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1. Introduction

There is clear evidence that family and school environments can each have causal impacts
on individuals’ outcomes. In the family dimension, for instance, Dahl and Lochner (2012)
show that children’s academic achievement is affected by family income, and Doyle (2007)
that earnings vary with foster care placement. In the school dimension, Chetty et al. (2011)
find analogous impacts of kindergarten quality, and Hoekstra (2009) of college quality.

Much less is known, however, about how family and school environments interact in de-
termining outcomes.

This paper uses Romanian data to provide causal estimates of the interaction between
family and school environments. We identify such interactions by combining variation from
the lifting of an abortion ban which affects children’s family environments, with variation
from the allocation of high school slots which affects their school environments. We use
administrative data to show that access to a higher quality environment in each of these
dimensions improves outcomes, but find no consistent evidence of interactions between these
impacts.

The first source of variation comes from the repeal of Romania’s decades-long ban on
abortions. This occurred on December 26, 1989, immediately after the collapse of Commu-
nism. We evaluate the impact of this change by comparing children born before and after
July 1, 1990. July is the first month during which a decline in the number of births is
observed, consistent with expectant mothers in their first trimester first having been able
to access abortion six months earlier.1 The parents of children born after July 1 were thus
potentially better able to plan for their arrival, and hence to provide them with better family
environments and early investments.

We take advantage of individual-level administrative data to observe the performance of
pre- and post-reform cohorts on a transition score used to determine admission to high school,
and on a Baccalaureate exam taken at the end of school. These measures of achievement are
unlikely to be the only components of skill affected, but they are high-stakes outcomes, and
the latter significantly influences admissions to college. We use a difference-in-differences
(DD) estimation strategy to show that children born when there was greater access to abor-
tion score higher in both dimensions.

The second source of variation comes from the way children are allocated to high schools
in Romania. Their ability to choose a school depends solely on the transition score, which
includes performance on a standardized admissions exam. After obtaining their transition
score, students request schools and are allocated via a centralized process that grants priority
1 As in other countries, medical practice in Romania restricted abortions to the first trimester of pregnancy.
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to students with higher scores. This gives rise to cutoff scores that determine access into
schools, producing clear discontinuities in school quality, as measured by peer ability. We
use these cutoffs in a regression discontinuity (RD) design to show that students who have
access to better high schools perform better on the Baccalaureate exam.2

We then combine the two sources of variation using a regression discontinuity difference-
in-differences (RD-DD) design. We provide a formal empirical framework that establishes
conditions for causal identification of the interactions between family and school environ-
ments. This allows us to ask whether children born when there was greater access to abor-
tion have larger Baccalaureate score improvements when they have access to a better school.
In other words, we ask if the later intervention—better high school quality—produces larger
gains among students who experienced greater parental investments because they were born
when there was easier access to abortion. We do not find consistently significant evidence of
this; if anything, there is indication of a negative interaction between the impact of better
family and school environments.

We also consider behavioral responses using a survey administered to approximately 6,800
students and parents drawn from the administrative data. We focus this exercise on parental
and student effort around homework. Using survey rather than administrative data reduces
statistical power, but produces suggestive evidence that children who attend better schools
receive less parental help with homework. This effect is more pronounced for those who,
due to the increased access to abortion, attained higher levels of skill early on. There is
a similar pattern in terms of children’s own effort. These responses suggest that, at least
in the Romanian setting, parental and student behavior could undo any complementarities
between family and school environments.

We also address several issues that emerge in our setup. First, we note that the effects we
find are unlikely to be driven by changes in crowding. Though children born in the years
after the increase in access to abortion would have encountered less competition for primary
school slots, we compare children who were born just before and just after the decline in
fertility but entered school in the same academic year.

Second, greater access to abortion might have affected not just family investments, but the
composition of children in these cohorts. For example, it could have increased the prevalence
of children of lower socioeconomic status. We present evidence that composition, at least in

2 We will henceforth refer to higher-ranked schools as better schools; we acknowledge that this is only as
measured by average transition scores. Pop-Eleches and Urquiola (2013) show that this measure is correlated,
in the expected directions, with factors like parental involvement, teacher seniority, and perceptions of quality
on the part of parents and school principals. Our results on access to better schools replicate those in Pop-
Eleches and Urquiola (2013), although for a different set of cohorts.
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terms of observables, is not the key factor driving our findings; e.g., there is limited evidence
that access to abortion affected mothers’ characteristics. In addition, our main results hold
when we control for measures of poverty in the administrative data, or for characteristics
such as mother’s education in the survey data.

Third, we explain how our empirical framework avoids bias from controlling for the tran-
sition score, which could itself be affected by access to abortion. This enables us to provide
causal estimates even if access to abortion only affects outcomes through the transition
scores. When exploiting RDD variation, we control for the transition score within (rather
than across) each of the four groups in our DD design, which identifies next-best school effects
(within each such group) among those with transition scores at a given threshold. Having
over one thousand such discontinuities allows us to then average over students across the
support of transition scores, leveraging parallel trends assumptions both for Baccalaureate
scores and for the transition scores that would have occurred absent the abortion ban.

A number of recent papers have examined the interaction between family and school envi-
ronments, broadly construed. Rossin-Slater and Wust (2016) explore the interaction between
a nurse home visiting program and high-quality preschool childcare in Denmark. They ex-
ploit variation in timing of program implementation and find evidence indicating that these
interventions are substitutes rather than complements. Along the same lines, Adhvaryu et al.
(2018) examine the interaction between parental resources and later educational investments
using variation in local rainfall shocks and the Progresa program. They find that educational
investments mitigate the negative effects of adverse rainfall shocks.

Our findings are also related to research specifically focused on interventions that affect
early and later skills, often framed in the context of dynamic complementarities (Cunha
and Heckman 2007). Aizer and Cunha (2012) exploit exogenous variation in preschool in-
vestments from the launch of Head Start to show that the effect of preschool enrollment
on a subsequent measure of cognitive skill (at 4 years of age) is larger for those children
with higher Bailey test scores at 8 months of age. Jackson and Johnson 2019 use changes
in Head Start spending and school-finance reforms to show that the benefits of Head Start
spending were larger when followed by access to better-funded public schools in the United
States.3 Gilraine (2016) uses No Child Left Behind and regression discontinuities to show
that the effects of accountability in adjacent grades amplify in a manner consistent with
dynamic complementarity. Our results showing that parental and student behavior could
undo complementarities in human capital formation offer a cautionary note on research ex-
amining dynamic complementarities: well-identified evidence is necessary to assess dynamic

3 See also Duque et al. 2020 on Colombia.
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complementarities, but as often, reduced form results do not necessarily reveal the possibly
countervailing mechanisms that underlie them.

Finally, our paper is also related to previous work discussing the possibility of parental
behavior in response to early-life shocks. For example, Royer (2009) notes the challenge
of separating the biological effects of low birthweight from parental behaviors due to low
birthweight. Black et al. (2007) similarly point out that parents may respond to differences
in birthweight across siblings, but find little evidence of such behavior.4 Bau et al. (2020) find
that early positive rainfall shocks can lead households to invest less in education in places
with a high prevalence of child labor. In addition, in reviewing work on the impact of early
childhood environments, Almond and Currie (2011) note that most papers produce reduced
form effects which could include either biological effects or responsive parental investments.

The remainder of the paper proceeds as follows. Section 2 describes our data. Section
3 provides background on our sources of variation, and Section 4 presents the empirical
strategy. Section 5 presents results, and Section 6 concludes.

2. Data

We rely on three types of data: (i) administrative information covering the universe of
children who transition from middle to high school, (ii) census data, and (iii) a survey we
administered in most towns containing two or three high schools.

2.1. Administrative data. Our administrative data cover all the children who were allo-
cated to a high school in the years 2005 and 2006. These data include their name, date of
birth, and allocated school/track.5 In addition, they contain each student’s transition score;
this number determines their priority in admissions to high school (as explained below), and
is an unweighted average of their performance in a national 8th grade exam and their middle
school grade point average.

We linked these data with information on whether students took the Baccalaureate exam
once they were in 12th grade, and on how they performed on it (the 2005 and 2006 admissions
cohorts took the exam in 2009 and 2010 respectively).6 A satisfactory Baccalaureate grade is
a prerequisite for applying to university, and a high grade raises the probability of admission
to prestigious institutions.7

4 See also Bharadwaj et al. 2018 and Dizon-Ross 2019.
5 As explained below, students within each school are allocated to tracks such as Mathematics or Literature.
6 We merged the admissions and Baccalaureate data by student name/county using a fuzzy matching tech-
nique to allow for some misspelling of names. Our conclusions are robust to changing the precision of the
matching algorithm, including using only exact matches.
7 The Baccalaureate exam is administered nationally. Students usually take six component tests, with a
combination of common subjects (written language, oral language, written foreign language) as well as two
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Table 1. Descriptive statistics

Notes: Panel A uses administrative data to describe schooling outcomes and characteristics for children
allocated to a secondary school in the years 2005 and 2006 (Source: Romanian Ministry of Education,
www.edu.ro). Panel B uses a 15 percent sample of the 1992 census to describe mothers’ characteristics; it
refers to all women who gave birth in 1991 and 1992. Panel C uses data from a survey we implemented (in
most towns with two or three high schools) to describe parental and child behaviors.

Table 1 (page 6) presents summary statistics. Panel A refers to the administrative data
and shows that the average transition score among school applicants is 6.6 on a scale of 1
to 10. About 36 percent of these individuals attend academic high schools, which are more
prestigious, with the remaining 64 percent attending other schools. The fraction of students
taking the Baccalaureate exam is 53 percent and the average overall grade is 8.3.8 Table 1
also features the Romanian Baccalaureate grade, which is the only subject that all students
must take.

2.2. Census data. The administrative data contain little information on children’s back-
ground, limiting their usefulness in analyzing whether the increased access to abortion

track-specific and one elective test. The overall grade is the unweighted average of these scores. The main
exam is administered in July. Students are generally not allowed to take the exam early.
8 There are only slight differences in these numbers across the cohorts we consider. In addition, we note that
the matched data do not allow us to differentiate between high school dropouts and students who complete
high school but do not take the Baccalaureate exam.
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changed the composition of births.9 We therefore also use the 1992 Census to describe
the background characteristics among different birth cohorts.10 We focus on: (i) markers
of mothers’ socio-economic status that are likely to affect children’s outcomes, such as ed-
ucation and urban region of birth, and (ii) markers of “unwantedness” that may indicate
children were not planned, such as mothers’ marital status, fertility, and age at birth. For
instance, an effect of the abortion policy on the age of mothers at birth would be consistent
with some children not having been optimally timed under the pre-reform restrictive regime.

While we can only recover maternal characteristics for children living with their mothers,
the fact that the census took place in 1992, when children born in 1990 were only about
two years old, allows for a match rate exceeding 95 percent.11 Table 1 (Panel B) shows that
women who gave birth in 1990 and 1991 were on average 26 years old, and had given birth to
2.3 children by 1992. About 28 percent of them were born in an urban region. Only 9 percent
had primary education (6 years of schooling) or less, 87 percent had secondary education,
and the remaining 4 percent held a university degree. Finally, 95 percent of women were
married and a negligible fraction were divorced; the remainder were single.

2.3. Survey data. Neither the administrative nor the census data provide much informa-
tion on parent and child behaviors. We therefore implemented a survey featuring parent and
student questionnaires. The administrative data provided students’ names, but no way of
contacting them or their parents. We therefore approached schools and asked their admin-
istrators to provide us with the addresses of the students in the 2005 and 2006 cohorts (who
were still in school at the time).

We used these addresses to directly approach households and administered three survey
components. First, we interviewed the family head to obtain demographic information on
each member of the household. Second, we surveyed the primary caregiver to elicit informa-
tion on each child. Third, we interviewed the child from the selected schools.

Two factors led us to restrict our target sample to towns containing two or three schools.
First, since we needed information from students on either side of admissions cutoffs, it was
necessary that all schools in each town agree to participate, and therefore the effort was more
likely to encounter problems in larger towns. Second, as we show below the administrative
data reveal that the magnitude of the first stages is three to four times larger in smaller
towns.

9 An exception is an indicator for participating in a scholarship program aimed at students from poor families,
which we use below.
10 Specifically, we use the publicly available 15 percent sample of the 1992 Romanian population census.
11 We do not find evidence that the abortion policy changed the probability of living with a parent in 1992.
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We started with a sample of 38,466 children and 167 schools in the 71 towns with two or
three schools. If any school in a given town declined to participate, we abandoned the town.
In the end, we obtained complete school surveys and student data from 148 schools in 64
towns; the administrators in these schools provided us with 21,530 addresses. We restricted
the target sample further to 138 schools in 59 towns.12 Due to financial constraints we
randomly sampled 13,408 children out of this population, and obtained 8,400 parent and
child surveys from this target sample.13 After restricting the sample to children born in
1990 and 1991 who appear in 2005 and 2006 respectively, our final working sample contains
6,771 children. We found no evidence that response rates differed between households with
children just above and just below cutoffs.

Table 1 (Panel C) lists the three parental and child behaviors we focus on: whether parents
report helping their children with homework, whether children report doing homework, and
whether parents report paying for a tutor for their children.14 The levels for these variables
are 17, 62, and 30 percent, respectively.

To compare the survey towns to the broader sample, Appendix Table 9 presents descriptive
statistics from the administrative data for the full sample and the survey subsample (panel
A and B, respectively). Panels A.4 and B.4 show that, as expected, the survey towns contain
fewer schools and students on average. However, their academic performance is generally
comparable to that of children in the full sample (panels A.1 and B.1).

3. Background on sources of variation

This section describes the two sources of variation we rely on: the 1989 repeal of the
abortion ban, and the system that allocates students to high schools in Romania.15

3.1. The 1989 liberalization of access to abortion. During the 1950s and early 1960s,
Romania provided liberal access to abortion, and this procedure became the main method
of birth control. However, in 1966, the government abruptly outlawed abortion for most
women and severely restricted access to other modern methods of contraception, with the
total fertility rate roughly doubling by 1967. This policy stance was maintained with minor
modifications until the collapse of communism in 1989.

12 The elimination of five towns reflected that at least one school in each of them, though willing to fill out
the school questionnaire, was unable to provide student addresses.
13 Our response rate of 63 percent is in line with Gallup Romania’s (the firm we contracted with) interview
rate for this population.
14 Private tutoring is common in Romania, as in other countries with high-stakes tests.
15 Section 3.1 draws on Pop-Eleches (2006, 2010); see also Kligman (1998). Section 3.2 draws on Pop-Eleches
and Urquiola (2013).
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The renewal of access to abortion that took place at this point was equally abrupt, and
is the focus of our paper. On December 25th, 1989, Romania’s dictator was executed. On
December 26th the interim leadership abolished the ban on access to abortion, and in January
of 1990 it also lifted the ban on the import of modern contraceptives.

