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1 Introduction

Perhaps the most striking recent challenge to representative agent models comes from the
evidence about the term structure of risk premiums. Several papers make a forceful argu-
ment that the pattern of Sharpe ratios computed for “zero-coupon” assets across different
investment horizons cannot be replicated using workhorse models, such as long-run risk,
habits, or disasters (Binsbergen and Koijen, 2015 provide a comprehensive review). Usu-
ally, representative agent models offer an equilibrium-based pricing kernel and exogenously
specified cash flow process for a given asset. The question is then whether the documented
failure of the models comes from an equilibrium pricing kernel, cash flow specification, or
both.

In this paper, we develop a methodology that allows us to consider these issues in a unified
fashion accounting for term structure and cross-sectional effects at the same time. We use
an illustrative affine model with regular shocks and disasters to characterize, using our
methodology and basic summary statistics, the desired features of both the pricing kernel
and cash flows. We subsequently develop a model with recursive preferences that, by and
large, satisfies these desired properties.

Our approach is motivated by the work of Hansen, Heaton, and Li (2008), Hansen and
Scheinkman (2009), and Hansen (2012) who seek to analyze the interaction of cash flows
and the pricing kernel, and by Backus, Chernov, and Zin (2014) who characterize the
properties of the pricing kernel alone at multiple intermediate horizons. We extend the
entropy-based approach of the latter paper to the cross-section by introducing the concept
of coentropy. Coentropy is a new measure of co-dependence between random variables. It
serves as a natural generalization of covariance to non-normal cases and, as we show, has a
useful application in asset pricing because of its connection to yield curves.

Our evidence is based on the term structures of a diverse set of assets: US dollar bonds,
foreign-currency bonds, inflation-protected bonds, and equity dividend strips. These assets
are claims to different cash flows, which gives their term structures different levels and
shapes. The question is where do these levels and shapes come from.

Bonds provide a useful benchmark. Their cash flows are fixed, so bond prices, yields, and
returns are functions of the pricing kernel alone. Since the pricing kernel is not directly
observed, estimated bond pricing models are essentially reverse engineering exercises, in
which properties of the pricing kernel are inferred from bond prices. A central feature of
the pricing kernel is its dispersion, which we measure with entropy. We show how the
average slopes of yield curves are mirrored by the behavior of entropy over different time
horizons.

Other assets also have maturity dimensions, which we see in a broad range of forward,
futures, and swap contracts. We approach them in a similar way. The term structures in
this case are functions of a transformed pricing kernel, the product of the original pricing



kernel and the growth rate of the cash flow to which the assets are claims: the spot price
of foreign currency, the consumer price index, or an equity dividend. In terms of the
original pricing kernel, entropy here is connected to the dispersion of the pricing kernel, the
dispersion of cash flow growth, and the relation between the two. We measure dispersion,
as before, with entropy, and use coentropy to measure dependence. The cash flows are
typically observed, which allows us to estimate their properties, but their coentropy with
the pricing kernel is a critical unseen feature that affects their term structures.

We show that the average difference between log excess buy-and-hold return on a given
asset over multiple horizons and that over one period is equal to the average difference
between two term spreads implied by the term structure of a given asset and by the term
structure of US dollar yields. Thus, we do not need to use the data on underlying cash
flows over multiple horizons, which makes computation of multi-horizon returns feasible.
We report evidence on one one-period excess returns and, separately, on how they change
with horizon.

We know a lot about the cross-section of one-period asset returns from the gigantic asset-
pricing literature. In our limited sample, we continue to observe large cross-sectional differ-
ence in average returns and evidence of non-normality in realized returns. As investment
horizon increases, the cross-sectional spread widens out, and average returns on all assets
in our sample decline with horizon. Because we are working with log returns, the latter is
similar to the pattern documented for Sharpe ratios of several asset classes. Finally, excess
returns decline with horizon at different rates, depending on the asset. Because we are sub-
tracting US nominal term spreads, this difference must be coming from differences in cash
flows. Specifically, this indicates cross-sectional differences in the persistence of expected
cash flow rates.

We use a series of affine models to show how their various elements affect the term structures
of multiple assets, both in theory and in the data. We rely on our separation result and
focus on modeling short-term returns and intermediate-term returns in two steps. We can
do so because iid elements of a model will not affect term spreads, so we focus on getting
the right magnitude of cross-sectional differences in one-period returns without worrying
about persistence of expected cash flows.

We uncover three critical components that are helpful in capturing the cross-sectional and
horizon dimensions of asset prices. First, in order to reflect non-normalities and to capture
large magnitudes of one period excess returns, a model should feature a jump, or a disaster,
component. Second, once this component is featured in a model, there is less pressure on
the persistent component of a model to be high in order to match one period returns. As a
result, the persistence of this component could be selected to match the shape of the yield
curve. Thus, the presence of an iid jump component alleviates the tension between matching
short-term returns and term structure of yields. Third, the cross-sectional differences in
these term spreads are driven by the cross-sectional differences between the persistence of
expected cash flows and by the difference of these persistences from the persistence of the
US nominal pricing kernel.
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These observations allow us to reverse engineer an example of a model featuring the repre-
sentative agent with recursive preferences. Such a model delivers an equilibrium real pricing
kernel. Following a big part of the literature, we assume an exogenous specification of cash
flows. The key features of cash flows follow what we have uncovered in the reduced form
case: iid jumps in consumption growth which allows for smaller persistence of expected
consumption growth and persistence of expected cash flows that is different from that of
expected consumption growth.

The models that we explore in our examples can be made more realistic, and some of the
data sources could be improved, albeit with a passage of time. Thus our discussion should
not be viewed as our claim to offer the definitive explanation of existing evidence. Our
empirical examples are intended to be illustrative. We hope that our research offers a
sufficiently clear path for further study and improvements.

2 Evidence

Our focus is the properties of observed term structures of prices and returns, so it is helpful
to begin with data. Consider a cash-flow process dt with growth rate gt,t+n = dt+n/dt over
n periods. We are interested in “zero-coupon” claims to gt,t+n with a price denoted by
p̂nt . In the special case of a claim to the cash flow of one US dollar, its price is denoted by
pnt . We define a yield on such an asset as: ŷnt = −n−1 log p̂nt . Examples include nominal
risk-free bonds with gt,t+n = 1 (we reserve a special notation ynt ≡ n−1 log rnt,t+n for a yield,
or equivalently n−period holding period return, on a US nominal bond); foreign bonds if dt
is an exchange rate; inflation-linked bonds if dt is price level; and equities if dt is a dividend.

Returns are connected to yields. Consider a hold-to-maturity n−period log return:

log rt,t+n = log(gt,t+n/p̂
n
t ) = log gt,t+n + nŷnt .

Therefore, we can express the term spread between average returns as:

n−1E log rt,t+n − E log rt,t+1 = E(ŷnt − ŷ1
t ).

Define excess holding return per period as

log rxt,t+n = n−1(log rt,t+n − log rnt,t+n). (1)

Therefore, the average difference between one- and n-period excess returns is equal to
difference between average term spreads:

E(log rxt,t+n − log rxt,t+1) = E(ŷnt − ŷ1
t )− E(ynt − y1

t ). (2)

This connection between yields and excess returns simplifies an ordinarily difficult task:
reliably computing holding period returns over long horizons. One faces declining number of
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non-overlapping data points available when computing historical average of realized returns.
In contrast, yields are available every period, so the number of available data points does
not change with the horizon n and does not require observations of cash flows. All we need
to compute is the average excess return for n = 1 and then propagate it across horizons
using yields.

We report summary statistics for one-period excess returns for some examples in Table 1.
We choose assets for which zero-coupon approximations exist: various bonds and dividend
strips. This exercise is meant to be illustrative, so we do not perform exhaustive analysis of
all possible assets (see Giglio and Kelly, 2015 and Binsbergen and Koijen, 2015 for a more
exhaustive list). Based on data availability, we select one quarter to be one period. We
observe quite large cross-sectional dispersion in returns, on the order of 0.0136 per quarter
or about 5.5 percent per year. Departures of excess returns from normality are evident
despite the relatively low frequency.

Table 2 reports the yield curves and departures of term spreads from that of the US term
structure. The US dollar term structure starts low, on average, reflecting low average
returns on short-term default-free dollar bonds. Mean yields increase with maturity. The
mean spread between one-quarter and 40-quarter yields have been about 2 percent annually.

Assets with cash flows also have term structures, although there’s not often as much market
depth at long maturities as there is with bonds. They differ, in general, in both the starting
point (the one-period return on a spot contract) and in how they vary with maturity. Some
assets have steeper yield curves, some flatter, and some have completely different shapes.

In Figure 1 we plot term spreads of US Treasury yield, ynt − y1
t , and the differences between

mean term spreads on a number of other assets and US Treasury yields, E(ŷnt − ŷ1
t )−E(ynt −

y1
t ). Because, the latter object is equal to the average difference between one- and n-period

excess returns, excess returns decline with horizon in all examples with the exception of
dividend strips. Moreover, there is a widening cross-sectional spread in excess returns as
the horizon increases. As compared to one-quarter excess returns, the additional spread is
about 1 percent extra, annually.

To summarize, the evidence points to large cross-sectional differences in excess returns.
Because short-term excess returns are non-normal, part of the returns may be coming from
the compensation for tail risk. The differences in returns increase with horizon, suggesting
that persistence of asset yields is different from the persistence of interest rates.

All of this evidence is related to the recent literature on term structure of asset returns, such
as Belo, Collin-Dufresne, and Goldstein (2015), Binsbergen, Brandt, and Koijen (2012),
Binsbergen, Hueskes, Koijen, and Vrugt (2012), Boguth, Carlson, Fisher, and Simutin
(2013), Boudoukh, Richardson, and Whitelaw (2015), Dahlquist and Hasseltoft (2013,
2014), Dew-Becker, Giglio, Le, and Rodriguez (2015), Doskov, Pekkala, and Ribeiro (2013),
Giglio, Maggiori, and Stroebel (2015), Hasler and Marfe (2015), Lettau and Wachter (2007),
Lustig, Stathopolous, and Verdelhan (2014), and Zviadadze (2013).
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3 Entropy, coentropy, and returns

We define entropy and coentropy and connect them to expected excess returns. We’ll see
in the next section that these concepts generalize easily to time horizons of any length.

