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1 Introduction

The period from 2005 to September of 2008 witnessed a more than 100-fold increase in the

cost of insuring against economic catastrophe. This cost can be seen from the pricing of

derivative contracts written on the CDX, an index of credit default swaps on investment-

grade firms. During the 2005–2009 period, tranches on the CDX were actively traded:

investors could purchase and sell insurance that would pay off only if a certain fraction of

firms represented by the CDX went into default. The most senior tranches were structured

to pay off only if corporate defaults became extremely widespread, more so than during the

Great Depression.

While the costs to insure the senior tranches on the CDX were close to zero through most

of 2006 and 2007, fluctuations began to appear in late 2007, culminating in sharply rising

prices in the summer and fall of 2008. Ex post, of course, such insurance did not pay off. In

fact only a very small number of firms represented by the CDX index have gone into default.

Yet, the pricing of these securities strongly suggests a substantial, and time-varying, fear of

economic catastrophe.

The CDX and its tranches are an example of the structured finance products that pro-

liferated in the period prior to the financial crisis of 2008–2009.1 In the years following,

both the academic literature and the popular press have deeply implicated structured fi-

nance in the series of events beginning with the near-default of Bear Stearns in March 2008

and culminating in collapse of Lehman brothers later that year.2 Yet, despite the central-

ity of structured products to the crisis and its aftermath, there have been few attempts to

quantitatively model these securities in a way that connects them to the underlying economy.

In this paper, we investigating whether an equilibrium model with rare economic disas-

1See Longstaff and Rajan (2008) for a description of structured finance products.
2See, for example, Reinhart and Rogoff (2009), Gorton and Metrick (2012), and Salmon (2009).
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ters, in the spirit of Barro (2006) and Rietz (1988), can explain the time series of the cost to

insure the CDX index and its tranches. Unlike previous quantitative models of structured

finance, firm prices in our model are derived endogenously from assumptions on investor

preferences and cash flows.3 Firm prices embed rare disaster fears, as well as risks that are

idiosyncratic. Importantly, our model can explain options as well as as equity prices (the

model is also consistent with the average return and volatility on the aggregate market).

We can therefore use it to back out a time series of rare disaster probabilities from option

prices alone. When we use these probabilities to calculate model-implied values for CDX

index and tranche prices, we find that it can explain the low spreads on senior tranches prior

to the crisis, the high spreads during the crisis, and the timing of the increase in spreads.

Our results imply that CDX spreads reflect an assessment of the risk in the economy that is

consistent with other asset classes.

Our findings relate to a recent debate concerning the pricing of CDX tranches. Coval,

Jurek, and Stafford (2009) examine the pre-crisis behavior of CDX tranches, pricing these

tranches with a static options model that assumes that cash flows occur at a fixed maturity.4

Setting firm parameters so that the CDX itself is correctly priced, they find that spreads

for the senior tranches are too low in pre-crisis data. They conjecture that investors were

willing to provide insurance on these products, despite receiving low spreads, because of a

naive interpretation of credit risk ratings. Indeed, these products were highly rated because

3One strand of the credit derivative literature models default as an exogenous event which is the outcome

of a Poisson process (Duffie and Singleton, 1997). Such models are known as “reduced form.” A second

strand builds on the assumption is that default occurs when firm value passes through a lower boundary

(Black and Cox, 1976). Such models are known as “structural.” Nonetheless, structural models typically

take the price process and the risk-neutral measure as exogenous. In our paper, both are derived from

investor preferences and beliefs.
4Specifically, if all cash flows occur at year five, then in principle CDX prices can be calculated using

state prices derived from five-year options.
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of their low default probabilities; these ratings did not take into account that defaults would

occur during the worst economic states.

These conclusions are questioned by Collin-Dufresne, Goldstein, and Yang (2012). Collin-

Dufresne et al. note that the pricing of the so-called equity tranche (the most junior tranche)

is sensitive to the timing of defaults and the specification of idiosyncratic risk. Implicit in the

pricing technique of Coval, Jurek, and Stafford (2009) is that default occurs at the five-year

maturity. This need not be the case, and the difference could be important for the most

junior tranches. Assuming that defaults occur at the five-year horizon makes the junior

tranches look more attractive. The model spreads will thus be artificially low on the junior

tranches, and, because the model is calibrated to match the index, the model-implied spreads

on the senior tranches will be too high. Collin-Dufresne et al. also emphasize the need for

fat-tails in the idiosyncratic risk of firms to capture the CDX spread at the three, as well as

the five-year maturity. Introducing fat-tailed risk also raises the spread of junior tranches in

the model and lowers the spread of senior tranches.

Once payoffs occur at a horizon other than five years, the method of extracting state

prices from options data no longer cleanly applies. Accordingly, Collin-Dufresne, Goldstein,

and Yang (2012) specify a dynamic model of the pricing kernel, which they calibrate to

five-year options, and which they require to match three- and five-year CDX spreads. They

find that this model comes closer to matching the spreads on equity tranches and on senior

tranches prior to the crisis.

However, the results of Collin-Dufresne, Goldstein, and Yang (2012) point to the limita-

tions of the methodology of both papers, in which asset prices are exogenous. Collin-Dufresne

et al. show that pricing tranches during the crisis (October 2007 - September 2008) requires

some probability of a catastrophic event that cannot be directly inferred from options data.5

5Without this catastrophic risk, matching the level of the CDX indices and option prices produces model-

implied spreads on the senior tranches that are too low, while the junior tranche spreads are too high.
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The probability of a catastrophic event cannot be determined by option prices using no-

arbitrage arguments because there are not enough options with strikes in the relevant range.

Thus CDX tranches are non-redundant securities. A model may explain option prices, but

may fail to account for CDX senior tranches.

The limitations of the no-arbitrage framework lead us to an equilibrium model in which

we derive firm valuations and the pricing kernel from assumptions on the endowment and

investor preferences. Analytical solutions for firm prices and for options facilitate what would

otherwise be an intractable numerical problem of computing CDX tranche prices. We require

the resulting equilibrium model to explain the equity premium and equity volatility, and the

low and smooth riskfree rate. Our model offers a joint, quantitative explanation for equity,

options, and credit derivative pricing. Despite the constraints of the equilibrium approach,

our model can match pre-crisis and crisis levels of the CDX and its tranches, ranging from

equity to super-senior.

Our equilibrium model implies a link from rare disaster probabilities, to equity volatility,

and from there to option prices. We can then use the time series of option prices to infer

investor beliefs about rare event probabilities. Thus, besides matching the average levels,

our results show that the same probabilities of rare events that price CDX senior tranches

both before and during the crisis are fully consistent with prices on S&P index options.

Moreover, the disaster probabilities implied by these prices are reasonable. Prior to the

crisis, the disaster probability was close to zero. In September 2008 it rose precipitously, but

the resulting level needed to explain CDX and CDX tranche prices is only 4% per annum.

In our model, an shock to the probability of disaster endogenously lowers asset values, raises

asset value volatility, and, of course, implies that future tail events are more likely. This

combination of factors allows the model to match the level and time-variation in CDX/CDX

Matching the level of spreads during the crisis requires a lot of risk, and if this risk is idiosyncratic, it will

lead to counterfactually high equity tranche spreads and counterfactually low senior tranche spreads.

4



tranche spreads.

Our results show that it is possible to account for the prices of senior tranches on the

CDX within a frictionless model with reasonable parameter values. Moreover, the time series

of these prices is consistent with the time series of options prices. We thus show that at

least some of pricing behavior that was attributed to market failures during the crisis can be

explained using the benchmark framework of representative agent asset pricing. Our findings

also support the view that beliefs about rare disasters are an important determinant of stock

market behavior.

The rest of this paper proceeds as follows. Section 2 describes the model and Section 3

describes the data. Section 4 demonstrates the virtual impossibility of describing these data

using a lognormal model. This section argues that only a model with rare disasters would

be capable of explaining CDX tranche prices. Section 5 describes the evaluation of our

model using data on the aggregate market, on options and on CDX and CDX tranche data.

Section 6 concludes.

2 Model

2.1 Model primitives and the state-price density

We assume an endowment economy with complete markets and an infinitely-lived repre-

sentative agent. Aggregate consumption (the endowment) solves the following stochastic

differential equation:

dCt
Ct−

= µcdt+ σcdBc,t + (eZc,t − 1)dNc,t, (1)
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where Bc,t is a standard Brownian motion and Nc,t is a Poisson process. The intensity of

Nc,t is given by λt and assumed to be governed by the following system of equations:

dλt = κλ(ξt − λt)dt+ σλ
√
λtdBλ,t (2a)

dξt = κξ(ξ̄ − ξt)dt+ σξ
√
ξtdBξ,t, (2b)

where Bλ,t and Bξ,t are Brownian motions (independent of each other and of Bc,t).

The process defined by (1) has both normal-times risk, as represented by the Brownian

component σcdBc,t, and a risk of rare disasters represented by the Poisson term (eZc,t −

1)dNc,t. That is, at time t the economy will undergo a disaster with probability λt.
6 Given

a disaster, the change in consumption (as a fraction the total) is eZc,t − 1, where Zc,t < 0

is a random variable. By writing the change in consumption as an exponential we ensure

that consumption itself remains positive. For simplicity, we assume the distribution of Zc,t

is time-invariant.

The system of equations (2) implies that the probability of a disaster λt is time-varying,

and that it mean-reverts to a value ξt that itself changes over time. This type of multifre-

quency process has often been used for modeling asset price volatility and for option pricing

in reduced-form models (see Duffie, Pan, and Singleton (2000) for discussion and references).

Two-factor multifrequency processes are also used in the CDX literature (Collin-Dufresne,

Goldstein, and Yang, 2012). Because return volatility will inherit the multifrequency varia-

tion of λt, (2a) is a natural choice for the disaster probability process. The process (2) can

capture long memory in a time series, namely autocorrelations that decay at a slower-than-

geometric rate. For example, the 2008 financial crisis was characterized both by a spike in

λt that decayed quickly, and higher disaster probabilities in subsequent years. The equation

system (2) captures this feature of the data, while a univariate autoregressive process would

6This description of Poisson shocks, which we adopt throughout the text, is approximate. In any finite

interval there could theoretically be more than one shock since λt is an intensity, not a probability.
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not. Setting σξ to zero and assuming that ξt is at its (then deterministic) steady state of ξ̄

results in the one-factor model of Wachter (2013) and Seo and Wachter (2016).

We assume a recursive generalization of time-additive power utility that allows for pref-

erences over the timing of the resolution of uncertainty. Our formulation comes from Duffie

and Epstein (1992), and we consider a special case in which the EIS is equal to one. That is,

we define continuation utility Vt for the representative agent using the following recursion:

Vt = Et

∫ ∞
t

f(Cs, Vs) ds,

where

f(Ct, Vt) = β(1− γ)Vt

(
logCt −

1

1− γ
log((1− γ)Vt)

)
.

The parameter β is the rate of time preference and γ is relative risk aversion. This utility

function is equivalent to the continuous-time limit of the utility function defined by Epstein

and Zin (1989) and Weil (1990). Assuming an EIS of one allows for closed-form solutions for

equity prices up to ordinary differential equations, and facilitates the computation of options

and CDX/CDX tranche prices.

In Appendix A, we show that the pricing kernel is characterized by the process

dπt
πt−

=
(
−rt − λtE

[
e−γZc,t − 1

])
dt

− γσcdBc,t + bλσλ
√
λtdBλ,t + bξσξ

√
ξtdBξ,t + (e−γZc,t − 1)dNc,t. (3)

with

bλ =
κλ + β

σ2
λ

−

√(
κλ + β

σ2
λ

)2

− 2
E [e(1−γ)Zt − 1]

σ2
λ

(4)

bξ =
κξ + β

σ2
ξ

−

√√√√(κξ + β

σ2
ξ

)2

− 2
bλκλ
σ2
ξ

, (5)

In the special case of time-additive utility, γ = 1 and bλ = bξ = 0. The only risk that

matters for computing expected returns is consumption risk, given by the terms −γσcdBc,t
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and (e−γZc,t−1)dNc,t, the latter of which captures the effect of rare disasters. For γ > 1 (this

implies a preference for early resolution of uncertainty), bλ and bξ are positive. Assets that

increase in value when λt and ξt rise provide a hedge against disaster risk. All else equal,

these assets will have lower expected returns, and higher prices, than otherwise.

The riskfree rate is given by

rt = β + µc − γσ2
c + λtE

[
e(1−γ)Zc,t − e−γZc,t

]
. (6)

Equation (6) implies that the riskfree rate is decreasing in the probability of an economic

disaster. The greater is this probability, the more investors want to save for the future, and

the lower the riskfree rate must be in equilibrium.

2.2 The aggregate market and index options

We assume that the aggregate market has payoff Dt = Cφ
t (Abel, 1990; Campbell, 2003).

Empirically, dividends are more variable than consumption and more sensitive to economic

disasters (Longstaff and Piazzesi, 2004). We capture this fact by setting φ > 1. The process

for dividends then follows from Ito’s Lemma:

dDt

Dt−
= µddt+ φσcdBc,t + (eφZc,t − 1)dNc,t,

where µd = φµc + 1
2
φ(1− φ)σ2

c .

In equilibrium, the price of the dividend claim is determined by the cash flows and the

pricing kernel:

F (Dt, λt, ξt) = Et

[∫ ∞
t

πs
πt
Ds ds

]
.. (7)

Let G(λt, ξt) be the ratio of prices to dividends. Then

G(λt, ξt) = Et

[∫ ∞
t

πs
πt

Ds

Dt

ds

]
=

∫ ∞
0

exp (aφ(τ) + bφλ(τ)λt + bφξ(τ)ξt) dτ, (8)
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where aφ(τ), bφλ(τ) and bφξ(τ) satisfy ordinary differential equations given in Appendix B.

Under the reasonable assumption of φ > 1, bφλ(τ) < 0 (Wachter, 2013). Further, using the

reasoning of Tsai and Wachter (2015), it can be shown that bφξ(τ) < 0. The value of the

aggregate market is thus decreasing in the disaster probability λt and its time-varying mean

ξt.