As expected, this produced an immediate decline in fertility. To elaborate on these major
demographic changes, Appendix Figure 5 (page 43) describes the total fertility rate from
1960 to 1996 for Romania and for the average of three other Eastern European countries
that did not have similar restrictions on birth control (Hungary, Bulgaria, and Russia).
Between 1960 and 1966, Romania’s total fertility rate tracked the average of the three other
countries relatively well. An abrupt jump in 1966 confirms that the effect of the abortion
ban was dramatic—it reflects an immediate doubling of the total fertility rate. Fertility
did decline and stabilize in the years following, although at a higher level. There was
also an analogous and immediate, if less pronounced, decline in fertility following the 1989
liberalization. In subsequent years, there was a gradual decline of fertility in Romania and
in the other transition countries, likely the result of the social and economic transformations
following the end of Communism.16

Pop-Eleches (2010) argues that the sharp drop in fertility after 1989 was driven by the
change in access to abortion, and not by changes in access to other methods of birth control,
or by changes in the demand for children caused by the transition process. Appendix Figure
6 (page 44) provides evidence consistent with this, using census data to plot the number of
children born each month during 1989-1991. The abrupt drop in fertility began in July of
1990—precisely six months after the point at which expectant mothers in their first trimester
could have first accessed abortion— with no other apparent trend in the number of births.17

The decline in the size of monthly birth cohorts is substantial: about 10 thousand births—a
one-third reduction. In previous work, Pop-Eleches (2010) discusses why this fertility decline
was not caused by changes in pronatalist incentives during the months surrounding December
1989 or by changes in desired fertility caused by the fall of the communist regime.

Our main birth cohort of interest is 1990. In addition, we will make use of the 1991 cohort
as a control, to account for factors such as seasonality in births. Under the rules that govern
16 These changes in policy stance were also associated with changes in children’s health at birth. Pop-Eleches
(2006) shows that following the abortion ban, the infant mortality and low birth weight rates increased by
27 and 38 percent, respectively. Analogous changes followed the liberalization of access to abortion in 1989.
Appendix Figure 7 (page 44) shows that between 1989 and 1991, the infant mortality rate decreased from
26.9 to 22.7, and that the fetal death rate from 7.6 to 6.9.
17 This contrasts with the pattern in East Germany where Chevalier and Marie (2015) document a rapid and
temporary decrease in fertility starting nine months after the fall of the Berlin Wall, suggesting a reduction
in conceptions rather than post-conception selection. Pop-Eleches (2010) also points out that there was no
increase in the use of modern contraceptives in Romania from 1990 to 1992.
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education in Romania, these cohorts should have enrolled in high school in 2005 and 2006,
respectively. Figure 1 (page 10) uses the administrative data to plot the number of children
born in each month for each of the admissions cohorts, with June normalized to 0 (i.e.,
month 0 is June 1990 for the 2005 admission cohort, and June 1991 for the 2006 cohort).
Grey vertical lines indicate January and December (months -5 and 6), and a red, darker
vertical line indicates the demarcation between June and July.
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Figure 1. Cohort sizes by month of birth; 2005 and 2006 admission cohorts
Notes: This figure uses the administrative data to plot cohort sizes by month of birth. The months covered
are October 1989 to March 1991 for the 2005 high school admission cohort, and October 1990 to March
1992 for the 2006 cohort. In each case June is normalized to 0, and -5 and 6 indicate January and
December, respectively. The red, darker vertical line indicates the demarcation between June and July.

Figure 1 raises two observations. First, while the vast majority of children in each appli-
cation cohort were born in the year expected—that is, between months -5 and 6—this is not
the case for all. While one expects children enrolling in 2005 to have been born in 1990, some
were born in 1989, and fewer in 1991. Graphically, there are large drops in the observed
densities at the grey vertical lines, but the densities do not fall to zero. The positive density
for months -6 and below reflects that some children repeat grades in elementary school; in
addition, some parents delay school entry for their children.18 The positive and lower density
for months greater than 6 reflects that some children begin school early.

18 This happens especially among children born close to the enrollment cut-offs. It is analogous to “red-
shirting” behavior observed in the U.S.
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The second and more important observation is that to the left of the dark vertical line
indicating the start of July, the 2005 cohort density is everywhere above that of 2006. This
reflects that, as implied by Figure 6, there were more births in 1990 before access to abortion
was liberalized. To the right of the line—a period with ease of access to abortion for both
cohorts—the two densities largely overlap.
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Figure 2. Average transition score by month of birth; 2005 and 2006 cohorts
Notes: This figure uses the administrative data to plot average transition scores by month of birth. The
months covered are October 1989 to March 1991 for the 2005 high school admission cohort, and October
1990 to March 1992 for the 2006 cohort. In each case June is normalized to 0, and -5 and 6 indicate January
and December, respectively. The red, darker vertical line indicates the demarcation between June and July.

Finally, Figure 2 (page 11) presents densities of transition scores rather than births; its
structure is otherwise similar to that of Figure 1. Two points of note emerge. First, in both
application cohorts the children above normative age (those to the left of the first gray line)
have lower transition scores, consistent with the fact that many of them likely repeated a
grade.19 Second, and more importantly, is a useful preview of one of our main results: the
2005 application cohort displays lower transition scores among children born immediately
before July of 1990 (month 1); no similar difference is evident for the 2006 cohort.

Taken together, figures 1 and 2 provide prima facie evidence that the increased access to
abortion resulted in smaller cohorts with better educational outcomes. In addition, despite
the mandated allocation to application cohorts based on date of birth, there may be some
19 There is also a dip in average grades for children born around December (month 6). This is likely a result
of month of birth effects, and that children who were sent to school earlier than required by the law might
be different from the average population.
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selection, and we can address this by using the 2006 admission cohort as a control sample.20

Section 5 below formalizes how we use this variation in an empirical strategy.

3.2. The student allocation mechanism. Our second source of variation arises from
Romania’s high school admission process. The transition between middle school, labeled
gymnasium, and high school results in an unusually systematic allocation of students to
schools.21 Every child receives a transition score which equally weights: (i) her performance
in a national 8th grade exam covering Language, Math, and History/Geography, and (ii) her
middle school grade point average.22

After receiving their transition scores, students submit a list of ranked choices specifying
combinations of: (i) a high school, and (ii) one of either four academic tracks—Mathematics,
Natural Sciences, Social Studies, Literature—or three technical tracks—Technical Studies,
Services, and Natural Resources and Environmental Protection.23 These tracks operate as
“schools within a school,” since students in each track take all their coursework together and
do not take classes with members of other tracks—although they share infrastructure and a
principal, and may share teachers. Not all schools offer all tracks, but all must submit their
track-specific capacities in advance, and these are public information.

Students’ choices are expressed through an application form submitted via their middle
schools to the Ministry of Education. Using a computerized system, the Ministry then ranks
students by their transition score—no other criteria (e.g., sibling preferences or geographic
proximity) are considered. The mechanism considers the highest ranked student and assigns
her to her most preferred school/track. It then treats the second-ranked similarly. Even-
tually, the procedure will reach a student whose first choice is full. If this happens, it tries
to assign the student to her second choice; if that one is full as well, then to the third, and

20 We did not find any references indicating institutional changes at the high school level in Romania (both
in terms of the structure of the school system or the rules of the admission process) between 2005 and 2006.
21 During the period we study, schooling in Romania was compulsory until the 10th grade. As a result the
entire cohort of students who complete middle school is required to participate in this allocation process.
22 All tests and grades use a scale ranging from 1 to 10, with a passing grade of 5.
23Students can also apply to a vocational track using this allocation process; indeed, those with a transition
score below 5 can only enter vocational tracks. For more information on vocational education in Romania,
see Malamud and Pop-Eleches (2010)
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so on. Only once this student has been assigned does the mechanism move onto the next
person.24 Students thus have incentives to truthfully reveal their preference rankings.25

Schools must enroll the children in the admission list returned from the computerized
allocation.26 In most markets the result of this process is a clear hierarchy of schools by
average peer quality. As stated above, for simplicity we will label higher ranked schools as
“better” schools.27

Finally, we note that when we analyze the effects of having access to a better school,
we impose three sample restrictions on the administrative data following Pop-Eleches and
Urquiola (2013). The first two reflect that, as explained below, we rank schools and set
cutoff scores under the assumption that towns are self-contained markets.28 We therefore
omit the capital, Bucharest, which is composed of six towns the borders of which students
can cross with relative ease. We do not find this omission to affect our key conclusions.
Second, when our analysis focuses on between-school cutoffs, we omit towns that have only
one high-school.29 Third, we drop all students who enroll in the vocational sector since we
do not observe Baccalaureate outcomes for them.30

24 Some students only request school-track choices with minimum entry scores above their own transition
score. These individuals are assigned, in a second round, to schools/tracks that did not fill. Students are
warned against this outcome and allowed to submit a list of choices of essentially unlimited length. As a
result, for example, in 2007 only 1.1 percent of applicants moved to the second round.
25 The existing legislation does not allow children to decline their initial assignment, although in rare situa-
tions children do manage to switch schools and/or tracks over the years. Such switching does not pose a threat
to our “intent-to-treat” research design, which as discussed below, is based on the assigned school/track.
26 One concern with the administrative data arises if the participation of children in the high school allocation
process is affected by the lifting of the abortion ban. The direction of the bias is likely to be downward if
children born under the ban have higher dropout or grade repetition rates in primary school and therefore
do not take the high school admissions exam. However, this source of selection is unlikely to play a major
role. Appendix Figure 9 uses the census data to show that the proportion of children born in each month
of 1990 who are present in the 2005 high school cohort is quite similar to the proportion of children born in
each month of 1991 who are present in the 2006 high school cohort.
27 Pop-Eleches and Urquiola (2013) show that school level peer quality is correlated, in the expected direction,
with factors like parental involvement and perceptions of quality on the part of parents and school principals.
Nevertheless, rankings by characteristics like peer quality need not correlate with value added, as suggested
by Abdulkadiroglu et al. (2014), MacLeod and Urquiola (2015, 2019), and Ainsworth et al. (2020).
28 We use the term town to denote a high school market. The term that appears in the administrative data
is locality (Localitate, in Romanian). In most cases these units actually correspond to cities/towns. In a few,
they denote the largest of a number of small towns or villages—the town which actually contains the high
school that might draw from a corresponding catchment area composed of smaller towns or villages.
29 Despite these omissions, for simplicity we will describe the sample as covering “all towns” unless we focus
only on those towns covered by our specialized survey.
30 As as noted in Pop-Eleches and Urquiola (2013), omitting students who enroll in vocational schools could
be problematic if the probability of enrolling is affected by options in non-vocational schooling. However,
it is very unlikely that a large proportion of students would prefer to attend a vocational track over a non-
vocational track; less than one percent of students who attend a non-vocational track claim that they ranked
a vocational track above their assigned track.
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4. Empirical strategy

This section presents our empirical strategy in three steps. First, it describes the difference-
in-difference (DD) framework we use to estimate the impact of access to abortion. Second, it
describes the regression discontinuity (RD) approach we use to estimate the effects of access
to a better school. Third, it merges these into a combined RD-DD framework that allows us
to estimate reduced-form interactions between the increased access to abortion and access
to a better school.

4.1. The impact of access to abortion. The first step is to estimate how the increase in
access to abortion affected educational outcomes. Consider the following regression:

(1) yi = δ0 + δ1 · AccessAi + δ2 · beforei + δ3 · cohorti + εi

where yi is an outcome measured either upon applying to or upon finishing high school—the
transition and Baccalaureate scores, respectively. AccessAi stands for access to abortion and
is equal to 1 if individual i was born after July 1, 1990, which is six months after access to
abortion increased and the point at which the decrease in fertility is first observed (Section
3). beforei is a dummy for birth between January and June inclusive, and cohorti takes on
a value of one for children in the 2006 admission cohort, and of zero for children in the 2005
cohort. The overall impact of the change in abortion legislation is captured by δ1, where
standard errors are clustered by age in months (Bertrand, Duflo, and Mullainathan, 2004).

We also consider an alternative specification, replacing the indicator variable for being
born in the first six months of a calendar year with a linear trend of the month of birth:

(2) yi = β0 + β1 · AccessAi + β2 · trendi + β3 · cohorti + εi,

where trendi is a function of the month of birth, which we model as a linear trend.31

To summarize, our approach essentially compares the outcomes of children born in the
six months before and after the drop in fertility that occurred after July 1, 1990. The trend
controls account for effects that are associated with age and vary continuously, and the 2006
cohort accounts for possible month of birth effects (e.g., associated with seasonality) as well
as selection of a birth cohort into a corresponding high school admission cohort (Figure 1).32

We note that equation (1) corresponds to the “classic” difference in differences specification
(Meyer, 2005).

31 Using a quadratic trend instead of a linear one leads to similar estimates.
32 All specifications are restricted to children who are in their normative admission cohort based on their
date of birth; that is, children born in 1990 (1991) present in the 2005 (2006) high school cohort.
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Finally, in our baseline implementation these specifications do not include controls. In
robustness checks, we include an indicator of poverty status present in the administrative
data in order to control for possible compositional changes.

4.2. The impact of access to a better school. The second step of our analysis estimates
the impact of access to a better school. Although students can request any high school in the
country, we suppose that they restrict their choices to the towns they live in, a reasonable
assumption since they are 13-14 year olds typically living with their parents. Within each
town, we rank schools and school/tracks (in separate exercises) according to their average
score, and set the cutoffs equal to their minimum scores.33 In other words, we set each
school’s (or school/track’s) cutoff equal to the score of the child with the lowest transition
score.34

This yields more than one thousand potential discontinuities. In this section we first
discuss the conceptual basis for analyzing any given one of these experiments, focusing on
schools for simplicity. We then describe how we go about summarizing them.

4.2.1. A single between-school cutoff. Consider a town in which i indexes students and
s = 1, . . . , S indexes schools, where the latter have been ordered from the worst to the best
in terms of their average transition score. Additionally, let z = 1, . . . , (S − 1) index cutoffs,
such that, for example z = 1 denotes the cutoff between the worst and next-to-worst school
in the town, and z = (S−1) indicates the cutoff between the top-ranked school and the next
best. Let scorei denote student i’s transition score, and t̃z be the minimum grade required
for admission into the better of the two schools indexed by z.

Consider the specification:

(3) yi=α · 1{scorei − t̃z ≥ 0}+ a(scorei) + εi,

33 See footnote 50 for a discussion of how this relates to using the minimum score within each school.
34 Using the minimum admission score is in line with our “intent-to-treat” approach in that only schools
that reach capacity will generate meaningful first stages. An alternative approach would have been to
set each school’s (or school/track’s) cutoff equal to the transition score of the child that fills its last slot.
We could potentially identify that child since classes are limited to 28 slots (e.g., the track-specific slot
availabilities which schools submit prior to the allocation process must be multiples of 28). However, our
process for collecting and matching the administrative files (from hundreds of thousands of web pages) creates
some measurement error. This limits our ability to determine with certainty if a school reached capacity.
Nevertheless, using some approximations, we estimate that excluding the bottom ranked school in each town,
the percent of schools that reach capacity ranges, depending on the cohort, between 80 and 90 percent.
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where yi is Baccalaureate performance for student i, 1{scorei − t̃z ≥ 0} is an indicator for
whether a student’s transition score is greater than or equal to the cutoff indexed by z, and
a(scorei) is a flexible control function for the transition score.

