
Zhiguo He

Working Paper 22799
http://www.nber.org/papers/w22799

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
November 2016

We thank Anat Admati, Harry DeAngelo, Douglas Diamond, Mike Fishman, Konstantin 
Milbradt, Paul Pfleiderer, Adriano Rampini, Josef Zechner, and seminar participants at Duke, 
London School of Economics, MIT, NYU, Princeton, Stanford, USC, and WFA for helpful 
comments. The views expressed herein are those of the authors and do not necessarily reflect the 
views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2016 by Peter DeMarzo and Zhiguo He. All rights reserved. Short sections of text, not to 
exceed two paragraphs, may be quoted without explicit permission provided that full credit, 
including © notice, is given to the source.



Leverage Dynamics without Commitment
Peter DeMarzo and Zhiguo He
NBER Working Paper No. 22799
November 2016
JEL No. G32

ABSTRACT

We analyze equilibrium leverage dynamics in a dynamic tradeoff model when the firm is unable 
to commit to a leverage policy ex ante. We develop a methodology to characterize equilibrium 
equity and debt prices in a general jump-diffusion framework, and apply our approach to the 
standard Leland (1998) setting. Absent commitment, the leverage ratchet effect (Admati et al. 
2015) distorts capital structure decisions, leading shareholders to take on debt gradually over time 
and never voluntarily reduce debt. On the other hand, countervailing effects of asset growth and 
debt maturity cause leverage to mean-revert towards a long run target. In equilibrium, bond 
investors anticipate future leverage increases and require significant credit spreads even when the 
distance to default is large. As a result, the tax benefits of future debt increases are fully 
dissipated, and equilibrium equity values match those in a model where the firm commits not to 
issue new debt.

In our model, leverage is dependent on the full history of the firm’s earnings. Despite the absence 
of transactions costs, an increase in profitability causes leverage to decline in the short-run, but 
the rate of new debt issuance endogenously increases so that leverage ultimately mean-reverts. 
The target level of leverage, and the speed of adjustment depends critically on debt maturity; 
nonetheless, in equilibrium shareholders are indifferent toward the debt maturity structure.
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1. Introduction 

Understanding the determinants of a firm’s capital structure, and how its leverage is likely to 

evolve over time, is one of the central questions in corporate finance. Leverage and its expected 

dynamics are crucial to valuing the firm, assessing its credit risk, and pricing its financial claims.  

The optimal response of leverage to shocks, such as the 2007-2008 financial crisis, are important 

to forecasting the likely consequences of the crisis and its aftermath, and to evaluate alternative 

policy responses. 

 Despite its importance, a fully satisfactory theory of leverage dynamics has yet to be 

found.  Many models assume the absolute level of debt is fixed; for example, in the traditional 

framework of Merton (1974), as well as Leland (1994, 1998), the firm is committed not to 

change its outstanding debt before maturity, irrespective of the evolution of the firm’s 

fundamentals. As a result, the dynamics of firm leverage is driven solely by the stochastic 

growth in value of the firm’s assets-in-place. More recent work that allows the firm to restructure 

its debt over time typically assumes that all existing debt must be retired (at a cost) before any 

new debt can be put in place.1 These assumptions are neither innocuous, as the constraints on 

leverage generally bind, nor are they consistent with practice, where firms often borrow 

incrementally over time.  See, for example, Figure 1, which shows debt adjustments over time 

for American and United Airlines, together with evolutions of their enterprise values. 

In contrast, we study a model in which equity holders lack the ability to commit to their 

future leverage choices, and can issue or buyback debt at the current market price at any time.  

Aside from corporate taxes and bankruptcy costs, there are no other frictions or transactions 

costs in our model.  In such a setting, when debt can be freely adjusted over time, it is feasible 

for the firm to avoid the standard leverage “tradeoff” by simply increasing debt to exploit tax 

shields when cash flows are high, and reducing debt to avoid distress costs when cash flows fall.   

                                                           
1 See e.g. Fischer, Heinkel, Zechner (1989), Titman and Tsyplakov (2007), Goldstein, Ju, and Leland (2001) and 
Strebulaev (2007), Dangl and Zechner (2016).    
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But although such an ideal policy is feasible, absent commitment an important agency 

friction emerges with regard to the firm’s future leverage choices. As emphasized by Admati et 

al. (2016), equity holders will adjust leverage to maximize the current share price rather than 

total firm value.  They demonstrate a “leverage ratchet effect,” in which equity holders are never 

willing to voluntarily reduce leverage, but always have an incentive to borrow more -- even if 

current leverage is excessive and even if new debt must be junior to existing claims. While the 

leverage ratchet effect is itself quite general, they calculate numerically a dynamic equilibrium 

only for a specialized model in which debt is perpetual and the firm does not grow but is subject 

to Poisson shocks.  

Solving the dynamic tradeoff model without commitment is challenging because of the 

dynamic interdependence of competitive debt prices today and equity’s equilibrium 

leverage/default policies in the future. In this paper we develop a methodology to solve for such 

an equilibrium in a general setting that allows for finite maturity debt, asset growth, investment, 

and both Brownian and Poisson shocks. In this equilibrium, equity holders increase debt 

gradually over time, at a rate which increases with the current profitability of the firm.  On the 

Figure 1. Time-series of outstanding book debt and enterprise value for American and United Airlines, for 15 
years before they went bankruptcy in 2011 and 2002, respectively. Book debt is calculated as the sum of “long-term 
debt” and “debt in current liabilities”, and market equity is calculated as “stock price” multiplying “common shares 
outstanding.” Data source: WRDS.    
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other hand, following negative shocks, equity holders never voluntarily reduce leverage, but only 

allow it to decline passively via debt maturity and asset growth.  

In our model, equity holders keep issuing debt to exploit tax benefits even after the firm’s 

leverage passes above the “optimal” level with commitment, leading to excessive inefficient 

default.2  Interestingly, we show that equity holders obtain the same value in equilibrium as if 

they commit not to issue any debt in the future, but over-borrowing raises the probability of 

default and so lowers the price of debt. This low debt price offsets the tax advantage of leverage 

sufficiently so that, on the margin, equity holders are indifferent to leverage increases. In other 

words, the extra tax shield benefits that tempt equity holders are exactly dissipated by the 

bankruptcy cost caused by excessive leverage.  

We apply our methodology to the special case of geometric Brownian motion (as in 

Leland 1994) and solve for the equilibrium debt price and issuance policy in closed form.  

Because equity holders refuse to buy back debt once it is issued, debt issuance is effectively 

irreversible in equilibrium, which slows its initial adoption. Debt accumulates over time at a rate 

that increases with profitability, while if profits decline sufficiently, new issuance falls below the 

rate of debt maturity and the debt level falls. Leverage thus becomes path dependent, and we 

show explicitly that the firm’s outstanding debt at any point of time can be expressed as a 

weighted average of the firm’s earnings history. The endogenous adjustment of leverage leads 

the firm’s interest coverage ratio to mean revert gradually in equilibrium, with the speed of 

adjustment decreasing with debt maturity and asset volatility. These dynamics differ from abrupt 

adjustment to a “target” leverage level, a common implication from models with an exogenous 

adjustment cost (for instance, Fischer, Heinkel, Zechner, 1989; Goldstein, Ju, Leland, 2001; and 

Strebulaev, 2007; etc.). 

We compare our model without commitment to two benchmarks with full commitment. 

In the first case equity holders commit not to issue any debt in the future, and in the second case 

they commit to maintain a constant outstanding debt obligation (i.e., always issue the same 

amount of new debt to replace debt that is maturing) as in Leland (1998). The central difference 

between our model and these two benchmark models is the endogenous mean-reverting firm 

                                                           
2 As a simplification, we assume a zero recovery rate in default.  This assumption implies the irrelevance of seniority 
of debt in different vintages, and hence removes any dilution motive for debt issuance. Our results continue to hold 
with a positive recovery rate and any new debt restricted to be junior to existing claims.  
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leverage and its implications on equilibrium debt prices, as bond investors anticipate future 

leverage changes. Recall that in response to positive profitability shocks the firm issues more 

debt, pulling the firm back toward default. In fact, the mean-reversion is sufficiently strong that 

credit spreads remain strictly bounded away from zero even when the firm’s interest-coverage-

ratio is arbitrarily large. In contrast, in standard models such as Leland (1998), the firm’s 

interest-coverage-ratio follows a geometric Brownian motion and hence implied credit spreads 

vanish as the firm’s “distance to default” increases.   

We also study the optimal debt maturity structure, which we model in terms of a constant 

required repayment (or amortization) rate stipulated in the debt contract. Our model without 

commitment to future leverage policies provides a fresh perspective on this question. We show 

that equity holders are indifferent to the maturity structure of the firm’s future debt issuance. 

Short maturity debt leads to higher leverage on average, as equity holder issue debt more 

aggressively knowing leverage can be reversed when debt matures. Nevertheless, the gain from 

additional tax shields is offset by increased default costs. Thus, the agency costs associated with 

the leverage ratchet effect persist even as debt maturity becomes instantaneous. 

The choice of debt maturity structure does affect the value of equity if the firm is forced 

to borrow a fixed amount upfront. Indeed, this question has been studied in the Leland (1998) 

setting, and often long-term debt, which minimizes rollover risk, is preferred (He and Xiong, 

2012; Diamond and He, 2014). In contrast, we show that without commitment, firms prefer 

short-term debt for any positive targeted debt financing. Shareholders of a firm with shorter-term 

debt are more willing to allow leverage to decline following negative shocks, and this future 

equilibrium leverage policy lowers the required default premium today.  

Finally, we consider the interaction of the firm’s leverage and investment policies.  When 

the firm cannot commit to its investment policy, leverage distorts investment due to debt 

overhang.  Compared to a fixed debt policy as in Leland (1998), the no commitment leverage 

policy leads to greater under-investment (due to debt overhang) when profitability is high, but 

less under-investment when profitability is low.  Even more interesting is the effect of agency 

frictions in the investment decision on the firm’s leverage policy.  We show that when the firm 

does not commit to its investment decision, the leverage ratchet effect becomes more severe and 
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the rate of debt issuance increases:  Shareholders are even more tempted to increase debt if they 

can simultaneously cut investment later on if they wish.   

Our paper is most closely related to Admati et al. (2016).  They demonstrate the leverage 

ratchet effect in the context of a one-time leverage adjustment, and then numerically evaluate a 

dynamic equilibrium in a stationary model with regime shocks and perpetual debt. Our paper 

studies leverage dynamics in a much richer continuous-time framework that allows for both asset 

growth and debt maturity, as well as both Brownian and Poisson shocks.  We develop a general 

methodology to solve for an important class of equilibria, and for the standard workhorse model 

of Leland (1994), we solve for the equilibrium in closed-form, allowing for deeper analysis. 

Dangl and Zechner (2016) explore a related model in which the firm can choose how 

much maturing debt to rollover, but cannot increase the aggregate face value of debt without first 

repurchasing all existing debt (at par plus a call premium and a proportional transaction cost).  

Rolling over debt maintains the firm’s tax shields, a force present in our model, and dilutes 

current creditors given a strictly positive recovery and pari-passu debt, which we do not allow. 

