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Heterogeneous Impact Dynamics of a Rural Business
Development Program in Nicaragua

With severe poverty concentrated in rural areas of the developing world, there have been numerous

efforts to engage the rural poor as entrepreneurs. The hope is that with the right information, investment

and market connectivity, the poor can boost their incomes, invest in their children and work their way out of

poverty. However, in contrast to cash transfer programs, which address poverty by “just giving money to the

poor” (Hanlon, Barrietnos and Hulme, 2010), business development programs that treat the poor as incipient

entrepreneurs exhibit several characteristics that shape their effectiveness and challenge the evaluation of

their impacts:

1. Dynamics: By providing new information, incentives and connections, we might expect entrepreneurially-

focused programs to induce beneficiaries to learn and to co-invest in their new opportunities, therefore

making it likely that impacts will evolve over time.1

2. Participation: While most people can and do accept cash transfers if one is offered, entrepreneurial

programs require specialization, investment and risk-taking and are thus unlikely to appeal to all poor

households, limiting their reach as an anti-poverty strategy.

3. Impact Heterogeneity: Most entrepreneurial activities generate both winners and losers, based on

luck and/or complementary inputs that differ across households (e.g., talents and skills), again limiting

the average effectiveness of programs that address the poor as potential entrepreneurs.

While studies of other programs that address the poor as entrepreneurs have noted that partial participation

blunts program impacts (see e.g. Banerjee et al. (2011)), this paper uses data from a 5-year study of a

Nicaraguan program that was randomly rolled out over time to explore all three of these dimensions of

addressing the rural poor as incipient agricultural entrepreneurs.

Nicaragua, one of the poorest countries in the western hemisphere, is no exception to the pattern in

which poverty is most severe in rural areas. Beginning in 2007, the government of Nicaragua launched

a rural business development program (RBD) in cooperation with the Millennium Challenge Corporation

(MCC), the United States government foreign aid agency. The RBD was designed to address a set of

constraints that policy-makers believed restricted the productivity and incomes of resource-scarce rural

households. Specifically, the RBD offered marketing interventions, temporary input subsidies and/or co-

investment incentives, and extension services. Contact with farmers lasted 24 months, after which farmers
1As King and Behrman (2009) point out, programs with significant learning and adoption components are unlikely to attain

steady-state effectiveness soon after an intervention begins. In this study, we therefore pay particular attention to how the
observed impacts evolve over time.



were expected to continue on with their own knowledge and resources.

While none of these interventions are novel, earlier non-experimental efforts to evaluate similar programs’

effectiveness have confronted identification problems because of endogenous program placement and partici-

pation (see e.g. Evenson (2001) and Anderson and Feder (2003)). Several recent studies employ experimental

designs to solve these identification problems: Bardhan and Mookherjee (2011) and Carter, Laajaj and Yang

(2013) find positive impacts of subsidized agricultural inputs to farmers in West Bengal and Mozambique,

respectively. Cole and Fernando (2016) find that farmers respond to mobile-phone based agricultural infor-

mation delivery in Gujarat, while Ashraf, Giné and Karlan (2009) estimate that over the short term at least,

extension services positively impact incomes.2 However, unlike Carter, Laajaj and Yang (2014) who find

that positive impacts evolve but persist over time, the impacts in Ashraf, Giné and Karlan (2009) dissipate

over time, reinforcing the importance of paying attention to impact dynamics.

To evaluate the impacts of the Nicaraguan RBD program, we worked with program implementers to

select a random subset of program-eligible households for inclusion in the study. These study households

were in turn randomly split into early and late treatment groups, as the treatment could not be rolled out

to all households at once due to capacity constraints on the implementer side. Early-treatment households

were offered the program in 2007, shortly after completing a baseline survey. Late-treatment households were

offered the program some 20 months later, after the second (mid-line) survey. A third (end-line) survey took

place two years later, in 2011. The result is a 3-round panel data set, in which final exposure to the program

randomly varies across households from as much as almost 4 years to as little 18 months.3 We exploit the

fact that the late-treament households made their program participation decisions after the mid-line survey,

which allows us to realize statistical efficiency gains by focusing the analysis only on those who participate in

the program (a double-complier sample).4 Further, while the baseline and mid-line data have a conventional

binary-treatment/control structure, the full 3 rounds of the panel data allow us to use fixed-effect continuous

treatment estimators to trace out program impacts over time.

Using this design, we explore the RBD’s impacts on three key outcome variables: income in targeted

agricultural activities, investment in productive capital stock, and per-capita household consumption expen-

ditures. We find significant average impacts of the RBD on income and capital stock investments, but not

on household consumption expenditures. Our estimates show that the impacts evolve over time and suggest
2See also Feder, Slade and Lau (1987) for an earlier study of extension service intensification using a quasi-experimental

research design, which uncovers positive but diminishing effects of extension services.
3While most of the variation in treatment duration is between early and late groups, a small portion also results from

variation within treatment groups. For example, a hiring delay for a livestock program trainer led early treatment livestock
farmers to receive a shorter treatment duration than farmers in other production rubrics. While we did not randomize within-
group treatment order, there is no evidence (qualitative nor quantitative) that the ordering was anything but random. Please
see Section 1.2 for more details on the roll-out.

4The validity of this double complier sample is discussed extensively below. The full sample is used to test the robustness
of the two-sided complier results.
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that the standard binary treatment estimates based on the mid-line data present an incomplete picture of

long-term impacts. In particular, the average impacts of the RBD program on farm-level capital stocks con-

tinue to grow after the mid-line survey, suggesting that longer time frames may be necessary to appropriately

evaluate these types of programs. The failure of consumption expenditures to respond to the RBD program

appears to reflect households’ decisions to reinvest income increases rather than consume them.

Looking beyond average impacts, we employ the panel quantile regression techniques developed by Abre-

vaya and Dahl (2008) to determine the extent to which estimated average impacts represent the range of

impacts experienced by program participants. The analysis reveals quite striking heterogeneity in impacts.

Beneficiaries in the 75th conditional quantile of incomes enjoy much larger impacts than those in the lower

quantiles, and a similar pattern holds for investment in farm capital. Indeed, program impacts on income

are estimated to be three to four times greater for households in the top conditional quantiles compared

to the lowest quantile, and top quantile impacts on capital investment are almost twice those in the lowest

quantile. The average impact paths appear steeper than those estimated by a median regression, as the

former estimates are driven up by the OLS regression’s sensitivity to extreme values.

While Bandiera et al. (2017) find a similar pattern of heterogeneity in their analysis of BRAC’s asset

transfer and business development program in Bangladesh, they are unable, in their own words, to “uncover

the root causes” of this heterogeneity. Many potential explanations exist for why the impacts of anti-poverty

business development programs may be nil in the lower quantiles, and we are able to bring our multi-period

data to bear on this question. The analysis in Section 4 shows that there is relatively little movement of

households across quantiles over time. That is, there appear to be “lower quantile type” households who

benefit little from the RBD program, and high types who benefit substantially.

We further employ a Generalized Random Forest (GRF) to search for the source of this heterogeneity.

Those households who seem to benefit most from the program were among the least advantaged at baseline.

Yet even after controlling for baseline disadvantage, we still observe substantial residual heterogeneity. This

suggests that the programs may work best for households that enjoy some as yet unidentified entrepreneurial

talent. This finding, along with a 70% program participation rate suggests that the RBD is an effective tool

for raising incomes for some: it places a substantial minority of households on an upward economic trajectory.

However, it also appears to be an ineffective tool for many others. These observations do not imply that

programs like the RBD are bad policy, but suggest that by themselves they may be unable to raise the living

standards of all targeted households.5

The remainder of this paper is organized as follows. Section 1 introduces the RBD and its roll-out,
5By way of comparison, Banerjee et al. (2011) find that approximately one-third of intended beneficiaries declined partici-

pation in a business development program that offered a free asset transfer. These authors do not, however, break down the
distribution of benefits across household types.

3



describes the data, and presents basic descriptive statistics and balance tests between the early and late

treatment groups. Section 2 presents our empirical approach. Section 3 shows the average impact estimates

for income, investment and consumption and explores the validity of our two-sided complier estimator.

Section 4 looks beyond average impacts and estimates the extent and meaning of impact heterogeneity using

both generalized quantile estimation and GRF. Section 5 concludes.

1 Background

Agriculture has played an important role throughout Nicaragua’s history, but multiple constraints have

conspired to prevent agriculture from reaching its productive potential—examples include a lack of basic

infrastructure, low education levels, and low access to credit and technology. Nicaragua’s National De-

velopment Plan identified the Western Region of Nicaragua, which includes the departments of León and

Chinandega, as having particularly high potential for agricultural growth. While high-potential, the area is

also quite poor: the World Bank (2008) determined that more than 50 percent of households in the Western

Region live in poverty.

In July 2005, the Millennium Challenge Corporation (MCC) signed a five-year, $175-million compact

with the Government of Nicaragua to develop a set of projects in the Western Region, with the objective of

relaxing the aforementioned constraints. The compact had three components: a transportation project, a

property regularization project, and the one we focus on here: a rural business development (RBD) project.6

This latter component aimed to raise incomes for farms and rural businesses by helping farmers develop and

implement a business plan built around a high-potential activity.

1.1 Program Description and Research Design

The Nicaraguan implementing agency (the Millennium Challenge Account, or MCA) identified the productive

activities most suitable for inclusion in the program: beans, cassava, livestock, sesame, and vegetables. In

order to be eligible, farmers had to own a small- or medium-sized farm, have some experience with one of

these crops, be willing to develop a business plan together with extension agents, and contribute 70% of

the cost of investments identified in the business plan. In addition, MCA and the implementers developed

and applied activity-specific eligibility criteria (the precise rules are shown in Appendix A).7 Once farmers
6The MCC terminated a portion of the compact in June of 2009, reducing compact funding from $175 million to $113.5

million. While this action cut off the property regularization part of the program, the RBD Program was not affected by this
partial project termination.

7The impact of these eligibility criteria on the characteristics of the eligible population is described in Toledo and Carter
(2010) who show that the RBD beneficiaries are found in the middle deciles of the rural income distribution of the areas where
the program was implemented (the Departments of León and Chinandega).
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enrolled in the program and got their business plan approved, the RBD program worked with them for

24 months. While the exact benefits varied across the productive activities, all farmers received technical

and financial training as well as supplies based on their individual business plan. Participating farmers also

enjoyed co-investment benefits, either in the form of partial subsidies for improved agricultural inputs, or in

terms of shared cost for individually or cooperatively owned equipment or installations (e.g., milking sheds

or cooling tanks).

