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1 Introduction

A decade after the 2007-09 financial crisis, the debate about bank regulation remains unset-

tled. Politicians cite the crisis as prima facie evidence of under-regulation, central bankers

are weary of the unintended consequences of over-regulation, and the academic literature has

yet to agree on what would constitute optimal regulation. In the words of Stanley Fischer,

former Vice Chairman of the U.S. Federal Reserve, a “tightening in regulation of the banking

sector may push activity to other areas —and things happen.”Exactly what happens, he

argues, is diffi cult to predict as there is limited theoretical work on the interactions between

regulated and unregulated institutions and the economic incentives that drive them.1

These gaps in our understanding seem especially pronounced when it comes to liquidity

regulation. Diamond and Kashyap (2016) characterize the post-crisis liquidity rules agreed

upon by the Basel Committee on Bank Supervision as “a situation where practice is ahead

of both theory and measurement.”Allen and Gale (2017) go even further in their survey of

existing literature and conclude that “with liquidity regulation, we do not even know what to

argue about.”Understanding which features of the economic environment are important for

shaping the aggregate effects of liquidity regulation would thus propel the literature forward.

In this paper, we establish that interbank market power is, to first order, one such feature.

Our model is one where banks engage in maturity transformation, borrowing short and

lending long in the spirit of Diamond and Dybvig (1983). Maturity transformation leaves

banks vulnerable to idiosyncratic withdrawal shocks, giving rise to an ex post interbank

market where banks with insuffi cient liquidity (i.e., reserves) can borrow from banks with

surplus liquidity at an endogenously determined price. Such interbank markets exist in

Bhattacharya and Gale (1987) and Allen and Gale (2004). We then add two ingredients to

this environment.

The first ingredient is that banks differ in their ability to set prices on the interbank

1Speech delivered at the 2015 Financial Stability Conference, Washington D.C., December 3,
www.federalreserve.gov/newsevents/speech/fischer20151203a.htm.
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market. We model a price-setting bank and a continuum of individually small price-taking

banks. The price-setting bank is large in the sense of being non-atomistic. It internalizes that

its demand for liquidity will increase the price of liquidity on the interbank market. Thus,

the price-setter chooses to be more liquid than the price-takers, as captured by a lower ratio

of long-term lending to short-term borrowing. The small banks, as interbank price-takers,

would then be endogenously more constrained by the introduction of a liquidity regulation

that caps the ratio of long-term lending to short-term borrowing at each bank.

The second ingredient is that each bank can choose how much maturity transformation to

conduct in the regulated sector and how much to conduct outside the perimeter of regulation.

We show that, in response to liquidity regulation, the interbank price-takers (“the small

banks”) find it optimal to offer a new savings instrument and manage the funds raised by

this instrument on a balance sheet that is not subject to the regulation (e.g., the funds are

managed in an off-balance-sheet vehicle that can make the loans the bank cannot make on

its balance sheet without violating the liquidity floor). This constitutes shadow banking:

it achieves the same type of credit intermediation as a regular bank without appearing on

a regulated balance sheet. It also achieves the same type of maturity transformation as a

regular bank, with long-term assets financed by short-term liabilities.

To attract funds into off-balance-sheet instruments, the small banks offer their depositors

interest rates in excess of the interest rate on traditional deposits. On the margin, the

premium that a small bank is willing to pay for off-balance-sheet funding is exactly equal

to the tax implicitly imposed on its deposits by a binding liquidity floor. All else constant,

the emergence of a savings instrument that pays a premium relative to traditional deposits

poaches some deposits away from other banks, namely the interbank price-setter. We show

that the price-setter does not find it optimal to completely undo the reallocation of savings

towards the small banks by offering equally high returns. Credit to the real economy then

increases because the small banks, as interbank price-takers, make more long-term loans per

unit of funding than the price-setter.
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This reallocation channel serves as the basis for an unintended credit boom, where the

post-regulation equilibrium is characterized by more credit per unit of savings than the

pre-regulation equilibrium. Of course, changes in the equilibrium amount of credit also

depend on changes in the liquidity ratios of the banks, not just on changes in the allocation

of savings across them. Whether the reallocation channel is dominated in equilibrium by

higher liquidity ratios depends on the initial allocation of funding. All else constant, the

reallocation of savings towards the small banks increases the demand for liquidity on the

interbank market in the state where these banks experience high withdrawals. This state

will already have the highest liquidity demand if the initial funding share of the small banks

is suffi ciently large. The ex ante supply of liquidity would therefore have to increase to meet

the increase in demand, with the adjustment coming from the equilibrium liquidity ratios.

If instead the price-setter has a suffi ciently high initial funding share, then the reallocation

of savings decreases the maximum demand for liquidity across states and the credit boom

prevails as an equilibrium outcome.

The result that an aggregate credit boom can be born from the introduction of a liquidity

floor is surprising. However, our paper generates it by adding only two ingredients to an oth-

erwise standard banking model: accounting standards that do not outlaw off-balance-sheet

business and an interbank market that is not competitive. It is the combination of interbank

market power and shadow banking that is problematic, not one rather than the other. In

an extension with limited liability and a small probability of socially costly financial crises,

we establish the existence of a simple liquidity floor that implements constrained effi ciency

if (i) the shadow banking technology does not exist or (ii) interbank rates are determined in

a competitive equilibrium. With both shadow banking and interbank market power, how-

ever, there may not exist a simple liquidity floor that implements the planner’s solution, and

such a floor may actually be welfare-reducing because the credit boom exacerbates liquidity

shortages in the crisis state.

Our next contribution is to use the model to explore recent developments in China’s
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economy. We choose China for the following reasons. Between 2007 and 2014, the ratio

of debt to GDP in China exploded from 110% to 200%. The ratio of private credit to

private savings, a more conservative gauge, also experienced a substantial 10 percentage

point increase over the same period. This credit boom appears to have occurred on the heels

of stricter liquidity regulation. Around 2008, Chinese regulators began enforcing an old but

hitherto neglected loan-to-deposit cap which forbade banks from lending more than 75% of

their deposits to non-financial borrowers. Our model predicts that some credit booms are

unintentionally caused by liquidity regulation so we are interested to know whether liquidity

regulation can account for at least part of the Chinese experience.

We first establish heterogeneity in interbank market power among China’s commercial

banks. We then calibrate the model to Chinese data. The calibrated version of our model

shows that loan-to-deposit enforcement alone generates over half of the increase in China’s

aggregate credit-to-savings ratio between 2007 and 2014. The Chinese experience is char-

acterized by two other important facts: an increase in the average interbank rate and a

convergence in on-balance-sheet liquidity ratios among banks. We show that these facts

cannot be generated alongside a credit boom in the absence of interbank market power.

The increase in the average interbank rate is a strategic response by the price-setter

to the regulatory arbitrage activities of the price-takers. Intuitively, the incentive to hold

liquid assets is higher when liquidity is expected to be expensive. Therefore, by raising

the average interbank rate, the price-setter can incentivize the small banks to become more

liquid, loosening their regulatory constraint and lowering the incentives for arbitrage. The

small banks then behave less aggressively in their quest for off-balance-sheet business, which

leads to less funding being poached from the price-setter. The price-setting bank is increasing

the price of liquidity for itself should it need to borrow on the interbank market, but it does

so in exchange for less encroachment on its funding share.

As the average interbank rate rises, enough additional liquidity is elicited from the price-

takers that the price-setting bank can decrease its liquidity ratio in favor of longer-term
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assets. Accordingly, there is convergence in the on-balance-sheet liquidity ratios of the two

types of banks, as the on-balance-sheet ratio of the small banks trivially increases to comply

with the regulation. Quantitatively, we find that the increase in the on-balance-sheet ratio of

the price-takers is almost entirely undone by the increase in their shadow banking activities.

The credit boom then reflects a reallocation of funding from the more liquid price-setter

to the less liquid price-takers as well as a strategic decrease in the liquidity ratio of the

price-setter.

We then pursue a quantitative extension that allows for multiple shocks to the Chinese

economy: shocks to liquidity regulation, shocks to loan demand stemming from the fiscal

stimulus package announced by China’s State Council in late 2008, and money supply shocks.

We find that loan demand shocks and money supply shocks produce counterfactual correla-

tions between key market-determined interest rates, specifically interbank interest rates and

spreads on the high-return savings instruments offered by small versus large banks. Allowing

for all three shocks simultaneously, the model matches a broad set of empirical moments very

closely, while still assigning a dominant role to variation in loan-to-deposit rules.

The price-setter’s influence over the interbank market is undermined by central bank

intervention. To this point, a central bank that is suffi ciently responsive to interbank rate

fluctuations can decrease the magnitude of the credit boom triggered by liquidity regulation,

assuming all other parameters are held constant. This implication of our model is important

because there are several settings where an automatic offset by the central bank does not

exist, opening the door for interbank market power by large banks. For example, central

banks in countries with managed exchange rates, including China, are bounded in their

ability to lean against fluctuations in the interbank market. The Federal Reserve’s history

also includes long periods where a short-term policy rate was not targeted, and this was

certainly the case in the U.S. National Banking Era prior to the creation of the Fed. Frequent

encounters with the zero lower bound over the past decade have also challenged the speed

and precision with which central banks affect all of the short-term rates at which banks
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trade. Our model can be extended in a variety of ways to study the implications of liquidity

regulation in different circumstances. We present several extensions in this paper.

1.1 Related Literature

The literature on bank regulation is concerned with unintended consequences. Within this

literature, there are many papers on capital requirements, largely because capital regulation

was used more widely than liquidity regulation before the 2007-09 financial crisis. In the

models of Harris, Opp, and Opp (2014), Plantin (2015), and Huang (2018), higher capital

requirements lead to shadow banking, with various channels through which financial stability

is affected. See also Acharya, Schnabl, and Suarez (2013), Demyanyk and Loutskina (2016),

and Buchak, Matvos, Piskorski, and Seru (2018) for empirical evidence of regulatory arbi-

trage in the context of capital-related regulations. In the model of Begenau (2020), higher

capital requirements make deposits scarce, lowering overall bank funding costs by enough

to increase lending. A related model that allows for both traditional and shadow banks

is studied in Begenau and Landvoigt (2018). Naturally, the rise of alternative investment

opportunities for savers involves some migration of funding away from the traditional sector.

Such opportunities arise with the emergence of shadow banking but also in environments

where banks compete with public firms for equity capital, e.g., Allen, Carletti, and Marquez

(2015). Migration of funding away from the traditional sector as a result of shadow banking

also occurs in our paper and interacts novelly with heterogeneity in interbank market power

to produce the reallocation channel that underlies our credit boom.

The liquidity problems experienced during the crisis and the subsequent introduction

of global liquidity standards are now shifting attention towards liquidity regulation. Allen

and Gale (2017) provide an excellent survey of this literature. Other recent contributions

include Gorton, Laarits, and Muir (2020) who examine arbitrage during the U.S. National

Banking Era to evaluate the merits of liquidity coverage ratios; Van den Heuvel (2018) who

compares the welfare costs of liquidity and capital requirements; Adrian and Boyarchenko
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(2018) who present a dynamic model where liquidity requirements are preferable to capital

requirements as a prudential policy tool; Banerjee and Mio (2018) who find no evidence

that bank lending fell after the U.K. tightened liquidity regulation in 2010; Jin and Xiong

(2018) who argue that macroprudential reserve requirements will unintentionally push banks

to choose greater currency mismatch; Davis, Korenok, Lightle, and Prescott (2020) who use

experimental methods to explore whether liquidity regulations will improve interbank trade

in response to shocks; Robatto (2019) who studies the desirability of liquidity policies during

financial crises when the price of near-money assets transmits pecuniary externalities; and

Aldasoro and Faia (2016) who argue that increasing the liquidity coverage ratio from 60% to

100% for all banks does not reduce systemic risk in a network model calibrated to European

data.2 An earlier contribution to which our paper most closely relates is Farhi, Golosov, and

Tsyvinski (2007, 2009) who theoretically analyze the effect of liquidity regulation on market

interest rates in a broad set of specifications.

We contribute to the literature on bank regulation by introducing interbank market power

into the study of liquidity rules. Since the early work of Keeley (1990), Neumark and Sharpe

(1992) and others, there has been growing interest in market power in banking. Several

recent contributions have focused on developing new models with quantitative applications.

Drechsler, Savov, and Schnabl (2017) study how the market power of banks over depositors

explains the transmission of U.S. monetary policy since the mid-1990s; Egan, Hortaçsu,

and Matvos (2017) develop a structural model of the U.S. banking sector to study financial

stability with imperfect competition in deposit markets; Corbae and D’Erasmo (2013, 2019)

study the relationship between bank entry, exit, and risk-taking when large banks are first-

movers in lending markets. The focus of our paper is on interbank market power and its

implications for the effectiveness of liquidity regulation. The result is a theory of unintended

credit booms that also allows for careful calibration.
2In Aldasoro and Faia (2016), banks become more liquid to comply with the regulation but the liquidity

is not available for interbank trade, weakening risk-sharing between banks. In our model, shadow banking
emerges to evade compliance and the banking system becomes less liquid.
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Research on past financial crises demonstrates the empirical importance of understanding

interbank markets. Mitchener and Richardson (2019) show how a pyramid structure in U.S.

interbank deposits propagated shocks during the Great Depression; Gorton and Tallman

(2016) show how cooperation among members of the New York Clearinghouse helped end

pre-Fed banking panics; and Frydman, Hilt, and Zhou (2015) show how a lack of cooperation

with and between New York’s trust companies contributed to the Panic of 1907. Separately,

the decentralized nature of interbank trade has been explored through the lens of search

theory (e.g., Duffi e, Gârleanu, and Pedersen (2005), Ashcraft and Duffi e (2007), Afonso

and Lagos (2015)), with effective market power determined by the ease with which suitable

counterparties can be found, and also in alternating-offer bargaining games (e.g., Acharya,

Gromb, and Yorulmazer (2012)). Our assumption of market power is consistent with frictions

in forming trading relationships, although we do not model such frictions explicitly. Instead,

we focus on liquidity regulation and how it can be endogenously undermined when large

banks have pricing power over small banks on the interbank market.

The implications of size asymmetries without market power have recently been explored

by Craig and von Peter (2014), who show that large banks emerge as intermediaries in inter-

bank trade because of economies of scale and scope, and by Dávila and Walther (2020), who

show that large banks choose more leveraged positions than small banks when they internal-

ize effects on the government’s bailout policy. The predictions of Dávila and Walther (2020)

on leverage are consistent with large banks in the U.S. being more constrained by capital

requirements than small banks. We show that large banks choose more liquid positions than

small banks when they have pricing power on the interbank market, which is consistent with

large banks in China being less constrained by liquidity requirements than small banks. See

Hachem (2018) for further discussion, including a comparison between shadow banking in

the U.S. and China. While there are certainly other reasons why a large bank might hold

more liquid assets than a small one, interbank market power proves necessary to understand

the totality of China’s experience with liquidity regulation.
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Finally, our quantitative application is related to a rapidly growing literature on China’s

financial system. See Hachem (2018) and Song and Xiong (2018) for surveys. Chen, Ren,

and Zha (2018) argue that an additional form of shadow banking emerged in China as

an unintended consequence of contractionary monetary policy. The analysis is based on a

different shock and a different set of financial products but their main finding echoes one of

several findings original to our paper: policy tightenings in China have been undermined by

the shadow banking products they triggered.

The rest of our paper is organized as follows. Section 2 presents the benchmark model

and characterizes the unregulated equilibrium. Section 3 introduces liquidity regulation and

establishes the main analytical results using a perturbation argument. Section 4 sketches the

motivation for regulation and discusses additional extensions. Section 5 applies the model

to China, presenting the calibration results along with a structural estimation to evaluate

the importance of various shocks. Section 6 concludes. All proofs are collected in Online

Appendix A.

2 Benchmark Model

There are three periods, t ∈ {0, 1, 2}, and two types of risk neutral banks, i ∈ {j, k}. Within

each type, there can be one granular bank or a measure-one continuum of identical atomistic

banks. We refer to the representative bank in type i as bank i. Let x0
i denote the funding

obtained by bank i at t = 0. We normalize x0
j +x0

k = 1, in which case x0
i also constitutes the

funding share of type i. While types j and k can differ in size, that is, we need not restrict

attention to x0
i = 1

2
, the key difference between the two types of banks will lie in their ability

to set prices on an interbank market for liquidity, as will be described below.

At t = 0, each bank i allocates its funding between liquid and illiquid assets. Denote by

λi ∈ [0, 1] the fraction of bank i’s funding allocated to liquid assets (reserves). We model the

illiquid asset as a project that returns g (1− λi)x0
i at t = 2. The rate of return on bank i’s
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project is then g(1−λi)
1−λi −1, which is independent of bank size. The return per unit of funding,

g (·), has the following general properties:

Assumption 1 (Properties of return function). g (0) = 0, g(1−λ)
1−λ > 1 for all λ ∈ [0, 1),

g′ (·) > 0, g′ (1) > 1, g′′ (·) < 0, g′′′ (·) ≥ 0.

Projects are long-term, meaning that they run from t = 0 to t = 2 without the possibility

of liquidation at t = 1. To introduce a tradeoff between investing in the long-term project

and holding reserves, banks are subject to short-term liquidity shocks which must be paid

off at t = 1. The realization of liquidity shocks across banks depends on the aggregate

state. The economy can be in one of two states. State s ∈ {A,B} occurs with probability

πs ∈ (0, 1), in which case fraction θsi ∈ (0, 1) of bank i’s funding is withdrawn at t = 1. It

is not known until t = 1 which state is realized. Later, we will allow for the possibility of a

crisis state C which occurs with probability ε ≡ 1−πA−πB and involves a run on the entire

banking system, i.e., θCj = θCk = 1. For now, however, we focus on the two non-crisis states.

To this end, define π̃ ≡ πA
πA+πB

. The expected value of the liquidity shock is the same for all

banks,

π̃θAj + (1− π̃) θBj = π̃θAk + (1− π̃) θBk

where θAj > max
{
θAk , θ

B
j

}
and θBk > max

{
θAk , θ

B
j

}
. In words, bank j experiences more

withdrawal pressure in one state (“state A”) while bank k experiences more withdrawal

pressure in the other (“state B”).

2.1 The Interbank Market

The maturity mismatch between long-term projects and liquidity shocks follows the tradition

of Diamond and Dybvig (1983). It also introduces a role for reserves that can be used to

pay realized shocks at t = 1. If θsi < λi, then bank i has a reserve surplus at t = 1. If

θsi > λi, then bank i has a reserve shortage at t = 1. An interbank market exists at t = 1
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to redistribute reserves across banks. A market in which banks can share risk and obtain

liquidity also exists in Bhattacharya and Gale (1987) and Allen and Gale (2004).

The interbank interest rate in state s ∈ {A,B} is denoted by rs. Interbank lenders

(borrowers) are banks with reserve surpluses (shortages) at t = 1. The aggregate feasibility

condition for state s ∈ {A,B} is

(λk − θsk)x0
k +

(
λj − θsj

) (
1− x0

k

)
≥ 0 (1)

The left-hand side of (1) captures the net demand for liquidity in the interbank market at

t = 1. Aggregate feasibility states that there cannot be a market-wide liquidity shortage in

either (non-crisis) state. The total amount of funding invested in long-term projects rather

than allocated to reserves, 1− λkx0
k − λj (1− x0

k), constitutes total credit in this economy.

We are interested in distributions of liquidity shocks across banks and states such that

each bank sometimes borrows in the interbank market and other times lends. With two

representative banks and aggregate feasibility in the two non-crisis states, this means that

k lends when j borrows and vice versa. Without loss of generality, we have defined A to

be the state where k lends and B the state where k borrows. Our focus will therefore be

on shock distributions
{
θAj , θ

B
j , θ

A
k , θ

B
k ; π̃

}
that support λj ∈

(
θBj , θ

A
j

)
and λk ∈

(
θAk , θ

B
k

)
as

equilibrium outcomes, and we will verify the existence of such distributions later on.

2.2 Optimization Problem of Interbank Price-Takers

We model bank j, the representative bank in type j, as an interbank price-taker. Specifically,

type j is made up of a continuum of price-taking banks who all experience the liquidity shock

θsj. A price-taker can trade any amount of liquidity at t = 1 in the interbank market at the

interest rate rs if state s ∈ {A,B} is realized. Banks in the continuum are atomistic so they

take rs as given when making decisions.

Given funding x0
j and interbank rates rA and rB, bank j chooses its liquidity ratio λj to
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maximize its expected profit at t = 0. Formally, this optimization problem is

max
λj

{
π̃ΥA (λj; rA) + (1− π̃) ΥB (λj; rB)

}
where Υs (·) denotes the ex post profit per unit of funding, i.e.,

Υs (λj; rs) ≡ g (1− λj) + λj − 1 + rs
(
λj − θsj

)
(2)

The first term in Eq. (2) is the return from the long-term project, the second term is the

value of reserves, the third term represents the repayment of funding (θsi at t = 1 and 1− θsi
at t = 2), and the fourth-term is the interest income (or expense if negative) from lending

(borrowing) reserves on the interbank market.

The first order condition with respect to λj is

g′ (1− λj) = 1 + E (r) (3)

where we have defined the expected interbank rate E (r) ≡ π̃rA + (1− π̃) rB. The left-hand

side of Eq. (3) is the marginal cost of increasing reserves, namely the marginal return from

the long-term project, while the right-hand side is the marginal benefit, namely the expected

return from lending a unit of reserves on the interbank market. The solution to Eq. (3) is

the same across the continuum of price-taking banks.

2.3 Optimization Problem of Interbank Price-Setter

Bank k has market power in interbank trading, that is, k is a price-setter of rA and rB, not

a price-taker. For simplicity, we assume one granular bank with interbank market power

relative to the continuum of price-takers. In practice, one could imagine a finite number of

price-setters, each having market power on a subset of the continuum because of frictions

in forming trading relationships. A central bank that actively intervenes in the interbank

market, i.e., adding/removing liquidity when the interbank rate increases/decreases, would

change Eq. (1) and undermine the price-setting power of any bank k. We consider central
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bank liquidity interventions in an extension later in the paper.

Given a funding share x0
k, bank k chooses its liquidity ratio λk and the interbank rates

rA and rB to maximize its expected profit at t = 0,

Υk ≡ [g (1− λk) + λk − 1]x0
k +

[
π̃rA

(
θAj − λj

)
+ (1− π̃) rB

(
θBj − λj

)] (
1− x0

k

)
(4)

subject to (i) the best response of λj to the expected interbank rate E (r) in Eq. (3), (ii)

aggregate feasibility as per Eq. (1) for each state s ∈ {A,B}, and (iii) rs ∈ [0, rs] for each

state s ∈ {A,B}. We restrict attention to non-negative rates, rs ≥ 0, because reserves can

be stored between t = 1 and t = 2 at rate of return zero instead of lent on the interbank

market. We also introduce a ceiling rs ≥ 0, which will be discussed further in Section 2.4.

Notice from Eq. (4) that j’s net demand for liquidity,
(
θsj − λj

)
(1− x0

k) in state s ∈

{A,B}, determines the size of k’s interbank trades. This reflects the fact that bank k is a

price-setter and therefore cannot trade whatever quantity of liquidity it would like at the

prevailing interbank rate. The following lemma is then immediate from the properties of

g (·) in Assumption 1, specifically g′ (1) > 1 and g′′ (·) < 0:

Lemma 1 (Aggregate feasibility binds). Bank k will never choose a liquidity ratio λk that

makes Eq. (1) slack in both states s ∈ {A,B}.

A formal statement of the proof of Lemma 1 is collected into the proof of Proposition 1

below. Intuitively, k cannot benefit from lending excess liquidity in a slack market and is

therefore better off investing those funds in the long-term project. The price-setter’s problem

then simplifies to choosing rA ∈ [0, rA] and rB ∈ [0, rB] to maximize Eq. (4), taking into

account that λj solves Eq. (3) and λk solves(
λk − θs

′

k

)
x0
k +

(
λj − θs

′

j

) (
1− x0

k

)
= 0 (5)

where s′ denotes the (non-crisis) state with the highest aggregate withdrawal pressure,

s′ ≡ arg max
s∈{A,B}

{
θsj
(
1− x0

k

)
+ θskx

0
k

}
14



Clearly, s′ = B if and only if x0
k >

(
1 +

θBk −θAk
θAj −θBj

)−1

≡ x0
k.

Our formulation of bank k’s problem implicitly assumes commitment, i.e., k announces

state-contingent interbank rates at t = 0 which are then honored at t = 1. We discuss the

no commitment case in Online Appendix B as a robustness exercise.

2.4 Unregulated Equilibrium

We now formally define an equilibrium in the absence of regulation.

Definition 1 An (unregulated) equilibrium given the funding shares x0
k and x

0
j ≡ 1 − x0

k

consists of liquidity ratios (λj, λk) for banks j and k and interbank interest rates (rA, rB) for

states A and B such that each bank solves its optimization problem at t = 0 and aggregate

feasibility holds at t = 1, that is, (i) λj satisfies the first order condition in Eq. (3) conditional

on the expected interbank rate E (r) and (ii) rA ∈ [0, rA] and rB ∈ [0, rB] maximize Eq. (4)

subject to λj as per Eq. (3) and λk as per Eq. (5).

Denote by
{
λ∗j , λ

∗
k, r
∗
A, r

∗
B

}
the equilibrium values of the endogenous variables. The fol-

lowing proposition shows that the price-setting bank elects to be more liquid than the price-

taking banks if there exists a state of the world where the price-setter borrows from the

price-takers at positive interest rate.

Proposition 1 (Cross-sectional differences in liquidity ratios). λ∗k > λ∗j in any equilibrium

where λ∗j ∈
(
θBj , θ

A
j

)
and r∗B > 0.

The intuition for this result is as follows. Bank k understands from Eq. (5) that decreas-

ing the liquidity ratio λk will require an increase in the liquidity ratio of the price-takers λj

to satisfy aggregate feasibility in state s′. To incentivize higher λj among the price-takers,

k would have to increase E (r) in Eq. (3). This increase can come from the interbank rate

in either state, rA or rB. We notice from Eq. (5) that λj ∈
(
θBj , θ

A
j

)
implies λk ∈

(
θAk , θ

B
k

)
,

hence k is an interbank borrower in state B in the equilibrium considered in Proposition 1.
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If also rB > 0, then k must have already set rA as high as possible otherwise an arbitrarily

small deviation ∆rA > 0, with ∆rB = − π̃
1−π̃∆rA < 0 to keep ∆E (r) = 0, would increase k’s

expected profit in Eq. (4) by π̃
(
θAj − θBj

)
(1− x0

k) ∆rA > 0. The equilibrium therefore has

rA = rA if it has rB > 0, in which case the increase in E (r) to incentivize higher λj has to

come from an increase in rB. The price-setting bank internalizes this negative relationship

between its liquidity ratio and its interbank borrowing costs, in contrast to the price-takers

who choose liquidity ratios taking as given all interbank prices. Accordingly, λk > λj.

Next, we establish existence of an equilibrium with the properties considered in Propo-

sition 1:

Proposition 2 (Existence of equilibrium). There exists a unique equilibrium with λ∗j ∈(
θBj , θ

A
j

)
and r∗B > 0 if θAj is suffi ciently high and rA is suffi ciently low.

Recall from Eq. (3) that j’s choices only depend on the expected interbank rate E (r).

Thus, if k can set rA as high as it wants without any ramifications, it will set rB = 0 and

use only rA to influence E (r) in any equilibrium where it lends in state A and borrows in

state B. In other words, a price-setting bank will only pay positive interest in state B if it

wants to incentivize higher λj but cannot extract more rents in state A. The condition on

rA in Proposition 2 is what delivers an equilibrium with rB > 0. We consider rB > 0 to be

the empirically relevant equilibrium as a bank would have to possess an unrealistically high

degree of market power to be able to borrow for free.

There are various interpretations of rs. One is an outside option (e.g., a state-contingent

central bank discount window) that limits how much a bank would be willing to pay for

funding on the interbank market. Another is limited liability on interbank trades, which

would bound rs by the solvency of the interbank borrower in state s. Online Appendix C

presents this microfoundation. We show that the condition for ex post solvency of the price-

takers in state A constrains the price-setter’s choice of rA by enough to deliver an equilibrium

with the features in Proposition 1 when the liquidity shock θAj is suffi ciently high. Beyond
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this intuition, however, microfounding rs as an ex post solvency constraint does not produce

much additional insight so we keep rs constant to simplify the exposition.3

3 Effect of Liquidity Regulation

We now introduce into the benchmark model a government-imposed liquidity floor on each

bank, namely a requirement which says the ratio of reserves to funding must be at least

α ∈ (0, 1). Given the structure of our model, reserves are meant to be used at t = 1 so

enforcement of the liquidity rule is confined to t = 0. If the government does not enforce a

liquidity rule, then α = 0.

3.1 Shadow Banking

The liquidity rule, like all formal and enforceable bank regulation, only applies to activities

that a bank reports on its balance sheet. To model this, we allow banks to choose where

to manage the funding they receive. Specifically, by taking an action at cost ξi per unit of

funding, bank i can divert a fraction h (ξi) of its funding into an off-balance-sheet vehicle,

away from the purview of regulation. Without loss of generality, all of the funding moved

into off-balance-sheet vehicles is invested in long-term projects.4

Off-balance-sheet vehicles can be viewed as accounting maneuvers that legally shift activ-

ities away from regulation without changing the nature of those activities. Such maneuvers

capitalize on the discretion available in accounting rules and constitute regulatory arbitrage,

3The key perturbation results in the next section are robust to the extension in Online Appendix C.
The quantitative results in Section 5 are also robust to such extension (see the sensitivity analysis reported
in Online Appendix J). Naturally, rs constant can be set low enough to also respect ex post solvency in
equilibrium.

4For banks constrained by the liquidity rule, this is the optimal action; it would be counter-productive to
decrease the liquidity ratio that the regulator observes by booking reserves in an off-balance-sheet vehicle.
For an unconstrained bank, any off-balance-sheet activity is for competitive purposes (more on this below),
so the bank is indifferent about where reserves are held, conditional on remaining unconstrained.
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or shadow banking.5 The effective regulatory constraint is thus:

λi ≥ α (1− h (ξi)) (6)

where the shadow banking technology has the following general properties:

Assumption 2 (Properties of shadow banking technology). h (0) = 0, h (ξi) > 0 for ξi > 0,

h′ (·) > 0 with h (∞)→ 1, h′′ (·) ≤ 0, h′′′ (·) ≥ 0.

We interpret ξi as monetary incentives offered by bank i to entice savers to move some of

their funds from regulated products (e.g., traditional deposits held on bank balance sheets)

to unregulated products (e.g., deposit-like products that are not explicitly guaranteed by

the bank and thus bookable in off-balance-sheet vehicles). It is reasonable to assume that

traditional deposits have a higher convenience value to savers, in which case bank i cannot

costlessly move funds into deposit-like products, i.e., h (0) = 0. We have defined ξi to be

a cost per unit of funding, so with total funding xi, the overall cost of shadow banking to

bank i is ξixi. To ease the exposition, this cost is payable at t = 2.