They show that when debt maturity is long, equity holders will rollover existing debt fully as it 

comes due, except for when leverage is so low that recapitalization to a higher face value of debt 

is imminent (in which case it is not worthwhile to issue debt that will be shortly replaced at a 

cost).  If debt maturity is sufficiently short, however, then when facing high leverage 

shareholders may rollover only a portion of the maturing debt so that the total face value of debt 

gradually declines. This behavior abruptly reverses when the firm approaches default as 

shareholders maximize dilution (and minimize equity injections) by again rolling over debt 

fully.3  Importantly, they show that firm value is not monotonic in debt maturity; depending on 

parameters, an interior optimal maturity may exist that trades off the transactions costs of debt 

rollover (which favors long maturities) with the benefit from debt reductions given high leverage 

(which favors short maturities).4  As in our model, the choice of debt maturity becomes an 

important commitment device that allows for future debt reductions in the face of negative 

shocks. 

                                                           
3 In our model, because there is no dilution motive, the rate of debt issuance strictly declines as the firm approaches 
default.     
4 The same trade-off would apply in our model if we were to adopt the same assumption on transaction costs.  
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In a somewhat different context, Brunnermeier and Yogo (2009) stress the advantage of 

short-term debt in providing the firm with flexibility to adjust debt quickly in the face of shocks 

to firm value, but that long-term debt is more effective at reducing costs from rollover risk.  Abel 

(2016) considers a dynamic model with investment in which firms adjust leverage by issuing 

debt with instantaneous maturity.  He assumes i.i.d. regime shocks to profitability and shows that 

in response to a shock, (i) shareholders never reduce the amount of debt, and (ii) only firms that 

are borrowing constrained (i.e. have borrowed an amount equal to 100% of firm value) choose to 

increase debt.   

Our paper proceeds as follows.  In Section 2 we introduce a general continuous-time 

model of the firm and develop our methodology for solving for a continuous equilibrium.  

Section 3 applies our general results to the special case when cash flows are lognormal with 

possible jumps and derives a closed-form solution for security prices and debt issuance.  Section 

3.4 analyzes debt dynamics and shows that the firm gradually adjusts leverage towards a target 

level.  We also compare our equilibrium with standard benchmarks such as Leland (1998), and 

evaluate the firm’s choice of debt maturity.  Section 5 extends the model to include agency costs 

of investment, and Section 0 concludes. 

2. A General Model 

We begin by outlining a general jump-diffusion model of cash flows that encompasses typical 

settings used in the literature.  We include both taxes and bankruptcy costs as in a standard 

tradeoff model.  We depart from the existing literature by assuming equity holders can issue or 

repurchase debt at any time at the current market price, and analyze the optimal no-commitment 

leverage policy in equilibrium. This policy depends on equilibrium debt prices, which in turn 

depend on the firm’s future leverage as they determine the likelihood of default. Despite this 

interdependence, we are able to characterize the time-consistent leverage policy explicitly and 

show that the rate of debt issuance depends on the ratio of tax benefits to the price sensitivity of 

debt to new issues.  We also show that equity values can be computed as though the firm 

committed not to issue new debt. 
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2.1. The Firm and Its Securities 

All agents are risk neutral with an exogenous discount rate of 0r  .5 The firm’s assets-in-place 

generate operating cash flow (EBIT) at the rate of tY  which evolves according to 

        t t t t t tdY Y dt Y dZ Y dN     , (1) 

where the drift  tY  and the volatility  tY  are general functions that satisfy regularity 

conditions; tdZ is the increment of standard Brownian motion; tdN is Poisson increment with 

intensity of   0tY  ; and  tY  is the jump size given the Poisson event.6     

Denote by tF  the aggregate face value of outstanding debt. The constant coupon rate of 

the debt is 0c  , so that over  ,t t dt debt holders receive coupon payments of tcF dt in total.7 

Equity holders pay tax ( )t tY cF dt , where     is a nondecreasing function of the firm’s profit 

net of interest.  When the marginal tax rate is positive ( 0  ), the net after tax cost to the firm 

of the marginal coupon payment is 1   , reflecting the debt tax shield subsidy.    

For simplicity we assume that debt takes the form of exponentially maturing coupon 

bonds with a constant amortization rate 0  . More specifically, each instant there are tFdt  

units of required principal repayments from maturing bonds, corresponding to an average bond 

maturity of 1 .  Together with the aggregate coupon of tcF dt , over  ,t t dt equity holders are 

required to pay debt holders the flow payment of   tc F dt  in order to avoid default. 

We assume investors recover zero value from the assets-in-place when equity holders 

default. The key implication of this assumption, which will simplify our analysis, is that debt 

seniority becomes irrelevant.  In addition, because there are no claims to divide in default, old 

debt holders do not get “diluted” by new debt holders in bankruptcy even if the new debt has 

                                                           
5 Alternatively, we can interpret the model as written under a fixed risk-neutral measure that is independent of the 
firm’s capital structure decision. 
6 We have simplified notation by assuming the jump size  tY conditional on cash flow tY  is deterministic. We can 

easily generalize the model to allow a random jump size  tY , as long as the law of  tY depends on tY  only.   
7 The coupon rate c is fixed and arbitrary in our model; in practice, there may be limits/adjustments to the tax 
deductibility of the coupon if it is far from the par coupon rate. 
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equal (or higher) priority. We make the zero recovery value assumption to emphasize that our 

results are not driven by the “dilution” effect which often arises when issuing pari-passu debt 

(e.g., Brunnermeier and Oehmkhe, 2014; Dangl and Zechner, 2016). Dropping this assumption, 

and allowing firms to only issue new debt which is junior to existing claims, would not change 

our qualitative results.8  

Equity holders control the outstanding debt tF  through endogenous issuance/repurchase 

policy td , where t  represents the cumulative debt issuance over time. We focus our main 

analysis on a class of equilibria in which along the equilibrium path equity holders find it optimal 

to adjust the firm’s outstanding debt smoothly with order dt . More specifically, we conjecture 

that at each instant the adjustment to existing debt is t td G dt  , where tG  specifies the rate of 

issuance at date t, and verify later that other issuance policies, including discrete ones, are 

suboptimal in equilibrium From now on, we call this equilibrium “smooth” equilibrium, and call 

tG  the equity holders’ issuance policy, which could be issuing new debt if 0tG   or 

repurchasing existing debt in which case 0tG  . Given our debt maturity assumption, the 

evolution of outstanding face value of debt tF  is given by 

    t t tdF G F dt  . (2) 

Thus, the face value of debt will grow only if the rate of issuance more than offsets the 

contractual retirement rate. To highlight the economic forces at play, and in contrast to the bulk 

of the literature, we assume zero transaction costs in issuing or repurchasing debt.9         

Given the equity holders’ expected issuance/repurchase policy  tG , debt holders price 

the newly issued or repurchased debt in a competitive market. Denote by tp  the endogenous 

                                                           
8 This alternative setting adds significant complexity, as debt securities issued at different times would have distinct 
prices. In contrast, given zero recovery value, newly issued debt is identical to all existing debt, independent of its 
seniority or timing of issuance. (Note also that a positive recovery rate with pari-passu debt and no constraints on 
debt issuance is not tenable as firms would issue debt at an explosive rate prior to default.)  
9 It is common in the dynamic capital structure literature, e.g. Fischer, Heinkel, and Zechner (1989) and Leland, 
Goldstein, and Ju (2000), to assume that firms--in order to adjust their capital structure--have to buy back all of their 
existing debt and then reissue new debt, and that there is a positive adjustment cost associated with this transaction. 
We eliminate this artificial constraint to highlight equity holders’ intrinsic incentives to adjust leverage at any time.  
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debt price per unit of promised face value (which we derive shortly based on a standard valuation 

equation).  Then over  ,t t dt the net cash flows to equity holders are equal to 

      
operating cash flow debt issuance/repurchasetax payment debt interest & principal

( )t t tt t tc FY Y c G p dF t
 
    
 
 

  . (3) 

The firm continues to operate until the operating cash flow tY  drops below some 

sufficiently low level (which may depend on the outstanding debt level tF  ), at which point 

equity holders find it optimal to default on their contractual payment to debt holders (we will 

later characterize the optimal default boundary). As in the literature (Leland 1994, 1998), 

shareholders cannot commit to a certain default policy, but instead default strategically. After 

default, debt holders take over the firm but recover zero by assumption.  

2.2. Equilibrium Analysis 

We focus on Markov perfect equilibria in which the two payoff-relevant state variables are: the 

firm’s exogenous operating cash flow tY , and the outstanding aggregate debt face value tF , 

which is an endogenous state variable. We will analyze the equity’s value function  ,t tV Y F  and 

the debt price  ,t tp Y F . Denote by B  the equilibrium default time; presumably, this is the first 

time that the state pair  ,t tY F  falls into the endogenous default region, which we denote by B . 

For the value of equity, given future issuance policies and debt prices  ( , ) :s sG p s t , when the 

firm is in the survival region, i.e.,  , ,t tY F B  we have 

     ( , ) ( ) , .B r s t
t s s s s s s t tt

V Y F e Y Y cF c F G p ds Y Y F F


              
   (4) 

For debt prices, similarly we have  

       ( , ) ,B r s t
t t tt

p Y F e c dt Y Y F F         
   . (5) 

Clearly, the equity value ( , )V Y F  equals zero in the default region, as does the debt price 

( , )p Y F  given our zero recovery assumption.  
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An Optimality Condition  

Recall that we are interested in an equilibrium when there is no commitment of equity holders to 

future leverage policies. Thus at any point in time, the issuance policy sG  for s t  has to be 

optimal in solving the equity holders’ instantaneous maximization problem at time s , given the 

equity’s value function and equilibrium debt prices. 

In this section we consider the necessary and sufficient conditions for optimality of the equity 

holders’ debt issuance policy tG . The Hamilton-Jacobi-Bellman (HJB) equation for equity 

holders is 

   

       

     2

after-tax cash flowrequired return coupon&principal payment new debt issuance evolution of 

, max ( ) , ( ) ,

1( ) , ( ) ,
2

G F

Y YY

dF

rV Y F Y cF c F Gp Y F G F V Y F

Y V Y F Y V Y F Y V Y

Y      

  

 
 
 
 
     

       
evolution of dY

Y V Y   


 (6) 

In the first line, the objective is linear in G with a coefficient of    , ,Fp Y F V Y F which 

represents the (endogenous) marginal benefit of increasing debt. If equity holders find it optimal 

to adjust debt smoothly, then it must be that this coefficient equals zero everywhere, i.e. 

      , 0, Fp Y V YF F  . (7) 

This first-order condition (FOC) must hold for any  ,Y F  along the equilibrium path.10 But to 

be sure that this policy is globally optimal, we must check that there is no discrete adjustment to 

the debt level that shareholders would prefer.  We show next that global optimality holds if and 

only if the debt price is weakly decreasing in the firm’s total debt, i.e.,  , 0Fp Y F  .  

PROPOSITION 1 (OPTIMALITY OF SMOOTH DEBT POLICY). Suppose the debt price

 ,Fp V Y F   is weakly decreasing in the total face value F of the firm’s debt, i.e., the 

                                                           
10 This relation holds trivially in the default regionB , as for defaulted firm the debt price 0p  and  , 0V Y F 

implies  , 0
F

V Y F  as well. It is worth pointing out that the zero-bankruptcy-recovery assumption is not necessary 
for 0p  at default. Even with a strictly positive recovery, as long as newly issued debt is junior to any pre-existing 
debt, newly issued debt is worthless at the moment of default as existing debt gets all the recovery. 
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value of equity ( , )V Y F  is convex in F . Then condition (7) implies that the policy tG  is 

an optimal debt issuance policy for shareholders. Conversely, if the policy tG  is optimal, 

then  ,Fp V Y F   is weakly decreasing in F  for all equilibrium states  ,Y F .  