If access to a better school changes discontinuously at t̃z, then the causal impact of this
access can be identified even if students’ transition scores are systematically related to factors
that affect outcomes like Baccalaureate grades (Hahn, Todd, and van der Klauuw, 2011).
Intuitively, suppose the transition score is smoothly related to characteristics that affect
achievement. Under this assumption, students with scores just below t̃z provide an adequate
control group for individuals with scores just above, and any difference in their outcomes can
be attributed to the fact that they have access to schools of different quality. If the effect
of going to the better school is homogenous across students, then this treatment effect is
identified as α in (3). Provided that a(·) is specified correctly, it will capture the dependence
of outcomes on the transition score away from the cut-off, and one can use all the data to
estimate (3).

We use specifications that expand on (3) to allow for treatment effect heterogeneity, in
order to produce “intent-to-treat” estimates of the effect of having access to a higher-ranked
school.35 Our “first stage” results show that a significant proportion of children who have
access to a better school take it up. This allows us to measure the net effect of such access on
children’s outcomes. It is, however, impossible to attribute the effect to a single channel, since
multiple aspects of school quality change at the cutoffs, in addition to possible behavioral
responses on the part of students, parents, teachers, etc.

4.2.2. Summarizing information for many cutoffs. The above specifications illus-
trate how one might exploit one cutoff. As stated, our data contain over one thousand. In
order to summarize these, and for the sake of statistical power, we focus on regressions which
pool data across cutoffs, relying on the fact that scorei − t̃z measures the distance between
each cutoff and the transition score of each student in a town. Specifically, we “stack” the
data such that every student in a town serves as an observation for every cutoff, and (when
observations are used more than once) run the analyses clustering at the relevant level. In-
cluding all observations for every cutoff is relevant in that, for example, the student with the
best score in town could successfully request any school. In fact, regressions restricted to
students in bands close to the cutoffs rarely use student-level observations more than once.

Specifically, most of our reduced form regressions are specified as follows:

35 We view α in equation (3) as capturing a “reduced form” effect of access to a better school. This effect could
reflect multiple channels. For example, as we will show, peer quality certainly changes at the discontinuity.
But so do teacher quality and some parental investments (Pop-Eleches and Urquiola 2013).
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(4) yi = η ·1{scorei− t̃z ≥ 0}+α ·(scorei− t̃z)+ψ ·(scorei− t̃z) ·1{scorei− t̃z ≥ 0}+wz+vi,

that is, a regression of outcomes on a dummy for whether a student’s transition score is
greater than or equal to the cutoff, along with controls that include: (i) a linear spline in
students’ grade distance to the cutoff, one which allows the slope to vary on each side of the
cutoff, and (ii) a full set of cutoff dummies, wz.36

Finally, to simplify notation, equation (4) can be written as:

(5) yi = η · AccessBi + α · scorei + ψ · scorei · AccessBi + ui,

where AccessBi stands for access to a better school and is a dummy equal to one when a
student’s transition score is greater than or equal to the cutoff; scorei is the running variable
and scorei ·AccessBi is the interaction to allow for the linear spline; the cutoff fixed effects
are now implicit.

4.3. Estimating interactions between family and school environments. The third
and final step is to combine the above two approaches to estimate potential interactions
between family and school environments. We merge the difference-in-differences (DD) and
the regression discontinuity (RD) design into an RD-DD framework. We begin by discussing
the intuition behind this approach, and then present the full interacted specification.

4.3.1. Intuition. The increase in access to abortion defines four groups as captured in Figure
1: (i) those born July-December, 1990, (ii) those born January-June, 1990, (iii) those born
July-December, 1991, and (iv) those born January-June, 1991. Figure 1 shows that group
(ii) contains distinctly more children and likely the highest share of unwanted children.

One can estimate the impact of access to a better school within each of these groups—i.e.,
one can estimate η (equation 5) within each group, learning about the average effect of school
quality from hundreds of cutoffs in each case. These estimates provide information on the
interaction between our environments of interest. For instance, a positive difference

(6) η(July-Dec, 1990)− η(Jan-Jun, 1990)

would provide prima facie evidence of complementarity, as it suggests that the effect of
access to a better school is higher among children who had higher skill upon entering high
school because their parents had easier access to abortion.

36 For simplicity, equation (4) does not have a time dimension; in reality our standard specification includes
a full set of cutoff*year dummies.
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A difference like (6) could however be driven by factors like seasonality, but one might use
groups (iii) and (iv) to control for such factors, calculating a difference in differences effect:

(7) {η(July-Dec, 1990)− η(Jan-Jun, 1990)} − {η(July-Dec, 1991)− η(Jan-Jun, 1991)}

4.3.2. Non-parametric identification of interaction effects. We now show how the intuition
of (7) can be extended to non-parametrically identify a summary measure of reduced-form
interaction effects, when stacking the data across cutoffs. To define our parameter of interest,
let Yi(d, z) denote potential outcomes as a function of whether student i is born in a period in
which their parents had access to abortion d, and the high school to which they are assigned
z. By saying a student is “assigned” to school z , we mean that the school with threshold
tz is the most selective school which they are able to attend given their transition score.37

Recall that AccessAi is equal to 1 if individual i was born after July 1, 1990, and 0 otherwise.
We focus on mean interaction effects among students in the pre-abortion period, evaluated
at the school to which they are actually assigned, denoted as schooli:

∆0 := E[{Yi(1, schooli)− Yi(1, schooli − 1)} − {Yi(0, schooli)− Yi(0, schooli − 1)} |AccessAi = 0]

If schools are numbered within each town in order of their cutoff (see footnote 50), then
schooli−1 denotes the school with the next-highest cutoff to schooli. The parameter ∆0 mea-
sures the average extent to which these “next-best”-school treatment effects Yi(d, schooli)−
Yi(d, schooli−1) differ between d = 0 and d = 1: a mean interaction effect. We condition on
AccessAi = 0 because this is the population for which the difference-in-differences variation
is informative with minimal assumptions.38

The potential outcomes notation allows us to see why a simple comparison of RDD esti-
mands like (6) is insufficient to isolate interaction effects. Suppose for simplicity there were
a single town having two schools: z and z − 1, separated by transition score threshold t.
Then performing separate RDDs for students born before and after July 1990 would allow
us to estimate the following quantity:

E[Yi(1, z)−Yi(1, z−1)|AccessAi = 1, scorei = t]−E[Yi(0, z)−Yi(0, z−1)|AccessAi = 0, scorei = t]

If the AccessAi = 1 and AccessAi = 0 groups are not comparable, the above estimand will
confound interaction effects with heterogeneity in next-best school effects.

37 We focus on intent-to-treat effects. Yi(d, z) measures outcomes given attendance at school z if students
choose the most selective school they are admitted to.
38 In the canonical difference-in-differences (DD) setup with two periods, one group is treated in the second
period only and the DD identifies an average treatment effect among the treated. In our context, three of
the four cells defined by birth-half-of-year and cohort are “treated”, while one is not, so our DD identifies
an average treatment effect among the untreated. See appendix for details.

18



We thus instead build up identification of ∆0 by considering a double-difference of RDD
estimands at each school threshold, as in (7). Let tpcz denote the transition score threshold
that applies to school z for cohort c in town p, and let afteri be a random variable indicating
whether a student was born after June in their birth year (i.e. 1− beforei). Consider p, a, c
specific discontinuities at the threshold for a given school z:

ηz(a, c, p) := lim
x↓tpcz

E[Yi|towni = p, afteri = a, cohorti = c, scorei = x]

− lim
x↑tpcz

E[Yi|towni = p, afteri = a, cohorti = c, scorei = x]

Under appropriate versions of the familiar continuity and parallel trends assumptions,39

the double-difference of such RDD estimands ηz(July-Dec, 1990, p)− η(Jan-Jun, 1990, p)−
ηz(July-Dec, 1991, p)− ηz(Jan-Jun, 1991, p) is equal to

E[Yi(1, z)−Yi(1, z − 1)|towni = p,AccessAi = 0, scorei(1) = tp0z]

− E[Yi(0, z)− Yi(0, z − 1)|towni = p,AccessAi = 0, scorei(0) = tp0z]

where we introduce counterfactual notation scorei(d) for the transition score, depending on
value d of the abortion-access treatment.

Note that both terms above condition on AccessAi = 0, and the difference then nearly
gives a local average measure of the interaction between family and school environments,
Yi(1, z) − Yi(1, z − 1) − Yi(0, z) + Yi(0, z − 1), for the school z. However, the first term
conditions on scorei(1) while the second conditions on scorei(0). The raw double-difference
of RDD estimands thus suffers from a version of the “bad control” problem, since students
for whom scorei(0) = tp0z may be different from the students for whom scorei(1) = tp0z.
This arises because our regression discontinuities control for scorei, which may be affected
by AccessAi. In the appendix, we show that it is nevertheless possible to recover ∆0 by
combining estimates across many cutoffs in a way that averages the two terms of the above
over the distributions of scorei(1) and scorei(0) respectively.

Here we describe the approach in broad strokes, and refer to Appendix B for details.40

First, we approximate the school cutoffs tp0z as being dense in the support of transition
scores, on the basis of there being many schools in each town. This assumption is also made

39 We assume continuity of the functions E[Yi(d, z)|Pi = p, afteri = a, cohorti = c, scorei(d) = x]with
respect to transition scores x, and we assume that expectations like E[Yi(1, z′))|Pi = p, afteri = a, cohorti =
c, scorei(1) = x] decomposes as a separable function of a and c. See Appendix B for details.
40 An alternative approach to the one described here would be to assume away the “bad control” issue
directly: that E[Yi(0, z)− Yi(0, z − 1)|towni = p,AccessAi = 0, scorei(d) = tp0z] does not depend on d. We
have found that this approach gives similar results.
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by Bertanha (2020), and in our context ensures that for any student having scorei(1) = tp0z,
there exist valid comparison students for them with scorei(0) = tp0z′ for some school(s) z′.
Second, we require a parallel trends assumption to hold for the CDF of transition scores
(Roth and Sant’Anna, 2022), allowing us to impute the distribution of scorei(1) conditional
on AccessAi = 0 and towni = p.41 This allows us to aggregate over values of scorei(1) and
scorei(0) respectively to average out the conditioning on counterfactual transition scores.
Finally, we assume that there are (on average) no indirect effects of abortion-access on
untreated next-best school effects Yi(1, schooli)− Yi(1, schooli − 1), occurring via abortion-
access changing the value of schooli. We give evidence for this last condition by observing
that average effect of abortion access on transition scores is very small relative to the typical
gap between successive schools’ thresholds. This suggests such effects are rarely sufficient
to move a student over a threshold into a new school. If they are, Section 5.5.3 provides
evidence that this is likely to bias us towards finding positive interaction effects, if anything.

4.3.3. Implementation. Here we first describe a simple implementation of the above identi-
fication logic in the “stacked” dataset, and then discuss a re-weighting scheme that ensures
we aggregate over the ηz(a, b, p) in an appropriate way to consistently estimate ∆0. Consider
the following fully-interacted regression specification:

Yi = wi + λ1 · AccessAi + λ2 · beforei + λ3 · cohorti + λ4 · AccessBi + λ5 · scorei

+ λ6 · (scorei · AccessBi) + λ7 · (AccessAi · AccessBi) + λ8 · (AccessAi · scorei)

+ λ9 · (AccessAi · scorei · AccessBi) + λ10 · (beforei · AccessBi)(8)

+ λ11 · (beforei · scorei) + λ12 · (beforei · scorei · AccessBi)

+ λ13 · (cohorti · AccessBi) + λ14 · (cohorti · scorei)

+ λ15 · (cohorti · scorei · AccessBi) + µi

The coefficient of interest is λ7, the interaction between AccessAi and AccessBi. This
essentially estimates whether the impact of having access to a better school is larger for
children who experienced better family environments because they were born after access to
abortion was liberalized. We also present results with alternative specifications that replace
the indicator variable for being born in the first six months of a calendar year beforei with
a linear trend in birth-month. For our main outcomes we will also show results from more
restrictive specifications that drop the triple interactions (λ9, λ12, λ15). These more restrictive
specifications assume that the change in slopes (relating the outcomes to the transition score)
41 A similar need arises in Caetano et al. (2022), who consider difference-in-differences models with time-
varying covariates that can be affected by treatment.
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above and below the school cutoffs are the same across the different cohorts that determine
access to abortion. Our preferred implementation of (8) will use data from both the 2005
and 2006 school entry cohorts.

We view (8) as a local-linear approximation to the non-parametric identification result
mentioned in the last section. The stacking approach allows us to improve efficiency by
avoiding the need to estimate ηz(a, b, p) separately for each school. However, it introduces
a non-trivial weighting towards towns with more schools. We thus re-estimate (8) after
reweighting the Yi to correct for this, as described in the appendix. This allows us to run the
final regression (8) in a way that pools data across all cutoffs. This approach does however
require the first step of estimating the weights, for which we use local-polynomial regressions.
For the reweighted estimates, we thus calculate standard errors by non-parametric bootstrap,
as a simple way to account for the various sources of estimation error. For both weighted and
unweighted estimates, we include cutoff fixed effects wi which has been shown to alleviate
issues arising from there being students located exactly at each school cutoff (Fort et al.,
2022).

4.3.4. Discussion the interacted specification. There are two potential concerns related to
the fact that the transition score serves as the running variable in our RD design. The
first has been alluded to already: our empirical strategy for identifying next-best school
treatment effects involves controlling transition scores, which is a “post-treatment” variable
with respect to the abortion reform. However, our identification result builds up from the
RDD estimands ηz(a, c, p), which compare across transition scores within rather across the
four groups in our DD specification. Each of the ηz(a, c, p) cleanly identifies an average
next-best school effect, though care is required in aggregating across them to identify ∆0 (as
described in Appendix B).

A second concern is that because (7) compares children just above and below each cutoff,
there is no remaining variation in transition scores for the second comparison (the double-
difference) across cohorts. In other words, the double-differenced RDD estimand of (7) will
miss true interaction effects that occur through the transition score. In the extreme, it could
be zero even in the presence of interaction effects if Yi(d, z) only depend on abortion access
d through scorei(d). The re-weighting estimator described in the appendix avoids this prob-
lem by aggregating the information across all thresholds before comparing students across
cohorts: students with scorei(1) = x are not compared only to students with scorei(0) = x.
But even the un-weighted estimates may not suffer much from this issue: as shown in Section
4, children born under a more restrictive abortion policy appear to be disadvantaged in a
range of developmental outcomes beyond those captured by the transition score. Therefore,
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Table 2. The effect of access to abortion on educational outcomes

Notes: Standard errors are provided in brackets and are clustered by age in months. The dependent
variables are defined in Table 1. The Abortion access dummy is defined as 1 for individuals born on or
after July 1, 1990 and 0 for individuals born on or before June 30, 1990. Panel A and B are based on
children born in 1990 and present in the 2005 secondary school cohort as well as children born in 1991 and
present in the 2006 cohort as controls. The monthly trend is a linear function of the month of birth. *
p < 0.10, ** p < 0.05, *** p < 0.01.

even among children with the same transition score, we expect there to be differences in the
vector of skills between individuals born under different abortion regimes.