In equilibrium, funding shares may also respond to differences in monetary incentives

across banks. Formally, we consider

xk ≡ x0
k + δ1

(
ξk − ξj

)
(7)

where ξj is the average shadow banking action taken by type j and the parameter δ1 > 0

governs the intensity of competition between j and k. The atomistic banks in j take as given

ξj and ξk, and, in any symmetric equilibrium, ξj will be such that the profit-maximizing

choice of ξj equals ξj for each bank in type j. Naturally, k does not take any of the variables

in Eq. (7) as given because it is a granular bank. We sketch a simple microfoundation for

Eq. (7), alongside the property h′ (·) > 0 as per Assumption 2, in Online Appendix D.

5Adrian, Ashcraft, and Cetorelli (2013) define regulatory arbitrage as “a change in structure of activity
which does not change the risk profile of that activity, but increases the net cash flows to the sponsor by
reducing the costs of regulation.”
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To simplify the analytical exposition, each bank in type j takes as given its equilibrium

funding xj ≡ 1 − xk, i.e., these banks do not choose ξj with the intention of changing how

much funding they receive. We relax this in an extension to the quantitative model.

3.2 Optimization Problems

Given funding xj and interbank rates rA and rB, the representative bank j now chooses its

liquidity ratio λj and its shadow banking action ξj ≥ 0 to maximize its expected profit at

t = 0,

π̃ΥA (λj; rA) + (1− π̃) ΥB (λj; rB)− ξj

subject to the liquidity floor in Eq. (6). The Lagrange multiplier on (6) is the shadow cost

of holding reserves. We denote it by µj ≥ 0. The multiplier on ξj ≥ 0 is denoted by ρj ≥ 0.

The first order conditions with respect to λj and ξj are then

g′ (1− λj) = 1 + E (r) + µj (8)

and

ρj = 1− αµjh′
(
ξj
)

(9)

respectively, with complementary slackness conditions

µj
[
λj − α

(
1− h

(
ξj
))]

= 0, µj ≥ 0, λj ≥ α
(
1− h

(
ξj
))

(10)

ρjξj = 0, ρj ≥ 0, ξj ≥ 0 (11)

The optimal choice of λj in Eq. (8) still equates the marginal cost of increasing reserves

with the marginal benefit. The difference relative to Eq. (3) is that reserves now also help

to relax the constraint imposed by the liquidity floor, augmenting the marginal benefit by

µj. The optimal choice of ξj in Eq. (9) can also be understood in terms of marginal costs

and benefits. The marginal cost of the shadow banking action is 1, as ξj was defined to

be the cost that j pays per unit of funding to divert fraction h
(
ξj
)
away from regulation.
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The marginal benefit is then αµjh
′ (ξj). Notice that there is no marginal benefit to shadow

banking if there is no regulation (α = 0) or if the expected interbank rate is high enough

to eliminate the shadow cost of holding reserves (µj = 0 from Eqs. (8) and (10)). However,

if α > 0 and µj > 0, bank j may have a regulatory arbitrage motive to engage in shadow

banking, choosing ξj > 0 to solve Eq. (9) with ρj = 0.

The solution to Eqs. (8) to (11) is characterized in the following lemma:

Lemma 2 (Best response of price-takers to expected interbank rate). Define

R (α) ≡ g′ (1− α)− 1− 1

αh′ (0)

R (α) ≡ g′ (1− α)− 1

for a liquidity floor α. Bank j is constrained by regulation, as indicated by µj > 0, if and

only if E (r) < R (α), and shadow banking ξj > 0 emerges if and only if E (r) < R (α),

where ξj is decreasing in E (r).

The expected interbank rate E (r) represents the expected cost of emergency liquidity

at t = 1. When liquidity is expected to be very expensive, i.e., E (r) > R (α), price-taking

banks are incentivized to hold high liquidity ratios, irrespective of the liquidity floor. They

are thus unconstrained by the floor and do not engage in shadow banking. When liquidity is

expected to be moderately expensive, i.e., E (r) ∈
(
R (α) , R (α)

)
, price-taking banks find it

less profitable to hold reserves. They bump into the liquidity floor, but are not so constrained

by it that they would profit from operating the shadow technology. Finally, when liquidity

is expected to be fairly inexpensive, i.e., E (r) < R (α), price-taking banks want to invest

much more heavily in the long-term project to earn a better return, relying on the interbank

market for cheap liquidity in the event of a high liquidity shock. They are thus constrained

by the liquidity floor and engage in shadow banking to circumvent the regulation.

Consider now the problem of the price-setting bank. Bank k now chooses its liquidity

ratio λk, the interbank rates rs ∈ [0, rs] for each state s ∈ {A,B}, and its shadow banking
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action ξk ≥ 0 to maximize its expected profit at t = 0,

[g (1− λk) + λk − 1− ξk]xk +
[
π̃rA

(
θAj − λj

)
+ (1− π̃) rB

(
θBj − λj

)]
(1− xk)

subject to (i) the best response of λj and ξj to E (r) in Lemma 2, (ii) the determination

of the funding share xk in Eq. (7), (iii) aggregate feasibility as per Eq. (1) for each state

s ∈ {A,B}, and (iv) the liquidity floor in Eq. (6).

From Lemma 2, λj and ξj only depend on rA and rB through E (r), so by the same

argument as in Section 2.4, bank k will set rA as high as possible in any equilibrium where

rB > 0. The equilibrium must therefore have rA = rA if it has rB > 0. We are interested in

solutions with λj ∈
(
θBj , θ

A
j

)
and rB > 0, so we work with rA = rA henceforth. This reduces

k’s choice variables to λk, ξk, and E (r).

3.3 Equilibrium

We now study how the introduction of a liquidity floor α affects the equilibrium of the model.

Definition 2 A (regulated) equilibrium consists of liquidity ratios (λj, λk) and shadow bank-

ing actions
(
ξj, ξk

)
for banks j and k as well as interbank interest rates (rA, rB) for states

A and B such that each bank solves its optimization problem at t = 0 (see Section 3.2),

aggregate feasibility holds at t = 1, and funding shares are determined by Eq. (7).

To fix ideas, consider h′ (0) arbitrarily large, i.e., h′ (0) → ∞, so that there is only one

cutoffR (α) in Lemma 2.6 We demonstrate the main results using a perturbation argument.

Specifically, we start in the unregulated equilibrium of Proposition 1, with λ∗k > λ∗j , then

introduce a liquidity floor α = λ∗j and analyze how the model responds to a slight increase

in α.

All else constant, this perturbation to α will pushR (α) above theE (r) in the unregulated

equilibrium, which by Eq. (3) is equal to R
(
λ∗j
)
. Bank j will thus be constrained, prompting

6Another immediate implication of h′ (0) → ∞ is that the on-balance-sheet funding of the price-takers,(
1− h

(
ξj
))

(1− xk), decreases as ξj increases from zero, for any δ1 finite in Eq. (7).
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it to engage in the shadow banking activity, ξj > 0. Intuitively, the magnitude of ξj will

reflect the magnitude of the Lagrange multiplier on the regulatory constraint. The tightening

of liquidity rules effectively taxes on-balance-sheet activities relative to off-balance-sheet

activities and, when the rule is tight enough to constrain banks, they are willing to pay to

move funding off the balance sheet.

But all else is not constant. In particular, bank k could choose to increase E (r) to some

value E (r) ≥ R (α) so that the price-taking banks, as represented by bank j, are no longer

constrained and therefore choose ξj = 0. We explore this next.

Lemma 3 (Shadow banking by interbank price-takers). Fix ξk = 0. If the shadow banking

technology has the properties h′ (0) → ∞ and h′′(0)

(h′(0))3
→ 0, then (i) ξj = 0 for α = λ∗j and

(ii) ξj > 0 as α is perturbed above λ∗j .

Lemma 3 establishes that k will not find it optimal to increase E (r) by as much as would

be needed to keep ξj = 0 following an increase in α above λ∗j . The condition
h′′(0)

(h′(0))3
→ 0

ensures that k also finds it suboptimal to lower E (r) relative to the unregulated equilibrium

once the regulation α = λ∗j is introduced.
7

We focus on the limiting case of h′ (0) → ∞ in the main text for ease of exposition.

The case of h′ (0) large but not arbitrarily so is discussed in Online Appendix E. The local

analysis yields qualitatively similar insights, except that shadow banking emerges around a

7It is worth elaborating briefly on this point. In any equilibrium with rB > 0, bank k is setting E (r) to
incentivize the price-takers to share the burden of keeping the system liquid. In particular, we recall from
the discussion of Proposition 1 that lowering E (r) would cause λj to fall as per Eq. (3), necessitating a
higher λk to satisfy the aggregate feasibility condition for interbank liquidity. Bank k would therefore have
to forego some investment in the long-term project to set a lower E (r). All else constant, a liquidity floor
limits j’s ability to decrease λj . This changes the responsiveness of λj to E (r), which in turn changes the
tradeoffs to k of setting a lower E (r). In the extreme case where λj cannot fall below α = λ∗j , bank k would
clearly want to set a lower E (r), i.e., k would deviate from the unregulated equilibrium even though this
equilibrium remains feasible after the introduction of the liquidity floor. The profitability of this deviation
reflects the fact that an (uncircumventable) floor α = λ∗j would enable bank k to pay a lower interest rate
in the state where it needs to borrow without changing the amount it can borrow. Naturally, the relevance
of this extreme case depends on the properties of the shadow technology. The condition h′′(0)

(h′(0))3
→ 0 is

effectively a statement that h (ξi) is steep for low ξi > 0, in which case the liquidity floor is not a fortress
against declines in λj . Lower E (r) would then be met by suffi ciently lower λj to eliminate any incentive of
k to deviate from the unregulated equilibrium when this equilibrium is feasible.
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threshold α > λ∗j , where α → λ∗j as h
′ (0) → ∞ and h′′(0)

(h′(0))3
→ 0. In other words, when

h′ (0) < ∞, bank k increases E (r) to keep ξj = 0 as α is pushed above λ∗j , but this stops

being optimal at the threshold α.

Next, we explore the incentives of k to operate the shadow technology:

Lemma 4 (No shadow banking by interbank price-setter). There exists a δ1 > 0 such that,

in the vicinity of α = λ∗j , bank k will optimally choose ξk = 0 for any competition parameter

δ1 ∈
(
0, δ1

)
in Eq. (7).

The intuition for Lemma 4 follows from λ∗k > λ∗j in the unregulated equilibrium. Bank

k is not constrained by regulation as α is perturbed above λ∗j so the only incentive to set

ξk > 0 is to offset the decrease in funding share xk caused by ξj > 0. But, unless δ1 is very

large, the benefit to k of offsetting the reduction in xk that occurs in the vicinity of α = λ∗j

is smaller than the marginal cost of using the shadow technology to compete with j, hence

k will set ξk = 0. In practice, there may be other ways for k to compete, but as long as

they are also costly, adding them to the model will not change the result in Lemma 4 that

k allows xk to fall as α is pushed above λ
∗
j .
8

3.4 Credit Boom Result

Taken together, Lemmas 3 and 4 imply the following credit boom result:

Proposition 3 (Equilibrium credit boom). For δ1 ∈
(
0, δ1

)
, as the liquidity floor α is per-

turbed above λ∗j , total credit rises if and only if s
′ = B.

8It is useful to emphasize here the two different reasons why an action ξi > 0 may be taken: regulatory
arbitrage and competition for funding. The first is pure shadow banking; the second is not. Suppose we
decouple the technology h (·) so that bank i can take an action ξi to have the option of moving fraction
h (ξi) of its funding xi off balance sheet, with the fraction of h (ξi)xi that is actually moved modeled as a
separate choice τ i ∈ [0, 1]. The effective regulatory constraint is then λi ≥ α (1− τ ih (ξi)). Bank k would be
indifferent between any τk ∈ [0, 1] while j would unambiguously choose τ j = 1 as α is perturbed above λ∗j .
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Total credit in the model economy is the total amount of funding (normalized to 1) less

the liquidity held by the banking sector, i.e.,

LIQ ≡ λj (1− xk) + λkxk

A credit boom is thus equivalent to a reduction in LIQ. From Lemma 1, we know that aggre-

gate feasibility will hold with equality in the state with the highest aggregate withdrawals,

s′. We can thus write

LIQ = Θs′ (xk)

in any equilibrium, where

Θs′ (xk) ≡ θs
′

j +
(
θs
′

k − θs
′

j

)
xk

Note that LIQ represents the aggregate supply of liquidity in the interbank market at t = 1

while Θs′ (xk) represents the aggregate demand for liquidity in state s′. From Lemmas 3

and 4, a liquidity floor α that binds infinitesimally on the unregulated equilibrium leads ξj

to rise relative to ξk, lowering xk as per Eq. (7). This implies a fall in Θs′ (xk), and thus a

reduction in the equilibrium supply of liquidity LIQ, if and only if θs
′

k > θs
′

j . The condition

θs
′

k > θs
′

j is equivalent to the condition s
′ = B since B is defined as the state where k gets a

higher liquidity shock than j.

The credit boom can also be decomposed directly from the supply side. In particular,

dLIQ

dα
= (1− xk)

dλj
dα

+ xk
dλk
dα

+ (λk − λj)
dxk
dα

The main conceptual channel for the credit boom is the third term, which reflects (i) λk > λj

in the unregulated equilibrium as per Proposition 1 and (ii) dxk
dα

< 0 as a result of the

perturbation in Lemmas 3 and 4. In words, the liquidity floor triggers a reallocation of

funding towards the less liquid (and hence constrained) banks as they engage in shadow

banking to loosen the constraint. We refer to this as the reallocation channel.

The sign of dλj
dα

will depend on parameters. The direct effect of the regulation is to

increase λj, but the shadow banking activities of j will be a countervailing force. The sign
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of dλk
dα
will also depend on parameters. Even though k is not constrained by the regulatory

perturbation, the equilibrium is changing so k may strategically choose to become more or

less liquid. We explore this further in Proposition 4 and in the quantitative analysis.

Notice from Proposition 3 that j and/or k will increase liquidity by enough to eliminate

the credit boom implied by the reallocation channel if and only if s′ = A, i.e., if and only

if aggregate feasibility binds in the state where k (the interbank price-setter and hence the

more liquid bank) is a net lender. This requires k to have a small enough initial funding

share, namely x0
k < x0

k. For larger x
0
k, the feasibility constraint is tighter in state B, i.e.,

s′ = B, and the credit boom occurs.

3.5 Additional Results

Next, we establish some additional properties of the regulated equilibrium when interbank

markets are characterized by pricing power. We focus specifically on a set of predictions that

can emerge from our framework but not from a framework without interbank market power.

These predictions will help identify the role of interbank market power in our quantitative

application (Section 5).

Proposition 4 (Additional results and necessity of interbank market power). When k has

interbank market power, the following can co-exist as α is perturbed above λ∗j : (i) credit

boom, (ii) convergence of on-balance-sheet liquidity ratios, (iii) corr
(
ξj, E (r)

)
> 0. These

three features cannot hold simultaneously if all banks are price-takers, even if g (·) is allowed

to differ across banks.

We have already established that the regulation considered in the statement of Propo-

sition 4 generates a credit boom in our model if and only if s′ = B (see Proposition 3).

This boom involves an increase in ξj, i.e., the emergence of shadow banking among the

price-taking banks, so to understand corr
(
ξj, E (r)

)
> 0, we must understand why the

price-setter k elects to increase E (r) as the regulation is introduced.
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The expected interbank rate E (r) has several effects on the profits of k. First is the

direct effect on k’s interbank borrowing costs. We recall rA = rA, so increases in E (r)

reflect increases in rB, where B is the state in which k borrows from the interbank market to

meet withdrawal shocks at t = 1. The second effect of E (r) on k’s profit works through the

regulatory arbitrage motive of the price-taking banks. There is less incentive to circumvent

a liquidity floor when liquidity is expected to be expensive. The optimal shadow banking

action of the price-taking banks, ξj as characterized in Lemma 2, is thus decreasing in E (r).

This has two implications. First, the liquidity ratio λj of these banks is increasing in E (r)

over the range of interbank rates where the liquidity floor is a binding constraint; see Lemma

2, specifically the range E (r) ≤ R (α). Intuitively, a decrease in ξj implies less circumvention

of the liquidity floor and thus a higher liquidity ratio among constrained banks. Second, a

decrease in ξj implies an increase in k’s funding share xk as per Eq. (7) and thus a decrease

in the funding share xj ≡ 1− xk of the price-takers.

Taken together, the increases in λj and xk that stem from the weakened regulatory arbi-

trage motive of the price-takers as E (r) increases have an ambiguous effect on the size of k’s

interbank trades,
(
θsj − λj

)
(1− xk) in state s ∈ {A,B}. However, the increase in k’s funding

share xk increases the total return that k can earn from the long-term investment project,

g (1− λk)xk. The price-setting bank thus increases E (r) to stop the price-taking banks from

encroaching heavily on its funding share through their regulatory arbitrage activities. This

is a form of asymmetric competition, wherein the price-setter uses its price impact on the

interbank market to fend off competition from the price-takers and their off-balance-sheet

activities, instead of directly competing with them by increasing ξk relative to ξj. The result

is that both ξj and E (r) rise in response to the tightening of liquidity regulation.

Consider next the on-balance-sheet liquidity ratios of the two types of banks. The true

liquidity ratio of the price-taking banks is λj = α
(
1− h

(
ξj
))
for α ≥ λ∗j , where h

(
ξj
)
is the

fraction of funding moved off-balance-sheet via shadow banking, but the on-balance-sheet

liquidity ratio of these banks is α, which increases as a result of perturbing α above λ∗j .
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In contrast, the price-setting bank’s on-balance-sheet liquidity ratio is the same as its true

liquidity ratio, λk, since the price-setter is not constrained by a liquidity floor in the vicinity

of λ∗j . The proof of Proposition 4 establishes that the increase in E (r) by k to defend its

funding share elicits enough additional liquidity from the price-takers relative to the demand

for liquidity in state B that k can decrease λk in favor of the long-term project. Accordingly,

there is convergence in the on-balance-sheet ratios of the two types of banks.

The discussion here can be tied back to the decomposition of the credit boom result in

Section 3.4. Although k increases E (r) to temper the decrease in xk that results from ξj, it

also decreases λk. The credit boom in Proposition 4 then reflects a reallocation of funding

towards the less liquid banks that survives asymmetric competition, dxk
dα

< 0, as well as a

decrease in the liquidity ratio of the more liquid bank, dλk
dα

< 0.

The last part of Proposition 4 highlights the role of interbank market power. To get a

credit boom without interbank market power, it must be the case that banks are ex ante

heterogeneous on some other dimension, e.g., productivity in the long-term project. If all

banks were ex ante identical, then the aggregate feasibility condition would eliminate the

possibility of a credit boom. In particular, α would elicit the same response ξi from all

banks, so the funding shares xi and thus the total demand for liquidity at t = 1 would

not change, meaning E (r) would adjust to keep aggregate liquidity constant. This is a

competitive market at work. Ex ante heterogeneity is therefore necessary for a credit boom,

and interbank market power is clearly a form of ex ante heterogeneity. To appreciate its role

in our results, consider instead a model with all price-taking banks that differ on g (·). The

more productive banks would choose a lower liquidity ratio than the less productive banks

in an unregulated equilibrium and would respond to a binding liquidity floor by engaging

in shadow banking. This can increase the funding share of productive banks relative to

unproductive ones and lead to a credit boom by the reallocation channel discussed in Section

3.4. However, since the unconstrained banks are price-takers as well, their liquidity ratio

will only fall if liquidity is expected to be less expensive. It is thus impossible to have all
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three results listed in Proposition 4 in the absence of interbank market power.

4 Discussion and Extensions

This section discusses ineffi ciency in the unregulated equilibrium and conditions under which

a liquidity regulation α would in fact be optimal (Section 4.1). We also discuss the robustness

of our credit boom result to an extension with equity issuance by banks (Section 4.2) and

explain how a central bank could achieve constrained effi ciency when the conditions for a

credit boom exist and render the regulation suboptimal (Section 4.3). Finally, we discuss

parallels between our model and the National Banking Era in the U.S. (Section 4.4).

4.1 Motivation for Regulation

The analysis so far has been agnostic about the case for regulatory intervention. We now

explore the liquidity choices of a social planner as a function of x0
k. There are many con-

siderations behind the socially optimal size distribution of banks; our goal is not to make

statements about them so we solve the planning problem conditional on x0
k.

To broaden the scope of the discussion, we allow for the possibility of a third state that

occurs with probability ε ∈ [0, 1), where πA + πB + ε = 1. In this third state, all savers

want to withdraw all funding from all banks at t = 1. This is a complete run on the

banking system and banks cannot honor all withdrawal requests at t = 1. Because of limited

liability, all banks make zero profit in this third (crisis) state so their optimization problems

are unchanged from before.9 However, there is a social cost of not honoring all withdrawals

at t = 1 in the crisis state. The social cost is captured by a function κ (·) which has properties

κ (0) = 0, κ′ (·) > 0, and κ′′ (·) > 0. Its argument is the fraction of withdrawals that cannot

9Limited liability can take the form of each bank honoring withdrawals up to its reserves at t = 1 then
transferring its long-term project to a receiver. Projects are illiquid, so the receiver simply returns all the
proceeds at t = 2 to savers who could not withdraw at t = 1. If savers neglect tail risks and/or engage in
local thinking along the lines of Gennaioli and Shleifer (2010), then Eq. (7) and h′ (·) > 0 as derived in
Online Appendix D are unaffected by the introduction of small ε > 0.
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be honored at t = 1 with the total liquidity available in the banking system.

The social planner chooses λj and λk to maximize

g (1− λj)
(
1− x0

k

)
+ g (1− λk)x0

k − εκ
(
1− λkx0

k − λj
(
1− x0

k

))
subject to aggregate feasibility in both non-crisis states, A and B.

Proposition 5 (Ineffi ciency in decentralized equilibrium). Consider s′ = B. Aggregate

liquidity in the decentralized equilibrium is ineffi ciently low if ε > 0 and

κ′
(
1−ΘB

(
x0
k

))
>
g′
(
1−ΘB (x0

k)
)

ε
(12)

It is effi cient otherwise, but the distribution of liquidity across banks is always ineffi cient.

In Proposition 3, we considered values of x0
k such that s

′ = B. We consider the same

values here. Intuitively, the planner wants perfect risk-sharing, λj = λk, while the decentral-

ized equilibrium achieves λj < λk because banks differ in interbank market power (Section

2.4). The distribution of liquidity across banks is therefore ineffi cient. Whether aggregate

liquidity is also ineffi cient depends on whether it is socially optimal to have excess liquidity

in both non-crisis states. If the social cost of not honoring withdrawals in a crisis is suffi -

ciently steep, i.e., if (12) holds, then the planner will indeed forego some investment in the

long-term project to have more liquidity available in the crisis state. Aggregate feasibility

will then be slack in both non-crisis states when evaluated at the planner’s solution. In the

decentralized equilibrium, however, aggregate feasibility binds in the non-crisis state with

the most withdrawal pressure (Lemma 1). Banks do not internalize the social cost of not

honoring withdrawals in a crisis, and, with limited liability, make zero profit if this state

occurs. Aggregate liquidity is therefore ineffi ciently low.

The ineffi ciency just discussed opens the door for regulation. In addition to (12), which

is necessary and suffi cient for the planner to want to boost aggregate liquidity in the de-

centralized equilibrium, we assume εκ′
(
1−min

{
θBk , θ

A
j

})
< g′

(
1−min

{
θBk , θ

A
j

})
so that

there is an active interbank market in both non-crisis states at the planner’s solution, i.e.,
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λ∗ < min
{
θBk , θ

A
j

}
, where λ∗ denotes the planner’s solution and solves g′(1−λ∗)

κ′(1−λ∗) = ε.10 The

rest of this section explores the implementability of the planner’s solution, λj = λk = λ∗, via

a liquidity floor.

Proposition 6 (Optimal liquidity floor without shadow banking). Consider π̃rA ≤ R (λ∗).

If there is no shadow banking technology, i.e., h (·) = 0, then a liquidity floor α = λ∗

implements the planner’s solution.

Proposition 6 establishes the existence of a liquidity floor α that implements the plan-

ner’s solution in the absence of shadow banking. This floor (i) binds on the representative

interbank price-taker j and (ii) prevents the price-setter k from decreasing λk below λ∗ to

make aggregate feasibility hold with equality as λj increases to λ
∗. Both banks are then

constrained to hold λj = λk = λ∗.11

Proposition 7 (Effect of interbank market power on optimal liquidity floor with shadow

banking). When the shadow banking technology exists, there is a liquidity floor α > λ∗ that

implements the planner’s solution in a competitive equilibrium. With interbank market power,

however, such an α may not exist and a liquidity floor α > λ∗j may be welfare-reducing.

The first part of Proposition 7 establishes the existence of a liquidity floor α that imple-

ments the planner’s solution if shadow banking exists but the price-setter’s interbank market

power is removed. The optimal α exceeds the desired outcome λ∗ because the planner ac-

counts for the use of shadow banking to circumvent regulation. He thus sets α > λ∗ to

achieve λi = λ∗ after the rise of shadow banking is taken into account.

A similar policy is much more dubious in the presence of interbank market power, as

indicated by the second part of Proposition 7. With both interbank market power and

10See the proof of Proposition 5 for the formal derivation.
11The restriction on rA in the statement of Proposition 6 explicitly prevents k from setting rA so high as

to incentivize λj > λ∗. If we remove this restriction, then some mild conditions on the curvature of g (·)
would be needed to conclude that k does not find it optimal to choose an rA that delivers λj > λ∗. This is
discussed further in the proof, but, broadly speaking, the planner’s solution can be implemented via liquidity
regulation in the absence of shadow banking.
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a shadow banking technology, perturbing α above the unregulated equilibrium λ∗j triggers

a credit boom (Proposition 3). This boom implies a less liquid banking system, which

exacerbates the social cost in the crisis state and reduces welfare. Consider now values of

α beyond the perturbation. Condition (12) implies that the planner’s solution cannot be

implemented if Lemma 1 holds with xk ≤ x0
k so, if there exists a liquidity floor that achieves

the effi cient level of aggregate liquidity, the price-setter k has to be constrained.12 All banks

would then be constrained because it is not optimal for k to set E (r) so high that j is

unconstrained. Thus, λi = α (1− h (ξi)) for i ∈ {j, k}. The planner’s solution requires

perfect risk-sharing, λj = λk, which means all banks must be equally constrained so that

they take the same shadow banking action ξi. But then k, who sets E (r) > 0, cannot

have the same liquidity ratio as j unless the shadow price of liquidity is positive. Lemma 1

therefore holds with xk = x0
k, contradicting the premise that the effi cient level of aggregate

liquidity is achieved.

We have restricted attention here to a liquidity floor α that is common to all banks; the

regulator could also consider different liquidity floors for different banks, αi. For example,

imposing a suffi ciently higher liquidity floor on the interbank price-setter as compared to

the price-takers could increase aggregate liquidity even as banks attempt to circumvent the

regulation. Intuitively, the funding share xk will rise if the price-setting bank is constrained

enough that it engages in more shadow banking than the price-takers, ξk > ξj. With s
′ = B,

the maximum demand for liquidity outside of the crisis state will then also rise and have to

be met in equilibrium by a higher aggregate supply. We sketch out this possibility at the

end of the proof of Proposition 7.

In practice though, we do observe common liquidity floors in many countries. The broader

lesson that emerges from this section is that regulators should think twice about using a

simple liquidity floor α when the interbank market is not competitive and banks have access

to a shadow banking technology. It is the combination of interbank market power and shadow

12Recall that we consider values of δ1 such that bank k does not take the shadow action simply to increase
its funding share relative to the unregulated equilibrium.
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banking that is problematic, as this section has shown α to be optimal otherwise. In Section

5, we explore the quantitative importance of the credit boom that results from tightening a

simple liquidity regulation in an environment with these two features.

4.2 Bank Capital

Our main analysis focuses on banks funded entirely by callable liabilities, i.e., funding that

can be withdrawn at t = 1, to show most transparently that a liquidity floor can lead to an

unintended credit boom. In reality, banks are also partly funded by equity, which is costly

to issue but not callable. The model can be extended to allow for equity issuance by banks.

In particular, consider that bank i has debt funding xi as well as equity funding ei, which

it raises at a cost τ (ei). The liquidity ratio λi is calculated as a fraction of the bank’s total

funding, now xi + ei, so the aggregate feasibility condition becomes

λk (xk + ek) + λj (xj + ej) ≥ θskxk + θsjxj

for each s ∈ {A,B}, and the effective liquidity requirement is

λi (xi + ei) ≥ α (1− h (ξi))xi

instead of Eq. (6). We can also allow for a risk-weighted capital requirement

ei ≥ β [(1− λi) (xi + ei)− h (ξi)xi]

which involves a risk weight of zero on reserves and requires bank i’s equity to be at least

a fraction β of its on-balance-sheet illiquid assets. Notice that the risk-weighted capital

requirement implicitly imposes a liquidity floor,

λi ≥
1− h (ξi)−

(
1
β
− 1
)
ei
xi

1 + ei
xi

and can thus be counter-productive in the same way we found liquidity requirements to be

counter-productive in the main analysis.
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Online Appendix F formalizes the extended model sketched here. The forces behind our

credit boom result also arise in the model with equity, both qualitatively and in a recalibrated

version of the policy experiment considered in Section 5. The policy experiment in the

extended model also reveals that tightening α endogenously loosens capital requirements by

incentivizing banks to move less liquid assets off the balance sheet.

4.3 Central Bank Liquidity Injections

One way to implement the planner’s solution without setting off the type of shadow banking

explored in our paper is to have a central bank intervene in the interbank market by (i) being

extremely responsive to any deviation from a pre-defined interest rate target and (ii) setting

the target high enough to price in the social cost of insuffi cient liquidity in the crisis state.

Formally, suppose the central bank announces a target interbank rate r∗ and state-dependent

liquidity injections ψ (rs − r∗), where ψ > 0. Injections can be positive or negative, and we

assume the central bank is credible. Aggregate feasibility for each s ∈ {A,B} is then

(
λj − θsj

) (
1− x0

k

)
+ (λk − θsk)x0

k + ψ (rs − r∗) ≥ 0 (13)

The problem of bank j is unchanged from the unregulated environment, i.e., λj still depends

on E (r) as per Eq. (3). The problem of bank k is also unchanged except that Eq. (13)

replaces Eq. (1) as a constraint. The following proposition establishes the implementability

of the planner’s solution via interest rate targeting:

Proposition 8 (Implementing constrained effi ciency without liquidity regulation). As ψ →

∞, setting r∗ = g′ (1− λ∗)− 1 achieves the planner’s solution.

