
NBER WORKING PAPER SERIES

HOMOPHILY AND TRANSITIVITY IN DYNAMIC NETWORK FORMATION

Bryan S. Graham

Working Paper 22186
http://www.nber.org/papers/w22186

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
April 2016

This work builds on comments prepared in response to Guido Imbens' Journal of Business and 
Economic Statistics Annual Lecture delivered at the American Economic Association meetings in 
Chicago (January 7th, 2012). I am grateful to Guido, and then JBES editors Kei Hirano and 
Jonathan Wright, for providing the initial inspiration for this project. I am thankful to Michael 
Leung for introducing me to the literature on random geometric graphs. I am also grateful to Peter 
Bickel, Paul Goldsmith-Pinkham, Jim Heckman, Bo Honore, Noureddine El Karoui as well as to 
participants at the Measuring and Interpreting Inequality (MIE) Inaugural Conference (February 
18th, 2012), the CEME Conference on Inference in Nonstandard Problems (June 15th & 16th, 
2012), the invited Social Interactions session of the ESEM (August 27 - 31, 2012), the CEMMAP 
conference on Estimation of Complementarities in Matching and Social Networks (October 5 & 
6, 2012), the 9th Invitational Choice Symposium (June 12 – 16, 2013), the Berkeley Statistics 
Department's NSF reading group on networks, the Third European Meeting on Networks (June 
18-19th, 2015) and the USC-INET Conference on Networks (November 20-21st, 2015) for 
valuable comments. Financial support from NSF Grant SES #1357499 is gratefully 
acknowledged. All the usual disclaimers apply. The views expressed herein are those of the 
author and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2016 by Bryan S. Graham. All rights reserved. Short sections of text, not to exceed two 
paragraphs, may be quoted without explicit permission provided that full credit, including © 
notice, is given to the source.



Homophily and Transitivity in Dynamic Network Formation
Bryan S. Graham
NBER Working Paper No. 22186
April 2016
JEL No. C1,C14,C23,C25,D85

ABSTRACT

In social and economic networks linked agents often share additional links in common. There are 
two competing explanations for this phenomenon. First, agents may have a structural taste for 
transitive links -- the returns to linking may be higher if two agents share links in common. 
Second, agents may assortatively match on unobserved attributes, a process called homophily. I 
study parameter identifiability in a simple model of dynamic network formation with both effects. 
Agents form, maintain, and sever links over time in order to maximize utility. The return to 
linking may be higher if agents share friends in common. A pair-specific utility component 
allows for arbitrary homophily on time-invariant agent attributes. I derive conditions under which 
it is possible to detect the presence of a taste for transitivity in the presence of assortative 
matching on unobservables. I leave the joint distribution of the initial network and the pair-
specific utility component, a very high dimensional object, unrestricted. The analysis is of the 
`fixed effects' type. The identification result is constructive, suggesting an analog estimator, 
whose single large network properties I characterize.

Bryan S. Graham
University of California - Berkeley
530 Evans Hall #3880
Berkeley, CA 94720-3880
and NBER
bgraham@econ.berkeley.edu



Let i, j and k index three independent random draws from some network of agents (i.e.,
a population of potentially connected sampling units). Together these agents constitute a
triad. Let D

ij

= 1 if agents i and j are connected and zero otherwise. Links are undirected,
such that D

ij

= D
ji

for all pairs ij, and self-ties are ruled out, so that D
ii

= 0 for all i.

A triad can be wired in one of four ways (see Figure 1). Consider the probability of the
observing the wiring where all three pairs, ij, ik and jk, are connected conditional on at
least two of the pairs being connected:

⇢
CC

= Pr (D
ij

= 1|D
ik

= 1, D
jk

= 1) (1)

The sample analog of (1) is called the transitivity index or global clustering coefficient in
the networks literature (Graham, 2015). In real world social and economic networks ⇢

CC

is generally higher than ⇢
D

= Pr (D
ij

= 1) , the unconditional frequency at which agents
link (Jackson, 2008). It is often substantially higher. Links are clustered. Networks exhibit
transitivity: agents are more likely to link if they share links in common (“the friend of my
friend is also my friend”).

Figure 1: Triad configurations in undirected networks

High levels of transitivity are found in friendship networks, industrial supply-chains, inter-
national trade flows, and alliances across firms and nations (Gulati and Gargiulo, 1999; Choi
and Wu, 2009; Maoz, 2012; Matous and Todo, 2016; Davis et al., 1971; Kossinets and Watts,
2009).1 In his classic paper on weak ties, Granovetter (1973), in honor of their supposed
infrequent occurrence, even calls the intransitive two-star a “forbidden triad” (see Figure 1).2

Transitivity in links may arise for two distinct reasons. First agents may have a struc-
tural taste for transitive ties. The returns to link formation between any two agents may
be increasing in the number of neighbors they share in common. Coleman (1990) argues

1Jackson (2008) gives many other examples and references.
2Davis et al. (1971), in another classic reference, claim that transitivity of social ties is the “central

proposition in structural sociometry” (p. 309).
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that closed networks facilitate the formation of social and human capital.3 This might pro-
vide an impetus for agents to form transitive relationships. Jackson et al. (2012) provide
a game-theoretic foundation for transitivity, arguing that common friends, by monitoring
transactions between agents, help to sustain cooperation. More mundanely socializing may
be easier and more enjoyable when individuals share friends in common.

Second transitivity in social ties may reflect assortative matching on an unobserved attribute.
That is, the returns to linking may be greater across similar agents, leading to dense ties
among them. The tendency for individuals to assortatively match on gender, race, age
and other observed characteristics, called homophily by network researchers, is widely doc-
umented (McPherson et al., 2001).

Distinguishing between a structural taste for transitivity and homophily as drivers of clus-
tering in networks is of considerable scientific interest and policy relevance. In the presence
of a structural taste for transitivity outside interventions can have long run effects on net-
work structure. If clustering primarily reflects assortative matching on unobserved agent
attributes, interventions are less likely to lead to durable changes in network structure.

Figure 2: The effects of link deletion when agents prefer transitive ties

Notes: The vertical dashed lines partition nodes into three distinct communities. Agents may
only form ties with agents in their own and adjacent communities. The thick “Berkeley Blue”
lines correspond to edges that form regardless of network structure. The thinner “Lawrence”
colored lines correspond to edges that form only when the two agents share another link in
common. The thin “Rose Garden” colored edge its targeted for deletion by the policy-maker.

3For example both parents and teachers interact with a student, but if parents and teachers also consult
with each other about the student, forming a triangle, the student’s rate of learning may increase.
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Figure 2 provides one illustration of these claims. Agents are divided into three communities
according to the vertical dashed lines in the figure. Links can only arise between agents
in the same or adjacent communities (i.e., there exists locational homophily). There are
two types of links, “strong ties”, which are sustainable regardless of network structure (thick
darker edges) and “weak ties”, which require the support of a link in common (thin lighter
edges). The initial network structure is given in the upper-left-hand t = 0 graph. This
network consists of a single “giant component”.

Now consider a policy-maker who deletes the link between agents 2 and 3 (the thin “Rose
Garden” colored edge). The immediate effect of this deletion is depicted in the t = 1 graph
in the upper-right-hand corner of the figure. Once this link is deleted pairs 1 and 3 and
3 and 4 no longer share a friend in common. Since these edges require a common link for
sustenance, they dissolve, leading to the t = 2 graph depicted in the lower-left-hand corner
of the figure. However, since now agents 4 and 5 no longer share a link in common, their
tie also dissolves leading to the t = 3 network configuration depicted in the lower-right-hand
corner of the figure. The architecture of the final graph is very different from the initial one,
consisting of two separate components.

The presence of a structural taste for transitivity creates interdependencies in link formation,
whereby the surplus agents i and j get from linking may vary with the presence of absence of
edges elsewhere in the network. The presence of such interdependencies means that a local
manipulation may have global consequences for network structure. Removing or adding a
single link may initiate a cascade of edge removals and/or additions.

When interdependencies are absent, the effect of deleting a link would be entirely local. In
the example, the final state of the network in such a case would be given by the t = 1 graph
in the upper-right-hand corner of Figure 2. This graph does not appreciably differ from its
pre-policy t = 0 version.

In this paper I introduce an empirical model of dynamic network formation and formally
study its identifiability. I am particularly interested in circumstances under which it is possi-
ble to attribute clustering in ties, a central feature of real world networks, to a structural taste
for transitivity versus assortative matching on an unobserved attribute (i.e., homophily).