3.1 Entropy and coentropy

We start with definitions of entropy, a measure of dispersion, and coentropy, a measure of
dependence. The entropy of a positive random variable x is

L(x) = logE(x)− E(log x). (3)

Entropy L(x) is nonnegative and positive unless x is constant (Jensen’s inequality applied
to the log function). It’s also invariant to scale: L(ax) = L(x) for any positive constant a.
If we choose a = 1/E(x), then ax is a ratio of probability measures (or Radon-Nikodym
derivative) and L(ax) = L(x) is its relative entropy. See Alvarez and Jermann (2005,
Section 3), Backus, Chernov, and Martin (2011, Section I.C), Backus, Chernov and Zin
(2014, Section I.C), and Cover and Thomas (2006, Chapter 2).

We find it instructive to express entropy in terms of the cumulants and cumulant generating
function (cgf) log x. The cgf of log x, if it exists, is the log of its moment generating function,

k(s) = logE
(
es log x

)
.

The function k is convex in s; see, for example, Figure 2. Given sufficient regularity, it has
the Taylor series expansion

k(s) =

∞∑
j=1

κjs
j/j!,

where the jth cumulant κj is the jth derivative of k(s) at s = 0. More concretely, κ1 is
the mean, κ2 is the variance, κ3/(κ2)3/2 is skewness, κ4/(κ2)2 is excess kurtosis, and so on.
Entropy is therefore

L(x) = k(1)− E(log x) = κ2/2! + κ3/3! + κ4/4! + · · · =
∞∑
j=2

κj/j!. (4)

If E(log x) = 0, entropy is simply k(1). See Backus, Chernov, and Martin (2011, Section
I.C) and Martin (2013, Sections 1 and 3).

Two examples show how this might work:

Example 1 (normal). Let log x ∼ N (µ, σ2). The cgf is k(s) = µs + (σs)2/2 and entropy is
L(x) = (µ + σ2/2) − µ = σ2/2. If we compare this to the cumulant expansion (4), we see
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that normality gives us the variance term κ2/2, but all the higher-order terms are zero (κj
for j ≥ 3).

Example 2 (Poisson). Let log x = jθ where j is Poisson with intensity parameter ω > 0: j
takes on nonnegative integer values with probabilities e−ωωj/j!. The cgf of log x is k(s) =
ω(eθs − 1). The mean is ωθ, the variance is ωθ2, and entropy is ω(eθ − 1)− ωθ. Expanding
the exponential, we can express entropy in terms of the cumulants of log x:

L(x) = ω(θ2/2! + θ3/3! + θ4/4! + · · · ).

The first term is half the variance — what we might think of as the normal term. The other
terms represent higher-order cumulants. Numerical examples suggest that we can make
their overall impact as large or as small as we like. For example, entropy can be smaller
than half the variance (try θ = −1) or greater (θ = 1). Or it can be much greater: If
ω = 1.5 and θ = 5, half the variance is 18.75 and entropy is 213.62.

We plot both cgf’s in Figure 2. The random variables log x have been standardized, so
that they have mean zero and variance one, but they are otherwise the examples described
above. In the normal case, the cgf is the parabola k(s) = s2/2 and is symmetric around
zero. In the Poisson case, the cgf’s asymmetry reflects the positive skewness of a Poisson
random variable with positive scale parameter θ. The positive contribution of high-order
cumulants in this case drives entropy — the valaue of the cgf k at s = 1 — above its normal
value of half the variance.

We turn next to the relation between two random variables — what is commonly referred to
as dependence. If entropy is an analog of variance, then coentropy is an analog of covariance.
We define the coentropy of two positive random variables x1 and x2 as the difference between
the entropy of their product and the sum of their entropies:

C(x1, x2) = L(x1x2)− L(x1)− L(x2). (5)

Appendix A shows how it is different from earlier concepts of dependence introduced in the
literature. If x1 and x2 are independent, then L(x1x2) = L(x1) + L(x2) and C(x1, x2) = 0.
If x1 = ax2 for a > 0, then coentropy is positive. If x1 = a/x2, then L(x1x2) = L(a) =
0 and coentropy is negative. Coentropy is also invariant to noise. Consider a positive
random variable y, independent of x1 and x2 — noise, in other words. Then C(x1y, x2) =
C(x1, x2y) = C(x1, x2).

As with entropy, we can express coentropy in terms of cgf’s. The cgf of log x = (log x1, log x2)
is k(s1, s2) = logE(es1 log x1+s2 log x2). The cgf’s of the components are k(s1, 0) and k(0, s2).
Coentropy is therefore

C(x1, x2) = k(1, 1)− k(1, 0)− k(0, 1). (6)

The cgf has the Taylor series representation

k(s1, s2) =
∞∑

i,j=0

κijs1s
j
2/i!j!,
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where κij is the (i, j)th joint cumulant, the (i, j)th cross derivative of k at s = 0. Here κi0
is the ith cumulant of log x1, κ0j is the jth cumulant of log x2, and κij is a joint cumulant
— κ11, for example, is the covariance.

Two examples highlight the differences between covariance and coentropy:

Example 3 (bivariate lognormal). Let log x = (log x1, log x2) ∼ N (µ,Σ), where µ is a 2-
vector and Σ is a 2 by 2 matrix. The cgf is k(s) = s>µ + s>Σs/2 where s> = (s1, s2).
Entropies are L(xi) = σii/2 for i = 1, 2 and L(x1x2) = (σ11 + σ22 + 2σ12)/2. Coentropy is
the covariance: C(x1, x2) = σ12 = Cov(log x1, log x2).

Example 4 (bivariate Poisson mixture). Jumps j are Poisson with intensity ω. Conditional
on j jumps, log x ∼ N (jθ, j∆) where the matrix ∆ has elements δij . The cgf is k(s) =

ω
(
es
>θ+s>∆s/2 − 1

)
. Entropies are

L(xi) = ω
(
eθi+δii/2 − 1

)
− ωθi

L(x1x2) = ω
(
e(θ1+θ2)+(δ11+δ22+2δ12)/2 − 1

)
− ω(θ1 + θ2).

Coentropy is therefore

C(x1, x2) = ω
(
e(θ1+θ2)+(δ11+δ22+2δ12)/2 − eθ1+δ11/2 − eθ2+δ22/2 + 1

)
.

The covariance is Cov(log x1, log x2) = ω(θ1θ2 + δ12), so coentropy is clearly different. A
numerical example makes the point. Let ω = θ1 = 1 and ∆ = 0 (a 2 by 2 matrix of zeros).
If θ2 = 1, C(x1, x1) > Cov(x1, x2), but if θ2 = −1, the inequality goes the other way as the
odd high-order cumulants flip sign. For similar reasons, it’s not hard to construct examples
in which the covariance and coentropy have opposite signs.

Another numerical example shows how different they can be. Let θ1 = θ2 = −0.5 and

∆ = δ

[
1 ρ
ρ 1

]
.

We set ρ = 0 and δ = 1/ω. We then vary ω to see what happens to the covariance and
coentropy. We see in Figure 3 that the two can be very different.

3.2 Returns and risk premiums

Our interest in these concepts lies in their application to asset pricing, specifically the
returns documented in Table 1. Consider an ergodic Markovian environment with state
variable x. In such an environment we distinguish between the probability distribution
conditional on the state at a specific date and the unconditional or stationary distribution.
Entropy and coentropy can be computed with either one. We define conditional entropy
and coentropy in terms of the conditional distribution. Entropy and coentropy are their
(unconditional) means.
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We denote by rt,t+1 the (gross) return on an arbitrary asset between dates t and t + 1.
The subscripts are shorthand for dependence on the state at dates t and t + 1 — that
is, r(xt, xt+1). We define the (log) risk premium as: logEt(rt,t+1/r

1
t,t+1) where Et is the

expectation conditional on the state at date t and r1
t,t+1 is the one-period riskfree rate. Risk

premium is closely related to expected excess returns, Et log rxt,t+1, which we’ve discussed
earlier.

Returns and risk premiums follow from the no-arbitrage theorem: There exists a positive
pricing kernel m that satisfies

Et
(
mt,t+1rt,t+1

)
= 1 (7)

for all returns r. An asset pricing model is then a stochastic process for m. We’ll come
back later to what asset prices tell us about this stochastic process.

Risk premiums reflect the coentropy of the pricing kernel m with the return r. Jensen’s
inequality applied to the log of (7) implies

Et(log rt,t+1) ≤ −Et(logmt,t+1).

See Bansal and Lehmann (1997, Section 2.3) and Cochrane (1992, Section 3.2). Given a
pricing kernel m, the price of a one-period riskfree bond is q1

t = Et(mt,t+1) and the riskfree
rate is r1

t,t+1 = 1/q1
t = 1/Et(mt,t+1). The excess return is therefore bounded above by the

entropy of m computed from its conditional distribution:

Et(log rt,t+1 − log r1
t,t+1) ≤ logEt(mt,t+1)− Et(logmt,t+1) = Lt(mt,t+1).

The inequality characterizes the maximum excess return that can be generated by this
pricing kernel. The high-return asset — the one that attains the bound — has return
log rt,t+1 = − logmt,t+1. Taking expectations of both sides gives us

E(log rt,t+1 − log r1
t,t+1) ≤ E[Lt(mt,t+1)]. (8)

We refer to the right side as entropy and (8) as the entropy bound . See Alvarez and
Jermann (2005, Proposition 2), Backus, Chernov, and Martin (2011, Section I.C), and
Backus, Chernov, and Zin (2014, Sections I.C and I.D).

The entropy bound gives us the risk premium on an asset whose return has a perfect
loglinear relation to the pricing kernel. More generally, risk premiums are governed by
the dependence of the return and the pricing kernel, which we measure with coentropy.
The pricing relation (7) implies logEt(mt,t+1rt,t+1) = 0. If we substitute the definition of
coentropy and rearrange terms, we have for the (log) risk premium

logEt(rt,t+1)− log r1
t,t+1 = −Ct(mt,t+1, rt,t+1).

Hansen (2012) observes that the log risk premiums can be represented as the difference
between the sum of individual entropies of m and r and the entropy of their product – the
first time risk premiums are linked to an idea of an entropy-based measure of co-dependence.
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Average log excess returns are much easier to measure, so (7) can also be manipulated to
yield

Et(log rt,t+1 − log r1
t,t+1) = Lt(mt,t+1)− Lt(mt,t+1rt,t+1)

= −Lt(rt,t+1)− Ct(mt,t+1, rt,t+1). (9)

In general, conditional entropy Lt and coentropy Ct depend on the current state. Uncondi-
tionally we have

E(log rt,t+1 − log r1
t,t+1) = E[Lt(mt,t+1)]− E[Lt(mt,t+1rt,t+1)]

= −E[Lt(rt,t+1)]− E[Ct(mt,t+1, rt,t+1)]. (10)

We refer to the two terms on the right as the entropy of the return and the coentropy of the
return and the pricing kernel. The “extra” term E[Lt(rt,t+1)] reflects a generalization of the
usual convexity adjustment that appears in the log-normal case. As a result, idiosyncratic
dynamics may be helpful in matching observed log excess returns. One has to be mindful
of this when interpreting a model’s ability to explain the evidence.