The higher is ψ, the less control k has over the interbank rate. Intuitively, a high rate

will prompt a larger liquidity injection by the central bank, bringing down the rate that

prevails in equilibrium. In the limit, bank k becomes a price-taker, i.e., it chooses rs → r∗

as ψ →∞, and both λk and λj are pinned down by Eq. (3) with E (r) = r∗, delivering the
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planner’s solution for the appropriate r∗.

Online Appendix G studies the limiting case of ψ = ∞ in more detail. We find that

liquidity regulation can lead to a credit boom in a model with interest rate targeting if (i)

banks differ in their marginal returns and (ii) the central bank injects liquidity to maintain

its target in the non-crisis state where the bank with higher marginal returns borrows. Thus,

using a liquidity floor α instead of setting the interest rate target that achieves the effi cient

level of liquidity can still generate a credit boom in settings with ψ →∞, but the conditions

are arguably more restrictive than the conditions for a credit boom in settings with just

interbank market power. The zero lower bound also raises some interesting considerations

here. If a central bank cannot (or does not) swiftly counteract spreads in relevant short-term

funding markets because its traditional toolkit is constrained, market power may emerge in

settings where central bank intervention had traditionally eliminated it, leading us back to

our core model.

4.4 Parallels to the U.S. National Banking Era

The National Banking Era in the U.S., prior to the creation of the Federal Reserve in

1913, provides some interesting parallels to the discussion here. The comprehensive work

of Sprague (1910) documents the liquidity choices of banks during this period and their

evolution.

Liquid assets during the National Banking Era took the form of vault cash and demand

deposits with other banks. National banks in the interior of the U.S. (country banks) de-

posited with national banks in major municipalities (reserve city banks), most of which also

deposited with national banks in New York City (the NYC banks). The NYC banks were

more liquid in terms of cash holdings. In October 1897, for example, the ratio of cash reserves

to net deposits was 11.6% among country banks, 17.8% among reserve city banks, and 27%

among the NYC banks (Sprague (1910), pgs. 220, 221).13 The legal requirement for national

13Net deposits equals the sum of individual deposits and balances due to other banks minus the sum of
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banks in NYC was 25% and the vast majority of these banks were also members of the New

York Clearinghouse Association (NYCH), which influenced its members, notwithstanding

legal requirements, through internal governance (Moen and Tallman (2000)). Demand de-

posits were typically lent on call to stock brokers in NYC. According to Moen and Tallman

(2014), the NYC banks considered the “external effects” of liquidating call loans to meet

withdrawal requests, in contrast to others who made individually small loans to this market.

A similar view is advanced by Sprague (pgs. 45, 62, 269, 301), providing insight into the

higher cash ratios of the NYC banks. Our model with interbank market power provides a

way of formalizing the narratives in the literature. If the NYC banks influenced interbank

rates, broadly defined, then they would internalize the effect of their liquidity and indeed be

more liquid.

By August 1907, the cash ratios of the country and reserve city banks had fallen to

7.6% and 13.4% respectively in favor of demand deposits (pg. 220). The net deposits of all

national banks more than doubled from 1897 to 1907, leading to a near doubling of demand

deposits held in NYC (pgs. 218, 222). Interestingly, growth in the overall deposits of the

NYC banks was only 63% over this period (pg. 221). The cash ratio of the NYC banks

stayed roughly stable, but, in light of the increase in demand deposits from the interior and

the fact that such deposits were known to be flighty, a stable cash ratio meant that the NYC

banks were effectively less liquid in 1907 than they had been in 1897 (pgs. 222, 226, 236).

The relative weakness in overall deposit growth among the NYC banks, as well as their

lower effective liquidity, coincided with a rapid expansion of trust companies in New York.

Loans by trust companies more than tripled from 1897 to 1907, rivaling the lending volume

of the national banks in NYC (pg. 227). Trust companies were largely unregulated and held

notoriously little cash (pg. 226). Accordingly, they could afford to offer very high interest

rates to attract deposits (pg. 255). In 1903, the NYCH announced that trust companies had

to become more liquid in order to continue clearing through a NYCH member. The trusts

clearinghouse exchanges, bills of other banks, and balances due from other banks.
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responded by surrendering clearinghouse privileges so as to continue aggressively taking

deposits and making loans (pg. 253). This poached funding away from the NYC banks,

yet the latter still increased lending by 77% between 1897 and 1907 (pg. 221), exceeding

the growth in their deposits. The rapid expansion of shadow banking and the decline in

the deposit share of the NYC banks in response to the tightening of liquidity standards is

exactly what our model would predict. The decrease in the effective liquidity of the NYC

banks is also predicted by our model as an endogenous response of the price-setter.

In October 1907, a run developed against Knickerbocker Trust when depositors became

worried about its connection to the companies of C.F. Morse, a director at several banks of

moderate size in NYC and a businessman whose practices were generally distrusted (pgs.

248, 251). Banks around the country then began withdrawing demand deposits from NYC

in a panic, and the NYC banks responded by suspending convertibility to maintain cash

ratios. Sprague contends that the NYC banks neglected the economic costs to the interior

of suspension (pgs. 280, 319). Alternatively, if maintenance of cash ratios was so important,

the entire system should have been more liquid. The aggregate ineffi ciency was therefore in

the direction of insuffi cient liquidity (see also Farhi, Golosov, and Tsyvinski (2007, 2009) on

this interpretation). Our model suggests that uniformly higher reserve requirements would

not have remedied the situation. Instead, such requirements could have triggered further

dissociation from the NYCH, e.g., by less liquid state banks, in favor of trust-like activities,

which would have shifted funding shares and reduced aggregate liquidity even more.

5 Quantitative Analysis

We have focused so far on qualitative predictions of the theory. We now want to study

quantitative implications. We choose China as the setting for our quantitative analysis. In

addition to being one of the world’s largest economies, China experienced a near doubling

of its debt-to-GDP ratio over the past decade, along with unprecedented growth in its ratio
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of private credit to private savings. Our model predicts that some credit booms are un-

intentionally caused by liquidity regulation so we are interested to know whether liquidity

regulation can account for at least part of the Chinese experience.

Liquidity rules in China involve reserve requirements and, until late 2015, a loan-to-

deposit cap. The loan-to-deposit cap was introduced in 1995 to prevent banks from lending

more than 75% of the value of their deposits to non-financial borrowers. The remaining

25% had to be kept liquid, with reserve requirements dictating how this liquidity was to be

divided between pure reserves and other liquid assets. In practice, enforcement of the 75%

loan-to-deposit cap was lax until 2008, when the China Banking Regulatory Commission

(CBRC) announced a tougher stance and began increasing the frequency of its loan-to-

deposit monitoring. The enforcement action began with CBRC monitoring the end-of-year

loan-to-deposit ratios of all banks more carefully. CBRC then switched to monitoring end-

of-quarter ratios in late 2009, end-of-month ratios in late 2010, and average daily ratios

in mid-2011. The increasing frequency of CBRC’s loan-to-deposit enforcement was also

complemented by a rapid increase in the reserve requirements set by the central bank.14

Interbank market power was central to our theory of unintended credit booms. Section

5.1 establishes that large commercial banks in China impact the interbank market to a

much greater extent than small commercial banks. Section 5.2 then calibrates the model

to Chinese data. We use the calibrated model to study how large a credit boom our model

can produce (Section 5.3) and present a structural estimation to evaluate the importance of

various shocks (Section 5.4).

14We refer the reader to Hachem (2018) and Song and Xiong (2018) for more on China’s regulatory envi-
ronment and financial institutions. It is useful to note that capital regulation in China follows international
standards. Chinese banks were comfortably above minimum capital requirements as CBRC tightened en-
forcement of the loan-to-deposit cap. China also increased capital requirements in 2013 and 2014, in line
with Basel III, but bank capital ratios remained unconstrained. We discuss this further in Online Appendix
I which accompanies Sections 5.2 and 5.3.
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5.1 Empirical Evidence on China’s Interbank Market

We begin with some brief institutional background on China’s commercial banks and their

interbank activities before presenting our empirical evidence on interbank market power.

5.1.1 Institutional Background

The Chinese economy is served by both big and small banks. The small banks include

twelve joint-stock commercial banks (JSCBs) which operate nationally, as well as over two

hundred city banks operating in specific regions. Many rural banks have also emerged.15

The JSCBs are typically larger than the city and rural banks but all of these banks are still

individually small when compared to China’s big banks (the Big Four). The Big Four are the

four commercial banks established by the central government after the Cultural Revolution.

Market-oriented reforms initiated in the 1990s made the Big Four almost entirely profit-

driven and removed government involvement from day-to-day operations. However, a legacy

of minimal competition between these four banks remains. China’s banking sector is therefore

well approximated by a model with one big bank and many small banks.

We characterize the market structure and the relative importance of the Big Four in

China’s interbank repo market in Online Appendix H.16 In addition to the Big Four, the

JSCBs, and other smaller players, China has three policy banks which participate in the

interbank repo market. The policy banks are not commercial banks. Instead, they raise

money on bond markets and take directives from the central government about where to

invest. The policy banks and the Big Four are the central lending nodes in China’s interbank

repo market. Detailed analysis of a dramatic spike in interbank interest rates on June 20,

2013 demonstrates that policy banks provided generous amounts of liquidity but interbank

rates did not fall because the Big Four were extremely restrictive. This is a concrete example

15There were 951 commercial banks in China’s business registration records at the end of 2014. Of these,
438 were established after 2007 and reflected mainly the conversion of rural credit cooperatives into rural
banks rather than the entry of new credit providers.
16China has both an interbank repo market and an uncollateralized money market. We focus on the repo

market since it is vastly larger.
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of the ability of the Big Four to drive pricing in the interbank market.

The spike in June 2013 eventually led Chinese regulators to announce that the interbank

liabilities of a commercial bank should not exceed one-third of its total liabilities. The goal

was to increase transparency and facilitate supervision, not to suppress interbank activity.17

Notably, negotiable certificates of deposit (NCDs) were exempt from the definition of in-

terbank liabilities, leading to rapid growth in NCD issuance (Gu and Yun (2019)). We use

NCDs in the empirical strategy below, so it will be useful to overview the data here.

Daily average NCD issuance increased from less than RMB 1 trillion in 2014 to roughly

RMB 13 trillion in 2016, before stabilizing around RMB 20 trillion in 2017 and 2018. This

is still modest relative to the interbank repo market, whose daily average volume is about

28 times that of NCD issuance. Nevertheless, interest rates on NCDs track fluctuations

in the overnight repo rate; the correlation ranges from 0.67 for 1-month NCDs to 0.78 for

6-month NCDs.18 Roughly 75% of NCDs have a maturity of 3 months or longer, whereas

overnight transactions account for more than 80% of total trading volume on the interbank

repo market. On an annualized basis, NCD rates exceed repo rates, so it is not profitable to

borrow via NCD issuance in order to increase repo lending.

When using NCD data, we focus on the trading days from the beginning of 2016 to the

end of 2018. The NCD market was not fully developed until late 2015 and CBRC began

regulating NCDs very differently after 2018 (Gu and Yun (2019)). Our sample period consists

of more than 70,000 NCD announcements. The vast majority of NCDs from 2016 to 2018

were issued by small banks. The Big Four only accounted for 2.8% of the total issuance

volume. Within the Big Four, Agricultural Bank of China (ABC) issued the most NCDs,

followed by China Construction Bank (CCB).19 The average size of an NCD issue was RMB

17See “Document No. 127: The Offi cial Document for Interbank Businesses,” an investigative report
by a finance journalist (Xi You, Caijing, June 4, 2014), for how the events of June 20 triggered intensive
policy discussions and eventually led to Document No. 127, “Notice on Regulating the Interbank Business
of Financial Institutions,”jointly issued by CBRC, the central bank, and several other agencies.
18While we view these correlations as reasonably high, they are lower than the correlation between the

Fed Funds Rate and CD rates in the U.S., reflecting the more volatile nature of the interbank rate in China
as compared to the U.S. (the latter is targeted by the central bank; the former is not).
19Between 2016 and 2018, ABC and CCB each accounted for 0.6% of the number of NCD issuances. Bank
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2.4 billion for ABC and RMB 1.8 billion for CCB, comparable to the average size of an NCD

issue by a JSCB. Thus, it is the frequency of issuance that differs between the Big Four and

the JSCBs, not the size of the average issuance.

5.1.2 Empirical Evidence

We use NCDs to provide more direct evidence of the interbank market power of the Big

Four. Ideally, we would like to show that the interbank repo rate responds to variations in

the net liquidity supply of the Big Four, specifically variations that are not driven by the

repo rate itself. Such variations are not directly observable, but the NCD market can help

provide some identification, as described next.

Advance information disclosure is mandatory for each NCD issuance. The issuing bank

has to announce the volume being issued, the promised interest rate, and the maturity of the

product at least one trading day before issuance occurs. Our identifying assumption is that

an exogenous increase in the liquidity demand of a bank leads it to both reduce lending on

the interbank repo market and announce NCDs, conditional on NCD issuance being a regular

channel for the bank to raise funds. The advantage of the NCD data is that announcements

are made at the end of the trading day. An unanticipated NCD announcement would thus

signal an impending, i.e., next trading day, decrease in the net liquidity supply of the issuing

bank on the interbank repo market.

We construct a daily NCD announcement dummy for the Big Four, NCDB4,t, which

equals one if any bank in the Big Four announced NCDs at the end of trading day t.

Our key specification is a regression of the daily average repo rate at date t on the NCD

announcement dummy for the Big Four at date t− 1. The repo rate is highly persistent, so

we include two lags as regressors to control for dynamics in the interbank repo market prior

of China (BOC) accounted for 0.2% while Industrial and Commercial Bank of China (ICBC) did not issue
more than a handful of NCDs. In terms of market volume, ABC and CCB accounted for 1.4% and 0.9%
respectively while BOC accounted for 0.5%. If the variations in liquidity demand are similar among the Big
Four, one would infer that ICBC and BOC have much higher costs of issuing NCDs than ABC and CCB
and thus prefer to borrow from the repo market. In contrast, NCD issuance is a more viable choice for ABC
and CCB to raise liquidity.
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to NCD announcement.20 We also include the required reserve ratio to control for policy

changes by China’s central bank (PBOC). The regression equation is thus

repot = β0 + β1NCDB4,t−1 + β2repot−1 + β3repot−2 + β4RRRt + εt (14)

with β1 as the coeffi cient of interest. Note that NCD announcements, if unanticipated,

should have no effect on the repo rate on the announcement day. This can be confirmed by

replacing NCDB4,t−1 with NCDB4,t in Eq. (14) and checking that the estimated coeffi cient

is not statistically different from zero.

We confirm that NCD announcements are in fact associated with subsequent decreases

in net liquidity supply. Starting in 2015, PBOC began reporting end-of-month data on the

total interbank assets and liabilities of the Big Four separately from other banks. Such

data are not available at the daily frequency of NCD announcements. However, for the 36

end-of-month observations between 2016 and 2018, we can regress the Big Four’s interbank

asset-to-liability ratio on a dummy variable for NCD announcements on the second last

trading day of the month. The estimated coeffi cient is -0.29 and statistically significant at

the 5% level. A higher ratio of assets to liabilities on the interbank market indicates a higher

net liquidity supply. The Big Four’s interbank assets exceed their interbank liabilities in all

36 observations, with an average ratio of 1.91. The estimated decline of 0.29 associated with

NCD announcement does not reverse the status of the Big Four as net lenders to the broader

interbank market. However, it does indicate a decrease in their net liquidity supply.

Table 1 presents our main findings from the regression in Eq. (14). Column 1 shows

that β1 is positive and highly significant. The point estimate suggests that, on average, the

interbank repo rate increases by 3.9 basis points after a bank in the Big Four announces

NCD issuance. Replacing NCDB4,t−1 with NCDB4,t in Eq. (14) delivers a statistically

insignificant coeffi cient, consistent with the unanticipated nature of NCD announcements at

the end of each trading day.

20All the results are robust to the number of lags; the third-and-above lags are statistically insignificant.
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The effect in Column 1 is mainly driven by ABC and CCB, which accounted for more

than 80% of the NCDs issued by the Big Four. This is shown in Column 2 of Table 1, which

replaces NCDB4,t−1 with a separate lagged NCD announcement dummy for each bank in

the Big Four. In Online Appendix H, we run Eq. (14) using the lagged NCD announcement

dummy for each JSCB; the response of the interbank repo rate to NCD announcements by

the JSCBs is not statistically different from zero.21

Overall, then, the interbank repo rate increases in response to NCD announcements by

banks in the Big Four but does not respond to NCD announcements by any of the JSCBs.

Recall that the size of an average NCD issuance is similar across the Big Four and the JSCBs.

Thus, the results are consistent with the Big Four’s interbank market power, or, at the very

least, the perception by other banks that banks in the Big Four have such market power.22

5.2 Calibration

We calibrate the model to China’s banking sector in 2007, just before CBRC’s enforcement

action on the 75% loan-to-deposit cap. We introduce linear operating costs φixi and external

liquidity L into the theoretical model to better fit the data. The external liquidity parameter

captures the presence of non-bank financial institutions in China’s interbank repo market.

In the baseline calibration, L is a constant. We will allow it to vary with the interbank rate

as in Eq. (13) when conducting sensitivity analysis.

We set α = 0.145 as the initial liquidity floor, which was the required reserve ratio at the

end of 2007. The average interest rate on overnight repos in China’s interbank market was

2.2% per annum. The Big Four accounted for 56% of total deposits in 2007 and, as a group,

21As an additional robustness check, we redid the regressions in Table 1 and Online Appendix H (see specif-
ically Table H.2) dropping all NCD announcements with a volume above RMB 10 billion. This eliminates
about 5% and 2% of the NCDs issued by ABC and CCB respectively. The results are very robust.
22For example, if the JSCBs perceive NCD issuance by ABC as an increase in ABC’s liquidity demand,

they might expect higher repo rates going forward and borrow more from the repo market as soon as it
opens. This collective increase in current liquidity demand would put upward pressure on the repo rate.
However, the basis for the upward pressure is the expectation that ABC’s liquidity demand will tighten the
repo market, which is an expectation of market power.
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had a loan-to-deposit ratio of 0.62, which was much lower than the JSCB ratio of 0.86.23

All interest rates are converted to an annualized basis for the purposes of calibration.

PBOC set benchmark interest rates for traditional deposits until late 2015. The average

annualized rate for short-term deposits (3 months or less) was 2% at the end of 2007. Since

our model normalizes the interest rate on traditional (i.e., on-balance-sheet) funding to zero,

we will deduct 2% from all interest rates used as targets in the calibration.

Benchmark loan rates were more flexible than deposit rates. The benchmark loan rate

was 6.6% per annum for loans with a maturity of less than 6 months. According to PBOC’s

quarterly reports, about 25% and 45% of commercial bank loans had interest rates below

and above the benchmark rate, respectively. The average lending rate was 7.1% and 10% of

loans were charged an interest rate that was at least 50% higher than the benchmark rate.

We assume a quadratic revenue function g (1− λi) = (1 + z) (1− λi) − γ
2

(1− λi)2, where

z > γ. We set z = 0.08 so that the highest marginal return to loans is 10%. We then set γ

so that the average lending rate in the model is 7.1%.24

We target E (r) = 0.2% to match the average repo rate of 2.2% in 2007. We normalize

rA = 0 and set πA = 0.90, with πB = 0.09. The target for E (r) then pins down rB = 2.2%.

Mapping back to the data, the interbank rate when small banks borrow is normalized to 2%

and the interbank rate when the big bank borrows is 4.2%.

We calibrate x0
k and δ1 to match the Big Four’s market share in 2007 and 2014. Note

that δ1 is the only parameter calibrated using data from 2014. The empirical counterpart of

xk is the Big Four’s share of total deposits, which is 0.56 in 2007 and 0.46 in 2014.25

23All loan-to-deposit ratios reported here are calculated using the average balances of loans and deposits
during the year, not the year-end balances that are prone to manipulation. See Online Appendix I for more
on the importance of using average balance data. The average loan book of each bank later became the
ultimate target of CBRC’s enforcement action.
24We are assuming the same z and γ for all banks. In practice, different banks may invest in different

sectors but, adjusting for political risk, the returns are roughly comparable in China. Some anecdotal
evidence can be found in Dobson and Kashyap (2006).
25Here, we use end-of-year deposit shares, which constitute a more general measure of bank funding than

the name suggests and map well into our overall funding variable xi. As we describe below, the relevant
notion of shadow banking in China is WMPs. The majority of WMPs come due at the end of the year, at
which point they automatically appear in the saver’s deposit account while waiting for him/her to confirm
rollover of the product.
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The shadow banking technology, h (ξi), is approximated by hξi, where h > 0 is a constant.

Our core insights do not require this technology to be strictly concave (see Online Appendix

E) so we use a linear function to simplify the computational procedure. For reference, the

type of shadow banking we model is well approximated by wealth management products

(WMPs) in China. In 2005, the Chinese government expanded the range of financial ser-

vices banks could provide. This opened the door for WMPs which represent a deposit-like

product offered at endogenous interest rates. Any WMPs issued without an explicit princi-

pal guarantee do not have to be consolidated into the bank’s balance sheet and are instead

invested off-balance-sheet. The lack of explicit guarantees is only for accounting purposes

though; there is a general perception that all WMPs are at least implicitly guaranteed by

traditional banks (Elliott, Kroeber, and Qiao (2015)). Online Appendix I provides further

background on the issuance of WMPs in China. WMPs were a mere 1.3% of China’s total

deposits in 2007. To calibrate h, we target λj = 0.14 to match the loan-to-deposit ratio of

the JSCBs in 2007 given the liquidity floor of α = 0.145.

For the liquidity shocks, we normalize θBj = 0 then set θAj = λj +0.025 to ensure θAj > λj,

i.e., small banks always borrow in state A.26 To calibrate θBk , we target λk = 0.38 to

match the loan-to-deposit ratio of the Big Four in 2007. We then set θAk so that the expected

liquidity shock is the same across banks, i.e., θAk = θAj +
(

1
π̃
− 1
) (
θBj − θBk

)
where π̃ ≡ πA

πA+πB
.

Finally, we calibrate the operating cost parameters φj and φk to match profitability

metrics in 2007, specifically a profit-to-asset ratio of 1% for the Big Four and 0.9% for the

JSCBs based on financial statement data.27

26While the choice of θAj is arbitrary, our results are not affected by different θAj due to the slackness
of the interbank market in state A. Assuming θAj = λj + 0.25, for instance, delivers essentially the same
quantitative results.
27The calibrated parameters are γ = 0.079, x0k = 0.57, δ1 = 197, h = 745, θBk = 0.62, θAk = 0.10,

φj = 0.031, φk = 0.024, L = 0.07. The calibrated L implies that non-bank financial institutions provide
about a third of the interbank market’s liquidity in state B.
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5.3 Policy Experiment

We now use the calibrated model to predict what would have happened in 2014 had the only

difference between 2007 and 2014 been the strength of CBRC’s loan-to-deposit enforcement.

To this end, we tighten the liquidity floor from α = 0.145 to α = 0.25, keeping all other

parameters unchanged. Comparing the predicted change in the aggregate credit-to-savings

ratio to the actual change observed in the data, we get an estimate of the quantitative

importance of stricter liquidity rules.

The results are summarized in Table 2. Our model predicts a 42 basis point increase in

the average interbank interest rate between 2007 and 2014. This is about one-third of the

increase observed in the data.28 The model also predicts a large increase in the Big Four’s

loan-to-deposit ratio, from 0.62 in 2007 to 0.71 in 2014. This increase is almost identical

to the one in the data despite not being targeted in the calibration. Notice that stricter

enforcement of the 75% cap introduced a binding constraint on China’s small banks but

not on the Big Four. While the Big Four were not directly affected, the sharp decline in

their liquidity ratio is exactly the response predicted by our model in Proposition 4. This

decline occurs as the on-balance-sheet liquidity ratio of the JSCBs rises from 0.145 to 0.25 to

meet the liquidity floor. China thus experienced higher interbank rates and convergence of

on-balance-sheet liquidity ratios after the tightening of liquidity regulation. We recall from

Proposition 4 that interbank market power is necessary for liquidity regulation to have both

of these effects alongside a credit boom.

Turning next to the credit boom, Table 2 shows that our model predicts a 6.2 percentage

point increase in total credit. This is a prediction about the change in total credit relative to

total savings, as total savings are normalized to 1 in the model. The relevant comparison in

the data is therefore to the change in China’s aggregate credit-to-savings ratio between 2007

and 2014, which we estimate to be roughly 10 percentage points.29 The calibrated version

28The benchmark deposit rate was lowered from 2% in 2007 to 1.4% in 2014, so we subtract only 1.4%
from the average overnight repo rate in 2014 to get the entry in the first row of column (4) in Table 2.
29The credit-to-savings ratio in 2007 is pinned down by the targeted values of λj , λk, and xk. We then
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of our model thus generates around 60% of China’s credit boom, as measured by growth

in credit over and above growth in savings, as the outcome of stricter liquidity regulation.

The results are robust to introducing equity issuance by banks and a risk-weighted capital

requirement (Table F.1 in Online Appendix F) as in the extended model discussed in Section

4.2.

Applying the decomposition in Section 3.4, the credit boom in Table 2 reflects

∆LIQ︸ ︷︷ ︸
−0.062

=
(
1− x1

k

)
∆λj︸ ︷︷ ︸

0.002

+ x1
k∆λk︸ ︷︷ ︸
−0.040

+
(
λ0
k − λ0

j

)
∆xk︸ ︷︷ ︸

−0.024

where λ0
j and λ

0
k are the liquidity ratios at the initial regulation α

0 = 0.145 and x1
k is the

funding share at the tightened regulation α1 = 0.25. Notice that ∆λj, the change in the true

liquidity ratio of the interbank price-takers, is very small. It can be decomposed as

∆λj =
(
1− hξ0

j

)
∆α︸ ︷︷ ︸

0.1014

− α1h∆ξj︸ ︷︷ ︸
0.0980

where ξ0
j ≈ 0 is the shadow banking action taken by these banks before the tightening of

liquidity regulation. The first term in the expression for ∆λj captures the increase in the

on-balance-sheet liquidity ratio of the price-takers to comply with tighter regulation. It is

almost entirely undone by the second term, which captures the big increase in the shadow

banking activities of the price-takers as they become more constrained.30 The credit boom

then reflects the reallocation of funding towards these less liquid banks (∆xk < 0) and the

strategic response of the more liquid interbank price-setter (∆λk < 0).

estimate the size of the credit boom in the data as follows. Commercial banks in China for which Bankscope
has complete data collectively added RMB 40 trillion of new loans between 2007 and 2014. As a result, the
ratio of traditional lending to GDP increased by 20 percentage points. The ratio of off-balance-sheet WMPs
to GDP increased by 15 percentage points over the same period, which accounts for the majority of the
growth in broader measures of shadow banking that can be constructed using data from China’s National
Bureau of Statistics (Hachem (2018)). Adding the growth of the traditional and shadow sectors, we get a
35 percentage point increase in the ratio of total credit to GDP from 2007 to 2014, which translates into a
roughly 10 percentage point increase in China’s credit-to-savings ratio.
30Online Appendix I runs panel regressions to show formally that more constrained banks engaged more

heavily in shadow banking in China. We also find suggestive cross-sectional evidence that provinces with
higher loan-to-deposit ratios before CBRC’s enforcement action experienced more rapid financial sector
growth, especially outside of traditional bank lending, after the enforcement.
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The calibrated model can also be used to conduct sensitivity analysis with respect to

some key parameters. The details are presented in Online Appendix J. We highlight a few

of the results here. First, the emergence of a credit boom reflects interbank market power,

not the large initial funding share of the Big Four. Lowering x0
k to the deposit share of

only the largest member of the Big Four in 2007 then recalibrating the model still delivers a

quantitatively important increase in credit following the tightening of liquidity rules. Second,

our baseline credit boom is robust to introducing some competition between the price-taking

banks for funding. In any symmetric equilibrium, ξj = ξj so the funding share of the price-

takers is xj = 1− xk, with xk as per Eq. (7). However, off equilibrium, xj can be increasing

in the spread ξj − ξj. Extending the model in this way does not change the conclusion

that the effect of higher α on aggregate credit is positive. Third, increasing suffi ciently the

amount of external liquidity L in the interbank market dampens the size of the credit boom.

The same is true if we introduce highly interest-sensitive liquidity injections by the central

bank, i.e., ψ > 0 as in Eq. (13) with ψ large. Big inflows of liquidity from outside sources

reduce fluctuations in the average interbank rate, weakening the price-setter’s pricing power.

A central bank that is suffi ciently responsive to interbank rate fluctuations can therefore

decrease the magnitude of the credit boom triggered by liquidity regulation, assuming all

other parameters are held constant.

5.4 Simulation Results

We now subject the calibrated model to various shocks to see how well it matches empirical

moments not targeted in the calibration. We are interested in (i) the overall ability to match

these moments and (ii) the relative importance of each shock in doing so.

Table 3 reports observed correlations between the interbank repo rate and the returns to

WMPs issued by small and big banks. These are the key market-determined interest rates

in China and their correlations were not targeted in the calibration.

The correlations in Table 3 are calculated using monthly data from January 2008 to
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December 2014. The time series for E (r) is the average interbank repo rate weighted by

transaction volume. The time series for ξj and ξk are the average returns promised by small

and big banks respectively on 3-month WMPs, as reported in the Wind Financial Terminal.

Table 3 shows that E (r) is positively correlated with ξj and ξk, as well as the spread

ξj − ξk. It also shows that ξj is positively correlated with ξk. We would like to know

the extent to which our calibrated model can replicate the correlations in Table 3. We

start by considering three shocks separately: shocks to liquidity regulation, shocks to loan

demand, and money supply shocks. We then simulate the model allowing for all three shocks

simultaneously.

5.4.1 Shocks to Liquidity Regulation

We allow α, the parameter governing liquidity regulation, to be drawn from a normal distri-

bution:

α = α + εα (15)

where εα is normally distributed with mean 0 and variance σ2
α. We set α = 0.25, which

generates the 75% cap on the loan-to-deposit ratio. We draw values of α using Eq. (15)

and simulate the model for each value to generate the average interbank rate E (r) and

the returns ξj and ξk offered by small and big banks respectively. We then use Simulated

Method of Moments to estimate the unknown parameter σα. Online Appendix K describes

the estimation procedure in more detail.

