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1 Introduction

Some key facts about economic growth have become common lore. Among those famously cited by

Kaldor (1961) are the observation that output per worker and capital per worker have grown steadily,

while the capital-output ratio, the real return on capital, and the shares of capital and labor in national

income have remained fairly constant. Jones (2015) updates these facts using the latest available data.

He reports that real per capita GDP in the United States has grown �at a remarkably steady average

rate of around two percent per year�for a period of nearly 150 years, while the ratio of physical capital

to output has remained nearly constant. The shares of capital and labor in total factor payments were

very stable from 1945 through about 2000.1

These facts suggest to many the relevance of a �balanced growth path�and thus the need for models

that predict sustained growth of output, consumption and capital at constant rates. Indeed, neoclassical

growth theory was developed largely with this goal in mind. Apparently, it succeeded. As Jones and

Romer (2010, p.225) conclude: �There is no longer any interesting debate about the features that a model

must contain to explain [the Kaldor facts]. These features are embedded in one of the great successes of

growth theory in the 1950s and 1960s, the neoclassical growth model.�

Alas, �all is not well,�as Hamlet might say. Jones (2015) highlights yet another fact that was noted

earlier by Gordon (1990), Greenwood et al. (1997), Cummins and Violante (2002), and others: the

relative price of capital equipment, adjusted for quality, has been falling steadily and dramatically since

at least 1960. Figure 1 reproduces two series from FRED (Federal Reserve Economic Data, a database

maintained by the Federal Reserve Bank of St. Louis).2 In the period from 1947 to 2013, the relative

price of investment goods has fallen at a compounded average rate of 2.0 percent per annum. The relative

price of equipment has fallen at an even faster annual rate of 3.8 percent.

This observation of falling capital prices rests uncomfortably with the features of the economy that are

thought to be needed to foster balanced growth. As Uzawa (1961) pointed out, and Schlicht (2006) and

Jones and Scrimgeour (2008) later clari�ed, a balanced growth path in the two-factor neoclassical growth

model with a constant and exogenous rate of population growth and a constant rate of labor-augmenting

technological progress requires either an aggregate production function with a unitary elasticity of sub-
1As is well known from Piketty (2014) and many others before him and since, the share of capital in national income has

been rising, and that of labor falling, since around 2000; see, for example, Elsby et al. (2013), Karabarbounis and Neiman
(2014), and Lawrence (2015). It is not clear yet whether this is a temporary �uctuation around the longstanding division,
part of a transition to a new steady-state division, or perhaps (as Piketty asserts) a permanent departure from stable factor
shares.

2The FRED data for investment and equipment prices are based on updates of Gordon�s (1990) numbers by Cummins
and Violante (1990) and DiCecio (2009, Appendix A).
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Figure 1: U.S. Relative Price of Equipment, 1947-2013
Source: Federal Reserve Bank Economic Data (FRED), Series PIRIC and PERIC.

stitution between capital and labor or else an absence of any capital-augmenting technological progress.

The size of the elasticity of substitution between capital and labor is much debated and still controver-

sial. Yet, a preponderance of the evidence suggests an elasticity well below one.3 And the fact that the

quality-adjusted prices of investment goods (and especially equipment) have been falling relative to the

price of �nal output suggests that the rate of (embodied) capital-augmenting technological progress has

not been nil.4

The Uzawa Growth Theorem rests on the impossibility of getting an endogenous rate of capital

accumulation to line up with an exogenous growth rate of e¤ective labor in the presence of capital-

augmenting technological progress, unless the aggregate production function takes a Cobb-Douglas form.

The �problem,� it would seem, stems from the model�s assumption of an inelastic supply of e¤ective

labor that does not adjust to capital deepening, even over time. If human capital could be accumulated

endogenously, via investments in schooling, on-the-job training, or otherwise, then perhaps e¤ective labor

growth would fall into line with growth in e¤ective capital, and a balanced growth path would be possible

in a broader set of circumstances. Seen in this light, another fact about the U.S. growth experience

appears to o¤er a way out. We reproduce� as did Jones (2015)� a �gure from Goldin and Katz (2007).

3Chirinko (2008, p.671), for example, who surveyed and evaluated a large number of studies that attempted to measure
this elasticity, concluded that �the weight of the evidence suggests a value of [the elasticity of substitution] in the range of
0.4 to 0.6.�In research conducted since that survey, Karabarounis and Nieman (2014) estimate an elasticity of substitution
greater than one, but Chirinko et al. (2011), Ober�eld and Raval (2014), Chirinko and Mallick (2014), Herrendorf, et al.
(2015), and Lawrence (2015) all estimate elasticities below one.

4Motivated by Uzawa�s Growth Theorem, Acemo¼glu (2003) and Jones (2005) provide theories of directed technical change
in order to provide an explanation for the absence of capital-augmenting technical change. To be consistent with balanced
growth, both look for restrictions that would lead endogenous technical change to be entirely labor-augmenting. Neither
attempts to reconcile capital-augmenting technical change with balanced growth.
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Figure 2: U.S. Education by Birth Cohort, 1876-1982
Source: Goldin and Katz (2007) and additional data from Lawrence Katz.

Figure 2 shows the average years of schooling measured at age thirty for all cohorts of native American

workers born between 1876 and 1982.5 Clearly, educational attainment has been rising steadily for more

than a century. Put di¤erently, there has been ongoing investment in �human capital.� Indeed, Uzawa

(1965), Lucas (1988), and others have established the existence of a balanced growth path in a neoclassical

growth model that incorporates a standard treatment of human capital accumulation, albeit in settings

that lack embodied or disembodied capital-augmenting technological progress.6

Unfortunately, the usual formulation of human capital does not do the trick. In the next section, we

prove an extended version of the Uzawa Growth theorem that allows for accumulation of human capital.

We specify an aggregate production function that has e¤ective capital (the product of physical capital

and a productivity-augmenting technology term) and human capital as arguments. Human capital is

represented as an arbitrary function of technology-augmented �raw labor�and a variable that measures

private investments in upgrading the labor input. In this setting, we show again that balanced growth

requires either a unitary elasticity of substitution between physical capital and human capital, or else

an absence of capital-augmenting technological progress. The intuition is similar to that provided by

Jones and Scrimgeour for the original Uzawa theorem. Along a balanced growth path, physical capital

that is produced from �nal goods inherits the trend in output growth.7 But the growth rate of �nal

5We are grateful to Larry Katz for providing the unpublished data that allowed us to extend his earlier �gure.
6Uzawa (1965) studies a model with endogenous accumulation of human capital in which education augments �e¤ective

labor supply� so as to generate convergence to a steady state. Lucas (1988) incorporates an externality in his measure of
human capital, a possibility that we do not consider here. Acemo¼glu (2009, pp. 371-374) characterizes a balanced growth
path in a setting with overlapping generations.