The motivation for my question is twofold. First, networks are ubiquitous and their structure
is evidently important for a variety of social and economic outcomes (Jackson et al., 2016).
Second, as argued using the example in Figure 2, the manipulability of network structure
hinges on the degree to which current (local) network structure influences future (global)
network structure. While the homophily versus transitivity identification problem has been
informally articulated in the networks literature (e.g., Gulati and Gargiulo, 1999; Goodreau
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et al., 2009) it has not been systematically analyzed.

There is a useful analogy between my research problem, both in terms of scientific and
policy motivation and technical content, and that of discriminating between state dependence
and unobserved heterogeneity in single-agent dynamic binary choice analysis (Cox, 1958;
Heckman, 1978, 1981a,b,c; Chamberlain, 1985). The multi-agent aspect of my problem
makes it more challenging, nevertheless I will utilize intuitions and proof strategies from
this earlier research as well as from Manski’s semiparametric analysis of discrete choice
(Manski, 1975, 1985), especially as extended to static (Manski, 1987) and dynamic (Honoré
and Kyriazidou, 2000) panel data models .

Although network analysis has a rich empirical history in sociology and other disciplines,
there are, as yet, few empirical models of strategic network formation.4 In strategic models
agents form, maintain, or sever links with each other in order to maximize utility (Jackson
and Watts, 2002; Jackson and Wolinsky, 1996; Watts, 2001). This approach to economet-
rically modeling network formation follows that pioneered by McFadden (1974) for single
agent discrete choice problems.

The multi-agent nature of networks complicates structural model-building. At the risk of
some simplification and omission, recent work in econometrics has taken one of three differ-
ent, albeit complementary, approaches.5

The first approach ignores interdependencies in link formation, focusing instead, on the in-
troduction of rich forms of correlated heterogeneity into dyadic models of link formation
(Dzemski, 2014; Graham, 2014; Krivitsky et al., 2009; van Duijn et al., 2004). This corre-
sponds to the network analog of studying identification and estimation in single agent static
binary choice models (Chamberlain, 1980; Manski, 1987).

The second approach ignores heterogeneity, focusing instead, on interdependencies in link
formation. This approach borrows from earlier work on the econometrics of games, but
introduces new insights to handle the combinatoric complexity of the many player network
formation game (Christakis et al., 2010; Sheng, 2014; de Paula et al., 2015; Mele, 2015;
Menzel, 2015).

A third approach, and the one also adopted here, explores the identifying value of multiple
observations of network structure (Snijders, 2011; Goldsmith-Pinkham and Imbens, 2013;
Graham, 2013).

I assume that the econometrician observes a single network over multiple periods. In each
4Graham (2015), de Paula (2016) and Chandrasekhar (2016) provide recent reviews of the econometric

literature on network formation. Goldenberg et al. (2010) is a recommended review of the statistics and
machine learning literature.

5For example Chandrasekhar and Jackson (2015) does not fit easily into this typology.

4



period agents form, maintain, or sever links taking the structure of the network in the
preceding period as fixed. The systematic component of link utility varies with current
network structure. Agents are not forward-looking, rather they treat the current structure
of the network as fixed when deciding whether to maintain, sever or form a link. This is
analogous to the simple best-reply dynamic used to explore issues of existence and stability
in theoretical work (Jackson and Watts, 2002; Jackson and Wolinsky, 1996; Watts, 2001),
and also parallels the empirical approach taken in Christakis et al. (2010), Snijders (2011)
and Goldsmith-Pinkham and Imbens (2013).

My treatment of unobserved heterogeneity in this setting is innovative. I divide the unob-
served component of link utility into a time-invariant pair-specific component and a time-
varying ‘idiosyncratic’ component. The latter is independently and identically distributed
over time within pairs of agents and independently, although not necessarily identically, dis-
tributed across pairs. The distribution of the pair-specific component is left unrestricted. In
a network with N agents there will be a total of n =

1

2

N (N � 1) pair-specific heterogeneity
terms. This is a high-dimensional latent variable. My set-up leaves its joint distribution
unrestricted. Furthermore I leave its relationship with the initial network condition unre-
stricted. Put differently, in contrast to all prior work of which I am aware, my identification
analysis is of the ‘fixed effects’, as opposed to ‘random effects’, type (cf., Chamberlain, 1985;
Honoré and Tamer, 2006).

The upshot of these innovations is the first empirical model of strategic network formation
that incorporates both interdependencies in link formation and rich forms of correlated
heterogeneity. This setting, in turn, allows for the first precise articulation of, and test for,
the homophily versus transitivity hypothesis.

The next section introduces a semiparametric model of dynamic network formation. Section
2 considers identifiability of the model’s parameters. Section 3 presents estimation results,
including large sample theory. Section 4 summarizes the results of some Monte Carlo ex-
periments. Section 5 discusses possible extensions. Proofs and some supplemental results
are collected in Appendices A, and B. Replication code for the Monte Carlo experiments is
available in the supplementary materials.

Notation

In what follows various sets of agents and dyads will play a prominent role. In defining these
sets it is useful to recall that “_” denotes the non-exclusive “or”, “_” denotes the exclusive
“or”, “9!” denotes “there exists exactly one”.

Random variables are denoted by capital Roman letters, specific realizations by lower case
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Roman letters and their support by blackboard bold Roman letters. That is Y , y and Y
respectively denote a generic random draw of, a specific value of, and the support of, Y . I
use ◆

N

to denote a N⇥1 vector of ones, I
N

the N⇥N identity matrix, and A�B denotes the
Hadamard (i.e., entry-wise) product of the conformable matrices A and B. A “0” subscript
on a parameter denotes its population value and may be omitted when doing so causes no
confusion.

1 A dynamic model of network formation

Consider a group of N , potentially connected individuals indexed by i. Individuals may be
equivalently referred to as agents, players, nodes or vertices depending on the context. We
observe all ties across members in each of t = 0, . . . , T periods. Recall that D

ijt

= 1 if agents
i and j are linked in period t and zero otherwise. Links may be equivalently referred to as
friendships, connections, edges or arcs depending on the context.

Let R
ijt

=

P

N

k=1

D
ikt

D
jkt

equal the number of links i and j have in common in period t.
Individuals i and j form a link in period t = 1, . . . , T according to

D
ijt

= 1 (�
0

D
ijt�1

+ �
0

R
ijt�1

+ A
ij

� U
ijt

� 0) , (2)

where 1 (•) is the indicator function, A
ij

is a pair-specific, time invariant, unobserved het-
erogeneity term, and U

ijt

a time-varying shock. Since links are undirected A
ij

= A
ji

and
similarly for U

ijt

. We can think of the term inside the indicator function as the net surplus
associated with an ij link. Rule (2) implicitly conceptualizes utility as being transferrable
across agents (cf., Graham, 2011). Goldsmith-Pinkham and Imbens (2013) specify a related
data generating process that assumes non-transferable utility.

Rule (2) implies a link between i and j is more likely if (i) they were linked in the previous
period (D

ijt�1

= 1), (ii) they shared many links in common last period (R
ijt�1

is large) or
(iii) there are unobserved pair attributes which generate large surplus from linking (i.e., A

ij

is large).6

Let D
t

be the N⇥N matrix with D
ijt

as its ijth element. Note that D
t

is symmetric and has
a diagonal consisting of zeros. This matrix is called the period t network adjacency matrix.
Let A be the N ⇥ N matrix of pair heterogeneity terms (i.e., the matrix with ijth element
A

ij

). Rule (2) only applies to periods 1 to T. I leave the joint distribution of (D
0

,A), the
6Here, as well as in what follows, I assume, for expository purposes, that both � and � are positive.
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initial condition of the network sequence, unrestricted:

(D
0

,A) ⇠ ⇧

0

. (3)

The density function evaluated at D
0

= d
0

, A = a is denoted by ⇡
0

(d
0

, a).

To close the model we assume that (i) U
ijt

is independently and identically distributed over
time and (ii) independently, although not necessarily identically, distributed across pairs7:

F (U
121

, . . . , U
12T

, . . . , U
N�1N1

, . . . , U
N�1NT

) =

Y

i<j

T

Y

t=1

F
U,ij

. (4)

Throughout I assume that F
U

(u) is strictly increasing on R1. Here, and in what follows, I
use the notation

Q

i<j

to indicate
Q

N

i=1

Q

N

j=i+1

and similarly
P

i<j

to indicate
P

N

i=1

P

N

j=i+1

.