5. Results

This section first presents results that examine the impact of access to abortion on educa-
tional outcomes. It then presents results on the impact of access to a better school. Finally,
it uses our combined RD-DD framework to explore interactions between the two.

5.1. The impact of access to abortion. Table 2 (page 22) summarizes the impact of
access to abortion. The columns feature six indicators of educational achievement and school
quality, and panels A and B show the coefficient on AccessAi in two different specifications.
Panel A restricts the sample to children born in 1990 and 1991 who applied to high school
in 2005 and 2006 respectively, and includes a cohort dummy. Panel B is our preferred
specification; it includes children in both admissions cohorts, a cohort dummy, and a linear
trend in month of birth.

All the coefficients in Table 2 are positive, and 10 out of 12 are statistically significant.
The robustness of this result provides strong evidence that increased parental access to
abortion improved children’s educational outcomes. Our preferred specifications in Panel B
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show that children who were born after access to abortion was liberalized on average had
transition scores that were 0.1 points higher. This enabled them to gain admission to schools
with peers whose transition scores were on average 0.04 points higher.42 In addition, they
were two percentage points more likely to attend an academic high school (from a baseline
mean of 36 percent). Analogous positive impacts are observed four years later when these
children took the Baccalaureate exam. Children born after access to abortion increased
are 5 percentage points more likely to take the exam and, conditional on doing so, score
0.03 and 0.01 standard deviations higher overall and in the Romanian language component,
respectively. The overall baccalaureate grade is the main measure of achievement we will
use below.43

For further illustration Figure 3 (page 24) plots residuals from regressions that account
for month of birth effects, for the months of January to December of 2005. The graphs for
all six outcome variables, while displaying some noise, show a visible break in the pattern
of educational achievement after July of 1990. They provide complementary evidence that
children born after the repeal of the abortion ban had better educational outcomes.

5.2. The impact of going to a better school. We now turn to the impact of our second
source of variation: access to a better school. As is common in RD-based analyses, we
begin with a graphical illustration of our results. Panel A in Figure 4 (page 25) illustrates
the basic first stage result, pooling all between-school cutoffs. The x-axis plots students’
transition scores relative to the cutoffs that allow access a better school; the y-axis describes
the peer quality that students experience, as measured by the mean transition score at their
respective school. The mean transition score is collapsed into cells containing individuals
42 The average test score of the 2006 cohort is slightly higher than that of the 2005 cohort. One might
therefore worry that an equal point increase in performance might have a different impact across the two
cohorts in terms of how far a student moves along the ability distribution. In such a situation one might use
the log of the admission score. In regressions not reported we find this does not affect our key results.
43 We performed additional robustness checks not reported here. One potential concern with Table 2 is that
the estimates may depend on how we control for trends and seasonal factors. The results are robust to a
specification that is similar to Panel B but restricts the sample to the cohort born in 1990 who applied to
high school in 2005, as well as to replacing the linear trends in month of birth with calendar month dummies.
Another alternative is to restrict the analysis to narrower time windows. The simplest comparison is the
difference in outcomes for children born in July and June of 1990. The difference in the average score between
these two month is slightly smaller but still sizable and statistically significant for most of our outcomes.
We find similar results with a sample that is restricted to children born in June and July but additionally
includes children born in the same months of 1991. Another alternative arises given that: (i) gestation
length varies across pregnancies, and (ii) the December 1989 legal abortions are probably more likely to
have happened for mothers in the third rather than the second month of pregnancy. These factors imply
that the decline in fertility after July of 1990 should not be completely instantaneous. Consistent with this,
Figure 6 shows that while July of 1990 was the first month with a rapid decline in fertility, August also saw
a significant further reduction. We therefore also restricted the sample to those born in June and August
only. The results are very similar to those using the comparison of June and July.
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Figure 3. Residuals from regressions of outcomes on abortion access
Notes: All panels plot residuals from regressions similar to those in Panel B of Table 2. Specifically, they
plot residuals by month of birth for children born in 1990 and present in the 2005 secondary school cohort,
where the children born in 1991 and present in the 2006 cohort are included to account for month of birth
effects. The fertility decrease following the introduction of greater access to abortion started with cohorts
born after July of 1990 (month 0 in the above figures).

who are within 0.01 points of each other. Panel B is structured similarly, but the y-axis is
based on residuals from a regression of the mean transition score on cutoff fixed effects. Both
panels suggest that the average peer quality experienced by students rises significantly and
discontinuously when their transition score crosses a score cutoff. In other words, on average
students do use the opportunity to attend a better school. The vertical distance between
the points close to the discontinuity corresponds to the estimate of η1 in expression (5).
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Figure 4. The effect of access to a better school on educational outcomes
Notes: All panels are based on administrative data for the 2005-2006 admission cohorts, and restrict
observations to individuals with transition scores within 0.2 points of a cutoff. The left hand side panels
plot (0.01 point) transition score cell means of the dependent variable. The right hand side panels plot
analogous means of residuals from a regression of the dependent variable on cutoff fixed effects. In each
panel, the solid lines are fitted values of regressions of the dependent variable on a linear trend in the
transition score, estimated separately on each side of the cutoff. The dependent variable in panels A and B
is the average transition score of the peers students encounter at school; the dependent variable in panels C
and D is the Baccalaureate exam grade; the dependent variable in panels E and F is the Romanian
Baccalaureate exam grade.
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Table 3, Panel A presents the regression analog to these two panels. Column (1) restricts
the sample to children within bandwidths suggested by the procedure in Imbens and Kalya-
naraman (2012) (henceforth IK).44 Column (2) uses samples that result from the Calonico,
Cattaneo, and Titiunik (2014) (henceforth CCT) optimal bandwidth, which is a refinement
of the Imbens and Kalyanaraman (2012) optimal bandwidth. For both samples we regress
the average transition score of children’s school peers on an indicator for whether their scores
are above the cutoffs. The specification includes: (i) a linear spline in students’ score dis-
tance to the cutoff, allowing the slope to vary on either side of the cutoff, and (ii) cutoff/year
dummies—i.e., equation (5) with cutoff/year fixed effects.45 The results suggest that scoring
above a cutoff results in a highly statistically significant increase in peer quality—0.1 points,
equivalent to about 0.1 standard deviations in the transition score distribution.

All these samples result in similar and highly significant estimates. The “first stages” in
Panel A of Table 3 are those that will be relevant for the Baccalaureate outcomes. They
show that the Romanian high school admissions process makes feasible an RD-based analysis
of the impact of access to a better school.46

We also consider how access to a better school affects whether students take the Bac-
calaureate exam. Panel B of Table 3 implies that having access to a better school essentially
does not affect the probability of taking the exam; we can rule out differences in test-taking
rates of less than one-third of a percentage point. The absence of selection into taking the
Baccalaureate test makes it easier to interpret the effects on Baccalaureate performance.

Turning to this, panels C and D in Figure 4 present the impact of access to a better high
school on average scores, showing a discontinuous change in achievement at the cutoff. The
corresponding regression results in Panel C of Table 3 indicate statistically significant gains
equivalent to about 0.03 standard deviations in the overall score. Panel D shows that the

44 The RD approach additionally requires that there be no discrete changes in student characteristics that
affect outcomes like Baccalaureate performance. While our administrative data do not contain such variables,
our survey data suggest this condition is fulfilled. Specifically, results presented in Pop-Eleches and Urquiola
(2013) shows that a number of mother, child, and household characteristics do not vary discontinuously
around the cutoffs—all but one of the twenty estimates are insignificant in the sample within 1 point of the
cutoffs. As an additional test, Figure A.7 of the same paper shows that there is no visible jump in the density
around the discontinuity; as expected, the McCrary (2008) test shows no statistically significant break.
45 Our regression results are not qualitatively affected by instead using a linear, quadratic, or cubic specifi-
cation for a(ti) in equation (3), or by excluding the cutoff fixed effects.
46 The RD approach additionally requires that there be no discrete changes in student characteristics that
affect outcomes like Baccalaureate performance. While our administrative data do not contain such variables,
our survey data suggest this condition is fulfilled. Specifically, results presented in Pop-Eleches and Urquiola
(2013) shows that a number of mother, child, and household characteristics do not vary discontinuously
around the cutoffs—all but one of the twenty estimates are insignificant in the sample within 1 point of the
cutoffs. As an additional test, Figure A.7 of the same paper shows that there is no visible jump in the density
around the discontinuity; as expected, the McCrary (2008) test shows no statistically significant break.
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Table 3. The effect of access to a better school on educational outcomes

Notes: The regressions implement specification (5). They allow for a linear spline in the running variable
with a slope that can vary on each side of the cutoff. They are also clustered at the student level and
include cutoff/year fixed effects. Standard errors are in brackets and all panels present reduced form
specifications where the key independent variable is a dummy for whether a student’s transition score is
greater than or equal to the cutoff, giving him or her access to a better school. Columns (1) and (3)
restrict the sample to observations within the Imbens and Kalyanaraman (2012) bounds, and columns (2)
and (4) to those within the Calonico et al. (2014) bounds. * p < 0.10, ** p < 0.05, *** p < 0.01.

impact on Romanian scores is also positive and significant when estimated using the CCT
bandwidths, although insignificant in the IK specification (the corresponding graphs are in
panels E and F of Figure 4).

The bottom line is that students who score above cutoffs giving them access to better
schools perform better in the high-stakes Baccalaureate exam. Columns (3) and (4) in
Table 3 further confirm that these conclusions hold when one considers between-track rather
than between-school cutoffs. This significantly increases the number of RD-based quasi-
experiments and sample sizes, and in this case all estimates of the coefficient of interest are
statistically significant.
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5.3. Interactions between family and school environments. We now turn to the com-
bined RD-DD specification to examine whether access to a better school is associated with
a larger or smaller effect among children who grew up in different family environments as
induced by changes in access to abortion. As previewed in Section 5, the intuition surround-
ing our strategy, as well a useful preview of the results, can be conveyed by estimating our
main effects of access to a better school (Table 3) for four groups of children: (1) those
born during the restrictive abortion regime between January 1 and June 30 of 1990, (2)
those born immediately after access to abortion increased: July 1 to December 1990, (3)
those born between January 1 and June 30 of 1991, and (4) those born between July 1 and
December of 1991. The children born in the first and second half of 1991 allow us to control
for potential seasonality that could arise when comparing the outcomes of children born in
the first and second half of 1990.

The first two columns of Table 4 show the impact of access to a better school on the
overall Baccalaureate grade for each of these four distinct groups (panels A, B, C, and D).
The results in column (2) are striking. First, they show consistent positive and in three
specifications statistically significant effects of having access to a better school. Second,
the largest effects are observed for the group born before July of 1990; in other words the
later intervention—access to a better school—seems to have had the largest effect upon
the children who did not benefit from parental access to abortion and therefore had lower
achievement upon entering high school. Third, these four coefficients can be used to calculate
a difference-in-differences estimate of the effect of having access to a better school among
children who were born under increased access to abortion. This is very much in the spirit
of equation (7) and of our interacted specification (8). A back of the envelope calculation
using the sample with CCT bandwidths implies a difference-in-differences estimate of -0.023.

Columns 3 and 4 present analogous impacts on the overall Baccalaureate grade using the
track level rather than the school level analysis. These are even more striking; the effects from
having access to a better school are about three times larger for the cohort born during the
restrictive abortion regime. Again, if anything, the interaction between access to abortion
and access to a better school is negative for this outcome.

We now turn to the fully interacted RD-DD framework (equation 8). In Table 5 our
preferred specification (columns 3 and 4) uses linear trends in month of birth. As before, we
also consider alternative specifications in columns (1) and (2) where we use an indicator for
being born in the first six months of the year. In all columns the outcome of interest is the
performance on the Baccalaureate exam. As before, we use two samples: one restricted to
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Table 4. The effect of access to a better school for different birth cohorts

Notes: The regressions implement the specification in Table 3. Panels A-D break the sample into four
subgroups covering four six-month periods in the two birth years that make up the full sample.
Specifically, Panel A refers to children born between January and June (inclusive) of 1990, and Panel B
covers the same months of 1991. Panel C refers to the children born between July and December
(inclusive) of 1990, and panel D covers the same months of 1991. Columns (1) and (3) restrict the sample
to observations within the Imbens and Kalyanaraman (2012) bounds, and columns (2) and (4) to those
within the Calonico et al. (2014) bounds. * p < 0.10, ** p < 0.05, *** p < 0.01.

individuals within the IK bandwidth (columns 1 and 3), and the preferred CCT bandwidths
(columns 2 and 4).

Table 5 thus describes the differential impact associated with access to a better school
for children born before and after the access to abortion increased. To begin with, we start
with the more restrictive specifications that do not include the triple interactions. They
show a pattern of results that replicates the main effects shown above for each source of
variation. Specifically, the coefficients for being above a school cutoff (AccessBi) and being
born in a period of access to abortion (AccessAi) are positive and significant in our preferred
specification using the CCT bandwidth (column 4) for the Baccalaureate grade. The key
result refers to the interaction of access to abortion (AccessAi) and access to a better school
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Table 5. The interaction of access to abortion and to a better school (school
level cutoffs)

Notes: These regressions implement specification (8). They are clustered at the student level and include
cutoff fixed effects, where the cutoffs are those between schools. Standard errors are in brackets. All panels
present reduced form specifications where the key independent variable is a dummy for the interaction of
access to abortion and access to a better school. Columns (1) and (3) restrict the sample to observations
within the Imbens and Kalyanaraman (2012) bounds, and columns (2) and (4) to those within the
Calonico et al. (2014) bounds. * p < 0.10, ** p < 0.05, *** p < 0.01.

(AccessBi). The interaction coefficients in columns 1-4 of Panel A in Table 5 are generally
negative and three of the four are statistically significant. We next turn to Panel B, which
uses our preferred fully interacted unrestricted specification (equation 8). The results are
generally similar to those in more restrictive Panel A, but we note that now only 2 of the 4
interaction coefficients are statistically significant. The bottom line is that, at least in our
setting, there is little evidence for a positive interaction between shocks to family and school
environments—to the extent a pattern emerges, it is suggestive of substitutability rather
than complementarity.

5.4. Interpretation. The “reduced-form” interactions between family and school environ-
ments estimated in the previous section are interesting in their own right. However, they
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may reflect the presence or absence of dynamic complementarities in the technology of hu-
man capital formation as well as behavioral responses on the part of parents and children
(and other agents such as teachers). In Appendix C we present a conceptual framework that
incorporates dynamic complementarities and behavioral responses in our setting

Dynamic complementarities imply that human capital investments are more productive
when an individual’s baseline stock of skills is higher (Cunha and Heckman 2007). Our
estimates of null or negative interactions between early shocks to family environments and
later shocks to school environments do not appear to support the presence of dynamic
complementarities in our setting. However, even if there are dynamic complementarities
in the technology of human capital formation, these may be reinforced or undone if parents
or teachers respond endogenously to children’s prior achievement.