7 If the price of investment goods relative to consumption can change� something Jones and Scrimgeour did not consider�
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output is a weighted average of the growth rates of e¤ective capital and e¤ective labor, with factor shares

as weights. If these shares are to remain constant along a balanced growth path with an aggregate

production function that is not Cobb-Douglas, then e¤ective capital and e¤ective labor must grow at

common rates. It follows that the growth rate of output also mirrors the growth rate of e¤ective capital.

With the growth rate of �nal output equal to both the growth rate of (the value of) physical capital

and the growth rate of e¤ective capital, there is no room for capital productivity to improve or for the

cost of investment to fall. And all of this is true whether e¤ective labor grows partly due to endogenous

investment in human capital or not.

But our �ndings in Section 2 also point to a way out of the bind. Ongoing increases in educational

attainment such as those depicted in Figure 2 can potentially reconcile the existence of a balanced growth

path with a sustained rise in capital or investment productivity and an elasticity of substitution between

capital and labor less than unity, provided that schooling enters the aggregate production function dif-

ferently than raw labor. Then investments in schooling can o¤set the change in the capital share that

results from capital deepening (growth in e¤ective capital relative to technology-augmented raw labor).

It is possible� with just the right steady gains in education� for balanced growth to occur, with out-

put and the value of capital growing at the same rates, e¤ective capital growing at a faster rate than

technology-augmented labor, and an index of schooling rising over time to keep the factor shares constant.

To be more precise, suppose that F (K;L; s; t) is the output that can be produced with the technology

available at time t by L units of �raw labor�working with K units of physical capital, when the economy

has an education level summarized by the scalar measure s. Suppose that F (�) has constant returns to

scale in K and L and that �KL < 1, where �KL � FLFK=FFLK is the elasticity of substitution between

capital and labor, holding schooling constant. We will show that a balanced growth path with constant

factor shares, a growing index of education level, and positive capital-augmenting technological progress

(embodied or disembodied) can emerge, but only if the ratio of the marginal product of schooling to the

marginal product of labor rises as capital accumulates; i.e., @ (Fs=FL) =@K > 0. Clearly, this precludes

a production function of the form F (K;H; t), where H = G (L; s; t) is a standard measure of human

capital at time t, because then Fs=FL is independent of K. A necessary condition for balanced growth in

the presence of capital-augmenting technological progress and a non-unitary elasticity of substitution is

a su¢ cient degree of complementarity between capital and education. Of course, many researchers have

noted the empirical relevance of �capital-skill complementarity� (see, most prominently, Krusell, et al.,

the analogous requirement is that the value of the capital stock inherits the growth rate of output.
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2000 and Autor, et al., 1998), albeit with varying interpretations of the word �skill� and of the word

�complementarity.�Our analysis makes clear that the appropriate sense of complementarity is a relative

one: growth in the capital stock must raise the marginal productivity of schooling relatively more than

it does the marginal productivity of raw labor. Moreover, if �KL < 1, then balanced growth requires

that the technology F (K;L; s; t) be characterized by strict log supermodularity in K and s, which is a

stronger sense of complementarity than FKs > 0.

The fact that schooling gains can o¤set the e¤ects of capital-augmenting technological progress on the

capital share does not of course mean that they will do so in a reasonable model of schooling decisions.

So we proceed in the subsequent sections to introduce optimizing behavior. In Section 3, we keep things

simple at the cost of realism. We �rst solve a social planner�s resource-allocation problem that incorporates

a reduced-form speci�cation of the trade-o¤ between an index of an economy�s schooling level and its

available labor supply. The key simplifying assumptions in this section are that an economy�s schooling

can be represented by a scalar measure and that this choice variable can jump from one moment to the

next. Under these assumptions, when the aggregate production function belongs to a speci�ed class, the

optimal growth trajectory converges to a balanced-growth path with constant rates of growth of output,

consumption and capital, and a constant capital share in national income. Following the presentation

of the planner�s problem, we present two distinct models in which the market equilibrium shares the

dynamic properties of the e¢ cient solution. In both models, the economy is populated by a continuum

of similar dynasties, each comprising a sequence of family members who survive for only in�nitessimal

lifespans. In the �time-in-school� model of Section 3.2, each individual decides what fraction of her

brief existence to devote to schooling, thereby determining her productivity in her remaining time as

a worker. Firms allocate capital to their various employees as a function of their productivity levels

and therefore their schooling. In the �manager-worker�model of Section 3.3, individuals instead make

a discrete educational choice. Those who devote a �xed fraction of their life to schooling are trained

to work as managers with their remaining time. Those who do not opt for management training have

their full life to serve as production workers. In this case, our measure of the economy�s education is its

ratio of manager hours to worker hours, and we assume that productivity of a production unit (workers

combined with equipment) rises with this ratio due to improved monitoring. In both models the economy

converges to a balanced-growth path for a speci�ed class of production functions, all of whose members

are characterized by stronger complementarity between capital and schooling than between capital and

technology-augmented labor.
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Section 4 adds features to the time-in-school model that make it more realistic. There, we allow the

dynasties to comprise overlapping generations of �nitely-lived family members. Each individual devotes

the �rst part of her life to school and chooses a stopping date to enter the workforce so as to maximize the

dynasty�s utility. Once an individual begins working, productivity initially rises and ultimately falls with

experience. Death happens stochastically according to a Poisson process. If the individual survives a

su¢ ciently long career, eventually her productivity falls to zero and she �retires.�In this setting, di¤erent

birth cohorts make di¤erent education decisions, and so �schooling�does not have a scalar representation.

Both an individual�s education attainment and the distribution of education levels in the workforce are

state variables that adjust gradually over time.

