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Over the last several decades, publicly traded U.S. firms have experienced large increases in the

firm-specific volatility of both firm-level cash flow and returns (see, e.g., Campbell, Lettau, Malkiel,

and Xu, 2001; Comin and Philippon, 2005; Xiaolan, 2014; Bloom, 2014; Herskovic, Kelly, Lustig,

and Van Nieuwerburgh, 2015). At the same time, the share of total value added that accrues to the

owners of these firms (i.e., the aggregate capital share) has also increased (see Karabarbounis and

Neiman, 2014; Piketty and Zucman, 2014). We find that the aggregate factor shares are largely

determined by the firm-level factor shares of the largest U.S. firms in the right tail of the size

distribution. These mega-firms have experienced substantial increases in their capital share even

though the capital share of the average U.S. firm has decreased.

The U.S. economy’s aggregate factor share dynamics are well understood, but its firm-level

factor share dynamics are not. Between 1960 and 2010, the U.S. labor share of total output in the

non-farm business sector of the U.S. economy shrank by 15%, and this phenomenon does not appear

to be limited to the U.S. (see, e.g., Karabarbounis and Neiman, 2014). Figure 1 plots the capital

share over time for the universe of U.S. publicly traded firms, demonstrating an increase from 40%

to 60% since 1980. In this plot, capital share is measured as the ratio of capital income to valued

added, where capital income is defined as operating income before depreciation (OIBDP) and value

added is defined as operating income plus labor expenses.1 Our key empirical contribution is to

show that the increase in the capital share is concentrated among the largest publicly traded firms

in the U.S. Figure 2 shows the relationship between firm size and the ratio of capital income to sales,

which is a measure of the capital share of profits. In 1970, there was essentially no relation between

firm size and the capital-income-to-sales ratio, but by 2010, this ratio had strongly increased in

size. This shift caused the average and aggregate capital shares to diverge, and the equal-weighted

average capital share of publicly traded companies has declined since the 1980s. The U.K. and

continental Europe have experienced similar divergences between the aggregate and average factor

shares over this sample, and increases in idiosyncratic risk. Japan, in contrast, has experienced

neither.

Recently, scholars have documented similar findings in a different universe of U.S. firms. Kehrig

and Vincent (2017) find similar evidence using establishment-level data in the manufacturing in-

dustry. Using census data, in work preceded by ours, Autor, Dorn, Katz, Patterson, and Reenen

(2017) attribute the decrease in labor share to the low labor share of the largest firms, which is

consistent with our earlier findings, but they abstract from the equally important changes in factor

shares in the left tail of the size distribution.

We develop an equilibrium model that links our observations regarding volatility and factor

shares and provides novel implications for national income accounting. When shareholders insure

workers against idiosyncratic risk, capital shares vary substantially across firms, with the largest

and most productive firms having the highest capital share. In our model, changes in the size

distribution of firms triggered by changes in firm-level risk have first-order implications for the

aggregate and average capital shares in two ways. First, in our model, an increase in idiosyncratic

1We impute labor expenses for the Compustat sample using the method developed by Donangelo (2016).
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Figure 1: Aggregate Capital Share of Total Value Added for Public Firms.
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The figure presents the aggregate capital share for all of the firms in the Compustat public firms database.
Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014). The aggregate capital share is defined as∑
i capital incomei divided by

∑
i value addedi for each year. Capital income is defined as operating income before

depreciation (OIBDP). Value added is defined as operating income plus labor expenses. Source: Compustat/CRSP
Merged Fundamentals Annual (1960-2014).

Figure 2: Firm-Level Capital Income to Sales Ratio by Size.
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This figure presents the relation between the ratio of capital income (OIBDP) to sales and firm size for all of the firms
in the Compustat public firms database. Firm size is measured as total assets. Each point represents the within-bin
average of the ratio after grouping firms into 20 size bins. Source: Compustat/CRSP Merged Fundamentals Annual
(1960-2014).
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volatility coupled with an increase in economic rents can quantitatively explain both the shift in the

aggregate and the average capital share. Second, consistent with our model, U.S. industries that

saw larger increases in idiosyncratic volatility experienced larger drops in the average firm-level

capital share. We document similar findings for the U.K., Europe, and, to a lesser extent, Japan.

Shareholders of publicly traded firms can decrease idiosyncratic firm-specific risk through di-

versification, while risk-averse workers cannot; therefore, it is efficient to provide workers with

insurance against firm-specific risk. We analyze a simple optimal contracting model that embeds

this intuition in an equilibrium model of industry dynamics (see, e.g., Hopenhayn, 1992). The

optimal contract pays workers a fixed wage while allocating the remainder of the profits to share-

holders. The level of compensation is set in equilibrium to capture the value of ex-ante identical

firms. Ex post, these firms are subject to permanent idiosyncratic shocks that lead some firms to

increase in size and productivity while others decrease and potentially exit. We use this model as

a laboratory to analyze the impact of changes in firm-level risk on the distribution of rents.

Standard national income accounting, which is applied in this model, yields a new perspective on

capital share dynamics. The worker’s compensation is set such that the net present value of starting

a new firm, computed by integrating over all paths using the density for a new firm and discounting,

is zero. In contrast, national income accounts integrate only over firms that are currently active

using the stationary size distribution, without discounting. As a result, the aggregate capital share

calculation puts more probability mass on the right tail than the NPV calculation. As firm-level risk

increases and the right tail of the firm size distribution grows, workers capture a smaller fraction

of aggregate rents ex post even though they capture all of the ex-ante rents. This effect is partially

offset by a larger mass of unprofitable firms in the left tail of the stationary size distribution.

In our model, an increase in firm-level risk invariably increases the aggregate capital share

because we use time discounting when computing firm values but not when aggregating output.

In the optimal contract, the level of compensation is proportional to the average value of newly

established firms, and the average value of new firms is in turn equal to the present value of all

future paths of productivity. When volatility increases, a greater fraction of future paths lead

to high levels of productivity; however, these paths are discounted when calculating firm value.

In contrast, aggregate productivity is simply the average of current firm level productivity with

respect to the stationary distribution. When idiosyncratic volatility increases, the right tail of

the stationary distribution increases in mass. This increase in mass is fully reflected in aggregate

output without discounting. Thus, an increase in idiosyncratic volatility increases aggregate output

by more than the aggregate compensation, and the aggregate capital share increases as a result.

At the heart of this mechanism is the selection effect that arises from measuring the distribu-

tion of rents while excluding firms that have endogenously exited2: the capital share computed

2Jovanovic (1982) is the first study of selection in an equilibrium model of industry dynamics. Selection has also
been found to be quantitatively important. Luttmer (2007) attributes about 50% of output growth to selection using
a model with firm-specific productivity improvements, selection of successful firms, and imitation by entrants. This
effect is closely related to Hopenhayn (2002)’s observation that selection biases use average Tobin’s Q estimates for
industries above one.
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in national income accounts produces a biased estimate of the ex-ante profitability of new firms.

Moreover, an increase in selection increases the size of this bias. This effect explains the measured

divergence between aggregate compensation and profits: compensation is tied to ex-ante profitabil-

ity, but not to ex-post realized profits. This result also has a natural insurance interpretation.

When idiosyncratic risk increases, workers effectively pay a larger idiosyncratic insurance premium

ex post to shareholders. The increase in this ex-post premium leads to an increase in the aggregate

capital share even though the shareholders are risk-neutral and receive zero rents ex ante.

This selection effect is quantitatively important for capital share dynamics. In a calibrated

version of our model, we find that doubling the size of economic rents (see, e.g., Furman and

Orszag, 2015; Barkai, 2016; De Loecker and Eeckhout, 2017) together with an increase in volatility

from 20% to 40% replicates the increase in the aggregate capital share and the decrease in the

average capital share. The joint increase in volatility and rents is essential to the quantitative

performance of our model. The increases in volatility change how rents are shared between a firm’s

owners and its workers, while the increase in the level of rents amplifies the effect of changes in

rent sharing on the capital share. We note that our calibration exercises compare outcomes in

stationary equilibria. Thus, although the increase in idiosyncratic volatility in the data occurs

mostly in the earlier half our sample, we should not expect an increase in the capital share in the

data to immediately reflect the calibrated increase in the stationary equilibrium.

To provide further evidence to support our model, we conduct a variety of empirical tests. We

show by plotting the capital-income-to-sales ratio within firm size quantiles that the aggregate

capital share increase is driven by the largest firms, affirming Gabaix (2011)’s observation that

we need to study the behavior of large firms to understand macroeconomic aggregates. In the

smallest quantile, the average capital-income-to-sales ratio decreased from around 10% to less than

−100% from 1960 to 2010. In contrast, this same ratio in the largest quantile remained almost

unchanged at around 10%. Thus, the capital share has become more dispersed across the size

distribution. We also show that this effect is most pronounced in the health products and technology

industry, which also experienced a large increase in volatility. To directly assess the link between

industry-level idiosyncratic volatility and dispersion in the capital share, we regress the industry-

level capital-income-to-sales ratio on idiosyncratic volatility. We find that a within-industry increase

in idiosyncratic volatility is associated with a decrease in the average capital-income-to-sales ratio.

Our paper contributes to the growing literature on the decline in the labor share of output.

Karabarbounis and Neiman (2014) argue that this decline is due to a decrease in equipment prices

that leads firms to substitute capital for labor, but this mechanism does not predict a divergence

between the average labor share and the aggregate labor share that we document in the data.3

More recent evidence from manufacturing establishments and the U.S. Economic Census data

on superstar firms (Kehrig and Vincent, 2017; Autor et al., 2017) confirm the validity of our earlier

findings in the Compustat sample of publicly traded firms. Their findings are consistent with our

3An exception is the introduction of heterogeneous size-dependent technology choices in the last two decades, but
not before that. Elsby, Hobijn, and Şahin (2013) show that labor share decreases most among industries exposed to
import shocks, which indicates that the decline may be due to the offshoring of labor.
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mechanism in that we also predict that relatively large and productive firms will have high capital

shares. However, our paper differs from Autor et al. (2017) in several key respects. First, although

we both identify the effect that large firms have on the capital share, we provide a model-based

explanation for the relationship between firm size and the capital share that relies on firm-level

risk and selection. In contrast, Autor et al. assume that the labor share of larger firms is smaller

due to each firm’s need for a fixed amount of overhead labor. They attribute the shift in the

size distribution of firms to an exogenous increase in concentration, while we attribute it to an

endogenous shift in the size distribution triggered by an increase in firm-level risk. Second, our

mechanism also accounts for the increase in the mass of low capital share firms in the left tail,

a key feature of the data, while their paper is silent on this. Third, we show evidence from the

cross-section of industries that the effect of idiosyncratic volatility on industry-level factor shares

is robust to the inclusion of industry concentration measures; we found similar effects in Europe

and the U.K. Finally, our equilibrium framework allows us to conduct a quantitative analysis of

our model’s ability to match the data. We show that increases in both firm-level risk and rents are

required to quantitatively match the data.

The rest of this paper is organized as follows: Section 1 describes the new stylized facts. Section

2 describes the setup of our model. Section 3 describes the equilibrium of our model and its

implications for the aggregate capital share. Section 4 uses a calibrated version of our economy

as a laboratory to explore the quantitative effect of changes in volatility on factor shares. Finally,

Section 5 presents new empirical evidence on U.S. capital share dynamics, and we conclude by

showing that compensation inequality has not kept pace with size inequality.

1 New Stylized Facts: U.S. Factor Share Dynamics, Volatility,

and Firm Size Distribution

1.1 Factor Share Dynamics

To measure capital share at the firm level, we use widely available accounting data from the

Compustat/CRSP Merged Fundamentals Annual. The sample ranges from 1960 to 2014. We

exclude financial firms that have SIC codes in the interval 6000-6799, and we exclude firms whose

sales, employee numbers and total asset values are negative. We measure the aggregate capital

share of output as the ratio of aggregate capital income to aggregate value added. Capital income

is measured as operating income before depreciation (OIBDP), which equals sales minus operating

expenses including the cost of goods sold, labor costs, and other administrative expenses. Value

added is computed as the sum of OIBDP and XLR, which records staff expenses. We provide

further details in the data appendix (see section A of the Appendix).

We start by examining the time series dynamics of the capital share of U.S. publicly traded

firms as measured in the Compustat/CRSP Merged Fundamentals dataset. As we document in

Figure 1, the aggregate capital share for these firms increased from 41% in 1970 to 62% in 2010.

However, this trend is not operative for a typical U.S. firm. To demonstrate this, we analyze
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Figure 3: Average and Aggregate Capital Income to Sales Ratios
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The aggregate capital income to sales ratio is
∑
i Operating Incomei divided by

∑
i Salesi for each year. The average

capital-income-to-sales ratio is the simple average of the firm-level capital-income-to-sales ratio for each year. The
dotted lines are the HP-filtered trends. Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014).

firm-level data. Our measure of firm-level value added can be negative. Because capital income can

also be negative, the ratio of capital income to value added at the firm level is not an informative

measure of the firm’s capital share that can be readily compared across firms.4 Instead, we use the

ratio of capital income to sales as a proxy for firm-level capital shares in our firm-level analysis to

obtain a well-ordered estimate. Our key empirical contribution is to show that the increase in the

capital share is concentrated among the largest publicly traded firms in the U.S. Figure 2 shows

the relationship between firm size and the ratio of capital income to sales (which is a measure of

the capital share of profits). In 1970, there was essentially no relation between firm size and the

capital-income-to-sales ratio, but by 2010, this ratio was strongly increasing. This shift caused

the average and aggregate capital shares to diverge: the equal-weighted average capital share of

publicly traded companies has declined since the 1980s.5

This is illustrated in Figure 3, which plots the average and aggregate capital shares as fractions

of sales for the sample of publicly traded firms. The average ratio of capital income to sales is

the cross-sectional mean of the capital-income-to-sales ratio for a given year. The aggregate ratio

equals the sum of capital income (OIBDP) across all of the firms divided by aggregate sales. The

large declines in the average capital-income-to-sales ratio are driven mostly by small firms that

4Over the past decade, 15% of public firms had negative value added. Dropping negative value-added firms
arbitrarily truncates the left tail of the firm size distribution.

5In section A of the Separate Online Appendix, we show that the results are not exclusively driven by the accession
of NASDAQ to the Compustat database. Even in the universe of NYSE firms, we document a similar, though smaller,
divergence between the average and aggregate capital shares.
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Figure 4: Aggregate and Average Labor-Income-to-Sales Ratios
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The aggregate-labor-income-to-sales ratio is
∑
i Extended XLRi divided by

∑
i Salesi for each year, and the average

labor-income-to-sales ratio is the simple average of the within-firm-labor-income-to-sales ratio for each year. The
dashed lines are the HP-filtered trends. Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014).

have negative operating margins. The average ratio dropped from 13% in 1960 to -40% in 2014,

while the aggregate ratio increased, albeit less dramatically, from 14% in 1960 to 17% in 2014.
6 Importantly, the decline in the average capital-income-to-sales ratio is mostly a within-industry

phenomenon, but the increase in the aggregate ratio is largely driven by cross-industry effects: some

industries with high aggregate capital-income-to-sales ratios have grown much more than others,

and they thus account for most of the increase in the aggregate capital-income-to-sales ratio, as

documented in section A of the Separate Online Appendix.