The first column of Table 4 reports the estimated parameter values (Panel A) and pre-

dicted correlations (Panel B). The observed correlations from Table 3 appear in the last

column of Panel B. The estimated σα is sizable and highly significant. Also notice that the

estimated model predicts the positive correlations between E (r) and each of ξj, ξk, and

ξj − ξk as well as the positive correlation between ξj and ξk. We have explained the mecha-

nism through which a tightening of liquidity regulation constrains banks that are price-takers

on the interbank market (i.e., small banks) and incentivizes them to engage in shadow bank-
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ing, which in turn incentivizes the price-setter (i.e., big bank) to defend its funding share by

increasing E (r). This generates a positive correlation between E (r) and ξj; see Proposition

4. For a large enough shock to liquidity regulation, which we consider in the quantitative

analysis, the price-setter also defends its funding share by increasing ξk away from zero. This

leads ξk to be positively correlated with ξj and E (r). The response of ξk to α is less dramatic

than the response of ξj to α because the price-setter is not fundamentally constrained by

the regulation, leading to a positive correlation between E (r) and the spread ξj − ξk.

Shocks to α therefore generate all the right signs for the correlations between the inter-

bank rate and WMP returns. At the same time, the predicted correlations are higher than

those in the data. It will thus be useful to also allow for other shocks, as is done next.

5.4.2 Loan Demand Shocks

Shocks to loan demand are introduced by allowing the parameter z to fluctuate (recall

g′ (0) = 1 + z in the calibrated model). Specifically:

z = z + εz

where εz is normally distributed with mean 0 and variance σ2
z. Loan demand shocks have

their own importance in China given that fiscal stimulus was undertaken in 2009 and 2010.

The stimulus package sought to combat negative spillover from the global financial crisis by

providing a direct boost to aggregate demand. To the extent that stimulus increased loan

demand, it did so at all banks in a largely uniform way (Bai, Hsieh, and Song (2016)). An

increase in z relative to z captures this.

We simulate the model for different values of z while holding α = α. The results are

reported in the second column of Table 4. The estimated value of σz in Panel A is statistically

significant. However, the overall fit as measured by SSR is much worse than the model with

only variations in α, and three of the four correlations predicted in Panel B are negative,

in contrast to the data. As z increases, investing in the long-term project becomes more
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attractive. The price-setter k thus increases ξk to boost its funding share xk and invest more.

However, as xk increases, the aggregate feasibility constraint in stateB tightens, necessitating

higher E (r) so that the price-takers bring enough liquidity to clear the market. The higher

cost of liquidity E (r) offsets the incentive of the price-takers to shift more funding into

shadow banking, where liquidity regulation does not constrain how much they can invest.

The net effect on ξj is negative, producing the wrong correlations relative to the data.

5.4.3 Money Supply Shocks

Money supply shocks are introduced by allowing for exogenous variation in external liquidity:

L = L+ εL

where εL is normally distributed with mean 0 and variance σ2
L. We simulate the model for

different draws of εL while holding α = α and z = z.

The results are reported in the third column of Table 4. The overall fit is better than the

model with only shocks to z but still substantially worse than the model with only shocks to

α. As was the case with loan demand shocks, several of the correlations predicted in Panel

B are negative, in contrast to the data. All else constant, a decrease in external liquidity

increases E (r) but reduces both ξj and ξk. The decrease in ξj reflects the fact that price-

takers have less of a regulatory arbitrage motive when the expected interbank rate is high,

and the decrease in ξk reflects the fact that the price-setter is competing against less aggres-

sive products by the price-takers. Money supply shocks thus generate negative correlations

between the interbank rate and WMP returns, contradicting the positive correlations in the

data.

5.4.4 Multiple, Simultaneous Shocks

Now consider a version of the quantitative model which has shocks to liquidity regulation,

shocks to loan demand, and money supply shocks, all at the same time. The shocks (εα, εz,
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and εL) are drawn from the relevant distributions, all of which are assumed to be independent

of each other. We are able to separately identify σα, σz, and σL since shocks to liquidity

regulation, loan demand, and external liquidity imply different correlations between E (r),

ξj, and ξk, as discussed above.

The results are reported in the fourth column of Table 4. The quantitative model with

three shocks matches the four empirical correlations very well. The SSR drops to 0.02, two

orders of magnitude smaller than that in any of the models with only one shock. Moreover,

σα, σz, and σL are all statistically significant, indicating that all three shocks are relevant.

However, as we saw when we considered each shock separately, shocks to liquidity regulation

play a much more important role than shocks to either loan demand or external liquidity

when it comes to getting the right signs for the correlations.

To this point, we also find that variations in α explain 23%, 99%, and 90% of the variance

of E (r), ξj, and ξk in the estimated model, respectively. Variations in z explain 64% of the

variance of E (r), indicating that loan demand shocks were important for the variance of

the interbank rate. This complements our finding in Section 5.3 that changes in liquidity

regulation can explain about one-third of the increase in the interbank repo rate between

2007 and 2014, along with explaining 60% of the increase in the aggregate credit-to-savings

ratio.

6 Conclusion

This paper has developed a theoretical framework to study the endogenous response of the

banking sector to liquidity regulation and the implications for the aggregate economy. We

showed that the introduction of a liquidity floor can generate an unintended credit boom

when there is interbank market power. Liquidity floors are endogenously more binding on an

interbank price-taker than on an interbank price-setter. In response, the price-takers find it

optimal to offer a new savings instrument and manage the funds raised by this instrument in

51



an off-balance-sheet vehicle that is not subject to liquidity regulation. The push to attract

savings into off-balance-sheet instruments raises the interest rates on these instruments above

the rates on traditional deposits and poaches funding from the price-setter. The price-setter

does not find it optimal to completely undo the reallocation of savings by offering equally

high returns. Instead, the price-setter may engage in a form of asymmetric competition,

using its market power to tighten the interbank market for emergency liquidity against the

price-takers. The new equilibrium is characterized by more credit as savings are reallocated

across banks and lending is reallocated across markets.

Applying our framework to China, where the interbank market is characterized by market

power, we found that a regulatory push to increase bank liquidity and cap loan-to-deposit

ratios in the late 2000s accounts for over half of China’s unprecedented credit boom between

2007 and 2014. A quantitative extension that allowed for other, non-regulatory shocks also

identified variation in liquidity rules as the dominant force behind observed co-movements

in market-determined interest rates.

Our model also helps to understand the consequences of liquidity regulation in more

general scenarios. The core ingredients of the model connect to features of the National

Banking Era in the U.S., prior to the creation of the Federal Reserve. Impediments to

interest rate targeting by central banks at the zero lower bound may also re-ignite market

power in funding markets between banks. Our model suggests that optimal regulation in

these environments cannot take the form of a simple liquidity floor. It is the combination

of interbank market power and shadow banking that is problematic, as such a floor was

shown to be optimal otherwise. Further study of optimal policy in a quantitative model

with interbank market power is an important avenue for future research.
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Table 1

Interbank Repo Rate Regressions

(1) (2)

repo repo

L1.repo 0.827*** 0.826***

(0.0377) (0.0377)

L2.repo 0.0693* 0.0618

(0.0383) (0.0384)

RRR 0.209*** 0.202***

(0.0713) (0.0711)

L.NCD_Big4 0.0394***

(0.0120)

L.NCD_ABC 0.0227*

(0.0118)

L.NCD_BOC -0.0210

(0.0161)

L.NCD_CCB 0.0414***

(0.0122)

L.NCD_ICBC -0.0135

(0.0475)

Observations 748 748

R-squared 0.842 0.844

Notes: Dependent variable is the repo rate on day t; L1.repo and L2.repo are

one- and two-day lags respectively; RRR is the required reserve ratio; L.NCD

is a dummy variable for NCD announcement by the indicated bank(s) on day

t− 1. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 2

Calibration Results

(1) (2) (3) (4)

Model Data Model Data

α = 0.145 2007 α = 0.25 2014

Average Interbank Rate, E (r) 0.2% 0.2% 0.6% 1.3%

Price-Setter Loan-to-Deposit Ratio, 1− λk 0.62 0.62 0.71 0.70

Credit-to-Savings Ratio, 1− λj − (λk − λj)xk 72.5% 72.5% 78.7% 82.5%

Notes: We target the 2007 values of all variables in this table. The 2014 values in (3) are generated by the

calibrated model keeping all parameters except α unchanged. Interbank rates in (2) and (4) are reported

net of the benchmark deposit rate.
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Table 3

Correlations Between Market Rates in the Data

corr
(
E (r) , ξj

)
0.456

(0.077)

corr (E (r) , ξk) 0.329

(0.095)

corr
(
E (r) , ξj − ξk

)
0.259

(0.093)

corr
(
ξj, ξk

)
0.736

(0.052)

Notes: Bootstrapped standard errors are in parentheses.
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Table 4

Estimation Results

Panel A: Parameter Values

Model with Model with Model with Model with

only σα only σz only σL σα, σz, σL
σα 0.0131 - - 0.0396

(0.0001) (0.0030)

σz - 0.0037 - 0.0002

(0.0004) (0.0000)

σL - - 0.0059 0.0014

(0.0002) (0.0007)

SSR 1.052 6.382 3.886 0.021

Panel B: Pairwise Correlations

Model with Model with Model with Model with Data

only σα only σz only σL σα, σz, σL
corr

(
E (r) , ξj

)
0.955 -0.999 -1.000 0.371 0.456

corr (E (r) , ξk) 0.784 0.861 -0.960 0.352 0.329

corr
(
E (r) , ξj − ξk

)
0.994 -0.959 0.568 0.296 0.259

corr
(
ξj, ξk

)
0.931 -0.849 0.960 0.846 0.736

Notes: Panel A reports the estimated parameter values. SSR is the sum of squared residuals.

Bootstrapped standard errors are in parentheses. Columns 1 to 4 in Panel B report the simulated

correlations using the estimated parameter values in each model. Column 5 in Panel B reports

the correlations in the data as per Table 3.
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Appendix A —Proofs

Proof of Proposition 1

Letting ηs ≥ 0 and υs ≥ 0 denote Lagrange multipliers, the Lagrangian for k’s problem is

Lk = [g (1− λk) + λk − 1]x0
k +

[
π̃rA

(
θAj − λj

)
+ (1− π̃) rB

(
θBj − λj

)] (
1− x0

k

)
+ηA (rA − rA) + ηBrB +

∑
s∈{A,B}

υs
[(
λj − θsj

) (
1− x0

k

)
+ (λk − θsk)x0

k

]
We ignore for the moment the constraints rA ≥ 0 and rB ≤ rB; we will solve the relaxed

problem without these constraints and then return to them.

The FOCs for λk, rA, and rB are respectively:

0 =
∂Lk
∂λk

=

−g′ (1− λk) + 1 +
∑

s∈{A,B}

υs

x0
k (A.1)

0 =
∂Lk
∂rA

= π̃

θAj − λj +

 ∑
s∈{A,B}

υs − E (r)

 ∂λj
∂E (r)

(1− x0
k

)
− ηA (A.2)

0 =
∂Lk
∂rB

= (1− π̃)

θBj − λj +

 ∑
s∈{A,B}

υs − E (r)

 ∂λj
∂E (r)

(1− x0
k

)
+ ηB (A.3)

where
∂λj
∂E (r)

=
1

−g′′ (1− λj)
from Eq. (3).

The properties g′ (1) > 1 and g′′ (·) < 0 imply g′ (·) > 1 and thus υA + υB > 0 from Eq.

(A.1), i.e., aggregate feasibility holds with equality in at least one state, as per Lemma 1.

λk is then pinned down by Eq. (5), which can be rearranged to get

λk = θs
′

k −
(
λj − θs

′

j

) 1− x0
k

x0
k

(A.4)

Next, use Eqs. (3) and (A.1) to rewrite Eqs. (A.2) and (A.3) as

ηA =
π̃ (1− x0

k)

−g′′ (1− λj)
[
g′ (1− λk)− g′ (1− λj)− g′′ (1− λj)

(
θAj − λj

)]
(A.5)

ηB = −(1− π̃) (1− x0
k)

−g′′ (1− λj)
[
g′ (1− λk)− g′ (1− λj) + g′′ (1− λj)

(
λj − θBj

)]
(A.6)
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If rB > 0, then ηB = 0 by complementary slackness, so Eq. (A.6) reduces to

g′ (1− λk)− g′ (1− λj) + g′′ (1− λj)
(
λj − θBj

)
= 0 (A.7)

and we can rewrite Eq. (A.5) as

ηA = π̃
(
θAj − θBj

) (
1− x0

k

)
> 0 (A.8)

which implies rA = rA by complementary slackness. The constraint rA ≥ 0 is then trivially

satisfied by rA ≥ 0.

Since g′′ (·) < 0, it follows immediately from Eq. (A.7) that λk > λj in any equilibrium

where λj ∈
(
θBj , θ

A
j

)
.

Now return to rB ≤ rB. Let
(
r̂B, λ̂k, λ̂j

)
denote the solution to the relaxed problem

above and
(
r∗B, λ

∗
k, λ

∗
j

)
the solution to the true problem where k is also subject to rB ≤ rB.

If r̂B ≤ rB, then the two solutions coincide and λ
∗
k > λ∗j follows from λ̂k > λ̂j as shown

earlier. If instead r̂B > rB, then r∗B = rB and thus r∗B < r̂B. Moreover, ηA > 0 and Eq.

(A.4) still hold, so we conclude λ∗j < λ̂j from r∗B < r̂B and Eq. (3) followed by λ
∗
k > λ̂k from

Eq. (A.4). The result λ∗k > λ∗j then follows from λ̂k > λ̂j. �

Proof of Proposition 2

If rB > 0, then the equilibrium value of λj solves Eq. (A.7) with λk and ηA as per Eqs. (A.4)

and (A.8). Formally, this pins down λj as the solution to

G1

(
λj;x

0
k

)
= 0 (A.9)

where

G1

(
λj;x

0
k

)
≡ g′

(
1− θs′k +

(
λj − θs

′

j

) 1− x0
k

x0
k

)
− g′ (1− λj) + g′′ (1− λj)

(
λj − θBj

)
Notice

∂G1(λj ;x0k)
∂λj

< 0 for λj ≥ θBj by the properties g
′′ (·) < 0 and g′′′ (·) ≥ 0. Therefore, if Eq.

(A.9) has a solution λj ∈
(
θBj , θ

A
j

)
, the solution is unique. Moreover, we can establish λj ∈(

θBj , θ
A
j

)
by establishing G1

(
θBj ;x0

k

)
> 0 and G1

(
θAj ;x0

k

)
< 0 then invoking the intermediate

value theorem.

Start with G1

(
θBj ;x0

k

)
> 0. If s′ = A, then G1

(
θBj ;x0

k

)
> 0 is equivalent to

g′
(

1− θAk −
(
θAj − θBj

) 1− x0
k

x0
k

)
− g′

(
1− θBj

)
> 0

which, with g′′ (·) < 0, requires
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1− θAk −
(
θAj − θBj

) 1− x0
k

x0
k

< 1− θBj

or equivalently

x0
k <

θAj − θBj
θAj − θAk

Note that s′ = A implies θAj (1− x0
k) + θAk x

0
k ≥ θBj (1− x0

k) + θBk x
0
k, which rearranges to

x0
k ≤

θAj −θBj
θAj −θAk +θBk −θBj

so the condition for G1

(
θBj ;x0

k

)
> 0 is true. If instead s′ = B, then

G1

(
θBj ;x0

k

)
> 0 is equivalent to

g′
(
1− θBk

)
− g′

(
1− θBj

)
> 0

which is also true by θBk > θBj and g
′′ (·) < 0.

Consider next G1

(
θAj ;x0

k

)
< 0. If s′ = A, then G1

(
θAj ;x0

k

)
< 0 is equivalent to

g′
(
1− θAk

)
− g′

(
1− θAj

)
+ g′′

(
1− θAj

) (
θAj − θBj

)
< 0

which is true by θAj > max
{
θAk , θ

B
j

}
and g′′ (·) < 0. If instead s′ = B, then G1

(
θAj ;x0

k

)
< 0

is equivalent to

g′
(

1− θBk +
(
θAj − θBj

) 1− x0
k

x0
k

)
− g′

(
1− θAj

)
+ g′′

(
1− θAj

) (
θAj − θBj

)
< 0

which will be true for θAj suffi ciently high (e.g., it is trivially true for θ
A
j ≥ θBj +

(
θBk − θBj

)
x0
k

and also true for some lower θAj on account of g
′′ (·) < 0).

Finally, we find conditions under which the equilibrium has rB > 0. We recall from the

proof of Proposition 1 that rA = rA if rB > 0, so, from Eq. (3), rB > 0 is confirmed if and

only if

1 + π̃rA < g′ (1− λj) (A.10)

where λj solves Eq. (A.9). Notice that rA does not enter Eq. (A.9). Also recall g′ (·) > 1.

Therefore, Condition (A.10) defines a positive upper bound on rA such that, for any rA
below this upper bound, the equilibrium has rB > 0. �

Proof of Lemma 2

The Lagrange function for bank j’s problem is:

Lj = g (1− λj)+λj−1−ξj+π̃rA
(
λj − θAj

)
+(1− π̃) rB

(
λj − θBj

)
+µj

[
λj − α

(
1− h

(
ξj
))]

+ρjξj
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where µj ≥ 0 and ρj ≥ 0 are the multipliers on the constraints. The FOCs for λj and ξj are

then given by Eqs. (8) and (9), with the complementary slackness conditions (10) and (11).

There are three cases:

1. The first case is µj = 0. Eq. (9) delivers ρj = 1 and hence ξj = 0 by complementary

slackness. Eq. (8) collapses to Eq. (3) from the unregulated equilibrium and hence

defines the function λj (E (r)) with λ′j (E (r)) > 0. Confirming µj = 0 requires λj ≥ α,

i.e.,

E (r) ≥ g′ (1− α)− 1 ≡ R (α)

2. The second case is µj > 0 and ρj = 0. By complementary slackness,

λj = α
(
1− h

(
ξj
))

which combines with Eqs. (8) and (9) to isolate ξj as

g′
(
1− α

(
1− h

(
ξj
)))
− 1

αh′
(
ξj
) = 1 + E (r) (A.11)

The left-hand side of Eq. (A.11) is decreasing in ξj, so Eq. (A.11) defines a function

ξj (E (r)) with ξ′j (E (r)) < 0. Confirming ξj ≥ 0 requires

E (r) ≤ g′ (1− α)− 1− 1

αh′ (0)
≡ R (α)

3. The third case is µj > 0 and ρj > 0. By complementary slackness, λj = α and ξj = 0.

Eqs. (8) and (9) then become

µj = g′ (1− α)− 1− E (r)

ρj = 1− αh′ (0)µj

Confirming µj > 0 and ρj > 0 requires E (r) ∈
(
R (α) , R (α)

)
.

Putting together the cases, the optimality conditions from j’s problem are

λj :


λj = α

(
1− h

(
ξj
))

if E (r) ≤ R (α)

λj = α if E (r) ∈
(
R (α) , R (α)

)
g′ (1− λj) = 1 + E (r) if E (r) ≥ R (α)

(A.12)
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with

ξj :

 g′
(
1− α

(
1− h

(
ξj
)))
− 1

αh′(ξj)
= 1 + E (r) if E (r) ≤ R (α)

ξj = 0 if E (r) > R (α)
(A.13)

where
∂ξj
∂E(r)

< 0 for E (r) ≤ R (α) follows from the properties of g (·) and h (·). �

Proof of Lemma 3

We first set up k’s problem without restricting ξk = 0. The Lagrangian is:

Lk = [g (1− λk) + λk − 1− ξk]xk +
[
π̃rA

(
θAj − θBj

)
+ E (r)

(
θBj − λj

)]
(1− xk)

+µk [λk − α (1− h (ξk))]xk + ρkξkxk +
∑

s∈{A,B}

υs
[(
λj − θsj

)
(1− xk) + (λk − θsk)xk

]
where λj, ξj, and xk are given by Eqs. (A.12), (A.13), and (7) respectively. Here, we are

assuming the choice of E (r) will satisfy rB > 0; we verify this later in the proof. To simplify

the exposition, we explicitly assume g (·) and h (·) such that k’s problem is concave on the

interval E (r) ≤ R (α).

The FOCs with respect to λk and ξk are:

∂Lk
∂λk

= (−g′ (1− λk) + 1 + υs′ + µk)xk (A.14)

∂Lk
∂ξk

= [αµkh
′ (ξk) + ρk − 1]xk + δ1Z (A.15)

where υs′ ≡ υA + υB and Z is an endogenous object defined as

Z ≡ g (1− λk) + λk − 1− ξk − π̃rA
(
θAj − θBj

)
+ E (r)

(
λj − θBj

)
−
υs′
(
λj − θs

′

j

)
xk

Turning to the choice of E (r), we notice that Lk is continuous but not continuously differ-
entiable because λj and ξj have kinks at the cutoffs R (α) and R (α). For values of E (r)

where Lk is differentiable:

∂Lk
∂E (r)

=

[
θBj − λj + (υs′ − E (r))

∂λj
∂E (r)

]
(1− xk)− δ1Z

∂ξj
∂E (r)

(A.16)

where ∂λj
∂E(r)

and
∂ξj
∂E(r)

are governed by Eqs. (A.12) and (A.13).

If µk = 0, then setting ∂Lk
∂λk

= 0 in Eq. (A.14) delivers

υs′ = g′ (1− λk)− 1 (A.17)
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which is the simplified form of Eq. (A.1) and, by the properties of g′ (·), requires υs′ > 0. In

other words, aggregate feasibility binds in state s′ so we can use

λk = θs
′

k −
(
λj − θs

′

j

) 1− xk
xk

(A.18)

in the derivations that follow. Eq. (A.18) is the same as Eq. (A.4) but evaluated at the

more general xk in Eq. (7).

With h′ (0) → ∞, there is only one cutoff R (α) in Eqs. (A.12) and (A.13). Moreover,

ξk = 0 implies µk = 0, otherwise ∂Lk
∂ξk

=∞ in Eq. (A.15) and ξk = 0 cannot be optimal. We

fix ξk = 0 as per the statement of the proposition for the rest of this proof.

For E (r) ≥ R (α), Eqs. (A.12) and (A.13) imply ξj = 0 and

∂λj
∂E (r)

= − (g′′ (1− λj))−1

so Eq. (A.16) becomes
∂Lk
∂E (r)

sign
= G1

(
λj;x

0
k

)
where G1 (·) is as defined in the proof of Proposition 2 and λ∗j is the only solution to

G1 (λj;x
0
k) = 0 on the interval λj ∈

(
θBj , θ

A
j

)
. From Eq. (3), the interbank rate is then

E (r) = g′
(
1− λ∗j

)
− 1, so E (r) > R (α) if and only if α < λ∗j . Corollarily, R (α) domi-

nates any E (r) > R (α) if α ≥ λ∗j . In other words, the equilibrium for α ≥ λ∗j will have

E (r) ≤ R (α), which, from the proof of Lemma 2, means λj = α
(
1− h

(
ξj
))
.

For E (r) ≤ R (α), Eqs. (A.12) and (A.13) imply

∂λj
∂E (r)

= −αh′
(
ξj
) ∂ξj
∂E (r)

and
∂ξj

∂E (r)
=

(
αh′

(
ξj
)
g′′
(
1− α

(
1− h

(
ξj
)))

+
h′′
(
ξj
)

α
(
h′
(
ξj
))2

)−1

so Eq. (A.16) becomes
∂Lk
∂E (r)

sign
= G̃

(
ξj;α

)
where we define

G̃
(
ξj;α

)
≡ G1

(
α
(
1− h

(
ξj
))

;x0
k − δ1ξj

)
+

1

αh′
(
ξj
) +

h′′
(
ξj
)

α2
(
h′
(
ξj
))3

[
α
(
1− h

(
ξj
))
− θBj

]

+

δ1
αh′(ξj)

[
F
(
α
(
1− h

(
ξj
))
, x0

k − δ1ξj
)
− α(1−h(ξj))−θBj

αh′(ξj)

]
1− x0

k + δ1ξj
(A.19)
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and

F (λj, xk) ≡ g

(
1− θs′k +

(
λj − θs

′

j

) 1− xk
xk

)
− π̃rA

(
θAj − θBj

)
−
(

1− θs′k
)
−
(
θs
′

j − θBj
)

+g′ (1− λj)
(
λj − θBj

)
− g′

(
1− θs′k +

(
λj − θs

′

j

) 1− xk
xk

)
λj − θs

′

j

xk

for future reference. Taking limits:

lim
E(r)→R(α)−

∂Lk
∂E (r)

sign
= G1

(
α;x0

k

)
+

1

αh′ (0)
+

h′′ (0)

α2 (h′ (0))3

(
α− θBj

)
+

δ1
αh′(0)

[
F (α, x0

k)−
α−θBj
αh′(0)

]
1− x0

k

so, with h′ (0)→∞ and h′′(0)

(h′(0))3
→ 0,

lim
E(r)→R(α)−

∂Lk
∂E (r)

sign
= G1

(
α;x0

k

)
≤ G1

(
λ∗j ;x

0
k

)
= 0 (A.20)

for α ≥ λ∗j , where the inequality in Eq. (A.20) follows from the fact that ∂G1(λj ;0)

∂λj
< 0 for

λj ≥ θBj ; see again the proof of Proposition 2. The inequality in Eq. (A.20) holds strictly if

and only if α > λ∗j , i.e., E (r) < R (α) dominates R (α) as α is pushed above λ∗j . At α = λ∗j ,

the concavity of k’s problem ensures that the only solution is E (r) = R
(
λ∗j
)
, which recovers

the unregulated equilibrium.

Thus far, we have abstracted from the constraint rB > 0, which is equivalent to E (r) >

π̃rA from the definition of E (r). For α ≥ λ∗j , Eq. (A.11) pins down E (r) conditional on

ξj and, with ξk = 0, ξj is pinned down by G̃
(
ξj;α

)
= 0. With g (·) and h (·) well-behaved,

G̃
(
ξj;α

)
= 0 defines ξj as a continuous function of α, hence E (r) is also continuous in α for

α ≥ λ∗j and the properties of the unregulated equilibrium (in this case rB > 0) carry over to

the local analysis we do around α = λ∗j .
1 �

Proof of Lemma 4

Consider k’s problem without the constraint λk ≥ α (1− h (ξk)), i.e., set µk = 0. We

will verify afterwards that the solution obtained without this constraint does indeed satisfy

λk ≥ α (1− h (ξk)).

If ξk > 0, then ρk = 0 and we set ∂Lk
∂ξk

= 0 to get

δ1Z = xk (A.21)

1The same line of argument can be used to conclude rB < rB for parameters that deliver this property in
the unregulated equilibrium, i.e., 1+ π̃rA+(1− π̃) rB > g′ (1− λj), where λj solves Eq. (A.9) independently
of rA and rB .
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from Eq. (A.15), where

Z = F (λj, xk)− ξk + (1 + E (r)− g′ (1− λj))
(
λj − θBj

)
(A.22)

and F (·) is as defined in the proof of Lemma 3. Substitute δ1Z = xk into
∂Lk
∂E(r)

= 0 to get

xk
1− xk

∂ξj
∂E (r)

= θBj − λj + (g′ (1− λk)− 1− E (r))
∂λj
∂E (r)

(A.23)

from Eq. (A.16).

If E (r) ≥ R (α), then ξj = 0 so Eq. (7) gives xk = x0
k + δ1ξk. Moreover, Eq. (A.22)

simplifies to

Z = F (λj, xk)− ξk

while Eq. (A.23) simplifies to G1 (λj;xk) = 0, which is as defined in the proof of Proposition

2 and implicitly defines the function λj (xk). We can then rewrite Eq. (A.21) as

ξk =
1

2

(
F (λj (xk) , xk)−

x0
k

δ1

)
(A.24)

Differentiate F (·) to find

dF (λj (xk) , xk)

dxk

= g′′
(

1− θs′k +
(
λj (xk)− θs

′

j

) 1− xk
xk

)1− 1− xk
xk

λ′j (xk)

λj(xk)−θs′j
x2k


(
λj (xk)− θs

′

j

)2

x3
k

−G1 (λj (xk) ;xk)︸ ︷︷ ︸
=0

λ′j (xk)

where

λ′j (xk) =
1

1−xk
xk

+
2g′′(1−λj(xk))−g′′′(1−λj(xk))(λj(xk)−θBj )

g′′
(

1−θs′k +(λj(xk)−θs′j ) 1−xkxk

)
λj (xk)− θs

′

j

x2
k

from differentiation of G1 (·) = 0. Therefore,

dF (λj (xk) , xk)

dxk
< 0

so from Eq. (A.24)

ξk <
1

2

(
F
(
λ∗j , x

0
k

)
− x0

k

δ1

)
where λ∗j ⇔ λj (x0

k) and F
(
λ∗j , x

0
k

)
is finite and independent of δ1. If F

(
λ∗j , x

0
k

)
> 0, which

9



would be necessary for ξk > 0, then any δ1 ∈
(

0,
x0k

F(λ∗j ,x0k)

)
will deliver ξk < 0 from Eq.

(A.24), which contradicts ξk > 0. Therefore, ξk = 0 if E (r) ≥ R (α).

If instead E (r) ≤ R (α), then Lemma 2 and Eqs. (A.21), (A.22), and (A.23) imply

ξk =
1

2

(
F
(
α
(
1− h

(
ξj
))
, x0

k + δ1

(
ξk − ξj

))
−
α
(
1− h

(
ξj
))
− θBj

αh′
(
ξj
) + ξj −

x0
k

δ1

)
(A.25)

where ξj solves
2

G1

(
α
(
1− h

(
ξj
))

;x0
k + δ1

(
ξk − ξj

))
+

1

αh′(ξj)

1− x0
k − δ1

(
ξk − ξj

)+
h′′
(
ξj
)

α2
(
h′
(
ξj
))3

[
α
(
1− h

(
ξj
))
− θBj

]
= 0

(A.26)

Consider α = λ∗j . We know from the proof of Lemma 3 that E (r) = R
(
λ∗j
)
is optimal if

ξk = 0, where E (r) = R
(
λ∗j
)
implies ξj = 0. Evaluated at α = λ∗j and ξj = 0, Eq. (A.25) is

ξk =
1

2

(
F
(
λ∗j , xk

)
− x0

k

δ1

)
where xk = x0

k + δ1ξk. Note

∂F (λj, xk)

∂xk
= g′′

(
1− θs′k +

(
λj − θs

′

j

) 1− xk
xk

) (λj − θs′j )2

x3
k

< 0

and therefore

ξk <
1

2

(
F
(
λ∗j , x

0
k

)
− x0

k

δ1

)
< 0

where the first inequality follows from ξk > 0 and the second inequality follows for any

δ1 ∈
(

0,
x0k

F(λ∗j ,x0k)

)
. This is a contradiction, hence ξk = 0 is optimal if E (r) = R

(
λ∗j
)
. We

have now established (E (r) , ξk) =
(
R
(
λ∗j
)
, 0
)
as a solution to k’s problem at α = λ∗j so, by

concavity, there cannot exist another solution with ξk > 0 at α = λ∗j . Moreover, with g (·)
and h (·) well-behaved, Eqs. (A.25) and (A.26) define ξj and ξk as continuous functions of α
so the fact that Eq. (A.25) delivers ξk < 0 at α = λ∗j implies that it will also deliver ξk < 0

as α is perturbed above λ∗j . Therefore, ξk = 0 for an interval α ∈
[
λ∗j , λ

∗
j + ε

)
, where ε > 0.