For a range of parameter values, the overlapping-generations model� like its counterpart with non-

overlapping generations� admits a balanced-growth path for a class of production functions that has

�KL < 1; even with ongoing capital-augmenting technological progress. On the balanced-growth path,

the value of capital grows at the same rate as the value of output, the productivity-augmented capital stock

grows faster than technology-augmented labor, educational attainment by birth cohort rises linearly with

time, labor-force participation trends downward, and both aggregate factor shares and the real interest

rate are constant. The growth rate of per capita output is increasing in the rate of labor-augmenting

technological progress and the rate of capital-augmenting technological progress. Although we have no

analytical result for the long-run e¤ects of an acceleration or deceleration of technical change on income

distribution, plausible parameter values selected to approximate those in the U.S. economy suggest that

a slowdown in either form of technological progress will raise the capital share in national income.

Section 5 contains some concluding remarks.

2 The Extended Uzawa Growth Theorem and a Possible Way Out

In this section, we state and prove a version of the Uzawa Growth Theorem, following Schlicht (2006) and

Jones and Scrimgeour (2008), and extend it to allow for falling investment-good prices and the possible

accumulation of human capital. We also show how investments in schooling can loosen the straitjacket

of the theorem, but only if capital accumulation boosts the marginal product of schooling proportionally

more than it does the marginal product of raw labor.

Let Yt = F (AtKt; BtLt; st) be a standard neoclassical production function with constant returns to

scale in its �rst two arguments, where, as usual, Yt is output, Kt is capital, Lt is labor, and where At
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and Bt characterize the state of (disembodied) technology at time t, augmenting respectively the physical

capital stock and the �raw� labor force.8 We take st to be a scalar variable representing the education

level in the economy.

At time t, the economy can convert one unit of output into qt units of capital. Growth in qt represents

what Greenwood et al. (1997) have called �investment-speci�c technological change.�This is a form of

embodied technical change� familiar from the earlier work of Johansen (1959), Solow (1960) and others�

inasmuch as new capital goods require less foregone consumption than did prior vintages of capital. The

economy�s resource constraint can be written as

Yt = Ct + It=qt ,

where Ct is consumption and It is the number of newly-installed units of capital. Investment in new

capital augments the capital stock after the replacement of depreciation, which occurs at a �xed rate �;

i.e.,

_Kt = It � �Kt.

We begin with a lemma that extends slightly the one proved by Jones and Scrimgeour (2008) by

incorporating ongoing investment-speci�c technological progress. De�ne a balanced-growth path (BGP)

as a trajectory along which the economy experiences constant proportional rates of growth of Yt; Ct, and

Kt after some time T . Let gX = _Xt=Xt denote the growth rate of the variable X along the BGP. We

have

Lemma 1 Suppose gq is constant. Then in any BGP with Ct < Yt, gY = gC = gK � gq.

The proof, which closely follows Jones and Scrimgeour, is relegated to the appendix. The lemma states

that the growth rates of consumption and the capital stock mirror that of total output. However, with

the possibility of investment-speci�c technological progress, it is the value of the capital stock measured

in units of the �nal good (and the resources used in investment) that grows at the same rate as output.9

Now de�ne 
K � gA + gq. This can be viewed as the total rate of capital-augmenting technological

change, combining the rate of disembodied progress (gA) and the rate of embodied progress (gq). Also,

8For ease of exposition and for comparability with the literature, we treat technology as a combination of components that
augment physical capital and raw labor. However, as we show in the appendix, our Proposition 1 can readily be extended
to any constant-returns to scale production function with the form F (Kt; Lt; st; t).

9When capital goods are valued, their price pt in terms of �nal goods must equal the cost of new investment, i.e., pt = 1=qt.
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de�ne, as we did before, �KL � (FLFK) = (FLKF ) to be the elasticity of substitution between capital and

labor holding �xed the level of schooling. In the appendix we prove

Proposition 1 Suppose that investment-speci�c technological progress occurs at constant rate gq. If there

exists a BGP along which the income shares of capital and labor are constant and strictly positive when

factors are paid their marginal products, then

(1� �KL) 
K = �KL
FL
FK

@ (Fs=FL)

@K
_s . (1)

The proposition stipulates a relationship between the combined rate of capital-augmenting technological

progress and the change in schooling per worker that is needed to keep factor shares constant as the value

of the capital stock and output grow at common rates.

We can now revisit the two cases that are familiar from the literature. First, suppose that there are

no opportunities for investment in schooling, so that s remains constant. This is the setting considered

by Uzawa (1961). Setting _s = 0 in (1) yields

Corollary 1 (Uzawa) Suppose that s is constant. Then a BGP with constant and strictly positive factor

shares can exist only if �KL = 1 or 
K = 0.

As is well known, balanced growth in a neoclassical economy without education requires either a Cobb-

Douglas production function or an absence of capital-augmenting technological progress.10

Second, suppose that (e¤ective) labor and schooling can be aggregated into an index of �human

capital,�H (BL; s), such that net output can be written as a function of e¤ective physical capital and

human capital, as in Uzawa (1965), Lucas (1988), or Acemo¼glu (2009). Denote this production function

by ~F [AK;H (BL; s)] � F (AK;BL; s). Then Fs=FL = Hs=HL, which is independent of K. Setting

@ (Fs=FL) =@K = 0 in (1) yields

Corollary 2 (Human Capital) Suppose that there exists a measure of human capital, H (BL; s), such

that F (AK;BL; s) � ~F [AK;H (BL; s)]. Then a BGP with constant and strictly positive factor shares

can exist only if �KL = 1 or 
K = 0.
10Our Proposition 1 is predicated on constant and interior factor shares. But, in the Uzawa case, log di¤erentiation of the

production function with to respect to time, holding s constant, implies

gY = �K (gA + gK) + (1� �K) (gB + n)

where �K = AKFK=Y is the capital share in national income. In a steady state in which Y and K grow at constant rates
in response to constant rates of growth of A;B;L and q, �K must be constant as well. Note that Jones and Scrimgeour do
not assume constant factor shares in their statement and proof of the Uzawa Growth Theorem.

8



In this case, ongoing accumulation of human capital cannot perpetually neutralize the e¤ects of capital

deepening on the factor shares.

However, Proposition 1 suggests that balanced growth with constant factor shares might be possible

despite a non-unitary elasticity of substitution between capital and labor and the presence of capital-

augmenting technological progress, so long as _s 6= 0 and @ (Fs=FL) =@K 6= 0. Suppose, for example,

that �KL < 1, as seems most consistent with the empirical literature. Suppose further that educational

attainment grows over time, again in line with observation. Then the existence of a BGP with constant

factor shares requires @ (Fs=FL) =@K > 0; i.e., an increase in the capital stock must raise the marginal

product of schooling by proportionally more than it does the marginal product of raw labor. In looser

parlance, the technology must be characterized by �capital-skill complementarity,�or by a �skill bias�in

the capital-augmenting technological change.