Rule (2) parsimoniously captures three forces hypothesized by researchers as important for
link formation (cf., Snijders, 2011, 2013). First, there is state dependence in links; all things
equal the returns to linking for i and j are higher in the current period if they were also
connected in the prior period. Second, there are returns to ‘triadic closure’; my utility is
higher if the “friends of my friends are also my friends”. Third, links may form because of
unobserved good ‘fundamentals’ (i.e., A

ij

is high).

One source of ‘good fundamentals’ is that the pair ij might be similar in some salient unob-
served dimension. The tendency for individuals to assortatively match on various observed
characteristics is well documented (McPherson et al., 2001). Here A

ij

might reflect utility
from assortative matching on unobserved attributes. To make this idea concrete let ⇠

i

be
a vector of latent individual-specific characteristics and g (⇠

i

, ⇠
j

) a measure of the distance
between i and j in ⇠ (i.e., g (•, •) is a distance function). If A

ij

= �g (⇠
i

, ⇠
j

), then rule (2)
implies that a link between i and j is more likely if they are similar in terms of ⇠. Note A

ij

could reflect more than just homophily. For example setting

A
ij

= ⌫
i

+ ⌫
j

� g (⇠
i

, ⇠
j

) , (5)

allows for the possibility that certain individuals may generate high friendship surplus. Put
differently ⌫

i

, and hence A
ij

, might be high because individual i is a ‘good friend’. Effects
of this type give rise to degree heterogeneity or variation in the number of links maintained
by different individuals (cf., Krivitsky et al., 2009; Graham, 2014).

Both a structural taste for transitivity in relationships, here parameterized by �, and ho-
7In what follows I will generally suppress the potential dependence of FU on ij.
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mophily on unobserved attributes, can generate high levels of clustering in networks.

Likelihood

Equations (2), (3) and (4) specify a dynamic model of network formation. The joint prob-
ability density of a specific sequence of network configurations DT

0

= (D
0

,D
1

, . . . ,D
T

) and
realization of A is

p
�

dT

0

, a, ✓
�

= ⇡ (d
0

, a)

⇥
Y

i<j

T

Y

t=1

F (�d
ijt�1

+ �r
ijt�1

+ a
ij

)

d

ijt

⇥ [1� F (�d
ijt�1

+ �r
ijt�1

+ a
ij

)]

1�d

ijt (6)

Let ⇡D0|A (d
0

| a) = Pr (D
0

= d
0

|A = a) denote the distribution of the initial network given
A = a. Let ⇡A (a) denote the marginal density function for A. The integrated likelihood for
the observed data is then

pI
�

dT

0

, ✓
�

=

´
. . .

ˆ
T

Y

t=1

Y

i<j

n

F
U

(�d
ijt�1

+ �r
ijt�1

+ a
ij

)

d

ijt

⇥ [1� F
U

(�d
ijt�1

+ �r
ijt�1

+ a
ij

)]

1�d

ijt

o

⇥⇡D0|A (d
0

| a) ⇡A (a) da
21

, . . . , da
NN�1

. (7)

Even if F
U

(•) and ⇡A (•) are parametrically specified, using (7) as a basis for estimation
and inference is problematic. Three issues arise.

The first is familiar from prior work on dynamic discrete choice analysis: rule (2) provides
no guidance on how to specify ⇡D0|A (d

0

| a) (Heckman, 1981c; Honoré and Tamer, 2006). In
analogy I call this the initial network problem. Rule (2) does suggest that the probability of
the event D

0

= d
0

should vary with the realized value of A, but little else. One approach,
again inspired by single agent models, would involve assuming that ⇡D0|A (d

0

| a) coincides
with the steady state distribution implied by (2) (e.g., Heckman, 1981a; Card and Sullivan,
1988). Even if this is empirically plausible, operationalizing it would be non-trivial.

A second problem is that even if ⇡D0|A (d
0

| a) were correctly specified, evaluating (7) requires
computing a very high-dimensional integral. Since it seems reasonable, at the very minimum,
to choose a specification for ⇡A (a) which allows A

ij

and A
ik

to covary, there is no obvious way
to factor (7) to reduce the dimensionality of the required integration. Goldsmith-Pinkham
and Imbens (2013) assume that A

ij

= ↵
⇠

|⇠
i

� ⇠
j

| with ⇠
i

binary, independent of ⇠
j

, and
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Pr (⇠
i

= 1) = p. Directly evaluating the integrated likelihood in this case involves a weighted
sum of the likelihood given A over its 2

N possible realizations.8

A third problem, related to the second, and emphasized by Goldsmith-Pinkham and Imbens
(2013) , is that even if the maximum likelihood estimate could be computed, it would not be
clear how to conduct large sample inference using

⇣

ˆ�
ML

, �̂
ML

⌘

; at least with data drawn from
a single network. This motivates their recourse to Bayesian methods, which are attractive
for computational reasons and also for providing a principled approach to inference. The
approach to inference developed below, in contrast, is frequentist.

2 Fixed effects identification

With F
U

(•) and ⇡ (•) (semi-) parametrically specified, an approach to estimation and infer-
ence based on the integrated likelihood (7), whether frequentist or Bayesian, is a so called
random effects one. The discussion above indicates that the random effects approach to net-
work analysis involves delicate modeling issues as well as serious computational challenges.

In this section I explore the fixed effects identifiability of (�, �). That is I explore what
can be learned about these two parameters when the joint distribution of (D

0

,A) is left
completely unrestricted. The fixed effects framework is a natural one in which to begin any
formal analysis of identification, since adding restrictions to the model, as the random effects
approach does, can only improve identifiability.

Nevertheless one might question the fruitfulness of a fixed effects analysis at the outset. The
random variable (D

0

,A) is of very high dimension, consisting of N (N � 1) components.
This suggests that leaving its joint distribution unspecified may lead to serious identification
problems. A key contribution of this paper is to show that a fixed effect approach to dynamic
network analysis is feasible and fruitful.

In single agent models fixed effects identification of true state dependence in the presence of
unobserved heterogeneity is based on the frequency of observing certain sequences of choices
relative to other sequences (e.g., Cox, 1958; Heckman, 1978; Chamberlain, 1985; Honoré and
Kyriazidou, 2000). For example, in the absence of state dependence the binary sequences
0101 and 0011 are equally likely. In the presence of state dependence, the relative frequency
of the latter sequence will be greater (under certain assumptions).

The approach to identification developed below is similar, being based on the relative fre-
quency of certain ij friendship histories. However the analysis is more complicated than

8van Duijn et al. (2004) introduce MCMC methods that also might be adapted in order to evaluate (7)
in special cases.

9



in the single agent case. This is because the effect of the pair ij forming or terminating a
link in period t cascades through the period t + 1 portion of the likelihood. Such an effect
was implicit in the discussion accompanying Figure 2 above. For example if ik are linked in
period t, then the addition of an ij link increases the probability of a jk link in period t+1.
Local changes in the network can have widespread effects on the structure of the network in
subsequent periods.

The high level of interdependence across different pairs of agents’ link decisions makes the
mapping from the frequency of relative friendship histories to the model parameters less di-
rect than in the single agent case. My approach is to consider pairs of agents that are embed-
ded in a stable neighborhood (defined below). The relative frequencies of different friendship
histories, when pairs are themselves embedded in different types of stable neighborhoods,
provides information about the model parameters. Intuitively my approach involves making
comparisons ‘holding other features of the network fixed’. This is not straightforward to
do. The likelihood functions associated with two network histories, identical in all respects
except that the ij friendship history in one is a permutation of that in the other, may be
very different due to the interdependent nature of linking in the model.

Stable neighborhoods

I consider the T = 3 case. This corresponds to four network observations, with the initial
network receiving a ‘0’ subscript (this is the minimal number of observations needed for
a positive result). As will become apparent shortly, the extension to the general case is
straightforward (cf., Charlier et al., 1995)

The period t neighbors of dyad ij are given by the index set

n
t

(ij) = {k | d
ik

= 1 _ d
jk

= 1} \ {i, j} .

Dyad ij’s neighborhood consists of all agents to which it is directly connected; excluding
each other.

Definition 1. (Neighborhood Stability) ij is embedded in a stable neighborhood if
(i) n

1

(ij) = n
2

(ij) = n
3

(ij),
(ii) for all k 2 n

1

(ij) and l = 1, . . . , N ; l 6= i, j we have d
kl1

= d
kl2

.