Figure 1 shows the functions bφξ(τ) and bφλ(τ), given the parameter values discussed in

Section 5.1.1. Both functions are negative and decreasing as a function of τ . The function

bφλ(τ) converges after about 20 years reflecting the relative lack of persistence in λt. In

contrast, the function bφξ(τ) takes nearly 70 years to converge. For dividend claims with

maturities of 10 years or less, bφλ(τ) is greater in magnitude than bφξ(τ), namely λt-risk is

more important. However, in the limit as the horizon approaches infinity, the effect of ξt is

nearly three times as large as the effect of λt.
7

Applying Ito’s Lemma to Ft = DtG(λt, ξt) gives the equilibrium law of motion for the

aggregate market:

dFt
Ft−

= µF,t dt+ φσcdBc,t +
∂G

∂λ

1

G
σλ
√
λt dBλ,t +

∂G

∂ξ

1

G
σξ
√
ξt dBξ,t +

(
eφZc,t − 1

)
dNc,t, (9)

The terms φσdBc,t and
(
eφZc,t − 1

)
dNc,t represent normal-time and disaster-time variation in

dividends, respectively.8 At our parameter values, the latter is a much more important source

of risk than the former. Variation in λt and ξt produce variation in the price-dividend ratio G,

and thus in stock prices. This is reflected in the terms ∂G
∂λ

1
G
σλ
√
λt dBλ,t and ∂G

∂ξ
1
G
σξ
√
ξt dBξ,t.

These can lead to highly volatile stock prices, even during normal times. Combining equa-

7See Lettau and Wachter (2007) and Borovička, Hansen, Hendricks, and Scheinkman (2011) for discussion

of fixed-maturity dividend claims and the effect of exposures to risks of varying frequencies.
8The drift rate µF,t is determined in equilibrium from the instantaneous expected equity return ret :

µF,t = ret − λtE
[
eφZc,t − 1

]
+
Dt

Ft
,

where ret is determined by (10).
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tions for the pricing kernel and for the aggregate market leads to the equation for the equity

premium:

ret − rt = γφσ2 − λtEt
[(
e−γZc,t − 1

) (
e−φZc,t − 1

)]
− λt

1

G

∂G

∂λ
bλσλ − ξt

1

G

∂G

∂ξ
bξσξ (10)

(Tsai and Wachter, 2015). The first term is from the CCAPM, and is negligible in our

calibration. The next term is the risk premium due to disasters itself, and is positive and

large. It represents the comovement of marginal utility and firm value during disaster times.

The last two terms arise from time-variation in the risk of a disaster, both due to changes

in λt and changes in ξt. Because disasters increase marginal utility (bλ and bξ are positive),

and decrease prices, these terms are positive. A calibration, like ours, that matches aggre-

gate stock market volatility, also implies that they have a significant impact on the equity

premium.

Our analysis below will rely on the prices of put options written on the aggregate market.

A European put option gives the holder the right to sell the underlying security at some

expiration date T for an exercise price K. Because the payoff on the option is (K − FT )+,

no-arbitrage implies that

P (Ft, λt, ξt, T − t;K) = Et

[
πT
πt

(K − FT )+

]
.

Lelt Kn = K/Ft denote the normalized strike price (“moneyness”) and P n
t = Pt/Ft the

normalized put price. Like the price-dividend ratio, the normalized put price is a function

of λt and ξt alone:

P n(λt, ξt, T − t;Kn) = Et

[
πT
πt

(
Kn − FT

Ft

)+
]
. (11)

We use (11) to calculate normalized put prices, and then find implied volatilities as defined

by Black and Scholes (1973) (see Seo and Wachter (2016) for further details). As we show

in Appendix G, the transform analysis of Duffie, Pan, and Singleton (2000) allows us to

compute (11) analytically, avoiding the need for extensive simulations.
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2.3 Individual firm dynamics

As explained in Section 2.4 below, CDX and CDX tranche pricing requires a model for

individual firms. Let Di,t be the payout amount of firm i, for i = 1, · · · , Nf , where Nf is the

number of firms in the CDX (the number has been 125). While we use the notation Di,t,

we intend this to mean the payout not only to the equity holders but to the bondholders as

well. The firm payout is subject to three types of risk:

dDi,t

Di,t−
= µidt + φiσcdBc,t + (eφiZc,t − 1)dNc,t︸ ︷︷ ︸

aggregate risk

+ Ii,t(e
ZSi − 1)dNSi,t︸ ︷︷ ︸
sector risk

+ (eZi − 1)dNi,t︸ ︷︷ ︸
idiosyncratic risk

. (12)

where µi is defined similarly to µd, namely µi = φiµc + 1
2
φi(1 − φi)σ2

c . The systematic risk

is standard: Dit has a multiplicative component that behaves like Cφi
t , analogously to divi-

dends. Firms are exposed to both normal-times aggregate risk and aggregate consumption

disasters. Because financial leverage is not reflected in Ct, the value of φi will be substantially

below that of φ for aggregate (equity) dividends above. However, we will still allow firms

to have greater exposure to aggregate disasters than consumption, namely φi > 1 (labor

income could account for the wedge between unlevered cash flows and consumption).

Firms are also exposed to idiosyncratic negative events that occur with constant prob-

ability λi. For simplicity, we assume all idiosyncratic risk is Poisson.9 When a firm is hit

by its idiosyncratic shock (which we model as an increment to the counting process Ni,t),

the firm’s payout falls by Di,t− × (1 − eZi). For parsimony, we assume µi, σi, φi, Zi, and

λi are the same for all i, and that Zi is a single value (rather than a distribution). The

shocks themselves, dNi,t, will of course be independent of one another and independent of

the aggregate shock dNc,t. Longstaff and Rajan (2008) estimate that a portion of the CDX

spread is attributable to risk that affects a nontrivial subset of firms. Following Longstaff

9Campbell and Taksler (2003) show that idiosyncratic risk and the probability of firm default are strongly

linked in the data.
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and Rajan and Duffie and Garleanu (2001), we refer to this as sector risk, and allow for it

in (12). Let S denote a finite set of sectors.10 Each firm is in exactly one sector; we let

Si ∈ S denote the sector for firm i and dNSi,t the sector shock. When a sector shock arrives,

the firm is hit with probability pi, namely the sector term in (12) is multiplied by Ii,t which

takes a value 1 with probability pi and 0 otherwise. If a firm happens to be affected by this

sector shock, the firm’s payout drops by Di,t− × (1 − eZSi ).11 Again, for parsimony, pi and

ZSi are the same across firms. The shocks Ii,t are independent across firms and dNSi,t are

independent across sectors.

Intuitively, sector risk should be correlated with aggregate consumption risk. To capture

this correlation, we allow the intensity of NSi,t, λSi,t, to depend on the state variables λt and

ξt. In the Appendix, we solve for firm values under the specification λSi,t = w0 +wλλt+wξξt.

For parsimony, we will calibrate the simpler model λSi,t = wξξt.

Given this payout definition, we solve for the total value of firm i (the equity plus the

debt), which we denote Ai(Di,t, λt, ξt):

Ai(Di,t, λt, ξt) = Et

[∫ ∞
t

πs
πt
Di,sds

]
. (13)

Define the price-to-payout ratio as

Gi(λt, ξt) ≡
Ai(Di,t, λt, ξt)

Di,t

.

Similar to the price-dividend ratio, the price-to-payout ratio for an individual firm can be

10For concreteness, we can think of the sector classification as corresponding to that given by our data

provider Markit. There are five sectors: Consumer, Energy, Financials, Industrial, Telecom, Media, and

Technology, so S = {C, E, F, I, T}. We will use this classification to discipline our calibration. However,

neither the equations nor our empirical results require this interpretation.
11This structure is isomorphic to one in which the set of firms is partitioned into a greater number of

sectors and firms are hit by sector shocks with probability one.
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expressed as an integral of an exponential-linear function of the state variables:

Gi(λt, ξt) =

∫ ∞
0

exp (ai(τ) + biλ(τ)λt + biξ(τ)ξt) dτ, (14)

where ai(τ), biλ(τ), and biξ(τ) solve the system of ordinary differential equations derived in

Appendix C. Like the aggregate market value, firm values are decreasing in the disaster

probability λt and its time-varying mean ξt.

The dynamics of firm values Ait = Ai(Di,t, λt, ξt) follow from Ito’s Lemma:

dAi,t
Ai,t−

= µAi,t dt+ φiσcdBc,t +
∂Gi

∂λ

1

Gi

σλ
√
λt dBλ,t +

∂Gi

∂ξ

1

Gi

σξ
√
ξt dBξ,t +(

eφiZc,t − 1
)
dNc,t + Ii,t(e

ZSi − 1)dNSi,t + (eZi − 1)dNi,t (15)

where µAi,t is the asset drift rate, determined in equilibrium. Equation 15 has some simi-

larity to processes that use reduced-form models for asset prices. For example, as in Collin-

Dufresne, Goldstein, and Yang (2012), there is Brownian risk with stochastic volatility (fol-

lowing a multifrequency process), a risk of an adverse idiosyncratic event, and a risk of

catastrophic market-wide decline. Here, however, the process is an endogenous outcome of

our assumptions on fundamentals and on the utility function. Specifically, volatility occurs

because of changes in agents’ rational forecasts of economic disasters.

2.4 CDX pricing

A credit default swap contract provides a means of trading on the risk of default of a single

firm. Under this bilateral contract, the protection buyer commits to paying an insurance

premium to the protection seller, who pays the protection buyer the loss amount in the

case of default. Recent statistical models of single-name credit default swaps suggest that

market participants price in the risk of rare idiosyncratic and market-wide events (Kelly,

Manzo, and Palhares, 2016; Seo, 2014). Our focus in this paper is on the CDX North

13



American Investment Grade, an index whose value is determined by default events on a set

of underlying firms, also known as reference entities. An investor who buys protection on

the CDX is, in effect, buying protection on default events of all the underlying firms.

At each time t, we price a CDX contract initiated at t and maturing at T on Nf reference

entities whose asset prices are governed by (15). Define default as the event that a firm’s

value falls below a threshold AB (Black and Cox, 1976). The default time for firm i is

therefore

τt,i = inf

{
τ > t :

Ai(Di,τ , λτ , ξτ )

Ai(Di,t, λt, ξt)
≤ AB

}
. (16)

To maintain stationarity, we define the threshold relative to the value of the firm at the

initiation.12 Let Rτt,i denote the recovery rate for a firm defaulting at τt,i. This recovery rate

is a random variable that depends only on the outcome of dNc,τt,i , namely whether default

co-occurs with a disaster. Note that this specification implies that the time-t distribution of

both τt,i − t and of Rτt,i is completely determined by λt and ξt.

We first discuss contracts on CDX as a whole, and then consider tranches in Section 2.5.

Following the convention in our data, we assume that the protection buyer is paying to

insure $1 (namely, $1 is the notional). If firm i defaults, the loss on the CDX increases by

1
Nf

(1−Rτt,i). Let Lt,s denote the cumulative loss at time s. Then Lt,s is given by

Lt,s =
1

Nf

Nf∑
i=1

1{t<τt,i≤s}(1−Rτt,i). (17)

Increases in Lt,s trigger payments from the protection seller (the party providing insurance)

12If we interpret ABAi,t as the amount of debt that the firm has at time t, then (16) implies that the

firm is in default whenever the value of equity is below zero. This formulation is consistent with firms

maintaining stationary leverage, and but that reversion to the stationary levels takes place on the order of

years (Lemmon, Roberts, and Zender, 2008).
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to the protection buyer. No-arbitrage implies that the value of these payments equals

ProtCDX(λt, ξt;T − t) = EQ
t

[∫ T

t

e−
∫ s
t rududLt,s

]
,

where EQ denotes the expectation taken under the risk-neutral measure Q and ru is the

riskfree rate, both of which are implied by the pricing kernel (3).13 Equation 18 is sometimes

referred to as the “protection leg” of the contract.

In a CDX contract, the protection buyer makes payments at quarterly intervals. If no

firms default, these premium payments add up to a fixed value S over the course of a year.

If default occurs, the premium payments fall to reflect the fact that a lower amount is now

insured under the contract. Let nt,s denote the fraction of firms that have defaulted s − t

years into the contract:

nt,s =
1

Nf

Nf∑
i=1

1{t<τt,i≤s}. (18)

Like Lt,s, nt,s is a random variable whose value is realized at s and whose time-t distribution

depends only on λt, ξt, and s− t. Let ϑ = 1/4, the interval between premium payment dates.

For a given spread S, the premium leg is equal to

PremCDX(λt, ξt;T − t, S) = SEQ
t

[
1

4

4T∑
m=1

e−
∫ t+ϑm
t rudu(1− nt,t+ϑm) +∫ t+ϑm

t+ϑ(m−1)

e−
∫ s
t rudu(s− t− ϑ(m− 1))dnt,s

]
. (19)

The first term in (19) is the value of the scheduled premium payments. Note that nt,t+ϑm is

the fraction of the pool that has defaulted as of the mth payment, and so 1 − nt,t+ϑm ≤ 1

is the notional at that point in time. The second term represents the accrued premium.

13Following longstanding practice in the literature on credit derivatives, we express prices as discounted

cash flows under the risk neutral measure rather than as cash flows multiplied by πt under the physical

measure. The mapping between the two is well-known (Duffie, 2001).
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Consider the event of firm default at some time s between payments m − 1 and m. Until

time s, the protection buyer is insured against default of this firm. However, this is not

reflected in the scheduled payments; the value of the mth payment is the same as it would

be if the default occurred at time t+ ϑ(m− 1) < s. Thus upon default the protection buyer

pays the fraction of S/(4Nf ) that accrues between the (m − 1)th payment and the default

time s, known as the accrued premium.

The CDX spread SCDX(λt, ξt;T − t) is the value of S that equates the premium leg (19)

with the protection leg (18). We describe the computation of this spread in Appendix D.

2.5 CDX tranche pricing

Generally, tranches are claims that partition a security and have different levels of subordi-

nation in case of default. In the case of the CDX (which is a synthetic collateralized debt

obligation and thus does not represent underlying physical assets), tranche losses are defined

in terms of the total loss Lt,s.

Tranches are defined by two numbers: the attachment point, which gives the level of

CDX loss at which the tranche is penetrated, and the detachment point, after which further

losses detach from the tranche. For example, consider the 10-15% tranche. This tranche

loses value if the CDX accumulates more than a 10% loss. Losses of between 10% and

15% attach to this tranche. If the losses reach 15%, the notional amount of the tranche

is exhausted. Further losses attach to the next tranche. During our sample period, six

tranches commonly traded, with attachment-detachment pairs 0-3%, 3-7%, 7-10%, 10-15%,

15-30%, and 30-100%. The most junior tranche (0-3%) is referred to as equity, the second as

mezzanine, and the remaining four as senior. The last, and most senior tranche (30-100%),

is often called “super senior.”