Equation (10) gives us a framework for thinking about the excess returns summarized in
Table 1. The table gives us estimates of the left side of equation (10); the right side gives
us an interpretation of it. Backus, Chernov, and Zin (2014) estimate that the upper bound
on expected excess returns is at least 3 percent quarterly. Whether expected excess returns
on other assets are close to the bound or well below it depends on their entropy and their
coentropy. The maximum risk premium comes, as we’ve seen, when rt,t+1 = 1/mt,t+1. Then
coentropy is

E[Ct(mt,t+1, rt,t+1)] = −E[Lt(mt,t+1)]− E[Lt(rt,t+1 = 1/mt,t+1)] < 0.

Equation (10) then reproduces the entropy bound (8). What about the minimum? We
can make the risk premium as small as we like by adding random noise to the return,
independent of the pricing kernel. That increases the entropy of the return and drives down
the risk premium. We can also drive down the coentropy term. If the return is independent
of the pricing kernel, coentropy is zero and the excess return is −E[Lt(rt,t+1)], as we just
saw. And if we hold the entropy of the return constant, we can make coentropy positive
and reduce the excess return further.

The role of coentropy mirrors that of the covariance in traditional approaches to asset
pricing in which risk premiums are defined in terms of levels of returns: Et(rt,t+1 − r1

t,t+1).
A risk premium defined this way is connected, via (7), to the covariance of the pricing kernel
and the return:

Et(rt,t+1 − r1
t,t+1) = −Covt(mt,t+1, rt,t+1 − r1

t,t+1)/Et(mt,t+1)

= −Covt(mt,t+1, rt,t+1)/Et(mt,t+1). (11)

The high return asset is then defined as the one with the highest Sharpe ratio. Given
a pricing kernel, the maximum Sharpe ratio is given by the Hansen-Jagannathan (1991)
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bound:

Et(rt,t+1 − r1
t,t+1)/Vart(rt,t+1 − r1

t,t+1)1/2 ≤ Vart(mt,t+1)1/2/Et(mt,t+1). (12)

The expression on the right can be expressed compactly with the cumulant generating
function kt(s) = logEt(e

s logmt,t+1):

Vart(mt,t+1)1/2/Et(mt,t+1) =
(
ekt(2)−2kt(1) − 1

)1/2
. (13)

The return that attains the bound is linear, rather than loglinear, in the pricing kernel:

rt,t+1 =
1 + Vart(mt,t+1)1/2

Et(mt,t+1)
− mt,t+1 − Et(mt,t+1)

Vart(mt,t+1)1/2
.

We can do the same with unconditional moments, but there’s no simple relation between
the conditional and unconditional versions of the bound.

Example 5 (Markov pricing kernels). Let

logmt,t+1 = log β + a>xt + b>xt+1 (14)

xt+1 = Axt +Bwt+1, (15)

where {wt} is a sequence of independent random vectors with mean zero, variance one, and
(multivariate) cgf k(s). The pricing kernel for this model is often written

logmt,t+1 = log β + (a> + b>A)xt + b>Bwt+1 = log β + θ>mxt + λ>wt+1. (16)

Entropy is E[Lt(mt,t+1)] = Lt(mt,t+1) = k(B>b) = k(λ). If the innovations are multivariate
normal, then k(s) = s>s/2 and entropy is E[Lt(mt,t+1)] = Lt(mt,t+1) = b>BB>b/2 =
λ>λ/2. The Vasicek model is special case when x and w are one-dimensional.

Example 6 (state-dependent price of risk). The examples so far have had constant condi-
tional entropy. Duffee (2002) developed an alternative that’s been widely used in studies of
bond prices. The univariate version is

logmt,t+1 = log β − (λ0 + λ1xt)
2/2 + θmxt + (λ0 + λ1xt)wt+1 (17)

xt+1 = ϕxt + wt, (18)

with {wt} iid standard normal. The critical ingredient is the coefficient λ0 + λ1xt of wt, a
linear function of the state. Conditional entropy,

Lt(mt,t+1) = (λ0 + λ1xt)
2/2,

is the maximum risk premium in state xt. Entropy is its mean: E[Lt(mt,t+1)] = [λ2
0 +

λ2
1/(1− ϕ)2]/2.
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4 Term structures of prices and returns

We’re now ready to attack term structures of asset prices and returns. We do this by
highlighting the connection to entropy over different time horizons. We argue it gives us a
useful framework for interpreting the evidence we reviewed in Section 2.

4.1 The term structure of zero-coupon bonds

In an arbitrage-free setting, bond prices inherit their properties from the pricing kernel.
Pricing has a simple recursive structure. Applying the pricing relation (7) to bond returns
gives us

pnt = Et
(
mt,t+1p

n−1
t+1

)
= Et

(
mt,t+n

)
, (19)

where mt,t+n = mt,t+1mt+1,t+2 · · ·mt+n−1,t+n.

The right side of (19) suggests a link between the n-period bond price and the conditional
entropy of the n-period pricing kernel:

Lt(mt,t+n) = logEt(mt,t+n)− Et(logmt,t+n).

Taking expectations as before, we define entropy for horizon n by

Lm(n) ≡ E[Lt(mt,t+n)] = E[logEt(mt,t+n)]− E(logmt,t+n).

The first term on the right is the mean log bond price, which is easily expressed in terms
of mean yields:

E[logEt(mt,t+n)] = −nE(yn).

By convention, mt,t = 1, so Lm(0) = 0. If n = 1, we’re back where we were in Section 3.1.

The dynamics of the pricing kernel are reflected in what Backus, Chernov, and Zin (2014)
call horizon dependence, the relation between entropy and the time horizon represented by
the function Lm(n). In the term structure context, this function maps directly to mean
yields. If one-period pricing kernels {mt,t+1} are iid, entropy is proportional to n. Bond
yields are then the same at all maturities and constant over time. Differences from this
proportional benchmark reflect dynamics in the pricing kernel. Horizon dependence is
defined as:

Hm(n) = n−1Lm(n)− Lm(1).

The connection with bond yields then gives us Hm(n) = −E(yn − y1).

In the iid case, Hm(n) = 0 and the yield curve is flat. If the mean yield curve slopes
upwards, then Hm(n) is negative and slopes downward. One implication of this result is
that iid components of m will affect only the level of the yield curve, but not its shape.

11



Horizon dependence has a coentropy concept hidden inside it. This is clearest in the two-
period case:

Lm(2) = 2Lm(1)− E[Ct(mt,t+1,mt+1,t+2)].

If the coentropy of successive one-period pricing kernels is zero, then horizon dependence
is zero as well. Borovicka and Hansen (2014, section 3) characterize this intertemporal
dependence via an entropy counterpart to an impulse response.

Two of our earlier examples illustrates how the dynamics of the pricing kernel reappear in
horizon dependence:

Example 5 (Markov pricing kernel, continued). Bond prices follow from the pricing kernel
(16), the transition equation (15), and the pricing relation (7). They imply bond prices of
the form log qn(x) = an + b>n x with coefficients (an, bn) satisfying

an+1 = an + log β + k(λ+B>bn)

bn+1 = θ>m + b>nA = θ>m(I +A+ · · ·+An)

starting with a0 = b0 = 0. Entropy is therefore

Lm(n) = E(log qn − n logm) = an − n log β =
n−1∑
j=0

k(λ+B>bj).

The iid case is a useful benchmark: θm = 0, the mean yield curve is flat, Lm(n) = nk(λ),
and Hm(n) = 0. Any departure from proportionality in entropy Lm(n) is evidence against
this case. The n-period Hansen-Jagannathan upper bound (13) is then

Vart(mt,t+n)1/2/Et(mt,t+n) =
(
en[k(2a0)−2k(a0)] − 1

)1/2
.

The term in brackets is a positive constant. That gives us, even in this case, a nonlinear
relation between the maximum Sharpe ratio and maturity n.

Thus, entropy conveys term structure effects in a more intuitive fashion. Figure 4 compares
Sharpe ratios with entropies for the iid and non-iid cases at different horizons. The dashed
lines show departures from iid for the Vasicek model. Departures from iid are evident in
the case of entropy.

Example 6 (state-dependent price of risk, continued). Recall the model consisting of pricing
kernel (17) and transition equation (18). (The Vasicek model is a special case with λ1 = 0.)
Bond prices satisfy log pn(x) = an + bnx with

an+1 = an + log β + (bn)2/2 + λ0bn

bn+1 = θm(1 + bn(ϕ+ λ1)) = θm(1 + ϕ∗ + ϕ∗2 + · · ·+ ϕ∗(n−1)),

12



where a0 = b0 = 0 and ϕ∗ = ϕ+ λ1. In particular, one-period yield is

y1
t = − log p1(xt) = − log β − θmxt. (20)

Horizon dependence is

Hm(n) = n−1an − a1 = n−1

λ0

n−1∑
j=0

bj + 1/2
n−1∑
j=0

b2j

 . (21)

4.2 Term structures of other assets

Bonds are simple assets in the sense that their cash flows are known. All the action in
valuation comes from the pricing kernel. When we introduce uncertain cash flows, pricing
reflects the interaction of the pricing kernel and the cash flows. Nevertheless, we can think
about the term structures of these other assets in a similar way.

We value these assets in the usual way. The pricing relation (7) gives us

p̂nt = Et
(
mt,t+1gt,t+1p̂

n−1
t+1

)
= Et

(
m̂t,t+1p̂

n−1
t+1

)
= Et

(
m̂t,t+n

)
, (22)

with m̂t,t+1 = mt,t+1gt,t+1, m̂t,t+n = m̂t,t+1m̂t+1,t+2 · · · m̂t+n−1,t+n, and p̂0
t = 1. This has

the same form as the bond pricing equation (22), with m̂ replacing m.