A stable neighborhood has two features. First, with the exception of possible link formation
and dissolution between themselves, the set of links maintained by agents i and j is constant
across periods 1, 2 and 3. Constancy in i and j’s links across periods 0 and 1 is not required.
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To the contrary, some inter-period variation in these links is required for identification.
Second, the links maintained by neighbors of players i and j do not change between periods
1 and 2.

Neighborhood stability imposes some time constancy of links up to two degrees away from the
reference dyad. Examples of dyads embedded in stable neighborhoods are given in Figures
3 to 5 below.

Definition 2. (Stable Dyad) Dyad ij is stable if (i) it is embedded in a stable neighborhood
and (ii) i and j revise their link status between periods 1 and 2 such that d

ij1

6= d
ij2

.

A basic implication of Definition 2 is that two stable dyads are separated in a certain sense,
a fact that will prove helpful below.

Lemma 1. (Separation) Let ij and kl denote two stable dyads, then the distance between
i and k (or equivalently i and l or j and k) is at least two degrees in periods 1 and 2.

Proof. Suppose i and k are distance one apart, then the second condition for neighborhood
stability in Definition 1 is violated for both ij and kl.

Appendix B outlines how to construct an indicator for dyad stability. A Python 2.7 function
for this purpose is included in the supplemental materials. This program makes extensive
use of the broadcasting rules embedded in the Numpy module. It can efficiently find all
stable dyads in networks consisting of tens of thousands of agents on a desktop computer.

In what follows the binary variable Z
ij

will equal one if ij is a stable dyad and zero otherwise.
It is also helpful to have an index notation for dyads. Recall that i = 1, 2, . . . indexes the N

agents in the network. Let the boldface indices i = 1,2, . . . index the n =

�

N

2

�

=

1

2

N (N � 1)

dyads among them (in arbitrary order). In an abuse of notation, also let i denote the set
{i

1

, i
2

}, where i
1

and i
2

are the indices for the two agents which comprise dyad i. Using this
notation we have, for example, Zi = Z

i1i2 .

Finally the arguments presented below involve various partitions of the N agents and n

dyads in the network into different sets. Let N
s

= {i| 9! j , Z
ij

= 1} denote the set of all
nodes that are part of a stable dyad. Let N c

s

= N \ N
s

denote the absolute complement of
N

s

in N ; or the set of all nodes which are not part of a stable dyad. Let D
s

= { i | Z
i1i2 = 1}

denote the set of all stable dyads, D
ns

= { i | i
1

2 N
s

_ i
2

2 N
s

} the set of all dyads that are
not stable, but include a node who is part of a stable dyad, and D

od

= D \ (D
s

[D
ns

) the
set of all dyads where both nodes are not part of N

s

(i.e., “all other dyads”).

Finally, let D denote the set of all valid binary undirected adjacency matrices.
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Main identification result

Consider the set of network sequences

Vs

=

�

v3

0

= (v
0

,v
1

,v
2

,v
3

)

�

� v
t

2 D for t = 0, . . . , 3,

v
0

= d
0

, v
1

+ v
2

= d
1

+ d
2

, v
3

= d
3

,

v
ij1

= d
ij1

& v
ij2

= d
ij2

if z
ij

= 0, for i, j = 1, . . . , N} . (8)

The set Vs contains all network sequences constructed by permutating the period 1 and 2

link decisions of the m
N

def

⌘ |D
s

| dyads embedded in stable neighborhoods. All other link
decisions are held fixed at their observed values. The set Vs therefore contains 2

|D
s

|
= 2

m
N

elements. To restate, it consists of all network sequences generated by permutating the
observed of period 1 and 2 link decisions of dyads that (i) revise their linking behavior across
periods 1 and 2 and (ii) are embedded in stable neighborhoods. All other link decisions
coincide with the observed ones.

The main result is a conditional likelihood expression.

Theorem 1. (Conditional Likelihood) Under the data generating process specified in
Section 1 the conditional likelihood of the event D3

0

= d3

0

given that d3

0

2 Vs,

lc
�

d3

0

, a, ✓
�

=

p (d3

0

, a, ✓)
P

v2Vs

p (v3

0

, a, ✓)
, (9)

equals

lc
�

d3

0

, a, ✓
�

=

Y

i2D
s



1

1 + b01
i1i2

(q
ij

, a
ij

, ✓)

�1
(

s

i1i2=1

)



1

1 + b10
i1i2

(q
ij

, a
ij

, ✓)

�1
(

s

i1i2=�1

)

, (10)

where Q
ij

= (D
ij0

, D
ij3

, R
ij0

, R
ij1

)

0, S
ij

= D
ij2

�D
ij1

and

b01
ij

(q
ij

, a
ij

, ✓)
def

⌘ 1� F (�d
ij0

+ �r
ij0

+ a
ij

)

F (�d
ij0

+ �r
ij0

+ a
ij

)

F (�d
ij3

+ �r
ij1

+ a
ij

)

1� F (�d
ij3

+ �r
ij1

+ a
ij

)

b10
ij

(q
ij

, a
ij

, ✓)
def

⌘ F (�d
ij0

+ �r
ij0

+ a
ij

)

1� F (�d
ij0

+ �r
ij0

+ a
ij

)

1� F (�d
ij3

+ �r
ij1

+ a
ij

)

F (�d
ij3

+ �r
ij1

+ a
ij

)

.

Observe that the denominator in (9) is a summation over 2

m
N elements, where m

N

is the
number of stable dyads in the network. The remarkable feature of Theorem 1 is that this sum,
unlike in many other similar contexts (e.g., Blitzstein and Diaconis, 2011; Chatterjee and
Diaconis, 2013), is not intractable. Indeed the ratio (9) can be expressed as a simple product

12



of just m
N

terms. Given the interdependencies across dyads embedded in the (unconditional)
likelihood, that such a factorization is possible hinges critically on the choice of conditioning
set. The proof of this result, which is given below, requires careful bookkeeping and some
counting/permutation arguments.

Two corollaries follow from Theorem 1 directly. The first is a semiparametric maximum-score
type identification result.

Corollary 1. (Semiparametric Identification) Under the data generating process
specified in Section 1

Pr (D
ij1

= 0, D
ij2

= 1|Q
ij

= q, Z
ij

= 1)� Pr (D
ij1

= 1, D
ij2

= 0|Q = q, Z
ij

= 1) Q 0

according to whether
� (d

3

� d
0

) + � (r
1

� r
0

) Q 0.

Proof. Follows from Theorem 1 and Manski (1987) or Honoré and Kyriazidou (2000).

Because R
ijt

is integer-valued semiparametric point identification of ✓ = (�, �)0 is not possible
(even after normalization). However if R

ij1

�R
ij0

has a large number of support points, the
identified set will be quite small.

The second corollary to Theorem 1 shows that point identification (up to scale) is possible
under logistic errors.

Corollary 2. (Logistic Identification) When, additionally, U
ijt

is standard logistic

Pr (D
ij1

= d
1

, D
ij2

= d
2

|Q
ij

= q, Z
ij

= 1) =

✓

exp (x0✓)

1 + exp (x0✓)

◆1(s=1)

✓

exp (x0✓)

1 + exp (x0✓)

◆1(s=�1)

with X
ij

= (D
ij3

�D
ij0

, R
ij1

�R
ij0

)

0 .

Proof. Follows from Theorem 1 and direct calculation.

As in the single agent dynamic binary choice case (e.g., Cox, 1958; Chamberlain, 1985;
Honoré and Kyriazidou, 2000), Theorem 1 follows from an implication of the model that is
invariant to the value of A. In the single agent case a comparison of the relative frequencies
of the link sequences d

ij0

01d
ij3

and d
ij0

10d
ij3

provides information about the strength of
state-dependence. Consequently all agents who revise their choice between periods t = 1

and t = 2 contribute.

In the present context, the relative frequencies of the link sequences d
ij0

01d
ij3

and d
ij0

10d
ij3

also provides information about the signs and magnitudes of �
0

and �
0

. However we must

13



confine analysis to dyads who, in addition to revising their linking decision between periods
t = 1 and t = 2, are also embedded in stable neighborhoods. We specifically learn about �

0

versus �
0

from the link histories of dyads embedded in stable neighborhoods with different
types of network architecture. The need to condition on neighborhood stability arises because
of interdependencies in link decisions.