Let Kj−1 be the attachment point and Kj the detachment point of the j-th tranche for

16



j = 1, . . . , J , where K0 = 0 and KJ = 1. Given a CDX loss Lt,s, the tranche loss is given by

TLj,t,s = TLj (Lt,s) =
min{Lt,s, Kj} −min{Lt,s, Kj−1}

Kj −Kj−1

. (20)

If the CDX loss is below both Kj and Kj−1, it has not attached to the tranche, and the loss is

0%. If the loss is greater than both Kj and Kj−1, it detaches from the tranche and the tranche

loss is 100%. If the loss is between Kj−1 and Kj, then the loss equals 0 <
Lt,s−Kj−1

Kj−Kj−1
< 1. The

definition (20) implies that the notional amount on each tranche is equal to $1, which is the

convention in our data. Note that the weighted sum of tranche losses equals the total loss:

J∑
j=1

(Kj −Kj−1)TLj,t,s = Lt,s. (21)

Given the specification for the tranche loss, the protection seller for tranche j pays

ProtTran,j(λt, ξt, T − t) = EQ
t

[∫ T

t

e−
∫ s
t rududTLj,t,s

]
. (22)

The protection buyer for tranche j makes quarterly premium payments. As in the case

of the CDX, the amount he or she pays depends on the tranche notional. However, the

adjustments in tranche notional for default is more complicated than for the CDX. The

adjustment in notional depends not only on the tranche loss, but also on something called

tranche recovery. If a firm defaults, the notional on the CDX falls by 1
Nf

. However, the

notional on the most junior tranche falls by the smaller amount of 1
Nf

(1− Rτt,i).
14 To keep

the notional amount on the CDX tranches consistent with that of the CDX, the total change

in notional on the tranches following default must also add up to 1
Nf

. This extra reduction

in notional is called tranche recovery.

It is customary to apply the tranche recovery to the most senior tranche. Note that

nt,s − Lt,s is the amount recovered to date from defaults. Then tranche recovery for the

14To be precise, this is the change in notional multiplied by the width of the tranche, Kj −Kj−1.
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super-senior tranche defined to be

TRJ,s =
nt,s − Lt,s
KJ −KJ−1

(recall that KJ = 1). In the very rare event that this recovery exhausts the notional on the

senior tranche, the remaining recovery amount detaches from this tranche and attaches to

the next most senior tranche. A general definition for tranche recovery is thus

TRj,t,s = TRj (nt,s − Lt,s) =
min{nt,s − Lt,s, 1−Kj−1} −min{nt,s − Lt,s, 1−Kj}

Kj −Kj−1

. (23)

Note that if nt,s−Lt,s < 1−Kj, then no recovery applies to tranche j (it can all be applied

to the more senior tranches). It follows that nt,s−Lt,s < 1−Kj−1 as well, and (23) is equal

to zero. If on the other hand, nt,s −Lt,s is greater than 1−Kj and less than 1−Kj−1, then

the numerator in (23) equals nt,s − Lt,s − (1−Kj), which is the amount of the recovery not

reflected in the tranche loss for more senior tranches. If nt,s −Lt,s is above both 1−Kj and

1−Kj−1 then (23) is equal to 1. As is the case for tranche losses (24), the weighted sum of

tranche recovery is equal to total recovery:

J∑
j=1

(Kj −Kj−1)TRj,t,s = nt,s − Lt,s. (24)

Combining (21) and (24), we see that the weighted change in notional from a default is nt,s,

which is the change in notional for a contract on the CDX itself.

Given these definitions of the tranche loss and recovery, we can define the premium

payments for a given tranche. Let S be the spread, and U the upfront payment (to be

discussed further below). Then the premium leg for tranche j is given by

PremTran,j(λt, ξt;T − t, U, S) =

U + SEQ

[
1

4

4T∑
m=1

e−
∫ t+ϑm
t rudu

∫ t+ϑm

t+ϑ(m−1)

(
1− TLj,t,s − TRj,t,s

)
ds

]
(25)
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(the definitions of tranche loss and recovery imply that their sum cannot exceed 1). Except

for the upfront payment U , the tranche premium leg is nearly equivalent to that of the CDX,

(19), as can be shown by integration by parts. The difference is in the timing of the accrued

premium payment. For the CDX, this payment is made upon occurrence of default. For

the tranche, this payment is made at the next scheduled premium payment date.15 The

difference in the contract terms may reflect the fact that the event that a loss or recovery

attaches to a tranche is more difficult to determine than a default event, because it requires

the computation of Lt,s rather than nt,s. The computation of Lt,s requires firm i’s recovery,

Rτt,i , which may depend on the outcome of ISDA Credit Event Auction proceedings, and

thus will not typically be known in real time.

For all but the equity tranche, the upfront payment U is set to zero in our data, and

the spread S is determined in the same way as the CDX as a whole. However, the equity

tranche trades assuming a set spread of 500 basis points, with U determined so as to equate

the premium and the protection legs. Why this difference? As Collin-Dufresne, Goldstein,

and Yang (2012) point out, the spread payments for the equity tranche are particularly

sensitive to losses, both because equity is hit first when default occurs, and because the

CDX loss is likely to be large relative to the detachment point of 3%. In practice, it is

difficult to know the precise moment of default, which affects the amount of spread to be

paid. Setting an upfront payment reduces the spread, and therefore reduces the sensitivity

of the cash flows to the precise timing of a default event.

Following the conventions in the data, therefore, define UTran,1(λt, ξt;T − t) to be the

15Recognizing that nt,s is the CDX equivalent of TLj,t,s + TRj,t,s, the CDX equivalent of the integral in (25)

is ∫ t+ϑm

t+ϑ(m−1)

(1− nt,s) ds =
1

4
(1− nt,t+ϑm) +

∫ t+ϑm

t+ϑ(m−1)

(s− t− ϑ(m− 1)) dnt,s,

where the right hand side is derived using integration by parts. Note that this right hand side is equivalent

to the change in notional in (19), except for a change in the discounting of the accrued premium payment.
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value of U that equates (25) and (22), for j = 1, and S = 0.05. For j = 2, . . . , J , define

STran,j(λt, ξt;T − t) to be the value of S that, for U = 0 equates (25) with (22). Appendix D

describes CDX tranche pricing.

3 Data

Our analyses require the use of pricing data from options and CDX markets. The options

data, provided by OptionMetrics, consist of daily implied volatilities on S&P 500 European

put options from January 1996 to December 2012. To construct a monthly time series, we

use data from the Wednesday of every option expiration week. We apply standard filters to

extract contracts with meaningful trade volumes and prices. To obtain an implied volatility

curve for each date, we fit a polynomial in strike price and maturity (see Seo and Wachter

(2016) for more details on options data construction).

Our CDX data come from Markit and consist of daily spreads and upfront amounts for

the October 2005 to September 2008 period on the 5-year CDX North American Investment

Grade index and its tranches excluding the super-senior. The CDX North American Invest-

ment Grade index is the most actively traded CDX product. We will refer to it in what

follows as “the CDX.” This index represents 125 equally-weighted large North American

firms that are investment-grade at the time the series is initiated.

To maintain an (approximately) fixed-maturity contract, a new series for the CDX is

introduced every March and September and the previous series becomes off-the-run. Our

sample corresponds to CDX series 5 through 10.16 We use data from the series that is

16The liquidity of CDX tranches significantly shrank after CDX10, the last series introduced before the

Lehman crisis. From series 11 on, these products were traded too infrequently for prices to be meaningful.

Moreira and Savov (2016) presents a model with time-varying disaster risk that accounts for qualitative

features of structured finance around the crisis, including the lack of trading in these securities following the
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most recently issued, and hence most actively traded, in our analyses. For comparability

with prior studies (Collin-Dufresne, Goldstein, and Yang, 2012; Coval, Jurek, and Stafford,

2009), we report average spreads for two subperiods, with September 2007 being the end of

the first subperiod. In our sample, the CDX and all tranches except for the equity tranche

are quoted in terms of spreads. The equity tranche is quoted in terms of upfront payment

with a fixed spread of 500 basis points.17

4 Why disaster risk?

Before quantitatively evaluating our model, we motivate our approach by examining what

would happen under a lognormal distribution for asset values.18 We will concern ourselves

in this section with the two most senior tranches, implying that we are interested in losses of

15% or more on the CDX. Given the effects of diversification, it is very unlikely for this level

of losses to occur due to anything other than a severe market-wide shock. It therefore suffices

to consider a single firm whose value follows a geometric Brownian motion. For simplicity,

we assume zero recovery and ignore discounting.19 Under these assumptions, the value of

the protection leg (22) equals the default probability of this single firm calculated under the

risk-neutral measure.

The assumption of a geometric Brownian motion implies that the change in firm value

Lehman default.
17Trading conventions changed with the introduction of the Standard North American Contract (SNAC)

in April 2009. Under SNAC, CDX products trade with upfront amounts and fixed coupons of either 100 or

500 bps.
18To make this argument as transparent as possible, we assume that shocks are homoskedastic. However,

there is a strong reason to think that our results will generalize to the heteroskedastic case: Collin-Dufresne,

Goldstein, and Yang (2012) show that a model with stochastic volatility but no Poisson shocks generates

strikingly counterfactual predictions when forced to fit tranche data.
19Allowing for recovery will make it harder for the lognormal model to fit the data.
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between time s and time t is given by

logAs − logAt = µA(s− t) + σA(Bs −Bt),

where Bt is a standard Brownian motion under the risk-neutral measure. To give the log-

normal model its best chance of success, we consider values for σA that are higher than

what data would suggest, ranging from 14% to 20% (under lognormality, the physical and

risk-neutral volatilities are identical). Note that these volatilities are for equity plus debt.

Historical stock return volatility is 18%; assuming leverage of 32% (see below) asset return

volatility would be 12%. Another useful benchmark is what our model, calibrated to option

prices, says about firm volatility during the crisis period. Substituting in the average value of

λt and ξt over the crisis subsample into (15), we find a volatility of 15%. However, using this

value for σA implies a belief on the part of market participants that this high value is likely

to persist for 3 to 5 years, which seems unlikely given the lack of persistence of volatility in

the data.20

The probability of crossing the default boundary also depends on the drift. No-arbitrage

implies that this drift is equal to µA = r − δ − 1
2
σ2
A, where δ is the ratio of dividends plus

interest to total firm value. We compute the probabilities of default for values ranging from

-6% to -2%. While these numbers are low given historical data, higher values lead to lower

probabilities, so choosing low numbers gives the lognormal model its best chance at success.

Table 4 shows the resulting probability of default over three and five-year periods, defined

20Note that accounting for this level of volatility given fundamentals is not an easy hurdle in and of itself.

Models that have the potential to do so (besides the time-varying disaster risk model that is the focus of this

paper) include Bansal and Yaron (2004) and Campbell and Cochrane (1999). These models are conditionally

lognormal. Returns over multiple periods will not be lognormal due to stochastic volatility. However, as

noted above, non-normalities due only to stochastic volatility are very unlikely to explain senior tranche

spreads.
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as firm value below the boundary AB.21 As the previous discussion indicates, we can think of

these probabilities as approximating the value of the protection leg on the tranches. Because

the annual spread equates the protection leg and the premium leg, the spread should (again,

roughly), equal the probability divided by the number of years in the contract.

Table 4 shows that, for a drift of -6% and a volatility of 20%, the probability of default in

three years or less is 0.0041%. That is, there is a less than one in ten thousand chance that

default would occur in under three years. The average annual spread for 3-year contracts is

48 basis points for the third senior tranche and 23 basis points for the super-senior tranche.

Even ignoring the fact that we should multiply these tranche spreads by three to obtain

the total payment, they are two orders of magnitude too high, given the predictions of the

lognormal model.

While the failure of the lognormal model is most dramatic for 3-year contracts, we can also

see it in spreads on 5-year contracts. The highest probability shown in Table 4, corresponding

to very high asset value volatility and low drift, is 0.43% over five years. While this is the

same order of magnitude as the 5-year spread on the third senior tranche (69 basis points),

keep in mind that the 5-year spread is annual, and should be multiplied by 5 to compare

to the probability. Thus 5-year probabilities for the lognormal distribution are also clearly

unrealistic.22 These calculations suggest that only a model that admits large, sudden, and

21The distribution of the default time τ defined in (16) is given by

P (τ < u) = 1− Φ

(
− logAB + µA

σA
√
u

)
+ e

µA logAB
σ2
A Φ

(
− logAB − µA

σA
√
u

)
,

where Φ(·) is the normal cumulative distribution function.
22Nonetheless, the short-term CDX senior tranche spreads are particularly powerful in ruling out a log-

normal model. This result has a parallel in the literature on single-name corporate bonds. Zhou (2001)

shows that fat-tailed idiosyncratic risk is necessary to match single-name short-term bond yields. Culp,

Nozawa, and Veronesi (2014) show that securities that are equivalent, by no-arbitrage, to even shorter-term

bonds also have high credit spreads. Their results are further evidence of the need for fat-tailed events that
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pervasive declines in firm values can explain the level of CDX tranche spreads during the

crisis. Such declines must be rare because such an episode has not been observed within the

last 100 years of U.S. history.

The analysis in this section pertains to the risk-neutral process for prices, rather than

a physical process for cash flows and for the pricing kernel. That is, while the argument

establishes that the risk-neutral process for asset values must contain catastrophic jumps,

it does not imply that rare disasters are a feature of the physical world, nor that they have

an important affect on risk premia. Is this a limitation? We argue that it is not. If the

risk-neutral process for prices has jumps, the physical process must too (because of the

equivalence of the measures). Unless risk aversion is extraordinarily large, the jumps in the

physical process must also be catastrophic. Once the physical process has large jumps in

prices, such large jumps cannot but play an important role in determining risk premia, both

for individual firms and for the market as a whole, as we can see from the jump component in

the equation for risk premia, (10). Constant relative risk aversion implies that large declines

are much more costly for the representative agent then small declines, and the declines due

to catastrophic shocks implied by CDX tranche prices are quite large.

What this argument does not identify is the source of the decline in prices. The model

in Section 2 assumes an instantaneous permanent decline in consumption and firm cash

flows. A model with Poisson shocks to consumption and dividend drifts generates similar

results (Tsai and Wachter, 2015), as might a model in which volatility jumps upward and is

persistent.23 What is necessary is that some aspect of the distribution of firm fundamentals

can shift suddenly and unpredictably in an unfavorable way, and that these shifts are far

are economy-wide.
23When disasters result in a instantaneous decline in consumption and when dividends are given by

Dt = Cφt , e−φZc − 1 is the change in value of the market portfolio. In general, however, Poisson shocks to

the distribution of dividends will be reflected in large changes market values.
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beyond what one would expect from a normal distribution.