The research team grouped farmers into small geographical clusters of approximately 25 farmers, with

a lead farmer identified for each. The randomization exploited implementer capacity constraints, which

meant that not all eligible farmers could be enrolled in the project immediately. The research team worked

with the RBD implementers to identify all the geographical clusters that would eventually be offered RBD

services. The evaluation team then selected a subset of these clusters (146 in total) for random assignment

to either early or late treatment status. These clusters were identified by professionals from the Millennium

Challenge Account in Nicaragua (MCA-N), who worked under time constraints to identify a sufficient number

of potential clusters within the target crops. While these clusters were not randomly selected from a larger

set of clusters, they actually constituted the universe of potential clusters at the time that the study was

rolled out. MCA-N later on had to seek out additional clusters to fulfill their program goals, but we have

no reason to believe that MCA-N professionals had any incentive to include or exclude areas based on the

expected outcomes of these farmers.

Once the researchers had randomly assigned clusters to early and late treatment status, 1,600 households

were sampled from the roster of all eligible producers in these clusters, split equally between early and

late areas. The randomization was blocked at the level of the crop to ensure that early and late groups had

equal representation of the different production activities. Approximately 12 farmers were randomly selected

for the study from each cluster. The 1,600 sampled households completed a baseline survey in late 2007,

just as the RBD program was rolling out in the early treatment clusters. The mid-line survey took place

approximately 18 months later, right before the late treatment group was offered the program. As illustrated

in Figure 1, the randomization and the timing of the surveys meant that the late treatment group functioned

as a conventional control group at the time of the mid-line survey. Both early and late treatment clusters

were then surveyed a third time in 2011. This roll-out strategy also provided quasi-random variation in the

duration of time that households spent in the program, a feature that will prove important in the continuous

treatment estimates presented below.

Two consultant firms, Chemonics and Technoserve, carried out the bulk of treatment roll-out. Since the

consultants but as they became engaged later than anticipated, professionals from the Millennium Challenge

Account in Nicaragua (MCA-Nicaragua) initiated the roll-out in the beginning. MCA-Nicaragua staff were

5



Figure 1: Timeline of Received Treatment and Timing of Surveys
Brackets around treatment start denote the range of treatment start dates for each group
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skilled professionals and rolled out the program according to the protocol agreed upon with the consultants,

but due to limited capacity this resulted in a more spread-out treatment start than anticipated. Other than

the bean clusters that we exclude from the analysis due to manipulation (they were treated early because

the consultants believed they were better), we have no evidence that the roll-out timing was strategic.

For most of the program crops, we have all the price and quantity information needed to analyze farm

income, which is our primary outcome variable. The exception for this are the vegetable farmers. Due to

the sheer number of crops that they farm, we were unable in our surveys to collect adequate information on

these farmers. In the analysis to follow, we therefore drop the vegetable clusters (2 of these clusters were

assigned to the early treatment and 2 to the late treatment). The consumption and investment results do

not change if we include these farmers.

In addition, midway through the research process, the research team found that the randomization

protocol had been violated for bean farmers in one sub–region (León), as local program implementers treated

early farmer groups that had been randomized into late treatment status. We eliminate all bean clusters

from this sub-region.8 Fortunately, the original research design was blocked at the sub-region level (in order

to study a land titling program, which ultimately never took place), so the elimination of these bean clusters

does not damage the integrity of the experimental design. We do, however, loose some 150 observations from

this excision of the bean cluster.9 In aggregate the elimination of vegetable and León bean clusters reduces
8Had the protocol violation been a random mistake, we might have reclassified and kept the offending clusters. However,

both qualitative and quantitative evidence suggests that this violation of the protocol was driven by the program implementer’s
desire to cherrypick strong groups for early treatment.

9Because the study was originally powered to detect the additional treatment arms defined by the land titling program, we
should have ample power even after this loss of observations.
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the total sample size from 1600 farm households to 1396. Attrition was under 2 percent by the time of the

third wave.

1.2 Data

Table 3 shows summary statistics and two separate balance checks. Because our control group (late treat-

ment) was eventually offered the program, we check for statistical balance in two ways: columns (1) and (2)

contain the means in the full sample across randomization status, with column (3) showing the difference

between the two and the results of a t-test of equality. Columns (4) - (6) present the same means and dif-

ferences for the subset of households who complied with their treatment status and enrolled in the program.

Section 3 examines the comparability of the complier sample in the early and late groups in more detail. As

can be seen in Table 1, the proportion of farmers who took up the treatment is 65.3% in the early treatment

group, and 64.6% in the late treatment group.

Most of the variable averages for the full sample suggest that the groups represent the same popula-

tion, (i.e., they are not statistically significantly different from each other) and that the randomization was

successful. An F -test of the joint significance of the baseline covariates fails to reject the null of no effect

(F -stat: 1.72). Participating farmers in the late treatment group are on average two years older than the

early treatment farmers, but we believe this arose by chance and it seems unlikely that these differences will

interact substantially with the treatment. The difference in age is significant in the “complier sample” as

well, and we now additionally see statistically significant differences in education. While these imbalances

seem unlikely to be economically relevant, we might be more concerned by the imbalance in baseline capital

ownership as it could interact with the treatment and affect treatment impacts. The heterogeneity analysis

in Section 4.4 reveals no significant heterogeneity of treatment impacts with respect to this variable.10 This

provides at least suggestive evidence that these baseline impacts are not driving the bulk of our results.

Other key productive inputs such as amount of land owned and farmed do not differ significantly across the

two groups, and the fraction of farm households that are credit constrained is nearly identical between the

two groups. 11

Figure 2 shows a histogram detailing the distribution of months in the RBD program for the sample of

compliers across all three survey rounds. The figure excludes observations with zero months of treatment since

this group (comprised of the early and late treated households at baseline, plus the late treated households
10We also estimate binary heterogeneity analyses with baseline capital. In results available from the authors, we interact

the treatment dummy with a binary indicator for being above or below median capital levels. Capital does not interact with
treatment based on these results either.

11Following Boucher, Guirkinger and Trivelli (2009) a farm is classified as credit constrained if they have positive demand for
a loan at the current rate of interest but indicate that either they are quantity-rationed in the sense that they cannot qualify for
a loan (e.g., they lack required collateral assets), or they are risk-rationed in the sense that they are afraid to risk the collateral
required by the loan (see Boucher, Carter and Guirkinger, 2008).
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Table 1: Summary Statistics and Baseline Balance Checks

Full sample t-test Complier sample t-test
Early Late Difference Early Late Difference

Variable Mean/SE Mean/SE (1)-(2) Mean/SE Mean/SE (1)-(2)

Household characteristics
Program farmer: age 51.123

(0.670)
53.037
(0.600)

-1.915** 50.476
(0.841)

52.773
(0.655)

-2.297**

Program farmer: education 4.456
(0.246)

4.004
(0.221)

0.452 4.818
(0.276)

3.996
(0.246)

0.822**

Program farmer: years of experience 20.934
(0.637)

21.311
(0.684)

-0.378 20.726
(0.676)

21.279
(0.889)

-0.553

Program farmer: gender (=1 for female) 0.137
(0.013)

0.132
(0.012)

0.005 0.137
(0.015)

0.119
(0.014)

0.018

Household members 5.251
(0.094)

5.482
(0.125)

-0.231 5.403
(0.118)

5.555
(0.144)

-0.152

Per capita expenditures 4157.200
(203.026)

4192.418
(281.960)

-35.218 4219.047
(236.150)

4067.813
(246.538)

151.234

Credit constrained (=1 if constrained) 0.393
(0.021)

0.405
(0.022)

-0.012 0.365
(0.024)

0.389
(0.028)

-0.024

Technical efficiency 0.597
(0.011)

0.602
(0.014)

-0.005 0.611
(0.012)

0.604
(0.017)

0.007

Farm characteristics
Value of total capital ($) 8515.709

(758.177)
7126.357
(632.196)

1389.351 9370.442
(844.159)

6998.305
(507.500)

2372.137**

Landholdings: owned (manzanas) 37.542
(3.868)

44.321
(6.589)

-6.779 42.575
(5.050)

46.143
(7.546)

-3.568

Landholdings: amt. planted in target crop 5.768
(0.901)

5.274
(0.514)

0.493 5.643
(1.028)

6.317
(0.777)

-0.674

Landholdings: amt. planted in maize 3.132
(0.188)

3.013
(0.114)

0.120 3.301
(0.256)

3.012
(0.133)

0.289

Farm income 7511.586
(694.095)

8338.627
(802.124)

-827.041 8339.753
(789.080)

9064.863
(915.839)

-725.110

Share of seasons used improved seeds 0.131
(0.026)

0.145
(0.025)

-0.013 0.118
(0.027)

0.175
(0.031)

-0.057

N 695 701 454 453
The value displayed for t-tests are the differences in the means across the groups.
Standard errors are clustered at the cluster level. ***, **, and * indicate significance at the 1, 5, and 10 percent critical level.
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at the mid-line), dwarfs the other categories. Despite some bunching, the data show reasonable dispersion:

the data contain households observed with as little as 1 month in the program up to as much as 50 months

in the program. The largest overlap is between early treatment farmers in round 2, and the late treatment

farmers in round 3. The last group, with 30-40 months of exposure, is comprised exclusively by early

treatment households in round 3. The variation in length of program exposure comes from a combination

of the variation of program start and survey timing, and is the variation that we exploit in the continuous

treatment estimators explained in the next section.

Figure 2: Distribution of the Duration of RBD Treatment (Dual Complier Sample)
– Excluding Pre-treatment Observations

2 Econometric Methodology

Our three outcome variables of interest–farm income, investment, and household consumption–capture both

direct and indirect channels of impact. The small-farm intervention was designed to enhance the access

of small farmers to improved technologies and to markets, so we begin by examining program impacts on

income in the target crops. We define income as the total value of production in the target crop, calculated

9



using the prices that the household obtained for the part of their harvest that was sold.12 This measure is

likely to overstate the actual impacts on household income as it ignores any reallocation of fixed inputs such

as owned land and family labor to the target crop, reallocation of labor away from other income-generating

activities, as well as the costs of purchased inputs. We believe that it still provides important insights into

the program’s impacts. We then examine two domains where we would expect to see impacts only if the

program actually enhanced total household income, namely consumption expenditures and investment in

productive capital.

We evaluate the impacts of the program using two main econometric approaches. First, we estimate

local average treatment effects (LATE) using Analysis of Covariance (ANCOVA) estimation on two different

samples. Our standard LATE approach uses randomly assigned treatment assignment to instrument for

treatment status to compute the Treatment on the Treated (ToT) estimates. We compare this approach to

a two-sided complier (2SC) estimator, which is similar to the standard ToT approach, but allows us to gain

power. Second, we employ a continuous fixed effect treatment estimator to examine the evolution of impacts

over time.

To motivate our focus on continuous treatment effects, note that the workhorse impact evaluation estima-

tors assume that program participation is a binary state–either a household receives the treatment or it does

not. While this approach deals well with treatment heterogeneity across treated units (hence the derivation

of local average treatment effects), it is not equipped to deal with impacts that evolve over time. Programs

like the RBD that provide information, improve market access and enhance investment incentives might be

expected to achieve their full impact over a medium-term time period of unknown duration (especially for

credit-constrained households that must self-finance investments). In the extreme case, they may even cause

short-term decreases in key indicators as households switch livelihood strategies or even cut consumption to

fund investments (Keswell and Carter (2014), for example, find evidence of these short-term dips in the case

of land redistribution in South Africa).