PROOF. Equity holders are solving the following problem each moment along the optimal path 

   max ( , ) ( , ) ( , )Y F p Y F V Y FV        . (8) 

For the proposed smooth policy to be optimal, 0   must be optimal in (8). This problem has 

the first-order condition 0F Fp pV     at 0  , which implies that Fp V  .   To check for 

global optimality, suppose that equity holders choose any 0  . Then equity’s gain is 

 

         

   

   

0 0

0 0
monotonicity of 

0
FOC in Equation (7)

, , , , ,

, ,

, , 0

F

F

p

F

V Y F Y F p Y F V Y F d p Y F d

V Y F d p Y F d

V Y F p Y d

V

F

 

 



           

  

  



 



 

 
 







  

   

  

 (9) 

where in the second line we have used the condition that p is weakly monotone in F . Note the 

above inequalities still hold if 0  ; in this case    p F p F      but 0d  . Finally, the 

condition that the debt price is weakly decreasing in F implies that equity’s value is convex in F, 

i.e. 0 0F FFp V   .  

Now we prove the second part. First of all, it is easy to see  ,p Y F  is continuous in F from (5). 

If  ,p Y F  is weakly increasing in F, the above argument in (9) implies that any   is a 

profitable deviation. But if  ,p Y F  is not monotone in F, then for some Y, due to continuity 

there must exist two face values 1F  and 2F  with 1 2F F , so that      1 2
ˆ, , ,p Y F p Y F p Y F 

for  1 2
ˆ ,F F F . Now setting 2 1 0F F     and 1F F   in (9) leads to a strictly positive 

deviation gain.  



12 
 

Equity Valuation  

The First-Order Condition (FOC) in (7), which implies a zero-profit condition for equity holders 

in adjusting the debt burden instantaneously, has deep implications for the equilibrium in our 

model. Plugging condition (7) into the equity HJB equation (6), the sum of terms involving G

equals zero and we have the following revised HJB equation for equity: 

  
       

        21
2

, , ,( ) ( )

,,( ) , .
Y F

YY

Y FrV Y Y cF c F Y V FV

Y Y V Y Y F

Y F Y F

V V FF YY

      

    

   

  
 (10) 

This equation says that in the no-commitment equilibrium, the equity value can be solved as if 

there is no debt adjustment 0tG  , except for the natural retirement at rate  .  

Intuitively, because equity holders gain no marginal surplus from adjustments to debt, 

their equilibrium payoff must be the same as if they never issue/repurchase any debt. This 

implies that we can solve for the equilibrium equity value  ,V Y F , without the knowledge of 

the equilibrium debt price  ,p Y F  (which does not enter equation (10)).  In other words, 

PROPOSITION 2 (NO-TRADE EQUITY VALUATION). Let 0( , )V Y F  be the value of equity 

if the firm were committed not to issue or buyback debt ( 0tG  ).  Then the value V of 

equity in a smooth equilibrium is equal to 0V . 

PROOF. Immediate from (10) and the fact that the boundary conditions are unchanged.  

This result, while perhaps striking at first, is analogous to the Coase (1972) conjecture for 

durable goods monopoly: the firm is a monopolist issuer of its own debt. When the firm is unable 

to commit to restricting its future sales, it trades sufficiently aggressively to dissipate any surplus 

from trading.11 

Optimal Debt Issuance    

 Given the equity value V , we can invoke the FOC in (7) to obtain the equilibrium debt 

price    , ,Fp Y F V Y F  . Finally, to confirm that this outcome indeed represents an 

                                                           
11 A closely related result appears in DeMarzo and Urosevic (2001) in a model of trade by a large shareholder 
trading off diversification benefits and price impact due to reduced incentives. In equilibrium, share prices are 
identical to those implied by a model with no trade. 
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equilibrium, we must verify whether    , ,Fp Y F V Y F  is weakly decreasing in F , or 

equivalently that the equity value is convex in F . 

 Now that we have determined the equilibrium values for equity and debt, how can we 

find the optimal leverage policy G?  Note that we have determined the equilibrium debt price 

using the optimality Fp V  , where the equity value V is equivalent to the no-trade value from 

(10) and therefore independent of G. On the other hand, we can also calculate the debt price 

directly based on debt holders expected cash flows using (5). This calculation will depend on the 

timing of default, which does depend on the rate of debt issuance.  Thus the leverage policy G 

must be chosen to make these two methods of valuing the debt consistent.12 

 First, let us consider the HJB equation that should hold for the debt price from (5), which 

is given by 

 

       

          

*

21
2

coupon
required return evolution of debt debt retirement

evolution of cash flow 

)

( ) , ,

, 1 , ( ,

, ( ) ,

F

Y YY

dF

dY

rp Y F c p Y F G Y F

Y F

F p

Y p Y p Y Y F p Y FY p Y F

     

    

 

 







   .


 (11) 

 

Next, starting with the HJB equation (10) for equity value  ,V Y F , if we differentiate by 

F and use the optimality condition Fp V  , we obtain 

     
       

          21
2

, , ,( )

( ) ( ) , , ., ,
F

Y YY

rp Y cF c c p Fp

Y p

Y F Y F Y F

Y F p YY Y p Y YF F p Y F

       

      

   

   
 (12) 

Although equation (12) is written in terms of the debt price p , we emphasize that it follows 

mechanically from the valuation equation (10) for equity, together with the FOC (7) for the 

optimal issuance policy.  Finally, adding (12) to (11), we obtain a simple expression for G

shown below: 

                                                           
12 Intuitively, if G = 0 and the firm never issues additional debt, the debt price would exceed its marginal cost to 
shareholders, -VF, due to the incremental tax shield.  By increasing the rate of issuance, the likelihood of default will 
increase and the price of debt will fall to the point that (7) holds.   
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PROPOSITION 3 (EQUILIBRIUM DEBT ISSUANCE). Let ( , )V Y F  be the no-trade value of 

equity.  Then if V is convex in F, there exists a unique smooth trade equilibrium with 

debt issuance policy  

        
* ( ) ( ),

, ,F FF

Y cF c Y cF c
G Y F

Yp Y FVF

 



 
  . (13) 

Under this policy, the debt price given by (5) satisfies Fp V  . 

PROOF. For a smooth policy to be optimal, (7) is necessary. But then (6) and (7) imply (12), 

which combined with (11) imply (13). Then Fp V   follows since their HJB equations and 

boundary conditions are equivalent, and the global optimality of the policy (13) follows from 

Proposition 1 and convexity of V.  

Note that the convexity of equity value V implies that, no matter how high the current 

level of debt, the rate of issuance *G  is always positive provided a strictly positive tax benefit 

0  .   We can interpret the policy (13) as follows.  The rate of issuance of debt is such that the 

rate of devaluation of the debt induced by new issuances just offsets the marginal tax benefit 

associated with the coupon payments: 

      * , ,FY F Y FG p c Y cF      . 

 Thus, if there were no tax subsidy 0  , then  * , 0G Y F  , i.e. without a tax subsidy 

equity holders choose not to increase debt. On the other hand, they choose not to actively reduce 

debt via buybacks either, despite that fact that there are deadweight costs of bankruptcy.  This 

result is consistent with the leverage ratchet effect of Admati et al. (2016) – even if the firm’s 

current leverage is excessive, equity holders never actively reduce debt but always have an 

incentive to increase debt when it provides a marginal tax benefit. 

Summary  

In sum, for the general model in which equity holders are free to issue or repurchase any amount 

of debt at the prevailing market price, one can solve for the no commitment equilibrium as 

follows: 
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(i) Solve for the equity holder’s value function  ,V Y F  assuming that 0G  , i.e. equity 

holders commit to not issue any future debt, using (10); 

(ii) Set the debt price    , ,Fp Y FF V Y  ; 

(iii) Check the global second-order condition by verifying the debt price  ,p Y F is 

weakly decreasing in aggregate debt F , or equivalently  ,V Y F  is convex in F ; 

(iv) Finally, given  ,p Y F  we can solve for the optimal time consistent issuance policy 

 * ,G Y F  from (13). 

In the remainder of the paper we will use this methodology to analyze several standard settings 

examples. 

3. A Closed-Form Solution 

We now apply the general methodology developed in the previous section to the widely used 

framework of a lognormal cash flow process.13  The results from Section 2 allow us to fully 

characterize an equilibrium in closed form, and evaluate the corresponding leverage dynamics.  

We also extend the model to allow for jumps to cash flows and asset values, and show that the 

solution is qualitatively unchanged. 

3.1. Log-Normal Cash Flows 

In the special case of lognormal operating cash flow, tY  follows a geometric Brownian motion so 

that   

       and t t t tY Y Y Y     , with r   . (14) 

Given the scale invariance of the firm in this special case, it is reasonable to analyze the model 

using a unidimensional state variable equal to operating cash flow scaled by the outstanding face 

value of debt tF  , i.e. 

                                                           
13 This setting is consistent with e.g. Merton (1974), Fischer et al. (1989), Leland (1994), Leland and Toft (1996), 
and follows the development of starting from cash flows rather than firm value as in Goldstein et al. (2001). 
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   .t
t

t

Y
y

F
  (15) 

As an interpretation, note that /ty c  equals the firm’s interest coverage ratio, i.e. the ratio of 

operating income tY  to total interest expense tcF , a widely used measure of leverage and 

financial soundness.  Alternatively, 1/ ty  expresses the amount of debt as a multiple of the firm’s 

cash flow (or EBIT). 

To maintain homogeneity, we make the common assumption of a constant tax rate, i.e. 

   ( ) ( )t t t tY cF y c F      ,  (16) 

where the positive constant 0 is the marginal corporate tax rate that applies to both losses 

and gains.14 With this setting, we conjecture and verify that the equity value function  ,V Y F  

and debt price  ,p Y F  are homogeneous so that  

     , ,1Y
V Y F V F v y F

F
 




 


 and    , ,1Y
p Y F p p y

F
   





. (17) 

We will solve for the (scaled) equity value function  v y  and debt price  p y  in closed form.  

Given the evolution of our state variables tY  and tF :   

    ,  and t t t t t t tdY Y dt Y dZ dF G F dt      , (18) 

the scaled cash-flows evolve as 

    t
t t

t

dy
g dt dZ

y
      ,  where /t t tg G F . (19) 

As (19) shows, the scaled cash flow growth has the same volatility as total cash flow, as the 

outstanding debt face value tF  in (2) grows in a locally deterministic way. The drift of the scaled 

cash flow growth corresponds to the growth in operating cash flows less the net growth rate of 

the debt tg  , where   is the debt amortization rate and /tt tg G F  is the endogenous growth 

                                                           
14 The methods developed here could also be applied with different marginal tax rates for losses versus gains, e.g. 

( ) max( ,0)y c y c     , though we do not pursue that here. 



17 
 

rate from debt issuance. The more new debt the firm issues, the faster the scaled cash-flows 

shrink.  