We also compute measures of the labor income share. One drawback of the Compustat data is

the lack of comprehensive labor expense data: XLR in Compustat is sparse, with the sample being

only about 13% firm-year observations. To address this weakness, we adopt Donangelo (2016)’s

imputation procedure to construct the extended labor cost (extended XLR) for firms that failed to

report staff expenses. To implement this measure, we group firms into 17 industries and then sort

them into 20 size groups within each industry based on their total assets, thus obtaining a total of

340 industry-size cells. We estimate the average labor cost per employee (XLR/EMP) within each

industry/size cell for each year using the available XLR observations and then use this estimate

to impute labor costs to firms that have missing XLR data as the number of employees times the

6In section F.1 of the Separate Online Appendix, we report additional time series evidence using an alternative
measure of capital income: OIBDP + R&D expenses because R&D expenses can arguably be considered as an
investment instead of expenses. The initial decline in the aggregate capital-income-to-sales ratio becomes less dramatic
when we add back the expensing of R&D to operating income. Since R&D expenses include compensation to R&D
employees, we do not use this adjustment as our main measure of capital income.
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average labor cost per employee of the same industry/size cell during that year.7

The aggregate-labor-income-to-sales ratio in the non-farm business sector declined by 15%.

However, the average labor share of output did not decline in our sample of publicly traded firms.

Figure 4 shows the time series of both the average and aggregate labor-income-to-sales ratios in

our sample using the estimated labor cost. The average labor share rose from 32% in 1960 to 40%

in 2014, while the aggregate labor share (labor income to sales ratio) dropped from 22% to 11%

during the same period. Our alternative measure of aggregate labor share, the ratio of labor income

to value added, declined over the same sample period, from 59% to 40% (1 minus the capital share

from Figure 1). Our measure of the ratio of labor income to value added is lower than the BEA’s

because our sample includes only publicly traded firms. As we show in section B of the appendix,

the aggregate labor share in the non-publicly-traded sector actually increased over the last several

decades. As a consequence, the drop in the aggregate labor share that we record in the publicly

traded sector exceeds that for the U.S. economy as a whole.

1.2 Firm-level Volatility and the Firm Size Distribution

Over the same period, U.S. firms experienced a large increase in volatility. Figure 5 plots the

log of firm-level volatility, which is computed as the equal-weighted average of the log volatility of

the idiosyncratic component of stock returns or cash flows for all publicly traded U.S. firms. These

volatility measures more than doubled over the period 1950-2000 (see, e.g., Campbell et al., 2001;

Comin and Philippon, 2005; Xiaolan, 2014; Bloom, 2014; Herskovic et al., 2015). As volatility

increases, the right tail of the firm size distribution increases in mass. However, it is important

to note that while Figure 5 plots annual changes in volatility, these changes will gradually be

impounded into the size distribution. As such, we also plot the log of the 10-year moving average

of idiosyncratic volatility for both returns and sales growth, both of which have substantially

increased over our sample period. These increases are borne out in a considerable shift in the size

distribution of firms. Figure 6 indicates that from 1960 to 2014, the power law exponent γ, which

is given by the solution to the equation P (Size > X) = kX−γ for some constant k, decreased

substantially. The average of our estimate for the power law exponent across the years 1960-1970

is 1.48 when measuring either total assets or sales. For the years 1990-2014, this average decreases

to 1.13 when measuring size by total assets and to 1.11 when measuring size by sales.

We note that our estimates for the power law exponent of the firm size distribution differ in an

important way from estimates in the literature, such as in Axtell (2001), ? Luttmer (2007), Gabaix

and Landier (2008a), and Ai, Kiku, and Li (2013). Research has focused on the distribution of firm

size in the later part of our sample: for example, Axtell (2001) begins his analysis in 1988, while

Gabaix and Landier (2008a) begin their analysis in 1980. We show that the firm size distribution

in the early part of our sample had a substantially higher power law exponent.

7We follow Donangelo (2016) and use the Fama-French 17 industry classifications. To check that our results are
not an artifact of this imputation procedure, we also report capital income as a fraction of sales. This measure of the
capital share does not rely on the imputation.
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Figure 5: Firm-Level Volatility of U.S. Public Firms
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The black line indicates idiosyncratic firm-level stock return volatility in logs. The Idiosyncratic return for firm i is
the residual from the following Fama and French (1993) 3-factor model:

rit = γ0,i + γ1,iMKTt + γ2,iHMLt + γ3,iSMBt + εi,t

where t is a daily observation within year T . Idiosyncratic return volatility for firm i in year T is the standard
deviation of εi,t. A time series of idiosyncratic volatility is then obtained by averaging across firms at each year.
The dashed black line is the 10-year moving average of idiosyncratic return volatility. The gray line indicates the
firm-level idiosyncratic cash flow volatility in logs. The idiosyncratic sales growth for firm i is the residual from the
following factor model:

git = γ0,i + γiFt + εi,t

where t is a quarter in the prior 20 quarters up to calendar year T and F is the first five principal components of the
cross section of sales growth for the 20 quarters prior to year T . Idiosyncratic return sales growth volatility for firm
i in year T is the standard deviation of εi,t at the fourth quarter of year T . A time series of idiosyncratic volatility is
obtained by averaging across firms at each year. The dashed gray line is the 10-year moving average of idiosyncratic
sales growth volatility. Source: CRSP 1960-2014 and Compustat/CRSP Merged Fundamentals Annual 1950-2014.
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Figure 6: Power Law Coefficient of Firm Size: 1960-2014
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The variable γ is the power law exponent given by P (Size > X) = kX−γ , where size is either Total Assets or Sales.
We estimate γt for each year t using the following regression:

log(Ranki,t) = αt + γt log(Sizei) + εi,t

using the top n largest firms, where n is defined by the 95th percentile of firm size in the year. Source: Compus-
tat/CRSP Merged Fundamentals Annual (1960-2014). Note: Variables are not winsorized.
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To summarize, we document a divergence in the moments of the firm-level capital and labor

share distributions that is broadly consistent with the mechanism that we now highlight in our

model. Specifically, the trends that we observe in the data are consistent with changes in firm-level

volatility, and they cause a shift in the firm size distribution that favors the owners of capital. As

firm-level volatility increases, the aggregate and average capital shares in the model will diverge.

In Section B of the Separate Online Appendix, we show that the U.K. and, to a lesser extent,

Europe, have experienced similar divergences between the aggregate and average factor shares over

this sample and increases in firm-level risk. Japan, in contrast, has experienced neither.

2 A Dynamic Model of Industry Equilibrium with Entry and Exit

In this section, we present a model to rationalize the facts presented in Figures 1 and 2 and

Section 1. In our model, firms produce cash flows according to a simple production function.

Importantly, the shareholders of a given firm hold an option to cease operations when productivity

falls: this is the classic abandonment option. As is standard in the real options literature, increasing

the volatility of the firms’ cash flows increases the value of the option to wait to abandon, which

lowers the threshold of productivity at which the firm ceases operations.

We embed an optimal risk-sharing contract between the skilled workers and the firm in our

model. Beginning with the seminal work of Harris and Holmström (1982), a large body of literature

has developed on the study of the settings under which it is optimal for firms to shield workers

from risk. In Harris and Holmström (1982), the optimal labor contract protects a risk-averse worker

from negative shocks to her perceived ability. However, positive shocks to worker ability increase

her outside option and must be reflected in higher wages. Thus, the optimal contract features

downward rigidity as a form of partial insurance. Berk, Stanton, and Zechner (2010) build on

Harris and Holmström (1982) and show that in the presence of leverage, the optimal wage contract

features temporary wage cuts when the firm is in financial distress and bankruptcy. As a result, the

optimal capital structure will take into account employees’ risk aversion. Our setting differs from

Harris and Holmström (1982) and Berk et al. (2010) in that risk in our model is entirely embodied

in the firm. This means that the optimal wage contract in our model features full insurance for the

skilled worker.8

There is strong evidence that firms insure workers. Guiso, Pistaferri, and Schivardi (2005),

the first to study insurance within the firm using U.S. microdata, find that firms fully insure

workers against transitory shocks but not against permanent shocks (see also Rute Cardoso and

Portela, 2009; Fuss and Wintr, 2009; Lagakos and Ordoñez, 2011; Friedrich, Laun, Meghir, and

Pistaferri, 2014; Fagereng, Guiso, and Pistaferri, 2017, for foreign evidence). Xiaolan (2014) finds

direct evidence of increased cash flow volatility for firms that provide better insurance to workers.

8Other studies of the optimal wage contracts and insurance include Thomas and Worrall (1988); Holmstrom and
Milgrom (1991); Kocherlakota (1996); Krueger and Uhlig (2006); Lustig, Syverson, and Nieuwerburgh (2011); Lagakos
and Ordoñez (2011); Berk and Walden (2013); Eisfeldt and Papanikolaou (2013); Xiaolan (2014); Ai and Li (2015);
?.
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Lagakos and Ordoñez (2011) find that the wages of low-skill workers are more responsive to shocks

than those of high-skill workers. In our model, unskilled labor does not benefit from insurance. In

a model with systematic shocks, Eisfeldt and Papanikolaou (2013) show that the outside options

of skilled workers increase with positive systematic shocks, which increases skilled workers’ share

of firm profits and the riskiness of shareholder equity.

When we introduce moral hazard and other frictions that hamper risk sharing, our mechanism

is mitigated. However, we show in section D of the Appendix that when we allow workers some

exposure to firm performance, our primary results remain unchanged. The selection mechanism

still applies as long as a firm’s owners provide some insurance to its workers and as long as the firm

can exit when productivity declines.9

Finally, we characterize the stationary distribution of firms given the solution to the optimal

abandonment problem. Increasing (idiosyncratic) cash flow volatility leads more firms to delay

abandonment and to survive long enough to become highly productive. Thus, the average of the

capital share of profits across firms increases in volatility. Here, we use insights from recent work

on firm size distribution.10

2.1 Technology and Preferences

The economy is populated by a measure of ex-ante identical firms, and each firm operates a

standard production technology. A given firm i with productivity Xit has a single skilled worker,

rents physical capital Kit, and employs unskilled labor Lit. The total output produced by this firm

is given by

Yit = Xν
itF (Kit, Lit)

1−ν ,

where F is homogeneous of degree one and 0 < ν < 1. The parameter ν governs the decreasing

returns to scale at the firm level. Lucas refers to ν as the span of the control parameter of the

firm’s manager. Atkeson and Kehoe (2005) show that a decrease in competition in a model with

imperfect competition is equivalent to an increase in ν in our model, and thus we interpret ν as a

measure of the level of economic rents in the economy. The aggregate supplies of physical capital

and unskilled labor are denoted by k and l, respectively.

Firm productivity evolves according to

dXit = µXitdt+ σXitdZ
i
t −XitdNit; for Xit > Xmin, (1)

9Gabaix and Landier (2008b); Edmans, Gabaix, and Landier (2009) find that equilibrium CEO compensation in a
competitive market for CEO talent is composed of a cash component and an equity component. For our key results,
we analyze the implications of this class of contracts.

10In a series of papers, Luttmer (2007, 2012) characterizes the stationary size distribution of firms when firm-specific
productivity is subject to permanent shocks, and firms incur a fixed cost of operating. The selection effect of exit at the
bottom of the distribution informs the shape of the stationary size distribution, which is a Pareto distribution with an
endogenous tail index. Our work explores the impact of changes in the stationary size distribution on the distribution
of rents in our laboratory economy. Other work on characterizing the firm size distribution includes Miao (2005);
Gourio and Roys (2014); Moll (2016). Perla, Tonetti, Benhabib, et al. (2014) examine the endogenous productivity
distribution in an environment in which firms choose to innovate, adopt new technology, or keep producing with old
technology.
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where Zit is a standard Brownian motion that is independent across firms, Nit is a Poisson process

with intensity λ, and Xmin > 0 is some minimum level of productivity. If dNit = 1 or if Xit reaches

Xmin, Xi jumps to zero and the firm exits. The process Nit gives rise to what is often referred to

as an exogenous death rate of firms, and it is necessary to guarantee the existence of a stationary

distribution of firms for all parametrizations of the model. Because all firms are identical up to

their current level of productivity, we omit the subscript i for the remainder of the discussion.

Each firm is owned by an investor and requires one skilled worker to operate. We assume that

investors are risk-neutral and discount cash flows at the risk-free rate of r > µ, while skilled workers

value a stream of payment {ct}t≥0 according to the following utility function:

U({ct}t≥0) = E

[∫ ∞
0

e−rtu(ct)dt

]
,

where u′(c) ≥ 0 and u′′(c) < 0. We normalize the measure of skilled workers in the economy to

one.

Firms can enter and exit the economy at the discretion of their owners. When a firm exits, its

owner receives the liquidation value of the firm, which we normalize to zero, and its skilled worker

immediately re-enters the skilled labor market. There is a competitive fringe of shareholders waiting

to create new firms. When a shareholder creates a new firm, she matches with a skilled worker,

then pays a cost P for the technology blueprint to begin production. After creating a new firm,

the firm’s initial productivity is drawn from a Pareto distribution with a density of

f(X) =
ρ

X1+ρ
; X ∈ [1,∞).

This distribution implies that the log-productivity of an entering firm is exponentially distributed

with parameter ρ > 1, and it simplifies the characterization of the equilibrium that follows. We

denote the rate at which new firms are created by ψt. Note that this implies that the entry rate at

a given point X is ψtf(X).

Upon matching with a skilled worker, an investor in a new firm offers a long-term contract to

the skilled worker before the realization of the firm’s productivity and the firm’s payment of the

cost P . The skilled worker can reject the contract, at which point she is instantaneously matched

with a new firm. Formally, this contract can be denoted by a process {ct}t≥0, which determines

a payment to the skilled worker of ct at time t. We assume that the investor cannot commit to

continue operations or to pay the skilled worker after the firm has ceased operations. We also

assume that the skilled worker can choose to exit the contract and match with a new firm at

any time, and we assume that she does not have access to a savings technology. This contracting

environment features a two-sided limited commitment problem similar to Ai et al. (2013) and Ai

and Li (2015). Importantly, the outside option of the skilled worker depends on the value of starting

a new firm, which is endogenously determined in equilibrium. Eisfeldt and Papanikolaou (2013)

consider a similar mechanism to explore the implications of the division of the surplus between

shareholders and skilled workers for the cross-section of returns.
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2.2 The Investor’s Problem

We denote the utility that the skilled worker receives upon entering this market by U0, which

is also the skilled worker’s reservation utility. At the inception of the contract, the investor and

the skilled worker take U0 as exogenously given, although it will be determined in equilibrium by

the market for skilled workers. The investor will continue operations as long as doing so yields a

positive present value. This means that the investor’s value for operating the firm is the solution to

a standard abandonment option. Specifically, the investor operates the firm until a stopping time

denoted by τ . The investor’s problem is thus

max
K,L,τ,c

E

[∫ τ

0
e−rt(Yt − ct − κKt − wLt)dt

]
, (2)

such that

U0 ≤ E
[∫ τ

t
e−r(s−t)u(cs)ds+ e−r(τ−t)U0

]
for all t > 0. (3)

The problem contained in Equations (2) and (3) is an optimal risk-sharing problem. Given that the

investor is risk-neutral and the skilled worker is risk-averse, the investor chooses a compensation

rule to minimize the skilled worker’s exposure to risk. Intuitively, the skilled worker’s limited com-

mitment constraint given in Equation (3) must be binding, as promising her a greater continuation

value at any point in time can only reduce the investor’s value for the firm. As a result, the skilled

worker’s value for the contract is constant over time, and it is without loss of generality that we

restrict attention to contracts that offer the skilled worker a fixed wage of c until the firm exits, at

which point the skilled worker re-enters the market and receives her outside option.