To better frame these issues, consider the hypothetical impact relationships for the RBD intervention

illustrated in Figure 3. The solid step-wise line illustrates what we might expect to see for the early treatment

group, while the dashed step-wise line illustrates the same for the late treatment group. The horizontal axis

shows roughly where the different survey rounds were undertaken relative to the treatment. If the program

had reached its full long-term impact on the early (late) treatment group by the time of the second (third)

round survey, then conventional binary estimators would work well. In this case we would expect the data

to trace out impact patterns similar to the step functions.
12Note that the RBD was intended to allow farmers to receive better prices for their produce, hence it is important that we

value output based on prices actually received. When a farmer did not sell any part of their crop, we valued output using the
mean price in their geographical cluster by season and crop.
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Figure 3: Hypothetical Impact Patterns

On the other hand, if the impact of the program evolves more slowly over time (for example, with an

initial dip followed by a slow rise toward a long-run or asymptotic treatment effect), then our data would be

generated by a a non-linear impact or duration response function in which impact depends on the duration of

time in the program. Impacts measured at mid-line using standard binary treatment estimators (which work

well when the data follow a pattern shown by the step functions in Figure 3) may reveal muted effects that

would not accurately represent the long-run program impacts. The remainder of this section describe both

our binary impact estimators as well as the more general continuous treatment model designed to capture

an unknown impact pathway.

2.1 Binary Treatment Model

In the binary analysis, we use ANCOVA estimation for the basic treatment estimates. McKenzie (2012)

demonstrates that ANCOVA estimation can result in substantial improvements in power compared to the

more common difference-in-difference specifications. The power gains are especially large when the data

have low autocorrelation, as is the case for many outcomes in rural development settings like ours.

We begin by defining two indicator variables:

• Bi indicates treatment assignment for household i, equaling 1 for eligible farmers who were assigned

to the early treatment group, and 0 for those assigned to the control or late treatment group.
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• Di indicates whether or not a farmer actually participated in the program when invited, so that Di = 1

for treated invited farmers and Di = 0 for non-compliers, who refused the program.

The local average treatment effect (LATE) can then be estimated by the coefficient δ in the instrumental

variables ANCOVA regression:

yi,2 = α+ δD̂i + θyi,1 + β′Xi,1 + εi (1)

where yi,2 is the outcome variable in the second (post-treatment) period, D̂i is Di instrumented by Bi

(the assignment to early treatment), yi,1 is the baseline, pre-intervention value of the outcome variable for

household i, and Xi,1 is a vector of baseline variables for which we want to control. Since the intervention

was randomly assigned, the use of Bi as an instrument for Di allows us to obtain consistent estimates of δ.

We will present our results both with and without covariates, since the intervention was randomized.

Looking ahead to the continuous treatment model, where we only observe duration of time in treatment

for the compliers (households with Di = 1), we also employ a two-sided complier estimator, which instead

of instrumenting for program take-up restricts the sample to the complier sample, i.e. farmers in both early

and later groups who joined the RBD program. We are able to do this thanks to our third round of data, in

which we observe the take-up decisions of the late treatment group, i.e. those farmers who serve as controls

in the midline survey. In this case, the vast majority of program costs were spent on participating farmers

such that the estimated impacts on this subpopulation (i.e. the treatment on the treated) are likely the most

relevant to policymakers.

The estimating equation for the 2SC estimator is the same as in Eq. 1, except that instead of instru-

menting for Di using treatment assignment we use the information from the third survey round to identify

the compliers among the late treatment group. The validity of this 2SC estimator relies on the idea that the

decision to enroll in the early and late treatment groups was structurally the same, so that we are in fact

comparing like with like in using this estimator. This assumption is in addition to the usual no-interference

assumption, i.e. that farmers who do not enroll in the program experience no effect from the treatment or

the randomization. Section 3 examines the legitimacy of the similarity of the compliance decision in the

early and late groups, and report all binary results using both standard LATE and 2SC estimators.

2.2 Continuous Treatment Model

As discussed in the beginning of this section, there are a number of possible reasons why the impact of the

RBD program may have evolved over time. In addition to a possible initial dip in living standards when

households first join the program and focus their resources on building up the targeted activity, there are
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at least three other reasons why the impact of the small-farm intervention may have changed over time.

First, program beneficiaries may have experienced a learning effect, with their technical and entrepreneurial

efficiency improving over time. Second, the asset program may have created a crowding-in effect if the

program incentivized beneficiaries to further invest in their farms. As Keswell and Carter (2014) discuss,

these second-round multiplier effects are what distinguish business development and asset transfer programs

from cash transfer programs and other common anti-poverty policy instruments. Third, and less positively, if

program impacts are short-lived (e.g., if treated farmers drop the improved practices as soon as the 24-month

period of intense RBD involvement with their groups end), then impacts may dissipate over time.

One goal of this study is to estimate the impact dynamics and duration response function, and thus

recover both the medium- to long-run impacts of the intervention and their time path. Both are of particular

relevance from a policy perspective. Indeed, it is the prospect that a skill-building program like the RBD

program will facilitate and crowd-in additional asset building that makes them especially interesting as an

anti-poverty program. Note that as this roll-out was not built into the experimental design, but rather

occurred by circumstance, there remains a possibility that the variation in roll-out is endogenous. If the

implementers chose to roll out the treatment to the best farmers first, the continuous impact estimates might

be sloped upward due to this selection, rather than the existence of impact dynamics. That said, the research

team worked closely with the implementation team for the duration of the program, and feel quite confident

that we would have found out if the roll-out timing had been strategic.

In addition, what we need for these results to be valid is that the duration of treatment is randomly

determined, conditional on covariates. In other words, even if we believe that this secondary variation in

roll-out was purposeful, the key question is whether we believe that it remains correlated with the error term

once we control for covariates. In our case, since we control for household fixed effects the implementers

would have had to have in mind quite sophisticated models to predict treatment impacts for this to be

true. Furthermore, the results in Section 4.4 suggest that the steepest impact curves actually occurred for

households that were relatively disadvantaged at baseline, and therefore unlikely to be chosen by a strategic

implementer who wants to roll out to the “best” farmers first.

We begin our continuous analysis with a generalization of the binary response function to the continuous

treatment case:13

E[yit|dit] = αi + τd2 t2 + τd3 t3 + f(dit), (2)
13We could alternatively follow the generalization of propensity score matching to the continuous treatment case found in

Hirano and Imbens (2004). The Hirano and Imbens estimator only exploits observations with strictly positive amounts of
treatment. In our case, this would imply dropping the baseline data for all RBD participants as well as the mid-line data for
the late treatment group. For development applications that employ this estimator, see Keswell and Carter (2014) and Aguero,
Carter and Woolard (2010)
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where dit is the number of months since farm i was actively enrolled in the treatment at survey time t, t2

and t3 are round dummies, and f(dit) is a flexible function that can capture the sorts of non-linear impacts

illustrated in Figure ((3)) above. These durations run from 0 to 50 months.14

Based on the semi-parametric estimates of 2 reported in Tjernström, Carter and Toledo (2013), we choose

a cubic parametric form to represent the duration impact function, f(dit). The household-specific fixed effect

term, αi, controls for all observed and unobserved time-invariant characteristics, including farming skill, soil

quality, farmer education, etc. Importantly, the fixed effect estimator controls for any systematic or spurious

correlation between time invariant household characteristics and duration of treatment.

While there are several computationally equivalent ways to consistently estimate a fixed effect model like

equation 2, we build on the correlated effects model of Mundlak (1978) and Chamberlain (1982,1984) in

anticipation of later quantile regression analysis where such models are less easily estimated. We therefore

write the individual fixed effects as a linear projection onto the observables plus a disturbance:

αi = λ0 +X
′

i1λ1 +X
′

i2λ2 +X
′

i3λ3 + υi,

where Xit denotes a vector of observables, which includes the time dummies and the duration variables.

In our case, we have little reason to believe that the way in which the time-varying observables affect the

individual effects differ between survey rounds, so we use the average of the time-varying covariates and

write the fixed effect as

αi = λ0 + X̄
′

i λ̄+ υi.

Substituting this expression into (2) gives:

yit(dit) = τd2 t2 + τd3 t3 + f(dit) + λ0 + X̄
′

i λ̄+ [υi + εit] (3)

where εit is the error associated with the original regression function, equation 2. Replacing f(dit) with the

cubic functional form suggested by the semi-parametric analysis yields:

yit(dit) = τd2 t2 + τd3 t3 + ζ1dit + ζ2d
2
it + ζ3d

3
it + λ0 + X̄

′

i λ̄+ [υi + εit]. (4)

OLS estimation of (3) allows us to consistently recover the fixed effect estimators of the impact response

function parameters of interest.
14In a few cases, RBD activities began a few months prior to the baseline survey. For these cases, we have considered

households in these clusters as treated at baseline, but their values for dit can exceed the number of months between the first
and third rounds of data collection.
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3 Average Impact Estimates

Using the binary and continuous treatment models developed above, this section presents estimated aver-

age RBD impacts for each of our three primary outcome variables: gross income in the targeted business

activity, productive investment, and household living standards as measured using typical living-standards

measurement survey consumption expenditure modules. Section 3.1 presents binary results using both the

full sample and the 2SC estimator that restricts the sample to complier households. The 2SC complier

estimates are strikingly similar to the IV estimates (but are more precisely estimated), suggesting that the

compliers in the late treatment group are similar to those in the early treatment group and confirming that

the program was carried out in a similar fashion for the two groups. As mentioned above, the compliance

rate was around 65% for both early and late treatment groups.

Further, Figure 4 shows the results from a probit regression of the program take-up decision on early/late

treatment. The full table of results is shown in Appendix Table 2. The first model includes only the

treatment assignment dummy, the second model adds in baseline characteristics, and the third interacts all

the covariates with the treatment dummy. The figure reports the average marginal effects of each variable

on the probability of program take-up with other variables held at their sample means, with the associated

90% confidence intervals. We interpret these results as providing little evidence of systematic selection into

the program since very few of the variables are significant. Furthermore, the overall effect of being assigned

to the early treatment group does not change across the models as we include covariates and interaction

terms. Additionally, the partial of the response with respect to the treatment dummy is not statistically

significantly different from zero (p-value= 0.703 in the fully interacted model). Taken together, we find no

evidence that the take-up decision differed between the early and late groups. Section 3.2 presents results

for the continuous treatment model, which uses only the complier sample.

3.1 Binary impact estimates

Before turning to the continuous treatment estimators that allow us to exploit the full variation in our data,

this section presents standard binary impact estimators which identify impacts based on the comparison at

midline between early and late treatment groups.