Following the Leland tradition, equity holders cannot commit ex ante to a specific default 

policy. When the scaled cash flow ty  falls below some endogenous default boundary by , equity 

holders are no longer willing to service the debt, and therefore strategically default. At that event, 

equity holders walk away and debt holders recover nothing by the assumption of a zero 

liquidation value. 

3.2. Model Solution 

Recall from Section 2 that we can solve for the equilibrium equity value as if 0tg   and equity 

holders do not actively adjust the firm’s outstanding debt tF , even though they do.  Using the 

fact that 

      ,YV Y F v y ,      ,FV Y F v y yv y   , and  YYFV v y , (20) 

we can rewrite (10) with lognormal cash flows in terms of scaled cash-flow y  as follows: 

           2 2( ) 1( ) ' ''
2

r v y y c yv y yy c v y           . (21) 

There are two boundary conditions for the above Ordinary Differential Equation (ODE) 

(21). First, when y  , default becomes unimportant and we can treat the debt as riskless, and 

hence the equity value should converge to 

   
 
tax shieldunlevered asset-in-p bond vallace value ue

(1 (1)( ) () )1y c y c

r r
y

r r

c
v

r

    
   

    




 

 


 
  

 . (22) 

On the other hand, when by y , equity is worthless so   0bv y  . Solving (21) with these two 

boundary conditions, we obtain  

PROPOSITION 4.  Given a constant tax rate  , the equity value function with no debt 

issuance is given by 
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 1(1 1)

1
)( 1 .

b

cy y
v y

r r y

                








  (23) 

where the constant   is defined as 

   
     

22 2 2

2

0.5 0.5 2
0

r      
 

       



, (24)  

and the optimal default boundary is given by  

   
 1

1 1b

cr
y

r

          




 


. (25) 

PROOF. We can write the value function as 

    
( )

equity value 
without 

option value of defaultdefault option

( ) 0 ( ) ( ) ( )( ) br
b

b
bv

y
v y y E e v y v y

y
v y



    
  


   





, (26) 

where the expression for ( ) brE e      and   follows by solving the ODE 

    2 21
2( ) ( ) ( ) ( ) ( )r f y yf y y f y            

with boundary conditions ( ) 1bf y   and ( ) 0f   .  Finally, the optimal default boundary by  is 

determined by the smooth-pasting condition,   0bv y  .   

Having solved for the value of equity, recall from (7) that we can determine the 

equilibrium debt price from the FOC    ,Fp y V Y F  .  Then from (20), and using (23), 

          1
1F

b

c y
p y V yv y v y

r y

     
            


 . (27) 

Recall we need to verify the optimality of the issuance policy by checking the 

monotonicity of the equilibrium debt pricing function. It is easy to see that   0p y   in (27), i.e. 

the greater the scaled cash flow the higher the debt price. As a result, the key condition in 

PROPOSITION 1 – that the debt price decreases with total debt – follows because 
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       2

2 ( 0),F

Y y v
p Y

F F
p y

y
F       




 
 . (28) 

Finally, we can apply PROPOSITION 3 combined with (28) to derive the equilibrium debt 

issuance policy: 

PROPOSITION 5.  Given a constant tax rate  , the equity value function and debt price 

are given by (26)-(27), and the equilibrium issuance policy is 

         
 
 

*
*

2

1
, 1 bF

r cG c c c y
g y

F Y F yp y y v y yp cF


  




 
  

            
. (29) 

In equilibrium, the firm’s new debt issuance  *g y is always positive, and is increasing in 

the scaled cash flow y.  

 

Thus, with lognormal cash flows, we can fully characterize equilibrium debt dynamics 

and security pricing in closed form.  Based on the equilibrium values for both equity and debt, 

total firm value (or total enterprise value, TEV) can be expressed as a multiple of the firm’s cash 

flow (i.e. TEV to EBIT) as 

   1 1
1( ) ( ) 1 1 1 1 ,( )

1b b b

cv y p y y y
v

y r y r y r y
y

                          

 




 
    (30) 

where the first equality follows from the equilibrium condition for the debt price, and the last 

equality uses the expression of by  in (25). Note that the firm’s TEV multiple is strictly 

increasing with the scaled cash flow y . Consequently, holding the level of cash flows Y fixed, 

total firm value decreases with the debt face value F , implying no gain to total firm value from 

leverage. We will discuss this implication further when we compare TEV multiples across 

different benchmark models with commitment. 

3.3. Upward Jumps 

In the standard lognormal setting, cash flows and asset values evolve continuously. Suppose, 

however, that cash flows occasionally jump discontinuously, for example in response to new 
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product development. In that case, we might expect debt to adjust discontinuously as well. In this 

section, we extend our prior model to allow for upward jumps and show that our prior solution, 

in which shareholders issue debt smoothly, is essentially unchanged. 

 Consider a jump-diffusion model in which cash flows occasionally jump from tY  to tY  

for some constant 1  . Specifically, 

    1t t t t t tdY Y dt Y dZ Y dN     , (31) 

where tdN  is a Poisson process with constant intensity 0  .15 In this extension, due to upward 

jumps, the effective expected asset growth rate becomes  

    ˆ 1     , (32)  

and we continue to assume ˆ r  to ensure that the unlevered firm value is bounded.  

As before, we can solve for the equity value as if shareholders commit not to issue any 

new debt. Because (31) still maintains scale-invariance,    ,V Y F F v y   continues to hold, 

and the HJB equation for the equity value becomes  

                2 211 ' '' .
2

r v y yv y y v yc y vy                    (33) 

The last term in equation (33) captures upward jumps. The usual boundary conditions apply:  

When leverage is negligible and y  , default risk disappears and    v y v y ; while at the 

point of default, we have value-matching   0bv y   and smooth-pasting  ' 0bv y  .   

Somewhat surprisingly, even with jumps, equilibrium security prices and debt dynamics 

have exactly the same form derived before in the diffusion-only case: 

PROPOSITION 6.  Suppose cash flows evolve as a log-normal diffusion with upward 

jumps as in (31).  Then the equilibrium equity and debt values, default boundary, and 

debt issuance policy are given by (23), (27), (25), and (29) respectively, with   replaced 

by ˆ ,  given by (32), and   replaced by ̂ , which is the unique positive root of 

                                                           
15 While we focus on upward jumps with a fixed size, allowing the upward jump to be stochastic is straightforward. 
Downward jumps introduce an extra complication due to jump-triggered default, in addition to diffusion-triggered 
default. See footnote 17 for more details. 



21 
 

    
2 2

ˆ 2ˆ ˆ ˆ( ) 0
2 2

W r   
                 

 
.  (34) 

PROOF.  Note that the HJB equation (33) has the linear solution  

        1 1
ˆ

y c
v y

r r

     
 

  
. (35) 

The homogenous delayed differential equation 
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2( ) ( ) ( ) ( ) ( ) ( )r f y yf y y f y f y            

has solutions of the form ˆy  where ̂  solves the characteristic equation (34). In (34),  because 

W is convex,    W W     ,   0 0W r    , and   ˆ1 0W r    , W has a unique 

positive real root (as well a unique negative real root ˆ 1   that can be ruled out by the upper 

boundary condition). The remainder of the analysis follows exactly as in Section 3.2.   

 Consequently, although the firm’s profitability (i.e., cash-flow tY ) may jump up 

discretely, the equilibrium debt issuance policy continues to be smooth in the sense that it 

remains of order dt . In response to positive jumps in the firm’s profitability, shareholders do 

increase the debt issuance speed in equilibrium, but do not issue a discrete amount of debt 

immediately. Consequently, leverage falls discretely before gradually mean-reverting. This 

property holds even we set 2 0  so that the firm’s cash flows only grow with discrete 

jumps!16,17   

3.4. Positive Recovery Value 

Thus far we have assumed that the in the event of default the liquidation value of the firm is zero.  

This assumption simplifies the analysis as it implies that there is no difference between junior or 

senior debt, nor any dilution motive for issuing debt.   

                                                           
16 When the diffusion term vanishes, we must impose 0     so that cash flows decline faster than debt matures 
between jumps. Otherwise, it is optimal for the firm to sustain 100% debt financing without risking default. 
17 If we allow negative jumps, there is an additional complication that jumps may trigger default. Nonetheless, the 
analysis in Chen and Kou (2009), with certain special assumptions on jump distributions, suggests that one can still 
solve for the equity valuation in closed-form. As long as the equity value function remains convex, the key 
qualitative property of smooth debt issuance policy continues to hold in general diffusion-jump models, and we 
leave to future research the exploration of such models. 
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 What if the firm has a positive recovery value in default, and the firm can issue pari passu 

or even senior debt so that there is a dilution motive for debt issuance? Specifically, suppose that 

given cash flows Y, the firm has a liquidation value ( )L Y  equal to a fraction of its unlevered 

value: 

   1( )L Y Y
r








 for [0,1) . (36) 

These liquidation proceeds are paid to the firm’s creditors. But if the firm can issue senior or pari 

passu debt without restriction, then by issuing new debt shareholders can dilute the claim of 

existing creditors in default. Indeed, at the moment of default, shareholders have an incentive to 

issue new debt to dilute the existing creditors fully, so that as a result they earn a zero recovery. 

Because shareholders receive the proceeds from the new debt issued, this scenario is equivalent 

to equity holders having the option to default on existing creditors and recover ( )L Y .18   

Interestingly, we can show that in this case the resulting equilibrium is equivalent to one 

in which only a fraction (1 )  of the firm’s cash flows can be pledged to creditors (with 

shareholders owning the rest  fraction of non-pledgeable cash flows separately). The optimal 

default and issuance policies derived above continue to apply with the relevant measure of cash 

flow equal to just the pledgeable component  1 y .  The value of equity is then the sum of 

the value from the pledgeable and non-pledgeable parts. The following proposition formalizes 

this result:       

PROPOSITION 7.  Suppose cash flows evolve as a log-normal diffusion as in (14), all debt 

is pari passu, and in the event of default the firm is worth ( )L Y  as in (36). Then the 

equilibrium equity and debt values, default boundary, and debt issuance policy are:  

   ( ) ( (1 )) ( )Lv L yy v y    , 
1

L b
b

y
y 


, (37) 

   ( ) ( (1 ))Lp y p y  , and *( ) ( (1 ))Lg y g y  . (38) 

                                                           
18 In other words, it is as if there is a complete violation of absolute priority so that equity holders receive the entire 
recovery value of the firm (while debt holders recover nothing). 
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PROOF.  It is straightforward to check that (37) satisfies the HJB equation (21) or (33) with the 

boundary condition ( ) ( )L L L
b bv y L y  and smooth pasting condition ( ) ( )L L L

b bv y L y   . The 

expressions for Lp  and Lg  follow from ( )p y y vv    and    
c

g y
yp y



  as in (27) and (29).  

 

 In this scenario, the smooth issuance policy Lg  applies only up to the default boundary 
L
by . At the moment of default, the firm issues an infinite amount of debt to dilute existing 

creditors. The main qualitative effect of a positive recovery rate is to raise the value of equity 

(i.e. ( ) ( )Lv y v y ) and reduce the equilibrium level of debt prior to default (because debt 

issuance will match that of a firm with proportionally lower cash flows).   