Our focus is on the differences between the two term structures, specifically the differences
documented in Section 2 in mean excess returns and in slopes and shapes of mean yield
curves. By analogy with equation (10), we can show, using equation (1), that

nE log rxt,t+n = E(log rt,t+n − log rnt,t+n)

= Lm(n)− Lm̂(n) = −Lg(n)− Cmg(n), (23)

where Cmg(n) is a notation for E[Ct(mt,t+n, gt,t+n)]. This expression shows how the entropy
of m̂ over a time horizon of n is connected to the dependence of the dollar pricing kernel
m and the growth rate of cash flows g. The difference between Lm̂(n) and Lm(n), and
therefore average excess returns, thus stems from two things: the entropy of the growth
rate and the coentropy of the growth rate and the pricing kernel. This is a natural multi-
period extension of our earlier claim: that mean excess returns reflect the entropy of the
return and the coentropy of the return and the pricing kernel.

Example 5 (Markov pricing kernel, continued). We add a process for cash flow growth,

log gt,t+1 = log γ + θ>g xt + η>wt+1.

The transformed pricing kernel is then

log m̂t,t+1 = logmt,t+1 + log gt,t+1

= (log β + log γ) + (θm + θg)
>xt + (λ+ η)>wt+1

= log β̂ + θ̂>mxt + λ̂>wt+1.

13



The expressions for bond prices and entropy are the same as before, but with hats.

Combining equation (2) with the definition of horizon dependence, we see that the term
difference in log excess return on an asset is equal to:

E(log rxt,t+n − log rxt,t+1) = Hm(n)−Hm̂(n).

Combining this with equation (23), we can characterize how coentropy changes with horizon:

n−1Cmg(n)− Cmg(1) = Hm̂(n)−Hm(n)−Hg(n) (24)

This expression can also be obtained from the definitions of coentropy and horizon depen-
dence. In words, the difference between the n−period and one-period coentropies is equal
to the differences between the horizon dependence of the transformed pricing kernel and
those of its two constituents: the pricing kernel and cash flows.

Example 5 (Markov pricing kernel, continued). With cash flow growth of

log gt,t+1 = log γ + θ>g xt + η>wt+1

we can compute its horizon dependence similarly to bond prices: logEt(gt,t+n)(x) = agn +
b>gnx with coefficients (agn, bgn) satisfying

agn+1 = agn + log γ + k(η +B>bgn)

bgn+1 = θ>g + b>gnA = θ>g (I +A+ · · ·+An)

starting with ag0 = bg0 = 0. Entropy is therefore

Lg(n) = E(logEt(gt,t+n)− n log gt,t+1) = agn − n log γ =
n−1∑
j=0

k(η +B>bgj),

horizon dependence of cash flows is

Hg(n) = n−1
n−1∑
j=0

[k(η +B>bgj)− k(η)],

and coentropy changes with horizon according to

Cmg(n)− nCmg(1) =
n−1∑
j=0

[k(λ+ η +B>(bj + bgj))− k(λ+B>bj)− k(η +B>bgj)]

− n[k(λ+ η)− k(λ)− k(η)].
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4.3 Long horizons

We use the term long horizon to refer to the behavior of asset prices and entropy as the
time horizon approaches infinity. Hansen and Scheinkman (2008) echo the Perron-Frobenius
theorem and consider the problem of finding a positive dominant eigenvalue ν and associated
positive eigenfunction vt satisfying

Et
(
mt,t+1vt+1

)
= νvt. (25)

If such a pair exists, we can construct the Alvarez-Jermann (2005) decomposition mt,t+1 =
m1
t,t+1m

2
t,t+1 with

m1
t,t+1 = mt,t+1vt+1/(νvt)

m2
t,t+1 = νvt/vt+1.

By construction Et(m
1
t,t+1) = 1, hence Hansen and Scheinkman (2009) refer to it as a

martingale component of the pricing kernel. Qin and Linetsky (2015) demonstrate how this
decomposition works in non Markovian environments.

Given such an eigenvalue-eigenfunction pair, the long yield converges to − log ν. The long
bond one-period return is not constant, but its expected value also converges: r∞t,t+1 =

limn→∞ r
n
t,t+1 = 1/m2

t,t+1 = vt+1/(νvt), so that E(log r∞) = − log ν. See Alvarez and
Jermann (2005, Section 3).

The special case m1
t,t+1 = 1 has gotten a lot of recent attention; see, for example, the review

in Borovicka, Hansen, and Scheinkman (2014). The pricing kernel becomes mt,t+1 = m2
t,t+1.

Since the long bond return is its inverse, the long bond is the high return asset. Realistic
or not, it’s an interesting special case. In logs, the pricing kernel becomes

logmt,t+1 = log ν + log vt − log vt+1.

The log pricing kernel is the first difference of a stationary object, namely v, plus a constant.
In a sense, it’s been over differenced.

Example 5 (Markov pricing kernel, continued). We guess an eigenvector of the form log vt =
c>xt. If we substitute into (25) we find:

c> = (a> + b>A)(I −A)−1, log ν = log β + k
(
B>(b+ c)

)
.

If b = −a, then c = a, log ν = log β, and m1
t,t+1 = 1.

Moving on to other assets, we introduce two equation analogous to (25). One is for cashflow
growth:

Et(gt,t+1ut+1) = ξut
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leading to a decompistion gt,t+1 = ξg1
t,t+1ut/ut+1. The other is for transformed pricing

kernel:

Et
(
m̂t,t+1v̂t+1

)
= ν̂v̂t. (26)

leading to a decomposition m̂t,t+1 = ν̂m̂1
t,t+1v̂t/v̂t+1. These decompositions allow us to

characterize behavior of coentropy at long horizons. Using the definition of coentropy and
exploiting stationarity of vt, v̂t, and et we obtain

n−1Cmg(n)→ log ν̂ − log ν − log ξ, as n→∞. (27)

The decompositions are related to each other via:

ν̂m̂1
t,t+1v̂t/v̂t+1 = m̂t,t+1 ≡ mt,t+1gt,t+1 = νξm1

t,t+1g
1
t,t+1(vtut)/(vt+1ut+1). (28)

There’s not, in general, a close relation between ν̂, ν, and ξ, but there is in some special
cases. One special case is a stationary cash flow d, which leads to the martingale component
g1
t,t+1 = 1 as in the example above. In this case, the simplified equation (28) implies that

the value νξ and function vtut solve equation (26). Therefore, ν̂ = νξ, the martingale
components coincide, m̂1

t,t+1 = m1
t,t+1, long-horizon coentropy is equal to zero, and so are

long-horizon excess returns:

E log rxt,t+n → 0, as n→∞. (29)

The reverse is also true: if m̂1
t,t+1 = m1

t,t+1, it must be the case that g1
t,t+1 = 1. Indeed, in

this case equation (28) implies that the level of g1
t,t+1(vtut)/(vt+1ut+1) must be stationary

because v̂t is. Because vt and ut are stationary as well, the martingale g1
t,t+1 must be a

constant (we can normalize it to one w.l.o.g.).

Example 5 (Markov pricing kernel, continued). We revert to the original Markov pricing
kernel, equation (14), and posit cash flow growth of

log gt,t+1 = log γ + a>g xt + b>g xt+1. (30)

The transformed pricing kernel is therefore

log m̂t,t+1 = (log β + log γ) + (a+ ag)
>xt + (b+ bg)

>xt+1

= log β̂ + â>xt + b̂>xt+1,

which has the same form as (14). The Perron-Frobenius theory implies log ut = c>g xt with

c>g = (a>g + b>g A)(I −A)−1, log ξ = log γ + k
(
B>(bg + cg)

)
.

and log v̂t = ĉ>xt with

ĉ> = (â> + b̂>A)(I −A)−1, log ν̂ = log β̂ + k
(
B>(̂b+ ĉ)

)
.
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If bg = −ag, then dt is stationary, log ξ = log γ, and log ν̂ = log β + log γ + k
(
B>(b+ c)

)
=

log ν + log ξ.

Another special case is one in which the “price-dividend” ratio p̂ is constant, see the October
2005 version of Hansen, Heaton, and Li (2008), section 3.2. Consider a factorization of the
dividend into a growth component d∗t and a stationary component st, so that dt = d∗t ·st, and
g∗t,t+1 ≡ d∗t+1/d

∗
t (if g∗t,t+1 is a constant, then g1

t,t+1 = 1.) Because st is stationary, the two
transformed pricing kernels m̂t,t+1 and m∗t,t+1 ≡ mt,t+1g

∗
t,t+1 will have the same eigenvalue

ν̂. The eigenfunctions will be v̂t and v̂t · st, respectively. Thus, if a dividend is such that
its v̂t = 1, or, equivalently, st equals the eigenfunction associated with m∗t,t+1, then p̂ is
constant. Long-horizon entropy is still going to be as in (27) because long-run properties
are affected by eigenvalues, not eigenfunctions.

5 Interpreting term structure evidence

We breathe some life into our theoretical framework and examples by linking them to data.
There is, of course, a long history of doing just that for bonds and a growing body of work
on other assets. We illustrate some basic features with examples and show how simple term
structure models might be extended to account for term structures of other assets.

5.1 US dollar bonds

Consider the Vasicek model with time-varying risk premium: example 6 with normal in-
novations. We use properties of the US nominal Treasury data described in Tables 1 and
2. At a quarterly frequency the short rate y1

t in equation (20) has a standard deviation of
0.0084 and an autocorrelation of 0.9487. The mean of the 40-quarter yield spread y40 − y1

is 0.0045, or, equivalently, horizon dependence in equation (21) is −0.0045. We reproduce
each of these features by choosing the parameter values θm = 0.0026, ϕ = 0.9487, and
λ0 = −0.1225. The parameter controlling time variation in risk premium is set to match
the curvature of the yield curve. Typically, this results in ϕ∗ being very close to 1. We set
it to 0.9999 implying the value of λ1 = 0.0512. All of these values are summarized in Panel
A of Table 3. The level of the term structure can then be set however we want by adjusting
log β.

It’s important to be clear about the roles of the various parameters. Here θm and ϕ control
the variance and autocorrelation of the short rate and λ0 controls the slope of the mean
yield curve. The different signs of θm and λ0 produce the upward slope in the mean yield
curve. The difference in absolute values of λ0 and θm — the former is roughly two orders of
magnitude greater — implies a large entropy and small horizon dependence. This allows us
to generate large one-period excess returns and small departures from them as the horizon
changes.
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5.2 Other term structures

The Vasicek model gives us a rough approximation to bond prices and returns, but it
does less well with other assets. Excess returns on equity, for example, have only a small
correlation (roughly 0.1) with bond returns, which we can’t replicate in a one-innovation
model. Further, departures from normality documented in Table 1 cannot be captured with
a normal innovation.