Table 2 shows the RBD program’s estimated impact on annual gross farm income from the activities

targeted by the program. Income is measured in 2005 purchasing power parity adjusted US dollars. As

discussed in Section 2, observed income increases in RBD-targeted crops do not necessarily imply increased

overall incomes, as productive inputs could have been reallocated from other activities (e.g., maize or off-

farm employment) to the target crops. Of these hypotheses, we can only seriously look at maize production
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Figure 4: Decision to Take Up Program, by Early and Late Treatment Group Status

since most farm households produce maize. In results available from the authors, we show that there is

some evidence—albeit statistically imprecise—that maize area and maize production declined slightly with

participation in the program.

To alleviate some of these concerns, we include additional results in Appendix Table 7, showing treatment

effects on the sum of changes in capital stock between rounds and household expenditure. If we worried that

the total income were crowded-out by other activities or offset by increased input costs, we would not expect

to see increases in this measure (since we expect ∆consumption + ∆investment ≤ ∆program income). The

treatment effects on this measure are remarkably similar to the estimated treatment coefficients on farm

income, suggesting that crowding out is not a major concern.

Table 2 shows the results from ANCOVA regressions on income at midline, with Intention-to-Treat

(ITT) estimates in columns (1) - (2), and the full-sample LATE estimates in columns (3) - (4). These are

the standard impact estimates under randomized treatment assignment, and make no assumptions about

the uptake processes in the late treatment group, who act as control group in the midline. Columns (5) -

(6) show the LATE results when we restrict the sample in both early and late treatment group to compliers

only.

The ITT and LATE estimates show substantial average impacts of the program. The LATE estimates are

roughly $1,000, but they are not significant. However, the results from the 2SC estimator are very similar to
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Table 2: Impact of RBD Program on Target Activity Income: ANCOVA Estimates

ITT LATE (IV) LATE (complier sample)
Early treatment 675.8 675.3 1061.1 1059.3 1169.8* 1237.4*

(554.0) (575.5) (867.2) (896.9) (687.9) (719.4)
Baseline farm income 0.84*** 0.82*** 0.84*** 0.81*** 0.90*** 0.88***

(0.072) (0.081) (0.071) (0.080) (0.073) (0.082)
Program farmer: education 64.9 59.5 -26.5

(78.6) (77.8) (98.2)
Program farmer: years of experience -6.99 -7.06 -5.71

(23.4) (23.1) (31.3)
Household members 118.8 109.8 -55.1

(113.4) (114.7) (129.4)
Landholdings: owned 13.7 13.5* 13.9**

(8.32) (8.19) (6.83)
Share of seasons used improved seeds 1042.1* 949.2 454.2

(595.5) (621.3) (733.3)
Program farmer: gender -399.4 -411.4 -126.0

(509.6) (496.3) (662.1)
Constant 5834.5*** 4254.7*** 5865.9*** 4376.0*** 5677.4*** 5270.2***

(975.7) (1039.1) (953.3) (1006.6) (1151.2) (1459.2)
Observations 1341 1279 1341 1279 864 829
Adjusted R2 0.577 0.577 0.579 0.579 0.618 0.616
Cluster-robust standard errors in parentheses.
* p<.1, ** p<.05, *** p<.01
All regressions control for crop fixed effects. Share of improved seeds measures the share of seasons at baseline that
the beneficiary household used improved seeds/methods.
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the results in columns (3) and (4), which were obtained using standard instrumental variables regression in

the full sample. The main difference is that the 2SC estimates are statistically significant at the 10-percent

level; this increase in precision comes from not having to instrument for uptake. Economically, these point

estimates imply an average income increase of around 17 percent at the midline. As discussed earlier, these

impacts on income from the targeted activity are upper bound estimates of the impacts on net household

income.

An important objective of beneficiaries’ business plans was the accumulation of farm assets. With the

objective of increasing farmers’ productivity, the program provided some equipment or supported the con-

struction of new productive installations once the business plan was approved. We follow the same strategy

used in the previous section to examine the program’s effects on capital investment. The outcome variable

used is the sum of investments in mobile capital (tools and equipment, excluding livestock) and in fixed

capital (buildings, installations, and fences located on the farmer’s land).15 The results are similar if dis-

aggregated by type of capital. Note that in contrast to the income analysis, these measures are cumulative

impacts (increments to a stock) over the period of observation.

Table 3 shows estimated program impacts on capital investment. The unadorned binary impact ITT

estimates in column (1) are positive ($557), but not statistically significant. Including covariates increases

the precision of the estimates, and column (2) shows estimated impacts of $607, significant at the 5-percent

level.

Columns (3) and (4) of Table 3 report the LATE estimates with and without covariates. The estimated

impacts of the program on farm investment are around $900 and significant at the 5-percent level if covariates

are included. The average household in our sample had around $7,000-$8,000 in total farm capital at baseline,

so these program impacts correspond to an average increase of 12 percent over the baseline capital stocks. The

results from the complier sample are again consistent with the standard LATE estimates, with the expected

increase in statistical precision. The results also suggest that the increases in the value of production of

the targeted income do translate into true increases in net household income. Indeed, the magnitude of the

increases in farm capital suggest that most of the income increase was real and was allocated to productive

investment.

The ultimate goal of the RBD was to boost the living standards of small-scale farm families. To in-

vestigate impacts that proxy for this dimension, we adopted the household expenditure module utilized in

Nicaraguan living standards surveys. As with our money-metric outcome measures, we transformed con-

sumption expenditures into 2005 purchasing-power-parity adjusted $US. Because the number of household
15Some elements of fixed capital were difficult to value as they were often constructed by the farmer rather than purchased

on the market. RBD program staff assisted with the evaluation, but a few items (in particular, erosion barriers and certain
types of fencing) are not included in our measure of fixed capital.
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Table 3: Impact of RBD Program on Farm Investment: ANCOVA Estimates

ITT LATE (IV) LATE (complier sample)
Early treatment 556.9 604.1** 889.5 954.4** 525.7 717.7**

(402.7) (291.2) (634.7) (452.8) (350.8) (325.9)
Baseline investment 0.94*** 0.96*** 0.94*** 0.96*** 0.99*** 0.98***

(0.050) (0.028) (0.050) (0.028) (0.034) (0.036)
Program farmer: education 55.5 49.7 18.0

(44.9) (43.4) (48.2)
Program farmer: years of experience 16.3* 16.4** 11.1

(8.31) (8.20) (10.8)
Household members 127.2* 117.7* 127.2

(65.5) (64.5) (83.0)
Landholdings: owned -13.2 -13.3 3.43

(15.8) (15.5) (2.98)
Share of seasons used improved seeds 513.4 425.3 351.3

(400.3) (379.9) (380.0)
Program farmer: gender 177.6 172.2 377.5

(419.1) (412.4) (559.4)
Constant 955.6*** 121.7 959.2*** 223.8 880.4** -603.7

(319.6) (923.2) (319.2) (917.6) (411.8) (742.2)
Observations 1341 1260 1341 1260 860 817
Adjusted R2 0.861 0.880 0.861 0.880 0.860 0.889
Cluster-robust standard errors in parentheses.
* p<.1, ** p<.05, *** p<.01
All regressions control for crop fixed effects. Share of improved seeds measures the share of seasons at baseline that
the beneficiary household used improved seeds/methods.

19



members fluctuates both within and between years, we adjusted the different expenditure components by

potentially different household sizes to arrive at per-capita measures. Specifically, food expenditures was

converted to a per-capita measure using as a denominator the number of household members who had ac-

tually been in residence during the short recall period used to measure food spending. Other expenditure

categories with longer recall periods were adjusted using the full roster of household residents (defined as

those who habitually reside and sleep in the household).

Table 4: Impact of RBD Program on Household Consumption: ANCOVA Estimates

ITT LATE (IV) LATE (complier sample)
Early treatment -7.46 -12.7 -11.9 -20.0 159.3 105.0

(137.0) (138.9) (216.2) (216.8) (184.2) (199.4)
Baseline expenditures 0.43*** 0.35*** 0.43*** 0.35*** 0.38*** 0.29***

(0.053) (0.063) (0.053) (0.062) (0.060) (0.061)
Program farmer: education 96.2*** 96.4*** 99.4***

(24.2) (24.6) (33.7)
Program farmer: years of experience 13.5** 13.5** 21.0**

(6.36) (6.27) (9.56)
Household members -229.6*** -229.4*** -277.2***

(25.9) (25.8) (34.0)
Landholdings: owned 2.30 2.31 3.74*

(1.79) (1.76) (2.16)
Share of seasons used improved seeds -9.17 -7.24 -188.7

(155.5) (161.0) (192.5)
Program farmer: gender 103.1 103.3 233.4

(230.1) (226.4) (334.3)
Constant 2030.1*** 2716.4*** 2030.2*** 2714.7*** 2288.3*** 3078.2***

(260.9) (348.9) (259.1) (340.6) (312.0) (385.3)
Observations 1378 1292 1378 1292 884 838
Adjusted R2 0.384 0.456 0.384 0.455 0.299 0.379
Cluster-robust standard errors in parentheses.
* p<.1, ** p<.05, *** p<.01
All regressions control for crop fixed effects. Share of improved seeds measures the share of seasons at baseline that
the beneficiary household used improved seeds/methods.

As can be seen in Table 4, the effect of the program on consumption are small in magnitude, with negative

point estimates in the full sample (columns (1) - (4)) and small but positive estimates in the complier sample.

None of these estimates are statistically distinguishable from zero, and their absolute magnitudes are at most

a few percent of baseline consumption levels. Coupled with the other impacts estimated using the mid-line,

binary treatment estimators, these results indicate a program that boosted income and saw most, if not all,

of that increased income devoted to capital accumulation.
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3.2 Continuous treatment estimates

As discussed in Sections 1 and 2, there are multiple reasons to believe that the impacts of this type of

program might evolve over time. To capture the potentially non-linear duration response functions, whereby

impacts depend on how much time has passed since the producer enrolled in the RBD program, we exploit

the fact that treatment was rolled out in a staggered fashion within the early and late treatment groups.

This created variation in the duration of treatment (as shown in Figure 2). The coefficient estimates of

ζ1, ζ2, and ζ3, from estimating equation 4, our preferred cubic specification, are shown in Table 5. The rest

of this section will discuss the graphical representations of these results graphically since the temporal path

is somewhat hard to infer from the coefficients alone.