We attempt to explore the possibility of behavioral responses using survey data, focusing
on parental and student effort around homework, as well as parental decisions on whether
to hire a tutor. Table 6 presents the results, using our preferred “unrestricted” specification
from Table 5 with linear trends in month of birth. The interactions between the impact
of increased access to abortion (AccessAi) and access to a better school (AccessBi) on
whether parents help children with homework are consistently negative, albeit insignificant.
This would suggest that children born after there was greater access to abortion receive
less parental help with homework when they have access to a better school. Similarly,
we observe negative and occasionally significant interactions on children’s reports of doing
homework.The effects on whether parents hire a tutor are less conclusive.

Interpreted within the framework of dynamic complementarities, these results suggest
that parental and student behavior may partially undo dynamic complementarities between
family and school environments, at least in the Romanian setting. We cannot make this
statement conclusively due to the lack of statistical power and because we only have a limited
set of outcomes. Nevertheless, the pattern does suggest that our reduced-form estimates
are not necessarily inconsistent with the existence of dynamic complementarities in the
technology of human capital formation.

5.5. Robustness checks and interpretation issues. In this final section we address three
sets of issues that arise given the sources of variation we use: crowding, composition effects,
and possible biases from the distribution of children across cutoffs.

5.5.1. Crowding. The first issue is simply that our results might be driven by changes in
crowding, since smaller cohorts were born in the months after access to abortion increased.
The children born in July, 1990 and later therefore on average encountered less crowding in
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Table 6. Behavioral responses

Notes: These regressions implement specification (8). They are clustered at the student level and include
cutoff fixed effects, where the cutoffs are those between schools. Standard errors are in brackets. All panels
present reduced form specifications where the key independent variable is a dummy for the interaction of
access to abortion and access to a better school. * p < 0.10, ** p < 0.05, *** p < 0.01.
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many settings. For example, in some cases they might have experienced smaller class sizes
in elementary school. Any differential performance on their part might therefore reflect that
they enjoyed more inputs on average. As stated this issue is mitigated in our setting due to
the timing of the collapse of communism. Specifically, the children born just before and just
after the decline in fertility—those our DD empirical strategy focuses on—entered school in
the same academic year. They thus likely encountered similar crowding conditions.

Nevertheless, it is possible that the larger cohorts born during the period of the abortion
ban faced larger crowding in the medical system during pre and postnatal care, and this might
have affected their outcomes later in life. While this particular mechanism is strictly speaking
not a shock to the family environment, we interpret it broadly to also be an exogenous shock
during early childhood. We thus use it in the spirit of understanding possible interactions
between early childhood environments and later educational shocks.

5.5.2. Composition effects. Our results might be driven by composition effects if the
abortion policy led to changes in the socioeconomic characteristics of women who carry
pregnancies to term. If this were the only change induced by the abortion policy, our analysis
would reduce to exploring the heterogeneity of the effects of school quality by parental
characteristics rather than the interaction between family and school environments.

We now consider the evidence for such composition effects. In Appendix Table 12, Panel
A presents markers of mothers’ socio-economic status that are likely to affect children’s
academic performance; these include mothers’ educational attainment and whether they
were born in an urban area. The signs of the coefficients on educational attainment (columns
1-3) suggest that the mothers of children born after access to abortion increased were more
educated, and they were less likely to have been born in urban areas (column 4). However,
none of these coefficients are statistically significant.

Panel B of Appendix Table 12 complements this analysis by considering the effect of abor-
tion access on markers often related to the prevalence of “unwanted” children. For instance,
all else equal, women who are divorced as opposed to married, and older as opposed to
younger, may wish to have fewer children. Column (1) shows that increased access to abor-
tion led to a 0.7 percent increase in the probability that mothers were married (column 1),
although there is little evidence of an impact on the likelihood that they were divorced (col-
umn 2). Not surprisingly, column (3) indicates a reduction in the number of children after
liberalization. This, along with the large decrease in fertility after July of 1990 (Figure 6),
provides the most direct evidence that many children born under the abortion ban were not
wanted by their parents. However, the changes in the patterns of age at birth and life-cycle
fertility provide additional support for this claim. Column (4) shows that the mothers of
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children born after access to abortion increased were also younger by approximately 0.25
years. This suggests that on average older women responded more to the increased avail-
ability of abortion, presumably because they were more likely to have reached or exceeded
their ideal family size under the restrictive regime. This is also consistent with evidence
that greater access to abortion led to a decrease in each mother’s total fertility. Finally,
the results in Panel B of Table 12 are consistent with research by Mitrut and Wolff (2011)
who show that, following the lifting of the abortion ban, the number of abandoned children
decreased.

Thus, Table 12 suggests that changes in the composition of births—at least along observ-
able characteristics—are unlikely to fully account for the results we found above. We explore
this more directly by adding controls to our previous specifications. Appendix Table 13 uses
the administrative data and adds a current poverty status indicator.47 For conciseness, we
focus on our preferred specification—the one that includes linear trends in month of birth
to control for seasonality. In each case, Panel A simply replicates our main results showing
the combined RD-DD specifications that include interactions between access to abortion and
access to a better school.

Panel B of Table 13 estimates the main effects and the interaction between poverty status
and the effect of having access to a better school, including the controls. In Table 13, the
interactions in Panel B show that children who are not poor are significantly more likely to
take the Baccalaureate exam and to score higher, but there is no indication that the effect of
having access to a better school is different for poor and non-poor students. Finally, Panel
C of the same table includes both interactions between access to abortion and to a better
school, as well as a further interaction between poverty status and the indicator for having
access to a better school. The key interactions between access to abortion and to a better
school are not much affected by the inclusion of these poverty controls. This leads us to
conclude that composition is not driving our main results and that differential investments
in the family environment are likely to be playing a central role.

5.5.3. Distribution of children across cutoffs. If access to abortion affects children’s
transition scores, as our results suggest, it may also affect their ability to gain admission
to better schools. This raises the possibility that children born before and after access to
abortion increased may be differentially distributed across the cutoffs that determine access
to better schools, and this could be a source of differential improvements in Baccalaureate

47 This measure of poverty is used by schools to determine eligibility for a scholarship program, and has the
advantage of allowing us to maintain high sample sizes. However, there may be concern that this variable is
endogenous if it is itself affected by access to abortion.
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scores. For example, suppose that children born after the abortion ban was repealed were
systematically more likely to end up at cutoffs at which the benefit of going to a better
school was smaller; this could explain why we do not find evidence of interactions between
family and school environments.

Appendix Figure 10 presents evidence suggesting this is not the case. First, we estimate the
interaction between access to abortion (AccessAi) and access to a better school (AccessBi)
separately by tercile of the school quality distribution (parametrized by the transition scores
of the cutoff for entry to each school). We plot these estimates as vertical bars for each
of the four specifications associated with our abortion models.48 The interaction effects are
negative in each tercile and for almost every specification. Thus, it does not appear that our
main findings are driven by schools in certain parts of the quality distribution. Second, we
estimate the main effects of access to a better school (AccessBi) separately by tercile of the
school quality distribution for children who were born in 1990 either before or after access
to abortion increased. These are plotted as the dotted and solid lines respectively. The fact
that both of these lines slope upwards suggests that the effect of access to a better school is,
if anything, increasing in school quality. Thus, it does not appear that our findings can be
explained by the fact that children born after access to abortion increased were systematically
more likely to end up at cutoffs at which the benefit of going to a better school was smaller.

5.5.4. Robustness and results from the reweighting estimator. We include three
further tables with robustness checks using the fully interacted RD-DD framework. In Table
7, we first repeat the analysis of Table 5 using track rather than school cutoffs. Secondly, in
appendix tables 10 and 11 we repeat the analysis in Tables 5 and 7 using the score on the
Romanian language component of the Baccalaureate exam.

Finally, in Table 8 we implement the re-weighing approach described in Section 4.3.2. The
table shows that our main finding from estimating equation (8) is unchanged when we use the
re-weighting procedure described in Appendix Proposition 3 to estimate a mean interaction
parameter ∆0 = E[Yi(1, Zi)− Yi(1, Zi − 1)− Yi(0, Zi) + Yi(0, Zi − 1)|Di = 0]. Estimates are
insignificant whether using IK or CCT computation of the RDD bandwidth.

6. Conclusion

Interactions between family and school environments are of substantial interest, not least
because they have major policy implications. If there is complementarity between these
environments, then any efficiency-equity tradeoffs raised by some interventions might be
significantly mitigated. For example, early childhood home-based interventions aimed at
48 We use the IK bandwidth to generate these graphs but patterns are similar when using 1 point bandwidth.
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Table 7. The interaction of access to abortion and to a better school (track
level cutoffs)

Notes: These regressions implement specification (8). They are clustered at the student level and include
cutoff fixed effects, where the cutoffs are those between schools. Standard errors are in brackets. All panels
present reduced form specifications where the key independent variable is a dummy for the interaction of
access to abortion and access to a better school. Columns (1) and (3) restrict the sample to observations
within the Imbens and Kalyanaraman (2012) bounds, and columns (2) and (4) to those within the
Calonico et al. (2014) bounds. * p < 0.10, ** p < 0.05, *** p < 0.01.

under-privileged children might raise their achievement even as they enhance the effectiveness
of subsequent school-related investments.

This paper estimates the interaction between family and school environments by using
exogenous variation in the access to abortion and to selective schools in Romania. We thereby
address Almond and Mazumder’s (2013) observation that obtaining credible inferences on
such interactions requires identifying two arguably exogenous shocks to investments affecting
the same cohort. We also provide the necessary identification assumptions required for our
empirical approach.
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Table 8. Results of the reweighting estimator

Notes: Columns labeled “Reweighted” report the results of the approach described in Appendix
Proposition 3, which establishes identification of the mean interaction effect parameter
∆0 = E[Yi(1, Zi)− Yi(1, Zi − 1)− Yi(0, Zi) + Yi(0, Zi − 1)|Di = 0] via regression (8) after stacking the data
across schools and reweighting. Columns labeled “Unweighted” report the coefficient on AccessA ·AccessB
from (8) without reweighting. All results in this table use the “restricted” specification of (8) that omits
triple-interaction controls. All standard errors in this table use nonparametric bootstrap (with 200
bootstrap draws) clustered at the student level. * p < 0.10, ** p < 0.05, *** p < 0.01.

Our administrative data suggest that both access to abortion and access to selective schools
have significant positive impacts on individuals’ educational outcomes, but provide little in-
dication of significant positive interactions between them—to the extent a pattern emerges,
it is suggestive of substitutability rather than complementarity. This leaves open the pos-
sibility that, at least in this particular context, later schooling interventions may deliver
significant benefits even when they are targeted at more disadvantaged children.

We also note that such reduced form results may be necessary but not sufficient to iso-
late complementarities in the human capital production function. In particular, behavioral
responses on the part of students, parents, and other actors may reinforce or undo such in-
teractions. Our survey data, despite much smaller sample sizes, provide suggestive evidence
of such responses in terms of parent and student effort. In short, we cannot rule out that
ceteris paribus dynamic complementarities in the sense of Cunha and Heckman (2007) exist
in our setting, but are undone by individuals’ behavior.

There are a number of directions for future work. We have obviously presented evidence
in a single setting; needless to say, Romania has a distinct set of characteristics and our
findings may not necessarily generalize to other countries. In addition, we have focused on
only one type of interaction, that between family and school environments. One possibility
is that results may differ when one considers repeated shocks within a single environment.
In addition, in terms of behavioral responses in the school setting, we have data on only
children and parents; information on teachers would be of interest given their much larger
role in schools. Further, our evidence pertains to shocks that are chronologically far apart—
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for instance, our sources of variation may have affected investments in early childhood and
in high school, thus separated by several years. A question is whether the results might be
different when potential interactions are more immediate.

Our results also have implications for future work that may try to address issues related
to dynamic complementarities. The challenge of finding multiple sources of variation and
sufficient data argues for the use of experimental settings where researchers can manipulate
interventions and collect data relatively quickly. Our results suggest the need to measure and
understand the behavioral responses that result from these interventions. At the same time,
to the extent that experiments hold factors including behavioral responses constant, they
may misrepresent even the direction of the net impacts that would emerge if interventions
were taken to scale (Todd and Wolpin, 2003, and Pop-Eleches and Urquiola, 2013).
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Figure 5. Total fertility rate by year
Notes: The figure plots the total fertility rate calculated for each year. The total fertility rate is the
number of children each woman would have if she were to live through her childbearing years and have
children in accordance with contemporaneous age-specific fertility rates. These data come from various
years of the Population and Vital Statistics Report of the United Nations Statistical Division
(http://unstats.un.org/unsd/demographic/products/vitstats/default.htm).
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Figure 6. Cohort size by month of birth
Notes: The figure uses 1992 census data to plot the number of children born each month. June of 1990 is
normalized to zero, and the vertical line indicates the demarcation between June and July of 1990.

Figure 7. Proportion of births by month in admissions cohorts
Notes: The infant mortality rate and the fetal death rate are from the Romanian Demographic Yearbook
(1996).
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Figure 8. Proportion of births by month in admissions cohorts
Notes: All data are from the Romanian Demographic Yearbook (1996).
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Figure 9. Proportion of births by month in admissions cohorts
Notes: This figure uses 1992 census data to plot the proportion of children born in each month. The first
group is children born in 1990 present in the 2005 high school admission cohort. The second group is
children born in 1991 present in the 2006 admission cohort.