Consider then a simplified and modified version of Koijen, Lustig, and Van Nieuwerburgh
(2015, Appendix), which we refer to as the KLV model:

logmt,t+1 = log β + θmx1t − (λ0 + λ1x1t)
2/2 + (λ0 + λ1x1t)wt+1 + λ2z

m
t+1,

log gt,t+1 = log γ + θx1t + θgx2t + η0wt+1 + η2z
g
t+1, (31)

x1t+1 = ϕ1x1t + wt+1,

x2t+1 = ϕ2x2t + wt+1.

with wt ∼ N (0, 1) and zmt and zgt are compound Poisson process with the same arrival rate
of ω and jump size distributions of N (µm, δ

2
m) and N (µg, δ

2
g), respectively.

The added disturbance zm is designed to capture pricing of the disaster risk. It is iid, so
it has no impact on US nominal bond prices, but potentially plays a role in the pricing of
claims to cash flow growth g. By varying the weights (η0, η2) we can alter the dependence
of stock and bond returns. Setting ϕ1 = ϕ2 = ϕ recovers the Vasicek model with time-
varying risk premiums. Figure 1 suggests differences between ϕ1 and ϕ2, and between ϕ2’s
of different assets.

Afficianados of careful bond curve modeling would prefer to see separate shocks driving x1t

and x2t but we intentionally limit ourselves to one normal and one Poisson shocks in order
to highlight the most critical features a model needs to capture the key facts.

As far as the US pricing kernel is concerned, this is the same model as in example 6 with
an added iid jump component. Thus, this addition does not affect horizon dependence in
equation (21). What’s affected is entropy of the pricing kernel:

Lm(1) = λ2
0/2 + λ2

1(1− ϕ2
1)−1/2− ωλ2µm + ω

(
eλ2µm+λ22δ

2
m/2 − 1

)
.

Given that, it is easy to compute n−period entropy via Lm(n) = n(Lm(1) +Hm(n)).

The transformed pricing kernel has a similar structure:

log m̂t,t+1 = logmt,t+1 + log gt,t+1

= (log β + log γ) + (θm + θ)x1t + θgx2t − (λ0 + λ1x1t)
2/2

+ (λ0 + η0 + λ1x1t)wt+1 + λ2z
m
t+1 + η2z

g
t+1. (32)
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Asset prices are easily computed by the same approach we used with Vasicek. In particular,
we guess the (log) bond price to be a linear function of xt :

log p̂nt = ân + b̂nx1t + ĉnx2t.

Then, following the same steps as before, we get

ĉn = θg
1− ϕn2
1− ϕ2

b̂n =

(
θ∗ +

θgλ1

1− ϕ2

)
1− ϕ∗n1
1− ϕ∗1

− θgλ1

1− ϕ2

1− (ϕ2/ϕ
∗
1)n

1− ϕ2/ϕ∗1
ϕ∗n−1

1

ân = log β + log γ + η0λ0 + η2
0/2 + kz(λ2, η2) + ân−1

+ (̂bn−1 + ĉn−1)2/2 + (̂bn−1 + ĉn−1)(λ0 + η0)

with θ∗ = θ + θm + η0λ1, ϕ
∗
1 = ϕ1 + λ1, and kz(s1, s2) = ω(es1µm+s2µg+(s1δm+s2δg)2/2 − 1).

Horizon dependence is

Hm̂(n) = n−1ân − â1 = n−1

(λ0 + η0)
n−1∑
j=0

(̂bj + ĉj) + 1/2
n−1∑
j=0

(̂bj + ĉj)
2

 . (33)

Horizon dependence of cash flows is computed similarly (see example 5):

Hg(n) = n−1

η0

n−1∑
j=0

(bgj + cgj) + 1/2

n−1∑
j=0

(bgj + cgj)
2

 ,
where

bgn = θ
1− ϕn1
1− ϕ1

, cgn = θg
1− ϕn2
1− ϕ2

.

One-period coentropy is

Cmg(1) = λ0η0 + kz(λ2, η2)− kz(λ2, 0)− kz(0, η2).

Equation (24) implies the n−period one.

This model has a triangular structure, in which (θm, ϕ1, λ0, λ1) control bond prices, and
(θg, η0, η2, λ2) control the return on the cash flow g and its relation to bond returns. This
allows us to keep the parameter values we used earlier for bonds and choose the others to
mimic the behavior of the cash flow of interest. We consider several in turn.
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5.3 Foreign currency bonds

There is an extensive set of markets for bonds denominated in foreign currencies, and a
similarly extensive set of currency markets linking them. As we saw in Section 4.2, the
term structure in a foreign currency depends on the interaction of the dollar pricing kernel
and the growth rate of the cash flow, which here is the depreciation rate of the dollar relative
to a specific foreign currency.

For symmetry between the US and other economies, and for simplicity of calibration we
assume that θ = −θm − λ1η0 (so that θ∗ = 0). As a result, one-period yield is

ŷ1
t = − log β − log γ − λ0η0 − η2

0/2− kz(λ2, η2)− θgx2t.

Thus, asset-specific parameters ϕ2, and θg are calibrated by analogy with US nominal bonds
using serial correlation and variance of the one-period yields. Then, one can use the term
spread of the foreign curve to back out λ0 + η0 from equation (33). Because we already
know λ0 from the US curve, we can determine η0. Panel B of Table 3 lists the calibrated
values.

We observe quite dramatic difference in ϕ2’s across the different countries. The volatility
θg and risk premium λ0 + η0 retain the same qualitative features as their US counterparts:
they have different signs, and the former is much smaller than the latter. Quantitatively,
we observe cross-sectional variation in both parameters.

The literature views foreign exchange rates as being close to random walk. In our model
this would mean θg = 0, and θ = 0. Such a value would imply ĉn = 0 and b̂n = (θm +
η0λ1)(1 − ϕ∗n1 )/(1 − ϕ∗1). Thus, the foreign term spread will be (approximately) a scaled
version of the US term spread, which contradicts the evidence.

We were able to characterize the properties of the US and foreign yield curves without
discussing the Poisson parameters. This is because disasters have iid distribution in the
model.

To calibrate the jump parameters, we normalize jump loadings λ2 and η2 to 1 because
they are not identified separately from jump volatilities δm and δg, respectively. We borrow
parameters controlling jumps in the pricing kernel from Backus, Chernov, and Zin (2014),
the CI2 model: ω = 0.01/4, µm = −10 · (−0.15) = 1.5, δ2

m = (−10 · 0.15)2 = 1.52. We can
use information about cash flows, or, equivalently, about one-period excess returns to infer
asset-specific η2, and µg. One-period excess (log) returns are:

log rxt,t+1 = log gt,t+1 + ŷ1
t − y1

t

= −λ0η0 − η2
0/2− kz(λ2, η2) + kz(λ2, 0)− λ1η0x1t + η0wt+1 + η2z

g
t+1.

Thus,

E log rxt,t+1 = −λ0η0 − η2
0/2− kz(λ2, η2) + kz(λ2, 0) + ωη2µg
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and

var(log rxt,t+1) = [λ2
1(1− ϕ2

1)−1 + 1]η2
0 + ωη2

2(µ2
g + δ2

g).

The variance of the normal component, that is, the first element of the sum, must evidently
be no greater than the observed variance. Variants of our model with ϕ∗1 = ϕ1, or ϕ1 = ϕ2

does not have this property if parameters are calibrated to the yield curves. In other words,
the persistence structure implied by these restrictions is so rigid that the values of η0 inferred
from the yield curves are much larger than those implied by the time-series of excess returns
even assuming no disaster component. The combination of German yields and the Euro is
an exception in that a model with ϕ∗1 = ϕ1 does not feature this tension.

Table 3B reports the results. The non-normality manifests itself in the differences between
coentropy and covariance that we discussed in example 4. The differences are substantive
highlighting an ability of non-normal models to generate large expected returns and large
cross-sectional difference between them.

As a reality check, we verify if the calibrated process for exchange rates, log g resembles the
data. We focus on two basic summary statistics: variance and serial correlation (mean can
be mechanically matched by adjusting log γ). We use the model to compute the popula-
tion values of these two statistics at calibrated parameters. Further, we simulate 100,000
artificial histories of the respective exchange rates which allows us to compute finite-sample
distribution of the same two statistics. Table 4 compares these theoretical results with
empirical values. We see that theoretical values are sufficiently close to the data.

Figure 5 displays the term structure of coentropies, a difference between the n−period and
one-period ones. Given that a negative of coentropy reflects risk premium, this figure tells us
about cross-sectional differences of how risk premiums change with horizon. For Australia
and the UK, risk premiums continue to increase. The increase has a similar magnitude. In
the case of Germany, they increase out to 11 quarters but not much compared to the other
two countries, and then they start to decline. These differences reflect the differences in the
persistence coefficient ϕ2.

Lustig, Stathopolous, and Verdelhan (2014) study log excess returns on a strategy that
borrows via an n-period US bond, converts into foreign currency, invests in an n-period
foreign bond, and then unwinds in one period. In our notation, this would be:

E log rxnt,t+1 = E[log gt,t+1 + (log p̂n−1
t+1 − log p̂nt )− (log pn−1

t+1 − log pnt )]

= E log rxt,t+1 − (nHm̂(n)− (n− 1)Hm̂(n− 1))

+ (nHm(n)− (n− 1)Hm(n− 1)).

So, their object of interest contains elements of both one-period and n−period holding
returns.
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They find that at long maturities n the average excess return is negative, but not signif-
icantly different from zero. The long horizon results from section 4.3 and the first line of
the equation imply that

E log rx∞t,t+1 = log ξ − log ν̂ + log ν + E log g1
t,t+1.

If exchange rate is stationary, then g1
t,t+1 = 1, and E log rx∞t,t+1 = 0. As we noted in section

4.3, this is equivalent to m̂1
t,t+1 = m1

t,t+1 – a condition highlighted in Proposition 3 of
Lustig, Stathopolous, and Verdelhan (2014). Thus, the modern language of the pricing
kernel decomposition translates into the old question of stationarity of nominal exchange
rates.