Table 5: Impact of RBD Program on Farm Income, Investment and Household Consumption: Fixed Effects,
Continuous Treatment Estimates

Farm Income Investment Expenditures
Months treated 254.0* 299.1* -29.1

(146.5) (165.9) (46.0)
Months treated2 -9.84 -11.4 2.14

(8.53) (12.7) (2.25)
Months treated3 0.12 0.16 -0.039

(0.14) (0.22) (0.037)
Program farmer: education 361.2*** 638.9*** 243.8***

(119.4) (117.9) (41.1)
Program farmer: years of experience 64.0** 61.8** 19.3**

(25.7) (30.4) (7.61)
Household members -168.6 66.2 -466.2***

(145.9) (147.5) (39.9)
Landholdings: owned 44.1*** 43.1*** 7.22**

(13.3) (11.9) (2.84)
Share of seasons used improved seeds 2537.5*** 2379.9*** 31.2

(725.9) (710.4) (175.5)
Program farmer: gender -2651.3*** -1792.0 -32.7

(686.1) (1094.8) (249.2)
Constant -3085.2 17477.6 12738.4***

(2304.4) (15760.3) (4309.7)
Observations 2459 2478 2518
Adjusted R2 0.329 0.216 0.250
Cluster-robust standard errors in parentheses
* p<.1, ** p<.05, *** p<.01
Not shown in table: Time and crop dummies, Mundlak instruments for fixed effects.

Turning first to impacts on program income, we see that the duration of time in program has a statistically

significant impact on gross income in the treated activity. Drawing out the implications of the estimates

shown in Table 5, Figure 5 graphs the estimated cubic relationship with the associated 90-percent confidence

intervals. Predicted farm income at the start of the program is on average roughly $9,500. Income increases
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over the first two years in the program, flattening out at an average predicted farm income of $11,600, for

an impact estimate of $2,100. This longer-term impact is twice the level of the mid-line impact estimate

reported in Table 3. From the graph, it appears as though most of the benefits of the program occurred

during the 24 months during which farmers were actively enrolled in the program, then flattening out. That

said, incomes remain at the higher level, suggesting that a temporary intervention that offers subsidies sticks

and has lasting impacts as in the Carter, Laajaj and Yang (2013) study of Mozambique.

Figure 5: Predicted Farm Income by Months of Treatment

Figure 6 plots the estimated impacts on capital stock, together with a 90% confidence interval. As can

be seen, the estimated impact of the program on beneficiaries’ total capital stock increases significantly

over the duration of the project, continuing to rise even after the end of active programming (24 months).

The predicted capital stock at the start of treatment is around $8500, and by month 42 this has risen to

$12,500–implying an investment impact of than $4000. This is again well in excess of the midline binary

LATE estimates, which suggested impacts just under $1,000. While this 3.5 year impact on capital stock

is large, it is broadly consistent with a stream of three estimated annual income increases on the order of

$1000 - $2500.

As noted earlier, a substantial fraction of participant farmers are reported to be credit-constrained in the

sense of having unmet demand for loans they would like to take. This suggests that many farm households

would have had to self-finance investment out of their current income. Given that the estimated total
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Figure 6: Predicted Capital Stock by Months of Treatment

increase in capital stock is similar to the accumulated annual income increases over the program, we are not

entirely surprised that the longer-term pattern mimics the binary results, which showed small and statistically

insignificant program impacts on household living standards.

Column 3 of Table 5 shows the estimated cubic function of treatment duration on household consumption.

The individual coefficients are small in magnitude and not statistically significantly different from zero. The

key question whether the overall impact duration relationship is statistically significant. Figure 7 displays

the cubic relationship as well as the 95% interval estimate of the duration response implied by the cubic

estimates. As can be seen, the point estimates show no signs of consumption growth over the time of the

program, and the interval estimator always includes zero.

In summary, we see evidence of a program that on average boosted incomes and that most, if not all,

of that increased income was plowed into the accumulation of productive capital. While these average

impacts are important in their own right, they do not reveal whether there is substantial heterogeneity in

the impacts in terms of levels or in terms of how households allocate income increases between consumption

and investment. The next section therefore looks more carefully at program impacts at different parts of the

distribution.
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Figure 7: Predicted Household Consumption by Months of Treatment

4 Impact Heterogeneity

In their study of a asset transfer and business development program in Bangladesh, Bandiera et al. (2017) find

that program impacts on consumption and asset are four to ten times larger for upper quantile households

compared to lower quantile households. Banerjee et al. (2015) detect a similar pattern in their study, although

the smaller impacts for lower quantiles are more uniformly significant. Reflecting on these findings, there

are multiple reasons why programs like the RBD may have heterogeneous impacts, including:

1. Heterogeneous access to the financial capital needed to make the most of an RBD intervention;

2. Complementarity between an RBD intervention and unobservable assets that are not equally distributed

across the population, such as farming skills, learning capacity and business acumen; and,

3. Differential luck, with some succeeding and others failing for stochastic reasons.

Earlier analysis conducted with only the mid-line data from this study revealed substantial evidence of

impact heterogeneity. The program impacts only weakly influenced the well-being of the poorest-performing

50% of the population when compared against the poorest-performing segment of the untreated households.

This initial analysis also suggested quite high returns to the best-performing segment of the treated group as

compared with top performers in the then untreated control group (Toledo and Carter, 2010). In this section,
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we use all three rounds of data and our continuous treatment model to further explore impact heterogeneity

in an effort to distinguish between mechanisms like item 3 versus mechanisms like 1 and 2, which would

imply that the program does not work well (or as well) for certain types of households.

4.1 Econometric Approach

Conventional regression methods (such as those just employed above in Section 3) estimate average or

mean relationships. They assume that the vector of covariates affects only the location of the conditional

distribution of y, not other aspects of y’s conditional distribution. Conditional quantile regression methods

allow us to see whether the statistically average relationship is in fact a good description of the relationship

in all parts of the distribution. Specifically, quantile regression allows us to recover the regression parameters

that best describe the impacts on observations in different portions of the error distribution for our regression

model.

Observations in the higher quantiles are those that “do better” than would be predicted by the ob-

servation’s level of treatment and other regression variables (e.g., are in the upper tail of the conditional

distribution of the outcome variable). For simplicity, we refer to observations in the higher quantiles as

“high performers,” but for now this should be interpreted to mean high-performing observations—not nec-

essarily high-performing household types. Conversely, observations in the lower quantiles are those are in

the lower tail of the conditional distribution of the outcome variable. Quantile regression allows us to see

if the marginal impact of RBD program participation at various parts of the conditional distribution of the

outcome variables differs from the impacts at the mean—i.e. the average relationship estimated in Section

3.

Note that if the average regression model explains the data well, the impact estimates should be the

same for all quantiles. However, if there is unobserved heterogeneity in the impacts, then the impact slopes

across quantiles may be different. As mentioned above, there are conceptual reasons to suspect that the RBD

program might have heterogeneous impacts. Reason 3 for heterogeneity above would imply “high-performing

observations,” whereas reasons 1 and 2 would imply the existence of “high-performing households.”16

To recover conditional quantile estimates, we employ the method developed by Abrevaya and Dahl

(2008) that extends a correlated random-effects framework (like regression equation (3) above) to apply to

conditional quantile models. While quantile models have been widely used in empirical studies since their

development by Koenker and Bassett (1978), they are not often applied to panel data, likely because of

the difficulty of differencing in the context of conditional quantiles. This problem arises because quantiles
16If heterogeneity is driven by capital constraints (reason 1), then low performance could be attenuated by augmenting

business services with a credit program. However, if low performers instead lack other types of characteristics such as human
capital, it is less obvious how to ameliorate low performance.
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are not linear operators, so that the conditional quantile of a difference is not simply a difference of the

conditional quantiles. Importantly, this methodology based on correlated random-effects preserves the fixed

effects characteristics of the results, inoculating them against systematic or spurious correlation between the

duration of treatment and initial and time-invariant conditions. Note also that the conditional errors are

estimates of υi+εit from equation 3. That is, the error contains the time-invariant, random effect component.

4.2 Generalized Quantile Estimates

This section explores the heterogeneity of the impact or duration response function by estimating the con-

ditional quantile functions for our preferred (cubic) parametric continuous treatment models. Parameter

estimates for the Abrevaya and Dahl (2008) estimator can be obtained with any quantile regression pack-

age. Standard errors are obtained through bootstrapping (we use 500 replications), drawing households and

clusters with replacement from the sample and estimating the variance-covariance matrix from the resulting

empirical variance matrix. We present the results graphically, showing the predicted values of the outcome

variables as a function of the length of time in the program, for the 25th, median and and 75th quantiles,

with bootstrapped 95% confidence intervals displayed as dotted lines around the point estimates. The full

regression tables can be found in Appendix Table 3.

Figure 8 (a) displays the results from the quantile analysis of income in the targeted activity. As can

be seen, these estimates corroborate the hypothesis that program impacts are heterogeneous across the

participant population. The impacts of the program are greatest at the high end of the distribution, with the

25th percentile impacts smaller in magnitude but still significantly different from zero. The high performers

in the 75th quantile also experience a steeper impact response function than the lower quantiles. Indeed,

towards the end of the program duration farm incomes at the 75th conditional quantile are more than $4,500

greater than at the program beginning, more than three times the long-term impact level for the producer

at the median or 25th quantile of the conditional income distribution. The lower quantile estimates are

between $600-$1,200. The statistical significance of these impact paths can be approximated by comparing

the confidence interval to the dashed lines, which denotes the income level at zero months of treatment.

The estimated program impacts on capital investment also vary substantially across conditional quantiles

(Figure 8 (b)). The level and shape of the temporal impact path on investment increases as we move

upwards in the conditional distribution of capital. For households in the 75th conditional quantile, investment

increases by roughly $3,300 over the course of the program, a magnitude only slightly smaller than the farm

income increases seen in the panel above. At the median, households also increase their investment by a

substantial amount: roughly $1,900. The lowest quantile if anything displays negative or zero impacts on
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(a) Farm income

(b) Investment

(c) Expenditures
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capital investment, and have no more capital stock at the end of the program than at baseline.

For per capita consumption, we see no positive impacts for any quantile, and for the median and 75th

conditional quantile, the program impacts on consumption are negative for at least part of the treatment

duration. The next section explores whether there exist household types who benefit from the program,

or whether households move between conditional quantiles over time due to external factors like weather

realizations or luck.

4.3 Are there Household Types who Benefit from the RBD Intervention?

It is tempting to interpret this impact heterogeneity as signaling that the RBD program did not work for

everyone. However, as discussed above, it is possible that the lower quantiles are comprised of observations in

which output was diminished by a negative shock. For example, a program like the RBD would be unlikely

to have any impacts in the face of a localized drought since improved varieties, marketing channels, etc.

would be useless if production dropped to zero due to weather events.

One way to gain purchase on this problem and to garner some insight on the source of this heterogeneity

is to ask whether the same households consistently occupy the same quantile position in the conditional

error distribution. If they do—meaning there are consistently upper quantile households and consistently

lower quantile household—then we have evidence that program impacts vary systematically by (unobserved)

household type.

To explore this idea, we recovered the residual for each observation in each round from a median regression.