The results in this section use only resource constraints (i.e., accounting) and the assumption that

factors are paid their marginal products. We have, as yet, provided no model of savings, of investment,

or of schooling decisions. Moreover, we have shown that a BGP with constant factor shares might exist,

but not that one does exist under some reasonable set of assumptions about individual behavior and a

reasonable speci�cation of the aggregate production function. These are our next tasks, which we will

perform in two stages. First, we study a simple environment in which the economy�s level of education

can be summarized by a scalar variable that can jump discretely from one moment to the next. Then,

we extend our analysis to a more realistic setting in which individuals�education accumulates slowly over

time and the distribution of educational levels in the economy evolves gradually.

3 Balanced Growth with Short Lifespans

We begin this section by posing a social planner�s problem that incorporates a reduced-form treatment

of schooling choice. In Section 3.1, the planner designs a time path for a scalar variable that summarizes

the level of education in the workforce. The planner faces a trade-o¤ between the level of schooling and

the labor supply available for producing output. The economy experiences both labor-augmenting and

capital-augmenting technological progress, and the elasticity of substitution between capital and labor in

aggregate production is less than one. Here we show that the planner�s allocation converges to a unique

BGP for a speci�ed class of production functions and under certain parameter restrictions. Moreover,

if the e¢ cient allocation can be characterized by balanced growth after some moment in time, then the
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technology must have a representation with a production function in the speci�ed class. We derive the

steady-state growth rate of output for the planner�s solution and the associated (and constant) capital

share in income.

In the succeeding subsections, we develop a pair of models of individual behavior and aggregate

production that generate the reduced-form education function of Section 3.1. Both models feature a

continuum of dynasties and a sequence of family members that survive only for �eetingly brief lives.

Generations are replaced continuously by new ones that begin afresh, without prior schooling. In Sec-

tion 3.2, the representative family member decides the fraction of her life to devote to school, thereby

determining as well her availability for gainful employment. Workers produce with the capital allocated

to them by competitive �rms and their productivity on the job depends on their educational attainment.

In Section 3.3, by contrast, individuals face a discrete choice between pursuing an education that leaves

them �skilled�or having more time for work. Those who attend school ultimately are employed by �rms

as �managers,�while those who remain unskilled serve as �production workers.�The productivity of a

production unit varies with the ratio of managers to workers, i.e., the inverse of the managers�span of

control. In Section 3.4, we describe how the model can be extended to include directed technical change,

in the manner introduced by Acemoglu (2003). We conclude the section with a brief discussion that

relates our �ndings to the recent literature on investment-speci�c technological progress.

3.1 A Planner�s Problem with a Reduced-Form Education Function

The economy comprises a continuum of identical family dynasties of measure one. Each family has a

continuum Nt of members alive at time t, where Nt grows at the exogenous rate n. Dynastic utility at

some time t0 is given by

u (t0) =

Z 1

t0

Nte
��(t�t0) c

1��
t � 1
1� � dt , (2)

where ct is consumption per family member at time t and � is the subjective discount rate.

Consider the problem facing a social planner who seeks to maximize utility for the representative

dynasty subject to a resource constraint, an evolving technology, and an ongoing trade-o¤ between some

aggregate measure of educational attainment and contemporaneous labor supply. Write this trade-o¤ in

reduced form as Lt = D (st)Nt, with D0 (st) < 0 for all st, where st is a scalar index of schooling and Lt

is labor supply. The production function takes the form Yt = F (AtKt; BtLt; st), where At again converts

physical capital to �e¤ective capital� in view of the disembodied technology available at time t, and

10



similarly Bt converts raw labor to e¤ective labor. Assuming, as we do, that F (�) has constant returns to

scale in its �rst two arguments, we can express this function in intensive form as f (kt; st) � F (kt; 1; st),

where f (�) is output per e¤ective worker and kt = AtKt=BtLt is the ratio of e¤ective capital to e¤ective

labor. The economy can convert one unit of the �nal good into qt units of capital at time t. Capital

depreciates at the constant rate �.

We assume that the technology can be represented by a member of a class of production functions

that take the following form.

Assumption 1 The intensive production function can be written as f (k; s) = D (s)��� h [kD (s)�], with

� > 0 and � 2 (0; 1), where

(i) h (z) is strictly increasing, twice di¤erentiable, and strictly concave for all z � kD (s)� � 0; and

(ii) f(k; s) is strictly log supermodular in k and s.

Assumption 1 immediately implies that �KL < 1 and that @ (Fs=FL) =@K > 0.11 Therefore, the technol-

ogy satis�es the pre-requisites for the existence of a BGP, per Proposition 1, provided that the planner�s

optimal choice of schooling is rising over time.

We also impose some parameter restrictions. Let Eh(z) � zh0 (z) =h (z) be the elasticity of the h (�)

function. Note that Eh(z) is strictly decreasing under Assumption 1.12 Now de�ne dmax � limz!0 Eh (z)

and dmin � limz!1 Eh (z). We adopt

Assumption 2 (i) � � dmax; (ii)
���1
��1 2 (dmin; dmax).

Part (i) of Assumption 2 ensures that the marginal product of schooling is non-negative for all levels

of k and s.13 Part (ii) guarantees that �� > 1 and that the optimal schooling choice is positive, as

we will see below. To provide an example of a technology that satis�es Assumption 1, we can choose

h (z) = (1 + z��)
��=�

; with � > 0, which results from a production function of the form F (AK;BL; s)

= (BL)1��
n
(AK)�� +

�
D (s)��BL

���o��=�
. In this case, Eh (z) = �= (1 + z�). Clearly, Eh (z) is

declining in z, and we have dmin = 0 and dmax = �.

11See the proof in the appendix.
12To see this, note that dEh (z) =dz / � [Eh (z)� Eh0 (z)� 1], where Eh0 (z) � zh00 (z) =h0 (z) is the elasticity of h0 (z). Using

f (k; s) = D (s)��� h [kD (s)�], D0 (s) < 0, and the fact that f (k; s) is strictly log supermodular if and only if fksf > fkfs,
it follows readily that dEh (z) =dz < 0.
13Assumption 1 implies fs (k; s) = �h (z)D (s)����1 [� � Eh(z)], which is non-negative for all k and s if and only if

dmax � �.
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We can write the planner�s problem as

max
fct;stg

Z 1

t0

Nte
��(t�t0) c

1��
t � 1
1� � dt

subject to

Yt � BtLtD (st)
��� h

�
AtKt

BtLt
D (st)

�

�
;

Lt = D (st)Nt ;

_Kt = qt (Yt �Ntct)� �Kt .

where the �rst constraint describes the technology at time t in view of Assumption 1, the second captures

the trade-o¤between education and labor supply, and the last re�ects the resource constraint that governs

capital accumulation. The planner takes the initial capital stock, Kt0 , as given.