2.3 Equilibrium

We focus our analysis on equilibria in which the measure of firms at any given level of pro-

ductivity is stationary. We denote the stationary distribution of log-productivity by φ(x), where

x = log(X) throughout.

Definition 1. A stationary equilibrium consists of a rental rate κ for physical capital, a demand

for physical capital as a function of productivity K(X), a wage rate w for unskilled labor, a demand

for unskilled labor L(X) as a function of X, a compensation c∗ for the skilled workers, an entry

rate of new firms ψ∗, an exit policy for the shareholder X̄, and a stationary distribution φ(x), such

that

1. The exit policy X̄ solves the investor’s problem given by (2) and (3).

2. The stationary distribution φ(x) is consistent with the entry rate of new firms of ψ and with

the exit policy X̄.
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3. The markets for physical capital, unskilled labor, and skilled workers clear∫ ∞
0

K(x)φ(x)dx = k,

∫ ∞
0

L(x)φ(x)dx = l, and

∫ ∞
0

φ(x)dx = 1.

4. Creating a new firm leaves the investor with zero expected NPV:∫ ∞
1

V (X; c)f(X)dX = P.

Conditions 1-3 are standard equilibrium conditions. Condition 4 derives from the existence of

the competitive fringe of investors waiting to create new firms. If an investor in a new firm offers

a contract that leaves her with positive ex-ante expected NPV, then the skilled worker will reject

it because she can simply re-enter the market and instantaneously match with a new firm. Thus,

Condition 4 is equivalent to allocating all of the ex-ante bargaining power to the skilled worker.

This in turn determines the level of skilled worker compensation. An alternative definition for

Condition 4 would be to allocate some bargaining power to the investor; however, doing so will

change the division of ex-ante rents but not how that division qualitatively depends on the key

parameters of the model.

3 Equilibrium Analysis

3.1 Equilibrium Allocation of Physical Capital and Unskilled Labor

To characterize equilibrium, we begin by considering the allocation of physical capital and

unskilled labor across active firms. Given spot rates for physical capital and unskilled labor and

some current level of productivity, a given firm chooses capital and labor to maximize profits, which

are the net of the rental payments to physical capital and wages to unskilled labor:

(Kt, Lt) = arg max
K,L

{
Xν
t F (K,L)1−ν − wL− κK

}
.

The homogeneity of the production function F implies that the solution (Kt, Lt) of the maximization

above is linear in Xt. Market clearing then implies that physical capital and unskilled labor are

allocated across firms according to the following linear allocation rule:

Kt =
k

X̂
Xt, (4)

Lt =
l

X̂
Xt, (5)

where

X̂ =

∫ ∞
xmin

exφ(x)dx
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is the average productivity in the economy given the stationary distribution of log productivity

φ(x). This allocation rule implies that the output of any given firm is a linear function of aggregate

output:

Yt =
y

X̂
Xt,

where y = X̂νF (k, l)1−ν is aggregate output. As a result, a firm’s gross earnings (operating profits)

are proportional to Xt:

Yt − wLt − κKt =
νy

X̂
Xt.

For convenience, we let F̂ = νy

X̂
. We refer to F̂ as the equilibrium rents normalized by (average)

productivity X̂.

3.2 Solving the investor’s problem

Having determined the allocation of physical capital and unskilled labor, we can now analyze

the investor’s problem given in Equation (2). Taking equilibrium rents F̂ as given and using the

allocation rules given in Equations (4) and(5) allows us to simplify the investor’s problem to

V (X; c, F̂ ) = max
τ

E

[∫ τ

0
e−rt

(
F̂Xt − c

)
dt|X0 = X

]
, (6)

where V (X; c, F̂ ) is the value of operating a firm with current productivity X given a skilled worker

contract c and rents F̂ . The payment c to the skilled worker then acts as a fixed cost or as operating

leverage. As such, the optimal risk-sharing problem given in Equations (2) and (3) reduces to an

optimal abandonment considered in the real options literature as in Brennan and Schwartz (1985)

or to an optimal default problem as in Leland (1994). Thus, the investor in a given firm will choose

to exit if productivity X is low enough. Without a loss of generality, we can restrict attention to

firm exit times that are given by threshold rules of the form

τ = inf{t|Xt ≤ X̄}

for some X̄ ≥ 0.

An application of Ito’s formula and the dynamic programming principle implies that V (X; c)

must satisfy the following ordinary differential equation:

(r + λ)V (X; c, F̂ ) = F̂X − c+ µX
∂

∂X
V (X; c, F̂ ) +

1

2
σ2X2 ∂2

∂X2
V (X; c, F̂ ), (7)
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with the boundary conditions

V (X̄(c, F̂ )); c, F̂ )) = 0, (8)

∂

∂X
V (X̄(c, F̂ )); c, F̂ )) = 0, (9)

lim
X→∞

∣∣∣∣∣V (X; c, F̂ )−

(
F̂X

r + λ− µ
− c

r + λ

)∣∣∣∣∣ = 0, (10)

where X̄(c, F̂ ) is the abandonment threshold given c and F̂ . Conditions (8) and (9) are the standard

value-matching and smooth-pasting conditions that pin down the optimal exit threshold X̄. Con-

dition (10) arises because as Xt tends toward infinity, abandonment occurs with zero probability

and firm value is just the present value of all future profits.

The solution to Equations (7)-(10) is given by

V (X; c, F̂ ) =
F̂X

r + λ− µ

(
1−

(
X

X̄

)−(η+1)
)
− c

r + λ

(
1−

(
X

X̄

)−η)
, (11)

where

X̄ =

(
ξ − 1

ξ

)(
c

F̂

)
, (12)

η =
µ− 1

2σ
2 +

√
(µ− 1

2σ
2)2 + 2(r + λ)σ2

σ2
,

and

ξ =
−
(
µ− 1

2σ
2
)

+
√

(µ− 1
2σ

2)2 + 2(r + λ)σ2

σ2

are the roots of the fundamental quadratic for Equation (7). Note that an increase in firm-level

volatility σ invariably lowers the abandonment threshold (holding equilibrium rents F̂ constant)

simply because an increase in volatility raises the option value of keeping the firm alive. This feature

of the abandonment option plays a key role in our analysis. Its importance becomes apparent when

we discuss the stationary distribution of firm size. Specifically, an increase in firm-level volatility

leads to an increase in the mass of firms that delay exit, thus increasing the mass of firms that have

low productivity and the mass of firms that survive long enough to achieve high productivity.

Given the solution for firm value conditional on a skilled worker’s wage c, and the Pareto entry

distribution of new firms, it is straightforward to solve the investor’s ex-ante zero profit condition

for the equilibrium c. We have

c∗ =

(
P (r + λ)(ρ− 1)(ρ− η)

η

(
ξ − 1

F̂ ξ

)ρ)− 1
ρ−1

. (13)

The derivation of c∗ is given in Section C of the Appendix. Note that c∗ depends on σ through η

and ξ.

17



3.3 Stationary Size Distribution

We now consider the equilibrium distribution of productivity φ(x) given an exit threshold of

X̄ and rents F̂ . For the φ(x) to be stationary, the expected change via inflow and outflow in the

measure of firms at a given level of x must equal the measure of firms that exogenously die at rate

λ, less the measure of firms that endogenously enter at rate ψg(x). This leads to the following

Kolmogorov forward equation for the stationary distribution of log productivity φ(x):

1

2
σ2φ′′(x)−

(
µ− 1

2
σ2

)
φ′(x)− λφ(x) + ψg(x) = 0, (14)

where g(x) = ρe−ρx is the density of initial log productivity x for entering firms. A similar argument

gives a boundary condition for φ(x) at the exit barrier x̄ = log X̄

φ(x̄) = 0. (15)

The final equation that determines the stationary distribution of firm size is given by the market-

clearing condition for skilled workers: ∫ ∞
x̄

φ(x)dx = 1. (16)

The solution to equations (14)-(16) is given by

φ(x) =
ργ

ρ− γ

(
e−γ(x−x̄) − e−ρ(x−x̄)

)
(17)

for x ∈ [x̄,∞), where γ =
−(µ− 1

2
σ2)+

√
(µ− 1

2
σ2)2+2σ2λ

σ2 . This solution also allows us to characterize

the aggregate entry rate of new firms:

ψ =
γ(ρ(µ− 1

2σ
2) + 1

2ρ
2σ2 − λ)

ρ− γ
eρx̄. (18)

We note that our assumption about the density of the productivity of entering firms allows for the

simple closed-form solutions shown above. The general solution to the ODE given in Equation (14)

is exponential. By assuming that g(x) is also exponential, we are left with a solution to Equation

(14) for which it is possible to solve the boundary condition given in Equation (15).

The equilibrium average productivity is then

X̂(X̄) =
X̄γρ

(γ − 1)(ρ− 1)
. (19)

This implies that the equilibrium rents are

F̂ = ν

(
X̄γρ

(γ − 1)(ρ− 1)

)ν−1

F (k, l)1−ν . (20)
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Figure 7: The stationary distribution of productivity
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Parameter values are given by σ = .2, .4, r = 5%, µ = 2.5%, λ = .04, ρ = 3.5, α = .3, k/l = 1, ν = .2, and P = 1 and
are taken from the calibration given in Section 4

An equilibrium is then characterized by a solution (X̄, F̂ ) to Equations (12), (13), and (20). It can

be shown that such a solution exists and is unique.

Figure 7 plots the complementary cumulative distribution function for the stationary distribu-

tion of firm productivity X on the log axes for different levels of σ. The other parameters are

calibrated at r = 5%, µ = 2.5%, λ = .05, ρ = 3.5, and P = 1 and are taken from our calibration of

the model given in Section 4. As X becomes large, the log of the mass of firms with productivity

to the right of X depends linearly on log(X), indicating that the stationary distribution of X tends

to a power law. The power law exponent of X is given by the term γ: as σ increases, the power

law exponent γ decreases and the stationary distribution becomes more diffuse, with a fatter right

tail. It also shifts to the left because as firm-level volatility increases, the value of the option to

wait to exit also increases, and the optimal point at which the investor chooses to exit necessarily

decreases.

3.4 National Income Accounting

Armed with the stationary equilibrium, we can conduct national income accounting within our

model. Specifically, we can calculate the aggregate capital share of output as

Capital Share of Output = Π =
y − wl − c

y

= 1− (1− ν)(1− α(k, l))︸ ︷︷ ︸
Unskilled Labor Share

− c

y︸︷︷︸
Skilled Labor Share
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where

1− α(k, l) =
1

F (k, l)−1

∂F (k, l)

∂l

is the elasticity of the production function F with respect to unskilled labor. In other words, the

capital share of output is one minus the total labor share, where the labor share aggregates the

share of output that accrues to unskilled and skilled labor.

3.4.1 Idiosyncratic Volatility and the Capital Share

We now consider how the aggregate capital share of output depends on idiosyncratic volatility.

Note that the share of output that accrues to unskilled labor is independent of σ, so it suffices to

consider how the share that accrues to skilled workers c
y depends on σ and then to abstract from

the unskilled labor share by setting ν = 1. In this special case, y = X̂, so aggregate output is just

equal to the average productivity in the economy.

To provide intuition for the effect of a comparative static change in idiosyncratic volatility on

the capital share, it is useful to decompose the (skilled) labor share into its constituent parts. The

denominator is the total output of all firms in the economy, and is given by∫ ∞
x̄

exφ(x)dx =

(
γ

γ − 1

)(
ρ

ρ− 1

)
X̄.

The numerator is the total compensation paid to skilled workers c. We demonstrate that the

optimality of the exit threshold x̄ implies that c is proportional using a quantity that we call

“discounted average productivity.” Although we derived the optimal exit threshold using the

smooth pasting condition in Equation (9), the following first-order condition for exit

∂

∂x̄

(∫ ∞
0

E

[∫ τ

0
e−rt(ext − c)dt|x0 = x

]
g(x)dx

)
= 0 (21)

is equivalent. This condition states that the optimal exit threshold x̄ must maximize the ex-ante

firm value prior to the realization of the initial log productivity x0.

Using an argument similar to that used to derive the stationary distribution φ(x), it can be

shown that ∫ ∞
0

E

[∫ τ

0
e−rt(ext − c)dt|x0 = x

]
g(x)dx = A

(∫ ∞
x̄

exθ(x)dx− c
)

(22)

where

A =
e−ρx̄η

(r + λ)(η + λ)
sfgs (23)

and

θ(x) =
ξρ

ξ − ρ
(e−ξ(x−x̄) − e−ρ(x−x̄)) (24)
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where

ξ =
−(µ− 1

2σ
2) +

√
(µ− 1

2σ
2)2 + 2(r + λ)σ2

σ2
. (25)

Note that A is the survival annuity factor of the firm because it is equal to the ex-ante present

value of a claim to a cash flow of one dollar for as long as the firm survives.

Comparing θ(x) to φ(x), or more specifically ξ to γ, reveals that θ(x) is the stationary dis-

tribution of log productivity in an economy equivalent to the one we describe above, but with a

rate of exogenous exit equal to r + λ to account for the effect of discounting. Thus, it represents a

transformed version of the stationary distribution that puts less weight on paths that are far from

the center of mass of the entry distribution. We refer to

X̃ =

∫ ∞
x̄

exθ(x)dx =
ξρX̄

(ξ − 1)(ρ− 1)
(26)

as the discounted average productivity of the economy.

We can rewrite the first-order condition in equation (21) to obtain

c
∂A

∂x̄
=
∂A

∂x̄
X̃ +A

∂X̃

∂x̄
. (27)

The right-hand side of Equation (27) represents the marginal cost (in ex-ante terms) of delaying

exit, i.e., the present value of the additional wages that the firm will have to pay to the skilled

worker. The left-hand side represents the marginal benefit (again in ex-ante terms) of delaying

exit, i.e., the present value of the additional gross cash flows that will accrue to the firm. This

marginal benefit is determined by the effect that such a delay has on both the discounted average

productivity of the firm X̃ and the survival annuity factor A.

Note that ∂A
∂x̄ = −ρA and ∂X̃

∂x̄ = X̃. We can thus solve Equation (27) to obtain the following

expression for compensation:

c =

(
ρ− 1

ρ

)
X̃. (28)

The wage paid to the skilled worker is proportional to the ex-ante discounted average productivity

of the firm, where the constant of proportionality adjusts for survivorship bias. Thus, if ν = 1, the

capital share is given by

Π = 1−
(
ρ− 1

ρ

)
X̃

X̂
= 1−

(
ρ− 1

ρ

)(
γ − 1

γ

)(
ξ

ξ − 1

)
. (29)

Note that X̄ appears in both the numerator and the denominator, and it thus cancels. Intuitively,

as σ increases, the right tail of the stationary distribution φ(x) becomes fatter, i.e., the tail exponent

γ decreases, and aggregate productivity X̄ increases. The right tail of θ also becomes fatter, i.e., ξ

decreases, because the chance of any one firm becoming large increases. As a result, the discounted

average productivity X̃ also increases, but not by as much as X̂ because the paths that lead to

large x are now discounted in θ(x). As a result, the capital share increases. In the absence of

21



discounting (r = 0), ξ and γ are identical, and the equilibrium capital share is governed only by the

exogenous entry distribution parameter ρ: Π = 1−
(
ρ−1
ρ

)
and is therefore unaffected by volatility.