It is interesting to observe that 0Lg y   , so that shareholders issue less debt when the 

firm edges closer to default (but before actual default). Even more surprising, we have 

0Lg   , so that a firm with a dilution motive has less debt prior to default relative to the 

baseline case without a dilution motive. The extra dilution motive is instead reflected by the 

more aggressive default policy (and the associated infinite dilution at default), whereas the 

reduced pledgeability of cash flows reduces debt capacity prior to default. This result contrasts 

nicely with Dangl and Zechner (2016) who consider similar pari passu debt and positive 

recovery, but shareholders are constrained by an upper bound on the rate of debt issuance. 

Because of this constraint, shareholders in Dangl and Zechner (2016) raise debt at the maximum 

speed possible for some period prior to default.         

4. Debt Dynamics 

Now that we have solved for the equilibrium debt issuance policy and security pricing, we can 

analyze the implications for observed debt dynamics.  Although lack of commitment leads the 

firm to always have a positive rate of debt issuance, the countervailing effect of debt maturity 

and asset growth cause leverage to mean-revert towards a target.  We begin by characterizing 

this target as well as the speed of adjustment.  We then compare the equilibrium without 

commitment to two benchmark cases: the first is that the firm can fully commit not to 

issue/repurchase any debt in the future, i.e. 0tG   ; and the second is the Leland (1998) 
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assumption that the firm commits to keep the aggregate face value constant, i.e. t tG F .   

Finally, we consider the implications of alternative debt maturities. 

4.1. Target Leverage and Adjustment Speed 

From PROPOSITION 5, we see that the firm will issue debt at a faster rate when cash flows are 

high, and the rate of issuance slows as the firm approaches default.  Figure 2 illustrates the net 

debt issuance rate given different debt maturities as a function of the firm’s current leverage.   

  

 

Figure 2: Net Debt Issuance versus Firm Leverage for Different Debt Maturities 

Parameters: 2%, 40%, 30%, (1 ) 5%c r         ) 

Because the mapping from the cash flow to leverage is strictly monotonic, there is a unique level 

of the scaled cash flow ˆgy  such that new net debt issuances occur at any given rate g. We can 

compute ˆgy  from (29) as follows: 

   
  
 

1/
1
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We can interpret ŷ  (i.e., when the new debt issuance exactly balances with retiring of existing 

debt) as the “neutral” level of the scaled cash flow: at this point, the firm is neither accumulating 

nor retiring debt, corresponding to the intersection points with x-axis in Figure 2. If cash flows 

were fixed at this level, the firm’s debt would remain constant.19  

Without commitment, the firm’s debt is path dependent, with the current level of debt 

equal to the cumulative past issuance net of debt retirement.  Because the issuance rate varies 

with the level of cash flows, this path dependence can be quite complex.  Surprisingly, using our 

expression for *g  in PROPOSITION 5, we can derive the evolution of the firm’s debt explicitly as 

a function of the firm’s initial debt position and its earnings history, as shown next. 

PROPOSITION 8.  Given the debt issuance policy *g  and initial debt face value 0 0F  , the 

firm’s debt on date t  given the cash-flow history  : 0sY s t   is 

     
0 0

1/

ˆ
t s tt s

t

Y
F e e

y
F ds



  



 
  
 
 
  

 
 

         (40) 

PROOF:  Using (29) the change in the face value of debt is (where we denote tdF
F

dt
 ) 

    
  

* 1( ( / ) )
1 b

F g Y F F
y

F
r c

Y F
c






 
     

  
  







 


 . (41) 

Let H F  , then 1H F F   and so (41) implies 

   
 
  

1

1 ˆ
b

Y
H F F F

y

r c
Y H

c y






 



   
              

 
  

   
  . 

Given 0H , this equation is a linear differential equation with general solution 

                                                           
19 Recall though that the cash flows are expected to grow at rate  , and therefore ŷ  is the scaled cash flow level 

at which debt is expected to grow at the same rate as the cash flows. Therefore at ŷ , absent any cash flow shocks, 

ty , as well as the firm’s interest coverage ratio /ty c , would be expected to remain constant (as can be seen from 
(19)). 
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   0 0 ˆ
t ss

t

t H d
Y

H e
y

se



 



  
 
 

  
  

 . 

(40) then follows from 1/F H  .  

Equation (40) implies that the firm’s debt at today equals the sum of discounted initial 

debt 0F , and an appropriately “discounted” average of the firm’s intervening cash flows 

 : 0sY s t   . This point becomes transparent in the special case of 0 0F  , i.e., when the firm 

starts with no debt. Setting 0 0F  in (40), we have  

    1/

0

( )1
ˆ

s t
t

t

sF e dsY
y


  



     (42) 

Since 
0

( ) 1
t ts t dse e     , (42) implies that in equilibrium debt starts at 0 and grows 

gradually with order of /t  , with the long run debt level dependent on the weighted average of 

the firm’s historical earnings. The weight put on recent cash flows relative to more distant ones 

depends on the product  . Intuitively, faster maturity allows leverage to shrink more quickly in 

the face of declining cash flows. From (24) one can show that higher   is associated with lower 

volatility, which makes the firm more aggressive about adding leverage when cash flows are 

high. Finally, note that the only impact of the tax rate   is to rescale the debt level through ŷ .  

 Equation (42) demonstrates clearly that once the firm is free to adjust leverage over time, 

equilibrium debt dynamics depart strongly from the standard predictions of tradeoff theory.   

Figure 3 simulates the evolution of debt for an initially unlevered firm, issuing debt with a five-

year maturity, using the same parameters as Figure 2.  Leverage initially increases until it 

approaches approximately 40% of firm value. Once it exceeds that level, the firm issues new 

debt at a slower rate than its existing debt matures, and the total amount of debt declines.  

Overall, the firm’s debt level evolves gradually based on a weighted average of past earnings. 

This gradual adjustment of debt towards a target level, as simulated in Figure 3, resembles the 

evolution of debt observed in practice (see, example, Figure 1). 
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 Figure 3: Simulation of Debt Evolution 

( 2%, 40%, 30%, (1 ) 5%, 20%c r          ) 

4.2. Full Commitment Benchmarks  

To facilitate discussion, we now solve two other cases that serve as benchmark with 

commitment. In each case, the firm’s relevant state variables evolve exactly as in (18), except 

that the firm has the ability to commit to a certain future debt issuance policy.  

No Future Debt Issues 

We first consider the benchmark case in which the firm commits not to issue debt in the future, 

i.e. 0tg   always.  We call this case the “No Future Debt” case, and indicate the corresponding 

solutions with the superscript “0” (representing the commitment to 0g  ). 

Recall that our methodology developed in Section 2 first called for solving the equity 

value function as if there will be no future debt issues, even though the firm will choose to add 

debt equilibrium, because the lack of commitment dissipates the benefits of the debt tax shield.  

Therefore, from PROPOSITION 2, we have the equity value 0( ) ( )v y v y  with the same default 

boundary by  as calculated in PROPOSITION 4. 
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Indeed, the only change in this setting will be the debt pricing.  Intuitively, new debt issues 

(despite being junior) harm existing creditors by accelerating default, and thus debt holders are 

willing pay more for the same promise today if the firm can commit not to issue more debt in the 

future.  With such a commitment, the firm’s scaled cash flow y evolves according to  

    t
t

t

dy
dt dZ

y
      , (43) 

and thus the HJB equation for debt price can be written as  

     0 0 0 2 2 01
2

couponrequired return evolution of gain from principal repayment

( ) 1 ( ) ( ) ( )
dy

rp y c p y yp y y p y          
,  (44) 

with boundary conditions: 

1.  No recovery value:  0 0 0bp y  , and 

2. Risk-free pricing as the distance to default grows:  0 c
p y

r

 


 
 as y  .  

Using standard methods (see e.g. the proof of PROPOSITION 4) the solution for the debt price is  

     (0 )1 1br

b

c c y
p y E e

r r y



  
                      

 , (45) 

where the constant   is again given by (24).  We summarize these results as follows: 

PROPOSITION 9.  If the firm can commit not to issue future debt, i.e.. 0g  , then the 

equity value is unchanged, as is the default boundary, relative to the no commitment case.  

Default is delayed, however, and thus the debt price improves by the value of the debt tax 

shield 

    0

debt tax shield value

( )) 1(
b

c y
p p y

r y
y

  
       








. (46) 

 PROOF:  Equation (46) follows immediately from (27),  (45) and 0
b by y .    
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From (46), we observe that when the firm can fully commit not to issue any debt in the 

future and hence is less likely to default, its debt will trade at a higher price than that of firms 

who cannot commit. More interestingly, the premium is equal to the value of the tax shield, 

consistent with the observation that, in the no commitment case, the firm issues new debt at a 

rate so that expected bankruptcy costs offset the expected tax benefit. Thus, commitment to 

0tg   does not benefit equity holders, but does improve the value of the debt due to the 

reduction in bankruptcy costs, which is just the expected tax benefit.    

Fixed Face Value (Leland 1998) 

Another relevant benchmark for our model without commitment is Leland (1998), who assumes 

that firm commits to keep a fixed total face value F.  Specifically, in Leland (1998), the firm 

commits to replace the maturing debt (with intensity ) by the same amount of newly issued debt 

with the same coupon, principal, and maturity. We denote this case using the superscript “ ”, 

which requires tg    always. 

The solution with constant face value is as follows. The scaled cash-flow ty  in this case 

follows 

   t
t

t

dy
dt dZ

y
   , (47) 

and equity holders in equilibrium will default at a threshold by  to be derived shortly. Then, 

using the same logic as we did to compute p , we have the analogous solution to (45):  

     1
p

b

c y
p y

r y






             
, (48) 

where the constant p
 is defined by effectively lowering the drift by   (the rate of new debt 

issues) in (24): 

   
   22 2 2

2

0.5 0.5 2
0p

r


        
 







 . (49) 
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Next, the equity value  v y  must solve  

            2 21
2

required return net after-tax earnings evolution of state variable ydebt rollover gains/losses

1 1rv y y c p y yv y y v y               
, (50) 

with boundary conditions     0b bv y v y      and (1( )) cy c
v

r r
y

r
  

  

  

 
as y  . 

Note that the second term in (50) captures the rollover gains/losses when equity holders 

refinance the maturing debt, as emphasized by He and Xiong (2012): per dollar of face value, the 

firm must repay principal at rate  , while equity holders commit to replace the maturing debt by 

issuing   new bonds at price p .    

 In the Appendix, we follow the approach of Leland (1998) to derive the equity value 

function as  

    )(1 ( ) 11 v p

b

b b

y c y c y
v y

r r

c y

rr r y y


   

   
                 

 










  





  (51) 

where the constant v
 is defined as 

   
 22 2 2

2

0.5 0.5 2
0v

r


        
  


,  

and the endogenous default boundary by   satisfying the smooth-pasting condition   0bv y    is 

 
(1 )(1 )b p v

v

r c c
y

r r

  
     

  


   
  

. 

 In this case, the valuation multiple for the firm (TEV/EBIT) is given by 

   
1

( )( ) 1 1 v

b b

v y p c c y

y r ry r

y

ry y

 
    

     


 


  

 

 
 
  . (52) 

Since 0 , this multiple decreases in y  for y  sufficiently large, in which case the lost tax 

benefits outweigh the gains from lower default costs. 
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Figure 4:  Equity Values for Alternative Debt Issuance Policies 

Parameters are 5%r  , 8%c  , 0.1  , 2%  , 25%  , 35%  . 