Denote by qit the error quantile which contains household i’s residual round t. Using a standard analysis of

variance decomposition, we can decompose the total variation in qit as follows:

N∑
i=1

3∑
t=1

(qit − q̄)2 =
N∑
i=1

3∑
t=1

(qit − q̄i)2 + 3
N∑
i=1

(q̄i − q̄)2,

where N is the number of households in the dataset, q̄ is the overall mean in the dataset, while q̄i is the

mean quantile for household i over the 3 rounds of the data. The first term on the right hand side is the

within sum of squares (WSS), while the second term is the between sum of squares (BSS). If no household

changed position in the error distribution from year to year, then the WSS would be zero. Conversely, if a

household’s error quantile varied randomly from year to year (sometimes high, sometimes low and sometime

in between), then q̄i ≈ q̄ ∀i and the BSS would be a small fraction of the total variation in qit.

Table 6 shows that the fraction of total variation that is between households ranges from 67% to 84%

for our three primary outcome variables. While a modest fraction of the variation comes from households

moving between error quantiles over time, the bulk of the overall variation is coming from time-invariant
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Table 6: Within vs. Between Variation in Error Percentiles
Panel A: Core Continuous Treatment Model

Within variation (%) Between variation (%)
Income 33 67.0

Total Investment 16.3 83.7
Consumption 27.1 72.9

Panel B: GRF-informed Continuous Treatment Model
Income 33.1 66.9

Total Investment 16.5 83.5
Consumption 27.2 72.8

differences between households. In other words, there is evidence that particular households tend to occupy

upper quantiles, and others tend to occupy lower quantiles. Given that the latter seem to enjoy little benefit

from the RBD program across all three indicators, this finding suggests that the RBD program is a blunt

instrument for improving the economic welfare of an important subset of household, but quite effective for

those who have the right complementary market access and, or skills.17 The stability of households’ position

in the conditional distribution also suggests that it is worthwhile digging deeper into impact differences by

exploring whether baseline variables can explain the treatment heterogeneity.

4.4 Identifying the Characteristics of Households that Benefit More from the

Intervention

The heterogeneous impact results reported above are broadly similar to those reported in the Bandiera et al.

(2017) study of an asset transfer and business development program in Bangladesh. Using binary quantile

treatment effect analysis, the authors find that the impacts on living standards and asset accumulation are

small and marginally significant for some 35-45% of the population despite being large and robust on average.

Similar to our quantile regression results, these findings are provocative but not completely satisfying since

they say nothing about the factors that distinguish those who benefited from the intervention from those who

did not. If we could identify observable characteristics that predict which households are likely to benefit

from entrepreneurial interventions, we could leverage such results by targeting interventions better,18 or by

identifying other limiting constraints that a modified intervention might relax, allowing more broadly shared

impacts.
17Efforts reported in Toledo (2011) to unpack the reasons behind the impact heterogeneity reported in Toledo and Carter

(2010) are only partially satisfying. That analysis focused on explanation (1) above, categorizing households based on their
credit-rationing status. While credit market status is of course endogenous, that analysis revealed no simple relationship between
performance and contemporaneous credit rationing status. Indeed, the only factor uncovered was past credit history. RBD
impacts on farms with prior credit history appeared quite large and significant. Unfortunately, the interpretation of prior credit
history as a factor explaining heterogeneous program impacts is ambiguous. It seems most likely that those with past credit
histories are actually those with higher levels of farming and business acumen (pointing toward explanation 2 above). It may
also be that those acumen levels were themselves endogenously produced by prior access to credit and business opportunities.

18For interventions that are relatively costly, including both the Nicaraguan RBD product as well as graduation programs
such as that studied by Bandiera et al. (2017), the returns to more effective targeting are potentially large.
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In an effort to better understand the sources of impact heterogeneity, this section proceeds in three steps.

First, we employ the generalized random forest (GRF) method of Athey, Tibshirani and Wager (2018)—a

non-parametric machine learning algorithm—to identify which characteristics are associated with greater

RBD program impacts. Although our sample size pushes the limits of what is feasible using GRFs, we

find some evidence that households who are initially disadvantaged along multiple dimensions benefit the

most from the intervention. Second, we incorporate an indicator of “initial disadvantage” into our continuous

treatment regression model to see if this new measure explains differential impacts and/or reduces the impact

heterogeneity across conditional quantiles. Third, we repeat the approach developed in section 4.3 to ask

if the residual quantile variation is largely comprised of variation within or between households. In other

words, once we control for the observable factors that drive heterogeneity, do other unobserved household

characteristics such as entrepreneurial zeal explain impact heterogeneity?

Generalized Random Forest Analysis of Impact Heterogeneity

As detailed in Appendix E, we apply GRF methods to our midline data to see how a number of covariates

shape the impact of the RBD program on income. In particular, we include an estimate of a farmer’s

technical efficiency,19 program farmer years of education, owned land assets, program farmer experience

with the target crop, and initial farm capital. Figure 9 summarizes the results of this analysis. Each row in

the figure looks in detail at one of these covariates, with the graphs showing predicted treatment effects for

the level of the baseline covariate indicated on the horizontal axis. Each column in the figure holds the other

covariates at different percentiles: column 1 holds them at the 25th percentile, column 2 holds everything at

the median in the sample, and the third column holds covariates at the 75th percentile.

A somewhat consistent pattern emerges: the first column shows more precisely estimated and generally

larger impacts. Furthermore, impacts are also systematically larger whenever the covariate being varied

along the x-axis is at or below its median value. For example, the first graph in row 3 shows that predicted

treatment effects for households in the lowest 25% of the distribution of experience, education, initial capital

and technical efficiency is downward sloping in the baseline amount of land owned. The treatment effect then

become insignificant at the 55th percentile of the land ownership distribution. While the multiple splitting

of the data used by GRF strains our data, they do seem to indicate that the program has larger and more

consistent—i.e., less variable—impacts on income for farm households that suffer multiple disadvantages. In

other words, farmers who have lower initial land assets, lower levels of technical efficiency, and lower levels

of education and experience may benefit the most from the program.
19Technical efficiency measures calculated using stochastic frontier methods were kindly provided by Malacarne, Boucher and

Carter (2017). Full details on the estimation procedure available from the authors.
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Figure 9: GRF conditional treatment effects
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This finding is particularly interesting given that the RBD program established various asset ownership

minimums, below which a farm household was not eligible for the program (see Appendix Table1). We

turn now to see the extent to which initial disadvantage explains the overall impact heterogeneity identified

earlier.

The GRF-informed Continuous Treatment Model

Based on the results from the supervised learning algorithm above, we define a new variable called “dis-

advantaged.” We classify households as disadvantaged if they owned below the median amount of land at

baseline and had less than the median years of experience in the target crop.20 We then incorporate this

new “disadvantaged” indicator variable into the continuous treatment model 4. The regression results are

displayed in Appendix Table 6.

The disadvantaged dummy on its own is negative and statistically significant for investment and house-

hold expenditures; its interactions with the treatment duration variables are not individually statistically

significant. Graphing these regression results for disadvantage and non-disadvantaged households (in the

spirit of Figures 5-7; graphs available upon request) shows that the disadvantaged experienced more rapid

income gains than the non-disadvantaged in the first year of treatment but that the income impacts appear

to flatten out somewhat once they are no longer actively enrolled in the program.

The most striking difference between the disadvantaged and their more-advantaged counterparts are the

impacts on investment. Drawing out the implications over the months, we observe that the investment im-

pacts of the RBD program are entirely concentrated among those farmers above the median experience and

land ownership at baseline. While differences in estimated consumption impacts are not statistically signifi-

cant, the investment results hint at a pattern in which the initially disadvantaged may have allocated their

income increases more toward consumption and less towards investment than do their initially-advantaged

neighbors.

Finally, we repeat the quantile heterogeneity analysis for the GRF-augmented continuous regression

model. Despite the fact that the disadvantaged variable explains some of the variation in outcome, substantial

heterogeneity remains. Moreover, as seen in Panel B of Table 6, most of that heterogeneity remains between

households. In other words, while the GRF analysis located those observable factors that best explain

differences in impacts, there remains some as yet unidentified (and unmeasured) characteristic of high-

performing households that complements and boosts the impacts of the RBD program. For lack of a better

terms, we will simple describe these households as enjoying strong entrepreneurial skills.
20We chose the cutoffs defining these indicator variables based on the causal tree analysis.
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5 Conclusion

Nicaragua’s Rural Business Development Program (RBD) was a 24-month intervention designed to boost

the productivity and incomes of a largely poor and rural farming population by enhancing their business

knowledge and improving their access to markets and technologies. The program also offered temporary

input and investment subsidies. Gauging the effectiveness of a program like the RBD that addresses the

rural poor as incipient entrepreneurs rather than as passive recipients of transfers, faces several challenges.

The first challenge is to gauge the long-term impacts of the RBD intervention. Beneficiaries may continue

to learn, invest and realize further benefit from the intervention long after the 24 month period. It is also

possible that any immediate impacts are not sustained if beneficiaries return to their prior status after the

period of direct intervention ends. The second challenge is to understand the heterogeneity of impact across

the target population, both in terms of participation in a somewhat complex program, and in terms of the

business success of those who choose to participate.

To address these challenges, we employed a 5-year roll-out design that randomized beneficiaries’ exposure

to the RBD program. In addition to standard treatment effect estimates, the design allowed us to identify a

two-sided complier sample and to focus the analysis only on those who (eventually) enrolled in the program.

Using 3 rounds of data from this design, we find that on average has substantial impacts on income in the

targeted activities ($1,200 to $2,100 annually)21 and on agricultural investment ($1,000 to $3,700). Somewhat

surprisingly, there are virtually no impacts on household consumption expenditures, and in fact some weak

evidence that the program reduced expenditures, as might be expected if beneficiaries were investing more

in their farm but facing liquidity constraints.

The RBD program did not include a direct credit market intervention. The overall MCC program

in Nicaragua operated in part on the theory that improved property registration would indirectly improve

smallholder access to capital by increasing their collateral and credit-worthiness to the extant banking sector.

Whether or not that strategy would have worked remains an open question, as the property registration

component of the program was eliminated in early 2009 (see footnote 6 above).

At a direct program cost of $2,500 per-farmer enrolled in the program, these average estimates indicate

that the RBD was a cost-effective instrument for boosting the average income and assets of its beneficiary

farmers. However, its effectiveness as an instrument to address rural poverty depends on the distribution

of impacts across the program’s overall target population. Looking at the full distribution of impacts

is especially important for efforts like the RBD program that target beneficiaries’ income-generating and

entrepreneurial capacities.
21As discussed above, these estimates are upper bound estimates on the impacts on total family income.

33



Drawing out the implications of our results, we first note that just over one-third of the target population

declined to participate in the program. The one-third who did not participate had modestly lower living

standards at baseline.22 Second, our fixed-effects analogue conditional quantile regression methods explore

the degree to which the average pattern of impact faithfully reflects the full distribution. We find evidence

of significant heterogeneity in impacts on program income and investment, with generally smaller program

impacts in the lower quantiles of the conditional error distribution. Observations in the 25th quantile show

long-term income and investment impacts that are one-third to one-half the size of the estimated average

impacts, but still significant and positive.23 We further provide evidence that households’ positions in the

error distribution are relatively constant over time, implying that lower-quantile observations are comprised

of “low-performer” type households for whom RBD program impacts are less effective.