5 Evaluating the model

A standard approach to comparing an endowment economy model with the data is to sim-

ulate population moments and compare them with data moments. In a model with rare

disasters, this may not be the right approach if one is looking at a historical period that

does not contain a disaster. An alternative approach is to simulate many samples from the

stationary distribution implied by the model, and see if the data moments fall between the

5th and 95th percentile values simulated from the model. For this study, this approach is

not ideal for two reasons. First, the short length of CDX/CDX tranche time series will

likely mean that the error bars implied by the model will be very wide. Thus this test

will have low power to reject the model. Second, unlike stock prices which are available in

semi-closed-form, and options, which are available up to a (hard-to-compute, but nonethe-

less one-dimensional) integral, CDX prices must be simulated for every draw from the state

variables. Thus the simulation approach is computationally infeasible.

For these reasons, we adopt a different approach. We first extract the time series of our

two state variables from options data and then generate predictions for the CDX index and

tranches based on this series of state variables. We are thus setting up a more stringent test

than endowment economy models are usually subject to. Namely, we are asking that the

model match not only moments, but the actual time series of variables of interest.

5.1 Calibration

In this section, we describe how we calibrate the model. Section 5.1.1 describes the choice

of parameter values for the utility, consumption, and dividend processes, as well as the fit to
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moments of the aggregate market and the riskfree rate in the data. Section 5.1.2 describes

the calibration of firm-level parameters.

5.1.1 Aggregate consumption and dividends

We keep risk aversion γ, the discount rate β, the leverage parameter φ, the normal-times

consumption distribution, and the disaster distribution the same as in Wachter (2013) and

Seo and Wachter (2016).24 Note that κλ and σλ will not have the same interpretation in this

model as in the earlier one.

Our first goal in calibrating the model is to generate reasonable predictions for the ag-

gregate market and for the consumption distribution. One challenge in calibrating represen-

tative agent models is to match the high volatility of the price-dividend ratio. There is an

upper limit to the amount of volatility that can be assumed in the state variable before a

solution for utility fails to exist. The more persistent the processes, namely the lower the

values of κλ and κξ, the lower the respective volatilities must be so as to ensure that the

discriminants in (4) and (5) stay nonnegative. We choose parameters so that the discrimant

is equal to zero. Thus there are only a total of three free parameters to match the aggregate

market, the riskfree rate, and consumption.

The resulting parameter choices are shown in Table 1. The mean reversion parameter κλ

and volatility parameter σλ are relatively high, indicating a fast-moving component to the λt

process, while the mean reversion parameter κξ and σξ are relatively low, indicating a slower-

moving component. The parameter ξ̄ (which represents both the average value of ξt and the

average value of λt) is 2% per annum. This is a lower average disaster probability than in

Wachter (2013), and, in this sense, our calibration is conservative. The extra persistence

24This disaster distribution is drawn from Barro and Ursúa (2008) who build on work of Barro (2006). We

also assume a 40% probability of default on the government bill in the case of disaster as in Barro (2006)

and following these two papers.
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created by the ξt process implies that λt can deviate from its average for long periods of

time. To clarify the implications of these parameter choices, we report population statistics

on λt in Panel C of Table 1. The median disaster probability is only 0.37%, indicating

a highly skewed distribution. The standard deviation is 3.9% and the monthly first-order

autocorrelation is 0.986.

Implications for the riskfree rate and the market are shown in Table 2. We simulate

100,000 samples of length 60 years to capture features of the small-sample distribution (Ap-

pendix E describes to simulate from the model). We also simulate a long sample of 600,000

years to capture the population distribution. Statistics are reported for the full set of 100,000

samples, and the subset for which there are no disasters (38% of the sample paths). To be

conservative, we take the view that this no-disaster distribution is the more appropriate

point of comparison for postwar data. However, whether the 2008-2009 crisis constitutes a

disaster in the U.S. depends on the data series one looks at (industrial production fell by

more than consumption). As in earlier work (Wachter, 2013), time-varying disaster proba-

bility implies a high equity premium, low riskfree rate, and high equity volatility.25 Only the

autocorrelation of the price-dividend ratio falls (just) outside the 90% confidence bounds.26

25The average Treasury Bill rate is slightly too high, though this could be lowered by lowering β or by

lowering the probability of government default.
26While it is possible to calibrate the model to match this autocorrelation, it comes at the cost of raising

the autocorrelation of option prices beyond realistic levels. Moreover, so that utility converges, there is a

tradeoff between persistence and volatility. One view is that the autocorrelation of the price-dividend ratio

observed in the postwar period may be driven by very long-run fluctuations in the tendency to pay dividends

(Fama and French, 2001), which are outside of the scope of the model. Note that these fluctuations could

also be partially responsible for the observed volatility of the price-dividend ratio, which is also somewhat

higher in the data than the model.
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5.1.2 Firm-level payouts

To go from state variables to CDX/CDX tranche prices requires not only dynamics for the

market, but dynamics for individual firms and assumptions about what constitutes a default.

For parsimony, and following standard practice in this literature, we assume firms are ex ante

identical. However, firms face distinct idiosyncratic shocks and potentially distinct sector-

wide shocks.

To calibrate individual firm dynamics, we use results from Collin-Dufresne, Goldstein,

and Yang (2012). The default boundary AB is set to be 19.2%. This implies that if the asset

value falls below 0.192 multiplied by what it was at the initiation of the contract, the firm is

assumed to be in default. This value derives from the average leverage ratio from firm-level

data (32%). Firms are then considered to be in default if their value is 60% of their debt

outstanding.27 We assume that the recovery rate is 40% in normal times and 20% in the

event of rare disasters. We choose the idiosyncratic jump size eZi − 1 to equal -80%, a value

sufficiently large to make default almost certain. Both assumptions are consistent with those

of Collin-Dufresne et al.

The CDX index consists of investment-grade firms that are relatively large and stable.

Collin-Dufresne, Goldstein, and Yang (2012) estimate a different asset beta for each CDX

series; the asset betas are between 0.5 and 0.6 for pre-crisis series and between 0.6 and 0.7

for crisis series. This reflects a slight increase in leverage for the firms included in the series.

In our model, the asset beta will be mostly determined by the ratio φi/φ; however, the

connection between sector-wide and aggregate risk adds an additional degree of covariance.

27The fact that our model can generate realistic CDX spreads given conservative assumptions on leverage

ratios and default suggests that our model can resolve the credit spread puzzle, namely, it will be able to

explain high credit spreads given low historical default rates. Papers that examine credit spreads from a

disaster-risk perspective include Christoffersen, Du, and Elkamhi (2016), Gabaix (2012), and Gourio (2013).

These papers do not look at the CDX.
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We therefore choose φi/φ = 0.5 pre-crisis and φi/φ = 0.6 during the crisis. Given our

assumption of φ = 2.6, this corresponds to a pre-crisis value of φi of 1.3 and a crisis value of

1.6.28

We use the results of Longstaff and Rajan (2008) to calibrate the parameters for the

sector-wide shocks. For simplicity, in the calibration we assume that the loss in the event of

a sector-wide shock is sufficiently large that all firms that experience this loss go into default.

Longstaff and Rajan estimate an approximately 5% loss rate on the portfolio in the event of

a sector shock. Because we assume a recovery rate of 40%, the fraction of firms defaulting

in the event of a sector shock is equal to 0.05/(1 − .4) = 8%. There are 125 total firms, so

a sector shock corresponds to a default of about 10 firms. Again, for simplicity, we assume

that there are 25 firms in each sector (there are 125 firms, with 5 sectors); this implies a

probability of 10/25, or 0.4, of firm default given a sector shock.29

We directly estimate the remaining parameters using moments of junior tranches in the

data. To make this estimation computationally feasible, we impose some simplifying assump-

tions. Similar to the idiosyncratic jump size, we assume sector-wide jump size
(
eZSi,t − 1

)
to

be constant. While Collin-Dufresne, Goldstein, and Yang (2012) calibrate the idiosyncratic

intensity for each series to match the term structure of CDX spreads (by assuming that the

intensity for each series is a distinctive deterministic step function), we assume that this

intensity (λi) is truly a constant throughout the entire sample period. These simplifying

assumptions leave us only three parameters to be estimated (ZSi,t, wξ, and λi).

Specifically, to estimate the three parameters, we use the following four moments: (1)

28For simplicity we treat φ as a parameter rather than a process; namely the shift in φ corresponds to a

one-time change in regime that is not anticipated by the agents.
29An equivalent approach is to consider a larger number of sectors, and have firm default be certain given

a sector shock. This is the approach of Longstaff and Rajan (2008). The implications for the payout process

are identical.
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the average of pre-crisis equity tranche upfront payments, (2) the average of crisis equity

tranche upfront payments, (3) the average of pre-crisis mezzanine tranche spreads, and (4)

the average of crisis mezzanine tranche spreads.30 That is, we choose parameters to minimize

the sum of squared errors for these four moments. Thus we do not use data on senior tranches

or on the CDX index to fit these parameters. Table 3 reports the resulting parameter values.

5.2 Implied volatilities on index options

In an earlier paper (Seo and Wachter, 2016) we establish that a special case of the model in

Section 2.1 can fit average option-implied volatilities in the data. Our previous model (which

has one state variable rather than two) captures the fact that implied volatilities are higher

than realized volatilities and that out-of-the money (OTM) put options have higher implied

volatilities than at-the-money (ATM) options. Our model explains these facts because of

non-normalities arising from disasters, and high normal-times volatility arising endogenously

from time-variation in the disaster probability.

Because the current model nests the previous one and is similarly calibrated, it is not

surprising that this model, too, can explain average implied volatilities. Moreover, the second

state variable allows it to capture time-variation in the slope of the implied volatility curve.

Because we will be using the model to infer the state variables for pricing CDX tranche

spreads, this property is desirable. To understand why the second factor can capture time-

variation in the slope of implied volatilities, recall the process for the stock price (9). Increases

in both λt and ξt increase the stock price volatility. Hence increases in these two variables

30Note that CDX/CDX tranche pricing requires a large number of simulations. To reduce computation

time during the estimation procedure, for each date (i.e. for each pair of state variables), we construct a grid

of these three variables and compute CDX/CDX tranche prices on each grid. Then, we interpolate these

grid points using a 3-dimensional cubic spline. We confirm that this interpolation is very accurate because

each tranche spread is a monotonic function of each parameter.
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will also increase option prices, and thus option-implied volatility. Figure 1 suggests that

increases in ξt have a larger effect on stock price volatility than increases in λt. On the

other hand, increases in λt raise the immediate probability of disaster more than increases

in ξt. We would thus expect ξt to have a larger effect on ATM options, and λt to have

a larger effect on OTM options. Figure 2 shows that this is indeed the case. This figure

shows 3-month implied volatilities as a function of moneyness (the strike price of the option

divided by the index price) for the state variables at their median levels, and at the 20th and

80th percentiles. The level of implied volatilities is increasing in both λt and ξt. However, ξt

affects mainly ATM implied volatilities while λt has a slightly greater effect for OTM implied

volatilities. Increases in ξt that are not accompanied by increases in λt bring the stock-price

distribution closer to log-normality, flattening the implied volatility curve.

Using the time series of option prices, we extract a time series for λt and ξt that runs

from January 1996 to December 2012. While we choose these state variables to exactly fit

1-month ATM and OTM (0.85 moneyness) implied volatility, Figure 3 verifies that the fit to

3 and 6-month implied volatility is also very good. We show the time series of the extracted

state variables in Panel A of Figure 4. For most of this sample, the disaster probability λt

and its mean ξt lie below 5%. The state variables rise in late 1998 corresponding to the rescue

of Long Term Capital Management, following the Asian financial crisis and the moratorium

on payments on Russian debt. There are also increases corresponding to market declines

following the NASDAQ boom in the early 2000s. The sample, however, is dominated by the

financial crisis of late 2008-2009. At the Lehman default, the disaster probability rises as

high as 20%. The disaster probability remains high and volatile, as compared to the prior

period, until the end of the sample.

Panel B focuses in on the sample period for which we have CDX tranche data. This

period captures the first hints of the crisis in early 2007, with slight increases in the level
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and volatility of λt and ξt. These variables become markedly higher and more volatile in

2007 and early 2008, culminating in the near-default of Bear Sterns. The CDX tranche

sample ends right before the Lehman default; the last values of λt are higher than before,

but notably lower than one month later.

Before discussing the implications of these extracted state variables for CDX pricing, we

note the implications for equity prices. Table 2 already shows that the model is capable

of explaining moments of equity returns. Here, we ask whether the model can capture the

actual time series of stock prices. Given the option-implied values of λt and ξt, we can

compute a price-dividend ratio using (8). Figure 5 shows the results, along with the price-

dividend ratio from data available from Robert Shiller’s webpage. The model can match the

sustained level of the price-dividend ratio, and, most importantly, the time series variation

after 2004, despite the fact that the state variables are derived from option prices.31 Indeed,

between 2004 and 2013, the correlation between the option-implied price-dividend ratio and

the actual price-dividend ratio is 0.84, strongly suggesting these two markets share a common

source of risk.

5.3 CDX/CDX tranche spreads

Given the option-implied state variables, we price CDX and CDX tranches as described in

Sections 2.4 and 2.5. Recall that for the CDX and all tranches except the equity tranche,

these spreads represent the annual payment per unit notional. For example, the average

spread of 27 basis points for the 15-30% (3rd senior tranche) indicates that a protection buyer

pays $0.0027 per year to insure $1.00 of value for this tranche.32 For the equity tranche, the

31Not surprisingly, the disaster-risk model is not able to match the run-up in stock prices from the late 90s

until around 2004. It may be that time-varying fears of a disaster will not be able to capture the extreme

optimism that characterized that period.
32As described in Section 2.5 there are adjustments based on defaults in the portfolio.
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spread is fixed at 500 basis points, so we report the upfront payment (in percentage points

per unit of notional). Section 5.3.1 considers average spreads over the pre-crisis and crisis

periods, while Section 5.3.2 discusses the time series.

5.3.1 Average spreads

Table 5 shows that the model can match the average spreads on the 5-year CDX and its

tranches for the full sample period. More importantly, the model can match the very large

shift in spreads between the pre-crisis and crisis periods. For example, on the 15-30% tranche,

the average spread changes 10-fold (from 6 basis points to 69 basis points) between the

samples. Our model captures both the low pre-crisis magnitude (the value is 8 basis points)

and the high crisis magnitude (71 basis points). While the model generates a substantial

change in the senior tranches, it correctly generates much less of a shift in the junior tranches.