   

4.3. Model Comparisons and Implications 

In this section we illustrate the implications of our model by comparing the no commitment 

solution to other benchmarks with commitment.  
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Value Functions and Debt Issuance Policy 

Figure 4 plots the equity value and debt issuance policies for the three models: the base model 

without commitment ( *g g , solid thick line), full commitment to no future debt ( 0g  , dashed 

thin line), and Leland (1998) commitment to a fixed face value ( g   , dash-dotted thin line).  

As explained, the equity value in the no-commitment case coincides with the setting 

when there are no future debt issues. With a fixed face value policy, the equity value is lower 

when cash flows are low, as the firm is committed to continuing to issue debt even in the face of 

large rollover losses. This effect gives rise to a higher default boundary by  than the default 

boundary in the other two cases 0
b by y , as indicated in the top plot of Figure 4.20 On the other 

hand, when cash flows are high, the equity value in the fixed face value case is higher than that 

in either case with 0g   or *g g . Relative to the 0g   case where tax benefits are lost as debt 

matures, the firm in the fixed face value case maintains its debt and so enjoys greater tax 

benefits. On the other hand, the firm in the fixed face value case commits to a debt policy that is 

much less aggressive than the no-commitment case, hence incurring a much lower bankruptcy 

cost.    

Figure 5 illustrates the debt price and valuation multiple for each policy. Not surprisingly, 

as shown in PROPOSITION 9, the debt price with “no future debt issuance” 0g   dominates that 

without commitment, simply because future debt issuance pushes the firm closer to the default 

boundary. This also explains why in the bottom panel, the TEV multiple without commitment is 

always lower than that under commitment of 0g   (recall equity values are the same under these 

two cases). 

From (46), we see that the debt price premium due to “no future debt issuance” grows 

with the firm’s distance to default. This implies that the debt of firms that cannot commit will 

exhibit large credit spreads even when the firm’s current total leverage is very low--but, of 

course, the future leverage might be high. In fact, even for almost zero current leverage, the 

                                                           
20 However, b by y   could potentially occur, especially when the tax benefit   is high. Recall by is the default 

policy as if equity holder obtains no tax benefit, while for by , the firm with fixed debt face value indeed captures 
some tax benefit (hence, a highpushes equity holders to default later).   
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credit spreads for firms without commitment are non-zero. In contrast, the credit spreads for 

almost zero leverage firms are zero for the other two benchmark cases. 

 

Figure 5: Debt Price and TEV Multiple for Alternative Debt Issuance Policies 
Parameters are 5%r  , 8%c  , 0.1  , 2%  , 25%  , 35%  . 

Relative to our base case, the fixed face value (Leland 1998) case generates a lower debt 

price for low y but higher debt price for high y . This is due to the endogenous issuance policy *g  

plotted in Figure 4. There, we observe that the debt issuance policy without commitment is 

increasing in y , and slower (faster) than the fixed face value policy when y  is low (high), and 

investors price the debt in anticipation of these future leverage polices.  
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The next proposition summarizes the comparison of debt values across three models, 

depending on the firm’s profitability state y . Figure 5 corresponds to the case of b by y  , so for 

sufficiently low y , the debt price in the case of fixed face value p  drops below the other two 

cases.    

PROPOSITION 10.  We always have    0p y p y . For y   we have 

      0p y p y p y    

For sufficiently low y so that  min ,b by y y , we have 
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  holds when y  , which is equivalent to p
   ; but 

the latter holds by comparing (49) and (24). The second part of result is obvious as the debt price 

drops to zero at the default boundary.   

Finally, as indicated in (30), in our no commitment case the firm’s TEV multiple is 

strictly increasing in the scaled cash flow y . Consequently, holding the level of cash flows Y 

fixed, total firm value decreases with the debt face value F . In other words, in the no 

commitment equilibrium there is always a loss to total firm value from leverage – the tax 

benefits of debt more than offset the resulting bankruptcy costs due to future debt increases. This 

result is shown in the TEV-multiple-against-leverage plot in the bottom panel of Figure 5: there, 

the solid line (i.e., the no commitment case) achieves its maximum at zero leverage. In contrast, 
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TEV multiples in both commitment cases have an interior maximum.21 This interior maximum is 

often viewed as the “optimal” leverage in the traditional trade-off theory, though of course in a 

dynamic context it may be far from optimal ex-post once shocks are realized (see, e.g., Fischer, 

Heinkel, Zechner (1989) and Strebulaev (2007)).     

A Comparison of Leverage Dynamics  

In two benchmark cases with commitment, the scaled cash-flows follow a geometric 

Brownian motion with exogenous drifts, i.e.,  t t tdy y dt dZ      for the case of no future 

debt issuance, and t t tdy y dt dZ    for the fixed face value case. In our model with no 

commitment, the equilibrium evolution of the firm’s scaled cash-flows is:  

    
  

*

1
t

t t t t t t t t
b

r cy
dy g y y dt y dZ y dt y dZ

c y

 
        

   









     
 

. (53)  

The equilibrium debt issuance policy  *
tg y in (29) is increasing in ty , implying that ty grows 

slower when ty is higher. In fact, the firm’s scaled cash-flows are mean-reverting towards the 

steady-state value (recall the definition of ˆgy  in (39)).22 

   
    

 

1/
1

ˆg b

c
y y

r c 

   
   

 








   


  (54) 

 

                                                           
21 This is evident in the bottom panel of Figure 5, as both dashed and dash-dotted lines have a positive slope at 
zero leverage, and drop to zero when leverage reaches 100%. 
22 Strictly speaking, to ensure ty  to mean revert over its equilibrium region  ,t by y  , one has to show that

ˆ by y   so that the drift of ty is positive when t by y , which is indeed the case for our baseline parameters. 

However, ˆ by y   could occur for sufficiently large (so 0  in (54)).   
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We are interested in the firm leverage dynamics implied by three different models. For 

given underlying cash-flow shocks  tdZ , the left panel of Figure 6 plots the debt face value Ft, 

while the right panel shows the dynamics of scaled cash-flow ty , which tracks one-to-one to the 

firm’s interest-coverage-ratio (or book leverage).  Because the underlying shocks are the same, 

the differences across these three different models are purely due to their different debt issuance 

policies. In this sample path, negative shocks in the early years cause the firm in our baseline no 

commitment case to issue less debt compared to the fixed face value case which commits to

but of course since * 0g   the firm has more debt than it would in the no issuance case.  

Later, when the firm has positive shocks, the firm issues debt even faster than it matures and the 

debt level grows.  As a result, ty  in the no commitment case (blue solid line) has a larger upward 

drift initially, but this reverses near the end of the sample path.   

4.4. Debt Maturity Structure 

In our model, the firm commits to a constant debt maturity structure, i.e., all debt has an expected 

maturity of 1/ . This assumption is common in much of the dynamic capital structure literature 

,g  

Figure 6: Aggregate debt face values (left panel) and scaled cash-flows dynamics (right 
panel) for three models.  

With fixed cash-flow shocks  dZ and 5%r  , 8%c  , 0.1  , 2%  , 25%  , 35%  . 
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which treats the debt maturity structure as a parameter.23 It is beyond the scope of this paper to 

relax the full commitment assumption on the firm’s debt maturity structure policy; for some 

recent research, see He and Milbradt (2016).   

We can consider, however, the consequences of the initial maturity choice.  What if the 

firm can choose the debt maturity   to commit to for the future? In this section, we first show if 

the firm does not need to borrow a fixed amount upfront, then it is indifferent between all debt 

maturity choices. We then show that if the firm is restricted to borrow a fixed amount initially, 

then debt with shortest maturity becomes optimal. Finally, we analyze the role of leverage 

commitment with ultra-short-term debt which matures instantaneously. 

Optimal Debt Maturity without Fixed Borrowing 

We have seen that from (30) that the firm’s TEV multiple is increasing in the scaled cash-flows

/y Y F . Consequently, value-maximizing firms should set the optimal initial debt face value 

to be *
0 0F  . Given this choice, (30) implies that the firm’s TEV multiple no longer depends on 

the debt maturity structure . This indifference result is deeper than it appears: Although the firm 

starts with no initial debt, recall that (42) says the firm will begin issuing debt immediately, and 

the debt maturity   does affect those future debt contracts. Nevertheless, in our model this 

dynamic consideration has no bite on the optimal maturity choice by equity holders: Although 

different maturity structures lead to very different future leverage dynamics, any gains from tax 

savings are offset by increased bankruptcy costs. 

In fact, this irrelevance result is fairly general in our model. Imagine the following 

thought experiment, in which equity holders -- facing the state pair  ,t tY F  and the existing debt 

maturity structure  -- are offered with a one-time chance of choosing '  for the firm’s future 

debt. That is, the firm’s existing debts continue to retire at the old speed  , but the newly issued 

debts are with the new maturity and hence will retire at the new speed ' . The following 

proposition shows that equity holders are indifferent among all choices of ' .  

                                                           
23 To mention a few, Leland (1998), Leland and Toft (1996), He and Xiong (2012), and Diamond and He (2014). 
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PROPOSITION 11.  In a no-commitment equilibrium with smooth debt issuance, the firm’s 

equity value is independent of the maturity structure '  of new debt.  

PROOF:  For equilibria in which equity holders are taking smooth debt issuance polices, equity 

holders obtain zero profit by issuing future debt, and their value will be the same as if equity 

does not issue any future debt. As a result, the equity value depends on the maturity structure  

of existing debt, but not on the maturity structure ' of future debt.  

The logic of Proposition 9 and hence the indifference result can be further generalized to 

a setting in which the firm is free to choose any maturity structure for its newly issued debt any 

time. Again, the equity value only depends on the maturity structure of existing debt.    

Note, however, that while equity holders are indifferent between alternative maturity 

structures, different maturity choices will lead to very different patterns and levels of future 

leverage.  For example, Figure 7 shows the total enterprise value, debt amount, and leverage 

(debt value/TEV) for the firm given identical productivity shocks, but financed either using five-

year or one-year debt.  In both cases the initial TEV and equity value is the same, but leverage 

evolves very differently.  With longer-term debt, debt changes gradually, as the firm issues debt 

more slowly, and leverage is lower on average.  With shorter-term debt, the firm issues debt 

more rapidly knowing it can decrease debt quickly by not rolling over maturing debt.  Because it 

can adjust debt more quickly, the firm has higher leverage on average.24 

                                                           
24 Of course, in our model we have assumed away transactions costs associated with issuing or rolling over debt. 
Such considerations would make long-term debt less costly, as in Dangl and Zechner (2016). 
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Figure 7: Debt and Leverage with Differing Maturities.  

Left panel shows TEV, debt face value, and market leverage with 5-year average debt maturity.  Right panel shows 
1-yr average debt maturity. In either case, initial firm value is unchanged, but leverage is higher and adjusts more 

quickly with shorter-term debt.  Parameters are 2% , 40% , 30% , (1 ) 5%c r   , 0.2  (5-year 
debt) or 1 (1-year debt). 

Optimal Debt Maturity with Fixed Borrowing 

Suppose the firm must raise some amount of funds initially through debt. Issuing a discrete 

amount of debt in our model is not optimal – shareholders would be better off issuing debt 

gradually – but suppose the firm must raise funds quickly and equity capital is not available in 

the short run. In that case we can show that short-term debt maximizes not only the firm value, 

but also the debt capacity, i.e., the maximum amount of debt that the firm can raise. 