Substituting for Lt = D (st)Nt, we can re-write the �rst constraint as

Yt � BtNtD (st)
�(���1) h

�
AtKt

BtNt
D (st)

��1
�
.

Now, since the schooling variable does not appear in the maximand or in the capital-accumulation equa-

tion, it is clear that the planner should choose st at every t to maximize contemporaneous output. The

�rst-order condition @Yt=@st = 0 implies

� (��� 1)h
�
AtKt

BtNt
D (st)

��1
�
+ (�� 1)h0

�
AtKt

BtNt
D (st)

��1
�
AtKt

BtNt
D (st)

��1 = 0 ,

or14

Eh [ktD (st)�] =
�� � 1
�� 1 for all t . (3)

In other words, the planner chooses education at every moment in time so that zt � ktD (st)
� remains

constant. In this sense, the planner o¤sets (e¤ective) capital deepening by increases in schooling.

14Note that

AtKt

BtNt
D (st)

��1 =
AtKt

BtLt
D (st)

�

= ktD (st)
� .
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Let z� denote the optimal (and time invariant) value of zt. Part (ii) of Assumption 2 ensures that

there exists a solution for z� and the fact that Eh(z) is strictly decreasing implies that the solution is

unique.15

Once we have zt = z�, we can use Assumption 1 to solve for aggregate output as a function of the

capital stock, the population size, and the state of technology. We �nd

Yt = (BtNt)
�(1��)
��1 (AtKt)

���1
��1 z

� 1���
��1 h (z�) . (4)

Notice that (4) is a Cobb-Douglas function of e¤ective capital and technology-augmented population,

with exponents � � (�� � 1) = (�� 1) and 1 � �, respectively. Now substituting for Yt in the planner�s

constraints yields a standard and familiar dynamic optimization problem. As usual, we need the discount

rate to be su¢ ciently large so that the integral in the maximand is bounded. In particular, we invoke

Assumption 3 � > n+ (1� �)
h

L +

���1
(1��)�
K

i
.

Assumption 3 ensures that the transversality condition for the dynamic optimization will be satis�ed.

We will not rehearse the details of the transition path; these are familiar from neoclassical growth

theory. In the appendix, we show that the planner chooses the initial per capita consumption level, ct0 ,

so as to put the economy on the unique saddle path that converges to a steady state. On the BGP,

consumption and output grow at constant rate gY and the capital stock grows at constant rate gK .

We can readily calculate the growth rates of output and consumption along the BGP. From (3), we

have

(�� 1) gD + gA + gK � 
L � n = 0

for all t � t0. Noting that Yt = BtNtD (st)
�(���1) h (z�), we also have

gY = 
L + n� (�� � 1) gD

along the optimal path. Finally, combining these two equations and using Lemma 1� which requires that

gY = gK�gq along any BGP� we �nd that gD = �
K=� (1� �) and gY = n+
L+
K (�� � 1) =� (1� �)

in the steady state, where 
K � gA + gq, as before.

15 In the appendix, we show that the second-order condition is satis�ed at zt = z� under Assumption 1. Moreover, we
show that the second-order condition would be violated if f (k; s) were not log supermodular or, equivalently in this setting,
if the elasticity of substitution between e¤ective capital and e¤ective labor exceeds one.
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The growth of per capita income is increasing in the rate of labor-augmenting technological progress,

just as in the neoclassical growth model without endogenous schooling. But now a BGP exists even when

there is ongoing capital-augmenting technological progress or when the price of investment-goods is falling

at a constant rate. Assumption 2 guarantees that �� > 1.16 Therefore, the growth rate of per capita

income also is increasing in 
K , the combined rate of embodied and disembodied capital-augmenting

progress.

We have not as yet introduced any market decentralization, which we will do only for the speci�c

models described in Sections 3.2 and 3.3 below. However, in anticipation that capital will be paid its

marginal product in a competitive equilibrium, we can de�ne the capital share in national income at time

t as �Kt = (@Yt=@Kt)Kt=Yt. Using (4), we see that �Kt = (�� � 1) = (�� 1) � � for all t � t0. That

is, the planner chooses the trajectories for the capital stock and schooling such that the capital share

remains constant, both along the transition path and in the steady state. Notice that the growth rate

and the capital share both are increasing in � and �; in this sense, fast growth and a high capital share

go hand in hand.

For future reference, we summarize our �ndings in the following proposition.

Proposition 2 Suppose there is a trade-o¤ between labor supply and a summary measure of schooling

given by Lt = D (st)Nt. Let Assumptions 1, 2, and 3 hold. Then along the optimal trajectory from any

initial capital stock, Kt0, the economy converges to a BGP. On the BGP,

(i) aggregate output and aggregate consumption grow at the common rate gY = n+ 
L +
���1
(1��)�
K ;

(ii) schooling evolves such that gD = � 
K
�(1��) ;

(iii) the capital share is constant and equal to �K =
���1
��1 .

We o¤er now some remarks about the role of Assumption 1. This assumption restricts the form of

the intensive production function. But we could as well have made an assumption directly about the

gross output function, F (AK;BL; s). Then we would have stipulated that this function takes the form

~F
h
AKD (s)a ; BLD (s)�b

i
for some quasi-concave function ~F (�) with constant-returns to scale in the

two arguments and some a > 0 and b > 0. Written in this way, h[kD (s)�] is equivalent to ~F [kD (s)� ; 1],

16Assumption 1(i) implies dmin � 0. So, Assumption 2 implies (�� � 1)= (�� 1) > 0. Thus, if � > 1, �� > 1. Suppose
� < 1 and �� < 1. Then Assumption 2(i) and Assumption 2(ii) imply (�� 1)� < (�� � 1), which in turn implies � > 1.
This contradicts Assumption 1.
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so we would need assumptions about ~F (�) that are equivalent to Assumption 2(i) and (ii). Clearly, we

would have a = � (1� �) and b = ��.