Figure 10. Distribution across cutoffs
Notes: This figure plots the interaction effects between access to abortion (AccessAi) and access to a
better school (AccessBi) by tercile of the school quality distribution (parametrized by the transition scores
of the cutoff for entry to each school) as vertical bars for each of the four specifications associated with our
abortion models. It also plots the main effects of access to a better school (AccessBi) by tercile of the
school quality distribution for children who were born in 1990 before and after access to abortion as the
dotted and solid lines respectively.
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Table 9. Descriptive statistics: All towns and survey towns

Mean S.D. N Mean S.D. N
Panel A:  All towns:
Panel A.1:  Individual level 
Transition score 8.14 0.87 105,737 8.26 0.87 92,772
Baccalaureate taken 0.83 0.38 105,737 0.85 0.36 92,772
Baccalaureate grade 8.73 0.78 79,873 8.02 1.08 69,945
Romanian Bacc. grade 7.48 1.59 87,383 7.80 1.33 78,243
Panel A.2:  Track level
Number of 9th grade students 53.9 40.4 1,963 52.4 37.0 1,771
Panel A.3:  School level 
Number of 9th grade students 129.4 70.6 817 118.5 63.4 783
Number of tracks 2.4 1.1 817 2.3 1.1 783
Panel A.4:  Town level
Number of 9th grade students 766.2 839.8 138 708.2 757.3 131
Number of schools 5.9 6.0 138 6.0 6.2 131
Number of tracks 14.2 12.5 138 13.5 12.0 131
Panel B:  Survey towns:
Panel B.1:  Individual level
Transition score 8.03 0.82 15,177 8.22 0.81 13,685
Baccalaureate taken 0.83 0.37 15,177 0.85 0.36 13,685
Baccalaureate grade 8.80 0.72 11,914 8.06 0.98 10,860
Romanian Bacc. grade 7.61 1.52 12,623 7.79 1.25 11,539
Panel B.2:  Track level
Number of 9th grade students 40.2 26.1 378 40.1 23.7 341
Panel B.3:  School level
Number of 9th grade students 115.0 67.1 132 109.5 62.3 125
Number of tracks 2.9 1.1 132 2.7 1.1 125
Panel B.4:  Town level
Number of 9th grade students 257.2 133.6 59 244.4 128.7 56
Number of schools 2.2 0.4 59 2.2 0.4 56
Number of tracks 6.4 2.1 59 6.1 2.1 56

High school admission cohort
2005 2006

Notes: This table uses the administrative data to describe two samples. Panel A describes the universe of
Romanian towns with two exceptions: i) towns that make up Bucharest, and ii) towns that contain a single
school. Panels A.1, A.2, A.3, and A.4 refer to characteristics at the student, track, school, and town level,
respectively. Panel B presents analogous information for the towns we targeted for surveying.
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Table 10. Interaction effects using between school cutoffs

Notes: These regressions implement specification (8). They are clustered at the student level and include
cutoff fixed effects, where the cutoffs are those between schools. Standard errors are in brackets. All panels
present reduced form specifications where the key independent variable is a dummy for the interaction of
access to abortion and access to a better school. Columns (1) and (3) restrict the sample to observations
within the Imbens and Kalyanaraman (2012) bounds, and columns (2) and (4) to those within the
Calonico et al. (2014) bounds. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 11. Interaction effects using between track cutoffs

Notes: These regressions implement specification (8). They are clustered at the student level and include
cutoff fixed effects, where the cutoffs are those between schools. Standard errors are in brackets. All panels
present reduced form specifications where the key independent variable is a dummy for the interaction of
access to abortion and access to a better school. Columns (1) and (3) restrict the sample to observations
within the Imbens and Kalyanaraman (2012) bounds, and columns (2) and (4) to those within the
Calonico et al. (2014) bounds. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 12. The effect of access to abortion on mothers’ characteristics

Notes: These regressions estimate specification (5) with maternal characteristics as outcome variables.
Standard errors are in brackets and are clustered by age in months. The abortion access dummy (AccessA)
equals 1 for mothers who gave birth on or after July 1, 1990, and equals 0 for mothers who gave birth on or
before June 30, 1990. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 13. Interactions controlling for non-poor status

Notes: These regressions implement specification (8). They are clustered at the student level and include
cutoff fixed effects, where the cutoffs are those between schools. Standard errors are in brackets. All panels
present reduced form specifications where the key independent variable is a dummy for the interaction of
access to abortion and access to a better school. Columns (1) and (3) restrict the sample to observations
within the Imbens and Kalyanaraman (2012) bounds, and columns (2) and (4) to those within the
Calonico et al. (2014) bounds. * p < 0.10, ** p < 0.05, *** p < 0.01.51



Appendix B: Identification Analysis

6.1. Notation. Let Di ∈ {0, 1} indicate whether student i was exposed to the abortion
reform, i.e. born on or after July 1st, 1990. Write Di = 1(Cohorti = 1 or Afteri = 1), where
Afteri indicates that i was born in the second half of their birth year (July-December), and
Cohorti indicates that i was in 2006 cohort (birth year 1991) rather than the 2005 cohort
(birth year 1990).49 We will often abbreviate the random variables Accessi and Cohorti as
Ai and Ci, respectively. The variable Di is referred to as AccessAi in the main text, but we
use Di here for brevity. Let Pi be i’s town. We refer to a student’s town/year pair (Pi, Ci)
as their “market”. A single market allocates students from a given cohort across the schools
in a given town.

Each town p contains a set of Zp + 1 schools z ∈ {0, 1, . . . Zp}, which we assume is stable
over the years 2005 and 2006. Let tpcz be the transition score threshold between schools z−1
and z in market (p, c),where the school indices are ordered in increasing order of tpcz within
a market (p, c) so that tpc1 ≤ tpc2 ≤ tpcZp . Out notation takes the ordinal ranking of schools
to be the same across the two years, so that within a given town p, a given value of z has the
same meaning in 2005 as it does 2006. Let Zi(x) = max{z : x ≥ tPi,Cohorti,z} be the “best”
school to which i is admitted as a function of transition score x, and let Xi denote student
i’s realized transition score (denoted scorei in the main text). Since the transition score of a
given student may be affected by abortion access Di, let us write Xi = Xi(Di), where Xi(0)
and Xi(1) denote counterfactual transition scores depending on abortion access. Student i’s
“assigned” school Zi (denoted schooli in the main text) is Zi = Zi(Xi).

For a generic outcome variable Y , let Yi(d, z) indicate potential outcomes as a function
of access to abortion d and high school assignment z. If students attend the most selective
school to which they are admitted, then the z appearing in Yi(d, z) denotes the school that i
actually attends. However, we focus on identifying intent-to-treat effects, without assuming
this.50

6.2. Identification. To combine the DD and RDD sources of identification, we need to
exploit variation in transition scores jointly with variation in groups that determine eligibility
for the abortion reform. This requires making assumptions about the distribution of potential
outcomes conditional on both types of variables.

We begin with the following continuity assumption on potential outcomes, which leads to
RDD identification:

Assumption 1 (continuity). E[Yi(d, z)|Pi = p,Afteri = a, Cohorti = c,Xi(d) = x] is
a continuous function of counterfactual transition score x, for any school z and for either
counterfactual value of abortion access d ∈ {0, 1}, as well as b, c ∈ {0, 1} and town p.
49Note that Afteri = 1− beforei, where beforei was introduced in Section 4.
50In the main text, we describe the schools as being ordered by their average transition score, rather than
by their minimum score (the threshold tpcz). In that notation, a next-best school treatment effect like
Yi(d, z)−Yi(d, z−1) captures the effect of being assigned to the zth worst school rather than the z−1thworst
school, when schools are ranked according to their average transition score. When schools are instead ordered
by their minimum transition score, Yi(d, z)− Yi(d, z− 1) captures the effect of having access to the zth least
selective school rather than the z − 1th least selective one. This is what is picked up by RDD estimands
that use discontinuities at the transition score threshold between two schools, and we thus in this appendix
take the notation z to refer to the ordering by minimum transition score. In practice, the two orderings are
nearly the same.
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Let ηz(a, c, p) denote the observable discontinuity in the conditional expectation E[Yi|Pi =
p,Ai = a, Ci = c,Xi = x] at x = tpcz:
lim
x↓tpcz

E[Yi|Pi = p,Afteri = a,Cohorti = c,Xi = x]− lim
x↑tpcz

E[Yi|Pi = p,Afteri = a,Cohorti = c,Xi = x]

Under Assumption 1:
(9) ηz(a, c, p) = E[Yi(dac, z)− Yi(dac, z − 1)|Pi = p,Afteri = a,Cohorti = c,Xi(dac) = tpcz]
where dac := 1− (1− a)(1− c) is the abortion treatment value for group a, c, identifying a
local average treatment effect of moving from school z− 1 to school z, among students with
scores around tpcz in town p and in abortion-reform group a, c.

Now let us turn to the DD source of identification. We make the following parallel trends
assumption:
Assumption 2 (parallel trends). For any schools z and z′ in town p:
E[Yi(1, z′)|p, 1, 1, tp1z]− E[Yi(1, z′)|p, 0, 1, tp1z] = E[Yi(1, z′)|p, 1, 0, tp0z]− E[Yi(1, z′)|p, 0, 0, tp0z]

with the notation E[Yi(1, z′)|p, a, c, x] :=E[Yi(0, z′)|Pi = p,Ai = a, Ci = c,Xi(1) = x].

Assumption 2 says that among students who would be just admitted to school z in their
cohort given the abortion treatment (Xi(1) = tpCiz), the difference in mean abortion-treated
outcomes Yi(1, z′) at school z′ between those born in the first and second halves of their
birth year is stable between the two cohorts. Given that we will combine this difference-
in-differences variation with the RDD variation between adjacent schools, we only actually
need Assumption 2 to hold for z′ = z and z′ = z − 1, but we state the assumption generally
here for ease of notation.

Note that while the canonical two-group, two-period difference-in-differences setup con-
siders a treatment that “turns on” in a later period for one group (while remaining “off”
for the other group), ours is a setup in which treatment turns on for one group in a “later”
period, and is always on for the second group. In our setting the group for whom treatment
changes are students in the 2005 cohort, and “later" refers to students born in the months
July-December. Accordingly, while parallel trends assumptions are typically phrased as
an assumption about differences in untreated outcomes, ours concerns differences in treated
outcomes between cohorts.51

Accordingly, Assumption 2 also conditions on a student’s treated transition score Xi(1),
rather than their untreated transition score Xi(0) or their realized transition score Xi. The
potential outcome Xi(1) is a baseline characteristic of students that is not itself affected by
the abortion treatment (see Caetano et al. 2022 for a similar parallel-trends assumption in DD
models with time-varying covariates). We evaluate Xi(1) at the cohort-specific thresholds
tpcz to allow for changes in transition scores across years, which could change the composition
of students with an Xi(1) equal to any particular value x in a given cohort.

The important implication of Assumption 2 is that it allows us to impute certain means of
abortion-treated outcomes among the students that are not exposed to the abortion-reform,
which is a counterfactual quantity. For example:

51 There is no fundamental conceptual difference: our setup is equivalent to the canonical one if one defines
“treatment” to be a lack of access to abortion, and one swaps the labels of the before and after periods.
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E[Yi(1, z)|Pi = p,Di = 0, Xi(1) = tp0z] = {E[Yi|Pi = p,Ai = 1, Ci = 0, Xi = tp0z]
+E[Yi|Pi = p,Ai = 0, Ci = 1, Xi = tp1z]− E[Yi|Pi = p,Ai = 1, Ci = 1, Xi = tp1z]}

Together with Assumption 1 this leads to our central result that combines RDD and DD
variation to identify interaction effects:

Proposition 1. Under Assumption 1 and 2, for each school z in town p:
E[Yi(1, z)− Yi(1, z − 1)|Pi = p,Di = 0, Xi(1) = tp0z] = ηz(1, 0, p) + ηz(0, 1, p)− ηz(1, 1, p)

and
E[Yi(0, z)− Yi(0, z − 1)|Pi = p,Di = 0, Xi(0) = tp0z] = ηz(0, 0, p)

Proof. See Appendix B.
Since ηz(a, c, p) is identified for each (a, c, p), both of the LHS quantities in Proposition 1 are
identified . Notice that the average school-effect we can identify from ηz(0, 0, p) conditions on
the event Xi(0) = tp0z while the effect we can identify from ηz(1, 0, p)+ηz(0, 1, p)−ηz(1, 1, p)
conditions on Xi(1) = tp0z. This is a form of the “bad-control” problem that arises because
our RDDs condition on a variable affected by the abortion reform (Angrist and Pischke,
2009). �

However, an apples-to-apples comparison can be constructed by averaging the two quan-
tities identified in Proposition 1 over the distributions of Xi(1) and Xi(0), respectively. This
allows us to identify the mean interaction effect within each town p:

∆p := E[{Yi(1, Zi)− Yi(1, Zi − 1)} − {Yi(0, Zi)− Yi(0, Zi − 1)} |Pi = p,Di = 0]
Since we can only identify E[Yi(d, z)− Yi(d, z − 1)|Pi = p,Di = 0, Xi(d) = x] for d ∈ {0, 1}
for values of x that are equal to school cutoffs tp0z,identifying ∆p is only possible if there is
sufficient variation in school cutoffs tp0z across schools, or under treatment effect homogeneity
assumptions. We go the former route and approximate these cutoffs as “dense“ in the support
X of Xi as in Bertanha (2020), i.e.

Assumption 3 (density of schools). Fix any p and x ∈ X . Then in any neighborhood of
x there exists a school cutoff tp0z.
Assumption 3 is best seen as an approximation, motivated by there being a school zxcp
with a transition score cutoff that is sufficiently close to any given x, for each market c, p.
Identification arguments will integrate over ηzxcp(a, c, p), as if there were school with a cutoff
exactly at x. This is justified under asymptotics in which we imagine the number of schools
growing to infinity along with our sample size, and assuming Riemann integrability of the
function ηzxcp(a, c, p) (see Bertanha 2020 for details). For concreteness, define zxcp to be the
school having the largest tpcz cutoff smaller than x (so that e.g. Zi(x) = zxCiPi

, and realized
treatment assignment is Zi = zXiCiPi

).
Our approach requires two further assumptions. Firstly, we must impute the distribution

of Xi(1)|Di = 0, Pi = p, which is a counterfactual quantity. To identify it from the data, we
impose a parallel trends assumption for treated transition scores:
Assumption 4 (distributional parallel trends for the transition score). For all x
and p:

P (Xi(1) ≤ x|Di = 0, Pi = p) = F10p(x) + F01p(x)− F11p(x)
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where we let Facp(x) := P (Xi ≤ x|Ai = a, Ci = c, Pi = p) denote the group-specific CDF of
observed transitions score Xi. While Assumption 4 may appear stronger than conventional
mean parallel trends (since it must hold for each value of x), Roth and Sant’Anna (2022)
show that distributional parallel trends holds if and only if mean parallel trends is robust to
monotonic transformations of the outcome variable (in this case, the transition score).

We require one final assumption:

Assumption 5 (no indirect effects). For each x and p, E[Yi(1, Zi(Xi(d)))−Yi(1, Zi(Xi(d))−
1)|Pi = p,Di = 0, Xi(1) = x] does not depend on d. Assumption 5 says that the abortion

reform d does not have indirect effects (on average) on the size of next-best-school treatment
effects via school assignment Zi(Xi(d)). There are two simple sufficient conditions under
which this will hold:

(1) if Zi(Xi(d)) does not depend on d, either because Xi(1) = Xi(0) or because changes
to transition score caused by the abortion reform do not push any students across a
school threshold,

(2) “linearity” in average school-assignment outcomes: that is E[Yi(1, z)−Yi(1, z−1)|Pi =
p,Di = 0, Xi(1) = x] does not depend on z (on average).

The first item above is quite plausible as an approximation, because the average effect
Xi(1) −Xi(0) of abortion access on transition scores is quite small in comparison with the
typical distance between subsequent school thresholds. The second item would hold in a
model in which Yi(1, z) is linear in a “dose” of school quality for school z (as in Bertanha
2020) and differences in school quality for adjacent schools is roughly constant along the
school ladder (within a town/cohort). In Section 5.5.3, we have described evidence that if
anything, Yi(1, z) appears to be convex in school index z, which implies that departures from
item 2 above would bias our estimates in the direction of finding positive interaction effects.