Consider two network sequences, identical every respect, except that in the first one dyad ij’s
link history is d

ij0

01d
ij3

, while in the second it is d
ij0

10d
ij3

. The second network sequence
can be derived by permuting the period t = 1 and t = 2 link decisions of just a single dyad. If
linking decisions were conditionally independent across dyads, then the likelihoods associated
with these two network sequences would differ by only a single term (corresponding to the
direct likelihood contribution of the ij dyad). When linking decisions are interdependent,
however, these two likelihoods may have many terms different, even though the two network
sequences are nearly identical. That two nearly identical network sequences may have very
different likelihoods attached to them is a consequence of the interdependence in linking
decisions across dyads induced by a structural taste for transitivity.

To see this consider the effect, on the form of the likelihood, of changing d
ij1

from zero to
one. The effect of such a small change on the structure of the likelihood is complicated.
First, due to state dependence, this change alters the incentive for i and j to form a link in
period t = 2. Second, the period t = 2 incentives for other agents to link with either i or j

may change. This occurs if r
il1

changes in value when d
ij1

does, as would occur if l and j

are linked in period t = 1. In that case the presence of a period t = 1 link between i and
j creates an opportunity for i and l to engineer triadic closure in period t = 2 by linking.
Introducing a ij link in period t = 1 therefore increases the incentives for certain links to
form in period t = 2. Finally, the change in d

ij1

does not affect pairs that do not include
either i or j. This is because a change in d

ij1

does not alter r
kl1

for such pairs.

The insight of Theorem 1 is that we can control these cascading effects on the likelihood
by restricting how the neighborhood surrounding ij evolves. If ij is embedded in a stable
neighborhood then a permutation of d

ij1

and d
ij2

will leave the net contribution of all non
ij pairs to the likelihood unchanged. Specifically while many terms in the two likelihoods
will be nominally different, it turns out that after permuting terms they can be shown to
be identical up to the contribution from ij alone. The balance of the argument then follows
from ideas introduced in the study of single agent discrete choice models (Chamberlain, 1985;
Manski, 1987; Honoré and Kyriazidou, 2000).
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Figure 3: Identification: transitivity versus homophily

Notes: Number agents 1, 2 and 3 clockwise from the top in each network. The top and
bottom rows depict two network sequences. In the top one agents 1 and 2 link in period 2, but
not in period 1 (Rose Garden colored edge). In the bottom row they link in period 1, but not
in period 2. Observe (i) agents 1 and 2 constitute a stable dyad (since d

131

= d
132

= d
133

= 1

and d
231

= d
232

= d
233

= 1) and (ii) while they share a link in common in period t = 1, they
do not in period t = 0. Consequently forming a link has a higher return in period 2 than
in period 1. In period 2 the link generates utility from ensuring ‘triadic closure’, no such
utility gain is generated by a period 1 link. Therefore, the top network sequence arises more
frequently than the bottom in the presence of a structural taste for transitivity in links.

Examples of stable neighborhood

Before presenting the proof of Theorem 1 it is helpful to review a view examples illustrating
how Corollary 1 works in practice.

The two rows in Figure 3 depict two network sequences. Numbering agents 1, 2 and 3
clockwise from the top, we can see that agents 1 and 2 (the two Berkeley blue nodes)
constitute a stable dyad. Further observe that while these two agents share agent 3 (the
California gold node) as a common friend in period t = 1, they do not in period t = 0.
Therefore the returns to linking in period t = 2, where agents 1 and 2 reap the returns from
engineering triadic closure, are higher than the corresponding returns from linking in period
t = 1. In the presence of a structural taste for transitivity, � > 0, we will observe the top
sequence more frequently than the bottom sequence.

Figure 4 develops an example of how the relative frequency of two different network sequences
provides information about the state dependence parameter �

0

. Here the intuition parallels
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that familiar from the single agent binary choice case (e.g., Cox, 1958; Heckman, 1978;
Chamberlain, 1985).

Figure 4: Identification: state dependence versus heterogeneity

Notes: See the notes to Figure 3. In this example r
120

= r
121

, so agents 1 and 2 will accrue
returns from transitivity by linking in both periods 1 and 2. However, d

123

= 1 and d
120

= 0,
suggesting that, in the presence of state dependence (�

0

> 0), the top sequence will occur
more frequently than the bottom. The intuition in this case is very similar to that underlying
the results of Cox (1958), Heckman (1978) and Chamberlain (1985).

As a final example consider the two network sequences depicted in Figure 5. The two
Berkeley blue nodes constitute a stable dyad. Both blue nodes maintain the same links in
periods t = 1, 2, 3 (except with each other) and it is also the case that the links maintained
by their friends remain constant in periods t = 1, 2. Since the two blue nodes are neither
linked in the initial t = 0 period or the final t = 3 period, state dependence does not play
a role in their linking decisions. However, observe that the two agents share no links in
common in period t = 0, while sharing two in common in period t = 1. Consequently the
returns to the two agents linking in period t = 2 will be higher than those in available in
t = 1. Consequently we should observe the top sequence more frequently than the bottom
sequence in the presence of a structural taste for transitivity.
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Figure 5: Identification: transitivity versus homophily in a more complex stable neighborhood

Notes: The two Berkeley blue nodes constitute a stable dyad in both the top and bottom sequences. Both blue nodes maintain
the same links in periods t = 1, 2, 3 (except with each other) and it is also the case that the links maintained by their friends
remain constant in periods t = 1, 2. See text for additional narrative.
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Proof of Theorem 1

Readers uninterested in the proof of Theorem 1 can skip directly to Section 3, which discusses
estimation and inference.

The proof of Theorem 1 relies on the following Lemma.

Lemma 2. (Permutation) Consider the network sequence formed by permuting the period
1 and 2 link decisions of any subset of the set of all stable dyads, D

s

. Let (R⇤
il1

, R⇤
il2

) denote
the values of (R

il1

, R
il2

) after such a permutation for i 2 N
s

and l 2 N c

s

. Let ij be the stable
dyad to which i belongs. If ij’s link histories where changed as part of the permutation, then
(R⇤

il1

, R⇤
il2

) = (R
il2

, R
il1

), otherwise (R⇤
il1

, R⇤
il2

) = (R
il1

, R
il2

).

Proof. From the definition of R
ilt

we have, for all l = 1, . . . , N not equal to i or j,

R
il2

�R
il1

=

"

N

X

k=1

D
ik2

D
lk2

#

�
"

N

X

k=1

D
ik1

D
lk1

#

=

N

X

k=1,k 6=j

D
ik1

(D
lk2

�D
lk1

) +D
ij2

D
lj2

�D
ij1

D
lj1

=

N

X

k=1,k 6=j

D
ik1

(D
lk2

�D
lk1

) + (D
ij2

�D
ij1

)D
lj1

with the second equality coming from rearrangement and the stability of all of i’s links, other
than those with j, across periods 1 and 2 (which implies D

ik1

= D
ik2

for all k 6= j). The third
equality comes from the corresponding stability of j’s links (which implies D

lj2

= D
lj1

).

Now observe that
P

N

k=1,k 6=j

D
ik1

(D
lk2

�D
lk1

), the first term to the right of the last equal-
ity above, equals zero since if D

ik1

= 1, then k is a neighbor of i and the definition of
neighborhood stability then implies that D

lk1

= D
lk2

. Rearranging we have shown that

R
il2

= R
il1

+ (D
ij2

�D
ij1

)D
lj1

. (11)

Now consider R⇤
il1

, the number of friends in common between agents i and l after permuting
ij’s period 1 and 2 link statuses:

R⇤
il1

= R
il1

+D
ij2

D
lj1

�D
ij1

D
lj1

= R
il1

+ (D
ij2

�D
ij1

)D
lj1

which coincides with R
il2

by (11) above. A similar argument gives R⇤
il2

= R
il1

.
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To show the main result it is convenient to partition the likelihood (6) into four components:

p
�

d3

0

, a, ✓
�

= ⇡ (d
0

, a) (12)

⇥
Y

i2D
od

3

Y

t=1

F (�d
i1i2t�1

+ �r
i1i2t�1

+ a
i1i2)

d

i1i2t (13)

⇥ [1� F (�d
i1i2t�1

+ �r
i1i2t�1

+ a
i1i2)]

1�d

i1i2t

⇥
Y

i2D
ns

3

Y

t=1

F (�d
i1i2t�1

+ �r
i1i2t�1

+ a
i1i2)

d

i1i2t (14)

⇥ [1� F (�d
i1i2t�1

+ �r
i1i2t�1

+ a
i1i2)]

1�d

i1i2t

⇥
Y

i2D
s

3

Y

t=1

F (�d
i1i2t�1

+ �r
i1i2t�1

+ a
i1i2)

d

i1i2t (15)

⇥ [1� F (�d
i1i2t�1

+ �r
i1i2t�1

+ a
i1i2)]

1�d

i1i2t

Line (12) contains the likelihood contribution corresponding to the joint density of the initial
network condition and pair-specific heterogeneity terms. Line (13) contains the contributions
of all dyads where neither agent is embedded in a stable neighborhood. Line (14) contains
the contribution from all dyads where one agent, but not the other, is embedded in a stable
neighborhood. Finally line (15) contains the contribution of dyads embedded in stable
neighborhoods.