As we will show, pricing of the equity and mezzanine tranche has much more to do with

idiosyncratic risk as opposed to market-wide risk of a rare disaster.

Table 6 shows that the model can also match spreads for the 3-year maturity. For this

table, we take data values reported in Collin-Dufresne, Goldstein, and Yang (2012), who use

a different data source and slightly different data construction procedure.33 The model can

match the very low average spreads prior to the crisis, and the high spreads during the crisis.

The model also captures the fact that 3-year spreads are lower, but not much lower, than

5-year spreads. High 3-year spreads present a particular challenge to models that assume

normally distributed risk, as discussed in Collin-Dufresne, Goldstein, and Yang (2012), and

as we show in Section 4. The fact that the model can match the term structure is evidence

that the correlational structure for our disaster risk process corresponds to that in the data.

Finally, Table 7 reports average spreads on the super-senior tranche. As is the case

33See Collin-Dufresne, Goldstein, and Yang (2012) for details. We have verified that our data and theirs

are very similar for the instruments and dates where they overlap.
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for Table 6, data are from Collin-Dufresne, Goldstein, and Yang (2012). The super-senior

tranche is only affected if there is a loss of 30% or more on the CDX itself. Supposing the

20% recovery rate we assume for disaster periods, about 40% of the 125 firms would need

to go into default for insurance on the tranche to pay off. Nowhere can rare disaster fears

be seen more clearly, than in the increase in average spreads, from near zero to 30 basis

points, on these tranches. Table 7 shows that the model captures the level of spreads before

the crisis, the dramatic change during the crisis, and the relative spreads between the 3

and 5 year maturities. Given our focus on rare events, the ability of the model to match

these average spreads is particularly encouraging. As explained in Section 4, the high crisis

spreads on these products are beyond the reach of models with normally distributed risk.

5.3.2 Time-variation in spreads

We now calculate the implied time series of spreads on CDX and CDX tranches based on

our state variables extracted from options data, and compare them to the historical time

series. Figure 6 shows the monthly time series of five-year maturity CDX and CDX tranche

spreads in the data and in the model. The blue solid line represents the data and the red

dotted line represents the benchmark model. On the same figure, we also show results for

the case without idiosyncratic risk, discussed further below. The top left panel presents the

CDX index, and the other five panels show tranches ranging from the equity tranche to the

3rd senior tranche (15-30%). As discussed in Section 3, when the equity tranche is traded,

the protection buyer makes an upfront payment to the protection seller in addition to fixed

annual premium payments of 500 bps. Thus, for the equity tranche (top right panel), we

report the amount of this upfront payment.

Table 5 shows that the model accurately captures the levels of the spreads on the CDX

and its tranches for both the pre-crisis and crisis periods. What is new in Figure 6, and
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surprising, is that the timing of the increase in spreads, and the fluctuations both before

and during the crisis, are accurately captured by our model. That is, the same period of low

spreads and low volatility that characterized the stock and options markets in 2006 and 2007

is also apparent in the low spreads on structured finance products. The increased prices for

protection, which slightly predate the collapse of Bear Sterns, appear almost simultaneously

in options and CDX/CDX tranche spreads. The crisis period was one of high volatility in

both markets, with the two fluctuating in tandem. The model captures the increase in ATM

and OTM options over this period with an increase in both the probability of disaster, and

the long-run mean of this probability. The latter increase helps the model to explain the

magnitude of the increase in CDX spreads, which have a longer maturity than do options.

In fact, the only tranche that the model does not fit closely is the equity one. While the

model can match the timing of the increase in the upfront payment on the equity tranche,

it does not entirely capture its magnitude. Nor does it capture some of the variation in the

early part of the sample, perhaps related to a credit crisis triggered by Ford and General

Motors’ downgrades. Nonetheless, the approximate magnitude of these spreads is well-

matched, despite the fact that we have constrained idiosyncratic risk to take on the same

value throughout the sample period.

We now consider the effect of changes in our assumptions on firm cash flows (12). The

dashed line in Figure 6 shows the effect of setting the probability of an idiosyncratic decline in

firm cash flows, λi, to zero. We see that the tranches respond quite differently to elimination

of this risk. Specifically, the upfront payment on the equity tranche drops precipitously, to

a value less than zero, indicating that the spread of 500 basis points is higher than what

would be required under no upfront payment. It appears that almost all of the spreads on

this tranche are due to idiosyncratic risk. As tranches increase in seniority, idiosyncratic risk

has less and less of an effect. For the third senior tranche, there is no discernable effect of
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idiosyncratic risk at all.

Figure 7 considers the effect of eliminating sector risk (the dashed line). This limiting

case is achieved by setting pi equal to zero. Eliminating sector risk has the largest effect

on tranches with intermediate levels of seniority. Without sector risk, the spreads on the

mezzanine and first senior tranche are near zero for the entire sample. CDX tranche data

thus clearly requires a level of commonality among firms somewhere between the firm-specific

idiosyncratic risk and market-wide risk.

Figure 7 shows that the third senior tranche, with attachment point of 15% and detach-

ment point 30%, is barely affected when the probability of a sector shock is set to zero.

This confirms the intuition in Section 4 that only rare market-wide shocks have a significant

effect on the pricing of this tranche. We can also see the important role of rare disasters in

pricing this tranche by recalculating CDX/CDX tranche prices under a 2 percentage point

increase in the probability of rare disasters at every point in time (2 percentage points is

the annual mean of the disaster probability). Figure 8 shows the results. Spreads on the

third senior tranche increase by about 25 basis points in the pre-crisis period, and about 50

basis points in the crisis period. The increase is substantially less than the full 2 percentage

points because disaster risk is mean-reverting, and λt gives an instantaneous probability of

disaster. Thus over the full five years of the contract, investors expect λt to be elevated,

but by much less than 2 percentage points. The reason the effect is larger during the crisis

period is because ξt is larger, and thus λt falls more slowly. Moreover, because of the square

root term in (2a), higher values of λt (which prevail over the crisis period), are associated

with greater volatility of λt. Because λt is positively skewed, this raises the probability that

the high values will persist.

Finally, note that the relative effects of a change in the disaster probability on the tranches

have the opposite pattern as a change in the probability of an idiosyncratic jump: the more
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senior the tranche, the greater the effect of a change in the probability of disaster. In

particular, the top right panel of Figure 8 shows the effect on the equity tranche is negligible

in proportion to the upfront payment. While an increase in the risk of a rare disaster does

increase the upfront payment required by this tranche, most of this payment is insurance

against idiosyncratic shocks. Only a small part represents insurance against the risk of rare

disasters.

This section has shown how CDX tranche spreads and prices give insight into the correla-

tional structure of asset values, and through the lens of our model, underlying firm earnings.

Specifically, to match tranche data one needs the risk of a rare market-wide disaster, as

well as fat-tailed sector-wide and idiosyncratic events. Moreover, the rare event probabilities

needed to match time-series variation in CDX tranche prices are very similar to those in op-

tion prices, suggesting a rational basis for the apparently extreme pricing of these securities

during the crisis.

6 Conclusion

In this paper, we build a quantitative model for spreads on the CDX and its tranches based

on underlying economic fundamentals. When the model is calibrated to match the equity

premium and equity volatility, and when state variables are chosen to match the time series

of implied volatilities on option prices, the model can explain the level and time series of

spreads both before and during the 2008–2009 financial crisis.

CDX senior tranches can be understood as extremely deep out-of-the money put options

on the U.S. economy because they incur losses only when a substantial portion of large

investment-grade firms default. We explain the level of spreads on these instruments by

introducing a time-varying probability of economic disaster. This economic disaster causes

large simultaneous declines in the consumption of representative agent, in aggregate cash
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flows, and in cash flows on individual firms. When agents foresee an increased probability

of economic disaster, risk premia rise, asset prices decline and become more volatile, and

systemic defaults become more likely. The economic disasters to which we calibrate the

model are reasonable in light of what has been observed in international data over the last

100 years. The probability of such a disaster need not be high to explain senior tranche

spreads: 4% is sufficient. On the other hand, we show that the spreads cannot be explained

with a lognormal model for asset values; under such a model, simultaneous defaults on a

significant fraction of investment-grade firms are a near-zero probability event.

Besides rare disasters, our model incorporates idiosyncratic risks and sector-wide shocks.

These are important ingredients for explaining equity and mezzanine tranche prices. How-

ever, we show that the most senior tranches vary almost exclusively based on the disaster

probability. Our results strongly suggest that simultaneously matching tranche prices, op-

tion prices, and properties of cash flows requires a positive probability of rare disaster that

varies over time.
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Appendix

Sections A–C solve for utility, aggregate market prices, and firm values in closed form up to

a system of ordinary differential equations. Ratios of prices to payouts are functions of the

state variables λt and ξt. Taking limits as σξ approaches zero results in the model of Seo

and Wachter (2016) and Wachter (2013).

A State-price density

Duffie and Skiadas (1994) show that the state-price density πt equals

πt = exp

{∫ t

0

∂

∂V
f (Cs, Vs) ds

}
∂

∂C
f (Ct, Vt) . (A.1)

Our goal is to obtain an expression for the state-price density in terms of Ct, λt and ξt.

We conjecture that, in equilibrium, the continuation utility Vt equals a function J of

consumption and the state variables λt and ξt such that:

J(Ct, λt, ξt) =
C1−γ
t

1− γ
ea+bλλt+bξξt . (A.2)

For future reference, we list the derivates of J with respect to its arguments:

∂J

∂C
= (1− γ)

J

C
,

∂2J

∂C2
= −γ(1− γ)

J

C2
,

∂J

∂λ
= bλJ,

∂2J

∂λ2
= b2

λJ,

∂J

∂ξ
= bξJ,

∂2J

∂ξ2
= b2

ξJ. (A.3)

Applying Ito’s Lemma to J(Ct, λt, ξt) with conjecture (A.2) and derivatives (A.3):

dVt
Vt−

= (1− γ)(µcdt+ σcdBt)−
1

2
γ(1− γ)σ2

cdt

+ bλ

(
κλ(ξt − λt)dt+ σλ

√
λtdBλ,t

)
+

1

2
b2
λσ

2
λλtdt

+ bξ

(
κξ(ξ̄ − ξt)dt+ σξ

√
ξtdBξ,t

)
+

1

2
b2
ξσ

2
ξξtdt+ (e(1−γ)Zt − 1)dNt.
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Under the optimal consumption path, it must be that

Vt +

∫ t

0

f(Cs, Vs)ds = Et

[∫ ∞
0

f(Cs, Vs)ds

]
(A.4)

(see Duffie and Epstein (1992)). By definition,

f(Ct, Vt) = β(1− γ)Vt

(
logCt −

1

1− γ
log [(1− γ)V ]

)
= β(1− γ)Vt logCt − βVt log [(1− γ)Vt]

= βVt log

(
C1−γ
t

(1− γ)Vt

)
(A.5)

= −βVt(a+ bλλt + bξξt),

where the last equation follows from (A.2).

By the law of iterative expectations, the left-hand side of (A.4) is a martingale. Thus,

the sum of the drift and the jump compensator of (Vt +
∫ t

0
f(Cs, Vs)ds) equals zero. That is,

0 = (1− γ)µc −
1

2
γ(1− γ)σ2

c + bλκλ(ξt − λt) +
1

2
b2
λσ

2
λλt + bξκξ(ξ̄ − ξt) +

1

2
b2
ξσ

2
ξξt

+ λtEν
[
e(1−γ)Zt − 1

]
− β(a+ bλλt + bξξt). (A.6)

By collecting terms in (A.6), we obtain

0 =

[
(1− γ)µc −

1

2
γ(1− γ)σ2

c + bξκξ ξ̄ − βa
]

︸ ︷︷ ︸
=0

+ λt

[
−bλκλ +

1

2
b2
λσ

2
λ + Eν

[
e(1−γ)Zt − 1

]
− βbλ

]
︸ ︷︷ ︸

=0

+ ξt

[
bλκλ − bξκξ +

1

2
b2
ξσ

2
ξ − βbξ

]
︸ ︷︷ ︸

=0

. (A.7)
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Solving these equations gives us

a =
1− γ
β

(
µc −

1

2
γσ2

c

)
+
bξκξ ξ̄

β
(A.8)

bλ =
κλ + β

σ2
λ

−

√(
κλ + β

σ2
λ

)2

− 2
Eν [e(1−γ)Zt − 1]

σ2
λ

(A.9)

bξ =
κξ + β

σ2
ξ

−

√√√√(κξ + β

σ2
ξ

)2

− 2
bλκλ
σ2
ξ

, (A.10)

where we have chosen the negative root based on the economic consideration that when

there are no disasters, λt and ξt should not appear in the value function. Namely, for Zt = 0,

bλ = bξ = 0. Lastly, note that these results verify the conjecture (A.2).

It follows from (A.5) that

∂

∂C
f (Ct, Vt) = β(1− γ)VtC

γ−1
t C−γt

∂

∂V
f(Ct, Vt) = β(1− γ)

(
logCt −

1

1− γ
log ((1− γ)Vt)

)
+ β

By (A.2), in equilibrium,

∂

∂C
f (Ct, Vt) = βC−γt ea+bλλt+bξξt

∂

∂V
f(Ct, Vt) = −βa− β − βbλλt − βbξξt.

Therefore, from (A.1), it follows that the state-price density can be written as

πt = exp

{
−β(a+ 1)t− βbλ

∫ t

0

λsds− βbξ
∫ t

0

ξsds

}
βC−γt ea+bλλt+bξξt . (A.11)

B Dynamics of the aggregate market

Let F (Dt, λt, ξt) denote the price of the dividend claim. The pricing relation implies

F (Dt, λt, ξt) = Et

[∫ ∞
t

πs
πt
Dsds

]
=

∫ ∞
t

Et

[
πs
πt
Ds

]
ds.
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Let H(Dt, λt, ξt, s− t) denote the price of the asset that pays the aggregate dividend at time

s, namely,

H(Dt, λt, ξt, s− t) = Et

[
πs
πt
Ds

]
.

By the law of iterative expectations, it follows that πtHt is a martingale:

πtH(Dt, λt, ξt, s− t) = Et[πsDs].