5.4 Inflation-linked bonds

Analysis of inflation-linked bonds is very similar to the foreign ones. Exchange rates and
foreign bonds tell us about transitions between domestic and foreign economies. The price
level (CPI) and TIPS tell us about transition between the real and nominal economy. For
this reason, we use exactly the same model and the same calibration strategy in this case.
We maintain the same US nominal pricing kernel, so calibration of the cash flow growth,
or inflation in this case, is the only novel part relative to the previous section. The results
are reported in the first line of Table 3B. Figure 5 shows term structure of coentropy – it is
similar to that of Germany.

The key difference from the foreign-bond case is the highlighted tension in calibrating η0

that we were not able to resolve. The reason is extremely low volatility of returns associated
with trading TIPS at quarterly frequency. Table 1 shows that it is two orders of magnitude
smaller than those of foreign bonds. Table 2 shows that the difference in the term spreads
of TIPS and US nominal bonds is right in the middle of those for foreign bonds. Hence,
the time-series and term structure information about η0 are in conflict under the null of our
model. The figures in Table 4 reflect the model’s difficulty in capturing variance and serial
correlation of inflation – potentially a manifestation of the same issue.

Perhaps, one could suggest a more elaborate model that would be able to reconcile these
facts. We were hesitant to do so because these numbers could be an outcome of poor
quality of data, especially at the short end of the curve. As is well known, the TIPS data
are considered reliable after 2003. The data prior to 2003 are extrapolated by Chernov and
Mueller (2012) using their preferred model. TIPS experienced distorted prices during the
credit crisis, so the yields of maturities of up to eight quarters had to be discarded during
the last three quarters of 2008. Thus, we leave more refined analysis of inflation-linked
bonds for future research.

5.5 Equity

Dividend strips have attracted recent interest in the literature, as the term structure of
associated Sharpe ratios seems to offer prima facie evidence against major asset-pricing
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models. We study excess log returns instead of Sharpe ratios, but it is clear that these are
related objects by comparing equations (8), (9) and (11), (12).

We try to make the best from the available data and mix two-quarter strip prices from
Binsbergen, Brandt, and Koijen (2012) with summary statistics for ŷnt − ynt , n ≥ 4 quarters
from Binsbergen, Hueskes, Koijen, and Vrugt (2013) and pepper them with admittedly
heroic assumptions. See the description in Table 2 and Appendix B. All of this evidence is
worth revisiting as more data become available in the future.

Our calibrated model shares qualitative traits of those matched to bond prices in the pre-
ceding sections. Quantitatively, we observe a dramatic drop in persistence ϕ2. We’ve noted
cross-sectional variation in ϕ2 earlier, but the equity one is the lowest. Most representative-
agent models that were confronted with the Sharpe ratio evidence feature exogenously
specified cash flows with persistence connected to that of expected consumption growth
and, therefore, the real pricing kernel. Our results suggest exploring different persistence
of cash flows and the pricing kernel before the final opinion on the equilibrium component
of these models can be expressed.

Further, in the context of recursive preferences, high persistence of expected consumption
growth is needed to generate high one-period risk premiums. This high persistence leads
to unrealistically steep yield curves. Our model illustrates that an iid disaster component
is helpful in separating the modelling of one-period high returns and relatively low term
spreads in yields.

6 The representative agent with recursive preferences

In this section we offer an example of a representative-agent model that captures the basic
features that we’ve highlighted in the previous sections. We hope this illustration would be
useful for further development and improvement of existing models.

We use a model that is based on recursive preferences developed by Kreps and Porteus
(1978), Epstein and Zin (1989), and Weill (1989), among many others. We define utility
with the time aggregator,

Ut = [(1− β)cρt + βµt(Ut+1)ρ]1/ρ, (34)

and certainty equivalent function,

µt(Ut+1) = [EtU
α
t+1]1/α,

where ct is the aggregate consumption. Additive power utility is a special case with α = ρ.
In standard terminology, ρ < 1 captures time preference (with intertemporal elasticity of
substitution 1/(1 − ρ)) and α < 1 captures risk aversion (with coefficient of relative risk
aversion 1− α).
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The time aggregator and certainty equivalent functions are both homogeneous of degree
one, which allows us to scale everything by current consumption. If we define scaled utility
ut = Ut/ct, equation (34) becomes

ut = [(1− β) + βµt(g
c
t+1ut+1)ρ]1/ρ, (35)

where gct,t+1 = ct+1/ct is consumption growth. This relation serves, essentially, as a Bellman
equation.

6.1 Real pricing kernel

With this utility function, the real pricing kernel is

m̂t,t+1 = β(gct,t+1)ρ−1[gct,t+1ut+1/µt(g
c
t,t+1ut+1)]α−ρ.

The primary input to the pricing kernels of these models is a consumption growth process.
We use:

log gct,t+1 = gc + θcx2t + σwt+1 + zct+1, (36)

where jumps arrive at the rate ω and jump sizes are distributed N (µc, δ
2
c ). The factor x2t

is as above.

We derive the pricing implications from a loglinear approximation of (35):

log ut ≈ b0 + b1 logµt(g
c
t,t+1ut+1).

around the point log µt = E(logµt). This is exact when ρ = 0, in which case b0 = 0 and
b1 = β.

We guess a value function of the form

log ut+1 = u+ uxx2t+1 = u+ uxϕ2x2t + uxwt+1.

Then

log(gct,t+1ut+1) = gc + u+ (θc + uxϕ2)x2t + (σ + ux)wt+1 + zct+1.

Therefore,

logµt(g
c
t,t+1ut+1) = gc + u+ α(σ + ux)2/2 + α−1ω(eαµc+α

2δ2c/2 − 1) + (θc + uxϕ2)x2t.

Lining up terms, we get ux = b1θc(1− b1ϕ2)−1. As a result, the real pricing kernel is:

log m̂t+1 = m̂+ (ρ− 1)θcx2t + [(α− 1)σ + (α− ρ)ux]wt+1 + (α− 1)zct+1.
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6.2 Nominal pricing kernel

In order to obtain the nominal pricing kernel, we can assume the process for inflation as
is done in Bansal and Shaliastovich (2013), Piazzesi and Schneider (2006), and Wachter
(2006). For example,

log gπt,t+1 = gπ − θmx1t + θπg x2t + ηπ0wt+1 + ηπ2 z
g
t+1. (37)

Then the nominal pricing kernel is:

logmt+1 = log m̂t+1 − log gπt,t+1

= m+ θmx1t + [(ρ− 1)θc − θπg ]x2t + [(α− 1)σ + (α− ρ)ux − ηπ0 ]wt+1

+ (α− 1)zct+1 − ηπ2 z
g
t+1.

6.3 Calibration and implications

The calibrated preference parameters and parameters controlling dynamics of consumption
are listed in Panel C of Table 3. Our starting point is calibration of the inflation process
(37). Because it is specified exogenously, we take it to be identical to CPI in Table 3B.
Next, the preference parameters are selected to match the standard choice in the literature.

In calibrating consumption we start with the CI2 model presented in Backus, Chernov, and
Zin (2014). By focussing on the US economy, they showed that introduction of iid disasters
into the homoscedastic version of the Bansal and Yaron (2004) model and decrease of
persistence of expected consumption growth leads to a realistic yield curve without giving
up much of one-period entropy (largest risk premium). The difference in our and their
calibration is in persistence and in conditional volatility of expected consumption growth.
The former is lower in our case and matches our earlier calibration of ϕ2 for CPI. The
latter, |θc|, is larger in our case. Our calibrated values for the persistence and the conditional
volatility of expected consumption growth are very close to the ones estimated by Zviadadze
(2013) as a part of a comprehensive analysis of the US consumption dynamics, 0.81 and
0.0016, respectively.

We calibrate θc with three objectives in mind: (i) to have x2t affecting the nominal pricing
kernel as little as possible to be close to our affine model of section 5; (ii) to ensure upward
sloping real yield curve (negative serial covariance of the real pricing kernel); and (iii) to
match λ0 = (α − 1)σ + (α − ρ)ux − η0 (ux depends on θc). Objectives (i) and (ii) are
conflicting: |θc| would have to be larger to satisfy (i) perfectly. Condition (i) is arbitrary
– it is chosen for esthetic reasons – so it is not essential that it is satisfied perfectly. It is
essential for θc to be negative to satisfy (ii) in our homoscedastic model. Finally, σ is selected
to match the variance of consumption growth: 0.0182 = θ2

c (1−ϕ2
2)−1 +σ2 +ω(µ2

c +δ2
c ). The

cash flow processes are specified exogenously and taken directly from the model of section 5.
Table 4 shows that the calibrated consumption process serves as a sensible representation
of actual consumption data.
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The jump in the nominal pricing kernel can be re-written as:

(α− 1)zct+1 − ηπ2 z
g
t+1 = zmt+1,

where jumps arrive at the rate ω with jump sizes N (µm, δ
2
m) with µm = [(α− 1)µc − ηπ2µg]

and δ2
m = (α−1)2δ2

c +η
π2
2 δ2

g . In our calibration µm and δm match those in the affine model.
As a result, we have reverse-engineered the nominal pricing kernel that closely resembles
the homoscedastic version of the one we’ve obtained in the reduced-form model.

We can specify exactly the same nominal cash flows as in equation (31). As a result, cash
flows are calibrated exactly the same way as in the affine model of the previous section.
Appendix C offers a motivation for this specification that is based on the change from real
to nominal units.

6.4 Persistent jump component

Throughout the paper we have insisted on featuring an iid jump component and a persistent
normal component in our models. Is there a scope for a persistent jump component? The
issue is that additional persistence in the model would affect term spreads. Perhaps, it
would be possible to setup a reduced-form model in such a way that the “right” amount
of persistence is shared between the normal and jump components. The more pertinent
question is whether this is feasible in an equilibrium model, such as the one introduced in
this section, when there are additional cross-equation restrictions on parameters that are
implied by the model.

To illustrate the issues involved we augment the model of consumption growth with a
persistent jump component. We follow Wachter (2013) by introducing persistence through
time-varying jump arrival rate ωt. We follow Backus, Chernov, and Zin (2014) by specifying
it as:

ωt+1 = ω(1− ϕω) + ϕωωt + σωet+1.

Like these authors, we treat the specification as an approximation to a true process that
truncates ωt at zero.

Repeating the same steps as above, one can show that the real pricing kernel is, in this case:

log m̂t+1 = m̂+ (ρ− 1)θcx2t + [(α− 1)σ + (α− ρ)ux]wt+1 + (α− 1)zct+1

+ (α− ρ)α−1(eαµc+α
2δ2c/2 − 1)σω(b1(1− b1ϕω)−1et+1 − ωt/σω).