The last step is to confirm µk = 0. Recall λ∗k > λ∗j from the unregulated equilibrium, so

it follows immediately that λ∗k > α when α = λ∗j , i.e., bank k is unconstrained at this level

2Note that setting ξk = 0 in Eq. (A.25) and using the result to simplify G̃
(
ξj ;α

)
as defined in Eq. (A.19)

delivers the left-hand side of Eq. (A.26) evaluated at ξk = 0.
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of regulation. For α ∈
[
λ∗j , λ

∗
j + ε

)
, Eq. (A.18) becomes

λk = θs
′

k −
(
α
(
1− h

(
ξj
))
− θs′j

) 1− x0
k + δ1ξj

x0
k − δ1ξj

where ξj is pinned down by G̃
(
ξj;α

)
= 0, which we recall from the proof of Lemma 3 defines

ξj as a continuous function of α. Therefore, λk is also continuous in α for α ∈
[
λ∗j , λ

∗
j + ε

)
so it must be the case that k remains unconstrained by regulation (i.e., λk > α and hence

µk = 0) as α is perturbed above λ∗j . �

Proof of Proposition 3

Given funding share xk, total credit is

TC ≡ (1− λk)xk + (1− λj) (1− xk)

where Eq. (A.18) pins down(
λk − θs

′

k

)
xk +

(
λj − θs

′

j

)
(1− xk) = 0

Therefore

TC = 1− θs′j −
(
θs
′

k − θs
′

j

)
xk

and

∆TC = −
(
θs
′

k − θs
′

j

)
∆xk

where the definition of xk implies

∆xk = δ1

(
∆ξk −∆ξj

)
As α is perturbed above λ∗j , we have ∆ξj > 0 and ∆ξk = 0 (see Lemmas 3 and 4) and hence

∆xk < 0. Therefore, ∆TC > 0 if and only if θs
′

k > θs
′

j , i.e., s
′ = B. Note that s′ = B if and

only if

θBk x
0
k + θBj

(
1− x0

k

)
> θAk x

0
k + θAj

(
1− x0

k

)
or equivalently

x0
k >

1

1 +
θBk −θAk
θAj −θBj

= π̃
θAj − θBj
θBk − θBj

where the equality follows from the assumption that the expected value of the shock is

the same for all banks. Intuitively, aggregate feasibility will bind in the state where the

price-setting bank borrows if and only if this bank is suffi ciently large. �
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Proof of Proposition 4

For the first part of the proposition, we only need to prove the existence of parameters such

that the three features hold simultaneously in our model with interbank market power.

Assume the conditions on h (·) in Lemma 3 along with x0
k large enough to deliver s

′ = B

as in Proposition 3. This delivers the credit boom.

Next, consider what happens to E (r) as α is varied in the vicinity of λ∗j , i.e., variations

such that ξk = 0 as per Lemma 4. For α ≥ λ∗j , the solution is

1 + E (r) = g′
(
1− α

(
1− h

(
ξj
)))
− 1

αh′
(
ξj
)

where ξj solves

G̃
(
ξj;α

)
= 0

with G̃ (·) as defined in Eq. (A.19). Differentiate to get

dE (r)

dα
= −g′′

(
1− α

(
1− h

(
ξj
)))(

1− h
(
ξj
)
− αh′

(
ξj
) dξj
dα

)
+

1

α2h′
(
ξj
)+

h′′
(
ξj
)

α
(
h′
(
ξj
))2

dξj
dα

and
dξj
dα

= − G̃
′
α

G̃′ξj

Therefore, dE(r)
dα

∣∣∣
α→(λ∗j)

+ > 0 if and only if(
g′′
(
1− λ∗j

)
+

h′′ (0)(
λ∗j
)2

(h′ (0))3

)
G̃′α
G̃′ξj

λ∗jh
′(0)

<
1(

λ∗j
)2
h′ (0)

− g′′
(
1− λ∗j

)
where the partials G̃′α and G̃

′
ξj
are evaluated at α = λ∗j .

Using the expression for G̃ (·), we get

G̃′α = g′′
(

1− θs′k +
(
λ∗j − θs

′

j

) 1− x0
k

x0
k

)
1− x0

k

x0
k

+ 2g′′
(
1− λ∗j

)
− g′′′

(
1− λ∗j

) (
λ∗j − θBj

)
− 1(

λ∗j
)2
h′ (0)

− h′′ (0)(
λ∗j
)2

(h′ (0))3

(
1−

2θBj
λ∗j

)

− δ1

1− x0
k

[
g′′
(

1− θs′k +
(
λ∗j − θs

′

j

) 1− x0
k

x0
k

)
1− x0

k

x0
k

λ∗j − θs
′

j

x0
k

− 1

λ∗jh
′ (0)

(
1−

2θBj
λ∗j

)]
1

λ∗jh
′ (0)
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and

G̃′ξj
λ∗jh

′ (0)
= −g′′

(
1− θs′k +

(
λ∗j − θs

′

j

) 1− x0
k

x0
k

)(
1− δ1

x0
k (1− x0

k)

λ∗j − θs
′

j

λ∗jh
′ (0)

)2
1− x0

k

x0
k

− 2g′′
(
1− λ∗j

)
+g′′′

(
1− λ∗j

) (
λ∗j − θBj

)
− 2h′′ (0)(

λ∗j
)2

(h′ (0))3
+

λ∗j − θBj(
λ∗j
)3

(h′ (0))4

(
h′′′ (0)− 3 (h′′ (0))2

h′ (0)

)

+
δ1

1− x0
k

1 + δ1
1−x0k

λ∗j−θBj
λ∗jh
′(0)(

λ∗jh
′ (0)

)2 +
2δ1

1− x0
k

λ∗j − θBj(
λ∗j
)3
h′ (0)

h′′ (0)

(h′ (0))3

at α = λ∗j . With
h′′(0)

(h′(0))3
→ 0, the condition for dE(r)

dα

∣∣∣
α→(λ∗j)

+ > 0 reduces to

g′′
(
1− λ∗j

)



1−

g′′′
(
1− λ∗j

) (
λ∗j − θBj

)
− 2g′′

(
1− λ∗j

)
−g′′

(
1− θs′k +

(
λ∗j − θs

′

j

)
1−x0k
x0k

)(
1− δ1

x0k(1−x0k)
λ∗j−θs

′
j

λ∗jh
′(0)

)
1−x0k
x0k

+ 1

(λ∗j)
2
h′(0)
− δ1

1−x0k
1

(λ∗jh′(0))
2

(
1− 2θBj

λ∗j

)
g′′′
(
1− λ∗j

) (
λ∗j − θBj

)
− 2g′′

(
1− λ∗j

)
−g′′

(
1− θs′k +

(
λ∗j − θs

′

j

)
1−x0k
x0k

)(
1− δ1

x0k(1−x0k)
λ∗j−θs

′
j

λ∗jh
′(0)

)2
1−x0k
x0k

+ δ1
1−x0k

1+
δ1

1−x0
k

λ∗j−θ
B
j

λ∗
j
h′(0)

(λ∗jh′(0))
2 +

λ∗j−θBj
(λ∗j)

3

(
h′′′(0)

(h′(0))4
− 3(h′′(0))2

(h′(0))5

)



<
1(

λ∗j
)2
h′ (0)

(A.27)

Then, as h′ (0)→∞, it will suffi ce to have
∣∣∣ h′′′(0)

(h′(0))4
− 3(h′′(0))2

(h′(0))5

∣∣∣→∞.3 Thus, there exist para-
meterizations such that E (r) increases as α is perturbed above λ∗j . Recalling the equilibrium

properties of ξj around λ
∗
j establishes corr

(
ξj, E (r)

)
> 0 as a result of such perturbation.

To establish convergence of on-balance-sheet liquidity ratios, recall λj = α
(
1− h

(
ξj
))

for α ≥ λ∗j , where h
(
ξj
)
is the fraction of funding moved off-balance-sheet via shadow

banking. The on-balance-sheet liquidity ratio of j is thus α, which increases as a result

of the perturbation. Turn next to the on-balance-sheet ratio of k, which is just λk in the

vicinity of α = λ∗j . From aggregate feasibility,

λk = θBk −
(
α
(
1− h

(
ξj
))
− θBj

)( 1

x0
k + δ1

(
ξk − ξj

) − 1

)

where we have subbed in the relevant expressions for λj and xk and used s′ = B. Differen-

3An example that satisfies the conditions is h (ξ) ∝ ξγ with γ ∈
(
1
3 ,

1
2

)
. Again, this is suffi cient, not

necessary.
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tiation yields:

dλk
dα

= −
(

1− h
(
ξj
)
− αh′

(
ξj
) dξj
dα

)(
1

x0
k + δ1

(
ξk − ξj

) − 1

)
+
δ1

(
dξk
dα
− dξj

dα

) (
α
(
1− h

(
ξj
))
− θBj

)
(
x0
k + δ1

(
ξk − ξj

))2

Therefore, dλk
dα

∣∣
α→(λ∗j)

+ < 0 if and only if

−
(

1−
δ1

(
λ∗j − θBj

)
λ∗jh

′ (0)x0
k (1− x0

k)

)
G̃′α
G̃′ξj

λ∗jh
′(0)

< 1 (A.28)

where G̃′α and G̃
′
ξj
are evaluated at α = λ∗j . This is the same condition as for

dE(r)
dα

∣∣∣
α→(λ∗j)

+ >

0 when h′′(0)

(λ∗j)
2
(h′(0))3

→ 0 and h′ (0) → ∞, completing the proof of the first part of the
proposition.

Remark A.1 Suppose instead h′ (0) is large but not arbitrarily so. This is the case consid-

ered in Appendix E. Then the analysis is conducted in the vicinity of α instead of λ∗j , where

α > λ∗j is the regulation level around which shadow banking emerges in Appendix E, with

α → λ∗j as h
′ (0) → ∞ and h′′(0)

(h′(0))3
→ 0. Consider h (·) locally linear at zero. The condition

for dE(r)
dα

∣∣∣
α→α+

> 0, i.e., Eq. (A.27) evaluated at α instead of λ∗j , becomes

g′′

1− θs′k +

(
α− θs′j

)
(1− x0

k)

x0
k

1−
δ1

(
α− θs′j

)
1

αh′(0)

x0
k (1− x0

k)

1−
δ1

(
α− θs′j

)
1−α2h′(0)g′′(1−α)

αh′(0)

x0
k (1− x0

k)


<

g′′′ (1− α)
(
α− θBj

)
− g′′ (1− α)

1 + δ1

α−θBj
α

(
2 + δ1

1−x0k
1

h′(0)

)
(1− x0

k)h
′ (0)

+
δ1

(
1 + δ1

1−x0k

α−θBj
αh′(0)

)
(1− x0

k) (αh′ (0))2

 x0
k

1− x0
k

A suffi cient condition is

1−
δ1

(
α− θs′j

)
x0
k (1− x0

k)

1− α2h′ (0) g′′ (1− α)

αh′ (0)
≥ 0

or equivalently

δ1

(
α− θs′j

)
≤ x0

k (1− x0
k)

1
αh′(0)

− αg′′ (1− α)

This defines a non-empty set D1 ⊂ (0,∞) such that E (r) increases as α is perturbed above

α for any δ1 ∈ D1.

The condition for dλk
dα

∣∣
α→α+ < 0, i.e., Eq. (A.28) evaluated at α instead of λ∗j , does not

14



collapse exactly to the condition for dE(r)
dα

∣∣∣
α→α+

> 0 if h′ (0) < ∞. Instead, Eq. (A.28)
becomes

δ1

(
α− θBj

)
x0
k (1− x0

k)

[
1

αh′ (0)
− 2αg′′ (1− α) + αg′′′ (1− α)

(
α− θBj

)]
+δ1

α−θBj
α

2−
δ1
x0
k

(
1−

2θBj

α(1−x0k)

)
h′(0)


(1− x0

k)h
′ (0)

> 1

where we have used s′ = B when evaluating G̃′α and G̃
′
ξj
at α = α. With h′ (0) large enough,

a suffi cient condition is just

δ1

(
α− θBj

)
x0
k (1− x0

k)

[
1

αh′ (0)
− 2αg′′ (1− α) + αg′′′ (1− α)

(
α− θBj

)]
≥ 1

or equivalently

δ1

(
α− θBj

)
≥ x0

k (1− x0
k)

1
αh′(0)

− 2αg′′ (1− α) + αg′′′ (1− α)
(
α− θBj

)
This defines a non-empty set D̃1 ⊂ (0,∞) such that λk decreases as α is perturbed above α

for any δ1 ∈ D̃1. The intersection D1 ∩ D̃1 is non-empty, completing the proof of the first

part of the proposition for the environment of Appendix E.

For the second part of the proof, consider an alternative model where all banks are

price-takers on the interbank market. The FOCs derived earlier for j will now hold for both

i ∈ {j, k}. Without regulation, the equilibrium will have g′j (1− λj) = 1+E (r) = g′k (1− λk),
where we write g′i (·) to allow for differences in the long-term investment technology across

banks. If g′j (·) = g′k (·), then all banks are ex ante identical, xk does not change in a
symmetric equilibrium, and there is no credit boom. Consider next g′j (·) > g′k (·), i.e., bank
j is more productive than bank k, so that λk > λj. Since j and k are now just labels, it

does not matter to whom we assign the higher g′i (·). Then Rj (α) > Rk (α) and shadow

banking exists if and only if E (r) < Rj (α). Consider a perturbation in the vicinity of

Rj (α). Specifically, suppose there exists an α′ and a small perturbation ε > 0 such that

E (r) = Rj (α′) when α = α′ and E (r) < Rj (α′ + ε) when α = α′ + ε. Then ∆ξj > 0

and ∆ξk = 0, which delivers ∆TC > 0 for s′ = B. However, in the vicinity of α′, bank k’s

on-balance-sheet liquidity ratio is either α or λk solving g′k (1− λk) = 1 + E (r) while bank

j’s ratio is again α. If λk = α, then the perturbation increases the ratios of both banks,

i.e., there is no convergence. If instead λk solves g′k (1− λk) = 1 + E (r), then convergence

requires a decrease in E (r), which produces corr
(
ξj, E (r)

)
< 0. This completes the proof

of the second part of the proposition. �
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Proof of Proposition 5

The Lagrangian for the planner’s problem is

Lp = g (1− λj)
(
1− x0

k

)
+ g (1− λk)x0

k − εκ
(
1− λkx0

k − λj
(
1− x0

k

))
+

∑
s∈{A,B}

υps
[(
λj − θsj

) (
1− x0

k

)
+ (λk − θsk)x0

k

]
where υps ≥ 0 is the Lagrange multiplier on the aggregate feasibility constraint in state

s ∈ {A,B}. The first order conditions are

g′ (1− λj) = g′ (1− λk) = υpA + υpB + εκ′ (1− LIQ)

where LIQ ≡ λkx
0
k + λj (1− x0

k). The planner wants perfect risk-sharing, i.e., λi = λp for

all i ∈ {j, k}.
If ε = 0, then

g′ (1− λp) = υpA + υpB

With g′ (·) > 0, the solution requires υpA + υpB > 0, which, with s′ = B, implies LIQ =

ΘB (x0
k). It then follows from Lemma 1 that aggregate liquidity is effi cient, i.e., it is pinned

down as LIQ = ΘB (x0
k) in both the decentralized equilibrium and the planner’s solution.

However, the distribution of liquidity across banks is ineffi cient in the decentralized equilib-

rium, i.e., the equilibrium has λk > λp > λj whereas the planner wants λk = λj = λp.

If ε > 0, then

g′ (1− λp) = υpA + υpB + εκ′ (1− λp)

Define λ∗ such that
g′ (1− λ∗)
κ′ (1− λ∗) = ε (A.29)

With s′ = B, the planner will want excess liquidity in both non-crisis states (i.e., υpA = υpB =

0) in order to reduce the social cost of default in the crisis state if and only if λ∗ > ΘB (x0
k),

or equivalently (12). Aggregate liquidity in the decentralized equilibrium, which still solves

LIQ = ΘB (x0
k), is then ineffi ciently low. �

Proof of Proposition 6

The optimization problem of bank j without the shadow banking technology is simply

max
λj≥λ∗

{
g (1− λj) + λj − 1 + π̃rA

(
λj − θAj

)
+ (1− π̃) rB

(
λj − θBj

)}
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which has Lagrangian

Lj = g (1− λj) + λj − 1 + π̃rA
(
λj − θAj

)
+ (1− π̃) rB

(
λj − θBj

)
+ µj (λj − λ∗)

and first order condition

λj :

{
λj = λ∗ if E (r) < R (λ∗)

g′ (1− λj) = 1 + E (r) if E (r) ≥ R (λ∗)

For bank k, the Lagrangian is now

Lk = [g (1− λk) + λk − 1]x0
k +

[
π̃rA

(
θAj − λj

)
+ (1− π̃) rB

(
θBj − λj

)] (
1− x0

k

)
+µk (λk − λ∗)x0

k +
∑

s∈{A,B}

υs
[(
λj − θsj

) (
1− x0

k

)
+ (λk − θsk)x0

k

]
and the first order condition for λk is

0 =
∂Lk
∂λk

= (−g′ (1− λk) + 1 + υs′ + µk)x
0
k (A.30)

If υs′ > 0, then

λj
(
1− x0

k

)
+ λkx

0
k = θs

′

j +
(
θs
′

k − θs
′

j

)
x0
k ≡ Θs′

(
x0
k

)
But then the regulatory constraints λj ≥ λ∗ and λk ≥ λ∗ imply Θs′ (x0

k) ≥ λ∗, which is false

by Condition (12) and the consideration of s′ = B. Therefore, υs′ = 0.

There are two implications of υs′ = 0. First, µk > 0 from Eq. (A.30) and the properties

of g′ (·). This then implies λk = λ∗. Second,

∂Lk
∂rs
∝ θsj − λj − E (r)

∂λj
∂E (r)

so ∂Lk
∂rB

< 0 follows from λj ≥ λ∗ > θBj and
∂λj
∂E(r)

≥ 0. Therefore, rB = 0 and E (r) = π̃rA ≤
π̃rA.

If π̃rA ≤ R (λ∗), then λj = λ∗ and the proof is complete. If instead π̃rA > R (λ∗), then

any E (r) > R (λ∗) would imply g′ (1− λj) = 1 + E (r) and

∂Lk
∂rA

sign
= 1− g′ (1− λj)− g′′ (1− λj)

(
θAj − λj

)
with

lim
E(r)→R(λ∗)+

∂Lk
∂rA

sign
= 1− g′ (1− λ∗)− g′′ (1− λ∗)

(
θAj − λ∗

)
so g′′ (1− λ∗) ≥ −g′(1−λ∗)−1

θAj −λ∗
(with g′′′ (·) small so that the problem is concave) would be

enough to rule out E (r) > R (λ∗). Thus, E (r) ≤ R (λ∗) and λj = λ∗. �
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Proof of Proposition 7

Without interbank market power, all banks are ex ante identical, so λi = λ and ξi = ξ for

i ∈ {j, k} and aggregate feasibility requires λ ≥ max
{

ΘA (x0
k) ,Θ

B (x0
k)
}
. Any competitive

equilibrium will have rA = rB = 0 if λ > max
{

ΘA (x0
k) ,Θ

B (x0
k)
}
. Eqs. (8) and (9) then

imply

g′ (1− λ) = 1 +
1− ρ
αh′ (ξ)

which, with h′ (0) → ∞ and g′ (·) > 1, requires ξ > 0. This further implies ρ = 0 and

λ = α (1− h (ξ)) so α∗ solving

α∗h′
(
h−1

(
1− λ∗

α∗

))
=

1

g′ (1− λ∗)− 1

implements λ = λ∗ in the absence of interbank market power.

For the rest of the proof, i.e., with interbank market power, recall µj =
1−ρj
αh′(ξj)

from Eq.

(9) and µk =
1−ρk−

δ1Z
xk

αh′(ξk)
from Eq. (A.15). Consider δ1 small enough that µk ≈

1−ρk
αh′(ξk)

, i.e., k’s

choice of ξk is not driven by a strategic desire to get bigger. This allows us to interpret ξi > 0

as a purely shadow banking action by bank i, i.e., a movement of activity off-balance-sheet

to circumvent regulation.

If µk = 0, then ρk > 0 and thus ξk = 0. Moreover, the first order condition for λk is

given by Eq. (A.1), which, with g′ (·) > 1, implies υA +υB > 0. In words, as long as k is not

constrained by α, its choice of λk will make aggregate feasibility hold with equality in a non-

crisis state. With s′ = B, this implies υB > 0 and thus LIQ = ΘB (xk) ≤ ΘB (x0
k), where

the inequality follows from ξj ≥ 0 and ξk = 0. Since the planner wants LIQ > ΘB (x0
k), any

α that does not constrain k cannot implement the planner’s solution.

If µj > 0 and µk > 0, then λi = α (1− h (ξi)) for i ∈ {j, k}. Suppose there exists an α
that implements λj = λk = λ∗. Then ξj = ξk = ξ∗ = h−1

(
1− λ∗

α

)
and thus µj−µk ≈

ρk−ρj
αh′(ξ∗) .

Moreover, from Eqs. (8) and (A.30), υB = E (r) + µj − µk and thus υB ≈ E (r) +
ρk−ρj
αh′(ξ∗) .

If ξ∗ > 0, then ρj = ρk = 0. Otherwise, h′ (ξ∗) → ∞. Either way, υB ≈ E (r) > 0 for any

rA > 0 (and possibly also rA = 0). Thus, LIQ = ΘB (x0
k), which is a contradiction since the

planner’s solution implements LIQ > ΘB (x0
k).

If instead µj = 0, then g′ (1− λj) = 1 + E (r) from Eq. (8), so λj = λ∗ is implemented

if and only if E (r) = g′ (1− λ∗)− 1 = R (λ∗). If µk > 0, then ξk > 0 under the assumption

of h′ (0) → ∞. Moreover, λk = α (1− h (ξk)) < α so implementing λk = λ∗ requires

α > λ∗. But then E (r) < R (α), which we know implies µj > 0 from Lemma 2. This is a

contradiction, completing the proof that an α that implements the planner’s solution may

not exist with market power.
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Consider now welfare, which is

We = g (1− λj) (1− xk) + g (1− λk)xk − εκ (1− LIQ)

in the decentralized equilibrium. We know from Proposition 3 that LIQ falls as α is per-

turbed above λ∗j . Thus,

lim
α→(λ∗j)

+

∂We

∂α
< 0

if κ′
(
1−ΘB (x0

k)
)
is suffi ciently large. In words, aggregate welfare falls because the credit

boom that accompanies the perturbation of α above λ∗j further depresses aggregate liquidity.

This discussion has implicitly assumed h′ (0) → ∞ as in Lemma 3. If instead h′ (0) < ∞
as in Appendix E, then the relevant threshold for the credit boom is α > λ∗j . The analysis

around α is similar to above, i.e.,

lim
α→α+

∂We

∂α
< 0

if κ′
(
1−ΘB (x0

k)
)
is suffi ciently large. On the interval α ∈

(
λ∗j , α

)
, we recall from Appendix

E that λj = α with xk = x0
k and thus

∂We

∂α

∣∣∣∣
α∈(λ∗j ,α)

=

[
g′
(

1− θBk +
(
α− θBj

) 1− x0
k

x0
k

)
− g′ (1− α)

] (
1− x0

k

)
> 0

where we have used the binding aggregate feasibility condition in state B to sub out λk from

the expression for We. In words, a liquidity floor α ∈
(
λ∗j , α

)
can improve welfare relative

to the unregulated equilibrium (i.e., We evaluated at α = λ∗j) by creating a more even

distribution of liquidity across banks. Of course, the redistribution does not raise aggregate

liquidity so welfare is still necessarily lower than in the planner’s solution. Moreover, if

κ′
(
1−ΘB (x0

k)
)
is large enough, perturbing α above α will still push welfare below the

unregulated equilibrium.

The proof so far has established the diffi culty of using a simple liquidity floor α to achieve

the planner’s solution in a model with both shadow banking and interbank market power.

The planner may then consider bank-specific floors αi. We sketch out this policy here,

which provides a basis for a separate paper on optimal policy and its implementation in a

quantitative model.

To fix ideas, consider bank-specific liquidity floors αj and αk such that both j and k are

constrained, i.e., µj > 0 and µk > 0, with ξj > 0 and ξk > 0. Then, by complementary

slackness,

λi = αi (1− h (ξi))
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for i ∈ {j, k} with
g′ (1− λj)−

1

αjh′
(
ξj
) = 1 + E (r) (A.31)

from Eq. (A.13). Setting ∂Lk
∂λk

= ∂Lk
∂ξk

= ∂Lk
∂E(r)

= 0 in Eqs. (A.14), (A.15), and (A.16) then

gives

g′ (1− λk) = 1 + υB + µk (A.32)

µk =
1

αkh′ (ξk)

(
1− δ1Z

xk

)
(A.33)[

αjh
′ (ξj) (υB − E (r)) +

δ1Z

1− xk

]
1

αjh′
(
ξj
)
g′′ (1− λj) +

h′′(ξj)
αj(h′(ξj))

2

= θBj − λj (A.34)

as first order conditions to k’s problem, where Z is as defined in the proof of Lemma 3 and

we consider s′ = B as above.

The planner seeks values of αj and αk that implement λj = λk = λ∗. If such values exist,

then Eq. (A.31) is

E (r) = g′ (1− λ∗)− 1

λ∗
1− h

(
ξj
)

h′
(
ξj
) − 1

and Eqs. (A.32) and (A.33) combine to give

g′ (1− λ∗) = 1 + υB +
1

λ∗
1− h (ξk)

h′ (ξk)

(
1− δ1Z

xk

)
where

Z ≡ g (1− λ∗) + λ∗ − 1− ξk − π̃rA
(
θAj − θBj

)
+ E (r)

(
λ∗ − θBj

)
−
υB
(
λj − θBj

)
xk

We can then isolate

υB =

(
1 + xk

δ1
λ∗

λ∗−θBj
h′(ξk)

1−h(ξk)

)
(g′ (1− λ∗)− 1) +

g(1−λ∗)+λ∗−1−ξk−π̃rA(θAj −θBj )−xkδ1
λ∗−θBj

− 1
λ∗

1−h(ξj)
h′(ξj)

1
xk

+ xk
δ1

λ∗

λ∗−θBj
h′(ξk)

1−h(ξk)

(A.35)

Finally, Eq. (A.34) is 1

λ∗ − θBj
1

1− xk
1− h

(
ξj
)

h′
(
ξj
) + λ∗g′′ (1− λj) +

h′′(ξj)
1−h(ξj)

λ∗
(

h′(ξj)
1−h(ξj)

)3


xk
δ1

+
λ∗−θBj
λ∗xk

1−h(ξk)
h′(ξk)

1−h(ξk)
h′(ξk)

+ xk
1−xk

1−h(ξj)
h′(ξj)

(A.36)

= (g′ (1− λ∗)− 1)
1− xk
xk

+
1

λ∗
1− h

(
ξj
)

h′
(
ξj
) −

g (1− λ∗) + λ∗ − 1− ξk − π̃rA
(
θAj − θBj

)
− xk

δ1

λ∗ − θBj
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Recall that xk is given by Eq. (7), hence Eq. (A.36) pins down a relationship between ξk
and ξj as a function of only parameters.

If υB > 0, then λ∗ = ΘB (xk) or equivalently

ξk = ξj +
1

δ1

(
λ∗ − θBj
θBk − θBj

− x0
k

)
(A.37)

which pins down a second relationship between ξk and ξj. Otherwise, υB = 0 and from Eq.

(A.35) the second relationship is

(
1 +

xk
δ1

λ∗

λ∗ − θBj
h′ (ξk)

1− h (ξk)

)
(g′ (1− λ∗)− 1) (A.38)

=
1

λ∗
1− h

(
ξj
)

h′
(
ξj
) −

g (1− λ∗) + λ∗ − 1− ξk − π̃rA
(
θAj − θBj

)
− xk

δ1

λ∗ − θBj

Optimal policy can take the form of bank-specific liquidity floors for parameterizations of

the model where (i) the solution to Eqs. (A.36) and (A.37) has the properties ξj > 0, ξk > 0,

and υB > 0 or (ii) the solution to Eqs. (A.36) and (A.38) has the properties ξj > 0, ξk > 0,

and ΘB (xk) < λ∗. We leave further analysis of such parameterizations for future study. �

Proof of Proposition 8

Formally, the Lagrangian for k’s problem is now

Lk = [g (1− λk) + λk − 1]x0
k

+π̃rA
[(
θAj − λj

) (
1− x0

k

)
− ψ (rA − r∗)

]
+ (1− π̃) rB

[(
θBj − λj

) (
1− x0

k

)
− ψ (rB − r∗)

]
+ηA (rA − rA) + ηBrB +

∑
s∈{A,B}

υs
[(
λj − θsj

) (
1− x0

k

)
+ (λk − θsk)x0

k + ψ (rs − r∗)
]

This is the same as in the proof of Proposition 1, except with the addition of the liquidity

injection terms. The counterparts to Eqs. (A.1), (A.2), and (A.3) are:

0 =
∂Lk
∂λk

=

−g′ (1− λk) + 1 +
∑

s∈{A,B}

υs

x0
k

0 =
∂Lk
∂rA

= π̃

[
θAj − λj +

( ∑
s∈{A,B}

υs − E (r)

)
∂λj
∂E (r)

] (
1− x0

k

)
+ψ (υA + π̃ (r∗ − 2rA))−ηA
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0 =
∂Lk
∂rB

= (1− π̃)

[
θBj − λj +

( ∑
s∈{A,B}

υs − E (r)

)
∂λj
∂E (r)

] (
1− x0

k

)
+ψ (υB + (1− π̃) (r∗ − 2rB))+ηB

and the counterparts to Eqs. (A.5) and (A.6) are:

ηA =
π̃ (1− x0

k)

−g′′ (1− λj)
[
g′ (1− λk)− g′ (1− λj)− g′′ (1− λj)

(
θAj − λj

)]
+ ψ (υA + π̃ (r∗ − 2rA))

ηB =
(1− π̃) (1− x0

k)

g′′ (1− λj)
[
g′ (1− λk)− g′ (1− λj) + g′′ (1− λj)

(
λj − θBj

)]
−ψ (υB + (1− π̃) (r∗ − 2rB))

If ηA = ηB = 0, then

υB
1− π̃ + r∗ − 2rB =

1− x0
k

ψ

(
g′ (1− λk)− g′ (1− λj)

g′′ (1− λj)
+ λj − θBj

)
υB

1− π̃ −
υA
π̃

+ 2 (rA − rB) =

(
θAj − θBj

)
(1− x0

k)

ψ

Taking limits as ψ →∞:
υB

1− π̃ + r∗ − 2rB → 0 (A.39)

υB
1− π̃ −

υA
π̃

+ 2 (rA − rB)→ 0 (A.40)

under the assumption of g′(1−λ)
g′′(1−λ)

bounded for λ ∈ [0, 1].