Efforts to identify the source of this heterogeneity using Generalized Random Forests was only partially

successful. The GRF analysis does point toward larger impacts residing with farmers who were initially

disadvantaged in the sense of having less land, lower amounts of capital, less experience with the target

crop, and lower technical efficiency in agriculture. At a minimum, these results imply that programs like

the RBD program should exercise caution when excluding farmers whose resources are thought to be too

modest, as it may be exactly these households that have the most to gain from such interventions.24 But

even after controlling for the component of heterogeneity that relates to initial disadvantage, we find that

program impacts remain highly heterogeneous and that there is some unobserved household characteristic

(entrepreneurial zeal?) that separates high from low performing households.

In the end, the existence of these two groups that did not benefit from the RBD program (those that

did not participate, and those that experienced modest impacts even when participating) serves as a useful

reminder that not all small farms can upgrade and succeed. If the goal is to eliminate rural poverty, then

this limitation needs to be kept in mind as other interventions may be needed to improve prospects for this

sub-population and their children. Looking forward, it may be that next-generation RBD programs can

reduce the size of this minority, perhaps by incorporating elements of the psychological asset building found

in graduation programs studied by Banerjee et al. (2015) and Bandiera et al. (2017).

22Recent work by Macours and Vakis (2008) on poverty and aspirations suggest that there may be some individuals who
could benefit from interventions such as the RBD, but that they need smaller, confidence, and aspiration-building steps before
they are willing to jump into a more forward-looking and entrepreneurial profile.

23Importantly, there is no evidence that households with fewer assets—i.e. those closest to the asset minima that defined
program eligibility—benefitted less from the program. To the contrary, our analysis suggests that households that may be near
the asset mimima might be the ones tho benefit the most. While the asset floors and ceilings used to establish RBD eligibility
were based on best-practice intuition, it is clear from a targeting perspective that more work needs to be done to see if there is
such a thing as a farm that is too small to benefit from this kind of intervention.

24The tendency to exclude less well-resourced farmers from this class of development programs appears to come from the
belief that such farmers are not “commercial” and therefore will not purchase expensive inputs or invest in their farm operations.
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Appendix A - Eligibility Criteria by Productive Activity

Appendix Table 1: Eligibility Criteria Used to Identify Farmers in Target Activities

sesame beans vegetables cassava Livestock
Asset Floor* 7 hectares 3.5 hectares 1.4 hectares 3.5 hectares 10 mature cows
Asset Ceiling 35.2 hectares 35.2 hectares 14.1 hectares 70.4 hectares 100 mature cows

Prior Experience
1.4 hectares 0.7 hectares Some vegetable 1.4 hectares Developed livestock
in sesame in beans production in cassava activity

Water −− −− On-farm water source −− On-farm water source
Legal Status Farmer has land title or is in possession of land
Age Farmer must be at least 20 years old
Environment Land located outside of national protected areas

*Minimum farm size reduced when farm is irrigated
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Appendix B: Probability of compliance

Appendix Table 2: Decision to Take Up Program, by Treatment Group Status: Probit regression
(1) (2) (3)

Early treatment -0.072 -0.059 -0.0033
(0.10) (0.11) (0.95)

Technical efficiency 0.38 -0.26
(0.37) (0.48)

Program farmer: age (years) -0.0049 -0.0066
(0.0072) (0.0089)

Program farmer: education (years) 0.020 0.0014
(0.015) (0.032)

Program farmer: gender (=1 for female) 0.086 0.24
(0.18) (0.24)

Household members 0.036 0.046
(0.027) (0.031)

Per capita expenditures (PPP$) -0.000050 -0.000025
(0.000043) (0.000082)

Credit constrained (=1 if constrained) -0.071 0.18
(0.11) (0.19)

Total capital 0.0000064 -0.0000049
(0.0000091) (0.000022)

Program farmer: experience (years) 0.0018 0.0030
(0.0057) (0.0081)

Landholdings: owned (manzanas) -0.0015 -0.0083
(0.0042) (0.0067)

Landholdings: amt. planted, target crop 0.020 0.17***
(0.026) (0.048)

Landholdings: amt. planted in maize -0.033 -0.076*
(0.024) (0.046)

Farm income (PPP$) 0.0000077 -0.000070*
(0.000027) (0.000041)

Share of seasons used improved seeds 0.043 0.052
(0.17) (0.29)

Early x technical efficiency 1.00
(0.64)

Early x Age 0.0019
(0.014)

Early x Education 0.034
(0.041)

Early x Female -0.10
(0.36)

Early x Household size 0.0029
(0.052)

Early x Expenditures -0.000025
(0.000099)

Early x Credit constrained -0.36
(0.24)

Early x Total capital 0.000020
(0.000026)

Early x Experience -0.0022
(0.011)

Early x Land owned 0.011
(0.0080)

Early x Land in target crop -0.18***
(0.050)

Early x Land in corn 0.047
(0.055)

Early x Farm income 0.000092*
(0.000050)

Early x Improved seed -0.12
(0.34)

Crop fixed effects? NO YES YES
N 1396 564 564
adj. R2

Probit marginal effects; cluster-robust standard errors in parentheses
* p<.1, ** p<.05, *** p<.01
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Appendix C: Quantile regression tables
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Appendix D: Hypothesis Testing

To test whether the differences that we observe between the different quantiles are statistically significant,

we employ the minimum-distance framework in Abrevaya and Dahl (extended from Buchinsky’s (1998)

framework to the panel data context) to test the equality of the parametric duration response variables’

effects across quantiles. Since both months, months2, and months3 enter into our preferred cubic model,

the relevant test is a joint test of equality. In other words, the null hypothesis is

H0 : ζ1,τ1 = ζ1,τ2 = ζ1,τ3 ∧ ζ2,τ1 = ζ2,τ2 = ζ2,τ3 ∧ ζ3,τ1 = ζ3,τ2 = ζ3,τ3 ,

where ζ1,ζ2 and ζ3 are the estimated coefficients on months, months2, and months3, respectively, and τ1, τ2

and ,τ3 are the different estimated quantiles (25th, 50th and 75th).

In following the Abrevaya and Dahl (2008) testing framework, the only changes we make are to allow

for an additional round of data and the fact that we include averages of the time-varying regressors, instead

of their value in each round. The minimum-distance test statistic has a limiting chi-square distribution,

with degrees of freedom equal to the number of restrictions (in our case 6). These test statistics and their

associated p-values are shown in Table 4. As the table shows, the estimated effect of months in the program

on capital and consumption both vary significantly across the quantiles, but the evidence for income is less

precise.

Appendix Table 4: Tests of marginal-effect equality across quantiles

Outcome variable χ2
6-statistic p-value

Income 8.41 0.21
Total capital 15.69 0.016
Per-capita consumption 11.62 0.071
For each outcome variable, the p-values reported are for the null hypothesis of joint equality of the
marginal effects of the variables months, months2, and months3 for the quantiles .25, .50 and .75.
Results are based on 300 bootstrap replications, block-bootstrapped over household ID and cluster variable.
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Appendix E: Causal Random Forest Analysis of Heterogeneity

This appendix lays out the random forest methodology used to motivate the heterogeneity analysis in Section

4.4. This discussion draws both upon Athey, Tibshirani and Wager (2018) and Davis and Heller (2017).

Broadly speaking, a regression random forest is a collection of classification trees that are built using data

and a statistical learning algorithm. Each classification tree is created by randomly drawing a subset of

observations (yi, xi), called the training sample, of size s < n. Denote this training sample by J . The

training sample is drawn without replacement from the full sample of size n, and forms the basis for a

tree. The training sample is recursively split into subgroups along values of some covariates, and we can

then predict an individual’s outcome, yi, using the mean y of observations that share similar covariates,

x. In turn, the average of these predictions across many trees is an estimate of the conditional mean of

y. The algorithm determines which splits that are implemented based on which minimize some in-sample

goodness-of-fit criterion.

The Generalized Random Forest (GRF) method developed by Athey, Tibshirani and Wager (2018) im-

proves upon random forest methods by proving that forest estimators are consistent and have an asymptotic

normal distribution with a variance that can be estimated. In the context of heterogeneous treatment effects,

the GRF algorithm can be used to build a causal random forest (CRF) to estimate the following conditional

average treatment effect (CATE):

τ(X) = E[Y (W = 1)− Y (W = 0)|X = x] (5)

where Y is the outcome variable, and W = 1 indicates treatment, which is assumed to be independent of

unobservable variables conditional on the observable covariates, X. The set of covariates X are farmer and

farm characteristics in our case, but more generally can be any covariates that might produce heterogeneous

treatment effects.

Each training sample, J , is further divided into two new subsets, J1 and J2. The sub sample J1 is used

to built the tree whereas J2 is used with the ensemble of trees (i.e., the forest) to calculate weights. These

weights then get used to minimize a weighted local function, in order to estimate the conditional treatment

effect. These weights indicate how important each observation is in estimating the conditional treatment

effect. Below, we give an example of how the method allows us to estimate a conditional treatment effect by

describing the process in terms of these two training sub-samples.25

We use the GRF algorithm to build a CRF as a pre-regression analysis. Given our relatively limited
25This is description is specific and less technical than that described in Athey, Tibshirani and Wager (2018); we discuss

causal treatment effects without confounding. See the referenced paper for a more technical explanation of the algorithm and
for other applications.
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sample size, and that random forest methods seem to work best with large samples (Davis and Heller, 2017),

we use this method to identify which of our covariates are associated with heterogeneous treatment effects on

farmers’ income. We focus on income as it was the primary focus of the program; any effects on consumption

or investment ought to follow from increases in income, and we therefore assume that impact heterogeneity

in investment or consumption ought to follow similar patterns to treatment heterogeneity in income.

Using the training sample J1 to build an ensemble of causal trees

The sub-sample J1 is used to build the nodes and the leaves of a tree. To create a node, m covariates are

randomly selected by the algorithm, in order to determine which of them is the best splitting variable. Two

main steps determine the “best” splitting covariate:

STEP 1

The observations that belong to potential parent node P are used to calculate τ̂P (X), an estimate of the

conditional treatment effect τ(X) described in Eq. 5. τ̂P (X) is calculated by solving the following moment

condition, which is equivalent to the least-square estimator condition:

∑
i∈P

w̃i(ỹi − τP (x)w̃i) = 0 (6)

where w̃i and ỹi represents the values of Y and W in deviations with respect to their corresponding sample

mean in the parent node P .

The estimator τ̂P (X) is used to calculate pseudo-outcomes for each observation in the node P,

ρi = w̃i(ỹi − τ̂P (x)w̃i)
(∑

i∈P w̃
2
i

#{i ∈ P}

)−1

(7)

Large values of ρ (in absolute value) for a subset of observations would suggest that a partition of the sample

could identify different values for τ̂ .