We have factored out σω so that the persistent component associated with jumps is stan-
dardized similarly to the normal component x2t. The jump component is multiplied by a
more complicated expression featuring an exponential which could lead to large values of
the loading on ωt.
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If x2t and ωt have similar persistence, then they will contribute equally to the shape of
the yield curve if they have similar loadings in the pricing kernel. The normal persistent
component is multiplied by (ρ − 1)θc = 0.0009 at calibrated parameter values. The jump
arrival rate is multiplied by (α − ρ)α−1(eαµc+α

2δ2c/2 − 1)σω = 9σω. As a benchmark, the
value of σω should be around 0.0001 for the two components to have a similar impact on the
pricing kernel. Wachter (2013) entertains a value of 0.03551/2 · 0.067 · (1/4)1/2 = 0.0063 and
Backus, Chernov, and Zin (2013) use 0.0001 ·31/2 = 0.0002, so there is a range of opinion of
where this value could be. The point is that if σω = 0.0001, then one is introducing double
the persistence of what we’ve seen to be realistic.

So something has to adjust. One can set persistence of x2t to zero as is done in Wachter
(2013). Then, as Backus, Chernov, and Zin (2014) demonstrate in model SI, the issue is
that σω and ϕω should have modest values of 0.0002 and 0.953 = 0.8573, respectively to get
anywhere close to the shape of the US yield curve. But at these modest values, the largest
one-period risk premium captured by entropy is not much different from the iid jump case.
If one needs modest values of σω and ϕω when there is no persistence in x2, it is clear that
once x2t is persistent, the role for persistence in the jump component would have to be even
smaller.

To summarize, quantitatively, there is no scope for having persistence in both normal and
jump components of the pricing kernel. Given the differences in mathematical structure of
the two components, persistence in jumps has a much larger impact on the term structure
of asset prices. So, at least as a first order effect, the jump component is the one that should
be iid.

7 Last thoughts

We focus on how risk is priced in the cross-section of assets and across investment horizons.
Empirically, we link average log holding period returns on a given asset in excess of US
interest rates to the difference between the yield curve corresponding to this asset (dividend
yield, foreign yield, real yield) and the US yield curve. The cross-sectional dispersion of
one-period excess returns is very large and continues to increase with horizon. For a given
asset, excess log returns decline with horizon, but the rate of decline is different in the
cross-section.

Theoretically, we introduce a concept of coentropy that serves as a generalized measure
of covariance in the non-normal and multi-period world. Coentropy of the pricing kernel
and cash flows is closely related to the aforementioned cross-sectional differences in yields.
Thus, these dfferences in yields must reflect the differences in cash flows. We show that
in order to capture the documented patterns in excess log returns an asset pricing model
has to feature iid extreme outcomes, a persistent component, and cross-sectional variation
in the persistence of cash flows. A model of the representative agent with recursive prefer-
ences whose consumption features disasters and persistent variation in its expected value is
capable of capturing the evidence.
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A Copula, mutual information, and coentropy

Consider two random variables x1 and x2 with a joint pdf p(x1, x2) and marginals p1(x1) and
p2(x2). The corresponding marginal cdf’s are P1(x1) and P2(x2). Sklar’s theorem enables
one to decompose p using copula “density” c:

p(x1, x2) = c(P1(x1), P2(x2)) · p1(x1) · p2(x2).

(The general result is P (x1, x2) = Cop(P1(x1), P2(x2)), where Cop is copula.) Mutual
information is

I(x1, x2) ≡ E log
p(x1, x2)

p1(x1) · p2(x2)
= E log c(P1(x1), P2(x2)).

Coentropy:

C(x1, x2) ≡ L(x1x2)− L(x1)− L(x2)

= logE(x1x2)− E log(x1x2)− (logEx1 − E log x1 + logEx2 − E log x2)

= −E log
x1x2

E(x1x2)
+ E log

x1

E(x1)
+ E log

x2

E(x2)
.

Define new probabilities: p̃(x1, x2) = p(x1, x2)x1x2/E(x1x2), and −j denotes “not j”. We
have the following marginals

p̃j(xj) =

∫
p̃(x1, x2)dx−j =

∫
p(x1, x2)x1x2/E(x1x2)dx−j

= xjpj(xj)/E(x1x2)

∫
p(x−j |xj)x−jdx−j = xjpj(xj)E(x−j |xj)/E(x1x2)

= pj(xj)xj/E(xj).

Therefore,

C(x1, x2) = −E log p̃/p+ E log p̃1/p1 + E log p̃2/p2 = −E log
p̃/p

p̃1/p1 · p̃2/p2

= −E log
p̃

p̃1 · p̃2
+ E log

p

p1 · p2

= −E log c̃(P̃1(x1), P̃2(x2)) + E log c(P1(x1), P2(x2))

= −E log c̃/c.

Consider a specific example when the new probability is defined by p̃(m, g) = p(m, g)mg/E(mg).
Then the first marginal, p̃1 is the risk-adjusted probability.
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Chabi-Yo and Colacito (2013) introduce a concept of coentropy. It is different from coen-
tropy in this paper despite the same name. Expanding on their definition, we obtain:

K(x1, x2) ≡ 1− L(x2)

L(x1x2) + L(x1)
=
L(x1x2) + L(x1)− L(x2)

L(x1x2) + L(x1)
=

C(x1, x2) + 2L(x1)

C(x1, x2) + 2L(x1) + L(x2)
.

In their notation, x1 = x and x2 = y/x. We have relabeled the variables to match our use
with theirs: x1 ultimately becomes m, and x2 is g.

B Details of the dividend strips

Dividend strips are forward contracts on annual dividends paid out n years from now. So,
assuming a time step of one quarter, these are not zero-coupon claims. The issue is how
to summarize the data and to value these contracts in a setup where one quarter is the
shortest time step.

Suppose dt+1 is a one-quarter dividend that is paid out at time t + 1. The corresponding
(log) growth rate is log gt,t+1 = log(dt+1/dt). One-year dividend is

d
(m)
t =

m∑
i=1

dt−m+i, m = 4.

A k−year forward contract specifies at date t the exchange of its price, or strike, for d
(m)
t+km

at date t + n, n = km. Denote its price by Qnt . Binsbergen, Hueskes, Koijen, and Vrugt

(2013) report summary statistics for k−1[log d
(m)
t −logQnt ]. Specifically, they report averages

that are estimates of k−1[E log d
(m)
t −E logQnt ]. This section establishes how is this object

related to E log rxt,t+n in our paper.

Consider a claim to g
(m)
t,t+n ≡ d

(m)
t+km/d

(m)
t with a price denoted by p̂nt . The corresponding

yield, as before, is ŷnt = −n−1 log p̂nt . By no-arbitrage, pnt q
n
t = p̂nt , with qnt = Qnt /d

(m)
t , and

pnt is a price of a US nominal zero-coupon bond that pays $1 at time t+ n.

Then,

k−1E[log d
(m)
t − logQnt ] = k−1E[− log p̂nt + log pnt ] = mE[ŷnt − ynt ].

Now consider return on the claim to g
(m)
t,t+n :

log rxt,t+n = n−1[log g
(m)
t,t+n − log p̂nt − log rnt,t+n]

= n−1[

n∑
j=1

log g
(m)
t+j−1,t+j ] + ŷnt − ynt .
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Therefore,

E(log rxt,t+n − log rxt,t+1) = E(ŷnt − ynt )− E(ŷ1
t − y1

t )

+ n−1
n∑
j=1

E[log g
(m)
t+j−1,t+j − log g

(m)
t,t+1]

= E(ŷnt − ŷ1
t )− E(ynt − y1

t ).

So, the Binsbergen, Hueskes, Koijen, and Vrugt (2013) statistic allows computing average
term spread in excess returns.

We need to clarify what ŷ1
t is because the smallest n = 4 in Binsbergen, Hueskes, Koijen,

and Vrugt (2013). We will use the results from Binsbergen, Brandt, and Koijen (2012)

to approximate this quantity. One-period asset yield corresponds to a claim to g
(m)
t,t+1 ≡

d
(m)
t+1/d

(m)
t . Its price is

p̂1
t = Et(mt,t+1g

(m)
t,t+1) = (d

(m)
t )−1Et(mt,t+1d

(m)
t+1)

= (d
(m)
t )−1

m−1∑
i=1

dt−m+1+i + (d
(m)
t )−1Et(mt,t+1dt+1).

Prices of six-month contracts, that is, claims to g
(m)
t,t+2 are:

p̂2
t = Et[mt,t+2g

(m)
t,t+2] = (d

(m)
t )−1Et[mt,t+2

m∑
i=0

dt−m+2+i]

= (d
(m)
t )−1[

m−2∑
i=1

dt−m+2+i + Et(mt,t+1dt+1) + Et(mt,t+2dt+2)].

Binsbergen, Brandt, and Koijen (2012) report P 2
t = Et(mt,t+1dt+1) +Et(mt,t+2dt+2). If we

assume that Et(mt,t+1dt+1) ≈ 1.02Et(mt,t+2dt+2) (the one-period price is just a bit higher
than the two-period price) then we can obtain an estimate of ŷ1

t :

ŷ1
t = − log p̂1

t ≈ log d
(m)
t − log(dt−2 + dt−1 + dt + P 2

t ∗ 0.495).

The reported shape of the corresponding curve does not materially depend on reasonable
variations in the approximating assumption.

The issue with theoretical valuation of these securities is that they are not literally zero-
coupon. Therefore, computation of yields would involve taking logs of sums of variables,
which is not convenient. For this reason, we will exploit the persistence of dividends. That
is, annual dividend divided by 4 (quarterly average) should not be too much different from
the quarterly dividend. Figure 6 confirms this intuition. As a result, our theoretical model
will treat dividend strips as if they were claims on quarterly dividends.
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C Real and nominal cashflows

Because we consider an endowment economy we can specify the cash flow process directly
as in equation (31). To motivate why cash flows would have a two-factor structure, consider
a more traditional specification of real cash flows in an endowment economy (e.g., Bansal
and Yaron, 2004):

log ĝt,t+1 = log γ̂ + θ̂gx̂2t + η̂0wt+1 + η̂2z
g
t+1,

where x̂2t is an AR(1) process with persistence ϕ̂2 and unit variance. Then, given the
inflation process (37), the nominal cash flows follow:

log gt,t+1 = log ĝt,t+1 + log gπt,t+1

= (log γ̂ + gπ)− θmx1t + (θ̂gx̂2t + θπg x2t) + (η̂0 + ηπ0 )wt+1 + (η̂2 + ηπ2 )zgt+1.