The above argument assumed that ν = 1, but this was not essential. We state this result formally

in the following proposition.

Proposition 1. The total capital share of output increases in firm-level risk, that is,

∂Π

∂σ
> 0.

The argument behind Proposition 1 does not depend on how the level of compensation c to the

skilled worker is determined in equilibrium; rather, the essential relation between c and discounted

average productivity x̃ stems from the optimality condition that governs the exit decision given in

Equation (21).

3.4.2 Rents and the Capital Share

While our focus is on the effect of changes in idiosyncratic volatility on the capital share, other

parameters also have effects. In particular, the level of rents ν affects the share of total output that

accrues to both the investors and the skilled worker. We can apply a similar argument to that of

the previous section to show that the capital share of output is given by

Π = (1− ν)α(k, l)︸ ︷︷ ︸
Physical Capital Share of Output

+ν

(
1−

(
ρ− 1

ρ

)(
γ − 1

γ

)(
ξ

ξ − 1

))
︸ ︷︷ ︸

Capital Share of Rents

. (30)

An increase in ν decreases the physical capital share but does not affect the capital share of rents.

Thus, an increase in ν increases the total capital share of output if and only if the decrease in the

physical capital share of output is less than the increase in the share of output that investors get

from rents.

While an increase in rents ν has an ambiguous effect on the capital share, a joint increase in

both ν and σ unambiguously increases the capital share. We summarize this result in the following

proposition.

Proposition 2. The capital share of output increases in the level of rents if and only if the capital

share of rents exceeds the elasticity of production with respect to physical capital; that is,

∂Π

∂ν
> 0

if and only if

α(k, l) < 1−
(
ρ− 1

ρ

)(
γ − 1

γ

)(
ξ

ξ − 1

)
.

Moreover, a joint increase in the level of rents and firm-level risk increases the total capital share
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of output i; that is,
∂2Π

∂ν∂σ
> 0.

3.4.3 The Capital Share on Average

Although our main focus in this paper is to understand the changes in the aggregate capital

share, we also document that the average capital share has decreased over our sample period. As

volatility or rents increase, the optimal abandonment point shifts to the left and the mass of less

productive firms with low capital shares in the left tail of the stationary distribution increases.

These firms can cause the average firm-level capital share to decrease. Recall that the output of a

firm with productivity Xt is given by Yt = yXt
X̂

. Thus, we can use similar arguments to those above

to calculate that the average capital share is given by

Average Capital Share = 1− (1− ν)(1− α(k, l)) +
c

y

∫ ∞
x̄

(
X̂

ex

)
φ(x)dx

= (1− ν)α(k, l)︸ ︷︷ ︸
Physical Capital Share of Output

+ν

(
1−

(
ρ

ρ+ 1

)(
γ

γ + 1

)(
ξ

ξ − 1

))
︸ ︷︷ ︸

Average Capital Share of Rents

(31)

As a result, an increase in ν will decrease the average capital share if the average capital share of

rents is greater that the elasticity of the production function with respect to physical capital. The

comparative static of the average capital share with respect to σ does not have a simple closed

form. Intuitively, the increased mass of firms with low productivity—and hence low firm-level

capital share—resulting from a delay in the optimal abandonment time have a relatively large

effect on the simple average of the capital share across firms. As a result, the average capital share

will decrease in response to a comparative static increase in σ, as we show in a calibrated version

of our model.

The behavior of the average capital share distinguishes our mechanism from that of Autor et al.

(2017). Their mechanism accounts for an increase in the mass of high-productivity, low-labor-share

firms by appealing to an increase in concentration, and it does not provide an explanation for the

accompanying increase in low-productivity, low-capital-share firms that we document in the data.

In our model, an optimal risk-sharing contract implies that low capital share firms will remain active

longer in response to increased firm level-risk and that the average capital share can decrease even

though the aggregate share increases.

4 Model Calibration and Quantitative Experiments

In this section, we explore the quantitative implications of our model. We calibrate the economy

to match the empirical moments of the distribution of the capital share of output across firms in
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the U.S. Compustat sample. We then consider the effects of changes in the underlying parameters

to quantify the effect of our mechanism on the aggregate and average capital shares and the labor

share.

Table 1: Benchmark Calibration
The table reports our benchmark calibration. Panel A reports the target moments in the data and the implied
moments from our production model. The data moments are computed from the sample Compustat/CRSP Merged
Fundamentals Annual from 1960 to 1970. The sample excludes firms that have SIC codes from 6000 to 6799. Panel B
reports the calibrated parameters, and Panel C reports the preset parameters. Firm-level value added VAi is OIBDP
plus Extended XLR. To deal with negative values, we identify the minimum operating income (OIBDP) for each
year, and we increase the value added of all of the firms by the absolute value of the minimum OIBDP×(1+1%).
The average capital share is computed using OIBDP divided by the adjusted value added. The standard deviation
and skewness of the capital share are also estimated using the adjusted value added measure. The aggregate capital
share is calculated using the unadjusted value added, and the capital share at the exit threshold X̄ is measured as
the average capital shares three years prior to delisting.

Panel A: Capital Share Moments 1960-1970

Data Model

Average Capital Share 0.208 0.264
Aggregate Capital Share 0.419 0.374
Standard Deviation of Capital Share 0.152 0.096
Capital Share at Exit 0.076 0.040
Power Law Exponent of Firm Size 1.480 1.295

Panel B: Preset Parameters

r 0.05 Discount Rate
ν 0.2 Share of Rents in GDP
σ 0.2 Idiosyncratic Vol
k/l 1 Capital/Labor Ratio
p 1 Sunk Cost

Panel C: Calibrated Parameters

µ 0.025 Firm Growth
λ 0.04 Exogenous Exit Rate
ρ 3.5 Entrants’ Firm Size Distribution
α 0.3 Aggregate Physical Capital Share of Output

We first calibrate the model to match the aggregate moments from the sample of U.S. publicly

traded firms from 1960 to 1970. Panel A in Table 1 reports the moments that we set out to match.

One caveat is that we are not able to use value added to compute the firm-level capital share

because a large number of firms have negative value added. When estimating the average capital

share for calibration, we use the adjusted value added instead of sales at the firm level as the

denominator, which allows us to obtain empirical moments of the firm-level capital share that are

more consistent with our theoretical counterpart without having to drop the negative value added

observations.11 Further details on the data are provided in Appendix A.

Panel B of Table 1 reports the preset parameters. We choose a discount rate of r = 5% and note

11Although in the empirical exercise, we use income-to-sales ratios to proxy for factor shares, our model does not
have the theoretical counterpart of income-to-sales ratios.
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that this discount rate also accounts for aggregate growth and risk that we omit from the model.

We follow Atkeson and Kehoe (2005) and set ν = .2 and α = .27. We set σ = .2 to match our data

on the volatility of returns that we use to generate Figure 5. The capital labor ratio k/l and the

cost of starting a new firm do not affect our target moments, so we normalize these parameters to

one.

Panel C reports the parameters that we chose to match the moments in Panel A. Although our

model is simple, it is able to roughly match the moments of the data given reasonable parameters.

We do not directly model the aggregate growth rate of the economy; thus, the drift parameter µ

represents idiosyncratic growth beyond aggregate growth prior to firm exit. We calibrate µ, the

death rate λ, and the parameter ρ, which governs the entry distribution, to match the cross-sectional

standard deviation of the firm-level capital share, the capital share at the exit threshold X̄, and

the power law exponent of firm size as closely as possible. The aggregate physical capital share

of output is then chosen to match the aggregate and average capital share as closely as possible.

Our model produces an aggregate capital share that is too low, an average capital share that is too

high, and too little dispersion of capital shares, mostly because the entry distribution of new firms

is misspecified, which results in a stationary distribution with insufficient dispersion in the left tail

and the middle of the distribution. Our calibration of λ and ρ produces an entry rate of firms of

13.4%, while the average IPO rate is only 3.4% in the 1980-2015 sample.12 Obviously, we cannot

match this secular trend in a stationary equilibrium. A more realistic entry distribution would

enable the model to match the data moments more closely while producing a lower entry rate,

albeit at the cost of reduced tractability. Moreover, introducing some flexibility in the relationship

between firm size, expected growth, and volatility would allow for a lower rate of exit—and hence

entry—albeit at the cost of reduced tractability.

4.1 Quantitative Experiments

Next, we use the benchmark calibration of the model to conduct the series of experiments

reported in Table 2. In Panel A, we report the changes in firm-level capital share distribution when

increasing volatility σ, entry parameter ρ, and rent share ν.

As we document in Figure 5, firm-level volatility has increased dramatically over the past five

decades. In particular, the volatility of the idiosyncratic component of sales growth has roughly

doubled. When we double the volatility from the baseline of σ = 20% to σ = 40%, the model

predicts a decline in the average capital share of output of 8.7 percentage points and an increase in

the aggregate capital share of output of 1.3 percentage points. These numbers mask large changes in

the distribution of rents. In the benchmark calibration of our model, the owners only collect 12.2%

of total rents at the average firm, but they collect 67.5% of aggregate rents. To translate the change

12IPO rates before 1980 are not available. Fama and French (2004) suggests that the IPO rate before 1979 is much
lower. The number of publicly traded U.S. firms has been trending down since 1996; half of this decrease is due
to the abnormally high delisting rate due to acquisitions, while the rest is due to the abnormally low rate of new
listings (Doidge, Karolyi, and Stulz, 2017). It is unclear what is driving these secular trends according to Doidge
et al. (2017), but these forces are presumably largely outside of our model.
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in the capital share of output to a change in the capital share of rents, we must consider that these

rents are a fraction of the output given by ν. Thus, doubling volatility increases the aggregate share

of rents collected by owners by 6.4 pps (roughly 1.3 pps divided by ν = .2) and decreases the average

share of rents by 43 pps (roughly 8.7 pps divided by ν = .2). Doubling idiosyncratic volatility also

leads to a decrease in the power law exponent of firm size from γ = 1.295 to γ = 1.130. While this

decrease is sizable, the decrease that we document in the data is larger. This could indicate either

that σ has more than doubled or that the growth rate µ has increased. In any case, our model

would deliver a larger increase in the aggregate capital share if we were to match a larger decline

in the power law exponent.

There is increasing evidence that rents, represented in our model by the parameter ν, have

increased. In particular, many authors have documented evidence of an increase in intangible

capital formed by U.S. corporations (e.g., Hall (2001), Corrado, Hulten, and Sichel (2009), Corrado

and Hulten (2010), and Eisfeldt and Papanikolaou (2014)). These empirical measures of intangible

capital correspond to the capitalized value of rents that accrue to the owners of the capital stock.13

To arrive at a reasonable increase in ν to examine in our quantitative experiments, we note that

an increase in ν in our model leads to an increase in the firm’s valuation. Economic rents are

back-loaded in the model, and hence the market value rises relative to its replacement cost as ν

rises (See Appendix E). In Figure 8, Panel (1), we document a secular increase in the aggregate

market-to-book ratio of the Compustat firms. In Figure 8, Panel (2), we show that doubling rents

from the baseline of ν = .2 to ν = .4 corresponds to a similar increase.

The quantitative effects of doubling ν are reported in Panel A of Table 2. If investors did

not have to share rents with skilled workers, doubling ν would correspond to a ν(1 − α) = 24

percentage point increase in the capital share. However, because investors only receive a fraction

of rents, doubling ν increases the capital share by 7.5 percentage points. While the increase in

ν leads to a sizable effect on the aggregate capital share, it has a small effect on the distribution

of the capital share across the firm size distribution, and it thus has a relatively small effect on

the average capital share, decreasing it by 3.5 percentage points. ν does not affect the power law

exponent of the firm size distribution in the model.

The changes in σ and ν alone have limited success in explaining the actual target moments of the

data. In particular, doubling σ can explain roughly half of the decrease in the average capital share,

but it leads to a small increase in the aggregate capital share. Similarly, doubling ν can explain a

third of the increase in the aggregate capital share, but a relatively small part of the increase in

the average capital share, and it is not consistent with the change in the size distribution that we

see in the data. Either parameter predicts smaller changes in the aggregate and average capital

shares than occur in the data. However, the effect of a change in volatility operates through the

division of rents: when rents are larger, the effects of a change in volatility on the aggregate and

13Falato, Kadyrzhanova, and Sim (2013) estimate that the intangible capital stock relative to total assets increased
from 20% at the end of 1970 to 80% in 2010, while Barkai (2016)’s calculations imply that economic rents have
increased by more than 200 pps. Finally, De Loecker and Eeckhout (2017) find that U.S. markups have risen from
18% to 64% of marginal costs.
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Figure 8: Valuation Ratio
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Panel A plots the ratio of the aggregate market value to the aggregate total assets. The market value of an individual
firm i is measured as Total Assets + Stock Price × Common Shares Outstanding − Common/Ordinary Equities.
Data Sources: Compustat/CRSP Merged Fundamentals Annual (1960-2014). Parameter values for the value-to-book
ratio given in Panel B are taken from our benchmark calibration given in Table 1.

average capital shares of profits will be larger. We therefore next consider a joint increase in both

volatility and the size of rents.

We report the effect of a joint increase in σ and ν in Panel B of Table 2. In this case, the model

predicts an increase of 7.4 pps in the aggregate capital share and a decrease of 15.9 pps in the

average capital share. When we increase the discount rate to 10%, the increase in the aggregate

capital share is 9.3 pps, while the decrease in the average capital share is 9.2 pps. Increases in ν

have minor effects on the aggregate capital share, except when they are augmented by increases in

σ. Finally, only increases in σ lower the average capital share.

Finally, we examine the quantitative effects of changes in discounting alone by changing r

from 5% to 10%. Such an increase could be the result of an increase in real interest rates or

macroeconomic risk. Increasing the discount rate increases the difference between the discounted

average productivity and aggregate productivity, and it hence increases the capital share. This

increase is similar in magnitude to the increase in the capital share that results from an increase in

σ. However, increasing the discount rate leads to an increase in the average capital share because

an increase in the discount rate decreases the value of the option to wait and therefore increases the

exit threshold. This in turn decreases the mass of small low-capital-share firms and hence raises

the average capital share.
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Table 2: Changes in the Capital Share and the Firm Size Distributions from 1960-1970 to 1990-2014.
This table presents changes in the average and aggregate capital shares and the size distribution of
firms in the data and compares them to the changes predicted by the model given a change in the
key model parameters. To calculate the change in moments in the data, we subtract the moments
measured for the time period of 1960-1970 from the same moments measured in the time period
1990-2014.