We can use this partition of the likelihood to evaluate the conditional likelihood of observing
D3

0

= d3

0

conditional on the event that d3

0

2 Vs

lc
�

d3

0

, a, ✓
�

=

p (d3

0

, a, ✓)
P

v2Vs

p (v3

0

, a, ✓)
. (16)

In order to simplify (16) it is convenient to analyze its inverse , which consists of the sum of
2

m
N ratios of the form

p (v3

0

, a, ✓)

p (d3

0

, a, ✓)
, (17)

for v3

0

2 Vs. We can use the likelihood decomposition given by (12) to (15) above to derive
an explicit expression for this ratio.

First, since the initial condition is held fixed across the two network sequences, the ⇡ (v
0

, a)

and ⇡ (d
0

, a) terms in, respectively, the numerator and denominator of (17) cancel. Second,
observe that any permutation of the period 1 and 2 link decisions of dyads in D

s

leaves the
utility associated with links across dyads in D

od

unchanged. Therefore the period t = 1, 2, 3

likelihood contributions associated with all dyads in D
od

, the terms in line (13) above, also
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cancel in (17).

Third, consider dyad il with i 2 N
s

and l 2 N c

s

. Let r⇤
il0

, r⇤
il1

and r⇤
il2

denote the number of
friends i and l have in common in periods t = 0, t = 1 and t = 2, respectively, under network
sequence v3

0

2 Vs. Since i is part of a stable dyad (and l is not), it must be the case that
v
il1

= v
il2

= v
il3

= 1 or v
il1

= v
il2

= v
il3

= 0 (by the first part of Definition 1). Note also
that, by the definition of Vs , r⇤

il0

= r
il0

, v
il0

= d
il0

, v
il1

= d
il1

, v
il2

= d
il2

and v
il3

= d
il3

. First
assume that v

il1

= v
il2

= v
il3

= 1. In this case the period t = 1, 2, 3 likelihood contributions
of the il dyad under v3

0

are

F (�v
il0

+ �r⇤
il0

+ a
il

)F (� + �r⇤
il1

+ a
il

)F (� + �r⇤
il2

+ a
il

) = F (�d
il0

+ �r
il0

+ a
il

)

⇥F (� + �r
il2

+ a
il

)

⇥F (� + �r
il1

+ a
il

) ,

where the equality follows from the fact that r⇤
il1

= r
il2

and r⇤
il2

= r
il1

by Lemma 2 above. Now
observe that the expression to the right of the equality, after re-ordering, is identical to the
t = 1, 2, 3 likelihood contributions of the il dyad under d3

0

. Using an analogous observation
for the v

il0

= v
il2

= v
il3

= 0 case implies that the net period t = 1, 2, 3 contributions of dyad
il to the likelihoods of d3

0

and v3

0

are identical (up to a re-ordering of terms). This this leads
to a cancellation of the terms corresponding to lines (14) above. This is a key step of the
argument.

All that remains of (17) is the ratio of the m
N

components in line (15), one for each stable
dyad, under v versus d. If (v

ij1

, v
ij2

) = (d
ij1

, d
ij2

), then the contributions of dyad ij 2 D
s

to the numerator and denominator of (17) cancel. If (v
ij1

, v
ij2

) = (d
ij2

, d
ij1

) = (1, 0), then
dyad ij 2 D

s

contributes the term

b10
ij

�

v3

0

, ✓
�

=

F (�d
ij0

+ �r
ij0

+ a
ij

)

1� F (�d
ij0

+ �r
ij0

+ a
ij

)

1� F (� + �r
ij1

+ a
ij

)

F (�r
ij1

+ a
ij

)

⇥ F (�r
ij2

+ a
ij

)

d

ij3

F (� + �r
ij2

+ a
ij

)

d

ij3

[1� F (�r
ij2

+ a
ij

)]

1�d

ij3

[1� F (� + �r
ij2

+ a
ij

)]

1�d

ij3

=

F (�d
ij0

+ �r
ij0

+ a
ij

)

1� F (�d
ij0

+ �r
ij0

+ a
ij

)

1� F (� + �r
ij1

+ a
ij

)

F (�r
ij1

+ a
ij

)

⇥ F (�r
ij1

+ a
ij

)

d

ij3

F (� + �r
ij1

+ a
ij

)

d

ij3

[1� F (�r
ij1

+ a
ij

)]

1�d

ij3

[1� F (� + �r
ij1

+ a
ij

)]

1�d

ij3
,

to (17), which, following Honoré and Kyriazidou (2000), can be shown to equal

b10
ij

�

v3

0

, ✓
�

=

F (�d
ij0

+ �r
ij0

+ a
ij

)

1� F (�d
ij0

+ �r
ij0

+ a
ij

)

1� F (�d
ij3

+ �r
ij1

+ a
ij

)

F (�d
ij3

+ �r
ij1

+ a
ij

)

def

⌘ b10
ij

(q
ij

, a
ij

, ✓) (18)
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if d
ij3

= 1 and also if d
ij3

= 0. In the logit case

b10
ij

(q
ij

, a
ij

, ✓) = exp (�� (d
ij3

� d
ij0

)� � (r
ij1

� r
ij0

)) ,

which is invariant to the value of a
ij

. Recall that q
ij

denotes the conditioning vector q
ij

=

(d
ij0

, d
ij3

, r
ij0

, r
ij1

)

0 and ✓ = (�, �)0 the parameter vector of interest.

If (v
ij1

, v
ij2

) = (d
ij2

, d
ij1

) = (0, 1), then dyad ij 2 D
s

contributes

b01
ij

�

v3

0

, ✓
�

=

1� F (�d
ij0

+ �r
ij0

+ a
ij

)

F (�d
ij0

+ �r
ij0

+ a
ij

)

F (�r
ij1

+ a
ij

)

1� F (� + �r
ij1

+ a
ij

)

⇥F (� + �r
ij2

+ a
ij

)

d

ij3

F (�r
ij2

+ a
ij

)

d

ij3

[1� F (� + �r
ij2

+ a
ij

)]

1�d

ij3

[1� F (�r
ij2

+ a
ij

)]

1�d

ij3

=

1� F (�d
ij0

+ �r
ij0

+ a
ij

)

F (�d
ij0

+ �r
ij0

+ a
ij

)

F (�r
ij1

+ a
ij

)

1� F (� + �r
ij1

+ a
ij

)

⇥F (� + �r
ij1

+ a
ij

)

d

ij3

F (�r
ij1

+ a
ij

)

d

ij3

[1� F (� + �r
ij1

+ a
ij

)]

1�d

ij3

[1� F (�r
ij1

+ a
ij

)]

1�d

ij3

which, again follows following Honoré and Kyriazidou (2000), equals
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if d
ij3

= 1 and also if d
ij3

= 0. In the logit case
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For all v3

0

2 Vs we therefore have that the contributions of dyad ij 2 D
s

to the numerator
and denominator of (17) either cancel or equal (18) or (19) according to whether (d

ij1

, d
ij2

) =

(0, 1) or (d
ij1

, d
ij2

) = (1, 0).

Let S
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= D
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�D
ij1

, using the above calculations, we can write,
P
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, a, ✓)

p (d3
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, a, ✓)
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i1i2

(q
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)

.

Note that the product to the right of the equality above evaluates to a sum of 2mN terms,
one for each element of Vs, as required. Inverting yields a simplification of (16) equal to (10)
as claimed.
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In the logit case (10) simplifies further to
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, (20)

recalling that X
ij

= (D
ij3

�D
ij0

, R
ij1

�R
ij0

)

0.

3 Estimation and inference

In this section I introduce an estimator for ✓
0

based on Corollary 2. This corresponds to the
case where the model described in Section 1 is augmented with the assumption that U

ijt

is a
standard logistic random variable. The estimator is simply the maximizer of the conditional
likelihood presented in Theorem 1 (evaluated under the logit assumption):
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The stable neighborhood logit (henceforth SN logit) estimate of ✓
0

is given by9

ˆ✓
SN

= argmax

✓2⇥
L
N

(✓) (24)

To derive the large sample properties of ˆ✓
SN

it is helpful to first formalize some conditional
independence properties embedded in the conditional likelihood (10). Order dyads, without
loss of generality, so that i = 1, . . . ,m

N

indexes the m
N

= |D
s

| dyads embedded in stable
neighborhoods.