STEP 2

These pseudo-outcomes are then used in the second stage where the nodes are divided based on the values

of a given covariate. Denote the divided nodes C1 and C2. The “best” splitting covariate is chosen based on
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maximizing the following criterion:

∆̃(C1, C2) =
2∑
j=1

1
#{i ∈ Cj}

 ∑
#{i∈Cj}

ρi

2

(8)

This splitting algorithm is repeated at each child to create new partitions, when it is possible.

Figure 1 shows an example of one the 5000 built trees of our CRF. We use the R function causalforest

to build a CRF for round-2 (midline) farm income in the complier sample (n = 772). We use six covariates

that encapsulate key baseline characteristics: technical efficiency in the target crop, land ownership, farmer

experience in the target crop, education, credit constraint status (0/1), and total capital. We use the cross-

validation option to tune the following parameters of the forest: the number of covariates tried in each split

(5), the maximum allowed imbalance in a split (0.051),26 and a penalty factor for imbalanced splits (0.796).27

We randomly draw 50 percent of the data to build each tree. Given the small sample size of the subsamples

(nJ1 = nJ2 = 193), we set the minimum number of observations per leaf equal to 10.

Appendix Figure 1: Example of a tree using the GRF algorithm

Following Athey et al. (2018) we transform the outcome variable (farm income) and the treatment

variables to improve the performance of the forest predictions in a context of confounding and heterogeneity.28

26Imbalance in splits is not only with respect to the number of observations but also with respect to the treatment variable.
27The cross-validation was done using 500 trees and 50 forests.
28The transformation subtracts the marginal effect of X on Y and the the marginal effect of X on W from Y and W ,
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The example tree in Figure 1 has seven leaves (indexed by l) meaning that the training sample J1 has been

partitioned in seven subsamples based on the values of five covariates. The nl values at the end of each

leaf represents the number of observations from the training sample J1 (nJ1 = 193) that falls in that leaf.29

The first split divides the sample into those observations with more than 37 manzanas land, and those with

less. The figures in the square brackets beneath show the unweighted treatment impact of the program on

observations in each leaf. Partitions are chosen to maximize the difference between these two values.

Note that trees do not have the same number of leaves and the same number of covariates, but 91% of the

trees have 6 or 7 leaves. Table 5 shows the percentage of “importance” of each covariate in the forest in terms

of the frequency with which a variable is used as a splitting variable in the forest.30 Technical efficiency,

land size and total capital are the most important variables, while credit-constraint status, experience, and

education are less important.

Appendix Table 5: Frequency of Covariates as Splitting Variables in the GRF
Technical Efficiency Education Land Size Experience Credit-constrained Total Capital

22% 12% 24% 12% 6.5% 23%

Using the training sample J2 and the tree ensemble to predict conditional treat-

ment effects

Having generated an ensemble of trees, we use the forest to create treatment effect predictions conditional

on specific values of the covariates. For example, if we are conditioning on xp, then in the bth tree we can

calculate a tree weight αbi(xp) for the ithobservation of the training sample:

αbi(xp) = 1({xi ∈ leafb(xp)})
(#xi ∈ leafb(xp))

We use the example tree (ET) of Figure 1 to illustrate how to calculate the weights for this tree. Denote

by “median farmer” a fictional observation that has the median values for each of the variables used in

the forest. We can describe this median farmer by a vector: xm = (0.636, 3, 23, 20, 0, 3318.7) describes a

farmer with median baseline values of (i) technical efficiency, (ii) education, (iii) land size, (iv) experience,

(v) credit constraint status (with 0 denoting that the farmer is not credit constrained), and (vi) total capital.

respectively. To do that, a generalized random forest for Y and X and another forest for W and X are estimated. The forests
are used to make predictions for each observation using the subsample that was not selected for training (out-of-bag training
sample). The objective of this transformation is to look for heterogeneity without the effect of the covariates on Y and W . We
also tuned the parameters of these forests.

29For reference we also include the proportion of treated observations (p(w = 1)). As we explain below, these specific numbers
are not directly involved in the calculation of the conditional treatment effect.

30This frequency is adjusted for the level of the node where the variable was used to split. Deeper nodes in the tree have less
weight.
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This median farmer falls in leaf seven (L7 in Figure 1). In total, 27 observations from subsample J2 (i.e.,

not the training sample) fall in the same leaf as xm. Therefore, the weight for each of these observations is

αET,i(xm) = 1
26 , while the weight is zero for the observations that do not fall in the leaf of xm.

We then repeat the tree weight calculation for each of the B trees of a forest. Thus, the final forest

weight for the ith observation, αi(xp), is the average of all its tree weights. That is,

αi(xp) =
∑B
b=1 αbi(xp)

B

Observations with larger weights are more similar to xp because they often fall in the same leaf as xp. These

weights are then used to estimate τ(xp), the treatment effect conditional on xp, by solving the following

weighted moment equation:

n∑
i

αi(xp)ψτ(xp)(Y,W ) =
n∑
i

αi(xp)[wi − w̄α] [(yi − ȳα)− τ(xp)(wi − w̄α)] = 0 (9)

where w̄α =
∑n
i=1 αi(xp)wi and ȳα =

∑n
i=1 αi(xp)yi. It can be seen that the solution equation for τ̂(xp) is

similar to a weighted least squares estimator. Athey, Tibshirani and Wager (2018) show that the asymptotic

variance of τ̂(xp) can be approximated by estimating the following expression31:

V ar(τ̂(xp)) = Hn(xp)
E(W 2|X = xp)− E(W |X = xp)2

where Hn(xp) = V ar
[∑n

i=1 αi(xp)ψτ(xp)(Y,W )
]
. The expected values of the denominator are estimated by

GRFs. To estimate the numerator, we draw 2500 bootstrapped samples of size n
2 . The estimator of Hn(xp)

is calculated as a between-groups variance where the trees of each group are constructed using the same

bootstrapped sample. We build two trees per group.

To continue with the example of the median farmer, there are 772 forest weights for xm that can be

used to estimate τ̂(xm). As a result, the predicted treatment effect on income for this median farmer is

$318.3 with a 90% confidence interval of [−916.2, 1552.9]. Similarly, predictions of the treatment effect are

presented in Figure 9 for different sets of covariates values. In the first column of each graph, we fix the other

variables at value of the 25th percentile, making the predictor vector xp25 = (0.512, 0, 13.3, 10, 1, 1146.8, ).

The median farmer used in the example is in the second column, and the third column presents results with

other variables fixed at the 75th percentile. We estimate treatment effects at different values of the covariate

displayed at the horizontal axis, holding fixed other covariate values at the percentile shown at the top of
31See Athey, Tibshirani and Wager (2018) for details about the proof of asymptotic normality of τ̂(xp) and its variance

equation; they define a pseudo-forest estimator in order to complete the proof. To simplify the explanation, we informally
replace the notation of this pseudo-forest estimator with τ̂(xp)
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the graph. Vertical lines show the first three quartiles for the x-axis variable; we also display 90% confidence

intervals. The results suggest a positive and significant treatment effect for disadvantaged farmers in terms

of their baseline features.
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Appendix F – Heterogeneity Analysis of the GRF-informed Con-

tinuous Treatment Model

Appendix Table 6: Disadvantage regression coefficients

Farm Income Investment Expenditures
Months treated 239.1 371.4** -30.9

(160.2) (174.2) (46.2)
Months treated2 -7.58 -15.3 2.21

(10.2) (13.8) (2.35)
Months treated3 0.077 0.22 -0.041

(0.18) (0.24) (0.039)
Disadvantaged = 1 284.2 -2098.0* -591.4**

(1403.2) (1094.4) (236.2)
(Disadvantaged = 1)× (Months treated) 98.8 -429.0 7.33

(275.3) (397.0) (62.6)
(Disadvantaged = 1)× (Months treated2) -13.0 19.9 0.021

(21.6) (30.6) (4.44)
(Disadvantaged = 1)× (Months treated3) 0.24 -0.30 0.00071

(0.38) (0.53) (0.075)
Program farmer: education 361.5*** 634.0*** 242.2***

(118.2) (116.4) (40.9)
Program farmer: years of experience 61.8* 2.09 12.3

(34.3) (35.9) (8.17)
Household members -167.8 44.7 -470.4***

(144.5) (148.0) (40.7)
Landholdings: owned 43.9*** 39.9*** 6.83**

(13.5) (11.3) (2.75)
Share of seasons used improved seeds 2522.9*** 2280.3*** 33.9

(726.5) (707.5) (177.8)
Program farmer: gender -2651.1*** -1890.0* -42.2

(683.7) (1081.3) (255.7)
Constant -3113.0 19697.9 13120.5***

(2386.8) (15815.8) (4325.9)
Observations 2459 2478 2518
Adjusted R2 0.328 0.226 0.251

Cluster-robust standard errors in parentheses
* p<.1, ** p<.05, *** p<.01
Not shown in table: Time and crop dummies, Mundlak instruments for fixed effects.
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Appendix G – Treatment effects on capital flows and expenditure

Appendix Table 7: Impact of RBD Program on the Sum of Investment and Expenditure

ITT LATE (IV) LATE (complier sample)
Early treatment 531.0 630.3* 848.7 998.5* 608.4 809.1**

(443.2) (333.4) (698.0) (517.7) (400.0) (381.3)
Baseline investment -0.074 -0.058 -0.075 -0.059 -0.016 -0.024

(0.062) (0.038) (0.062) (0.038) (0.039) (0.041)
Baseline consumption 0.64*** 0.59*** 0.64*** 0.59*** 0.52*** 0.44***

(0.10) (0.11) (0.10) (0.11) (0.087) (0.088)
Program farmer: education 86.1* 79.0* 77.4

(45.5) (44.8) (55.0)
Program farmer: years of experience 21.4** 21.5** 22.9*

(9.29) (9.16) (13.1)
Household members 13.8 5.52 -61.3

(63.5) (61.5) (90.6)
Landholdings: owned -13.2 -13.4 4.71

(16.2) (15.9) (3.15)
Share of seasons used improved seeds 324.5 229.1 74.8

(388.0) (368.0) (399.4)
Program farmer: gender 95.2 89.1 330.4

(491.2) (484.7) (649.9)
Constant 2091.6*** 1796.0** 2089.0*** 1884.2** 2561.1*** 1849.3*

(465.4) (808.3) (464.0) (793.8) (503.3) (922.9)
Observations 1341 1260 1341 1260 860 817
Adjusted R2 0.156 0.190 0.160 0.194 0.137 0.167
Cluster-robust standard errors in parentheses.
* p<.1, ** p<.05, *** p<.01
All regressions control for crop fixed effects. Share of improved seeds measures the share of seasons at baseline that
the beneficiary household used improved seeds/methods.
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