Evidently, schooling enters the gross output function in a way that augments the productivity of

labor while diminishing the productivity of capital.17 Of course, with the analog to Assumption 2(i), the

combined e¤ect of schooling on gross output is positive. The decline in the productivity of capital is just

what is needed, along the BGP, to keep the schooling-plus-technology augmented capital stock growing

in line with output. To see that this is so, notice that D (s)aAtqt is constant along the BGP. The e¤ect of

the optimal schooling is as if to neutralize the e¤ect of the capital-augmenting progress and the declining

investment-good prices on the growth of the e¤ective capital stock.

One might wonder whether we are able to dispense with the functional-form restriction of Assumption

1. The answer to this question is no. In the appendix, we prove that if Lt = D (st)Nt and if the solution

to the social planner�s problem exhibits balanced growth after some time T with increasing schooling and

a constant capital share �K 2 (0; 1), then either there is no capital-augmenting technological progress

(
K = 0) or else the technology can be represented along the equilibrium trajectory by a production

function with the form ~F
h
AtKD (s)

a ; BtLD (s)
�b
i
, with a > 0 when 
K > 0 and b = 1+a�K= (1� �K).

In other words, Assumption 1 is not only su¢ cient for the existence of a BGP with 
K > 0 and �KL < 1,

but it is essentially necessary as well. As with any model that generates balanced growth, knife-edge

restrictions are required to maintain the balance; our model is no exception to this rule.

3.2 Balanced Growth in a �Time-in-School�Model

We provide now a �rst example of a market economy that generates the reduced form described in Section

3.1. The competitive equilibrium of this economy mimics the planner�s optimal allocation, and so the

market economy converges to a BGP with the properties summarized in Proposition 2.

As above, the representative family has a continuum Nt of members at time t. Each life is �eetingly

brief; an individual attends school for the �rst fraction of her momentary existence and then joins the

workforce for the remainder of her life. The variable st now represents the fraction of life that the

representative member of the generation alive at time t devotes to education; she spends the remaining

fraction 1� st working. In this case, D (s) = 1� s, so that the family�s labor supply is Lt = Nt (1� st).

Given the brevity of life, there is no discounting of an individual�s wages relative to her time in school.

17This observation should not be misinterpreted. Under Assumption 1(ii) that f (k; s) is strictly log supermodular, it
remains true that capital is more complementary to schooling than it is to labor, in the sense that Fs=FL rises with capital
accumulation.
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But dynasties do discount the earnings (and well being) of future generations relative to those currently

alive. Every new cohort starts from scratch with no schooling.

Each individual chooses her consumption, savings, and schooling to maximize total dynastic utility,

which at time t0 is given by (2). Each individual supposes that other family members in her own and

subsequent generations will behave similarly. Savings are used to purchase units of physical capital, which

are passed on within the family from one generation to the next. The Nt members of the representative

dynasty collectively inherit Kt units of capital at time t, considering that the aggregate capital stock is

fully owned by the population and there is a unit continuum of dynasties in the economy.

Firms produce output using capital, labor, and the technology available at the time. A �rm that

employs Kt units of physical capital and that hires Lt time units from workers with schooling st at

time t produces F (AtKt; BtLt; st) = ~F
h
AtKt (1� st)�(1��) ; BtLt (1� st)���

i
units of output. Then the

intensive production function takes the form f (k; s) = (1� s)��� h [k (1� s)�]. The functions h (�) and

f (�) have the properties described in Assumption 1. The parameter restrictions in Assumptions 2 and 3

also apply. Aggregate output is simply the sum of the outputs produced by all �rms.

The competitive �rms take the rental rate per unit of capital, Rt, and the wage schedule per

unit of time, Wt (st), as given, where the latter conveys the competitive wage rate for a worker with

schooling st. A �rm that hires workers with this level of education chooses Lt and kt to maximize

BtLt [f (kt; st)� rtkt � wt (st)], where rt � Rt=At is the rental rate per e¤ective unit of capital and

wt (st) �Wt (st) =Bt is the wage per e¤ective unit of labor. Pro�t maximization implies, as usual, that

fk (kt; st) = rt (5)

and18

f (kt; st)� rtkt = wt (st) . (6)

We de�ne the functions � (s; r) and ! (s; r) such that fk [� (s; r) ; s] � r and ! (s; r) � f [� (s; r) ; s] �

r� (s; r). Then, in equilibrium, kt = � (st; rt) and wt (st) = ! (st; rt).

Schooling choices have no persistence for the family. Therefore, an individual alive at time t who

seeks to maximize dynastic utility should choose s to maximize her own wage income, Bt (1� s)! (s; rt),

taking the rental rate per unit of e¤ective capital as given. The rental rate will determine, via (5), how

18Equation (6) is the zero-pro�t condition, which is implied by the optimal choice of Lt in an equilibrium with positive
output.
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much capital the individual will be allocated by her employer as a re�ection of her schooling choice. The

individual�s education decision is separable from her choice of consumption, much as the planner�s choice

of st in Section 3.1 was separable from the choice of ct and _Kt.

The �rst-order condition for income maximization at time t requires

(1� st)!s (st; rt) = ! (st; rt) .

But using ! (s; rt) � f [� (s; rt) ; s] � rt� (s; rt) and noting (5), we have !s (st; rt) = fs [� (st; rt) ; st].

In other words, the marginal e¤ect of schooling on the wage re�ects only the direct e¤ect of schooling

on per capita output; the extra output that comes from a greater capital allocation to more highly

educated workers, fk�s, just o¤sets the extra part of revenue that the �rm must pay for that capital, r�s.

Consequently, we can rewrite the �rst-order condition as

(1� st) fs [� (st; rt) ; st] = f [� (st; rt) ; s]� fk [� (st; rt) ; st]� (st; rt) . (7)

Now replace f (k; s) by (1� s)��� h [k (1� s)�] and use this representation to calculate fs (�) and

fk (�) as well. After rearranging terms, this yields

(�� � 1)h [� (st; rt) (1� st)�] = (�� 1)h0 [� (st; rt) (1� st)�]� (st; rt) (1� st)�

or

Eh [� (st; rt) (1� st)�] =
�� � 1
�� 1 .

Evidently, the individual�s choice of schooling to maximize wage income matches the planner�s choice of

st in (3), once we recognize that D (st) = 1� st in the �time-in-school�model. Part (ii) of Proposition 2

then implies

_st = (1� st)

K

� (1� �) :

On a BGP, schooling rises over time, but at a declining rate.