Data Model

σ → 2σ ν → 2ν σ → 2σ r → 2r
ν → 2ν

r = 0.05

∆ Average Capital Share -0.118 -0.087 -0.035 -0.209 0.030
∆ Aggregate Capital Share 0.138 0.013 0.075 0.101 0.011
∆ Capital Share at X̄ -0.574 -0.235 -0.260 -0.732 0.068
∆ Power Law Exponent of Firm Size -0.346 -0.165 0 -0.164 0

σ → 2σ ν → 2ν σ → 2σ
ν → 2ν

r = 0.10

∆ Average Capital Share -0.118 -0.053 -0.005 -0.111
∆ Aggregate Capital Share 0.138 0.014 0.086 0.115
∆ Capital Share at X̄ -0.574 -0.150 -0.191 -0.491
∆ Power Law Exponent of Firm Size -0.346 -0.165 0 -0.164
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5 Empirical Evidence Linking U.S. Capital Share Dynamics and

Idiosyncratic Volatility

In this section, we present empirical evidence on the joint dynamics of compensation, firm size,

and the implied capital share dynamics. We show that the findings are largely consistent with the

implications of our model.

5.1 Cross-Sectional Variation in Capital Share Dynamics

A key prediction of our model is that the distribution of capital shares across firm size becomes

more dispersed as idiosyncratic volatility increases. In particular, the capital shares of the smallest

firms decreases because small firms with low profitability delay exit when volatility increases. The

cross-sectional variation in the capital shares bears this out. Over the period 1960-2014, firm-level

volatility doubled, and the capital share of the smallest firms significantly decreased. Figure 9

presents the time series of the average capital-income-to-sales ratio for different size quintiles.14 All

of the firms are sorted into five quintiles based on their total assets, and we compute the average

capital-income-to-sales ratio in each quintile. We emphasize two aspects of this figure: first, the

capital-income-to-sales ratio is increasing in firm size at each date, which is consistent with the

core mechanism of our model: larger and more productive firms have higher capital shares ex post

because their shareholders bear more risk than their skilled workers. Second, the average capital-

income-to-sales ratio tends to decline more in the smaller size quintiles, while it increases for the

large firms (the last quintile). Taken together, these facts indicate that while the aggregate capital

share has increased, this increase is driven exclusively by the largest firms. These facts are also

consistent with our model. As volatility increases, the dispersion of the size distribution of firms

increases, which in turn increases the dispersion in the distribution of capital shares because larger

(and more productive) firms have larger capital shares.

The increase in the dispersion of capital shares across the firm size distribution is also present

within industries. To demonstrate this, we repeat the exercise carried out in Figure 9 within four

industry groups: consumer goods, manufacturing, health products and information, and computers

and technology (i.e., high tech industries). Industries are defined by the Fama-French five-industry

classification. We omit the industry classification “other” because it contains few firms. We fix the

definitions of the industries over time and sort firms into five size quintiles within each industry.

Figure 10 plots the results. We find similar cross-sectional patterns within each industry: the

dispersion of the capital-income-to-sales ratio across size groups increases over the last five decades,

while the more significant decline occurs in the smaller size quintiles. Interestingly, we observe a

greater increase in the dispersion of the capital-income-to-sales ratio in the high tech and health

products industries, which have relatively larger change in firm-level volatility. In section A of the

Separate Online Appendix, we show that these patterns also manifest themselves when we exclude

14Recall that because value added can be negative at the firm level, we use the capital-income-to-sales ratio as a
measure of the capital share at the firm level.
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Figure 9: Capital-Income-to-Sales Ratio by Firm Size
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This figure presents the average capital-income-to-sales ratio by size over time. Size is measured by total assets, and
the capital-income-to-sales ratio is measured as operating income (OIBDP) divided by sales. For each year, firms
are categorized into five groups based on their total assets, and we estimate the average capital-income-to-sales ratio
within each group for a given year. Source: Compustat-CRSP merged Fundamentals Annual for 1960-2014.

NASDAQ firms.

To provide more evidence on the link between volatility and the dispersion of the capital share

within industries, we regress the industry-level average capital-income-to-sales ratio on the aver-

age firm-level volatility within industries at the 2- and 3-digit SIC code level. The decline in the

average capital-income-to-sales ratio is mostly a within-industry phenomenon. We include indus-

try and time fixed effects. The regression results are reported in Table 3. As shown in Column

(1), a one-standard-deviation (0.21) increase in the firm-level stock return volatility corresponds

to a 12-percentage-point decline in the average capital-income-to-sales ratio. In Column (2), a

one-standard-deviation (0.186) increase in the moving average of the past idiosyncratic volatility

is associated with a 17-percentage-point drop in the industry average capital income-to-sales ratio.

The moving average captures the long-run change in the idiosyncratic volatility, and the effect is

quantitative larger since the capital share and firm size distribution reflects both the contemporane-

ous volatility and the cumulative effect of the past volatility. In Column (3), the effect of firm-level

sales growth volatility on capital share is less significant, likely because sales growth volatility is

estimated using 5-year sales growth data instead of contemporaneous sales growth.15 However,

the effect in Column (2) is economically sizable: a one-standard-deviation (0.204) increase in sales

15Since sales growth volatility is estimated using the past 5-years quarterly sales growth data, the sales growth
volatility estimates captures, to the large extent, past sales growth information. Hence, we do not include the ten
year moving average of past sales growth volatility in the regression.

30



Figure 10: Average Capital Share of Output: Industries
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Industries are defined by the Fama-French five-industry classification. We omit the industry classification “other”
because it contains few firms. Within each industry, we sort firms into five groups based on their total assets. The
plot shows the average capital share within each size group for four industries. ∆ log(σ) is the difference between the
log of the industry level average of idiosyncratic volatility in 1990-2014 and the industry level average of idiosyncratic
volatility in 1960-1970. Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014).
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growth volatility above that industry’s mean volatility leads to a drop of more than 8 pps in the

average capital-income-to-sales ratio below that industry’s mean ratio.

Table 3: Average Capital Share and Idiosyncratic Volatility: Industry Level 1960 – 2014

The table reports the regression results of industry capital income/sales ratios on the average idiosyncratic volatility
(annualized). The industry capital income/sales ratio is calculated as the average of capital income/sales ratios across
firms within an industry. Idio.Vol(ret) is the average log idiosyncratic stock return volatility within an industry,
MA10.Idio.Vol(ret) is the moving average of industry level idiosyncratic return volatility from year t-10 to year t
(including the current year), and Idio.Vol(sales) is the average log idiosyncratic sales growth volatility within an
industry. Tangibility is the ratio of the average of gross property, plant, and equipment (PPEGT) to that of total
assets (AT) within an industry. M/B ratio is the industry average market-to-book ratio within an industry. Columns
(1) and (2) define industries using 2-digit SIC codes, and columns (3) and (4) define industries using 3-digit SIC
codes. The sample includes all of the firms in the Compustat/CRSP merged database for 1960-2014. t statistics in
parentheses, and ∗ p < 0.10, ∗∗ p < 0.05, and ∗∗∗ p < 0.01.

(1) (2) (3) (4) (5) (6)
Capital Share (SIC2) Capital Share (SIC3)

Idio.Vol(ret) -0.593∗∗∗ -0.406∗∗∗

(-3.02) (-6.07)

MA10.Idio.Vol(ret) -0.920∗∗ -0.477∗∗∗

(-2.61) (-3.83)

Idio.Vol(sales) -0.389 -0.141∗

(-1.50) (-1.76)

Tangibility 0.242 0.336∗ 0.292∗ 0.161∗∗∗ 0.158∗∗ 0.132∗∗

(1.42) (1.72) (1.69) (2.62) (2.50) (2.06)

M/B Ratio -0.080∗∗ -0.094∗∗ -0.106∗∗ -0.071∗∗∗ -0.069∗∗∗ -0.094∗∗∗

(-2.42) (-2.65) (-2.29) (-3.81) (-3.67) (-4.49)

Constant 0.185 0.254 0.158∗ 0.155∗∗∗ 0.182∗∗∗ 0.179∗∗

(1.50) (1.33) (1.72) (2.99) (3.01) (2.23)

Year FE Y Y Y Y Y Y
Industry FE Y Y Y Y Y Y
N 3,091 3,106 2,774 11,838 11,896 10,394
N clust 65 65 63 252 252 249
r2 a 0.161 0.163 0.175 0.084 0.071 0.060

This relation between the average capital share and firm-level volatility is robust to controlling

for various concentration measures. (Barkai, 2016; Autor et al., 2017) emphasize that increased

concentration drives the secular factor shares. We construct concentration measures based on

Compustat-reported sales; we also use census concentration measures and Herfindahl-Hirschman

Index measures for manufacturing. The negative effect of firm-level return risk on average capital

shares endures at the 2- and 3-digit SIC code levels. These results are reported in Section C of the

Separate Online Appendix.

Finally, using Compustat Global, we ran the same regression for the U.K., Europe, and Japan

and found statistically significant negative coefficient estimates for firm-level volatility in all three

cases: a one-standard-deviation increase in volatility above that industry’s (3-digit SIC-code) aver-
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age lowers the average capital share by 2.7 pps, 3.5 pps, and .5 pps in the U.K., Europe, and Japan,

respectively. This effect is economically significant in the U.K. and Europe (although smaller than

that in the U.S.), but not in Japan. Section B.1 of the Separate Online Appendix provides the

details.

We have also examined the vintage effects of the capital share dynamics. For each year, we

identify firms in the top 20 percent of the size distribution (measured by total assets or sales).

Among the top 20 (bottom 20) percent of largest (smallest) firms, we identify the entry year of

each firm and group them into five entry cohorts (1960s, 1970s, 1980s, 1990s, and 2000s). We then

compute the average capital-income-to-sales ratio of each entry cohort. First, the average capital-

income-to-sales ratio among the largest firms trends up for all cohorts, not just the most recent

ones. Second, there is a strong vintage effect amongst the smallest firms, which is consistent with

our model: the capital-income-to-sales ratios are lower for younger vintages that have experienced

higher idiosyncratic volatility early on in their lifespans, which is consistent with the higher optional

value of waiting. The Autor et al. (2017) mechanism cannot speak to this vintage effect in the left

tail. This evidence is reported in section D of the Separate Online Appendix.

To provide further evidence that the patterns that we see in the dynamics of capital shares

across the firm size distribution are consistent with firms delaying exit, we directly examine the

capital shares of firms close to the exit boundary. Specifically, we investigate firms that exit the

public domain due to poor company performance (e.g., liquidation, insolvency, bankruptcy) by

obtaining the security delisting information from the CRSP U.S. Stock Event database. Figure

11 plots the capital-to-sales ratio three years before delisting for these firms. Consistent with our

model, the average capital share of firms three years before delisting declined by almost 90 pps

from 1970 to 2014. This result remains largely unchanged if we consider the capital share five years

before delisting.

6 Conclusion

We propose a mechanism by which an increase in firm-level volatility drives a wedge between

national income accounting and the ex-ante assessment of firm profitability. A firm’s owner insures

skilled workers against firm-level productivity shocks and may choose to exit if productivity be-

comes too low. In our optimal contracting model, the level of the skilled workers’ compensation

is proportional to the expected value of new firms, which necessarily integrates over paths that

end in exiting. In contrast, in the national income accounts, one integrates only over ex-post sur-

viving firms that necessarily feature higher capital shares. This leads to a difference between the

aggregate capital share of income, which is calculated ex post, and the capital share of value at

the origination of the firm, which is calculated ex ante. When firm-level volatility increases, more

firms end up in the right tail of the size distribution. These outcomes are immediately reflected in

the stationary distribution of productivity, but they are discounted when the values of new firms

are calculated. Thus, they have a larger impact on aggregate productivity, and hence output, than
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Figure 11: Exit Threshold: Average Capital-Income-to-Sales Ratio Three Years before Delisting
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The plots present the average capital shares of output three years before delisting. We define a firm’s exit from
the public firm domain by the use of delisting codes 400-490 and 550-591. The dotted line is the HP filtered trend.
Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014) and CRSP delisting code.

on the payments to skilled workers. As a result, the aggregate capital share increases. We present

a calibrated version of our model that replicates the key moments of the data with reasonable

parameters via increases in firm level volatility, but only if accompanied by an increase in rents.

Finally, we present time series and cross-sectional evidence for Compustat firms that are consistent

with our proposed mechanism.
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A Data Appendix

A.1 Data Construction

The Sample. The Compustat/CRSP Merged Fundamental Annual database contains accounting

data and stock return data for all publicly traded firms. The sample runs from 1960 to 2014, and it

includes all Compustat/CRSP firms (both active and inactive).16 We exclude financial firms with

SIC codes 6000-6799 for our main analysis, and we exclude firms that have negative sales, negative

employee numbers, or negative total asset values. Finally, we exclude firms that indicate their

currency code for Canadian dollars to focus on U.S. firms only. All of the variables are winsorized

at 1% unless indicated otherwise.

Construction of Main Variables. We measure a firm’s capital income using operating income

before depreciation (OIBDP). The capital share of output is defined as OIBDP/Sales.

Labor income is measured using the labor cost reported by public firms. Because public firms

are not required to file Staff Expenses (XLR), we obtain only sparse observations of the labor

cost from the Compustat database. Following Donangelo (2016), we construct the extended labor

cost (extended XLR). First, we estimate the average labor cost per employee (XLR/EMP) within

the industry-size group for each year. Industries are classified using the Fama-French 17-industry

definition, and firms are sorted into 20 size groups based on their total assets, which yields a total

of 340 industry-size groups. Then, the labor cost of a firm with missing XLR equals the number of

employees multiplied by the average labor cost per employee of the same industry-size group during

that year. We winsorize the extended XLR at 5% to exclude outliers from the approximation. We

measure the labor share of output as extended labor cost (XLR)/Sales.

Value added (VA) is defined as OIBDP + extended XLR. We winsorize VA at 5% to exclude

outliers from the approximation of extended XLR. We calculate the capital share as OIBDP/VA and

calculate the labor share as extended XLR/VA. We also winsorized capital income to value added

ratio (OIBDP/VA) and labor share extended XLR/VA at 5% to avoid the influence of outliers. We

estimate the adjusted value added to deal with negative values. We identify the minimum operating

income (OIBDP) for each year, and we increase the value added of all firms by the absolute value

of the minimum OIBDP×(1+1%). The adjusted VA is then OIBDP×(1+1%) + extended XLR.

We measure firm-level volatility using both idiosyncratic cash flow volatility and idiosyncratic

stock return volatility. Idiosyncratic stock returns are constructed within each year by obtaining

the residual of a Fama-French 3-factor model using all of daily stock returns within that year.

rit = γ0,i+γ1,iMKTt+γ2,iHML3,i+ εi,t, where t is a daily observation of stock returns within year

T. Idiosyncratic stock return volatility for firm i in year T is calculated as the annualized standard

deviation of εi,t within that year.

16Using the Compustat/CRSP merged dataset gives us a consistent sample for estimating stock return volatility
and the delisting threshold. All of our empirical results for capital shares, capital-income-to-sales ratio, and labor
shares remain the same using the Compustat sample.
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To obtain the idiosyncratic cash flow volatility, we use the same factor specification as that

in the idiosyncratic return volatility. The sales growth is winsorized at 1% in the full sample to

exclude the outliers. For each quarter t, we estimate the factor model using quarterly sales growth

data in prior 20 quarters up to calender year T. Since there is no predominant factors for cash

flow growth, we follow Herskovic et al. (2015) and use the first five major principal components of

the prior 20 quarters sales growth. The data requires firms with no missing observations in the 20

quarter window ending in year T. The idiosyncratic cash flow volatility is the annualized standard

deviation of the residuals of a sales growth factor specification.