We show in this appendix that the term xt ≡ (θ̂gx̂2t+θπg x2t)/(θ̂g+θπg ) can be approximated
by an AR(1) process. Thus, two persistent components in the nominal cash flows can be
justified by the adjustment of the usual real cash flow process for inflation.

The specification of x2t and x̂2t implies:

(1− ϕ2L)x2t = wt,

(1− ϕ̂2L)x̂2t = wt,

where L is the lag operator. Therefore,

(1− ϕ2L)(1− ϕ̂2L)xt =

(
1−

(
θ̂g

θ̂g + θπg
ϕ2 +

θπg

θ̂g + θπg
ϕ̂2

)
L

)
wt.

Therefore, the term xt is an ARMA(2,1) process, which can be re-written as an AR(∞)
process:

wt =
1− (ϕ2 + ϕ̂2)L+ ϕ2ϕ̂2L

2

1−
(

θ̂g

θ̂g+θπg
ϕ2 +

θπg

θ̂g+θπg
ϕ̂2

)
L

xt

= xt −

(
θπg

θ̂g + θπg
ϕ2 +

θ̂g

θ̂g + θπg
ϕ̂2

)
xt−1 + · · ·

Thus, as a first-order approximation, the term xt is an AR(1) with persistence coefficient

of
θπg

θ̂g+θπg
ϕ2 +

θ̂g

θ̂g+θπg
ϕ̂2.
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Table 1. Properties of excess dollar returns. Entries are sample moments of quarterly
observations of (quarterly) log excess returns: log r−log r1, where r is a (gross) return
and r1 is the (gross) return on a three-month bond. All of these returns are measured
in dollars. Sample periods: US TIPS, 1971-2014 (source: Gurkaynak, Sack, and
Wright, 2010; Chernov and Mueller, 2012); US nominal bonds, 1971-2014 (source:
Gurkaynak, Sack, and Wright, 2007; FRED); Australian nominal bonds, 1987-2014
(source: Reserve Bank of Australia; Wright, 2011); UK nominal bonds, 1979-2014
(source: Bank of England); German nominal bonds, 1973-2014 (source: Bundesbank;
Wright, 2011); exchange rate to the USD (source: FRED; EUR was complemented by
DM, which was converted using the official EUR/DM rate); S&P 500 dividend strips,
1996-2009 (source: Binsbergen, Brandt, and Koijen, 2012). The shortest maturity
available for dividend strips is two quarters, so we extrapolate to one quarter as
described in Appendix B.

Standard Excess Entropy,
Asset Mean Deviation Skewness Kurtosis L(rx)

Inflation-protected bonds (TIPS)
CPI 0.0022 0.0060 0.1785 0.8223 0.00002
Currencies
AUD 0.0108 0.0576 −0.5134 0.7206 0.0016
EUR (Germany) −0.0015 0.0614 0.2748 0.6517 0.0018
GBP −0.0008 0.0543 −0.0816 1.4681 0.0015
Equity
S&P 500 div fut −0.0159 0.0270 0.7491 0.6273 0.0004
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Table 2. Average curves. Entries are means of yields on various assets of various
maturities. All of these yields are expressed in decimals, on a quarterly basis. The
second line shows the difference in term spreads relative to the US nominal curve. A
term spread is defined as the difference between an n−quarter yield and a one-quarter
yield. Sample periods: US nominal bonds, 1971-2014 (source: Gurkaynak, Sack, and
Wright, 2007; FRED); US TIPS, 1971-2014 (source: Gurkaynak, Sack, and Wright,
2010; Chernov and Mueller, 2012); Australian nominal bonds, 1987-2014 (source:
Reserve Bank of Australia; Wright, 2011); UK nominal bonds, 1979-2014 (source:
Bank of England); German nominal bonds, 1973-2014 (source: Bundesbank; Wright,
2011); 2-quarter S&P 500 dividend strips, 1996-2009 (source: Binsbergen, Brandt,
and Koijen, 2012); annual S&P 500 dividend futures, 2002-2011 (source: Binsbergen,
Hueskes, Koijen, and Vrugt, 2013). Dividend strip/futures prices are not available at
the one-quarter horizon, so we extrapolate to one quarter as described in Appendix
B.

Asset or Maturity, quarters
Country 1 2 4 8 12 20 24 28 40

US 0.0124 0.0128 0.0138 0.0144 0.0149 0.0157 0.0160 0.0163 0.0169
US TIPS 0.0044 0.0043 0.0043 0.0045 0.0047 0.0052 0.0056 0.0061

−0.0004 −0.0015 −0.0018 −0.0021 −0.0023 −0.0026 −0.0028
Australia 0.0165 0.0164 0.0161 0.0164 0.0170 0.0177

−0.0003 −0.0021 −0.0024 −0.0029 −0.0040
Germany 0.0120 0.0118 0.0118 0.0124 0.0130 0.0139 0.0142 0.0145 0.0151

−0.0006 −0.0015 −0.0015 −0.0014 −0.0014 −0.0014 −0.0014 −0.0014
UK 0.0168 0.0173 0.0166 0.0168 0.0170 0.0175 0.0177 0.0178 0.0181

0.0002 −0.0016 −0.0020 −0.0022 −0.0026 −0.0028 −0.0032 −0.0035
S&P 500 −0.0072 −0.0056 −0.0001 0.0018 0.0024 0.0035 0.0043 0.0048

0.0013 0.0061 0.0077 0.0078 0.0081 0.0084 0.0086
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Table 3. Calibrated parameters. Entries are the model parameters expressed in
quarterly terms. Note that fitted volatility of “CPI returns” is 8 times larger than
that in the data.

Panel A. Common parameters
(US nominal economy)

ϕ1 θm λ0 λ1 ω µm δm

0.9487 0.0026 −0.1225 0.0512 0.0025 1.5000 1.5000

Panel B. Asset-specific parameters and derived quantities

Asset ϕ2 θg η0 µg δg covmg Cmg(1)

Inflation-protected bonds (TIPS)
CPI 0.8023 0.0035 0.0478 0.0198 0.0327 −0.0057 −0.0034
Currencies
AUD 0.9404 0.0029 0.0642 −0.0498 0.0774 −0.0081 −0.0129
EUR 0.8356 0.0045 0.0254 −0.9606 0.5688 −0.0009 0.0002
GBP 0.9664 0.0027 0.0587 0.0475 0.0800 −0.0068 −0.0009
Equity
S&P 500 0.6846 0.0292 −0.0225 −0.1464 0.2416 0.0036 0.0126

Panel C. Parameters from the representative agent model

Consumption Preferences
ϕ2 θc σ µc δc β α ρ b1

0.8023 −0.0014 0.0143 −0.1520 0.1500 0.9980 −9 1/3 0.9986
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Table 4. Variance and serial correlation of cash flows. The Data module reports
summary statistics and the corresponding standard errors in parentheses in the second
line. The Model module reports population values at the calibrated parameters in the
first line. The second line report in parentheses the 2.5th and 97.5th percentiles of
the distribution of the respective statistics computed from 100,000 artificial histories
of log g simulated from the model at calibrated parameters. We use annual data
on dividends expressed in quarterly units. The reason is that dividends are highly
seasonal and lumpy. As a result, the Shiller (1989) annual data are an accurate
representation of annual dividends, but it is oversmoothing at higher frequencies.
In order to match the annual data with the quarterly model, we simulate annual
dividends. Consumption data are from quarterly NIPA tables from 1947 to 2014.
Variance of consumption growth is matched by construction, so we do not report its
sampling characteristics to emphasize this.

Data Model
Asset Var×102 AR(1) Var×102 AR(1)

Inflation-protected bonds (TIPS)
CPI 0.0078 0.5889 0.2439 0.0286

(0.0008) (0.0625) (0.1934, 0.2966) (−0.1271, 0.1748)
Currencies
AUD 0.3132 0.0598 0.4250 −0.0218

(0.0422) (0.0950) (0.3189, 0.5470) (−0.2021, 0.1641)
EUR 0.3748 0.0015 0.3808 0.0175

(0.0410) (0.0788) (0.0561, 2.3987) (−0.0716, 0.2398)
GBP 0.3126 0.1271 0.3529 −0.0323

(0.0370) (0.0828) (0.2757, 0.4427) (−0.1879, 0.1322)
Equity
S&P 500 0.3829 0.2599 0.2781 0.1138

(0.0459) (0.0812) (0.1966, 0.4033) (−0.0775, 0.2974)
Macro
Cons. growth 0.0324 0.0877 0.0324 −0.0609

– (0.0600) – (−0.1779, 0.0480)
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Figure 1. Average US curve and excess returns. The black solid line shows aver-
age US nominal term spreads, E(ynt − y1

t ) at different maturities n. The remaining
lines represent the term spread in average excess returns, E(log rxt,t+n − log rxt,t+1),
measured by differences of average term spreads on several assets relative to US Trea-
suries, E(ŷnt − ŷ1

t )− E(ynt − y1
t ). Data sources are the same as in Table 2.
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Figure 2. Two cumulant generating functions. The functions k(s) are properties
of the distributions of log x. In one, log x is normal, in the other Poisson. Both
are standardized: they have mean zero and variance one. The Poisson has intensity
parameter ω = 1 and scale parameter θ > 0. Since the mean is zero, the entropy of
x is the value of the cgf at s = 1, noted by the dotted line. In the normal example
entropy is 0.5 (half the variance). In the Poisson example, entropy is 0.72.
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Figure 3. Coentropy and covariance. The figure compares coentropy and covariance
for the Poisson mixture of bivariate normals described in Example 4. As we vary ω,
we adjust δ to hold the variance constant.
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Figure 4. HJ bound and entopy in the Vasicek model. The figure compares how
the HJ bound (purple lines) and entropy (blue lines) change with horizon in the
benchmark iid case (solid lines) and in the Vasicek model (dashed lines).
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Figure 5. Term structures of coentropies. The figure compares term structures
of coentropies, n−1Cmg(n) − Cmg(1) for the different assets considered in this paper.
Coentropies are derived from the illustrative affine model.
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Figure 6. S&P 500 dividends. The figure displays quarterly dividends (black solid
line) and quarterly average of annual dividends (red dashed line). The sample corre-
sponds to the availability of short-term dividend prices in Binsbergen, Brandt, and
Koijen (2012).
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