Conjecture that

H(Dt, λt, ξt, τ) = Dt exp (aφ(τ) + bφλ(τ)λt + bφξ(τ)ξt) . (B.1)

Applying Ito’s Lemma to conjecture (B.1) implies

dHt

Ht−
=

{
µd + bφλ(τ)κλ(ξt − λt) +

1

2
bφλ(τ)2σ2

λλt + bφξ(τ)κξ(ξ̄ − ξt) +
1

2
bφξ(τ)2σ2

ξξt

− a′φ(τ)− b′φλ(τ)λt − b′φξ(τ)ξt

}
dt

+ φσcdBt + bφλ(τ)σλ
√
λtdBλ,t + bφξ(τ)σξ

√
ξtdBξ,t + (eφZt − 1)dNt. (B.2)

It follows from (B.2), (3), and the product rule for stochastic processes, that

d(πtHt)

πt−Ht−
=

{
− β − µc + γσ2

c − λtEν
[
e(1−γ)Zt − 1

]
+ µd + bφλ(τ)κλ(ξt − λt) +

1

2
bφλ(τ)2σ2

λλt

+ bφξ(τ)κξ(ξ̄ − ξt) +
1

2
bφξ(τ)2σ2

ξξt

− a′φ(τ)− b′φλ(τ)λt − b′φξ(τ)ξt

− γφσ2
c + bλbφλ(τ)σ2

λλt + bξbφξ(τ)σ2
ξξt

}
dt

+ (φ− γ)σcdBt + (bλ + bφλ(τ))σλ
√
λtdBλ,t + (bξ + bφξ(τ))σξ

√
ξtdBξ,t

+ (e(φ−γ)Zt − 1)dNt.
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Since πtHt is a martingale, the sum of the drift and the jump compensator of πtHt equals

zero. Thus:

0 = −β − µc + γσ2
c − λtEν

[
e(1−γ)Zt − 1

]
+ µd + bφλ(τ)κλ(ξt − λt) +

1

2
bφλ(τ)2σ2

λλt

+ bφξ(τ)κξ(ξ̄ − ξt) +
1

2
bφξ(τ)2σ2

ξξt

− a′φ(τ)− b′φλ(τ)λt − b′φξ(τ)ξt

− γφσ2
c + bλbφλ(τ)σ2

λλt + bξbφξ(τ)σ2
ξξt + λtEν

[
e(φ−γ)Zt − 1

]
. (B.3)

Collecting terms of (B.3) results in the following equation:

0 =
[
−β − µc + γσ2

c + µd + bφξ(τ)κξ ξ̄ − γφσ2
c − a′φ(τ)

]︸ ︷︷ ︸
=0

+ λt

[
−bφλ(τ)κλ +

1

2
bφλ(τ)2σ2

λ + bλbφλ(τ)σ2
λ + Eν

[
e(φ−γ)Zt − e(1−γ)Zt

]
− b′φλ(τ)

]
︸ ︷︷ ︸

=0

+ ξt

[
bφλ(τ)κλ − bφξ(τ)κξ +

1

2
bφξ(τ)2σ2

ξ + bξbφξ(τ)σ2
ξ − b′φξ(τ)

]
︸ ︷︷ ︸

=0

.

It follows that

a′φ(τ) = µd − µc − β + γσ2
c (1− φ) + κξ ξ̄bφξ(τ)

b′φλ(τ) =
1

2
σ2
λbφλ(τ)2 + (bλσ

2
λ − κλ)bφλ(τ) + Eν

[
e(φ−γ)Zt − e(1−γ)Zt

]
(B.4)

b′φξ(τ) =
1

2
σ2
ξbφξ(τ)2 + (bξσ

2
ξ − κξ)bφξ(τ) + κλbφλ(τ).

This establishes that H satisfies the conjecture (B.1). We note that by no-arbitrage,

H(Dt, λt, ξt, 0) = Dt.

This condition provides the boundary conditions for the system of ODEs (B.4):

aφ(0) = bφλ(0) = bφξ(0) = 0.
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Finally,

F (Dt, λt, ξt) =

∫ ∞
t

Et

[
πs
πt
Ds

]
ds

=

∫ ∞
t

H(Dt, λt, ξt, s− t)ds

= Dt

∫ ∞
t

exp (aφ(s− t) + bφλ(s− t)λt + bφξ(s− t)ξt) ds

= Dt

∫ ∞
0

exp (aφ(τ) + bφλ(τ)λt + bφξ(τ)ξt) dτ.

That is, the price-dividend ratio can be written as

G(λt, ξt) =

∫ ∞
0

exp (aφ(τ) + bφλ(τ)λt + bφξ(τ)ξt) dτ.

C Individual firm value dynamics

Let Hi(Di,t, λt, ξt, s− t) denote the time-t value of firm i’s payoff at time s. That is,

Hi(Di,t, λt, ξt, s− t) = Et

[
πs
πt
Di,s

]
,

where Di,t is determined by (12).34

We conjecture that Hi(·) has the following functional form:

Hi(Di,t, λt, ξt, τ) = Di,t exp (ai(τ) + biλ(τ)λt + biξ(τ)ξt) . (C.1)

To verify this conjecture, we apply Ito’s Lemma to the process πtHi(Di,t, λt, ξt, s − t) and

derive the conditional expectation of its instantaneous change. This conditional expectation

must equal zero because of (C.1), which implies that πtHi(Di,t, λt, ξt, s− t) is a martingale.

34In the equations that follow, we will allow Zi and ZSi to be random variables (with independent and

time-invariant distributions) rather than constants, and denote them as Zi,t and ZSi,t respectively. Zi,t is

assumed to be independent and identically distributed across firms, while ZSi,t is independent and identically

distributed across sectors.
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By applying Ito’s Lemma to equation (C.1), it follows that

dHi,t

Hi,t−
=

{
µi + biλ(τ)κλ(ξt − λt) +

1

2
biλ(τ)2σ2

λλt + biξ(τ)κξ(ξ̄ − ξt) +
1

2
biξ(τ)2σ2

ξξt − a′i(τ)

− b′iλ(τ)λt − b′iξ(τ)ξt

}
dt+ φiσcdBc,t + biλ(τ)σλ

√
λtdBλ,t + biξ(τ)σξ

√
ξtdBξ,t

+ (eφiZc,t − 1)dNc,t + Ii,t(e
Zi,t − 1)dNi,t + (eZSi,t − 1)dNSi,t.

Note that firm i is hit by the idiosyncratic shock dNi,t and the sector shock dNSi,t. The SDE

for πt is given in (3). By applying Ito’s Lemma for the product of two stochastic processes,

we obtain the SDE for πtHi,t:

d(πtHi,t)

πt−Hi,t−
=

{
− β − µc + γσ2

c − λtE
[
e(1−γ)Zc,t − 1

]
+ µi + biλ(τ)κλ(ξt − λt) +

1

2
biλ(τ)2σ2

λλt

+ biξ(τ)κξ(ξ̄ − ξt) +
1

2
biξ(τ)2σ2

ξξt − a′i(τ)− b′iλ(τ)λt − b′iξ(τ)ξt − γφiσ2
c

+ bλbiλ(τ)σ2
λλt + bξbiξ(τ)σ2

ξξt

}
dt+ (φi − γ)σcdBc,t

+ (bλ + biλ(τ))σλ
√
λtdBλ,t + (bξ + biξ(τ))σξ

√
ξtdBξ,t

+ (e(φi−γ)Zc,t − 1)dNc,t + Ii,t(e
Zi,t − 1)dNi,t + (eZSi,t − 1)dNSi,t.

Since πtHt is a martingale, the sum of the drift and the jump compensator of πtHt equals

zero. This zero mean condition provides the system of ODEs for ai(τ), biλ(τ), and biξ(τ):

a′i(τ) = µi − µc − β + γσ2
c (1− φi) + λiE

[
eZi,t − 1

]
+ piw0E

[
eZSi,t − 1

]
+ κξ ξ̄biξ(τ)

b′iλ(τ) =
1

2
σ2
λbiλ(τ)2 + (bλσ

2
λ − κλ)biλ(τ) + E

[
e(φi−γ)Zc,t − e(1−γ)Zc,t

]
+ piwλE

[
eZSi,t − 1

]
b′iξ(τ) =

1

2
biξ(τ)2σ2

ξ + (bξσ
2
ξ − κξ)biξ(τ) + κλbiλ(τ) + +piwξE

[
eZSi,t − 1

]
.

This shows that Hi satisfies the conjecture (C.1). Furthermore, since Hi(Di,t, λt, ξt, 0) = Di,t,

we obtain the following boundary conditions:

ai(0) = biλ(0) = biξ(0) = 0.
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With the solution for the ODEs, equation (13) can be written as

Ai(Di,t, λt, ξt) =

∫ ∞
t

Hi(Di,t, λt, ξt, s− t) ds

= Di,t

∫ ∞
0

exp (ai(τ) + biλ(τ)λt + biξ(τ)ξt) dτ.

D Computing CDX and tranche prices

Given the closed-form expressions for asset prices, the prices for the CDX and its tranches

must be computed by simulation. That is, for each pair of state variables (λt, ξt), we compute

the expectations that determine the protections legs (22) and (18) , and the premium legs

(19) and (25) by simulating 100,000 sample paths for the 125 firms (see Appendix E for more

detail on how we simulate the state variables and firm values). This exercise is complicated

by the fact that, while premium payments occur at fixed (quarterly) intervals, default could

occur at any time. Moreover, default is sometimes accompanied by an immediate payment,

as is the case for the protection seller, and is sometimes reflected in a change in notional

that matters for the premium payment at the next interval (as is the case for the premium

payments on the tranches).

To reduce computation time, we compute nt,s, Lt,s, T
L
j,t,s, and TRj,t,s at quarterly intervals,

which correspond to the timing of payment premium dates. Given these series, we compute

the value of cash flows paid by the protection seller by assuming that default occurs at the

midpoint between two premium payment dates. This follows standard practice (Mortensen,

2006), and is more accurate than simply assuming that default occurs on the premium

payment date itself. Therefore

ProtCDX(λt, ξt;T − t) = EQ
t

[∫ T

t

e−
∫ s
t rududLt,s

]
'

4T∑
m=1

EQ
t

[
e−

∫ t+ϑ(m− 1
2 )

t ru du(Lt,t+ϑm − Lt,t+ϑ(m−1))

]
(D.1)
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Because default occurs at the midpoint between two payment periods, Lt,t+ϑm = Lt,t+ϑm−ϑ/2.

It will be computationally useful to write (D.1) in terms of the risk-neutral, discounted

expectation of Lt,t+ϑm and Lt,t+ϑ(m−1). To do this, we need to introduce a second approxima-

tion. Note that the riskfree rate has continuous sample paths, and ϑ is small. We therefore

approximate ∫ t+ϑm

t+ϑ(m− 1
2

)

ru du '
ϑ

2
rt+ϑm. (D.2)

Combining (D.1) and (D.2), we have

ProtCDX(λt, ξt;T − t) '

1

4

4T∑
m=1

(
EQ
t

[
e

1
2
ϑrt+ϑme−

∫ t+ϑm
t ruduLt,t+ϑm

]
− EQ

t

[
e−

1
2
ϑrt+ϑ(m−1)e−

∫ t+ϑ(m−1)
t ruduLt,t+ϑ(m−1)

])
.

Recall that the premium leg equals

PremCDX(λt, ξt;T − t, S) =

SEQ
t

[
1

4

4T∑
m=1

e−
∫ t+ϑm
t rudu(1− nt,t+ϑm) +

∫ t+ϑm

t+ϑ(m−1)

e−
∫ s
t rudu(s− t− ϑ(m− 1))dnt,s

]

' S
4T∑
m=1

1

4
EQ
t

[
e−

∫ t+ϑm
t rudu(1− nt,t+ϑm) + e−

∫ t+(ϑ− 1
2 )m

t rudu

(
nt,t+ϑm − nt,t+ϑ(m−1)

2

)]
.

where the approximation in the second equation holds if default is close to the midpoint

between two premium payment dates.

Our goal is to compute the risk-neutral, discounted expectation of nt,t+ϑm. Using the
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approximation e−
∫ t+ϑ(m− 1

2 )

t rudu ' e−
∫ t+ϑm
t rudu,

PremCDX(λt, ξt;T − t, S)

'S
4

4T∑
m=1

EQ
t

[
e−

∫ t+ϑm
t rudu

(
1− 1

2
nt,t+ϑm −

1

2
nt,t+ϑ(m−1)

)]

=
S

4

4T∑
m=1

(
H0(λt, ξt, ϑm)− 1

2
EQ
t

[
e−

∫ t+ϑm
t rudunt,t+ϑm

]
− 1

2
EQ
t

[
e−

∫ t+ϑm
t rudunt,t+ϑ(m−1)

])

'S
4

4T∑
m=1

(
H0(λt, ξt, ϑm)− 1

2
EQ
t

[
e−

∫ t+ϑm
t rudunt,t+ϑm

]
−1

2
EQ
t

[
e−ϑrt+ϑ(m−1)e−

∫ t+ϑ(m−1)
t rudunt,t+ϑ(m−1)

])
.

where H0(λs, ξs, τ) is the price of the default-free zero-coupon bond with maturity τ , which

we derive in Appendix F. 35 we find

Like the computation for the protection leg on the CDX, our computation for the pro-

tection leg for tranche j assumes that the default occurs at the midpoint between payment

periods, and uses approximation (D.2):

ProtTran,j(λt, ξt, T − t) '
4T∑
m=1

EQ
t

[
e−

∫ t+(ϑ− 1
2 )m

t rudu(TLj,t,t+ϑm − TLj,t,t+ϑ(m−1))

]

'
4T∑
m=1

(
EQ
t

[
e
ϑ
2
rt+ϑme−

∫ t+ϑm
t ruduTLj,t,t+ϑm

]
−

EQ
t

[
e−

ϑ
2
rt+ϑ(m−1)e−

∫ t+ϑ(m−1)
t ruduTLj,t,t+ϑ(m−1)

])
.

Recall that

PremTran,j(λt, ξt;T − t, U, S) =

U + SEQ
t

[
4T∑
m=1

(
e−

∫ t+ϑm
t rsds

∫ t+ϑm

t+ϑ(m−1)

(
1− TLj,t,s − TRj,t,s

)
ds

)]
.

35In economic terms, this interest rate approximation implies that the accrued interest payment comes at

the same time as the premium payment, rather than upon default. Based on the argument in Section 2.5,

this implies an equivalence between the premium leg for the CDX and the premium leg for the tranches.
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Under the assumption that any default occurs at the midpoint between the two payment

periods, the integral above is an average:

PremTran,j(λt, ξt;T − t, U, S) '

U +
S

4

4T∑
m=1

EQ
t

[
e−

∫ t+ϑm
t rsds

(1− TLj,t,t+ϑm − TRj,t,t+ϑm) + (1− TLj,t,t+ϑ(m−1) − TRj,t,t+ϑ(m−1))

2

]
.