Lemma 3. (Independence of Link Histories Among Stable Dyads) The events
S1 = s, . . . , Sm

N

= s are conditionally independent given Z1 = · · · = Zm
N

= 1, D
0

= d
0

,
D

3

= d
3

and A = a.
9While I will not present formal results for it, a semiparametric maximum score estimator based on

Theorem 1 could be constructed by maximizing

max
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�N
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. (23)

The set of maximizers of (23) would provide an estimate of the identified set.
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Proof. The conditional likelihood (10) evaluated at ✓ = ✓
0

gives the probability of all possible
permutations of period 1 and period 2 link histories between dyads embedded in stable
neighborhoods conditional on all other features of the network being held fixed. For any
i = 1, . . . ,m

N

marginalizing gives

Pr (Si = s|Z1 = · · · = Zm = 1,d
0

,d
3

, a) =

✓

1

1 + b01
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(q
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, a
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, ✓
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, a
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, ✓
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(25)

= Pr (Si = s|Zi = 1, qi, ai)

the product of (25) for i = 1, . . . ,m
N

gives (20).

Lemma 3 implies that the stable neighborhood logit criterion function (20) consists of m
N

=

|D
s

| conditionally independent components. As long as m
N

! 1 and N ! 1 consistency
and asymptotic normality of ˆ✓

SN

follows relatively directly. To state a formal result I require
some additional assumptions.

Assumption 1. (Sampling) The econometrician observes all agents and links between
them in t = 0, 1, 2, 3.

Developing results for other sampling schemes, as when the researcher collects a set of ego-
centered graphs, would be an interesting topic for future search.

Assumption 2. (Regularity)

(i) ✓
0

2 int (⇥), with ⇥ a compact subset of R2,

(ii) for any two agents i and j, R
ijt

is a bounded for t = 0, 1

Part (i) of Assumption 2 is standard regularity condition. Given that most networks are
sparse, part (ii) is not especially restrictive. Specifically if each agent can maintain only a
finite number of links, then she can have at most a finite number of links in common with
any other agent. This assumption can also be relaxed by assuming that R

ijt

has, instead, a
sufficient number of finite moments.

Point identification further requires:

Assumption 3. (Identification)

(i) n↵
N

! 1 with ↵
N

= Pr (Z
ij

= 1)

(ii) E
⇥

X
ij

X 0
ij

�

�Z
ij

= 1

⇤

is a finite non-singular matrix
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Part (i) of Assumption 3 ensures that the number of stable dyads increases with the size of
the network. Although it allows the probability attached to the event “ij is a stable dyad”
to approach zero as the network grows, it does so at sufficiently slow rate such that the total
number of stable dyads nevertheless grows large as N ! 1. One way to ensure that part (i)
holds is to impose restrictions on the sequence {A

ij

}1
j=i+1

. An example is implicitly provided
by the Monte Carlo design introduced below. The single agent binary choice analog of part
(i) of Assumption 3 is the requirement that the number of switchers or movers grows with
the sample size (Chamberlain, 1980).

Part (ii) of Assumption 3 is a standard identification condition for binary choice models,
albeit expressed conditionally on Z

ij

= 1 (e.g., Amemiya, 1985).

Let p
ij

(✓) =

exp

(

X

0
ij

✓

)

1+exp

(

X

0
ij

✓

)

with p
ij

= p
ij

(✓
0

) and ⇤

0

= E
⇥

p
ij

(1� p
ij

)X
ij

X 0
ij

�
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⇤

. The

large sample properties of ˆ✓
SN

are summarized in the following theorem.

Theorem 2. (Asymptotic Properties of ˆ✓
SN

) Under the assumptions stated above
(i) ˆ✓
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p! ✓
0

(ii) p
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⇣

ˆ✓
SN

� ✓
0

⌘

D! N
�

0,⇤�1

0

�

The proof of Theorem 2 can be found in Appendix A. It is relatively straightforward.
Recall that m

N

equals the number of conditionally independent components in the SN logit
criterion function. Therefore {m

N

} is a sequence of integer-valued random variables. Part
(i) of Assumption 3 implies that

m
N

n↵
N

p! 1,

with n↵
N

! 1. Hence the number of components in the SN logit criterion function will
grow large with the network. This allows for the application of a central limit theorem for a
random number of summands. Theorem 1.9.4 of Serfling (1980) is sufficient for my purposes.

The upshot of Theorem 2 is that, in practice, estimation of, and inference on, ✓
0

is very
straightforward. The main challenge is to quickly find all stable dyads in the network.
As mentioned above, a description of how to construct the Z

ij

indicator can be found in
Appendix B and a Python function for finding stable dyads is included in the supplementary
materials.

Once all stable dyads have been located, estimation and inference can be conducted us-
ing a standard logit maximum likelihood program. Specifically let Y

ij

= 1 (S
ij

= 1) =

1 (D
ij1

= 0, D
ij1

= 1) and recall that X
ij

= (D
ij3

�D
ij0

, R
ij1

�R
ij0

)

0. A standard logit fit
of Y

ij

onto X
ij

across the subset of Z
ij

= 1 stable dyads coincides with the SN logit estimator.
The conventional standard errors reported by the program will be asymptotically valid.10

10A constant should not be included in the design matrix. Most logit programs include a constant by
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4 Monte Carlo experiments

The Monte Carlo design uses a random geometric graph to construct an “opportunity graph”
for link formation. Specifically agents are scattered uniformly on the two-dimensional plane

h

0,
p
N
i

⇥
h

0,
p
N
i

.

The initial network is then generated according to the rule

D
ij0

= 1 (A
ij

� U
ij0

� 0) ,

with U
ij0

logistic and A
ij0

taking one of two values. If the Euclidean distance between i and
j is less than or equal to r, then A

ij0

= ln

�

0.75

1�0.75

�

, otherwise A
ij0

equals negative infinity.
This calibration means that, in the initial period, agents that are less than r apart link with
probability 0.75, while those greater than r apart link with probability zero.

The expected degree of a randomly sampled agent in t = 0 is approximately 0.75⇡r2 (An
exact expression for average degree, which takes into account boundary effects, can be cal-
culated along the lines of Kostin (2010)). An implication of this set-up is that the initial
condition is sparse: average degree does not increase with network size. By varying the value
of r I can manipulate the average degree, and hence connectivity, of the initial condition. I
choose values of r such that in large networks average degree in period t = 0 is 2, 3 or 4.11

With an average degree of 2, the resulting initial condition consists of many small discon-
nected components. When average degree equals 3 a large giant component begins to form.
Finally when average degree equals 4 almost all agents are part of one giant component (see
Table 1). It is well-known that a phase-transition occurs at an average degree of 3 in random
geometric graphs (Penrose, 2003).

In period t = 1, 2, 3 links evolve according to rule (2) with � = � = 1.12 A key feature of this
design is that it generates homophilous link formation based on location (which is unobserved
by the econometrician). Although there are no network effects in operation in period t = 0,
measured transitivity of the initial network is quite high, with the clustering coefficient
exceeding 0.4 in all cases (see Table 1). In subsequent periods transitivity and average degree
increase as agents form additional links (on net) in response to state dependence and a taste

default, but also have an exclusion option.
11As a point of reference McPherson et al. (2006) estimate the average size of adult Americans core

discussion networks (i.e., confidants with whom individuals discuss important matters) was about three in
1985 and two in 2004.

12Since agents greater that r apart will never link, average degree in the network is bounded above by ⇡r2

in periods t = 1, 2, 3. This corresponds to maximum average degrees of (approximately) 2.67, 4 and 5.33
across the three designs.
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for triadic closure. Link clustering in these design therefore arises from both homophily and
a taste for triadic closure, making them an appropriate test case for evaluating the small
sample relevance of Theorem 2.

A typical sequence of networks, with N = 200 and average degree in the initial network set
equal to 4, is depicted in Figure 6. The figure indicates that stable dyads come in different
forms and can arise even in a strongly connected network. In the figure the larger Berkeley
blue nodes correspond to stable dyads, the California gold nodes are immediate neighbors,
while the Medalist colored nodes are indirect neighbors. Stable dyads arise in sparse regions
of the network, as might be expected, but also in relatively dense regions.