Notice that Eq. (13) is violated if rs < r∗ as ψ → ∞. If instead rs > r∗, then Eq.

(13) holds with strict inequality as ψ → ∞, implying υs = 0. But then Eq. (A.39) implies

rB → r∗

2
, which contradicts rB > r∗. This establishes rB → r∗, and hence υB

1−π̃ → r∗ by Eq.

(A.39), as ψ →∞. Substituting into Eq. (A.40) then implies:

2rA − r∗ −
υA
π̃
→ 0 (A.41)

If rA > r∗ as ψ → ∞, then υA = 0, which implies rA → r∗

2
by Eq. (A.41), contradicting

rA > r∗. Therefore, rA → r∗, and hence υA
π̃
→ r∗ by Eq. (A.41), as ψ →∞.

We have now established E (r)→ r∗ and υA + υB → r∗ as ψ →∞. Hence, Eq. (3) and
∂Lk
∂λk

= 0 deliver λj = λk = λ, where λ solves g′ (1− λ) = 1 + r∗. The central bank then just

needs to set r∗ = g′ (1− λ∗)− 1 where λ∗ solves the planner’s problem.

We make two remarks to conclude the proof. First, while aggregate feasibility binds in

both non-crisis states (i.e., υs > 0),

lim
ψ→∞

ψ (rs − r∗) = θsj
(
1− x0

k

)
+ θskx

0
k − λ∗ < 0

to achieve the constrained effi cient amount of aggregate liquidity. Second, it remains to
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verify ηA = ηB = 0. The conjecture of ηB = 0 is validated by r∗ > 0. We then just need

r∗ ≤ min {rA, rB}, which is trivial under the interpretation that rs is the discount window
rate set by the central bank in state s, i.e., the central bank just needs to set the discount

window rate rs greater than or equal to the policy rate r∗. �
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Appendix B —No Commitment

We again focus on equilibria with λj ∈
(
θBj , θ

A
j

)
, i.e., k lends in state A and borrows in state

B. Without commitment, k will set rA = rA and rB = 0. Eq. (3) then pins down λnj as

g′
(
1− λnj

)
= 1 + π̃rA (B.1)

The difference relative to the proof of Proposition 1 is that rB is no longer endogenous.

To see if there is still an (unregulated) equilibrium with λk > λj, we use Eq. (A.4) to

rewrite λk > λj as
λj − θs

′

j

x0
k

< θs
′

k − θs
′

j

Define λ ≡ θAj θ
B
k −θAk θBj

θAj −θAk +θBk −θBj
. If s′ = A, i.e., x0

k ≤ x0
k with x

0
k ≡

θAj −θBj
θAj −θAk +θBk −θBj

as defined in the

main text, then λk > λj if and only if x0
k <

θAj −λj
θAj −θAk

or equivalently x0
k < x0

k +
λ−λj
θAj −θAk

. If s′ = B,

i.e., x0
k ≥ x0

k, then λk > λj if and only if x0
k >

λj−θBj
θBk −θBj

or equivalently x0
k > x0

k−
λ−λj
θBk −θBj

. Notice

that λk > λj will be true for any s′ if λj < λ. It is straightforward to show λ ∈
(
θBj , θ

A
j

)
so,

with g′′ (·) < 0, the following conditions are suffi cient for λj ∈
(
θBj , θ

A
j

)
and λk > λj in the

model without commitment:

g′
(
1− θBj

)
< 1 + π̃rA

g′

(
1−

θAj θ
B
k − θAk θBj

θAj − θAk + θBk − θBj

)
> 1 + π̃rA

Starting from such an equilibrium, we also obtain the credit boom result in Proposition

3. Assume h′ (0) → ∞ as in Lemma 3. E (r) does not respond to α in the absence of

commitment, i.e., E (r) always equals π̃rA, so, from the definition of λ
n
j in Eq. (B.1), we can

write E (r) = R
(
λnj
)
. A perturbation of α above λnj then immediately implies ξj > 0 from

Lemma 2, where ξj solves

g′
(
1− α

(
1− h

(
ξj
)))
− 1

αh′
(
ξj
) = 1 + π̃rA

with λj = α
(
1− h

(
ξj
))
. To establish ξk = 0 in the vicinity of α = λnj , we follow the proof

of Lemma 4. In brief, if µk = 0, then, at α = λnj , setting
∂Lk
∂ξk

= 0 in Eq. (A.15) delivers

ξk < 0 for any δ1 ∈
(

0,
x0k

F(λnj ,x0k)

)
. This contradicts ∂Lk

∂ξk
= 0 so ξk = 0 at α = λnj and, by

continuity, as α is perturbed above λnj . Continuity together with the starting point λ
n
k > λnj

then confirms µk = 0 for this perturbation. The credit boom result then follows exactly as

in the proof of Proposition 3 for values of x0
k that deliver s

′ = B.
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Appendix C —Endogenous rs

Consider k’s Lagrangian as in the proof of Proposition 1 but with the constraint rA ≤ rA (λj),

where rA (λj) denotes the solution to ΥA (λj; rA) = 0, i.e., rA (λj) =
g(1−λj)+λj−1

θAj −λj
≥ 0, which

is the interbank rate that would leave bank j with zero profits in state A.

The FOC for λk is still given by Eq. (A.1), which again implies Eq. (A.4). The FOCs

for rA and rB are now

0 =
∂Lk
∂rA

= π̃

θAj − λj +

 ∑
s∈{A,B}

υs − E (r) +
ηAr

′
A (λj)

1− x0
k

 ∂λj
∂E (r)

(1− x0
k

)
− ηA

0 =
∂Lk
∂rB

= (1− π̃)

θBj − λj +

 ∑
s∈{A,B}

υs − E (r) +
ηAr

′
A (λj)

1− x0
k

 ∂λj
∂E (r)

(1− x0
k

)
+ ηB

in place of Eqs. (A.2) and (A.3), which delivers

ηA =
π̃ (1− x0

k)

−g′′ (1− λj)

[
g′ (1− λk)− g′ (1− λj)− g′′ (1− λj)

(
θAj − λj

)
+
ηAr

′
A (λj)

1− x0
k

]

ηB = −(1− π̃) (1− x0
k)

−g′′ (1− λj)

[
g′ (1− λk)− g′ (1− λj) + g′′ (1− λj)

(
λj − θBj

)
+
ηAr

′
A (λj)

1− x0
k

]
in place of Eqs. (A.5) and (A.6).

If rB > 0, then we obtain

g′ (1− λk)− g′ (1− λj) + g′′ (1− λj)
(
λj − θBj

)
+
ηAr

′
A (λj)

1− x0
k

= 0 (C.1)

in place of Eq. (A.7), where ηA > 0 is still given by Eq. (A.8) and hence rA = rA (λj). We

can then rewrite Eq. (C.1) as

g′
(

1− θs′k +
(
λj − θs

′

j

) 1− x0
k

x0
k

)
−g′ (1− λj)+g′′ (1− λj)

(
λj − θBj

)
+

g(1−λj)−1+θAj
θAj −λj

− g′ (1− λj)
θAj −λj

π̃(θAj −θBj )

= 0

(C.2)

This pins down λj as a function of parameters. From Eq. (3) and rA = rA (λj), we then

obtain

rB =
g′ (1− λj)− 1− π̃ g(1−λj)+λj−1

θAj −λj

1− π̃ (C.3)

where λj solves Eq. (C.2).
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Consider a quadratic specification for the investment return, i.e.,

g (y) = g′ (0) y +
g′′ (0)

2
y2

This is the functional form used in our quantitative analysis. Assume g′ (0) > 1 and g′′ (0) < 0

with g′ (0) + g′′ (0) > 1 so that all the properties in Assumption 1 hold. For brevity, also

consider s′ = B which is equivalent to x0
k ≥ x0

k from Section 2.3.

Eq. (C.2) simplifies to

Q
(
λj, θ

A
j

)
≡

(
λj − θBk +

λj−θBj
x0k

) (
θAj − λj

)2

π̃
(
θAj − θBj

) +
[g′ (0)− 1]

(
1− θAj

)
g′′ (0)

+
(1− λj)2

2
−(1− λj)

(
θAj − λj

)
= 0

where

∂Q

∂λj
=

(
1 +

1

x0
k

) (
θAj − λj

)2

π̃
(
θAj − θBj

) − 2

(
λj − θBk +

λj − θBj
x0
k

)
θAj − λj

π̃
(
θAj − θBj

) +
(
θAj − λj

)
∂Q

∂θAj
=

(
λj − θBk +

λj − θBj
x0
k

)(
2−

θAj − λj
θAj − θBj

)
θAj − λj

π̃
(
θAj − θBj

) − g′ (0)− 1

g′′ (0)
− (1− λj)

Notice Q
(
λ1
j , 1
)

= 0 has a solution

λ1
j =

θBk +
θBj
x0k

+
π̃(1−θBj )

2

1 + 1
x0k

∈
(
θBj , 1

)
with

∂Q

∂λj

(
λ1
j , 1
)

=

(
1 +

1

x0
k

) (
1− λ1

j

)2

π̃
(
1− θBj

) 6= 0

so the properties of λ1
j will extend to λj solving Q

(
λj, θ

A
j

)
= 0 for θAj suffi ciently high.

From Eq. (A.4), λ1
j < λ1

k if and only if x
0
k >

λ1j−θBj
θBk −θBj

. Subbing in for λ1
j , this reduces to

x0
k >

π̃(1−θBj )
2(θBk −θBj )

. Recall the definition of x0
k in Section 2.3. Since the expected value of the

liquidity shock is the same for all banks, we can rewrite x0
k =

π̃(1−θBj )
θBk −θBj

at θAj = 1. Thus,

λ1
j < λ1

k follows immediately from x0
k ≥ x0

k.

Next, rB ≤ rB
(
λ1
k

)
≡ g(1−λ1k)+λ1k−1

θBk −λ1k
if and only if

g′
(
1− λ1

j

)
− 1 ≤ π̃

g
(
1− λ1

j

)
+ λ1

j − 1

θAj − λ1
j

+ (1− π̃)
g
(
1− λ1

k

)
+ λ1

k − 1

θBk − λ1
k

where rB (·) is the interbank rate that would leave bank k with zero profits in state B. A
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suffi cient condition for rB ≤ rB
(
λ1
k

)
is

g′
(
1− λ1

j

)
≤ π̃

g
(
1− λ1

j

)
1− λ1

j

+ (1− π̃)
g
(
1− λ1

k

)
1− λ1

k

or equivalently (
1− λ1

j

)
≥ π̃

2

(
1− λ1

j

)
+

1− π̃
2

(
1− λ1

k

)
which is true since λ1

j < λ1
k.

Finally, to confirm rB > 0 at θAj = 1, we need

g′ (0) + g′′ (0)
(
1− λ1

j

) 1− π̃
2

1− π̃ > 1

which will be true for g′ (0) suffi ciently high. Eq. (C.3) defines rB as a continuous function

of θAj and λj so, for g
′ (0) and θAj suffi ciently high, rB > 0 and the properties derived above

hold.
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Appendix D —k’s Funding Share

Here we sketch a simple optimization problem that generates the funding share xk in Eq.

(7). There is a unit mass of ex ante identical savers. Each saver is endowed with X units of

funding but does not have access to the investment technology g (·).
Let Xi denote the funding allocated to bank i by the representative saver. Assume that

allocating Xi to bank i entails a transaction cost of aiXi + bX2
i , where ai ≥ 0 and b > 0

are constants.1 Normalize the base interest rate offered by banks to zero and denote by ξ̂i
the additional return offered by bank i on its off-balance-sheet products. Let hi denote the

fraction of Xi allocated by the representative saver to bank i’s off-balance-sheet products

at disutility σ (hi)Xi, where σ (0) = 0, σ′ (·) > 0, and σ′′ (·) > 0. The saver’s optimization

problem is then

max
{Xi,hi}i∈{j,k}


∫
j∈[0,1]

(
Xj + ξ̂jhjXj − σ (hj)Xj − ajXj − bX2

j

)
dj

+
(
Xk + ξ̂khkXk − σ (hk)Xk − akXk − bX2

k

)


subject to the budget constraint ∫
j∈[0,1]

Xjdj +Xk ≤ X

The FOCs with respect to Xi and hi are

1 + ξ̂ihi − σ (hi)− ai − 2bXi = ϕ (D.1)

and

σ′ (hi) = ξ̂i (D.2)

respectively, where ϕ ≥ 0 is the Lagrange multiplier on the budget constraint.

Use Eq. (D.1) to get

Xj = Xk +
ak − aj

2b
+
ξ̂jhj − ξ̂khk

2b
+
σ (hk)− σ (hj)

2b

for any two banks j and k then substitute into the (binding) budget constraint to isolate

Xk =
X +

aj−ak
2b

2
+
ξ̂khk −

∫
j∈[0,1]

ξ̂jhjdj

4b
−
σ (hk)−

∫
j∈[0,1]

σ (hj) dj

4b

1We interpret transactions costs broadly. They have been used in many literatures to parsimoniously
model imperfect substitutability between products.
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where aj ≡
∫
j∈[0,1]

ajdj. The funding share xk ≡ Xk
X
is then simply

xk =
1 +

aj−ak
2bX

2
+
ξ̂khk −

∫
j∈[0,1]

ξ̂jhjdj

4bX
−
σ (hk)−

∫
j∈[0,1]

σ (hj) dj

4bX
(D.3)

From the main text, bank i pays ξixi to move funding h (ξi)xi off of its balance sheet

and away from regulation. The implied interest rate on off-balance-sheet products is thus

ξ̂i =
ξi

h (ξi)
(D.4)

Savers are atomistic so they take ξi and the aggregate fraction h (ξi) as given. In a symmetric

equilibrium, h (ξi) = hi, so, using Eqs. (D.2) and (D.4), we obtain h (ξi) as the solution to

σ′ (h (ξi))h (ξi) = ξi (D.5)

and can rewrite Eq. (D.3) as

xk =
1 +

aj−ak
2bX

2
+
ξk − ξj

4bX
−

σ(h(ξk))
σ′(h(ξk))h(ξk)

ξk −
∫
j∈[0,1]

σ(h(ξj))
σ′(h(ξj))h(ξj)

ξjdj

4bX
(D.6)

where ξj ≡
∫
j∈[0,1]

ξjdj.
2 Notice that the properties of σ (·) imply h′ (ξi) > 0 from Eq. (D.5).

Consider σ (hi) = hνi with ν > 1. Then σ(hi)
σ′(hi)hi

= 1
ν
and Eq. (D.6) simplifies to

xk =
1 +

aj−ak
2bX

2
+
ν − 1

4bXν

(
ξk − ξj

)
which is the functional form in Eq. (7).3

2This appendix has abstracted from the idiosyncratic bank shocks described in the main text. They can
be added without affecting the derivations. With probability πA, fraction θ

A
k of savers are hit by idiosyncratic

consumption shocks and have to withdraw all of their funding from all banks at t = 1 then θAj − θAk of the
remaining 1 − θAk savers observe a sunspot and withdraw all of their funding from the banks in type j at
t = 1. With probability πB , the fraction hit by idiosyncratic shocks is θ

B
j , with θ

B
k − θBj of the remaining

1 − θBj savers observing a sunspot and withdrawing all of their funding from bank k at t = 1. The savers
involved in the sunspots are chosen at random, hence the representative saver has probability πAθ

A
i + πBθ

B
i

of withdrawing early from bank i. Suppose ξ̂i only accrues at t = 2. Then Eqs. (D.1) and (D.2) have∑
s∈{A,B} πs (1− θsi ) ξ̂

s

i in place of ξ̂i, but the implied interest rate is ξ̂
s

i = ξixi

(1−θsi )h(ξi)xi
, i.e., bank i pays

ξixi at t = 2 on its remaining off-balance sheet products (1− θsi )h (ξi)xi, so the system defined by Eqs.
(D.1), (D.2), and (D.4) is unaffected.

3The solution for h (ξi) would simplify to h (ξi) =
(
ξi
ν

) 1
ν

, which satisfies the properties considered in

the main text (up to h (∞)→ 1 which will not bind for reasonable parameters) although we do not impose
specifically this functional form for h (·).
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Appendix E —Equilibrium when h′ (0) <∞
We solve k’s problem for µk = 0 then verify that the solution satisfies λk ≥ α (1− h (ξk)).

Recall Eqs. (A.16), (A.17), (A.18), and (7):

∂Lk
∂E (r)

sign
= θBj − λj + (υs′ − E (r))

∂λj
∂E (r)

− δ1Z

1− xk
∂ξj

∂E (r)

υs′ = g′ (1− λk)− 1

λk = θs
′

k −
(
λj − θs

′

j

) 1− xk
xk

xk = x0
k + δ1

(
ξk − ξj

)
Also recall from Lemma 2 that there are three ranges to consider for E (r):

1. If E (r) > R (α), then ξj = 0 and 1 + E (r) = g′ (1− λj) from the proof of Lemma 2,

hence
∂Lk
∂E (r)

sign
= g′ (1− λk)− g′ (1− λj) + g′′ (1− λj)

(
λj − θBj

)
2. If E (r) ∈

(
R (α) , R (α)

)
, then ξj = 0 and λj = α from Lemma 2, hence

∂Lk
∂E (r)

sign
= θBj − λj

3. If E (r) < R (α), then

λj = α
(
1− h

(
ξj
))

and

1 + E (r) = g′
(
1− α

(
1− h

(
ξj
)))
− 1

αh′
(
ξj
)

from the proof of Lemma 2, hence

∂Lk
∂E (r)

sign
= αh′

(
ξj
) [
g′ (1− λk)− g′ (1− λj) + g′′ (1− λj)

(
λj − θBj

)]
+ 1 +

h′′
(
ξj
)

α
(
h′
(
ξj
))2

(
λj − θBj

)
+

δ1Z

1− xk

where

Z = g (1− λk)− g′ (1− λk)
λj − θs

′

j

xk
+

(
g′ (1− λj)−

1

αh′
(
ξj
)) (λj − θBj )− ξk

−π̃rA
(
θAj − θBj

)
−
(

1− θs′k
)
−
(
θs
′

j − θBj
)
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We establish the properties at δ1 = 0 then extend to an interval δ1 ∈
(

0, δ̃1

)
by continuity.

At δ1 = 0:

∂Lk
∂E (r)

sign
=



αh′
(
ξj
)
G1

(
α
(
1− h

(
ξj
))

;x0
k

)
+1 +

h′′(ξj)
α(h′(ξj))

2

(
α
(
1− h

(
ξj
))
− θBj

) if E (r) < R (α)

θBj − λj if E (r) ∈
(
R (α) , R (α)

)
G1 (λj;x

0
k) if E (r) > R (α)

where G1 (·) is as defined in the proof of Proposition 2.

Lemma E.1 If α < λ∗j , then E (r) > R (α) dominates R (α). Otherwise, R (α) dominates

any E (r) > R (α).

Proof. Recall G1

(
λ∗j ;x

0
k

)
= 0 and

∂G1(λj ;x0k)
∂λj

< 0 for λj ≥ θBj from the proof of Proposition

2. Also recall λj = α at E (r) = R (α) from the proof of Lemma 2. Thus,

lim
E(r)→R(α)+

∂Lk
∂E (r)

sign
= G1

(
α;x0

k

)
> G1

(
λ∗j ;x

0
k

)
= 0

for α ∈
(
θBj , λ

∗
j

)
, and

lim
E(r)→R(α)+

∂Lk
∂E (r)

sign
= G1

(
α;x0

k

)
≥ g′

(
1− θBk −

((
θs
′

k − θBk
)

+
(
θs
′

j − θBj
) 1− x0

k

x0
k

))
−g′ (1− α) > 0

for α ≤ θBj . This establishes the first part of the lemma. To establish the second part,

remember from the proof of Lemma 2 that λj > α for any E (r) > R (α). Therefore, α > λ∗j

implies
∂Lk
∂E (r)

sign
= G1

(
λj;x

0
k

)
< G1

(
α;x0

k

)
< G1

(
λ∗j ;x

0
k

)
= 0

for all E (r) > R (α), completing the proof of the lemma.

Lemma E.2 If α < θBj , then R (α) dominates any E (r) ∈
[
R (α) , R (α)

)
. Otherwise, R (α)

dominates any E (r) ∈
(
R (α) , R (α)

]
.

Proof. Recall λj = α for E (r) ∈
(
R (α) , R (α)

)
from Lemma 2. The lemma then follows

immediately from ∂Lk
∂E(r)

sign
= θBj − λj and the fact that k’s objective function is continuous.
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Lemma E.3 Define α such that

lim
E(r)→R(α)−

∂Lk
∂E (r)

= 0

Then α ≥ λ∗j if and only if

1 +
h′′ (0)

(h′ (0))2

(
1−

θBj
λ∗j

)
≥ 0 (E.1)

Impose Condition (E.1). If α < α, then R (α) dominates any E (r) < R (α). Otherwise,

E (r) < R (α) dominates R (α).

Proof. Recall λj = α and ξj = 0 at E (r) = R (α) from the proof of Lemma 2. Thus,

lim
E(r)→R(α)−

∂Lk
∂E (r)

sign
= αh′ (0)G1

(
α;x0

k

)
+ 1 +

h′′ (0)

(h′ (0))2

(
1−

θBj
α

)
≡ A (α)

If 1 + h′′(0)

(h′(0))2

(
1− θBj

λ∗j

)
= 0, then α = λ∗j , where we have used G1

(
λ∗j ;x

0
k

)
= 0. If instead

1 + h′′(0)

(h′(0))2

(
1− θBj

λ∗j

)
> 0, then α > λ∗j , where we have used

∂G1(λj ;x0k)
∂λj

< 0 for λj ≥ θBj .

Impose Condition (E.1) so that α ≥ λ∗j . Then,

A′ (α) = h′ (0)G1

(
α;x0

k

)
+ αh′ (0)

∂G1 (α;x0
k)

∂α
+

h′′ (0)

(h′ (0))2

θBj
α2

< 0

for α > α, where we have used α ≥ λ∗j along with G1

(
λ∗j ;x

0
k

)
= 0 and

∂G1(λj ;x0k)
∂λj

< 0 for

λj ≥ θBj . This establishes

lim
E(r)→R(α)−

∂Lk
∂E (r)

sign
= A (α) < A (α) = 0

for α > α, which is to say E (r) < R (α) dominates R (α) for α > α.

To complete the proof, notice:

1. G1 (α;x0
k) > 0 for α ≤ θBj (see the proof of Lemma E.1) and thus A (α) > 0 for α ≤ θBj

2. A (α) > A (α) = 0 for α ∈
(
θBj , α

)
So, by the concavity of k’s problem on the interval E (r) < R (α), R (α) dominates any

E (r) < R (α) for α < α.

Taken together, these lemmas imply four regions under Condition (E.1):
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1. If α < θBj , then the solution is in the interval E (r) > R (α), which will recover the

unregulated equilibrium, i.e., E (r) = R∗.

2. If α ∈
(
θBj , λ

∗
j

)
, then the solution is either E (r) = R (α) or E (r) = R∗. Evaluating k’s

objective function at these two candidates:

Lk (R (α) |ξk) = g

(
1− θs′k +

(
α− θs′j

) 1− x0
k

x0
k

)
x0
k−
(
g′ (1− α)− 1

αh′ (0)

)(
α− θBj

) (
1− x0

k

)
− ξkx0

k +
[
θs
′

j − θBj + π̃rA
(
θAj − θBj

)] (
1− x0

k

)
−
(

1− θs′k
)
x0
k

and

Lk (R∗|ξk) = g

(
1− θs′k +

(
λ∗j − θs

′

j

) 1− x0
k

x0
k

)
x0
k − g′

(
1− λ∗j

) (
λ∗j − θBj

) (
1− x0

k

)
− ξkx0

k +
[
θs
′

j − θBj + π̃rA
(
θAj − θBj

)] (
1− x0

k

)
−
(

1− θs′k
)
x0
k

Notice

Lk
(
R
(
λ∗j
)
|ξk
)

= Lk (R∗|ξk) +

(
λ∗j − θBj

)
(1− x0

k)

λ∗jh
′ (0)

> Lk (R∗|ξk)

Therefore, the unregulated equilibrium is not necessarily recovered for all α ∈
(
θBj , λ

∗
j

)
.

Instead
dLk (R (α) |ξk)

dα
=

[
G1

(
α;x0

k

)
+

θBj
α2h′ (0)

] (
1− x0

k

)
> 0

for α ∈
(
θBj , λ

∗
j

)
and there exists an α0 ∈

[
θBj , λ

∗
j

)
such that the solution is E (r) = R∗

for α ∈
(
θBj , α0

)
and E (r) = R (α) for α ∈

(
α0, λ

∗
j

)
.1

3. If α ∈
(
λ∗j , α

)
, then the solution is E (r) = R (α), which delivers λj = α and ξj = 0.2

4. If α > α, then the solution is in the interval E (r) < R (α), which delivers ξj > 0.

The next step is to show λk (α) > α to confirm that regulation does not bind on k in the

vicinity of α, i.e., k stops increasing E (r) and allows shadow banking to emerge before it is

1Notice that there is a discontinuity at α = α0. The price-setting bank lowers E (r) below the unregulated
equilibrium R∗ and constrains bank j. This deviation is not profitable in the absence of regulation because
λj would fall by too much. But, with regulation, λj cannot fall below α, so there is a range of α below the
unregulated λ∗j where k strategically drops E (r) and constrains j. Importantly, though, there is no shadow
banking yet (i.e., ξj = 0 despite µj > 0; we will also verify later µk = 0).

2As α increases within the interval
(
λ∗j , α

)
, bank k increases E (r) (i.e., R′ (α) > 0) to keep bank j at

ξj = 0 even though j is constrained by the regulation (µj > 0). Keeping ξj = 0 keeps λj = α, so k is
incentivizing j to hold more liquidity as α increases, which allows k to hold less without violating aggregate
feasibility.
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itself constrained. Recall λj = α at α = α, so aggregate feasibility in the binding state pins

down

λk (α) ≡ θs
′

k −
(
α− θs′j

)( 1

x0
k

− 1

)
It will suffi ce to bound the distance between λ∗j and α since, by continuity,

lim
α→λ∗j

[λk (α)− α] = λ∗k − λ∗j > 0

Recall from Lemma E.3 and its proof that α solves A (α) = 0, i.e.,

αh′ (0)G1

(
α;x0

k

)
+ 1 +

h′′ (0)

(h′ (0))2

(
1−

θBj
α

)
= 0

Also recall G1

(
λ∗j ;x

0
k

)
= 0, hence

G1

(
λ∗j ;x

0
k

)
−G1

(
α;x0

k

)
=

1 + h′′(0)

(h′(0))2

(
1− θBj

α

)
αh′ (0)

Clearly, α → λ∗j as h
′ (0) → ∞ (assuming h′′(0)

(h′(0))2
finite and/or h′′(0)

(h′(0))3
→ 0), so h′ (0) high

enough will ensure that k is not constrained by regulation (i.e., µk = 0) at α.3 We also recall

λj = α for α ∈ (α0, α), so, by aggregate feasibility, λk falls with α over this interval. k not

constrained at α thus implies k not constrained for any α < α.

The last step is to establish ξk = 0 for α ≤ α and as α is perturbed above α. We have

already established µk = 0 for these values of α, so Eq. (A.15) becomes ∂Lk
∂ξk

= (ρk − 1)xk.

If ξk > 0, then ρk = 0 and hence ∂Lk
∂ξk

< 0 which contradicts ξk > 0.

Remark E.1 The derivation of E (r) here has abstracted from the constraint rB ≥ 0. Since

E (r) is continuous at α = α, all the local analysis we do around α will satisfy rB > 0

if R (α) > π̃rA. Once again, bounding the distance between λ
∗
j and α will ensure that the

properties of the unregulated equilibrium (in this case rB > 0) carry over to α. Note

R (α) ≥ R
(
λ∗j
)

= g′
(
1− λ∗j

)
− 1− 1

λ∗jh
′ (0)

= R∗ − 1

λ∗jh
′ (0)

> π̃rA −
1

λ∗jh
′ (0)

where the first step follows from α ≥ λ∗j and R
′ (·) > 0, the second from the definition of

R (·), the third from Eq. (3), and the fourth from the fact that the unregulated equilibrium

satisfies rB > 0. Thus, for h′ (0) suffi ciently large, we will have R (α) > π̃rA. Next, we check

α < α. The lowest E (r) chosen by k on this interval when not constrained by rB > 0 was

3Bounding the distance between λ∗j and α also ensures λj ∈
(
θBj , θ

A
j

)
at α.
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R (α0), where α0 solves Lk (R (α) |ξk) = Lk (R∗|ξk). Notice α0 → λ∗j and R
(
λ∗j
)
→ R∗ as

h′ (0)→∞, hence h′ (0) suffi ciently large will also ensure R (α0) > π̃rA.

The results are summarized in the following proposition:

Proposition E.1 Impose Condition (E.1). For h′ (0) suffi ciently large and δ1 ∈
(

0, δ̃1

)
,

there exists a unique threshold α ≥ λ∗j such that (i) ξj = ξk = 0 for any α ≤ α and (ii)

ξj > 0 = ξk as α is perturbed above α.

Propositions 3 and 4 in the main text continue to hold but in the vicinity of α instead

of λ∗j . Specifically, the proof of Proposition 3 is unchanged and the remark in the proof of

Proposition 4 explicitly considers h′ (0) <∞, where, for x0
k suffi ciently large, we see that the

intersection D1 ∩ D̃1 in the remark will also intersect δ1 ∈
(

0, δ̃1

)
on a non-empty set.
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Appendix F —Introducing Capital

Bank i has debt funding x0
i (fixed for now) and equity funding ei. It is standard to assume

an extra cost of equity issuance to obtain an interior solution. We denote this cost by τ (ei),

where τ (0) = 0, τ ′ (·) > 0, and τ ′′ (·) > 0. Equity-holders get the residual value of the bank

at t = 2, which is what the bank maximizes in expectation.

Since equity is not subject to withdrawal shocks at t = 1, aggregate feasibility in state

s ∈ {A,B} requires
λk
(
x0
k + ek

)
+ λj

(
x0
j + ej

)
≥ θskx

0
k + θsjx

0
j

where λi is still the reserve-to-asset ratio of bank i, which now differs from the reserve-to-

deposit ratio λi
(

1 + ei
x0i

)
.