Our model highlights one advantage of short-term debt which allows firms to adjust their 

leverage burden in response to fundamental shocks in a more flexible way. This point has been 

neglected in the Leland-style literature which often assumes the firm is committing to a future 

leverage policy with fixed debt face value. For instance, He and Xiong (2012) show that the 

longest possible debt maturity structure minimizes the rollover risk. As we will explain, the 

difference is driven by different assumptions on leverage policies. 

Given initial cash-flow 0Y , the firm sets the initial debt face value 0F  to raise 0D  from 

debt holders. From (30) we know that the firm value is (recall 0 0 0/y Y F ) 
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PROPOSITION 12.  Suppose the firm starts with initial cash flows 0Y . 

i) For any target debt value 0 0
1

D Y
r







, the optimal debt maturity structure that 

maximizes the levered firm value (and hence the equity value) is *   . 

ii) The debt capacity 0sup D , which is the highest debt value that the firm is able to 

raise, equals 0
1

Y
r

 


 by setting 0
0

b

Y
F

y
 and *  .   

PROOF:  The first claim follows by showing that always achieves the upper bound of

0
1

Y
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 
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So given by y  we have   1/ by y
 to vanish in (55) as , which proves the claim. For the 

second claim, from (27) we have 
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By setting  the term in the parentheses vanishes, while 0
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debt value 0 0
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Figure 8 illustrates Proposition 12 by plotting the firm value 0TEV    (left panel) and debt 

value 0D   (right panel), both as a function of initial face value 0F  . We consider three debt 

maturities: long-term debt with a 100-year maturity ( 0.01   , dash-dotted); medium-term debt 

with a 10-year maturity ( 0.1   , dashed), and short-term debt with 3-day maturity ( 100   , 

solid). The left panel shows that the firm value is maximized by using 3-day maturity debt. This 

is simply because   implies that    , and hence for any by y  the firm value achieves 

its upper bound 0
1

Y
r

 


 in (55). Of course, a too high 0F  pushes the scaled cash-flow 0y below
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by , triggering default---and the firm value drops to zero. Although firms with the shortest-term 

debt---with the highest default threshold by ---face the tightest constraint in setting a high 0F ,25 

the right panel of Figure 8 shows that they achieve the highest market value of debt, thanks to the 

“Laffer” curve effect: Because long-term debt makes it difficult for the firm to reduce leverage in 

response to shocks, at some point an increase in the face value is more than offset by the increase 

in credit risk. As shown, the upper bound of 0D , 0
1

Y
r

 


, is achieved by setting 0F  at (slightly 

below) the default boundary for firms using “overnight” debt.         

Our model differs from Leland type models in the firm’s future leverage policy. In both 

settings, the debt maturity structure  captures the speed of debt retiring. In Leland, committing 

to refinance those retiring bonds (to maintain the aggregate debt face at a constant) leads equity 

to bear rollover gains/losses   1p y   -- see Equation (50).  When the debt price is low 

(because leverage is already high), rollover losses lower the option value to equity holders of 

                                                           
25 Under a mild sufficient condition (1 )r c  , one can show that the firm defaults earlier with shorter-term debt, 

i.e., default threshold by  in (25) is increasing in debt maturity  . This is a general result in Leland-style models. 

Figure 8. Firm value and debt value as a function of initial debt face value 0F  , for three levels of debt 

retiring rate ’s. Blue solid line is for shortest debt maturity1/ 0.01  ,  red dash-dotted line is for medium 
debt maturity1 / 10  , and black dashed line is for longest debt maturity1/ 100   Both firm and debt values
hit zero when 0 0 / bF Y y .  Parameters are 5%r  , 8%c  , 0.1  , 2%  , 25%  , 35%  .  



42 
 

keeping the firm alive and thus they will default earlier, creating rollover risk. The higher the , 

the stronger the rollover risk.26 To mitigate this rollover risk, a value-maximizing firm will set

0 , corresponding to a consol bond that is free of rollover concerns.    

When the firm can change its future debt burden freely, there emerges an important 

benefit of short-term debt. Given that short-term debt retires quickly, it allows the firm to swiftly 

adjust its leverage in response to profitability shocks. This result follows from the firm’s mean-

reverting leverage dynamics illustrated in Section 3.3, as (29) implies that the firm issues more 

(less) debt following positive (negative) performance.  

It is worth noting that, typically, the flexibility brought on by short-term debt comes with 

a potential cost of lack of commitment;27 in our particular setting the former benefit dominates 

the latter cost. We also caution that PROPOSITION 12 heavily relies on a strong, and perhaps 

counterfactual, assumption that underlies all of these models: the firm is facing a frictionless 

equity market through which equity could inject liquidity at any time in a costless way. 

Following a sequence of negative shocks, to repay the mounting debts that are maturing 

instantaneously, firms issue equity as needed. This assumption allows a firm with very short-

term debt to hold high leverage (as in the right panel of Figure 7) with out risking a liquidity 

induced default. We expect that modelling an equity market with realistic frictions will change 

many of these qualitative results, an interesting question left for future research.   

Ultra-Short-term Debt and Commitment 

The previous section shows that in our model it is optimal to set the debt maturity to be ultra-

short-term if the firm is forced to raise some amount of funds initially through debt. The ultra-

short-term debt matures instantaneously every dt , much like demand deposits.  

In the literature, some papers (e.g. Tserlukevich, 2008) suggest that when the firm can 

adjust its leverage freely in response to the cash-flows shocks, then it is optimal to set /t tF Y c  

always so that the firm avoids default while capturing the entire debt tax shield. In particular, it 

seems that ultra-short-term debt, which at any moment matures entirely and allows the firm to 

                                                           
26 See He and Xiong (2012) and Diamond and He (2014). 
27 For instance, long-term debt, because of its slow retiring speed, could potentially serve as a commitment device of 
leverage policy. He and Milbradt (2016) study a firm who cannot commit to debt maturity structure, and gives an 
example where the cost of lacking commitment dominates the benefit of flexibility. 
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reset its leverage to its favorable level in response to cash-flow shocks, can achieve this goal. For 

instance, setting issuance policy td  as  

    t t t td F dt F dZ         (56) 

could potentially prevent the scaled cash flow ty from fluctuating over time. Essentially, this 

captures the flexibility advantage offered by short-term debt.  

Although the flexibility benefit does apply in our model, the above argument implicitly 

assumes that equity holders can commit to the first best leverage policy. In our model, the 

inability to commit to certain future leverage policy matters in a significant way – equity holders 

continue to raise debt until the likelihood of default impacts its price. This point is highlighted in 

(56) that the firm repurchases debt following negative cash-flow shocks 0tdZ  , while in our 

model shareholders never find debt repurchases optimal. In the limit, even with instantaneously 

maturing debt, there is always a risk of bankruptcy in our model, so that the implied bankruptcy 

cost offsets the tax benefit. 

5. Endogenous Investment and Debt Overhang 

In this setting we extend our model by adding an endogenous investment decision also 

under the control of shareholders.  Including investment allows us to explore the interaction of 

shareholder-creditor conflicts with regard to both investment and leverage choices.  As expected 

from Myers (1977), debt overhang leads firms to underinvest.  We show that when shareholders 

are unable to commit to future leverage decisions, debt overhang is more severe when 

profitability is high, but less severe when profitability is low, than when the debt level is fixed as 

in the Leland (1998) case. In addition, we show that when shareholders cannot commit to future 

investment decisions, the leverage ratchet effect becomes more severe, and the firm will issue 

debt more rapidly, than the benchmark case in which investment is fixed.     
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5.1. General Analysis 

Now we allow equity holders to choose the firm’s endogenous investment policy ti , 

which affects the drift of cash-flow process by  ,t tY i  at a cost of  ,t tK Y i . Both functions are 

smooth with  , 0i t tY i  ,  , 0i t tK Y i  and  , 0ii t tK Y i  .  

For illustration purposes, we carry out the general analysis with investment under the 

general cash-flow diffusion process without jumps; the analysis for a cash-flow process as in (1) 

with jumps is similar.  

The HJB equation for equity holders, who are choosing the firm’s debt issuance G and 

investment i, can be written as 
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As before we focus on the equilibrium where G takes interior solutions, which implies 

that Fp V  , and we can solve for the equity value function as if there is no issuance, i.e., 0G  . 

Suppressing the arguments for  ,V Y F , the HJB equation with 0G  becomes 

        21max 1 1 , ( , ) ( )
2F Yi Y YrV c F FV K Y i Y i V Y VY     


   


        (57)  

The first-order condition for the optimal investment policy *i  is 

    * *, ,i i YK Y i Y i V    (58) 

This condition characterizes the optimal investment policy *i  under the assumption that 

 ( , ) ,YY i V K Y i  is strictly concave in i . 

The equilibrium issuance policy can be derived as before. Plugging the optimal 

investment policy *i into (57), and taking derivative with respect to F further, we have 
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    * 211 ( , ) ( )
2F F FF YF YYFrV c V FV Y i V Y V                

As before, we have used the Envelope theorem that we can ignore the dependence of the optimal 

policy *i on F .28 Using Fp V  , we have 

         2( )*
2, , , ,((1 ) ) ( , ) ,Y

Y F YYY F Y F Y F Y F prp c Y i p p Fp Y F               (59) 

The valuation equation for debt price  ,p Y F in (5), with the equilibrium evolution of state 

variables  ,Y F , is 

          2( )
2

*

required return evolution of evolution of coupon and principal payment

, 1 , ( , ,( ) ,) ,F Y
Y

YY

dF dY

rp Y F c p Y F G Y F Y F p Y FF p Y i p        
    (60) 

Combining (59) and (60) gives rise to the exact same equilibrium debt issuance policy as in 

PROPOSITION 3: 

      
, 0

, ,F FF

c c
G Y F

Y F Y Fp V



 
  .  

Again, the equilibrium requires the condition in PROPOSITION 1, i.e.    , , 0F FFp VY F Y F    

holds always. 

5.2. Log-normal Cash Flows and Quadratic Adjustment Costs 

Consider the setting with a log-normal cash-flow process studied in Section 3, with

 ( , )Y i i Y   and   2, 0.5K Y i i Y , where 0   is a positive constant.  Here, the 

investment i increases the cash-flow growth rate linearly, and the cost is proportional to cash-

flow sizeY but quadratic in investment i . Without debt, our model is similar to Hayashi (1982), 

and the optimal investment policy for unlevered firm, denoted by unleveri , is given by: 

    2 2 1unleveri r r         .  (61)  

                                                           
28 The envelope theorem readily applies if *i takes interior solutions always. However, even if the optimal investment 
policy takes a binding solution, our logic goes through as long as the constraint does not depend on F (hence there 
is no first-order gain by changing the firm’s debt).        
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Now we derive the solution to our model with leverage without commitment. Denote the 

optimal investment rate by *
ti  so that the evolution of scaled cash-flow t t ty Y F  is  

  *t
t t t

t

dy
i g dt dZ

y
       .  