Non-Publicly Traded Firms. We obtain the measure of capital income for non-publicly traded

firms by subtracting the aggregate capital income of the Compustat firms from the aggregate

capital income of the U.S. economy. The aggregate capital income is measured using the NIPA

table Net Operating Surplus, which measures the aggregate business income from production after

subtracting labor costs, taxes on production and imports (less subsidies), and consumption of fixed

capital (economic depreciation) from value added, but before subtracting financing costs (such as

net interest) and business transfer payments. Net operating surplus is a profit-like measure that

is conceptually closest to earnings before interest and tax (EBIT) in the NIPA tables (See Mead,

Moulton, and Petrick (2004)).

A.2 Figures and Tables

In this section, we provide more details regarding the figures and tables in the paper.

Average and Aggregate Factor Share. Using the Compustat sample, we construct the average

and aggregate factor shares as follows: For each year, aggregate factor share = ΣiFactor Income
ΣiOutput ,

and the average factor share = Σi

(
Factor Income

Output

)
/N .

Size Groups. For each year, all of the firms are sorted into five groups based on their total assets.

Within each group, we compute the average and aggregate labor share and capital share. Figure 9

and Figure 10 show the time series of the average and aggregate capital shares of each size group.

Delisting Threshold. We obtain the security delisting information from the CRSP U.S. Stock

Events database. The delisting Code is a 3-digit integer code that (a) indicates that a security is

still trading or (b) provides a specific reason for delisting. We consider delisting due to liquidation

(delisting codes 400 to 490) and delisting by the current exchange for various reasons due to poor

company fundamentals (e.g., insolvency, bankruptcy, insufficient capital (delisting codes 550 to

591)). Then, we calculate the average capital shares either three years or five years before delisting.

Figure 11 shows the time series of the pre-delisting performance from 1970 to 2014.
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Figure 12: Aggregate Capital Share of U.S.: Public versus Private Decomposition
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This figure decomposes the aggregate capital share (black solid line) for all U.S. industries into the share due to
private firms (gray solid line) and the share due to public firms (dashed black line). The universe of private firms
covers all firms except publicly traded firms in Compustat. The aggregate capital share of U.S. value added is the ratio
of NIPA’s net operating surplus retrieved from FRED and the total value added from the BEA’s GDP-by-industry
accounts. Private capital income is obtained by subtracting the aggregate capital income (earnings before interest
and tax) reported by Compustat public firms from the NIPA net operating surplus. The private (public) share is the
ratio of private (public) aggregate capital income and total value added. The dotted lines are the HP-filtered trends
of the three time series of capital shares. Data sources: U.S. Bureau of Economic Analysis, Gross domestic income:
Net operating surplus: Private enterprises [W260RC1Q027SBEA] (1969-2015). Bureau of Economic Analysis, GDP
by Industry Accounts (1960-2015). Compustat/CRSP Merged Fundamentals Annual (1960-2014).

B Public vs. Private

Our empirical analysis focuses on publicly traded firms. However, Davis, Haltiwanger, Jarmin,

and Miranda (2007) find that non-farm firm-level volatility in the private sector has declined in

recent decades. According to the logic of our model, the aggregate capital share for private firms

in the U.S. should not have increased over the same period of time. Using the NIPA net operating

surplus (NOS), which is a profit-like measure that aggregates the overall operating income of the

U.S. economy, we infer the operating income of private firms by subtracting the aggregate operating

income of publicly traded firms (Compustat/CRSP firms) from the NIPA net operating surplus.

Figure 12 decomposes the aggregate capital share of total value added into a private component

and a public component. The component due to private firms, the ratio of the aggregate operating

income of private firms to total value added, declined from 1969 to 2014 even though the private

sector has grown recently: the number of publicly listed firms has decreased by 14% since 1996

(Doidge, Karolyi, and Stulz (2015)).
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C Proofs

C.1 Derivation of Equilibrium Compensation

The equilibrium wage is given by the solution to the following equation:∫ ∞
X̄(c)

V (X; c)f(X)dX = P,

where X̄(c) is given by Equation (12) and V (X; c) is given by Equation (11). Note that this

equation is equivalent to Condition 3 of Definition 1. We have∫ ∞
X̄(c)

V (X; c)f(X)dX =

(
ξ − 1

F̂ ξ

)−ρ( η

(r + λ)(ρ− 1)(η + ρ)

)
c−(ρ−1).

Note that our assumption on the Pareto form f(X) facilitates the computation of the integral

shown above because both V (X; c) and f(X) are power functions. This integral represents the

expected value of the firm to the shareholder after paying the fixed cost but before realizing the

initial productivity of the firm. Because ρ > 1, it is monotonically increasing in c, and we can solve

to obtain the expression for equilibrium compensation given in (13).

C.2 Derivation of Stationary Distribution

The ODE for φ(x) has the following general solution:

φ(x) = A1e
γ1x +A2e

−γ2x +A3e
−ρx, (32)

where γ1 and γ2 are given by

γ1 =
µ− 1

2σ
2 +

√
(µ− 1

2σ
2)2 + 2σ2λ

σ2
(33)

γ2 =
−(µ− 1

2σ
2) +

√
(µ− 1

2σ
2)2 + 2σ2λ

σ2
. (34)

First note that γ1 > 0 implies that A1 = 0. To ease notation, we drop the subscript on γ2. Next,

note that an application of the ODE gives

A3 = − ρψ
1
2ρ

2σ2 + ρ(µ− 1
2σ

2)− λ
. (35)

Finally, the boundary condition implies that

A2e
−γx̄ +A3e

−ρx̄ = 0,
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so

A2 = −A3e
(γ−ρ)x̄. (36)

The result in Equation (17) directly follows from the solution above and from an application of the

market-clearing condition for skilled workers.

C.3 Proof of Proposition 1

We have

∂Π

∂σ
= −ν

(
ρ− 1

ρ

)
∂

∂σ

[(
γ − 1

γ

)(
ξ

ξ − 1

)]
= −ν

(
ρ− 1

ρ

)[(
ξ

ξ − 1

)
1

γ2

∂γ

∂σ
−
(
γ − 1

γ

)
1

(ξ − 1)2

∂ξ

∂σ

]

Now observe that

ξ(ξ − 1) ∂γ∂σ
γ(γ − 1) ∂η∂σ

=

√
(µ− 1

2σ
2)2 + 2(r + λ)σ2√

(µ− 1
2σ

2)2 + 2λσ2
> 1,

which leads to the desired result.

C.4 Proof or Proposition 2

The first result follows immediately from equation (30). The second result follows from the

proof of Proposition 1.

D Pay for Performance

In this appendix, we allow for some exposure in the skilled worker’s compensation to firm

performance. This exposure could arise for a variety of reasons. For example, there could be a

firm-level agency conflict between the skilled worker and investors, or the investor could be risk-

averse. In either case, the optimal contract will call for the skilled worker to bear some exposure

to firm performance, either for incentive purposes or to improve risk sharing. The precise form of

the optimal contract will depend on the nature of the agency problem or the exact preferences of

the skilled workers and investors.17 One possible concern thus far with our results may be that this

exposure could mitigate the insurance nature of the relationship between firms’ owners and their

skilled workers, thus decreasing or reversing the effect of firm-level volatility on the capital share of

profits. To ease notation, we assume that ν = 1. Rather than solve directly for an optimal contract

17Edmans et al. (2009) derive CEO compensation in a competitive equilibrium with a talent assignment and a
moral hazard problem.

43



for a particular problem, we assume that the skilled worker’s contract takes the following simple

affine form:

ct = βXt + w. (37)

The sensitivity β of the skilled worker’s payment ct to the level of productivity is determined

by either the severity of the agency problem or the nature of the risk-sharing problem, and it is

exogenous from the standpoint of our model. The fixed wage w is set in equilibrium in the same

manner as total wages are set above. This contract has the advantage of being particularly tractable

to analysis in the context of our model of equilibrium.

For a given fixed wage w, the investor’s problem is

max
τ

[∫ τ

0
e−rt((1− β)Xt − w)dt

]
. (38)

Again, standard arguments imply that the investor’s value function V (X) must satisfy the following

ODE:

(r + λ)V = (1− β)X − w + µXV ′ +
1

2
σ2X2V ′′, (39)

with the boundary conditions

V (X̄) = 0, (40)

V ′(X̄) = 0, (41)

lim
X→∞

∣∣∣∣V (X)−
(

(1− β)X

r + λ− µ
− w

r + λ

)∣∣∣∣ = 0. (42)

This problem is essentially the same as the problem given in Equations (7)-(10), up to a scaling of

the leading term by a factor of (1− β). Thus, the solution to Equations (39)-(42) is

X̄ =

(
1

1− β

)(
η

η + 1

)
w(r + λ− µ)

r + λ

V (X) =
(1− β)X

r + λ− µ
− w

r + λ
−
(

(1− β)X̄

r + λ− µ
− w

r + λ

)(
X

X̄

)−η
,

where η is defined as above.

Given the solution for the investor’s value, we can apply the investor’s zero ex-ante profit

condition to determine the fixed component of the skilled worker’s equilibrium contract. This

calculation yields

w∗ =

(
P (r + λ)(ρ− 1)(ρ− η)

η

(
η(r + λ− µ)

(1− β)(η + 1)(r + λ)

)ρ)− 1
ρ−1

. (43)

Comparing Equations (13) and (43) reveals that the fixed component of the equilibrium affine

contract is just the equilibrium wage under full insurance scaled by a function of β. Thus, the
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investor’s problem under the affine contract is identical to the problem under full insurance when

the firm’s productivity is scaled by a factor of 1−β. The stationary distribution of firm productivity

is unaffected by our assumption of affine contracts up to a shifting of the optimal abandonment

threshold (i.e., the left support of the stationary distribution). Thus, we can again calculate the

total capital share of profits in the stationary distribution to obtain

Π = (1− β)

(
1−

(
r + λ

r + λ− µ

)(
ρ− 1

ρ

)(
γ − 1

γ

)(
η + 1

η

))
. (44)

Comparing Equations (30) and (44) shows that the total capital share profits under the affine

contract depend on γ and η, and hence also on σ in the same manner as the total capital share of

profits under full insurance. In other words, allowing the skilled worker to share in the success of

successful firms does not change our main qualitative results.

While allowing skilled workers to share in some of the gains of successful firms does not change

the aggregate dynamics of the capital share, it does have important implications for the distribution

of the labor share across income levels. Income inequality has been rising, as observed by Piketty

and Saez (2003) and Guvenen and Kuruscu (2007). Therefore, the share of output that accrues to

the top decile of the income distribution could have increased. That is, the income shares could

have become more unequal. Our model is consistent with rising income share inequality when we

allow skilled workers to share in the gains of successful firms via the affine contracts that we consider

in this section. In this case, the distribution of skilled worker pay essentially inherits the properties

of the distribution of firm productivity (or size). As volatility increases, the most successful firms

account for a larger share of total output, and because the managers of these firms receive pay in

proportion to productivity, their pay is also a larger fraction of total output.

E Valuation Ratio

In this appendix, we solve for the aggregate valuation ratio of our production economy. Given

the homogeneity of F , the price of capital is given by solving the first-order condition for the firm’s

problem and is given by

κ = (1− ν)

(
F1(k, l)

F (k, l)

)
y

where F1 denotes the partial derivative of F with respect to its first argument. Because F , k, and

l do not depend on any of the parameters with which we want to take a comparative static, we can

just let

α =

(
F1(k, l)

F (k, l)

)
k

to get that the aggregate rental payment to physical capital is

κk = (1− ν)αy
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which makes some intuitive sense. This is basically the capital expenditure share of output obtained

from a model with a homogeneous production function. To obtain the book value of physical capital,

we can simply capitalize this number to get

Book value of physical capital =
κk

r
=

(1− ν)αy

r

Given the equilibrium F̂ , c∗, X̄ and the firm value V (X, ; c, F̂ ) from equation (7), the ratio of

the aggregate of market value of rents is

V̂ =

∫ ∞
x̄

V (X; c∗, F̂ )φ(x)dx

=
F̂ X̂

r + λ− µ
− c∗

r + λ
−

(
F̂ X̄1+η

r + λ− µ
− c∗X̄η

r + λ

)∫
x̄
e−ηxφ(x)dx

=
νy

r + λ− µ
− c∗

r + λ
−

(
F̂ X̄1+η

r + λ− µ
− c∗X̄η

r + λ

)∫
x̄
e−ηxφ(x)dx

The ratio of the aggregate value of firms (cumulative of the aggregate value of physical capital)

to the book value of physical capital is then

Market

Book
= 1 +

rV̂

(1− ν)αy
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Capital Share Dynamics When Firms Insure Workers:
Separate Online Appendix, Not For Publication.

This Appendix consists of five sections. In Section A, we study compositional changes that drive

the factor share dynamics. In Section B, we examine the international evidence on factor share

dynamics. In Section C, we examine the evidence on the relation between factor share dynamics

and concentration. In Section D, we examine whether the facts we document in Sections 1 are

driven by entry cohorts. In Section F, we demonstrate that the findings we present in Sections

1 and 5 are robust to adding R&D expenses to our measure of capital income and to different

winsorization criteria.

A Composition Effects and the Aggregate Capital Share

A.1 Exchanges

This section investigates whether our results are driven by the accession of NASDAQ firms to

the Compustat database. Figure A.1 plots the aggregate and average capital-income-to-sales ratios

for NYSE and NASDAQ firms separately. There is similar divergence between the aggregate and

average capital shares in the universe of NYSE firms, though the trends are quantitatively less

pronounced.

Figure A.2 reports the average capital-income-to-sales ratio by firm size (total assets) for NYSE

and NASDAQ separately. We found qualitatively similar patterns in the average capital-income-

to-sales ratio in the NYSE and NASDAQ universe separately, as documented in Figure A.2 (a)

and (b). Across the two major exchanges, there is a clear ordering of average capital-income-to-

sales ratio by firm size and the average capital-income-to-sales ratio trended down dramatically

(on average negative) in the smallest firm size group since 1980s. However, the decline is much

more pronounced for the smallest NASDAQ firms, as one would expect. Hence, the entry of small

NASDAQ firms does contribute to the decline in the capital-income-to-sales ratio that started in

the 1980s, but even after excluding the NASDAQ firms, we document a steep decline.

A.2 Across- vs. Within-Industry Effects

Although we document a significant relation between industry level average capital share and the

idiosyncratic volatility in Table 3, we do not find a similar relation between industry level aggregate

capital share and idiosyncratic volatility. This is because the trend in the aggregate capital share

is driven primarily by changes in the cross industry share of aggregate sales, rather than a within

industry change in the firm size distribution. Figure A.3 plots the weighted capital-income-to-sales

ratio in 1970 where the weights are the sales in year t given by given by:

Across Industry Effectt =

∑
i Salesit

Capital Incomei1970
Salesi1970∑

i Salesit
(45)
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Figure A.1: Capital Share Dynamics Across the NYSE and NASDAQ
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This figure presents the average and aggregate capital income to sales ratios separately for firms listed in the NYSE
and NASDAQ Exchanges The aggregate capital-income-to-sales ratio =

∑
i Operating Incomei divided by

∑
i Salesi

for each year. The average capital-income-to-sales ratio = mean (Operating Income divided by Sales) for each year.
The sample is winsorized at 1%. Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014).