Unregulated Equilibrium

Given the funding x0
j and interbank rates rA and rB, the optimization problem of the repre-

sentative bank j is now

max
λj ,ej

{
π̃ΥA (λj, ej; rA) + (1− π̃) ΥB (λj, ej; rB)

}
where

Υs (λj, ej; rs) ≡ g (1− λj)
(
x0
j + ej

)
+ (1 + rs)

(
λj
(
x0
j + ej

)
− θsjx0

j

)
−
(
1− θsj

)
x0
j − τ (ej)

is the ex post profit of bank j in state s ∈ {A,B}. The FOC for λj is the same as before,
i.e.,

g′ (1− λj) = 1 + E (r) (F.1)

and the FOC for ej is

τ ′ (ej) = g (1− λj) + g′ (1− λj)λj (F.2)

where dej
dλj

= −g′′ (1− λj) λj
τ ′′(ej)

> 0 and dej
dE(r)

=
λj

τ ′′(ej)
> 0.

Consider next bank k, whose Lagrangian is now

Lk = [g (1− λk) + λk]
(
x0
k + ek

)
− x0

k

+π̃rA
[
θAj x

0
j − λj

(
x0
j + ej

)]
+ (1− π̃) rB

[
θBj x

0
j − λj

(
x0
j + ej

)]
− τ (ek)

+ηA (rA − rA) + ηBrB +
∑

s∈{A,B}

υs
[
λk
(
x0
k + ek

)
+ λj

(
x0
j + ej

)
− θskx0

k − θsjx0
j

]
The FOC for λk is also the same as before, i.e.,
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g′ (1− λk) = 1 +
∑

s∈{A,B}

υs (F.3)

which implies

λk
(
x0
k + ek

)
+ λj

(
x0
j + ej

)
= θs

′

k x
0
k + θs

′

j x
0
j (F.4)

The FOC for ek is

τ ′ (ek) = g (1− λk) + g′ (1− λk)λk (F.5)

and the FOCs for the interbank rates are

∂Lk
∂rA

= π̃
[
θAj x

0
j − λj

(
x0
j + ej

)]
+ π̃

( ∑
s∈{A,B}

υs − E (r)

)[(
x0
j + ej

) dλj
dE (r)

+ λj
dej

dE (r)

]
− ηA

∂Lk
∂rB

= (1− π̃)
[
θBj x

0
j − λj

(
x0
j + ej

)]
+(1− π̃)

( ∑
s∈{A,B}

υs − E (r)

)[(
x0
j + ej

) dλj
dE (r)

+ λj
dej

dE (r)

]
+ηB

Any equilibrium with rB > 0 will then have

rA = rA (F.6)

and

g′ (1− λk)− g′ (1− λj) =
λj
(
x0
j + ej

)
− θBj x0

j

x0j+ej

−g′′(1−λj) +
λ2j

τ ′′(ej)

(F.7)

which implies λk > λj if j lends in stateB, i.e., if the parameters are such that the equilibrium

also has λj >
θBj

1+
ej

x0
j

. Note that λk > λj further implies ek > ej since g (1− λ) + g′ (1− λ)λ

is increasing in λ, although the ranking of j and k on the ratio ei
x0i
is ambiguous.

Comparison to Planner

Given x0
j and x

0
k, the Lagrangian for the planner’s problem is now

Lp = g (1− λj)
(
x0
j + ej

)
+ g (1− λk)

(
x0
k + ek

)
− τ (ej)− τ (ek)− εκ

(
x0
j + x0

k − LIQ
)

+
∑

s∈{A,B}

υps
[
λk
(
x0
k + ek

)
+ λj

(
x0
j + ej

)
− θskx0

k − θsjx0
j

]
where LIQ ≡ λk (x0

k + ek) + λj
(
x0
j + ej

)
. The FOCs for λi and ei are respectively

g′ (1− λi) = εκ′
(
x0
j + x0

k − LIQ
)

+
∑

s∈{A,B}

υps

τ ′ (ei) = g (1− λi) + g′ (1− λi)λi
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Thus, λi = λ and ei = e for i ∈ {j, k}. To reduce notation, normalize x0
j + x0

k = 1 and

consider x0
k such that s

′ = B. Aggregate liquidity in the unregulated equilibrium will be

ineffi ciently low if λ∗ (1 + 2e∗) > ΘB (x0
k) where λ

∗ and e∗ solve

g′ (1− λ∗) = εκ′ (1− λ∗ (1 + 2e∗))

τ ′ (e∗) = g (1− λ∗) + g′ (1− λ∗)λ∗

Setting e∗ = 0 would return the exposition of the planner’s problem in the main text.

Comparing to the decentralized equilibrium, the ineffi ciency still comes from the fact

that k finds it suboptimal to leave aggregate feasibility slack in both non-crisis states for

the benefit of debt-holders in the crisis state when there is limited liability. Moreover, the

decentralized equilibrium does not achieve the effi cient level of equity when it does not

achieve the effi cient liquidity ratios. The corrective action could then be taken on either

equity or liquidity.

Regulations

With shadow banking action ξi, the economic balance sheet of bank i is:

Assets Liabilities

Liquid: λi (xi + ei) Debt: xi
Illiquid: (1− λi) (xi + ei) Off-B/S Debt: h (ξi)xi

Off-B/S Illiquid: h (ξi)xi On-B/S Debt: (1− h (ξi))xi

On-B/S Illiquid: (1− λi) (xi + ei)− h (ξi)xi Equity: ei

As before, the accounting balance sheet excludes the off-balance-sheet assets and liabilities.

The effective liquidity requirement is now

λi (xi + ei) ≥ α (1− h (ξi))xi

or equivalently

λi ≥
α (1− h (ξi))

1 + ei
xi

(F.8)

Suppose the regulator also imposes a floor β ∈ (0, 1) for the ratio of equity to risk-weighted

assets. For simplicity, the risk weight is 0 for liquid assets and 1 for (on-balance-sheet)

illiquid assets. The effective capital requirement is then

ei ≥ β [(1− λi) (xi + ei)− h (ξi)xi]
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or equivalently

λi ≥
1− h (ξi)−

(
1
β
− 1
)
ei
xi

1 + ei
xi

(F.9)

In other words, both the liquidity requirement and the risk-weighted capital requirement put

floors on the liquidity ratio λi.

The liquidity requirement will impose the more stringent floor if and only if

ei
xi
>

1− α
1
β
− 1

(1− h (ξi))

which reduces to

α > 1−
(

1

β
− 1

)
e∗i
x0
i

when evaluated at ξi = 0, where e∗i is the equity of bank i in the unregulated equilibrium.

At ξi = 0, the capital requirement imposed on bank i is λi ≥ 1−
1
β

1+
x0
i
ei

. We showed above

that any unregulated equilibrium where j lends at a positive interbank rate in state B will

also have the properties λk > λj and ek > ej. Thus, for x0
k ≈ x0

j , the capital requirement will

not bind on k if it binds infinitesimally on j, suggesting that j will have a stronger motive

to operate the shadow technology. All else constant, this will decrease k’s debt funding xk,

which also decreases the demand for liquidity in state B, i.e., the state in which k borrows

to cover withdrawal shocks. If x0
k > x0

k, then aggregate feasibility binds in state B, so the

reduction in liquidity demanded is met in equilibrium by a reduction in the total amount of

liquidity held by banks, i.e., ∆LIQ = −δ1

(
θBk − θBj

) (
∆ξj −∆ξk

)
< 0. The same intuition

delivers ∆LIQ < 0 in response to a liquidity requirement that binds infinitesimally on j.

Normalizing xk+xj = 1, total credit in the model with equity is TC ≡ 1+ek+ej−LIQ,
so what happens to total credit will now also depend on what happens to ek +ej. To explore

what happens to ek+ej, consider a model with both liquidity and capital requirements. The

FOC for ei will be given by

τ ′ (ei) = g (1− λi) + g′ (1− λi)λi + (1− β)µei

where µei ≥ 0 is the Lagrange multiplier on the capital requirement of bank i. If the liquidity

requirement imposes the more stringent floor, then µei = 0 and by first-order approximation

∆ei ≈
−g′′ (1− λi)

τ ′′ (ei)
λi∆λi

where ∆ei and ∆λi denote changes from the unregulated equilibrium. With functional forms
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g (y) = g′ (0) y + g′′(0)
2
y2 and τ (e) = τ ′ (0) e+ τ ′′(0)

2
e2, the approximation is simply

∆ei ≈
−g′′ (0)

τ ′′ (0)
λi∆λi

which is to say∆ei will be of second-order importance for τ ′′ (0) large. In contrast,∆LIQ < 0

even as τ ′′ (0) becomes arbitrarily large. Therefore, ∆TC > 0 for large τ ′′ (0).1

Quantitative Results

We now redo the policy experiment in Section 5.3, i.e., increasing the liquidity floor from

α = 0.145 to α = 0.25, using the extended model developed here. The baseline calibration

in Section 5.2 introduces a linear operating cost φixi into bank i’s objective function as well

as external liquidity L into the interbank market. We include these ingredients here too.

Appendix I shows that Chinese banks were not constrained by capital requirements from

2007 to 2014, the sample period for the quantitative analysis in Sections 5.2 and 5.3. The

capital adequacy ratio (CAR) of small nationally-operating banks (JSCBs) was just above

0.1 in 2007. The CAR of the Big Four was even higher. We set β = 0.1 to explore the

effects of increasing the liquidity floor when the interbank price-takers in our model are at

the boundary of both capital and liquidity regulation.

Recall that the reserve-to-deposit ratio of bank i in the model with capital is λi
(

1 + ei
xi

)
.

The empirical reserve-to-deposit ratios in 2007 are still 0.38 for the Big Four and 0.14 for the

JSCBs (see Section 5.2). The average equity-to-deposit ratio, weighted using deposit shares,

is 0.094 for banks in the Big Four and 0.102 for the JSCBs. We therefore target ek
xk

= 0.094

and ej
xj

= 0.102, which implies liquidity ratios of λk = 0.38
1.094

= 0.347 and λj = 0.14
1.102

=

0.127. We recalibrate θBk and L to match these liquidity ratios, holding constant the other

parameters in the baseline calibration. With xk = 0.56 in 2007 (see again Section 5.2), we

can also back out values for ek and ej.

To calibrate equity costs, we allow the parameters of the cost function τ (·) to differ across
banks, i.e.,

τ i (ei) = τ 0iei +
τ 1i

2
e2
i

The first-order conditions for ei (see Eqs. (F.2) and (F.5)) then give

τ 0i + τ 1iei = 1 + z − γ

2

(
1− λ2

i

)
(F.10)

where z and γ are the parameters of the g (·) function calibrated in Section 5.2. Denote
1One may worry that for τ ′′ (0) too large, ei will be so small that the liquidity requirement is no longer

the more stringent floor. This does not arise in the calibrated model explored next.
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by ∆r the difference between the average cost of equity and debt for Chinese banks. The

average cost of debt in 2007 is well approximated by the deposit rate, which our model

normalizes to zero. The average cost of equity is simply τ i(ei)
ei
. Assuming ∆r to be the same

across banks then implies

τ 0i +
τ 1i

2
ei = 1 + ∆r (F.11)

The calibrated τ 0i and τ 1i solve Eqs. (F.10) and (F.11).

We set ∆r = 4%, i.e., the average cost of equity is 4 percentage points higher than the

average cost of debt, which is reasonable for the Chinese economy. As a robustness check,

we also try ∆r = 2%.2

Table F.1 reports the results. With ∆r = 4%, the average interbank rate increases by 30

basis points and the aggregate credit-to-savings ratio increases by around 6 percentage points

in response to the tightening of liquidity regulation. The increase in the credit-to-savings

ratio is just under 6 percentage points when savings is defined excluding equity outstanding

and just over 6 percentage points otherwise. We also see from Panel B of the table that

banks remain unconstrained by the capital requirement as the liquidity floor is increased.

This is because the tightening of liquidity regulation actually relaxes the capital requirement

by incentivizing banks to move less liquid assets off the balance sheet, i.e., ξi > 0 in Eq.

(F.9). Both required and actual equity fall, explaining why the increase in the credit-to-

savings ratio is somewhat more pronounced when savings includes equity. Setting instead

∆r = 2% implies much more convex equity costs, which reduces the response of ej and ek
to the tightening of liquidity regulation. However, the increase in the average interbank rate

and the credit boom result are very robust.

2With ∆r = 4%, the calibrated parameters are τ0j = τ0k = 1.04, τ1j = 0.03n (scaled by the number of
banks j to make marginal equity costs comparable between the small and big banks), τ1k = 0.18, θBk = 0.66,
and L = 0.12. With ∆r = 2%, the calibrated parameters become τ0j = 0.995, τ0k = 0.944, τ1j = 0.922n,
τ1k = 0.87, θBk = 0.65, and L = 0.11.
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Table F.1

Calibration Results

(1) (2) (3) (4)

∆r = 4% ∆r = 2%

α = 0.145 α = 0.25 α = 0.145 α = 0.25

Panel A

Average Interbank Rate, E (r) 0.1% 0.4% 0.1% 0.4%

Price-Setter Loan/Deposit, (1− λk)
(

1 + ek
xk

)
0.62 0.70 0.62 0.69

Credit/Savings, (1− λj) (1 + ej + ek)− (λk − λj) (xk + ek) 82.3% 88.1% 82.3% 88.1%

Credit/(Savings+Equity), 1− λj − (λk−λj)(xk+ek)

1+ej+ek
75.0% 81.3% 75.0% 80.4%

Panel B

ej
required ej

0.045
0.041

0.040
0.023

0.045
0.041

0.045
0.025

ek
required ek

0.053
0.040

0.043
0.032

0.053
0.040

0.051
0.033
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Appendix G —Interbank Rate Targeting with Applica-

tion to U.S.

In this appendix, we sketch out a version of the model where the central bank specifically

sets its liquidity injections to target rA = rB = r for some r > 0. The set-up here can be

understood as the limiting case ψ =∞. It requires aggregate feasibility to hold with equality
in both states, as slackness in state s would imply rs = 0 in any reasonable competitive

equilibrium. A competitive equilibrium is now the relevant benchmark because ψ = ∞
removes interbank market power.

The U.S. Federal Reserve has a long history of targeting the interest rate in the Fed

Funds market, effectively switching back to FFR targeting in 1982, after using M1 targets

from October 1979 to October 1982.1 The FFR on any given interbank trade is negotiated

bilaterally between the borrower and the lender, but the Fed adjusts the total amount of

liquidity to target the mean of the FFR distribution at each point in time, i.e., the targeted

FFR should prevail in expectation for each state of the world, which would render all banks

in our model price-takers. We focus for the moment on the period before 2008, away from

the zero lower bound (ZLB).

Consider two interbank price-takers, j and k. For brevity, assume x0
k > x0

k so that

s′ = B in the unregulated equilibrium. In words, aggregate withdrawal pressure is higher

in the state where k borrows on the interbank market, i.e., ΘB (x0
k) > ΘA (x0

k). Recall

Θs (xk) ≡ θskxk + θsj (1− xk) with the evolution of xk governed by Eq. (7).
Although k is a large bank, it now takes as given prices on the interbank market because

the central bank targets these prices. Specifically, the central bank sets rs = r and injects

liquidity Qs ∈ R in state s ∈ {A,B}, where

(λk − θsk)xk +
(
λj − θsj

)
(1− xk) +Qs = 0

defines the aggregate feasibility condition for state s ∈ {A,B}. With

LIQ ≡ λkxk + λj (1− xk)

we can rewrite

Qs = Θs (xk)− LIQ

If Qs < 0, then the central bank is extracting liquidity from the interbank market in state s.

With both banks price-takers, the FOCs derived for j in the proof of Lemma 2 will now

1See Thornton, D. 2006. “When Did the FOMC Begin Targeting the Federal Funds Rate? What the
Verbatim Transcripts Tell Us.”Journal of Money, Credit and Banking, 38(8), pp. 2039-2071.
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hold for both i ∈ {j, k}. Specifically, the FOCs for the liquidity ratio λi and the shadow
banking action ξi are

g′i (1− λi) = 1 + r + µi

and

µi =
1− ρi
αh′ (ξi)

with complementary slackness conditions

µi [λi − α (1− h (ξi))] = 0, µi ≥ 0, λi ≥ α (1− h (ξi))

ρiξi = 0, ρi ≥ 0, ξi ≥ 0

where we write g′i (·) to allow for differences in the marginal returns across banks.
If g′k (·) = g′j (·), then all banks are ex ante identical so λi = λ and ξi = ξ for i ∈ {j, k}.

Thus, LIQ = λ, where the unregulated equilibrium is λ̂ solving g′
(

1− λ̂
)

= 1 + r. In the

limiting case of h′ (0)→∞, any regulation α > λ̂ will produce

λ = α (1− h (ξ))

with ξ > 0 solving

g′ (1− α (1− h (ξ))) = 1 + r +
1

αh′ (ξ)

Differentiate to get

dλ

dα
=

1
h′(ξ) + h′′(ξ)

(h′(ξ))3
[1− h (ξ)]

α2g′′ (1− α (1− h (ξ))) + h′′(ξ)

(h′(ξ))3

If h′ (0)→∞ and h′′(0)

(h′(0))3
→ 0, then dλ

dα

∣∣
α→λ̂+ = 0 and

d2λ

dα2

∣∣∣∣
α→λ̂+

=
1

λ̂
3
g′′
(

1− λ̂
) [ h′′′ (0)

(h′ (0))4 −
3 (h′′ (0))2

(h′ (0))5

]

where we recall g′′ (·) < 0, hence there will be a (local) credit reduction if h (·) has the
property h′′′(0)

(h′(0))4
< 3(h′′(0))2

(h′(0))5
.2

2The example mentioned in the proof of Proposition 4, h (ξ) ∝ ξγ with γ ∈
(
1
3 ,

1
2

)
, satisfies this condition.

If instead h′ (0) < ∞ as in Appendix E, then there exists a threshold α > λ̂ such that (i) λ = α for any

α ∈
[
λ̂, α

]
and (ii)

dλ

dα

∣∣∣∣
α→α+

=

1
h′(0) + h′′(0)

(h′(0))3

α2g′′ (1− α) + h′′(0)

(h′(0))3

For h′′ (0) not too negative, e.g., h (·) locally linear at zero, dλdα
∣∣
α→α+ < 0. Thus, there is a local credit boom
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In the U.S., there are various differences between large and small banks. We consider a

simple one, namely that large banks have a broader set of productive opportunities and thus

a higher marginal cost to holding reserves idly on the balance sheet, i.e., g′k (·) > g′j (·).
The unregulated equilibrium has liquidity ratios

(
λ̂j, λ̂k

)
solving

g′j

(
1− λ̂j

)
= 1 + r = g′k

(
1− λ̂k

)
(G.1)

Thus, g′j
(

1− λ̂j
)
> g′j

(
1− λ̂k

)
from g′k (·) > g′j (·). We then conclude λ̂k < λ̂j from

g′′j (·) < 0. In words, the large bank has a lower liquidity ratio than the small bank and is

thus more likely to be constrained by a liquidity floor.

At the liquidity floor α = λ̂k, neither bank is constrained by the regulation so the

unregulated equilibrium,
(
λ̂j, λ̂k

)
with ξ̂j = ξ̂k = 0, obtains. Consider now a liquidity floor

α ∈
(
λ̂k, λ̂j

]
. Bank j remains unconstrained so ξj = 0 and λj = λ̂j. In contrast, bank k is

constrained, i.e., µk > 0 and hence

g′k (1− λk) = 1 + r +
1

αh′ (ξk)
(G.2)

λk = α (1− h (ξk)) (G.3)

with ξk > 0. Tightening regulation from α = λ̂k to α ∈
(
λ̂k, λ̂j

]
will thus produce ∆ξk > 0

and ∆ξj = 0. The large bank will engage in shadow banking while the small bank will not.

Remember that ∆ξk > 0 = ∆ξj implies ∆xk > 0 from Eq. (7). A credit boom can then

arise if the central bank injects liquidity in state B, as shown next:

• Consider first QA = 0 < QB at x0
k, i.e., the interbank market clears in state A without

central bank intervention and the central bank injects liquidity as needed in state B

to maintain the target r.3 Then LIQ = ΘA (xk) for xk around x0
k and a small change

∆xk > 0 from x0
k will imply ∆LIQ = −

(
θAj − θAk

)
∆xk < 0, i.e., credit to the real

economy rises.

• Now consider QA < 0 = QB, i.e., the interbank market clears in state B without

central bank intervention and the central bank extracts liquidity as needed in state A

to maintain the target r.4 Then LIQ = ΘB (xk) and ∆xk > 0 will imply ∆LIQ =(
θBk − θBj

)
∆xk > 0, i.e., credit to the real economy falls.

from perturbing α above α. However, the net effect of moving from α = λ̂ (which replicates the unregulated
equilibrium) to α = α+ ε will be a credit reduction for ε > 0 not too large.

3Without this injection, LIQ < ΘB (xk), which would push the equilibrium rB above r.
4Without this extraction, LIQ > ΘA (xk), which would push the equilibrium rA below r.
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• The last possibility is the hybrid one, QA < 0 < QB. In this case, LIQ ∈
(
ΘA (xk) ,Θ

B (xk)
)

so we need to use the direct definition LIQ ≡ λkxk + λj (1− xk) to evaluate ∆LIQ.

Consider specifically an increase from α = λ̂k to α = λ̂j. Then

LIQα=λ̂k
= λ̂j −

(
λ̂j − λ̂k

)
x0
k

LIQα=λ̂j
= λ̂j −

(
λ̂j − λk

) (
x0
k + δ1ξk

)
and thus

∆LIQ =
(
λk − λ̂k

)
x0
k −

(
λ̂j − λk

)
δ1ξk

where λk and ξk are given by Eqs. (G.2) and (G.3) evaluated at α = λ̂j. To fix ideas,

consider the family of functions

gi (y) = g′i (0) y +
g′′ (0)

2
y2

where g′k (0) > g′j (0) > r and g′′ (0) < 0. Use to rewrite Eq. (G.1) as

λ̂k = λ̂j −
g′k (0)− g′j (0)

−g′′ (0)
(G.4)

and Eq. (G.2) as

λk − λ̂k =
1

−g′′ (0) λ̂jh′ (ξk)
(G.5)

Then,

∆LIQ =
x0
k

−g′′ (0) λ̂jh′ (ξk)
−
(
λ̂j − λk

)
δ1ξk

and, using Eq. (G.3),

∆LIQ =
x0
k

−g′′ (0) λ̂jh′ (ξk)
− λ̂jh (ξk) δ1ξk

Therefore, ∆LIQ < 0 if and only if

h (ξk)h
′ (ξk) ξk >

x0
k

−g′′ (0)
(
λ̂j

)2

δ1

For any h (·) such that h (ξ)h′ (ξ) ξ is increasing in ξ, the condition for ∆LIQ < 0

amounts to ξk suffi ciently high at α = λ̂j. Combining Eqs. (G.3), (G.4), and (G.5),

this ξk solves

λ̂jh (ξk) +
1

−g′′ (0) λ̂jh′ (ξk)
=
g′k (0)− g′j (0)

−g′′ (0)
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where the left-hand side is increasing in ξk by the properties of h (·). Therefore,

∆LIQ < 0, i.e., increasing α from λ̂k to λ̂j will generate a credit boom, if g′k (0)−g′j (0)

is suffi ciently high.

For simplicity, this appendix has assumed that all banks take as given their equilibrium

funding shares. This is the same assumption we made for interbank price-takers in the

main text (see Appendix J for robustness checks), and it ensures that operation of the

shadow technology is not simply driven by a desire to get bigger, i.e., a competitive motive.

Without this assumption here, k could have even more incentive to set ξk > 0, which would

only serve to amplify the credit boom derived for QB > 0. Our objective in this appendix

is illustrative, not quantitative, hence we abstract from any competitive motive to avoid

unnecessarily complicating the exposition.

The main conclusion from this exposition is that liquidity regulation α can lead to a

credit boom in a model with interbank rate targeting if (i) the big bank has higher marginal

returns than the small bank, g′k (·) > g′j (·), and (ii) the central bank injects liquidity in the
interbank market to maintain its target when the big bank borrows from the small, QB > 0.

As k’s funding share increases from its shadow banking activities to skirt the regulation, so

too does the total amount of liquidity needed to meet withdrawal requests in state B. If the

central bank is not injecting any liquidity in state B, then this demand would have to be

met in equilibrium by an increase in the total amount of liquidity held by the banks, leading

to a credit reduction rather than a credit boom. In Proposition 3, there were no liquidity

injections in state B but liquidity regulation led to a credit boom because k’s funding share

(and thus the total demand for liquidity in state B) decreased from the shadow banking

activities of j.5

The analysis in this appendix is for ψ = ∞. In Proposition 8, we showed that there
is an interbank rate target r∗ that implements the planner’s solution (without the need for

any liquidity regulation) when ψ →∞. That result was based on g′k (·) = g′j (·). Extending
Proposition 8 to g′k (·) > g′j (·), the planner’s first order conditions become g′i (1− λ

p
i ) = υpA+

υpB+εκ′ (1− LIQp) for each i ∈ {j, k}, where LIQp ≡ λpkx
0
k+λpj (1− x0

k). Thus, the planner’s

solution can still be achieved with ψ =∞ and a target r = υpA + υpB + εκ′ (1− LIQp)− 1.

We conclude by noting that the ZLB raises some interesting considerations. If the Fed

Funds market ceases to be the marginal short-term funding market at the ZLB, and if the

central bank does not engage in suffi cient asset purchases to target spreads in other markets,

then large banks will have interbank market power. All else constant, this may lead to large

5Note that the conditions g′k (·) > g′j (·) and QB > 0 are in addition to s′ = B, which was assumed at the
outset of this appendix. We recall from Proposition 3 that s′ = B was both necessary and suffi cient for the
credit boom in a model with interbank market power.
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banks becoming more liquid than small banks; g′k (·) > g′j (·) still pushes towards λk < λj,

but the emergence of interbank market power will push towards λk > λj as in Proposition 1.

Shadow banking may then be pursued by small banks rather than large banks in response to

tighter liquidity regulation, generating a credit boom with the same features as in the main

text.
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Appendix H —Supplementary Material on China’s In-

terbank Market

The material in this appendix supplements the empirical evidence presented in Section 5.1.

Flow of Funds in June 2013

To better understand the market structure and the relative importance of the Big Four on

China’s interbank repo market, we analyzed anonymized data on each trade that took place

during June 2013. The majority of transactions had either an overnight or a seven-day

maturity and there was not much variation in collateral or haircuts. Accordingly, we focused

on interest rates and loan amounts.

Figure H.1 graphs the interbank network for the main sample, which excludes June 20

and 21. There was a dramatic spike in interbank interest rates on June 20, which we discuss

in more detail in the next subsection. Each node in Figure H.1 represents a group of banks.

The flow of funds between the nodes is indicated by the direction of the arrows, with thicker

arrows signifying more trade. Eigenvector centrality is one way to put numbers on the

approximate importance of each of the nodes. It is based on the idea that a central node

is connected to other central nodes. We only need to specify an adjacency matrix A that

summarizes the connections between the nodes. The centrality of node i is then the ith

element of the eigenvector associated with the largest eigenvalue of A. The first column in

Table H.1 reports the results when the connection from node i to node s in the adjacency

matrix is based on average daily lending from i to s. The second column reports the results

when the connection from i to s is based on average daily borrowing by i from s. It is clear

from these two columns that the policy banks and the Big Four are the central lending nodes

in the main sample.

The third and fourth columns of Table H.1 repeat the eigenvector centrality analysis with

adjacency matrices constructed using data from June 20, as opposed to the main sample.

The results show minimal change in the centrality of the policy banks on June 20 relative to

the main sample. In contrast, the Big Four became much less central on the lending side and

much more central on the borrowing side. Therefore, the lending and borrowing decisions of

the Big Four may have a dramatic effect on the tightness of the interbank market, even if

the policy banks remain a central lending node.

We can also compare the ability of each node in Figure H.1 to impact interbank conditions

by calculating the elasticity of total lending by the interbank market with respect to the

money that each of these nodes brings into the market. Consider the N nodes in Figure H.1.
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Let ε+
i denote the money that node i brings into the interbank market and let ε

−
i denote the

money that node i takes out of the interbank market. Also let yi,s denote the money that

node i lends to node s on the interbank market. The adding-up constraint for each node i

is therefore: ∑
s

yi,s + ε−i =
∑
s

ys,i + ε+
i (H.1)

It will be convenient to rewrite in matrix notation. Define yi ≡
∑

s yi,s + ε−i and mi,s ≡ yi,s
yi
.

Also define an N ×N matrix M = (mi,s) and N × 1 vectors Y = (yi) and E+ =
(
ε+
i

)
. The

system of (H.1) for all i is just:

Y = M ′Y + E+

which can be rearranged to write:

Y = [I −M ′]
−1
E+ (H.2)

where I is an N × N identity matrix. Suppose the matrix M and the vector E+ are fixed.

Then, for each node i, we can use (H.2) to calculate the elasticity of total lending by the

interbank market,
∑

s ys, to the money that i brings into the interbank market, ε
+
i .

To proceed, we need the matrix M . The (i, s)th element of M is mi,s ≡ yi,s
yi
, where

yi ≡
∑

s yi,s + ε−i . For yi,s, we used the average daily lending from node i to node s in June

2013, excluding June 20 and 21. The policy banks and the Big Four are net lenders so we

assumed ε−i = 0 for each of them then used (H.1) to get their respective ε+
i ’s. For each of

the other nodes, we assumed that the money it brings into the interbank market (ε+
i ) as a

fraction of what the Big Four brings equals the ratio of its deposits to the Big Four’s deposits

in 2013. We then used (H.1) to get ε−i for each of these other nodes.

The results using the main sample are reported in the last column of Table H.1. An

elasticity of 0.29 for the Big Four means that, on an average trading day in the main sample,

a 1 percent increase in the amount of money brought into the interbank market by the Big

Four leads to a 0.29 percent increase in total lending by this market. This is 3.7 times the

elasticity for the JSCBs and 0.5 times the elasticity for the policy banks, which is substantial

given the quantity adjustments that the Big Four can make. The scale of these adjustments

was apparent on June 20. Policy banks brought 72 percent more money into the interbank

market than they did on an average trading day in the main sample. Total lending by the

interbank market should have then increased by 41 percent, given the elasticity of 0.57 in

Table H.1. However, the Big Four brought 183 percent less money into the interbank market

than they did on an average trading day in the main sample and, with an elasticity of 0.29,

this leads to a 53 percent decrease in total lending by the interbank market, more than
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enough to offset the efforts of the policy banks.

The June 20 Event

We then studied in more detail the dramatic spike in interbank interest rates that occurred

in China on June 20, 2013. The weighted average interbank repo rate hit an unprecedented

11.6% on this date. For comparison, the average across all other trading days in June 2013

was 6.4%, the average in the prior month (May) was 3.0%, and the average in the following

month (July) was 3.6%.