A dynasty�s intertemporal optimization also yields the same consumption and savings decisions as in

the planner�s problem. The family members adjust consumption in response to the real interest rate, �t,

according to
_ct
ct
=
1

�
(�t � �) .
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When combined with the intertemporal budget constraint and the no-arbitrage condition19, �t = Rt=pt+

gp � �, where pt = 1=qt is the equilibrium price of a unit of capital, this Euler equation generates the

same time path for aggregate capital as in the planner�s allocation; see the appendix for details.

Of course, it is no surprise that the market equilibrium with perfect competition and complete markets

mimics the planner�s solution. The point we wish to emphasize is that the time-in-school model converges

to a BGP and that the wage schedule ! (s; rt) gives the family members the appropriate incentives to

extend their time in school from one generation to the next. Here, the faster accumulation of e¤ective

capital relative to e¤ective labor sets in motion a sequence of events that preserves balance. An increase

in e¤ective capital lowers the rental rate. This causes the returns to education to rise, due to the

complementarity between schooling and capital. With �KL < 1, the direct e¤ect of the capital deepening

is a fall in the capital share. But, since� as we have noted� Assumption 1 implies that we can write

Yt = ~F
h
AtKt (1� st)a ; BtLt (1� st)�b

i
with a = � (1� �) and b = ��, schooling e¤ectively augments

the productivity of labor while diminishing that of capital. This in turn raises the capital share. While

it is fairly natural that the accumulation of e¤ective capital and the gains in education should have

opposing e¤ects on the capital share, the functional-form restrictions of Assumption 1 ensure that the

scale is perfectly balanced and the capital share is constant and equal to (�� � 1) = (�� 1).

3.3 Balanced Growth in a �Manager-Worker�Model

In Section 3.2, we described an environment in which individuals choose their time in school and education

improves productivity. In that model, �rms allocate capital equipment to individual workers and output

is the sum of all that is produced by the various individuals. The model yields the same trade-o¤ between

education and labor supply that was captured in reduced form in the planner�s problem of Section 3.1.

In this section, we present an entirely di¤erent model that yields a similar reduced form. Now we

imagine teams that combine �managers�and �production workers.�Firms allocate capital equipment to

teams according to their productivity. Only production workers are directly responsible for operating

equipment and thus for generating output. But the productivity of a team depends on its ratio of

managers to workers, as in the hierarchical models of management proposed by Beckmann (1977), Rosen

(1982) and others.

The family structure, demographics, and preferences are the same as before. Lifespans are short.

Each individual decides whether to devote a �xed fraction m of her potential working life to school. If
19The no-arbitrage condition states that the real interest rate on a short-term bond equals the dividend rate on a unit of

physical capital plus the rate of capital gain on capital equipment (positive or negative), minus depreciation.

18



she opts to do so, she will acquire the skills needed to serve as a manager and she will have 1�m units

of time left to perform this function. Those who do not go for management training are employed as

production workers. They will use all of their available time to earn unskilled wages.

Let Lt be the time units supplied by production workers at time t and let Mt be the time units

supplied by managers. Since production workers devote all of their time to their jobs, Lt is also the

number of production workers. Managers are in school a fraction m of their time, so the number of

managers is Mt= (1�m). The population divides between workers and managers, so

Lt +
Mt

1�m = Nt . (8)

We take st = Mt=Lt to be our index of schooling. This is the ratio of managerial hours to hours of

production workers and the inverse of the typical manager�s �span of control.�It measures, for example,

the time that a manager can spend monitoring a typical one of her underlings. With this de�nition, (8)

implies Lt + Ltst= (1�m) = Nt, so D (s) = [1 + s= (1�m)]�1 is the share of production workers in the

total population.

Monitoring makes the workers and their equipment more productive. In particular, we suppose

that the production function at time t can be written as ~F
h
D (s)�(1��)AtK;D (s)

��� BtL
i
, with ~F (�)

homogeneous of degree one in its two arguments. With s =M=L, this implies that output is a constant-

returns to scale function of the three inputs, AtK;BtL and BtM . It also implies that the intensive

production function f (k; s) has the form D (s)��� h [kD (s)�]. An example of a production function with

this form is

Y = (BtL)
1�� �(AtK)�� +D (s)�� (BtL)���� �

� .

In this model, the education decision for the representative individual born at time t is simple: pursue

schooling if (1�m)WMt > WLt and not if the inequality runs in the opposite direction, where WMt and

WLt are the market wages of managers and production workers at time t, respectively. In an equilibrium

with a positive number of managers, every individual must be indi¤erent between the two occupations,

so that

(1�m)WMt =WLt . (9)

Over time, the accumulation of e¤ective capital exerts upward pressure on the skill premium, because the

functional form of Assumption 1 ensures that capital is more complementary with managers than it is
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with production workers. This provides the incentive for a greater fraction of the new generation to gain

skills and then the expanding relative supply of managers to workers restores the indi¤erence condition,

(9).

In the appendix, we use WMt = ~FM

n
[1 + st= (1�m)]��(1��)AtKt; [1 + st= (1�m)]�� BtLt

o
and

WLt = ~FL

n
[1 + st= (1�m)]��(1��)AtKt; [1 + st= (1�m)]�� BtLt

o
to show that (9) implies

Eh

"
kt

�
1 +

st
1�m

���#
=
�� � 1
�� 1 .

This gives the same index of schooling as in the planner�s solution (3). It follows that the economy

converges to a BGP, with a constant rate of output growth and a constant capital share given by parts

(i) and (iii) of Proposition 2, respectively, and with an ever increasing ratio of manager hours to worker

hours.

3.4 Balanced Growth with Directed Technical Change

In this subsection, we describe brie�y how the short-lifespans model can be extended to incorporate

endogenous innovation and directed technical change. We follow closely the approach developed by Ace-

moglu (2003). In his model, �nal goods are assembled from two intermediate goods, each of which is

produced from sets of upstream, di¤erentiated varieties. One set of varieties is produced by capital alone,

the other set by labor alone. Innovation takes the form of the invention of new varieties of one type of

upstream intermediate or the other. Expansion in a set of upstream intermediates augments the produc-

tivity for assembling the associated downstream intermediate. A �xed stock of scientists conducts R&D.

If they choose to invent new varieties of capital intermediates, then the resulting innovation generates

capital-augmenting technology gains in the aggregate production function. If they invent new varieties

of labor intermedates, then the innovation appears as labor-augmenting in the aggregate production

function.