Equity holders default when ty  hits the endogenous default boundary by . The scaled equity 

value  v y  without debt issuance satisfies  

             
2

2 21max 1 ' ''
2 2i

i
r v y y c y i yv y y v y         

      .       (62) 

Given the optimal investment    *i y v y  , the above equation becomes 

       
 

     
2

2 2' 11 ' ''
2 2

y v y
r v y y c yv y y v y

               


,   (63) 

with two boundary conditions:    1
unlever

c
v y i y

r

 
 


 




 for y  , and   0bv y  . The 

default boundary by  is determined by the smooth-pasting condition  ' 0bv y  .  

The equity value function  v y and default boundary by are readily solvable by standard 

Matlab built-in ODE solver. The debt price is then given by      'p y yv y v y  , and the debt 

issuance policy is    
0

'
c

g y
yp y

 
 . 

Finally, we need to verify the key condition  '' 0v y   (or equivalently  ' 0p y  ) in 

Proposition 1. Although we no longer have closed-form solution in the model with investment, in 

the next proposition we show that  '' 0v y   holds by analyzing the ODE (63) satisfied by the 

equity value. 

PROPOSITION 13.  In the log-normal cash-flow model with quadratic investment costs, 

equity value is strictly convex, i.e.,  '' 0v y  , so that the debt price is decreasing in debt 

face value. This guarantees the optimality of smooth issuance policy and hence the 
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investment policy    *i y v y   and issuance policy    
0

'
c

g y
yp y


  ,  together 

with the debt price      'p y yv y v y  , constitute an equilibrium.     

PROOF:  Define a constant unleverB i  and      1 c
w y v y By

r

 
  


 


; then  w   is concave 

if and only if  v  is concave. Using (63) and    ' 'v y w y B  , we have: 

           

             

   

     

          

    

22

2
2 2

2

0, because 2 1

2
2 2

2
2 2

1

'
1 ' ''

2 2

1
2

2 ' '
  ' ''

2 2
'

'
2

B r r

r w y r v y r By c

y w y B y
y y w y B w y r By

B
y B r B

Bw y w y y
y yw y w y

w yB y
yw y y

     

    

   


   


 


 
 

     

       


        

 
       

 


   

       



 '' .
2

w y

 

Hence  w y satisfies the following ODE:  

           
2

2 2'
' ''

2 2
w yB y

r w y yw y y w y
        

  
 

  (64) 

We need two steps to show that  '' 0w y   for all by y  . 

Step 1.   0w y  for all by y . We know that at default    ' ' 0b bw y v y B B     , and 

  0w   . This implies that if   0w y   ever occurs, then the global minimum must be 

nonpositive and interior. Pick that global minimum point 1y ; we must have  1' 0w y  and 

 1'' 0w y  . Suppose that  1 0w y  ; evaluating (64) at 1y , we find that the LHS is strictly 

negative while the RHS is positive, contradiction. Suppose that  1 0w y  ; then there must exist 
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some local maximum point 2 1y y , so that  2 0w y  ,   2' 0w y  and  2'' 0w y  . But the 

same argument of evaluating (64) at 2y leads to a contradiction.  

Step 2. Because  w y  approaches 0 from above when y  , we know that for y  to be 

sufficiently large  w y  is convex. Suppose counterfactually that  w y is not convex globally; we 

can take the largest inflection point 2y with  3'' 0w y  . We must have  3' 0w y  and

 3''' 0w y  (it is because for 3y y  the function  w y  is convex and decreasing to zero from 

above). At this point, differentiate (64) and ignore the term with  3'' 0w y  , and we have 

       
2

2 2
3 3

3

'
' ''' .

2 2
w y yB

r w y w y     
 


 

 (65)  

Recall    22 2B r r          which implies  

      22
3 3' 2 ' 0B

r w y r w y
        
 

   


  

As a result, the LHS of (65) is negative while the RHS of (65) is positive, contradiction. This 

implies that  w y is convex globally.  

Combining all the results above, we have shown that  '' 0v y  for by y .   

5.3. Optimal Investment and Leverage 

The extension considered above with endogenous investment  *i y  and debt issuance

 *g y  allows us to study implications on the endogenous firm growth and its interaction with 

the firm’s leverage policies. To facilitate discussion, we consider the following three benchmark 

cases which features either a constant investment policy i  (i.e., independent of the state ty ), or a 

constant debt issuance policy g . In each case, we isolate either endogenous investment or 

endogenous debt issuance separately, allowing us to study the interactions between these two 

policies.  

In the first case, the firm commits to the socially optimal investment policy which is a 

constant: 
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  2 2sociali r r        . (66) 

In the second case, the committed constant investment policy is optimal to an unlevered firm 

who pays taxes, as in equation (61). Both cases are relevant because equity holders in our model 

are maximizing the levered firm value, which includes debt tax shields.  

Importantly, in each benchmark case, equity holders---given the respective constant 

investment policy---are making endogenous debt issuance decisions as in our base model. In 

contrast, in the third Leland (1998) benchmark, the firm commits to fully rollover always its debt 

so that  g    , but the investment decision is taken by equity holders endogenously. Appendix 

XX gives the details of solving these three benchmark cases.  

Figure 9 plots the investment policies (left panel) and debt issuance polices (right panel) 

for our extension with both endogenous investment and debt issuance polices (which is indicated 

by “ *i  , no commitment *g ,” solid lines), together with three benchmark cases. Start with the left 

panel. The general take-away there is that the well-known debt overhang effect (Myers 1977; 

Hennessey, 2004) causes the firm to underinvest; to the extreme, equity holders stop investing 

when the firm is close to default. Because all debt tax shields get dissipated in our no-

commitment model, the relevant benchmark is “ unleveri  , no commitment *g ” plotted in dashed 

line; and as expected, the firm in our model underinvests.  

Similarly, the Leland (1998) firm, red dash-dotted line “ *i  , Leland ’98 g   ”, 

underinvests compared to the socially optimal level (black solid line with circle). Interestingly, 

relative to the Leland benchmark, the solid line of our model sits below (above) the dash-dotted 

line of Leland (1998) for low (high) y . In words, no commitment leverage policy leads to more 

severe debt overhang when profitability is high, but the overhang effect is less severe when 

profitability is low. This is a result of history dependent leverage policy discussed in Section 3.3-

--equity holders allow leverage to decline following negative shocks.     
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The differences in net debt issuance polices  g y   in the right panel of Figure 9 reveal 

an additional economic insight. By assumption, the net debt issuance is identically zero in the 

benchmark Leland (1998) case (dash-dotted line). For other cases, we observe that the solid line 

of “ *i  , no commitment *g ” sits above both constant investment benchmarks (solid-circle line 

and dashed line). In words, equity holders are more aggressive in issuing new debt when they are 

also in charge of the endogenous investment policies of the firm. For intuition, recall that in 

deciding how much new debt to issue, equity holders are trading off the tax benefit against the 

losses caused by higher leverage that are borne by themselves. Compared to the case in which 

equity holders are forced to implement an (ex ante) optimal investment policy, the losses are 

mitigated when equity holders are also in charge of future investment policies that maximize 

equity value ex post, which explains the more aggressive leverage policy in this case.    

6. Conclusions 

When the firm cannot commit ex ante to future leverage choices, shareholders will adjust 

the level of debt to maximize the firm’s current share price. As shown by Admati et al. (2015), 

Figure 9: Endogenous investment and debt issuance policies, and comparison to three 
benchmarks. Our model extension with endogenous investment is denoted by “i*, no commitment g*,” with solid 
lines. “isocial, no commitment g*” with solid-circle lines and “iunlever, no commitment g*” with dashed lines refer to the 
cases of constant investment  and , but shareholders has no commitment on the debt issuance 

policy. The third benchmark is Leland (1998) with constant debt issuance policy but equity chooses 

investment endogenously. Parameters are  
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capital structure decisions are then distorted and a leverage ratchet effect emerges: shareholders 

will choose to issue new debt gradually over time even if leverage is already excessive relative to 

the standard tradeoff theory optimum. This endogenous rate of debt issuance decreases as the 

firm approaches default, and is offset by the rate of asset growth and debt maturity, so that the 

firm’s equilibrium leverage is ultimately mean-reverting.   

We develop a general methodology to solve for equilibrium debt dynamics in this setting, 

and apply it to several standard models. When earnings evolve as geometric Brownian motion 

(including possible upward jumps), we explicitly solve for the firm’s debt as a weighted average 

of past earnings, with the speed of adjustment decreasing with debt maturity and volatility. When 

shareholders also control investment decisions, we show that debt overhang exacerbates the 

leverage ratchet effect, leading the firm to take on leverage more aggressively. 

Because creditors expect the firm to issue new debt in the future, credit spreads are wider 

in our model than in standard models with fixed debt, and remain wide even when firms are 

arbitrarily far from default. Lower debt prices dissipate the tax shield benefits of leverage, so that 

the share price of the firm is identical to its value if debt were fixed.  Finally, while shortening 

the maturity of future debt issues raises the average level of leverage as well as its speed of 

adjustment, it has no impact on the share price. As a result, even “instantaneous” debt does not 

resolve the agency problem, and equity holders have no incentive what-so-ever to adjust the 

firm’s debt maturity structure.  

Firms may try to reduce the agency costs resulting from future debt issuance by agreeing 

to covenants that restrict future debt issuance. Equity and debt issuance may also incur 

transactions costs or expose the firm to other market imperfections.  We leave for future work an 

exploration of the leverage dynamics that arise from the interaction of these additional forces 

with the leverage ratchet effects explored here.  
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7. Appendix. 

7.1. Appendix for Leland (1998) 

Following Leland (1998), we can first solve for the scaled levered firm value TEV as 

      1 1 v

b

b

y yTEV c c y

F r r r r y


    

         





  
 

 (67)  

where the constant 
 22 2 2

2

0.5 0.5 2
v

r   

    




. Then, the equity value    TEV
v y p y

F
    

equals: 

       1
1 1 v p

b

b b

y yc c y
v y

r r r r y y

c y

r

 
    

       

     


     

  


 

  
 

 


 (68)  

 

7.2. Appendix for Section 4.2 

With slight abuse of notation, consider a constant investment policy i , which could take either the constant 

value of unleveri in equation (61) or sociali in equation (66). The flow payoff to equity holders is 

   
2

1
2
i

y c y


    , and the method in our base model allows us to derive the equity holders’ value to be 

 
 

2

(1 1) 1( ) 1 ,
1

2
b

y c y
v y

r r y

i       
        

  
   

  

with endogenous default boundary  

 
 
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cr
y

r i

   
        


 


. 

Then we can solve for the endogenous debt issuance policy *g  as in (29).  

The solution to the Leland (1998) model with endogenous investment is characterized by a pair of ODE, 

one for the equity value  v y and the other for the debt price  p y . For equity value, we have 
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              
2

2 21
2max 1 1

2i

i
rv y y c p y i yv y y y v y   

                 

With optimal investment    * 'v y
i y 




, the above ODE becomes  

               
2

2 21
21 1

2
v y

rv y y c p y yv y y y v y


   
           


 (69)  

With boundary conditions 

          20, ' 0, ' 2 1  for sufficient large ,b b FBv y v y v y i r r y                   

For debt price  p y , we have  

          2 21
2

v y
r p y c yp y y p y


   

            


  (70)  

with boundary conditions    0, ' 0bp y p y   for sufficiently large y. One can easily solve for

    ,v y p y  by solving the ODE system (69)-(70), with respective boundary conditions.   
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