A common narrative in China is that interbank conditions tightened on June 20 because

the government wanted to discipline the market, either deliberately or by not responding to

some market pressures. An analysis of individual transactions will show whether or not this

narrative is correct. Our identification strategy here makes use of the fact that China’s three

policy banks participate in the interbank repo market. The policy banks are agents of the

government so the price and quantity of the liquidity that they provide is easily controlled

by the government. In contrast, China’s big commercial banks have become much more

independent since the market-oriented reforms discussed in Section 5.1. If China’s interbank

repo market tightened at the hands of the government, there should be at least some evidence

of restrictive behavior by policy banks relative to other banks on June 20.

The transaction-level data show that this was not the case. The policy banks provided

a lot of liquidity to the interbank market at fairly low interest rates, to the point that they

became the largest net lenders on June 20. The Big Four, on the other hand, were extremely

restrictive, amassing RMB 50 billion of net borrowing by the end of the trading day.

Figure H.2 illustrates the sharp difference between the Big Four and the policy banks

in terms of both quantity and price of liquidity provision on June 20. Notice the sizeable

increase in policy bank loans and the more moderate nature of policy bank interest rates.

Figure H.2 also reveals that much of the increase in policy bank lending on June 20 was

absorbed by the Big Four, a fact also visible from the flow of funds depicted in Figure H.3.

Were big banks borrowing because they really needed liquidity? Two pieces of evidence

suggest no. First, the Big Four’s ratio of gross lending to gross borrowing was 0.7 on June

20, with 71% of the loans directed towards small banks. If the Big Four were in dire need

of liquidity, we would expect to see very little outflow. Second, the repo market activities of

big banks on June 20 involved a maturity mismatch. Overnight trades accounted for 96%

of big bank borrowing but only 83% of big bank lending to small banks. Roughly 80% of

policy bank lending to small banks was also at the overnight maturity. If big banks really

needed liquidity on June 20, we would expect the maturity of their lending to be closer to
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the maturity of their borrowing. Instead, it was closer to the maturity offered by policy

banks to borrower groups that policy banks and big banks had in common.

The left panel of Figure H.4 shows that big banks also commanded an abnormally high

interest rate spread on June 20. In particular, their weighted average lending rate was 266

basis points above their weighted average borrowing rate. This is high relative to other

banks: JSCBs and city banks commanded spreads of 113 and 46 basis points respectively.

It is also high relative to other days in the sample: on any other day in June 2013, the

spread commanded by big banks was between -40 and 58 basis points. Pricing among big

banks was also much more uniform than pricing among small banks, both on June 20 and

throughout our sample. To this point, we calculated the coeffi cient of variation (CV) of

overnight lending rates offered by banks in different groups. The CV among big banks was

61% of the CV among JSCBs and 21% of the CV among city banks on June 20. Averaging

over all trading days in June 2013 yields similar figures, namely 62% and 29% respectively.1

The right panel of Figure H.4 shows that JSCBs paid a lot more for non-policy bank loans

on June 20 than they did for policy bank loans.2 There were no major differences in the

haircuts imposed by policy banks versus other lenders. It then stands to reason that JSCBs

would have liked a higher share of policy bank lending. Instead, they received 20% of what

policy banks lent on June 20, down from an average of 28% over the rest of the month. The

situation was similar for city and rural banks: they faced large price differentials between

policy and non-policy bank loans yet their share of policy bank lending on June 20 was 22%,

well below an average of 47% over the rest of the month.

Taken together, the evidence from the June 2013 data indicates that the Big Four can

and do change prices on China’s interbank market, even controlling for government policy.

China’s policy banks provided a sizeable amount of liquidity on June 20 but the Big Four

prevented interbank rates from falling.

Further NCD Evidence

The empirical evidence in the main text (Section 5.1) used announcements of interbank

NCDs from 2016 to 2018 to identify increases in liquidity demand. Table 1 showed that

NCD announcements by the Big Four led to higher interbank repo rates on the next trading

day. Table H.2 repeats the analysis for each bank individually. Columns (1) to (4) use NCD

announcements by each bank in the Big Four. Columns (5) to (16) use NCD announcements

by each of the twelve JSCBs. As in Table 1, we control for two lags of the repo rate as well

1We excluded lending rates charged to policy banks given the proximity of policy banks to the government.
2For completeness, the overnight and 7 day maturities shown in the right panel of Figure H.4 were 94%

of JSCB borrowing on June 20. They were also 100% of JSCB borrowing from policy banks on this date.
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as the required reserve ratio set by the PBOC. The response of the interbank repo rate to

NCD announcements by the JSCBs is not statistically different from zero.
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Figure H.1

Interbank Network in China, Net Flows

Notes: Based on main sample. Shareholding banks are the JSCBs.

Table H.1

Measures of Bank Importance on Interbank Market

Eigen-Centrality Elasticity

Main Sample June 20

Out In Out In

Policy Banks 1.00 0.01 1.00 0.07 0.572

Big Four 0.97 0.23 0.56 0.54 0.287

JSCBs 0.67 0.71 0.47 1.00 0.078

City Banks 0.77 1.00 0.33 0.95 0.037

Rural Banks 0.37 0.34 0.20 0.29 0.018

Rural Co-ops 0.18 0.20 0.11 0.12 0.002

Foreign Banks 0.08 0.04 0.02 0.06 0.006

Other 0.97 0.73 0.93 0.73 0.000

Notes: Out is based on lending. In is based on borrowing. Last

column is elasticity of total lending by interbank market with

respect to money brought into market by node.
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Figure H.2: Repo Lending (RMB Billions)

By Policy Banks By Big Banks

Figure H.3: Interbank Network on June 20, Net Flows

Figure H.4: Interbank Market Spreads
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Table H.2

Interbank Repo Rate Regressions

(1) (2) (3) (4) (5) (6) (7) (8)

L1.repo 0.832*** 0.834*** 0.829*** 0.835*** 0.835*** 0.835*** 0.834*** 0.835***

(0.0378) (0.0380) (0.0377) (0.0379) (0.0379) (0.0381) (0.0379) (0.0379)

L2.repo 0.0769** 0.0893** 0.0711* 0.0889** 0.0892** 0.0876** 0.0852** 0.0884**

(0.0384) (0.0382) (0.0382) (0.0382) (0.0382) (0.0385) (0.0382) (0.0381)

RRR 0.203*** 0.196*** 0.199*** 0.197*** 0.196*** 0.197*** 0.191*** 0.195***

(0.0715) (0.0717) (0.0711) (0.0717) (0.0718) (0.0717) (0.0716) (0.0716)

L.NCD_ABC 0.0258**

(0.0116)

L.NCD_BOC -0.00583

(0.0158)

L.NCD_CCB 0.0421***

(0.0120)

L.NCD_ICBC -0.00420

(0.0479)

L.NCD_CMB -0.00183

(0.0108)

L.NCD_SPDB 0.00381

(0.0149)

L.NCD_CITIC 0.0202

(0.0124)

L.NCD_CIB -0.0466

(0.0331)

Observations 748 748 748 748 748 748 748 748

R-squared 0.841 0.840 0.843 0.840 0.840 0.840 0.841 0.841
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Table H.2 (continued)

Interbank Repo Rate Regressions

(9) (10) (11) (12) (13) (14) (15) (16)

L1.repo 0.835*** 0.835*** 0.835*** 0.831*** 0.833*** 0.835*** 0.835*** 0.835***

(0.0379) (0.0379) (0.0379) (0.0381) (0.0380) (0.0379) (0.0379) (0.0379)

L2.repo 0.0878** 0.0879** 0.0888** 0.0932** 0.0928** 0.0889** 0.0892** 0.0826**

(0.0384) (0.0382) (0.0381) (0.0385) (0.0386) (0.0382) (0.0382) (0.0384)

RRR 0.197*** 0.198*** 0.192*** 0.198*** 0.194*** 0.197*** 0.196*** 0.196***

(0.0717) (0.0717) (0.0717) (0.0716) (0.0718) (0.0718) (0.0717) (0.0716)

L.NCD_CMBC 0.00319

(0.0130)

L.NCD_CBB 0.00510

(0.0106)

L.NCD_CZB -0.0137

(0.0106)

L.NCD_PAB -0.0128

(0.0148)

L.NCD_CGB -0.00751

(0.0110)

L.NCD_CEB 9.39e-05

(0.0112)

L.NCD_HXB -0.00282

(0.0109)

L.NCD_EB 0.0160

(0.0129)

Observations 748 748 748 748 748 748 748 748

R-squared 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840
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Appendix I —WMP Issuance in China

This appendix provides further background on the issuance of WMPs in China. As discussed

in the main text, WMPs are the empirical counterpart to the shadow banking in our theoret-

ical model. The model predicts that small banks (interbank price-takers) will be constrained

by liquidity regulation before large banks (interbank price-setter) and engage more aggres-

sively in shadow banking activities, both by offering higher returns (as measured by ξj > ξk)

and by having a strict preference for booking the attracted funding off-balance-sheet (see

Footnote 8 in the main text).

We use product-level WMP data from 2008 to 2014 from Wind. The benchmark sample

includes all the WMPs issued by the Big Four and JSCBs. We first regress realized WMP

returns on a dummy variable that equals one if the issuing bank is a member of the Big

Four. We also include year and month dummies and control for WMP maturity. The results

indicate that the realized returns on WMPs issued by the Big Four were on average 26

basis points lower than the realized returns on WMPs issued by the JSCBs. The difference

is highly significant, with a standard error of 0.9 basis points. The gap increases to 37

basis points, with a standard error of 0.8, when the sample is extended to include WMPs

issued by all small and medium-sized banks (SMBs). We then change the dependent variable

to the realized returns relative to the expected floors advertised at issuance. The estimated

coeffi cient on the Big Four dummy is 78 basis points, with a standard error of 2.3, suggesting

that the Big Four were also more conservative than the JSCBs in the returns they advertised

to investors. When we include all SMBs, the estimated coeffi cient on the Big Four dummy

increases to 83 basis points, with a standard error of 1.7.

The data also corroborate the more aggressive issuance of off-balance-sheet WMPs by

SMBs. Between 2008 and 2014, the JSCBs accounted for 73% of all new WMP batches and

issued 57% of their batches without an explicit guarantee. The Big Four issued only 46% of

their batches in this way. The gap in non-guaranteed intensity widens in the second half of

the sample, with the JSCBs at 62% and the Big Four at 43%. These estimates are based

on product counts since Wind does not yet have complete data on the total funds raised by

each product. However, using data from CBRC and the annual reports of the Big Four, we

estimate that SMBs (i.e., JSCBs and smaller) accounted for roughly 64% of non-guaranteed

WMP balances outstanding at the end of 2013.1 This conveys a consistent message with the

batch statistics.
1The entire WMP balance in Bank of China’s annual report is described in the notes as an unconsolidated

balance yet the micro data in Wind includes several guaranteed batches for this bank that would not have
matured by the end of 2013. We therefore remove Bank of China and rescale the other banks in the Big
Four to back out our 64% estimate for small and medium-sized banks.
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These differences between large and small banks arise because small banks are endoge-

nously more constrained by liquidity regulation. Loan-to-deposit ratios based on average

balances during the year in the early stages of CBRC’s enforcement action provide a rea-

sonable indicator of how constrained a bank would be by full implementation of the action.

Average balance data is tabulated in the net interest analysis of bank annual reports, not

the standard balance sheets that appear at the end of these reports.

Figure I.1 compares loan-to-deposit ratios based on average balance data (dashed lines)

to those based on end-of-year data (solid lines). We plot ratios for the Big Four (blue) and

the JSCBs (red) from 2005 to 2014. The shaded area is the interquartile range of the end-

of-year ratios of the JSCBs. Data are from Bankscope and bank annual reports. Historical

data for city and rural banks is spotty, especially when it comes to average balances, so these

banks are excluded from the figure.2

It is clear from Figure I.1 that the JSCBs would have been more constrained than the

Big Four as CBRC transitioned towards monitoring average balance ratios. First, there has

never been a sizeable difference between the average balance and year-end loan-to-deposit

ratios of the Big Four. In contrast, the JSCBs had consistently higher average balance ratios

than year-end ratios prior to 2012, the first full year of average balance monitoring by CBRC.

Second, the Big Four had both ratios comfortably below 75% before CBRC heralded the era

of stricter and more frequent loan-to-deposit enforcement in 2008. This was not the case for

the JSCBs who, as a group, were well above 75% based on average balance data and very

close to 75% based on year-end data.3

For comparison, Figure I.2 plots the capital ratios of the Chinese banks from 2007 to

2014. China started to implement Basel III in 2013.4 The required capital adequacy ratio

(CAR) was increased from 8% in 2012 to 9% in 2014. The Tier-1 CAR was also increased

from 4% to 7% over the same period. Neither the Big Four nor the JSCBs were constrained

by capital requirements. Both CAR and Tier-1 CAR of the JSCBs exceeded the regulatory

ratios by 2 or more percentage points every year from 2007 to 2014. The gap for the Big

Four was even larger.

To provide formal evidence that off-balance-sheet issuance was driven by the bindingness

2One JSCB (Evergrowing Bank) is also excluded for similar reasons.
3We make two comments here. First, banks whose loan-to-deposit ratios are materially lower at the

end of the year than on an average day during the year are window-dressing their year-end balance sheets.
Hachem (2018) discusses the practices used in China before 2008 and why these practices could not be used
to window-dress average balance ratios. Second, Figure I.1 shows that the loan-to-deposit ratio of the Big
Four has increased towards 75% since the beginning of the enforcement. In Section 5.3, we demonstrate
that much of this increase can be explained as a strategic response to increased competition from shadow
banking.

4“Administrative Measures for the Capital of Commercial Banks,”CBRC Document No. 1, 2012.
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of liquidity regulation, we run panel regressions in Table I.1. We use bank-level data for each

bank in the Big Four and the JSCBs. The dependent variable is the log of non-guaranteed

WMP batches issued by bank i in year t scaled by the average balance of deposits at the

bank in that year.5 The main sample covers 2008 to 2010 inclusive. Recall that CBRC

reached its final goal of average balance monitoring in mid-2011, making 2010 the last full

year in which average balance ratios exhibit meaningful variation among constrained banks.

In the first column of Table I.1, we regress the dependent variable on the loan-to-deposit

ratio of bank i in year t, as measured using average balance data.6 All columns include year

fixed effects. We also control for the maturity of the non-guaranteed WMPs issued by bank

i in year t. A bank that issues 3-month WMPs will issue twice as many WMP batches as

a bank that issues 6-month WMPs to raise the same amount of funding over the course of

a year. The bank with shorter-term WMPs will therefore have more batches, even if it is

otherwise identical to the bank with longer-term WMPs. Including maturity as a regressor

controls for this.

The results in the first column of Table I.1 confirm that banks with higher average balance

ratios issued more non-guaranteed WMPs than banks with lower ratios. The second column

shows that this finding is robust to controlling for the average return floor advertised by

bank i when issuing non-guaranteed WMPs in year t. The third column shows that it is

also robust to including bank fixed effects. In the fourth column, we extend the sample

to 2014. The coeffi cient on the average balance ratio is still positive but its magnitude is

roughly one-third of the magnitudes in the columns based on the main sample, and it is only

statistically significant at the 10% level. The extended sample gives us more observations,

and hence more degrees of freedom, to include the bank fixed effects. However, as noted

earlier, the average balance ratio becomes a truncated indicator after 2010.

In the last two columns of Table I.1, we rerun the main sample regressions with the

average balance ratio decomposed into two components: the regulated ratio of bank i in

year t, as measured at the end of the year, and the degree of window-dressing by bank i

in year t, as measured by the percent difference between the bank’s average balance and

regulated ratios.7 The degree of window-dressing is the indication of constraint in this

decomposition. The results in the last two columns corroborate what we found earlier:

5We use the indicator i here generically, i.e., not with reference to type.
6One may worry about reverse causality here. Specifically, the average balance ratio will decrease as the

bank issues non-guaranteed WMPs to move some business off-balance-sheet. However, this implies a negative
relationship between the dependent variable and the average balance ratio, which will bias the regression
against us.

7We have to focus on the main sample in these columns as this is the sample where window-dressing
is an observable (i.e., the average balance ratio becomes the regulated ratio once CBRC begins monitoring
average balance ratios).
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banks more constrained by CBRC’s impending monitoring of average balance ratios issued

more non-guaranteed WMPs than banks less constrained.

As a final exercise, we conduct Granger causality tests on total WMP issuance in Table

I.2 and find that the WMPs issued by the Big Four were a response to the WMP activities of

small and medium-sized banks (SMBs). We use differenced monthly data on WMP batches

between January 2008 and September 2014 to run the tests. The Akaike Information Cri-

terion (AIC) selects a VAR with 21 lags. As shown in Table I.2, the null hypothesis that

WMP issuance by SMBs does not Granger-cause WMP issuance by the Big Four is rejected

at 1% significance. The opposite hypothesis that WMP issuance by the Big Four does not

Granger-cause WMP issuance by SMBs cannot be rejected at any reasonable level of signif-

icance. Using the Bayesian Information Criterion (BIC) to select the number of lags yields

similar results, as do Granger causality tests based on other orders. The impetus for WMP

activity in China is therefore coming from the SMBs, who are also the constrained banks

and the banks more heavily involved in non-guaranteed issuance.

We conclude this appendix by discussing regional variation in financial sector growth after

the tightening of liquidity regulation. The Wind database reports bank deposits, bank loans,

and total assets of all financial institutions for each province in China. These aggregates sum

over branch-level information that is not otherwise available. Provinces with higher initial

loan-to-deposit ratios would be harder hit by the tightening of liquidity regulation, so the

forces behind our credit boom result would predict an increase in shadow lending and an

overall increase in credit in these provinces.

We first run a cross-provincial regression of the average annual growth rate of total

financial institution assets from 2008 to 2014 on the loan-to-deposit ratio in 2007. The data

are plotted in Panel A of Figure I.3. The slope of the fitted line is 0.12, with a standard

error of 0.05. Next, we rerun the regression using the average annual growth rate of total

financial institution assets less bank loans as the dependent variable. The data are plotted

in Panel B of Figure I.3. The slope of the fitted line is 0.27, with a standard error of 0.07. In

words, a 10 percentage point difference in loan-to-deposit ratios before CBRC’s enforcement

action is associated with a 2.7 percentage point difference in shadow loan growth and a 1.2

percentage point difference in total loan growth after the enforcement. Provincial statistics

on the volume of shadow lending are not available, so we are using the difference between

total assets of all financial institutions and bank loans as a proxy. Total lending, i.e., shadow

lending plus traditional bank lending, is then proxied by the total assets metric. Our proxy

for shadow lending is imperfect, so we do not want to overstate the provincial results. We

only note that they are suggestive in the direction of our model. On this point, more WMP

batches tend to be issued in provinces with higher loan-to-deposit ratios (Hachem (2018)),
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consistent with the result here that such provinces exhibit stronger shadow growth.
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Table I.1

Non-Guaranteed WMP Issuance

(1) (2) (3) (4) (5) (6)

LDR 8.793*** 9.764*** 8.815** 2.720*

(1.719) (2.623) (3.283) (1.381)

Maturity -0.145*** -0.138*** -0.181*** -0.045 -0.136*** -0.184***

(0.016) (0.018) (0.042) (0.045) (0.022) (0.052)

MinROR -0.171 -0.135 -0.108 -0.171 -0.127

(0.105) (0.082) (0.089) (0.097) (0.099)

WinDress 6.907* 6.179*

(3.583) (2.938)

RegRatio 10.676*** 8.175

(2.491) (5.874)

Observations 41 31 31 79 31 31

Year Dummies X X X X X X
Bank Dummies × × X X × X
R-squared 0.583 0.654 0.965 0.793 0.658 0.963

Notes: The dependent variable is the log of the total number of non-guaranteed WMPs issued by a bank

in a year scaled by the average balance of deposits at the bank in that year. LDR is the loan-to-deposit

ratio based on average balances of a bank in a year. Maturity and MinROR are respectively the average

maturity and expected return floor on non-guaranteed WMPs issued by a bank in a year. WinDress is

the percent difference between the average balance and year-end loan-to-deposit ratios of a bank in a

year. RegRatio is the year-end ratio of a bank in a year. In all columns except (4), the sample period is

2008-2010. In column (4), the sample period is 2008-2014. Standard errors, clustered at the bank level,

are in parentheses. ***p<0.01, **p<0.05, *p<0.1
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Table I.2

Granger Causality Tests

H0: SMB WMPs do not cause Big Four WMPs

Criteria Order F-statistic P-value

AIC 21 3.737 0.00

BIC 1 17.707 0.00

3 7.095 0.00

6 4.016 0.00

9 2.295 0.02

H0: Big Four WMPs do not cause SMB WMPs

Criteria Order F-statistic P-value

AIC 21 0.236 0.99

BIC 1 0.098 0.75

3 0.966 0.41

6 1.590 0.15

9 0.492 0.88

Notes: We use monthly differenced data on WMP batches. AIC is the

Akaike Information Criterion, which helps select the lag order of a VAR

model for the Granger tests. BIC is the Bayesian Information Criterion.

AIC usually over-estimates the order with positive probability, whereas

BIC estimates the order consistently under fairly general conditions.

Thus, BIC is typically used as the main selection criterion.
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Figure I.1

Loan-to-Deposit Ratios

Figure I.2
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Figure I.3

Provincial Correlations
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Appendix J —Sensitivity Analysis

This appendix conducts a sensitivity analysis of the credit boom in the calibrated model

in response to tighter liquidity regulation. We change one parameter at a time, keeping

all other parameters as in the baseline calibration of Section 5.2. To make the results

comparable across experiments, we conduct local analysis. Specifically, we compute the

change in the aggregate credit-to-savings ratio following an increase in the liquidity floor α

from α to α+0.01, where α denotes the minimum α ≥ 0.145 at which ξj > 0. In the baseline

calibration, α = 0.145 and a 1 percentage point increase in α from 0.145 to 0.155 increases

the aggregate credit-to-savings ratio by 0.65 percentage points. In all the experiments we

run, k remains unconstrained by the change in regulation, as in the baseline calibration.

Panel A of Figure J.1 plots the results for rA, the interest rate at which bank k lends on

the interbank market. The baseline calibration normalizes rA = 0, which corresponds to an

interbank rate of 2% in the data (see Section 5.2) and is thus depicted as rA = 0.02 in Panel

A. The sensitivity analysis on rA demonstrates that our baseline credit boom is not driven

by the normalization of rA = 0. For example, increasing rA by 2 percentage points would

still result in a nearly 0.5 percentage point increase in the aggregate credit-to-savings ratio

following a 1 percentage point increase in α.1

As a separate but related sensitivity analysis on the modeling of rA, we can calibrate a ver-

sion of the model with rA endogenous. Recall that Appendix C microfounded rA as the high-

est interbank rate that would leave the price-takers j with zero profit in stateA. With shadow

banking and operating costs, the expression becomes rA
(
λj, ξj

)
=

g(1−λj)+λj−1−ξj−φj−`j
θAj −λj

,

where the parameter `j ≥ 0 is inversely related to the effi cacy of bankruptcy courts; the

higher is `j, the less profit can be seized by pushing borrowers to the brink of insolvency.

Calibrating this extended model to start at rA (·) = 0 when α = 0.145 then increasing the

liquidity floor to α = 0.25 as in Section 5.3, we obtain a 5.2 percentage point increase in

total credit. The same experiment with rA = 0 constant produced a 6.2 percentage point

increase in total credit in Section 5.3. The credit boom is thus robust to endogenizing rA.

Returning to the local analysis of parameters in the baseline calibration, Panel B of

Figure J.1 plots the results for z, which is the parameter that shifts the marginal return to

investing in the long-term project, i.e., g′ (1− λi) = 1 + z − γ (1− λi). A higher value of z
makes investing in the long-term project more attractive. The small, price-taking banks j

then have even more incentive to increase ξj and shift funding into shadow banking, where

liquidity regulation does not constrain how much they can invest. All else constant, this more

1Of course, there is a limit to how much we can increase rA beyond what is shown in Panel A and
still obtain an equilibrium with rB > 0, which, as discussed in the main text, is the empirically relevant
equilibrium (see Proposition 2 and the related discussion).
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forcefully erodes the funding share xk of the price-setter k and leads to a bigger credit boom.

However, all else is not constant as k also wants to invest more in the long-term project. The

price-setter thus chooses a higher ξk along with setting a higher average interbank rate E (r)

to temper ξj, both of which counteract the decrease in xk and dampen the credit boom. The

price-setter’s response becomes stronger as z is increased further, leading to a hump-shaped

effect of higher z on the size of the credit boom.

Panel C plots the results for δ1, which governs the intensity of competition between j

and k in Eq. (7). Higher δ1 has two competing effects on the size of the credit boom. First,

for a given ξj > ξk, higher δ1 implies a bigger decline in k’s funding share xk and thus a

bigger credit boom. Second, higher δ1 compels k to choose a higher ξk, leading to a smaller

credit boom. The first effect dominates at low values of δ1 while the second dominates at

high values. The result is a hump-shaped dependence of the size of the credit boom on δ1.

In Panel D, we extend the model to allow for competition between the banks in type j.

Specifically, we model the funding of any one bank j as

xj = 1− x0
k + δ1

(
ξj − ξk

)
+ δ2

(
ξj − ξj

)
where δ2 > 0. The baseline calibration corresponds to δ2 = 0. With δ2 > 0, an individual

bank in type j can increase its funding xj by increasing ξj relative to the average shadow

banking action ξj. In a symmetric equilibrium, ξj = ξj so xk is still given by Eq. (7).

Higher δ2 implies more intense competition among small banks for funding. This bids up

ξj, triggering a competitive response from bank k to prevent further encroachment on its

funding share xk. In particular, k sets a higher E (r) to stifle ξj and/or higher ξk, dampening

the credit boom. Panel D illustrates the effect, but it is modest enough that a sizable credit

boom remains.

Panel E plots the results for the external liquidity parameter L. With more external

liquidity, bank k can lower rB, the interest rate at which it borrows on the interbank market,

without violating the aggregate feasibility condition in state B. This lowers E (r), which

facilitates higher ξj and leads to a bigger credit boom. Eventually though, i.e., for a large

enough increase in ξj, it becomes profitable for k to recapture some of the lost funding xk
by also choosing higher ξk, dampening the credit boom. The first effect dominates at low

values of L while the second effect dominates at high values. The result is a hump-shaped

dependence of the size of the credit boom on L.

In Panel F, we extend the model to allow for interest-sensitive liquidity injections by the

central bank. Specifically, the aggregate feasibility condition for each state s ∈ {A,B} is
now (

λj − θsj
)

(1− xk) + (λk − θsk)xk + L+ ψrs ≥ 0
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where ψ > 0.2 The baseline calibration corresponds to ψ = 0. The effect of higher ψ on the

size of the credit boom is qualitatively similar to the effect of higher L, i.e., hump-shaped,

as both parameters increase liquidity on the interbank market for a given interest rate rs.

We also conduct sensitivity analysis with respect to the price-setter’s initial funding share.

In the baseline calibration, we set x0
k = 0.57 so that the calibrated model delivers xk = 0.56

at α = 0.145, which was the deposit market share of the Big Four in 2007. Varying x0
k

while keeping all other parameters as in the baseline calibration delivers ξk > 0 at α if x0
k

is suffi ciently low, i.e., the price-setting bank will endogenously increase its initial funding

share, undermining the experiment we want to conduct. A more appropriate exercise is

therefore to recalibrate the model for different values of x0
k so that ξk = 0 at α = 0.145, as

in the benchmark model. We then report the change in the aggregate credit-to-savings ratio

following a 1 percentage point increase in α.

The results are presented in Table J.1. The first column corresponds to the baseline

calibration. In the second column, we set x0
k = 0.32 and recalibrate the model to deliver

xk = 0.31 at α = 0.145, which was the deposit market share of ICBC and CCB (the two

biggest banks in the Big Four) in 2007. In the third column, we set x0
k = 0.18 and recalibrate

the model to deliver xk = 0.17 at α = 0.145, which was the deposit market share of only

ICBC (the biggest bank in the Big Four) in 2007. For both experiments, the other parameters

are recalibrated to target the same empirical moments as in Section 5.2, with δ1 recalibrated

to target the same local percent change in xk, i.e., from a 1 percentage point increase in α,

rather than the level in 2014. This recalibration recovers lower values of δ1 as x0
k is decreased,

i.e., a smaller bank k experiences less deposit outflow to its competitors j for the same spread

ξj − ξk.
We can see from Table J.1 that calibrating the model to a smaller price-setting bank

dampens the size of the credit boom. However, the effect remains quantitatively important,

decreasing less than proportionally with the initial size of the price-setter. To this point,

Table J.1 shows that the average interbank rate increases more aggressively with liquidity

regulation when the price-setter is smaller. This permits a larger increase in the price-setter’s

loan-to-deposit ratio (see Section 3.5), which helps sustain the credit boom.

2Since we deduct 2% from all interest rates in the calibration, this equation when compared to Eq. (13)
implicitly has an interest target rate of 2%.
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Figure J.1: Effect of ∆α = 0.01
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Notes: The experiments in this figure vary one parameter at a

time, keeping all other parameters as in the baseline calibration.

Table J.1: Effect of ∆α = 0.01

x0
k = 0.57 x0

k = 0.32 x0
k = 0.18

∆ Credit-to-Savings Ratio 0.65 pp 0.46 pp 0.29 pp

∆ Avg. Interbank Rate 9 bps 14 bps 16 bps

∆ Loan-to-Deposit Ratio of k 1 pp 2.4 pp 4.9 pp

Notes: The experiments in this table recalibrate the model to deliver different

initial funding shares. The first column corresponds to the baseline calibration.

In each column, the policy experiment is a 1 pp increase in α.
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Appendix K —Estimation Procedure

Let m = 1, ..., 4 index the empirical moments to be matched. The four moments are the four

correlations in Table 3.

1. Bootstrap: Let N denote the total number of random samples generated by bootstrap.

We set N = 500. Denote by ym,n the mth moment in the nth sample. We will target
1
N

∑N
n ym,n, the m

th moment averaged across N samples.

2. Denote by Ω the vector of parameters to be estimated. Given Ω, we can simulate the

model to generate the moments ym (Ω). Denote by εm,n = ym (Ω) − ym,n the residual
for moment m in sample n. Define the weighting matrix (M ×M) as:

W =
1

N

N∑
n

εm,nε
T
m,n

3. Minimizing the weighted sum of the distance between the empirical and simulated

moments:

Ω̂ = arg min
Ω
` (Ω)′W−1` (Ω)

where ` (Ω) is a vector with M elements and `m (Ω) = ym (Ω)− 1
N

∑N
n ym,n.

4. We use two-step Simulated Method of Moments. We set W to the identity matrix in

the first step and use the variance-covariance matrix of the residuals from the first-step

as the weighting matrix for the second-step estimation.

5. Repeat the above exercise 100 times to calculate the standard errors of the estimated

parameters.
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