(recall ϑ = 1/4). Because we want to write the premium leg in terms of risk-neutral expec-

tations of discounted variables, we approximate

e−ϑrt+ϑ(m−1)e−
∫ t+ϑm
t rsds = e−

∫ t+ϑm
t+ϑ(m−1) rs dse−

∫ t+ϑ(m−1)
t rsds

' e−ϑrt+ϑ(m−1)e−
∫ t+ϑ(m−1)
t rsds

so that

PremTran,j(λt, ξt;T − t, U, S) ' U +

S

4

4T∑
m=1

(
H0(λt, ξt, ϑm)− 1

2
EQ
t

[
e−

∫ t+ϑm
t rsdsTLj,t,t+ϑm

]
− 1

2
EQ
t

[
e−

∫ t+ϑm
t rsdsTRj,t,t+ϑm

]
− 1

2
EQ
t

[
e−ϑrt+ϑ(m−1)e−

∫ t+ϑ(m−1)
t rsdsTLj,t,t+ϑ(m−1))

]
− 1

2
EQ
t

[
e−∆rt+ϑ(m−1)e−

∫ t+ϑ(m−1)
t rsdsTRj,t,t+ϑ(m−1)

])
.

Next, for any u ∈ R, we define the following four expectations:

EDR(u, τ, λt, ξt) = EQ
t

[
eurt+τ e−

∫ t+τ
t rsdsnt,t+τ

]
ELR(u, τ, λt, ξt) = EQ

t

[
eurt+τ e−

∫ t+τ
t rsdsLt,t+τ

]
ETLRj(u, τ, λt, ξt) = EQ

t

[
eurt+τ e−

∫ t+τ
t rsdsTLj,t,t+τ

]
ETRRj(u, τ, λt, ξt) = EQ

t

[
eurt+τ e−

∫ t+τ
t rsdsTRj,t,t+τ

]
(D.3)
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We re-write the pricing formulas for the CDX index and its tranches as follows:

ProtCDX(λt, ξt;T − t) =
4T∑
m=1

(
ELR

(
ϑ

2
, ϑm, λt, ξt

)
− ELR

(
−ϑ

2
, ϑ(m− 1), λt, ξt

))

PremCDX(λt, ξt;T − t, S) =
S

4

4T∑
m=1

(
H0(λt, ξt, ϑm)− 1

2
EDR (0, ϑm, λt, ξt)

−1

2
EDR (ϑ, ϑ(m− 1), λt, ξt)

)
ProtTran,j(λt, ξt;T − t) =

4T∑
m=1

(
ETLRj

(
ϑ

2
, ϑm, λt, ξt

)
− ETLRj

(
−ϑ

2
, ϑ(m− 1), λt, ξt

))

PremTran,j(λt, ξt;T − t, U, S) = U +
S

4

4T∑
m=1

(
H0(λt, ξt, ϑm)− [ETLRj + ETRRj] (0, ϑm, λt, ξt)

2

− [ETLRj + ETRRj] (ϑ, ϑ(m− 1), λt, ξt)

2

)
.

To price the CDX index and its tranches, it suffices to calculate the four expectations above.

Note that

EDR(u, τ, λt, ξt) = EQ
t

[
eurt+τ e−

∫ t+τ
t rsdsnt,t+τ

]
= EQ

t

[
e−

∫ t+τ
t rsdseurt+τnt,t+τ

]
= Et

[
πt+τ
πt

eu·rt+τnt,t+τ

]
and similarly for the other expectations in (D.3). It therefore suffices to calculate the physical

processes for nt,s, Lt,s, T
R
j,t,s, and TLj,t at a quarterly frequency. For each value of the state

variables, we do this 100,000 times to obtain the expectation. This requires 100,000 5-year

simulations of the 125 firms in the index.

E Model simulation

As discussed in Appendix D, we must simulate from the model in order to price the CDX

and its tranches.

The first step is to simulate a series of state variables (λt, ξt). The variable ξt follows

the square-root process of Cox, Ingersoll, and Ross (1985), and so ξt+∆t|ξt has a non-
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central Chi-squared distribution with
(

4κξ ξ̄

σ2
ξ

)
degrees of freedom and non-centrality param-

eter

(
4ξtκξe

−κξ∆t

(1−e−κξ∆t
)σ2
ξ

)
.

Over a short time interval, λt will be well-approximated by a CIR process. That is, we ap-

proximate the conditional distribution λt+∆t|λt with a non-central Chi-squared distribution

with
(

4κλξt
σ2
λ

)
degrees of freedom and non-centrality parameter

(
4λtκλe

−κλ∆t

(1−e−κλ∆t)σ2
λ

)
.36

Given λt, log consumption growth (log (Ct+∆t/Ct)), and each firm’s log payout growth

(log (Di,t+∆t/Di,t))) can be drawn by discretizing the following stochastic differential equa-

tions, which follow from Ito’s Lemma, applied to (1) and (12).

d logCt =

(
µc −

1

2
σ2
c

)
dt+ σcdBc,t + Zc,tNc,t

d logDi,t =

(
µi −

1

2
φ2
iσ

2
c

)
dt+ φiσcdBc,t + φiZc,tdNc,t + Ii,tZSi,tdNSi,t + Zi,tdNi,t.

Firm value can then be computed as

Ai,t+∆t

Ai,t
=

Di,t+∆t

Di,t

Gi(λt+∆t, ξt+∆t)

Gi(λt, ξt)

= exp

[
log

(
Di,t+∆t

Di,t

)]
Gi(λt+∆t, ξt+∆t)

Gi(λt, ξt)
, (E.1)

while the pricing kernel can be computed as

πt+∆t

πt
' exp

[
η∆t− βbλλt+∆t∆t− βbξξt+∆t∆t

−γ log

(
Ct+∆t

Ct

)
+ bλ(λt+∆t − λt) + bξ(ξt+∆t − ξt)

]
. (E.2)

Using (E.1), we can obtain a series of nt, Lt,s, T
L
j,t,s, and TRt for all j. From these series,

(E.2) and the equation for rt, (6), we compute CDX and tranche pricing using simulations

as described in Appendix D.

36The advantage of this approach over an Euler approximation of (2a) using a conditional normal process

is that, due to the presence of ξt, λt can spend long periods of time close to zero. Thus the Euler method

can lead to negative values of λt (which, are, strictly speaking, impossible under the model), which reduces

its accuracy.
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F Default-free zero-coupon bond price

Let H0(λt, ξt, s − t) denote the time-t price of the default-free zero-coupon bond maturing

at time s > t. By the pricing relation,

H0(λt, ξt, s− t) = Et

[
πs
πt

]
. (F.1)

By multiplying πt on both sides of (F.1), we obtain a martingale:

πtH0(λt, ξt, s− t) = Et [πs] .

Conjecture

H0(λt, ξt, τ) = exp (a0(τ) + b0λ(τ)λt + b0ξ(τ)ξt) . (F.2)

By Ito’s Lemma,

dH0,t

H0,t−
=

(
b0λ(τ)κλ(ξt − λt) +

1

2
b0λ(τ)2σ2

λλt + b0ξ(τ)κξ(ξ̄ − ξt) +
1

2
b0ξ(τ)2σ2

ξξt

− a′0(τ)− b′0λ(τ)λt − b′0ξ(τ)ξt

)
dt+ b0λ(τ)σλ

√
λtdBλ,t + b0ξ(τ)σξ

√
ξtdBξ,t. (F.3)

Furthermore, we also derive the stochastic differential equation for πtH0,t by combining

equation (F.3) and (3) using Ito’s Lemma:

d(πtH0,t)

πt−H0,t−
=

(
− β − µc + γσ2

c − λtE
[
e(1−γ)Zc,t − 1

]
+ b0λ(τ)κλ(ξt − λt) +

1

2
b0λ(τ)2σ2

λλt

+ b0ξ(τ)κξ(ξ̄ − ξt) +
1

2
b0ξ(τ)2σ2

ξξt

− a′0(τ)− b′0λ(τ)λt − b′0ξ(τ)ξt

+ bλb0λ(τ)σ2
λλt + bξb0ξ(τ)σ2

ξξt

)
dt− γσcdBc,t

+ (bλ + b0λ(τ))σλ
√
λtdBλ,t + (bξ + b0ξ(τ))σξ

√
ξtdBξ,t + (e−γZc,t − 1)dNc,t.
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Since πtH0,t is a martingale, the sum of the drift and the jump compensator of πtH0,t equals

zero. That is,

0 = −β − µc + γσ2
c − λtE

[
e(1−γ)Zc,t − 1

]
+ b0λ(τ)κλ(ξt − λt) +

1

2
b0λ(τ)2σ2

λλt

+ b0ξ(τ)κξ(ξ̄ − ξt) +
1

2
b0ξ(τ)2σ2

ξξt

− a′0(τ)− b′0λ(τ)λt − b′0ξ(τ)ξt

+ bλb0λ(τ)σ2
λλt + bξb0ξ(τ)σ2

ξξt + λtE
[
e−γZc,t − 1

]
. (F.4)

By collecting terms of (F.4),

0 =
[
−β − µc + γσ2

c + b0ξ(τ)κξ ξ̄ − a′0(τ)
]︸ ︷︷ ︸

=0

+ λt

[
−b0λ(τ)κλ +

1

2
b0λ(τ)2σ2

λ + bλb0λ(τ)σ2
λ + E

[
e−γZc,t − e(1−γ)Zc,t

]
− b′0λ(τ)

]
︸ ︷︷ ︸

=0

+ ξt

[
b0λ(τ)κλ − b0ξ(τ)κξ +

1

2
b0ξ(τ)2σ2

ξ + bξb0ξ(τ)σ2
ξ − b′0ξ(τ)

]
︸ ︷︷ ︸

=0

.

These conditions provide a system of ODEs:

a′0(τ) = −β − µc + γσ2
c + b0ξ(τ)κξ ξ̄

b′0λ(τ) = −b0λ(τ)κλ +
1

2
b0λ(τ)2σ2

λ + bλb0λ(τ)σ2
λ + E

[
e−γZc,t − e(1−γ)Zc,t

]
b′0ξ(τ) = b0λ(τ)κλ − b0ξ(τ)κξ +

1

2
b0ξ(τ)2σ2

ξ + bξb0ξ(τ)σ2
ξ . (F.5)

This shows that H0 satisfies the conjecture (F.2). We can obtain the boundary conditions

for the system of ODEs (F.5) because H0(λt, ξt, 0) = 1, which is equivalent to

a0(0) = b0λ(0) = b0ξ(0) = 0.
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G Option pricing

G.1 A log-linear approximation for the price-dividend ratio

The transform analysis we use to price options requires that the log of the price-dividend ratio

be linear. Fortunately, the exact price-dividend ratio we derive can be closely approximated

by a log-linear function.

Let g(λ, ξ) = logG(λ, ξ). For given λ∗ and ξ∗, the two-dimensional Taylor approximation

implies

g(λ, ξ) ' g(λ∗, ξ∗) +
∂g

∂λ

∣∣∣∣
λ∗,ξ∗

(λ− λ∗) +
∂g

∂ξ

∣∣∣∣
λ∗,ξ∗

(ξ − ξ∗). (G.1)

We note that

∂g

∂λ

∣∣∣∣
λ∗,ξ∗

=
1

G(λ∗, ξ∗)

∂G

∂λ

∣∣∣∣
λ∗,ξ∗

=
1

G(λ∗, ξ∗)

∫ ∞
0

bφλ(τ) exp (aφ(τ) + bφλ(τ)λ∗ + bφξ(τ)ξ∗) dτ (G.2)

Similarly, we obtain

∂g

∂ξ

∣∣∣∣
λ∗,ξ∗

=
1

G(λ∗, ξ∗)

∂G

∂ξ

∣∣∣∣
λ∗,ξ∗

=
1

G(λ∗, ξ∗)

∫ ∞
0

bφξ(τ) exp (aφ(τ) + bφλ(τ)λ∗ + bφξ(τ)ξ∗) dτ. (G.3)

Expression (G.2) and (G.3) can be interpreted as weighted averages of the coefficients bφλ(τ)

and bφξ(τ) respectively. The average is over τ , and the weights are proportional to

exp {aφ(τ) + bφλ(τ)λ∗ + bφξ(τ)ξ∗}. With this in mind, we define the notation

b∗φλ =
1

G(λ∗, ξ∗)

∫ ∞
0

bφλ(τ) exp (aφ(τ) + bφλ(τ)λ∗ + bφξ(τ)ξ∗) dτ (G.4)

b∗φξ =
1

G(λ∗, ξ∗)

∫ ∞
0

bφξ(τ) exp (aφ(τ) + bφλ(τ)λ∗ + bφξ(τ)ξ∗) dτ, (G.5)

and the log-linear function

Ĝ(λt, ξt) = G(λ∗, ξ∗) exp
{
b∗φλ(λt − λ∗) + b∗φξ(ξt − ξ∗)

}
. (G.6)
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It follows from exponentiating both sides of (G.1) that

G(λt, ξt) ' Ĝ(λt, ξt).

In our analysis, we choose λ∗ and ξ∗ to be ξ̄, the stationary mean of both processes.

This log-linearization method differs from the more widely-used method of Campbell

(2003), applied in continuous time by Chacko and Viceira (2005). However, in this appli-

cation it is more accurate. This is not surprising, since we are able to exploit the fact that

the true solution for the price-dividend ratio is known. In dynamic models with the EIS not

equal to one, the solution is typically unknown.

G.2 Transform analysis

The normalized put option price is given as

P n(λt, ξt, T − t;Kn) = Et

[
πT
πt

(
Kn − F (DT , λT , ξT )

F (Dt, λt, ξt

)+
]
. (G.7)

It follows from (A.11) that

πT
πt

= exp

{∫ T

t

−β(1 + a+ bλλs + bξξs) ds− γ log

(
CT
Ct

)
+ bλ(λT − λt) + bξ(ξT − ξt)

}
,

where bλ and bξ are defined by (4) and (5) respectively. It follows from F (Dt, λt, ξt) =

DtG(λt, ξt), Dt = Cφ
t , and (G.6) that

FT
Ft

= exp

{
φ log

(
CT
Ct

)
+ b∗φλ(λT − λt) + b∗φξ(ξT − ξt)

}
,

where b∗φλ and b∗φξ are constants defined by (G.4), and (G.5), respectively.