Now we can state our identification result for mean interaction effects ∆p in each town.
Proposition 2. Given assumptions 1-5, ∆p is identified as∫
dFX(1)|D=0,P=p(x)·

{
ηzx0p(1, 0, p) + ηzx0p(0, 1, p)− ηzx0p(1, 1, p)

}
−
∫
dFX(0)|D=0,P=p(x)·ηzx0p(0, 0, p)

where FX(0)|D=0,P=p(x) = FX|D=0,P=p(x) and FX(1)|D=0,P=p(x) is identified by Assumption 4.
Proof. See Appendix B.
Section 6.4 discusses how Proposition 2 can be implemented through regression (8), by
“stacking” the data across schools and then reweighting observations. �

6.3. What if abortion only matters via transition scores? Looking at the fully-
interacted regression (8), it might appear that by conditioning on transition score, we have
blocked the main channel by which abortion reform affects Baccalaureate scores. Thus, we
might expect the coefficient on AccessA ·AccessB in (8) to be zero, missing any interaction
effects, if transition scores mediate the impacts of abortion access.

To make this critique precise, let us index potential outcomes by three arguments: Y(d, x, z),
where x indicates a transition score and d now indicates any additional impacts of abortion
access d on outcomes, with transition score x held fixed. The function Y is related to our
main potential outcomes notation by Y (d, z) = Y(d,Xi(d), z). To simplify notation, suppose
in what follows that there is just one town p. The mean interaction effect parameter ∆0 can
be decomposed as follows, combining both direct and indirect effects of the abortion reform:
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∆0 =E[Yi(1, Xi(1), Zi)− Yi(1, Xi(1), Zi − 1)− Yi(0, Xi(0), Zi) + Yi(0, Xi(0), Zi − 1)|Di = 0]

=
∫
dFX(1)|D=0(x) · E[Yi(1, x, Zi)− Yi(1, x, Zi − 1)− Yi(0, x, Zi) + Yi(0, x, Zi − 1)|Di = 0, Xi(1) = x]︸ ︷︷ ︸

non-score interaction effects

+
∫ {

dFX(1)|D=0(x)− dFX(0)|D=0(x)
}
· {E[Yi(0, x, Zi)− Yi(0, x, Zi − 1)} |Di = 0, Xi(1) = x]︸ ︷︷ ︸

score-mediated interaction effects

+
∫
dFX(0)|D=0(x) · {E[Yi(0, x, Zi)− Yi(0, x, Zi − 1)|Di = 0, Xi(1) = x]

−E[Yi(0, x, Zi)− Yi(0, x, Zi − 1)|Di = 0, Xi(0) = x]}︸ ︷︷ ︸
reallocation effect

With the above notation, we can formalize the possibility that abortion access only affects
Baccalaureate scores Yi through transition scores. Call abortion-access “excludable” from
the outcome equation when Yi(d, x, z) = yi(x, z) for some function yi, i.e. potential outcomes
do not depend upon d, given x. If excludability holds for all students, then the first term
above is zero, and all interaction effects are mediated by changes to students’ transition
scores.

If the abortion reform affects the distribution of transition scores, this leads to a difference
between FX(1)|D=0 and FX(0)|D=0, making the second term in ∆0 generally non-zero. If
transition scores are furthermore correlated with individual heterogeneity in next-best-school
effects, the third term will also contribute. The third term shows that average interaction
effects can arise simply from changing which transition scores are assigned to which students,
even with the overall distribution of transition scores unchanged (a “reallocation” effect).

The basic approach described in the main text (equation 8) focuses on the first and third
terms above, because it does not account for changes in the distribution of transition scores
arising from the abortion reform. However, in Section 6.4 below we describe a way to
reweight the data before estimating equation (8) that allows it to capture all three terms, as
the estimand of Proposition 2 does.

To appreciate the role that reweighting will play in estimation, let us consider the basic
approach of Equation (8) and suppose for the moment that excludability holds and that
there are just two schools separated by a single threshold t (continuing with a single town
p). The coefficient on AccessA · AccessB in (8) then captures the difference-in-differences
of RDD estimates: ηz(1, 0) + ηz(0, 1) − ηz(1, 1) − ηz(0, 0). By Proposition 1, both ηz(0, 0)
and {ηz(1, 0) + ηz(0, 1) − ηz(1, 1)} yield different averages of the same quantity: yi(tz, z) −
yi(tz, z − 1). The former averages over students with Xi(0) = t while the latter averages
over students with Xi(1) = t. Thus our coefficient of interest differs from zero only via the
reallocation effect.

However, in actuality, regression (8) is not confined to such apples-to-oranges comparisons
because it aggregates over the many thresholds, which are spread throughout the transition
score distribution. Suppose for concreteness that the abortion reform has a homogeneous
effect on transition scores for all students, so that Xi(1) = Xi(0) + δ for some δ. Then when
comparing outcomes Yi(1, z) to Yi(0, z) among students having Xi(0) = tp0z, the proper
proper comparison group for investigating outcomes would be students for whom Xi(1) =
tp0z + δ, not those for whom Xi(1) = tp0z. When we stack the data across all thresholds as
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described in the next section, these Xi(1) = tp0z + δ students contribute to the coefficient of
interest, along with the Xi(0) = tp0z students. The key requirement is that the weights that
regression (8) applies to the various ηzx0p(0, 0, p) and ηzx0p(1, 0, p)+ηzx0p(0, 1, p)−ηzx0p(1, 1, p)
coincide with dFX(0)|D=0,P=p(x) and dFX(1)|D=0,P=p(x) respectively, recovering Proposition 2.
The reweighting scheme described in the next section does so to ensure that the coefficient
on AccessA · AccessB identifies a meaningful average interaction effect parameter.

6.4. Stacked regression . We have seen in Proposition 2 that ∆p can be estimated by a
two-step procedure in which regression discontinuity estimates are computed for each school
z and town p, and then averaged over the empirical distribution of schools among abortion-
nontreated students, as well as an imputed counterfactual distribution. This procedure might
not be particularly efficient, since it involves running hundreds of separate RDD’s around
each separate cutoff tpcz.

The “stacked” approach presents an alternative to running such separate RDDs, by trans-
forming the data such that the average interaction effect across towns

∆0 = E[{Yi(1, Zi)− Yi(1, Zi − 1)} − {Yi(0, Zi)− Yi(0, Zi − 1)} |Di = 0]
can be estimated through a single run of regression (8). Specifically, we make ZPi

copies of
each observation i, where Zp+1 is the number of schools in town p. In this expanded dataset,
let index ij denote the jth copy of the observation for student i, where j = 1 . . . ZPi

. Then
we define Xij to be Xi − tPiCij, the distance of i’s transition score to the cutoff for school j
in their town.52 Using this stacked dataset, we can now estimate common regressions that
condition on values of Xij (across the entire stacked dataset) rather than Xi− tpcz for fixed p
and z in the original dataset. For all other variables V , the value Vij = Vi appears in “copy”
j of row i.

Despite it’s appeal as an estimator, the stacked approach imposes a particular weighting
over the population that will generally not coincide with the parameter of interest ∆p for town
p. To see this, let us first consider a simplified case in which there is only one town p, and we
have Z copies of each observation i, where Z+ 1 is the number of schools. An observation of
our stacked dataset is a draw from the probability distribution P̃ (Aij) := 1

Z

∑Z
j=1 P (Ai(tj)),

where Aij = Ai(tj) is an event (like Xij = x) that depends on which threhold tj is being
used in that “copy” of the data, and P is the population distribution over students i.

For example, the analog of our discontinuity parameter ηz(a, c) in the stacked approach
would become:
η̃(a, c) := lim

ε↓0
Ẽ[Yij |Aij = a,Cij = c,Xij = ε]− lim

ε↑0
Ẽ[Yij |Aij = a,Cij = c,Xij = ε]

= 1
fac(0)

Z∑
z=1

{
fX(tz|a, c) · lim

ε↓0
E[Yi|a, c,Xi = tz + ε]− fX(tz|a, c) · lim

ε↑0
E[Yi|a, c,Xi = tz + ε]

}

= 1
fac(0)

Z∑
z=1

fX(tz|a, c) · ηz(a, c)

52 Note that this strategy of normalizing of the running variable to a common scale is similar to the
“normalizing-and-pooling” strategy discussed by Cattaneo, Keele, Titiunik and Vasquez-Bare (2016) for
settings in which different subgroups of the population face different cutoffs of the running variable. In our
setting, all students within the same town instead face a common set of multiple cutoffs.
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where fac(ε) := ∑
z fX(tz + ε|a, c) and we have used continuity of fX(x|a, c). Echoing Lemma

1 of Cattaneo et al. (2016), the above reveals a weighted average of the parameter ηz(a, c)
across all the school thresholds indexed by z (see proof of Proposition 3 for a derivation).

Suppose for simplicity that fX(x|a, c) were the same over all values of a and c during the
post-reform era (i.e. dac = 1). Then, given our continuity and parallel trends assumptions,
the difference-in-differences η̃(1, 0) + η̃(0, 1) − η̃(1, 1) − η̃(0, 0) of η̃(a, c), captured by the
coefficient on AccessA · AccessB in (8) estimates:

Z∑
z=1

{
fX(tz|1)∑
z′ fX(tz′ |1) · E[Yi(1, z)− Yi(1, z − 1)|Di = 0, Xi(1) = t0z]

fX(tz|0)∑
z′ fX(tz′ |0) · E[Yi(0, z)− Yi(0, z − 1)|Di = 0, Xi(0) = t0z]

}
with the notation that fX(tz|0) = fX(tz|a = 0, c = 0) and fX(tz|1) = fX(tz|a, c) for the other
three values of (a, c). In the dense-schools limit (Assumption 3), the above sum becomes
an integral over the conditional distribution of transition scores X in each abortion-reform
state. What we seek, by contrast, is to average the second term in brackets above over the
distribution of Xi(0) conditional on Di = 0, while averaging the first term over the distri-
bution of Xi(1) again conditional on Di = 0. This can be accomplished by reweighing the
post-reform observations appropriately before equation (8) is estimated, so that fX(1)|D=0(tz)
appears where fX(tz|1) does in the expression above, mirroring Proposition 2.

When there are multiple towns, the weights required to obtain the correct averaging in
the stacked regression become somewhat more complicated. Proposition 3 shows that we
can nevertheless reweight the observations so that the coefficient on AccessA · AccessB in
Eq. (8), when applied to the stacked dataset, corresponds to a mean interaction effect:
∆0 = E[Yi(1, Zi) − Yi(1, Zi − 1) − Yi(0, Zi) + Yi(0, Zi − 1)|Di = 0] (which averages over all
towns p).

Proposition 3. Let Yij:= ωij ·Yi, where ωij = ωPi,j
Ai,Ci

and ωpzac := fac · P (Pi=p|Di=0)
P (Pi=p|Ai=a,Ci=c,Xi=tpcz) ·

∆F pz
ac

fX(tpcz |Ai=a,Ci=c) where fac := ∑
p′,z′ P (Pi = p′|Ai = a, Ci = c,Xi = tp′cz′)fX(tp′cz′ |Ai =

a, Ci = c),

∆F pzac =


F (tp0z|00p)− F (tp,0,z−1|00p) if a = c = 0
{F (tp0z|10p)− F (tp,0,z−1|10p)}+ {F (tp1z|01p)− F (tp,1,z−1|01p)}

−{F (tp1z|11p)− F (tp,1,z−1|11p)} if max(a, c) = 1
and F (x|acp) := P (Xi ≤ x|Ai = a, Ci = c, Pi = p). Then:

∆0 = η̃(1, 0) + η̃(0, 1)− η̃(1, 1)− η̃(0, 0)

Proof. See Appendix B. �

The components of the weights appearing in Proposition 3 play intuitive roles. The ratio
of probabilities “undoes” the up-weighting of observations from large school districts in the
stacked sample. The ratio ∆F pz

ac /fX(tpcz|a, c) meanwhile “corrects” for the heterogeneous
weights which which a given school z appears in η̃(a, c) across values of (a, c) (whoch must
be equal for Assumption 2 to be employed). Finally fac simply reflects a normalization
within each (a, c) cell. In practice, implementing the weighting ωij = ωPi,j

Ai,Ci
requires two

non-parametric first-stage estimation problems. We use standard local polynomial regression
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and kernel density estimators. Results of the reweighting estimator are presented in Table
8.
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Appendix C: Proofs
6.5. Proof of Proposition 1. First we prove Eq (14). By Assumption 1:
η(a, c, p) = lim

x↓tpcz

E[Yi|Pi = p,Afteri = a,Cohorti = c,Xi = x]− lim
x↑tpcz

E[Yi|Pi = p,Afteri = a,Cohorti = c,Xi = x]

= lim
x↓tpcz

E[Yi(dac, Zi(x))|p, a, c,Xi(dac) = x]− lim
x↑tpcz

E[Yi(dac, Zi(x))|p, a, c,Xi(dac) = x]

= lim
x↓tpcz

E[Yi(dac, z)|p, a, c,Xi(dac) = x]− lim
x↑tpcz

E[Yi(dac, z − 1)|p, a, c,Xi(dac) = x]

=E[Yi(dac, z)− Yi(dac, z − 1)|Pi = p,Afteri = a,Cohorti = c,Xi(dac) = tpcz]

The second claim of Proposition 1 now follows immediately:
ηz(0, 0, p) = E[Yi(0, z)− Yi(0, z − 1)|Pi = p,Afteri = 1, Cohorti = 1, Xi(0) = tp0z]

For the first claim, we can rearrange terms and apply the parallel trends Assumption 2:
ηz(1, 0, p) + ηz(0, 1, p)− ηz(1, 1, p) = E[Yi(1, z)− Yi(1, z − 1)|Pi = p,Afteri = 1, Cohorti = 0, Xi(1) = tp0z]

+ E[Yi(1, z)− Yi(1, z − 1)|Pi = p,Afteri = 0, Cohorti = 1, Xi(1) = tp1z]
− E[Yi(1, z)− Yi(1, z − 1)|Pi = p,Afteri = 1, Cohorti = 1, Xi(1) = tp1z]

=E[Yi(1, z)|Pi = p,Ai = 1, Ci = 0, Xi(1) = tp0z] + E[Yi(1, z)|Pi = p,Ai = 0, Ci = 1, Xi(1) = tp1z]
− E[Yi(1, z)|Pi = p,Ai = 1, Ci = 1, Xi(1) = tp1z]

− E[Yi(1, z − 1)|Pi = p,Ai = 1, Ci = 0, Xi(1) = tp0z]− E[Yi(1, z − 1)|Pi = p,Ai = 0, Ci = 1, Xi(1) = tp1z]
+ E[Yi(1, z − 1)|Pi = p,Ai = 1, Ci = 1, Xi(1) = tp1z]

= E[Yi(1, z)|Pi = p,Ai = 0, Ci = 0, Xi(1) = tp0z]− E[Yi(1, z − 1)|Pi = p,Ai = 0, Ci = 0, Xi(1) = tp0z]
= E[Yi(1, z)− Yi(1, z − 1)|Pi = p,Di = 0, Xi(1) = tp0z]

6.6. Proof of Proposition 2. With FX(1)|D=0,P=p(x) = P (Xi(1) ≤ x|Di = 0, Pi = p) in
hand, we can weight the abortion-treated and untreated groups from Proposition 1 according
to their respective measures, i.e. estimate:∫

dFX(1)|D=0,P=p(x) ·
{
ηzx0p

(1, 0, p) + ηzx0p
(0, 1, p)− ηzx0p

(1, 1, p)
}
−
∫
dFX|D=0,P=p(x) · ηzx0p

(0, 0, p)∫
dFX(1)|D=0,P=p(x) · E[Yi(1, zx0p)− Yi(1, zx0p − 1)|Pi = p,Di = 0, Xi(1) = x]