Figure A.2: Capital-Income-to Sales Ratio by Firm Size: Exchanges
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This figure presents the average capital-income-to-sales ratio by size over time separately for firms listed in the NYSE
and NASDAQ Exchanges. Size is measured by total assets, and the capital-income-to-sales ratio is measured as
operating income (OIBDP) divided by sales. For each year, firms are categorized into five groups based on their total
assets, and we estimate the average capital-income-to-sales ratio within each group for a given year. The sample is
winsorized at 1%. Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014).
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This ratio measures the across-industry component of the aggregate capital share. The remain-

der (i.e., the gap between the aggregate ratio and the across-industry component) measures the

within-industry effect. Note that the across-industry effect accounts for most of the increase in

the aggregate capital-income-to-sales ratio. Figure A.3 indicates that industries with high within

industry aggregate capital income to sales ratios in the 1970s became larger.

Figure A.3: The Across-Industry Effect on the Aggregate Capital Share
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Industry classification is according to the Fama-French 48 industry classification. The solid line is the aggregate
capital share. The dashed line is the across-industry effect we describe in Equation (45). Source: Compustat/CRSP
Merged Fundamentals Annual (1960-2014).

B International Evidence

To provide further support for our mechanism, we explore the capital share dynamics in Japan,

UK and Europe (EU). The EU countries include Austria, Belgium, Switzerland, Germany, Den-

mark, Spain, Finland, France, Greece, Ireland, Italy, the Netherlands, Norway, Portugal, Sweden.1

Our main analysis is conducted using Compustat Global. Compustat Global contains the widely

available accounting data for us to obtain key firm fundamental variables. The daily stock returns

are calculated using Compustat Global Security Daily. We estimated the idiosyncratic return

volatility within each year by estimating the Fama/French 3 factor model where we obtain the

Fama-French global three factors from Ken French’s website. The global three factors start in the

year 1990, so our the majority of our international evidence is presented for the sample period from

1990 to 2017. Our sample excludes financial firms (SIC code between 6000 and 6799).

Since the shift in the firm size distribution only gradually reflects the changes in idiosyncratic

volatility, we extend the time series of idiosyncratic volatility using stock return data from Datas-

tream. For UK and Japan, we can extend the estimates of idiosyncratic volatility back to 1975 and

1The list of EU countries are chosen following the Fama/French European 3 Factors Portfolios excluding the U.K.
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1978 respectively by estimating a single factor model. The daily stock return data and interest rate

data for most of the European countries are not available before 1990, so we are not able to extend

the time series of idiosyncratic volatility for EU.

Our firm-level variables are constructed as follows:

• Idiosyncratic stock return volatility

– Compustat Global Security Data: The daily stock return of company j in country k is

calculated using data from (1990-2017) as follows

Rj,k,t =
PRCCDt/AJEXDIt × TRFDt − PRCCDt−1/AJEXDIt−1 × TRFDt−1

PRCCDt−1/AJEXDIt−1 × TRFDt−1
,

where PRCCD is the closing price at the end of each trading day, AJEXDI is the

cumulative adjustment factor (issue) ex-date and TRFD is the total return adjustment

factor.

We then convert the daily stock return in the local currency to US dollars rj,k,t, and

then we calculate the idiosyncratic volatility within each year τ by estimating a factor

model using all daily observations within the year for each country k:

rj,k,t = δj,k + γj,kFk,t + εj,k,t

where Fk,t are factors Fama-French global three factors for EU and Japan from Ken-

French Data Library (1990-2017). For the U.K., we used European 3 factors for the

estimation.

Idiosyncratic volatility σj,k,τ is the standard deviation of εj,k,t within each year τ .

– Datastream: We obtained individual security return (RI, adjusted and US dollar de-

nominated) for the U.K. (1975-2017) and Japan (1978-2017), and then calculate the

idiosyncratic volatility within each year τ by estimating a factor model using all daily

observations within the year for each country k:

rj,k,t = δj,k + γj,kMKTk,t + εj,k,t

where MKTk,t are factors excess return of market indexes for the U.K. and Japan over

the same period of time. The interest rate for the U.K. is U.K. sterling 1-month deposit

rate, and the market index for the U.K. is UK total market index (TOTMKUK). The

interest rate for Japan is the 1-month deposit rate, and the market index is the NIKKEI

225 average share index.

The idiosyncratic volatility of firm j in country k, σj,k,τ is the standard deviation of εj,k,t

within each year τ . For the U.K. and Japan, we are able to employ longer equity stock

return data from Datastream. Given that it is noisy to merge the security daily return

data from Datastream to Compustat Fundamental Global, the estimates of idiosyncratic

4



volatility is only used to show the evolution of idiosyncratic volatility over a longer sample

period. In Table 1. we show that summary statistics of the idiosyncratic volatility from

two databases are very similar.

• Firm fundamental variables (Compustat Global Fundamental Annual)

– Capital Share: Ratio of the operating income (OIBDP) to sales (SALE).

– M/B ratio: Ratio of the market value of total assets (AT + PRCCD× SCHO-CEQ) to

the book value of total assets (AT).

– Tangibility: Ratio of physical assets (PPEGT) to total assets (AT).

Table A.1 reports summary statistics of all variables.

We start by documenting the shifts in the firm size distribution and idiosyncratic volatility in

the U.K., the E.U. and Japan. The U.K. experience largely mirrors that of the U.S. Figure A.4

visualizes the change in size distribution and capital share of U.K. firms throughout the sample

period (1990-2017). The right tail of the firm size distribution gets fatter as idiosyncratic volatility

increases from 1975 to 2017. We also documented the divergence of aggregate and average capital-

income-to-sales ratio. Consistent with our model mechanism, the relationship between firm size and

capital-income-to-sales ratio has changed dramatically since 1990. In Figure A.4 (d), we see that

the capital-income-to-sales ratio was much more strongly increasing in firm size than in 1995. We

found qualitatively similar patterns when investigating the major countries in Europe (see Figure

A.4).

On the other hand, the Japanese economy behaved differently from the UK and EU economies

(Figure A.4), but the evidence is largely consistent with our model mechanism. First, the right tail

of the Japanese firm size distribution is not getting fatter over time, and there is no clear trend in

the idiosyncratic volatility from 1978-2017. Consistent with our mechanism, there is no divergence

between the average and the aggregate capital-income-to-sales ratio. The relationship between firm

size and capital-income-to-sales ratio has changed since 1990, but 1) the slope of capital-income-to-

sales ratio was not much steeper in 2010 than 1995; 2) more than 90% of Japanese firms experienced

an increase in capital share over the sample period (not just the tail 10% as seen in US, UK and

EU). This implies that there is no strong left tail effect that drives a decline in average capital

share.
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Figure A.4: International Evidence
This figure presents the time series of idiosyncratic volatility, average and aggregate capital income to sales ratio, the
average capital income to sales ratio within each size percentile, the average capital income to sales ratio over each
volatility percentile, and the power law coefficient of the top 5-percentile firms for the U.K., the E.U. and Japan.
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Table A.1: Summary Statistics
This table reports summary statistics of firm-level variables for the international facts. All variables are defined in
Section A. Sample period: 1990-2017. All variables are winsorized at 5%. For US data, all variables are winsorized
at 1%. Data Source: Compustat Global Fundamental Annual (1990-2017), Compustat Global Security Daily (1990-
2017), and Datastream (1975-2017).

Panel A: UK

Variable Obs Mean Std. Dev. P10 P50 P90

Log(Idio. Vol.) Datastream 92711 -.8944 .7194 -1.8019 -.9711 .1751
Log(Idio. Vol.) Compustat 28310 -.8779 .5588 -1.6142 -.9273 -.0501
MB Ratio 27857 1.9204 1.3886 .7958 1.4263 3.8982
Capital Income/Sales Ratio 32031 -.0955 .6566 -.4915 .0932 .2559
Tangibility 32544 .465 .3862 .0281 .383 1.0494

Panel B: Japan

Variable Obs Mean Std. Dev. P10 P50 P90

Log(Idio. Vol.) Datastream 110607 -1.0431 .4361 -1.6452 -1.05 -.4232
Log(Idio. Vol.) Compustat 64039 -1.0038 .4341 -1.5926 -1.0217 -.3756
MB Ratio 63594 1.176 .5247 .6999 1.0191 1.8951
Capital Income/Sales Ratio 68930 .0736 .0528 .0111 .0655 .1544
Tangibility 68699 .6497 .4113 .1178 .5963 1.2567

Panel C: EU

Variable Obs Mean Std. Dev. P10 P50 P90

Log(Idio. Vol.) Compustat 58275 -.8799 .5194 -1.539 -.9465 -.0933
MB Ratio 56417 1.6354 1.0795 .8116 1.2348 3.1694
Capital Income/Sales Ratio 75166 .0518 .2202 -.1331 .0936 .2425
Tangibility 69894 .5568 .4638 .0522 .4444 1.255

Panel D: US

Variable Obs Mean Std. Dev. P10 P50 P90

Log(Idio. Vol.) 167573 -.7671 .6099 -1.5469 -.7909 .0542
MB Ratio 200611 1.8861 1.6288 .8317 1.332 3.4881
Capital Income/Sales Ratio 204722 -.171 1.6367 -.1686 .1023 .2936
Tangibility 207021 .5581 .3937 .1154 .4764 1.1047
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B.1 International Regression Evidence

Table A.2 below replicates our industry level analysis reports industry evidence for UK, EU

and Japan using Compustat Global. We confirm the robust and significant negative correlation

between average capital share (at SIC 3 digit and SIC 2 digit) and idiosyncratic return volatility.

Idiosyncratic stock return volatility is estimated using daily stock return data from Compustat

Global Security (1990-2017). Given the relative shorter time series and lower frequency of Com-

pustat Global, we did not use cash flow volatility to proxy idiosyncratic volatility. A one standard

deviation increase in vol above that industry’s (SIC 3 digit) average lowers the average capital

share by 3.8 pps., 2.4 pps. and .5 pps in the U.K., Europe and Japan respectively.2 This effect is

economically significant in the U.K. and Europe., but less so in Japan.

Table A.2: Average Capital Share and Idiosyncratic Volatility: International Evidence 1990-2017

The table reports the regression results of industry capital income/sales ratios on the average idiosyncratic volatility
for Japan, UK and Europe.

CSi,t = α+ β1Idio.V ol.i,t + β2MBi,t + β3Tangi,t + γt + ηi + εi,t,

where i stands for industry. The estimation is done for each country separately. The industry’s average capital
income/sales ratio is calculated as the equal-weighted average of capital income/sales ratios across firms within
industry. Idio.Vol(ret) is the average annualized idiosyncratic stock return volatility within industry. Tangibility is
the average of gross property, plant and equipment (PPEGT) to total assets (AT) ratio within industry. M/B ratio is
the industry average market-to-book ratio within industry. Column (1) and column (2) define industry using 2-digit
SIC code, and column (3) and column (4) define industry using 3-digit SIC code. The sample includes all firms in
Compustat Global Daily database, 1990-2017. The sample is winsorized at 5%. t statistics in parentheses, and ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(1) (2) (3) (4) (5) (6)
U.K. E.U. Japan

SIC2 SIC3 SIC2 SIC3 SIC2 SIC3

Idio.Vol(ret) -0.432∗∗ -0.200∗∗∗ -0.176∗∗∗ -0.141∗∗∗ -0.025 -0.041∗∗∗

(-2.43) (-3.85) (-3.03) (-6.22) (-1.60) (-5.46)

Tangibility 0.311∗∗∗ 0.175∗∗∗ 0.093∗∗∗ 0.023∗ 0.029∗ 0.018∗∗∗

(2.87) (3.76) (2.95) (1.75) (1.76) (2.78)

M/B Ratio -0.057 -0.067∗∗∗ -0.013 -0.010∗∗ 0.013∗ 0.014∗∗∗

(-1.62) (-5.21) (-0.92) (-2.08) (1.88) (4.77)

Constant 0.184 0.192∗∗∗ 0.145∗∗∗ 0.182∗∗∗ 0.031∗ 0.039∗∗∗

(1.26) (4.43) (5.57) (11.00) (1.74) (5.30)

Year FE Yes Yes Yes Yes Yes Yes

Industry FE Y Y Y Y Y Y
N 1,632 5,171 1,665 6,034 1,638 5,960
N clust 62 232 65 251 64 240
r2 a 0.245 0.129 0.232 0.173 0.352 0.284

2A one standard deviation increase in vol above that industry’s (SIC 3 digit) average lowers the average capital
share by 6.6 pps., 2.6 pps. and .3 pps in the U.K., Europe and Japan respectively.
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C Concentration versus Selection

In this section, we run reexamine our industry-level analysis reported in Table 3 linking the

average capital share at the industry level to idiosyncratic volatility to determine the extent to

which our selection mechanism is robust the concentration explanation advocated by other authors.

To conduct this analysis, we use the following measure of industry-level concentration:

• Concentration ratios using the Compustat-CRSP sample

– Concentration4 is the sales share of the top 4 largest firms within industry.

– Concentration20 is the sales share of the top 20 largest firms within industry.

• Census Concentration Ratio (2002 & 2007)

– Census4 is the sales share of the top 4 largest companies within industry (4 digit SIC).

Within each 3-digit SIC industry, we compute the average of the concentration ratio to

obtain the industry (3-digit SIC) level concentration ratio.

– Census20 is the sales share of the top 20 largest companies within industry (4 digit

SIC). Within each 3-digit SIC industry, we compute the average of the concentration

ratio to obtain the industry (3-digit SIC) level concentration ratio.

• Herfindahl-Herschmann Index (1982-2007, Manufacturing only): Herfindahl-Herschmann in-

dex for 50 largest companies from the Census Bureau. The HH Index is scaled by 10000. The

HHIs after 1997 are reported at the NAICS level, but we used the method in Bustamante

and Donangelo (2017) to convert NAICS to SIC.3 The Census provide the HH index every

five years starting 1982. We follow Bustamante and Donangelo (2017) and repeat the data

from the available year in the following four years after that survey year. For example, we

report the data from 92 in the years 93, 94, 95, and 96).

Summary statistics for our concentration measures are reported in Table A.3.

Table A.3: Summary Statistics

Variable Obs Mean Std. Dev. P10 P50 P90

Concentration4 (SIC2) 3322 .6584 .2408 .3492 .6449 1
Concentration20 (SIC2) 3322 .9201 .1167 .7424 .9831 1

Concentration4 (SIC3) 12665 .8564 .1719 .5986 .9275 1
Concentration20 (SIC3) 12665 .9892 .038 .9769 1 1

Census 4 (SIC3) 727 .3688 .2137 .105 .335 .676
Census 20 (SIC3) 723 .5953 .2505 .23 .619 .932

HH Index (SIC4) 14406 .0697 .0637 .0095 .049 .1615

3Thanks to Andres Donangelo for kindly providing the data.
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Next, we run the same panel regressions at the industry level of average capital shares on

industry-level volatility and some controls, while controlling for variation in concentration. Tables

A.4-A.8 report the results. Essentially, the baseline results reported in the paper, which document

a sizeable negative effect of firm-level vol. on the industry’s average capital share, are robust to

controlling for various measures of concentration. Table A.4 uses the Compustat sales-based con-

centration measures and idiosyncratic return vol as the vol measure. Table A.5 uses the Compustat

sales-based concentration measures and idiosyncratic sales vol as the vol measure. Table A.6 uses

the Census concentration measures and idiosyncratic sales vol as the vol measure. Table A.7 uses

the HHI for manufacturing and the return-based vol measure. Table A.8 uses the HHI for manufac-

turing and sales-based vol measures. Overall, the evidence is weaker using sales-based vol measures

than when using return-based vol measures, but the concentration controls never drive out the vol

variables on the right hand side.
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Table A.6: Average Capital Share, Idiosyncratic Sales Volatility and Census Concentration: Indus-
try Level 2002 & 2007

Capital Share (SIC3)

Idio.Vol(ret) -0.451∗∗ -0.452∗∗

(-2.08) (-2.06)

Idio.Vol(sales) 0.089 0.080
(0.55) (0.50)

Tangibility 0.364 0.371 0.458 0.476
(0.93) (0.94) (1.11) (1.14)

M/B Ratio -0.201 -0.199 -0.172 -0.172
(-0.89) (-0.88) (-1.10) (-1.10)

Census 4 0.225 0.212
(1.17) (1.17)

Census 20 0.238 0.401
(0.66) (1.16)

Constant 0.207 0.144 -0.160 -0.328
(0.86) (0.45) (-1.20) (-1.37)

Year FE Y Y Y Y
Industry FE Y Y Y Y
N 697 692 642 637
N clust 437 436 405 404
r2 a 0.032 0.032 0.025 0.027

The table reports the regression results of industry capital income/sales ratios on the average idiosyncratic volatility
when we control for industry concentration.