To use the method of Duffie, Pan, and Singleton (2000), it is helpful to write down the

following stochastic process, which, under our assumptions, is well-defined for given λt and

ξt:

Xτ =


logCt+τ − logCt

λt+τ

ξt+τ

 .
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Note that the {Xτ} process is defined purely for mathematical convenience. We further

define

d1 =


0

bλ

bξ

 , d2 =


−γ

bλ

bξ

 , d3 =


0

b∗φλ

b∗φξ

 , d4 =


φ

b∗φλ

b∗φξ

 .
Using this notation, (G.7) can be rewritten as

P n(λt, ξt, T − t;Kn) = KnEt

[
e−

∫ T−t
0 R(Xτ ) dτ+d>2 XT−t−d>1 X0 1{

FT
Ft
≤Kn

}]
− Et

[
e−

∫ T−t
0 R(Xτ ) dτ+(d2+d4)>XT−t−(d1+d3)>X0 1{

FT
Ft
≤Kn

}] (G.8)

where

R(Xτ ) = βd>1 Xτ + β(1 + a)

1{
FT
Ft
≤Kn

} = 1{d>4 XT−t≤logKn+d>3 X0}.

Since {Xτ} is an affine process in the sense defined by Duffie, Pan, and Singleton (2000),

(G.8) characterizes the put option price in terms of expectations that can be computed using

their transform analysis. Specifically, if we define

Gp,q(y;X0, T − t) ≡ E
[
e−

∫ T−t
0 R(Xτ )dτep

>XT−t1{q>XT−t≤y}

]
, (G.9)

then the normalized put price is expressed as

P n(λt, ξt, T − t;Kn) = e−d
>
1 X0KnGd2,d4

(
logKn + d>3 X0;X0, T − t

)
− e−(d1+d3)>X0KnGd2+d4,d4

(
logKn + d>3 X0;X0, T − t

)
,

where X0 = [0, λt, ξt]. The terms written using the function G can then be computed

tractably using the transform analysis of Duffie et al: this analysis requires only the solution

of a system of ordinary differential equations and a one-dimensional numerical integration.

56



References

Abel, Andrew, 1990, Asset prices under habit formation and catching up with the Joneses,

American Economic Review Papers and Proceedings 80, 38–42.

Bansal, Ravi, and Amir Yaron, 2004, Risks for the long-run: A potential resolution of asset

pricing puzzles, Journal of Finance 59, 1481–1509.

Barro, Robert J., 2006, Rare disasters and asset markets in the twentieth century, Quarterly

Journal of Economics 121, 823–866.
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Figure 1: Solution for the price-dividend ratio
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Notes: The functions bφλ(τ) and bφξ(τ), which determine the sensitivity of the aggre-

gate market to changes in the disaster probability λt and to its time-varying mean

ξt. That is, the price-dividend ratio on the aggregate market is given by G(λt, ξt) =∫∞
0

exp (aφ(τ) + bφλ(τ)λt + bφξ(τ)ξt) dτ . The horizon τ is in years.
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Figure 2: Implied volatilities in the model

Panel A: Varying λt

0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Moneyness

Im
pl

ie
d 

Vo
la

til
ity

 (a
nn

ua
l)

 

 

80th percentile

median

20th percentile

Panel B: Varying ξt
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Notes: Implied volatilities for 3-month put options on the equity index, shown as a function

of moneyness (the strike price divided by the index price), as calculated in the model. The

figures show the effects of varying the state variables λt (the disaster probability) and ξt (the

value to which λt reverts). Panel A sets ξt equal to its median value and varies λt, while

Panel B sets λt equal to its median value and varies ξt.



Figure 3: Time series of option-implied volatilities
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Notes: Monthly time series of option-implied volatilities in the data (blue solid lines) and in

the model (red dotted lines). Results are shown for 1, 3, and 6-month options. State variables

are computed to match the 1-month ATM and 0.85 OTM implied volatilities exactly.
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Figure 4: Option-implied state variables
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Notes: Monthly time series of the state variables λt (annual disaster probability) and ξt

(long-run mean of λt) extracted from option prices. At each time point, the state variables

are chosen to match implied volatilities of 1-month ATM and OTM (moneyness of 0.85)

index put options in the data. Panel A shows these time series for the January 1996–

December 2012 period over which option data are available. The shaded area represents

the period over with CDX tranche data are available. Panel B zooms into the CDX sample

period.
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Figure 5: The price-dividend ratio in the data and in the model
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Notes: The solid line shows the time series of the price-dividend ratio on the data. The red

line shows the price-dividend ratio implied by the model for state prices chosen to fit the

one-month ATM and OTM (0.85 moneyness) put options.
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Figure 6: Time series of CDX/CDX tranche spreads in the benchmark model and in a case

without idiosyncratic risk
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Notes: Monthly time series of 5-year CDX and CDX tranche spreads in the data (blue solid

lines), in the benchmark model (red dotted lines), and in a calibration without idiosyncratic

risk (black dashed lines). Spreads are annual and reported in terms of basis points (bps) per

unit of notional. For the equity tranche, we report the upfront payment assuming the spread

is fixed at 500 bps. We compute model values from state variables fit to the time series of

1-month ATM and 0.85 OTM implied volatilities. The version without idiosyncratic risk is

obtained from the benchmark by setting the probability of an idiosyncratic shock (λi) to

zero.
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Figure 7: Time series of CDX/CDX tranche spreads in the benchmark model and in a case

without sector shocks
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Notes: Monthly time series of 5-year CDX and CDX tranche spreads in the data (blue solid

lines), in the benchmark model (red dotted lines), and in a calibration without sector shocks

(black dashed lines). Spreads are annual and reported in terms of basis points (bps) per unit

of notional. For the equity tranche, we report the upfront payment assuming the spread is

fixed at 500 bps. We compute model values from state variables fit to the time series of 1-

month ATM and 0.85 OTM implied volatilities. The version without sector risk is obtained

by setting the probability that a firm will suffer a sector shock (pi) to zero.
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Figure 8: Time series of CDX/CDX tranche spreads in the benchmark model and in a case

with higher disaster risk
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Notes: Monthly time series of 5-year CDX and CDX tranche spreads in the data (blue solid

lines), in the benchmark model (red dotted lines), and in a calibration with higher disaster

risk. Spreads are reported in terms of basis points (bps). For the equity tranche, we report

the upfront payment because the spread is fixed at 500 bps. The benchmark model values

are computed using the option-implied state variables fit to the time series of 1-month ATM

and 0.85 OTM implied volatilities. The calibration with higher disaster risk is obtained by

uniformly increasing the disaster probability λt by 2 percentage points.
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Table 1: Properties of aggregate cash flows and utility

Panel A: Parameters for utility, consumption, and dividends

Relative risk aversion γ 3

EIS ψ 1

Rate of time preference β 0.012

Average growth in consumption (normal times) µc 0.0252

Volatility of consumption growth (normal times) σc 0.020

Leverage φ 2.6

Panel B: Parameters for the disaster probability process

Mean reversion κλ 0.20

Volatility parameter σλ 0.1576

Mean reversion κξ 0.10

Volatility parameter σξ 0.0606

Mean ξ̄ 0.02

Panel C: Population statistics of the disaster probability λt

Median 0.0037

Standard deviation 0.0386

Monthly autocorrelation 0.9858

Notes: Panel A shows parameters for normal-times consumption and dividend processes,

and for the preferences of the representative agent. Panels B shows the parameter values for

λ and ξ processes:

dλt = κλ(ξt − λt)dt+ σλ
√
λtdBλ,t

dξt = κξ(ξ̄ − ξt)dt+ σξ
√
ξtdBξ,t

Note that ξ̄ is the average level of the probability of a disaster. Panel C shows population

statistics for the disaster probability λt. Except for the autocorrelation of λt, values are in

annual terms.
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Table 2: Moments for the government bill rate and the market return in the data and the

model

No-Disaster Simulations All Simulations

Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rb] 1.25 1.68 2.96 3.46 -0.47 2.41 3.37 2.02

σ(Rb) 2.75 0.34 1.07 2.71 0.48 2.06 7.14 3.69

E[Rm −Rb] 7.25 5.40 8.01 12.36 5.30 8.49 14.25 9.00

σ(Rm) 17.8 13.24 19.26 27.91 14.59 22.59 34.38 24.13

Sharpe Ratio 0.41 0.32 0.42 0.55 0.26 0.39 0.53 0.37

exp(E[p− d]) 32.5 28.96 40.63 48.88 22.93 36.95 47.41 35.36

σ(p− d) 0.43 0.15 0.27 0.47 0.17 0.33 0.59 0.43

AR1(p− d) 0.92 0.59 0.79 0.91 0.62 0.82 0.92 0.90

Notes: Data moments are calculated using annual data from 1947 to 2010. Population mo-

ments are calculated from simulating data from the model at a monthly frequency for 600,000

years and then aggregating monthly growth rates to an annual frequency. We also simulate

100,000 60-year samples and report the 5th, 50th and 95th percentile for each statistic, both

from the full set of simulations and for the subset of samples for which no disasters occur.

Rb denotes the government bill return, Rm denotes the return on the aggregate market and

p− d denotes the log price-dividend ratio.
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Table 3: Parameter values for an individual firm

Default boundary AB 19.2%

Recovery rate Rt (normal times) 40%

Recovery rate Rt (disaster times) 20%

Aggregate risk loading φi (pre-crisis) 1.3

Aggregate risk loading φi (crisis) 1.6

Idiosyncratic jump size
(
eZi − 1

)
-80.0%

Bernoulli parameter for sector shocks P (Iit = 1) = pi 0.4

Sector-wide jump size
(
eZSi − 1

)
-71.1%

Coefficient for sector-wide jump intensity wξ 1.765

Idiosyncratic jump intensity λi 0.0093

Notes: This table reports the parameters for the payout process on an individual firm. Note

that default boundary AB is calculated as the firm’s leverage ratio (0.32) multilied by 60%

following Collin-Dufresne, Goldstein, and Yang (2012). Idiosyncratic jump intensity λi is in

annual terms.
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Table 4: Default probabilities under a lognormal model for prices

Drift

-6% -4% -2% -6% -4% -2%

Volatility 5-year probability 3-year probability

14% 0.0027 0.0007 0.0001 <.0001 <.0001 <.0001

16% 0.0269 0.0093 0.0030 <.0001 <.0001 <.0001

18% 0.1335 0.0580 0.0238 0.0005 0.0002 0.0001

20% 0.4264 0.2182 0.1068 0.0041 0.0020 0.0009

Notes: The probability of hitting the default boundary for a firm subject to diffusive risk

only, for volatility ranging from 14% to 20% per annum and drift ranging from -6% to -2%

per annum. Volatility is for firm value (equity plus debt); the drift is under the risk-neutral

measure and so should be interpreted as the riskfree rate minus the ratio of total payout

to firm value. Values are in percentages (meaning that 1 denotes a 1% probability and 100

denotes certainty). The values on the left give the probability of default within 5 years. The

values on the right give the probability of default within 3 years.
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Table 5: Average CDX and CDX tranche spreads (5-year maturity)

Upfront (%) Annual Spread (bps)

0-3% 3-7% 7-10% 10-15% 15-30% CDX

Panel A: Pre-crisis (Oct. 2005 – Sep. 2007)

Data 31 108 25 12 6 42

Model 26 142 46 23 8 41

Panel B: Crisis (Oct. 2007 – Sep. 2008)

Data 54 498 255 136 69 116

Model 39 422 238 155 71 102

Panel C: Full sample (Oct. 2005 – Sep. 2008)

Data 39 238 102 54 27 67

Model 31 235 110 67 29 61

Notes: Historical and model-implied average 5-year CDX and CDX tranche spreads in basis

points (bps) per year. For the equity tranche (0-3%), the spread is fixed 500 bps, so we

report the upfront payment. Other tranches (3-7%, 7-10%, 10-15%, 15-30%) and the CDX

itself have no upfront payments. Data are monthly, from October 2005 to September 2008,

corresponding to CDX series 5 to 10. We divide the data into two sub-samples: pre-crisis

and crisis. The The pre-crisis sample is from October 2005 to September 2007 (CDX5 to

CDX8). The crisis sample is from October 2007 to September 2008 (CDX9 to CDX10). We

compute model values from state variables fit to the time series of 1-month ATM and 0.85

OTM implied volatilities on equity index options.
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Table 6: Average CDX and CDX tranche spreads (3-year maturity)

Upfront (%) Annual Spread (bps)

0-3% 3-7% 7-10% 10-15% 15-30% CDX

Panel A: Pre-crisis (Sep. 2004 – Sep. 2007)

Data 11 20 8 3 2 27

Model 14 42 13 6 3 32

Panel B: Crisis (Oct. 2007 – Sep. 2008)

Data 43 364 168 87 48 –

Model 24 243 130 80 46 82

Panel C: Full sample (Sep. 2004 – Sep. 2008)

Data 21 127 58 29 16 –

Model 17 91 42 24 13 44

Notes: Historical and model-implied average 3-year CDX and CDX tranche spreads in basis

points (bps) per year. For the equity tranche (0-3%), the spread is fixed 500 bps, so we report

the upfront payment. Other tranches (3-7%, 7-10%, 10-15%, 15-30%) and the CDX itself

have no upfront payments. Data, from Collin-Dufresne, Goldstein, and Yang (2012), are

monthly from September 2004 to September 2008. The pre-crisis sample is from September

2004 to September 2007 (CDX3 to CDX8). The crisis sample is from October 2007 to

September 2008 (CDX9 and 10). We compute model values from state variables fit to the

time series of 1-month ATM and 0.85 OTM implied volatilities on equity index options.
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Table 7: Average super-senior tranche spreads

Super senior tranche spread (annual bps)

Pre-crisis (Sep. 2004 – Sep. 2007) Crisis (Oct. 2007 – Sep. 2008)

3-year 5-year 3-year 5-year

Data 1 4 23 35

Model 2 3 28 34

Notes: Historical and model-implied average 3 and 5-year super-senior tranche spreads in

basis points per year. The super-senior tranche has a 30% attachment point and a 100%

detachment point. Data, from Collin-Dufresne, Goldstein, and Yang (2012), are monthly

from September 2004 to September 2008. The pre-crisis sample is from September 2004 to

September 2007 (CDX3 to CDX8). The crisis sample is from October 2007 to September

2008 (CDX9 and 10). We compute model values from state variables fit to the time series

of 1-month ATM and 0.85 OTM implied volatilities on equity index options.
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