−
∫
dFX(0)|D=0,P=p(x) · E[Yi(0, zx0p)− Yi(0, zx0p − 1)|Pi = p,Di = 0, Xi(0) = x]∫

dFX(1)|D=0,P=p(x) · E[Yi(1, zx0p)− Yi(1, zx0p − 1)|Pi = p,Di = 0, Xi(1) = x]

− E[Yi(0, Zi)− Yi(0, Zi − 1)|Pi = p,Di = 0]∫
dFX(1)|D=0,P=p(x) · E[Yi(1, Zi(Xi(1)))− Yi(1, Zi(Xi(1))− 1)|Pi = p,Di = 0, Xi(1) = x]

− E[Yi(0, Zi)− Yi(0, Zi − 1)|Pi = p,Di = 0]

Note that when Di = 0, knowing that Xi(1) = x does not imply that Xi = x, so we cannot
replace zx0p in the first term above by Zi = Zi(Xi). This is where Assumption 5 helps. With
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it, we have:∫
dFX(1)|D=0,P=p(x) ·

{
ηzx0p

(1, 0, p) + ηzx0p
(0, 1, p)− ηzx0p

(1, 1, p)
}
−
∫
dFX|D=0,P=p(x) · ηzx0p

(0, 0, p)∫
dFX(1)|D=0,P=p(x) · E[Yi(1, Zi(Xi(0)))− Yi(1, Zi(Xi(0))− 1)|Pi = p,Di = 0, Xi(1) = x]

− E[Yi(0, Zi)− Yi(0, Zi − 1)|Pi = p,Di = 0]∫
dFX(1)|D=0,P=p(x) · E[Yi(1, Zi − Yi(1, Zi − 1)|Pi = p,Di = 0, Xi(1) = x]

− E[Yi(0, Zi)− Yi(0, Zi − 1)|Pi = p,Di = 0]
E[Yi(1, Zi)− Yi(1, Zi − 1)− Yi(0, Zi + Yi(0, Zi − 1)|Pi = p,Di = 0] = ∆p

where in the second line we’ve replaced Zi(Xi(1)) with Zi(Xi(0)) = Zi.
6.7. Proof of Proposition 3. Consider a generic event Aij referring to student i in stacked
observation j. Given that we have ZPi

copies of each observation i, our population probability
distribution P̃ over stacked observations can be characterized by P̃ (Pij = p) = Zp·P (Pi=p)∑

p′ Zp′ ·P (Pi=p′)

and P̃ (Aij|Pij = p) := 1
Zp

∑Zp

j=1 P (Ai(tpCij)|Pi = p). Thus: P̃ (Aij) = ∑
p P̃ (Aij, Pij = p) =

1
Z̄

∑
p

∑Zp

j=1 P (Ai(tpCij), Pi = p) where Z̄ := ∑
p′ Zp′ · P (Pi = p′), for any event Ai(tpCij) that

depends on j only through the j-specific threshold tpCij. Let ∑pz be a shorthand for the
double sum ∑

p

∑Zp

z=1 over towns and then schools z within each town (z, which indexes
schools, now plays the role of j, which indexed stacked “observations” for a given student i.
Given that η̃(a, c) captures the discontinuity in the conditional expectation of Y at Xij = 0
with respect to the probability distribution P̃ , we can write:

η̃(a, c) := lim
ε↓0

∫
y · dF̃Y (y|Xij = ε, Aij = a,Cij = c)− lim

ε↑0

∫
y · dF̃Y (y|Xij = ε, Aij = a,Cij = c)

The first term e.g. is:

lim
ε↓0

∫
y · dF̃Y (y|Xij = ε, Aij = a,Cij = c) = lim

ε↓0

∫
y · ddεdP̃ (Yij · ωij ≤ y,Xij ≤ ε, Aij = a,Cij = c)

d
dε P̃ (Xij ≤ ε, Aij = a,Cij = c)

= lim
ε↓0

∫
y · ddε

∑
pz dP (Yi · ωPi,z

Ai,Ci
≤ y,Xi ≤ tpcz + ε, Ai = a,Ci = c, Pi = p)

d
dε

∑
pz P (Xi ≤ tpcz + ε, Ai = a,Ci = c, Pi = p)

= lim
ε↓0

∫
y ·
∑
pz

d
dεdP (Yi · ωpzac ≤ y,Xi ≤ tpcz + ε, Pi = p|Ai = a,Ci = c)∑

pz
d
dεP (Xi ≤ tpcz + ε, Pi = p|Ai = a,Ci = c)

= lim
ε↓0

∫
y ·
∑
pz P (Pi = p|a, c) ddεdP (Yi · ωpzac ≤ y,Xi ≤ tpcz + ε|a, c, p)∑

pz P (Pi = p|a, c) · fX(tpcz + ε|a, c, p)

= lim
ε↓0

1
f(ε|a, c) ·

∑
pz

P (Pi = p|a, c) · ωpzac ·
∫
y · d

dε
dP (Yi ≤ y,Xi ≤ tpcz + ε|a, c, p)

= lim
ε↓0

1
f(ε|a, c) ·

∑
pz

ωpzac · P (Pi = p|a, c) · fX(tpcz + ε|a, c, p) ·
∫
y · dP (Yi ≤ y|a, c, p,Xi = tpcz + ε)

where we let f(ε|a, c) denote the quantity ∑pz P (Pi = p|a, c) · fX(tpcz + ε|a, c, p), and we’ve
used a change of variables in the fifth equality.53 Now, using continuity of fX(x|Ai = a, Ci =
c, Pi = p) at tpcz, we can write the above as
53Quantities of the form

∫
y · dP (Y ≤ y,E) are understood as Riemann–Stieltjes integrals with respect to

P (Y ≤ y,E) viewed as a function of y, for a fixed event E.
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= 1
f(0|a, c) ·

∑
pz

ωpzac · P (Pi = p|a, c) · lim
ε↓0

fX(tpcz + ε|a, c, p) · lim
x↓tpcz

∫
y · dP (Yi ≤ y|a, c, p,Xi = x)

= 1
f(0|a, c) ·

∑
pz

ωpzac · P (Pi = p|a, c) · fX(tpcz|a, c, Pi = p) · lim
x↓tpcz

E[Yi|a, c, p,Xi = x]

= 1
f(0|a, c) ·

∑
pz

ωpzac · P (Pi = p|a, c,Xi = tpcz) · fX(tpcz|a, c) · lim
x↓tpcz

E[Yi|a, c, p,Xi = x]

Thus:
η̃(a, c) = 1

f(0|a, c) ·
∑
pz

ωpzac · P (Pi = p|Ai = a,Ci = c,Xi = tpcz) · fX(tpcz|Ai = a,Ci = c)

·
{

lim
x↓tpcz

·E[Yi|Ai = a,Ci = c, Pi = p,Xi = x] − lim
x↑tpcz

E[Yi|Ai = a,Ci = c, Pi = p,Xi = x]
}

=
∑
pz

ωpzac ·
P (Pi = p|Ai = a,Ci = c,Xi = tpcz) · fX(tpcz|Ai = a,Ci = c)∑

p′z′ P (Pi = p′|Ai = a,Ci = c,Xi = tp′cz′) · fX(tp′cz′ |Ai = a,Ci = c) · ηz(a, c, p)

=
∑
pz

wpzac · ηz(a, c, p)

where wpzac := ωpzac ·
P (Pi=p|Ai=a,Ci=c,Xi=tpcz)·fX(tpcz |Ai=a,Ci=c)∑

p′z′ P (Pi=p′|Ai=a,Ci=c,Xi=tp′cz′ )·fX(tp′cz′ |Ai=a,Ci=c)
and we have used that we

can rewrite f(0|a, c) = ∑
pz P (Pi = p|Ai = a, Ci = c,Xi = tpcz) · fX(tpcz|Ai = a, Ci = c).

Suppose that we chose ωpzac = 1 for all a, c, p, z, i.e. no re-weighting. Then we would have∑
pz w

pz
ac = 1, but the weights wpzac would be heterogeneous across a and c, preventing us

from leveraging the parallel-trends assumption for Y . Now suppose that we instead choose
ωpzac = f(0|ac)

P (Pi=p|Ai=a,Ci=c,Xi=tpcz)·fX(tpcz |Ai=a,Ci=c) · P (Pi = p|Di = 0) · ∆F pz
ac , where ∆F pz

ac is
as-defined in Proposition 3 . Using the distributional parallel trends assumption for the
transition score, note first that

∆F pzac =
{
FX(0)|00p(tp0z)− FX(0)|00p(tp0,z−1) if b = c = 0
FX(1)|00p(tp0z)− FX(1)|00p(tp0,z−1) otherwise

= FX(dac)|00p(tp0z)− FX(dac)|00p(tp0,z−1)

With the above choice of ωpzac we thus have that

η̃(a, c) =
∑
p

P (Pi = p|Di = 0)
Zp∑
z=1

∆F pzac · ηz(a, c, p)

=
∑
p

P (Pi = p|Di = 0)
Zp∑
z=1

{
FX(dac)|00p(tp0z)− FX(dac)|00p(tp0,z−1)

}
· ηz(a, c, p)

Therefore, in the dense-schools limit:

η̃(a, c) ≈
∑
p

P (Pi = p|Di = 0)
∫
dFX(dac)|D=0,P=p(x) · ηzx0p(a, c, p)

Finally, applying Proposition 2:
∆̃DD/RD = η̃(0, 1) + η̃(1, 0)− η̃(1, 1)− η̃(0, 0) ≈

∑
p

P (Pi = p|Di = 0) ·∆p = ∆0
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Appendix C: Conceptual framework

This appendix presents a conceptual framework for the interaction of family and school
environments based on the notion of dynamic complementarities.

Analyses of dynamic complementarities must explicitly account for the production of skills
at different stages of development. Cunha and Heckman (2007) formalize this by suggesting
the following technology for skill formation:

(10) θt+1 = ft (h, θt, It)
where θt is a vector of skills measured at time t, h stands for parental characteristics, and It
denotes parental investments in child skill made during period t. Expression (10) illustrates
that skill itself can be an input into the production of skill. Dynamic complementarity arises
when this takes the form of higher skill making investments more productive:

(11) ∂2ft (h, θt, It)
∂θt∂It

> 0.

6.8. School investments. Our focus is on the interaction between family and school en-
vironments; children can be the object of investments in both settings, with the relative
importance of the latter increasing with age. Since It refers to family investments, we aug-
ment (10) to include school investment, denoted S:

(12) θt+1 = ft (h, θt, It, St) .
Our setting provides arguably exogenous shocks to: (a) the stock of skills, θt, due to the

sudden increase in the ease of access to abortion, and (b) school investments, St, due to the
rules that govern access to better schools. Thus, if there is complementarity between these,
we should find:

(13) ∂2ft (h, θt, It, St)
∂θt∂St

> 0.

To be specific, we examine the effect of increased access to abortion on later skills. In
addition, we assess the effect of access to better schools. Finally, we estimate the reduced-
form interaction of these effects. We next consider how behavioral responses and changes in
composition affect the interpretation of these reduced-form interactions.

6.9. Behavioral responses. Parents may deliberately choose the human capital invest-
ments they direct towards their children (Becker, 1964). For instance, their investments may
respond to their children’s skill levels, and they may be crowded out or crowded in by school
investments:

It = gt(θt, St).
For example, if parents engage in compensatory behavior, investments may depend on the
skills children attain relative to their siblings. There is also evidence that parents can react
to the level of school inputs (e.g., Das et al., 2013, Del Boca, Flinn, and Wiswall, 2013), and
in our setting, Pop-Eleches and Urquiola (2013) show that children who just gained access
to better schools receive less homework-related parental help than children who just missed
doing so.
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We explore if such effects take place in a manner that would reinforce or weaken dynamic
complementarities. For example, suppose that parents who had easier access to abortion
(and whose children on average therefore have higher levels of skill as they transition into
high school) lower their effort by more in response to their child’s admission to a better
school:

(14) ∂2gt (h, θt, It, St)
∂θt∂St

< 0

Such an effect would lower the likelihood of finding reduced form evidence of dynamic com-
plementarity even if mechanisms such as those in (11) and (13) are operative. Note that
our estimates of behavioral responses may also be influenced by the elasticity of substitu-
tion between parental investments across different periods. For example, if the repeal of the
abortion ban led to differences in parental investments that persist past early childhood and
continue after children enter high school, our behavioral responses capture any interaction
between these investments and those induced by the shock to school environments.

6.10. Composition effects. Testing for dynamic complementarities, as in (11), requires
exogenous variation in θt, which we claim the change in abortion policy provides. That said,
the manner in which this variation originates is relevant for the interpretation of our results.
To see this, it is useful to write the expression for θt+1 in recursive form by substituting in
for the stock of skills θt with all prior investments:

θt+1 = gt (I1...It, h, θ1)
where θ1 is a child’s initial level of skill. This illustrates three potential mechanisms by
which increasing access to abortion can affect skills: (i) prior parental investments I1...It−1,
(ii) parental characteristics, h, and (iii) initial skill endowments, θ1.

All three mechanisms are potentially relevant in our context. First, the repeal of the abor-
tion ban is likely to have led to fewer unwanted children and spurred parental investment.
This could arise if childbearing that does not occur at an optimal time affects women’s edu-
cational, marriage, or labor market decisions in ways that lower parental ability to invest in
children (Angrist and Evans, 1999, Goldin and Katz, 2002). Alternately, an undesired birth,
by raising lifetime fertility, could adversely impact child outcomes through quantity/quality
trade-offs (Becker and Lewis, 1973; Becker, 1981). Second, educational outcomes could be
affected by changes in the socioeconomic composition of women who carry pregnancies to
term, with the direction of the effect depending on which type of women are more likely to
use abortion as opposed to other methods of birth control. Specifically, if women of lower
socioeconomic status experienced the largest reductions in fertility when access to abor-
tion increased, children born after the liberalization would tend to have more advantaged
parents—a composition effect.54 Third, it is conceivable that increased access to selective
abortions resulted in children with better initial skill endowments (θ1) by giving parents
greater latitude in deciding which pregnancies to take to term based on factors like fetal
health (Grossman and Jacobowitz 1981; Joyce 1987; Grossman and Joyce 1990).

54 Ananat et al. (2006) suggest the possibility of another source of selection given that changing the cost
of abortion will also change pregnancy behavior. We assume that at least in the short period studied
immediately after the change in abortion regime, there are no changes in marginal pregnancies.
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The relevance of these mechanisms affects the interpretation of the impact of access to
abortion and its interaction with access to better schools. While we do not have data
on whether the repeal of the abortion ban led to more selective abortions, the screening
technology required for this was all but inaccessible for most expectant parents in 1980s
Romania. We expect that any differences in initial skill endowments are more likely to
reflect parental investments in-utero. In addition, we present evidence that composition,
at least in terms of observables, does not drive our findings. As a result, we argue that
the main channel through which increased access to abortion affected outcomes is parental
investment.
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