CSi,t = α+ β1Idio.V ol.i,t + β2MBi,t + β3Tangi,t + β4Census(n)i,t + γt + ηi + εi,t,

where i stands for industry. The estimation is done for each country separately. The industry capital income/sales
ratio is calculated as the average of capital income/sales ratios across firms within industry. Idio.Vol(sales) is the
average idiosyncratic sales volatility within industry. Idio.Vol(ret) is the average idiosyncratic stock return volatility
within industry. Tangibility is the average of gross property, plant and equipment (PPEGT) to total assets (AT) ratio
within industry. M/B ratio is the industry average market-to-book ratio within industry. Industry concentration
Census(n) is the sales share of the top N largest firms within industry obtained from the Census Bureau. Census
4 is the sales share of the top 4 largest firms within industry. Census 20 is the sales share of the top 20 largest
firms within industry. Industry is defined using 3-digit SIC code. The sample includes all firms in Compustat-CRSP,
1960-2014. The sample is winsorized at 1%. t statistics in parentheses, and ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

D Cohort Effects

First, we show the average and aggregate capital-income-to-sales ratio for firms that entered

the public domain at different years and survived throughout the entire sample in Figure (A.5). We

keep the identity of firms in each vintage cohort unchanged. Figure A.5 (a) shows that on average

firms who entered in the 1960s and survived till the recent decades have the highest capital-income-

to-sales ratio, while firms who have entered recently (1990s and 2000s cohorts) on average have

13



Table A.7: Average Capital Share, Idiosyncratic Return Volatility and Herfindahl-Herschmann
Indexes: Manufacturing 1982-2015

Capital Share(SIC4)

Idio.Vol(ret) -0.449∗∗∗ -0.489∗∗∗ -0.326∗∗∗

(-4.75) (-4.04) (-2.78)

Tangibility 0.106 0.071 -0.034
(0.86) (0.28) (-0.40)

M/B Ratio -0.122∗∗ -0.153∗∗ -0.055∗∗

(-2.57) (-2.45) (-2.14)

HH Index -0.634 -1.228 -0.169
(-1.23) (-1.05) (-0.13)

Constant 0.326∗∗ 0.457∗ 0.188∗∗

(2.47) (1.88) (2.23)

Year FE Y Y Y
Industry FE Y Y Y
N 3,854 2,228 1,746
N clust 135 134 126
r2 a 0.044 0.038 0.042

The table reports the regression results of industry capital income/sales ratios on the average idiosyncratic volatility
when we control for industry concentration.

CSi,t = α+ β1Idio.V ol.i,t + β2MBi,t + β3Tangi,t + β4HHIi,t + γt + ηi + εi,t,

where i stands for industry. The estimation is done for each country separately. The industry capital income/sales
ratio is calculated as the average of capital income/sales ratios across firms within industry. Idio.Vol(sales) is the
average idiosyncratic sales volatility within industry. Idio.Vol(ret) is the average idiosyncratic stock return volatility
within industry. Tangibility is the average of gross property, plant and equipment (PPEGT) to total assets (AT) ratio
within industry. M/B ratio is the industry average market-to-book ratio within industry. Industry concentration is
measured using Herfindahl-Herschmann Indexes (HHI) obtained from the Census Bureau. Industry is defined using
4-digit SIC code. The sample includes all firms in Compustat-CRSP, 1960-2014. The sample is winsorized at 1%. t
statistics in parentheses, and ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.8: Average Capital Share, Idiosyncratic Sales Volatility and Hirschmann-Herfindahl In-
dexes: Manufacturing 1982-2015

Capital Share(SIC4)

Idio.Vol(sales) -0.205∗ -0.189 -0.016
(-1.79) (-1.11) (-0.29)

Tangibility 0.053 0.066 -0.041
(0.61) (0.41) (-0.44)

M/B Ratio -0.126∗∗∗ -0.155∗∗∗ -0.082∗∗∗

(-2.92) (-2.75) (-2.89)

HH Index -0.517 -0.833 -0.613
(-1.00) (-0.76) (-0.50)

Constant 0.182∗ 0.245 -0.025
(1.89) (1.46) (-0.33)

Year FE Y Y Y
Industry FE Y Y Y
N 3,733 2,150 1,583
N clust 133 133 121
r2 a 0.031 0.025 0.030

The table reports the regression results of industry capital income/sales ratios on the average idiosyncratic volatility
when we control for industry concentration.

CSi,t = α+ β1Idio.V ol.i,t + β2MBi,t + β3Tangi,t + β4HHIi,t + γt + ηi + εi,t,

where i stands for industry. The estimation is done for each country separately. The industry capital income/sales
ratio is calculated as the average of capital income/sales ratios across firms within industry. Idio.Vol(sales) is the
average idiosyncratic sales volatility within industry. Idio.Vol(ret) is the average idiosyncratic stock return volatility
within industry. Tangibility is the average of gross property, plant and equipment (PPEGT) to total assets (AT) ratio
within industry. M/B ratio is the industry average market-to-book ratio within industry. Industry concentration is
measured using Herfindahl-Herschmann Indexes (HHI) obtained from the Census Bureau. Industry is defined using
4-digit SIC code. The sample includes all firms in Compustat-CRSP, 1960-2014. The sample is winsorized at 1%. t
statistics in parentheses, and ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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the lowest highest capital-income-to-sales ratio, consistent with selection. Furthermore, the steeper

upward drift over time in average ratios for the more recent 1990 and 2000 vintages is the hallmark

of our selection mechanism. This selection mechanism is stronger for recent vintages because they

have been exposed to higher vol early on in their life. However, from the aggregate capital shares

plotted in Figure A.5 (b), we see that there is no clear pattern across vintages in aggregate capital

shares. It is not the case that only firms who entered recently (Google, Apple, or Facebook which

are in the 90s and 2000s cohorts) have become more profitable. The largest firms in the right tail

of firm size distribution, who are the driving force behind the aggregate ratio, can be either firms

from older vintages that have survived long enough or firms that have entered recently with good

draws of productivity.

Second, we explore the cohort effects among the largest and smallests firms in Figure A.6.

Each year, we identify firms in the top (bottom) 20 percentile of size (measured by total assets or

sales) distribution. Among the top 20 (bottom 20) percentile largest (smallest) firms, we identify

the entry year of each firms and group them into five entry cohorts (1960s, 1970s, 1980s, 1990s,

2000s). We then compute the average capital-income-to-sales ratio of each entry cohort.The average

capital-income-to-sales ratio among the largest firms has been trending up for all cohorts, not just

the most recent ones. There is some evidence to suggest that the largest firms from recents cohorts

are somewhat more profitable than those from older cohorts, but the evidence is not overwhelming.

Third, as shown in Figure A.6, there is a very strong vintage effect amongst the smallest firms,

consistent with our model: lower capital-income-to-sales ratios are more likely to prevail in the

recent sample period for the young vintages who have experienced higher idiosyncratic volatility

early on in their lifespan, when they are more likely to generate negative profits. They are willing

to wait because the option value of waiting is so high. The Autor et al. (2017) mechanism cannot

speak to this vintage effect in the left tail. One important difference between our mechanism and the

“super-star” firm mechanism (or other prevailing explanations of declining costs of capital goods,

etc.) is that our real option mechanism predicts the increase in the left tail of firm size distribution.

E Additional Cross Sectional Evidence

Since the firm size distribution may reflect not just the change in contemporaneous volatility but

also, to some extent, reflect the cumulative changes in the past volatility. In this section, we show

our industry-level regression of industry average capital income to sales ratio on past idiosyncratic

volatility to provide further evidence on the past volatility and the dispersion of capital share.

We consider two regression models: 1) use lagged industry level idiosyncratic volatility directly

as a control; 2) use a moving average of current and past idiosyncratic volatility to capture the

cumulative effect of past volatility.
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Figure A.5: Capital-Income-to-Sales Ratio by Entry Cohorts

This figure presents the average and the aggregate capital-income-to-sales ratio by different entry cohorts. Vintage
1960s represents the set of firms who went public between 1960-1970 and survived throughout the entire sample
period (till 2014), and we keep the composition of firms in this group fixed and plot the average and aggregate
capital-income-to-sales ratio within each cohorts. The vintage here represents the survival period of firms. The
sample is winsorized at 1%. Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014).
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Figure A.6: Capital-Income-to-Sales Ratio by Entry Cohorts among Largest and Smallest Firms

This figure presents the average and the aggregate capital-income-to-sales ratio by different entry cohorts among the
largest and smallest firms. Each year, we identify firms in the top and bottome 20 percentile of size distribution.
Within each size group, we then identify the entry year of each firms and group them in to five entry cohorts. We then
compute the average capital-income-to-sales ratio of each entry cohort. Source: Source: Compustat/CRSP Merged
Fundamentals Annual (1960-2014).
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Table A.9: Average Capital Share and Past Idiosyncratic Volatility: Industry Level 1960 – 2014

(1) (2) (3) (4) (5) (6)
Capital Share(SIC2) Capital Share(SIC3)

Idio.Vol(ret) -0.593∗∗∗ -0.406∗∗∗

(-3.02) (-6.07)

idio ret vol MA5 -0.800∗∗∗ -0.449∗∗∗

(-2.78) (-4.61)

idio ret vol MA10 -0.920∗∗ -0.477∗∗∗

(-2.61) (-3.83)

Tangibility 0.242 0.287 0.336∗ 0.161∗∗∗ 0.160∗∗ 0.157∗∗

(1.42) (1.58) (1.72) (2.62) (2.57) (2.50)

M/B Ratio -0.080∗∗ -0.089∗∗ -0.094∗∗ -0.071∗∗∗ -0.069∗∗∗ -0.069∗∗∗

(-2.42) (-2.57) (-2.65) (-3.81) (-3.69) (-3.67)

Constant 0.185 0.238 0.254 0.155∗∗∗ 0.171∗∗∗ 0.182∗∗∗

(1.50) (1.53) (1.33) (2.99) (3.16) (3.01)

Year FE Yes Yes Yes Yes Yes Yes

Industry FE Y Y Y Y Y Y
N 3,091 3,100 3,106 11,838 11,888 11,896
N clust 65 65 65 252 252 252
r2 a 0.161 0.160 0.163 0.084 0.075 0.071

The table reports the regression results of industry capital income/sales ratios on the the past average idiosyncratic
volatility. The industry capital income/sales ratio is calculated as the average of capital income/sales ratios across
firms within industry. Idio.Vol(ret) is the average annualized idiosyncratic stock return volatility within industry.
MA(n).Idio.Vol(ret) is the moving average of industry level idiosyncratic return volatility over from year t-n to year
t (including the current year). Tangibility is the average of gross property, plant and equipment (PPEGT) to total
assets (AT) ratio within industry. M/B ratio is the industry average market-to-book ratio within industry. Column
(1)- (3) define industry using 3-digit SIC code, and column (4) - (6) define industry using 2-digit SIC code. The
sample includes all firms in Compustat-CRSP, 1960-2014. The sample is winsorized at 1%. t statistics in parentheses,
and ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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F Robustness

F.1 Adjusting For R&D

In this section, we reconstruct our main results from 1 and 5 adjusting our measure of capital

income by adding R&D expenses.

Figure A.7: The Aggregate Capital Share of Value Added
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This figure plots the aggregate capital share.The aggregate capital share is
∑
i Operating Incomei + R&D Expensesi

divided by
∑
i Imputed XLRi + Operating Incomei + R&D Expensesi. Source: Compustat/CRSP Merged Funda-

mentals Annual (1960-2014).
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Figure A.8: Aggregate and Average Capital Share
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This figure plots the aggregate and average capital income to sales ratio. We define capital income as operating income
+ R&D expenses. The aggregate capital income to sales ratio is

∑
i Operating Incomei + R&D Expensesi divided

by
∑
i Salesi for each year. The average capital-income-to-sales ratio is the simple average of the firm level capital

capital-income-to-sales ratio for each year. Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014).

Figure A.9: Average Capital Share in Size Groups
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This figure presents the average capital-income-to-sales ratio by size over time. We measure capital income as
operating income + R&D expenses. Size is measured by total assets, and the capital-income-to-sales ratio is measured
as capital income (OIBDP+XRD) divided by sales. For each year, firms are categorized into five groups based on
their total assets, and we estimate the average capital-income-to-sales ratio within each group for a given year. The
sample is winsorized at 1%. The sample includes all firms in Compustat-CRSP merged Fundamentals Annual for
1960-2014.
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Figure A.10: Average Capital Income to Sales Ratio in Size Groups (FF 5 Industry)
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Industries are defined Fama-French five-industry classification. We omit the industry classification ”other” because
it contains few firms after excluding financial firms. Within each industry, we sort firms into five groups based on
their total assets. The plot shows the average capital income (OIBDP+XRD) to sales ratio within each size group
for four industries. Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014).

F.2 Winsorization

This subsection presents our results with different winsorization procedures.
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Figure A.11: The Aggregate Capital Share of Value Added
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This figure plots the aggregate capital share. The aggregate capital share is
∑
i Operating Incomei divided by∑

i Imputed XLRi + Operating Incomei. The sample is winsorized at 1%. Source: Compustat/CRSP Merged Fun-
damentals Annual (1960-2014).

Figure A.12: Aggregate and Average Labor Income to Sales Ratio
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The aggregate labor income to sales ratio is
∑
i Extended XLRi divided by

∑
i Salesi for each year. The average

labor income to sales ratio is the simple average of the within firm labor income to sales ratio for each year. The
sample is winsorized at 1%. Source: Compustat/CRSP Merged Fundamentals Annual (1960-2014).
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Figure A.13: Aggregate and Average Capital Share
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This figure reports the capital income to sales ratio. The aggregate capital income to sales ratio is∑
i Operating Incomei divided by

∑
i Salesi for each year. The average capital-income-to-sales ratio is the simple

average of the firm level capital capital-income-to-sales ratio for each year. Part (a) use the sample with winsorization
at 2.5%. Part(b) use the sample with winsorization at .5%. Source: Compustat/CRSP Merged Fundamentals Annual
(1960-2014).
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