Table 1: Basic Properties of Simulated Network Sequences
Asymptotic Degree 2 3 4
Period E [D

it

] T GC E [D
it

] T GC E [D
it

] T GC
t = 0 1.98 0.44 0.01 2.96 0.44 0.05 3.94 0.44 0.58
t = 1 2.41 0.58 0.01 3.68 0.58 0.08 4.98 0.58 0.83
t = 2 2.49 0.59 0.01 3.80 0.59 0.09 5.12 0.59 0.84
t = 3 2.50 0.60 0.01 3.82 0.59 0.09 5.14 0.59 0.85

Notes: The table reports period-specific network summary statistics across the B = 1, 000 Monte

Carlo simulations for each design (N = 5, 000). See main text for other design details. The E [D
it

]

column gives the average degree, T the global clustering coefficient or transitivity index and GC

the fraction of agents that are part of the largest giant component.

Table 2 summarizes the sampling properties of ˆ� and �̂ across the different designs. In all
cases I set the number of agents equal to N = 5, 000 and complete B = 1, 000 Monte Carlo
replications. The network size was chosen through trial and error to ensure the presence of
a sufficient number of identifying stable dyads. With five thousand agents the number of
stable dyads averages between 100 and 250 for the designs considered here.

In all cases the SN logit estimator is approximately mean and median unbiased and the
associated Wald-based confidence intervals have actual coverage close to nominal 95 percent
coverage.

In empirical work it is common to fit simple dynamic logistic regression models to network
data. In this approach current linking decisions are modeled as a function of past network
structure (e.g., Gulati and Gargiulo, 1999; Kossinets and Watts, 2009; Almquist and Butts,
2013). In the Monte Carlo designs considered here, this approach resulted in highly biased
point estimates and nominal 95 percent confidence intervals with zero coverage in all cases
(results not reported).13

13With B = 1, 000 Monte Carlo replications the standard error of the coverage estimates are
p

0.95 (1� 0.95) /1, 000 ⇡ 0.007. Hence the null of actual coverage equaling 0.95 is accepted in all cases.
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Table 2: Sampling properties of ˆ� and �̂
Asymptotic Degree 2 3 4
N = 5, 000 � � � � � �
Mean 1.0138 1.0458 1.0314 1.0421 1.0438 1.0456
Median 1.0018 1.0187 1.0061 1.0064 1.0410 1.0133
Std. Dev. 0.2661 0.2888 0.3575 0.2832 0.4575 0.2976
Mean Std. Err. 0.2593 0.2791 0.3375 0.2717 0.4493 0.2917
Coverage 0.9600 0.9530 0.9480 0.9600 0.9620 0.9650
Avg. # of Stable Dyads 237.5 162.9 110.6
# of cvg. failures 0 0 1

Notes: The table reports period-specific network summary statistics across the B = 1, 000 Monte

Carlo simulations for each design (N = 5, 000). See the main text for other design details. The

E [D
it

] column gives the average degree, T the clustering coefficient or transitivity index and GC

the fraction of agents that are part of the largest giant component.

5 Conclusion

This paper has introduced a simple model of dynamic network formation which incorpo-
rates, for the first time, both a structural taste for transitivity and arbitrary homophily
on time-invariant agent attributes. Transitivity and homophily are the two most widely
posited reasons for link clustering in real world networks (e.g., Snijders, 2011, 2013). The
model introduced here provides a means to assess the roles played by these two forces in
practice. Taste transitivity induces a strong dependence in link formation trajectories across
agents. By focusing on link histories across dyads embedded in stable neighborhoods, these
dependencies can be controlled, and positive identification results derived. Estimation and
inference is surprisingly simple, requiring a routine to find stable dyads, and a standard logit
maximum likelihood program.

Several different directions for future research suggest themselves. First, the application
of the methods proposed here to real world network data would be interesting. Second,
it is an open question whether the notion of neighborhood stability can be extended to
accommodate more complex surplus functions. In particular those with additional network
interdependencies beyond a taste for transitivity. Third, the fixed effects results presented
here provide justification for the further exploration of random effects approaches to dynamic
network analysis.
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A Proof of Theorem 2

This appendix presents a derivation of the large sample properties of the SN logit estimator
summarized in Theorem 2 of the main text. All notation is as defined in the main text
unless stated otherwise. The abbreviation TI refers to the Triangle Inequality, CSI to the
Cauchy-Schwartz Inequality, LLN to the Law of Large Numbers and CLT to the Central
Limit Theorem.

Consistency

To show part (i) of Theorem 2 consider the normalized SN logit criterion function
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A dominating function for the “kernel” of (26) can be constructed as follows
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The first equality follows from a mean value expansion in ✓, the second inequality by the
TI, the third inequality by the fact that [1 + exp (v)]�1 lies between zero and one, the fourth
equality by the fact that |S

ij

| = 1 if Z
ij

= 1 and zero otherwise, and the last inequality by
the CSI. By Assumption 2 the term to the right of the final inequality is bounded.

Taking expectations of both side of (27) therefore yields
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which allows for an application of a law of large numbers for U-statistics with sample-size
dependent kernels (e.g., Lemma A.3 of Ahn and Powell (1993)). This gives ↵�1

N

L
N

(✓)
p!
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) is the binary entropy function. Clearly ✓
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is a maximizer of (28);
part (ii) of Assumption 3 implies that ✓
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is the unique maximizer. By concavity of L
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in ✓ the convergence of ↵�1
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L
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(✓) to Q (✓) is uniform in ✓ 2 ⇥. Since conditions A, B and
C of Theorem 4.1.1 of Amemiya (1985) hold, part (i) of the Theorem follows.

Asymptotic normality

To show part (ii) of Theorem 2 I begin with a mean value expansion of the first order condition
of the (normalized) SN logit criterion function (26). This gives, after some re-arrangement,
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where ¯✓ lies “between” ˆ✓ and ✓
0

, + denotes a Moore-Penrose generalized inverse and
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as defined immediately before the statement of Theorem 2 in the main text. The matrix
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is finite and non-singular by part (ii) of Assumption 3.

Asymptotic normality follows by demonstrating that the second term in (29), suitably nor-
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malized, obeys a central limit theorem (CLT). To show this, start by calculating the variance
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Now, without loss of generality, let i = 1, . . . ,m
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index those dyads embedded in stable
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from which the result follows after another application of Slutsky’s Theorem.
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B Construction of a stable dyad indicator

It is helpful for computation to have an indicator for neighborhood stability. To construct
one first define the matrix

S = D
1

�D
2

�D
3

+ (◆◆0 �D
1

) � (◆◆0 �D
2

) � (◆◆0 �D
3

) .

The ijth element of S equals 1 if the link status of dyad ij is the same across periods 1, 2
and 3 (i.e., either always linked or never linked) and zero otherwise. The diagonal elements
of S equal one by construction. Note that S

ij

, the ijth element of S, does not correspond to
S
ij

as defined in the main text and Appendix A.

To find dyads that (i) change link status across periods 1 and 2, but (ii) leave any remaining
links they may have unchanged in periods 1, 2 and 3 define the boolean matrix T with ijth

entry

T
ij

=

(

1 ifD
1ij

6= D
2ij

&

P

N

j=1

S
ij

= N � 1&

P

N

i=1

S
ij

= N � 1

0 otherwise

.

To identify agents who do not form or sever any links during periods 1 and 2 define the
boolean vector V with ith element

V
i

=

(

1 if

P

N

j=1

D
1ij

D
2ij

+ (1�D
1ij

) (1�D
2ij

) = N

0 otherwise

.

Use T and V to construct an indicator for dyad stability:

Z
ij

= T
ij

⇥
"

Y

k 6=i,j

(D
1ik

V
k

+ (1�D
1ik

))

#

⇥
"

Y

k 6=i,j

(D
1kj

V
k

+ (1�D
1kj

))

#

. (30)

Note that
Q

k 6=i,j

(D
1ik

V
k

+ (1�D
1ik

)) = 1 if for all k 6= i, j one of the following two condi-
tions hold: (i) agent i is linked to agent k and all of k’s links are stable across periods 1 and 2
or (ii) agent i is not linked to k. Hence T

ij

equals one if the first condition for neighborhood
stability applies and i and j revise their link status across periods 1 and 2, while the two
terms in [•] equal one if the second condition for neighborhood stability holds holds.
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Figure 6: Illustrative network sequence for Monte Carlo Design

Notes: A typical sequence of networks for the case where N = 200 and average degree in the
initial network is 4.
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