To extend our reduced-form model of Section 3.1 to incorporate directed technical change in the

manner of Acemoglu (2003), let one type of intermediate be produced by Lt and the other by Kt, where

Lt = D (st)Nt, as before. Each downstream intermediate good is a CES aggregate of the quantities used

of the upstream di¤erentiated intermediates. Then At re�ects the measure of capital varieties available at

time t and Bt re�ects the measure of labor varieties; each is a power function of the measure of varieties,

where the exponent is a function of the elasticity of substitution between the upstream goods. The
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aggregate production function, expressed as a function of BtLt and AtKt, obeys Assumption 1 as before.

Now recall the �indirect production function�that we derived in (4). This indirect production function

results when the planner chooses st to maximize aggregate output, Yt. After substituting for Lt in

the aggregate production function and using the optimal D (st) prescribed by (3), it is a function of

the technology-augmented population size, BtNt, and the technology-augmented capital stock, AtKt.

Moreover, it is a Cobb-Douglas function of these two quantities. But, as Acemoglu has already shown,

when the aggregate production function is Cobb-Douglas, there is a unique long-run equilibrium with

balanced growth in which both capital-augmenting and labor-augmenting technological progress take

place at well-determined rates. Moreover the growth rates of both types of intermediates will be positive

if there is enough curvature in the trade-o¤ between the two types of innovation. It follows that, in an

extended version of the short-lifespans model with directed technical change, long-run growth is balanced,

and the equilibrium is characterized by positive rates of both capital-augmenting and labor-augmenting

technological progress.20

3.5 Relationship to the Literature on Investment-Speci�c Technological Change

Before leaving this section, it may be useful to relate our results to the large literature that has studied

the long-run implications of investment-speci�c technological change. In his seminal paper on embodied

technical progress, Solow (1960) did not close his model to solve for a steady state, but he indicated how

this could be done. However, Solow employed a Cobb-Douglas production function throughout this paper,

and his discussion about closing the model relies on this assumption. Sheshinski (1967) demonstrated

convergence to a BGP in an extended version of the Johansen (1959) model with both embodied and

disembodied technological progress. Although he does not restrict attention to any particular production

function, he does insist that both forms of progress are Harrod-neutral, i.e., they augment the productivity

of labor. So, the technology gains in Sheshinski�s paper, while embodied in vintages of capital, are

nonetheless assumed to be labor-augmenting. These �ndings are echoed in Greenwood et al. (1997), who

resurrected the literature on technological improvements that are embodied in new equipment. They

20 In (4), the exponents on AtKt and BtNt are � = (�� � 1) = (�� 1) and 1� �, respectively. Borrowing the spec�cation
of innovation from Acemoglu (2003), we obtain _At=At = bA� (SAt) and _Bt=Bt = bB� (SBt), where SAt and SBt are the
number of scientists engaged in inventing capital-intensive varieties and labor-intensive varieties at time t, respectively. The
allocation satis�es the resource constraint, SAt+SBt = �S, where �S is the total supply of scientists. We assume that � (0) = 0
and that � (�) is concave. Since the planner can change the allocation of scientists at any moment in time without regard
to preferences, the path of population growth, or the path of capital accumulation, it is optimal to allocate the stock of
scientists so as to maximize the instantaneous rate of increase in total factor productivity, A�tB

1��
t . The growth rate of TFP

is � _At=At+(1� �) _Bt=Bt = �bA� (SA)+(1� �) bb� (sB). With su¢ cient concavity of � (�), the solution converges to a BGP
with SA > 0 and SB > 0.
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studied an economy that has no opportunities for schooling in which two types of capital (�equipment�

and �structures�) and labor are combined to produce consumption goods. Unlike Sheshinski, they do

not assume that embodied progress is Harrod-neutral and, consequently, they are led to conclude that a

Cobb-Douglas production function is necessary to generate balanced growth, in keeping with the dictates

of the Uzawa Growth Theorem.

Krusell et al. (2000) posit a technology with capital-skill complementarity according to which output

is produced from equipment, structures and two types of labor (�skilled�and �unskilled�). Leaving aside

their distinction between equipment and structures, their model is one with capital and two types of

labor, much like our manager-worker model in Section 3.3 above. Although their production function

incorporates capital-skill complementarity, it does not satisfy the dictates of our Assumption 1. Nor

do they endogenously determine the supplies of skilled and unskilled workers. They, and much of the

substantial literature that has adopted their production function, do not address the prospects for bal-

anced growth with ongoing declines in investment-good prices and endogenous schooling, but instead

focus on the transition dynamics that result from a speci�ed sequence of relative price changes and of

factor supplies. Two recent papers do try to generate balanced growth in models of investment-speci�c

technological progress that is not Harrod-neutral. He and Liu (2008) introduce endogenous schooling

into the Krusell et al. model, so that the relative supplies of skilled and unskilled labor are determined

in the general equilibrium. They de�ne a BGP to be an equilibrium trajectory along which equipment,

structures and output all grow at constant rates and the fraction of skilled workers converges to a con-

stant. With this de�nition, they conclude (see their Proposition 1) that balanced growth is consistent

with ongoing investment-speci�c technological change only when the aggregate production function takes

a Cobb-Douglas form. Maliar and Maliar (2011) study a similar environment, but assume instead that

the stocks of skilled and unskilled labor grow at constant and exogenous rates. They show that, with a

falling relative price of equipment, balanced growth requires technological regress in the component of

technical change that re�ects the productivity of capital, such that (in our notation) 
K = 0. In contrast

to these papers, we have shown that balanced growth is in fact compatible with a falling relative price of

capital, non-negative growth in capital productivity, and �KL 6= 1, provided that capital and schooling

are su¢ ciently complementary. Our result requires that the aggregate production function falls into the

class de�ned by Assumption 1 and that an appropriate index of the economy�s educational outcome is

rising over time.
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4 Balanced Growth with Overlapping Generations

In Section 3, we illustrated how balanced growth could emerge in an economy with endogenous education.

But we did so in a model of short lifespans in which each cohort lives for an instant and is replaced by

the next without any overlap. In such a setting, it was possible to summarize the economy�s education

in a scalar variable and to allow that variable to jump from one moment to the next. This approach was

pedagogically convenient, because it laid bare the mechanism at work. But our treatment of schooling was

surely unrealistic, inasmuch as educational attainment typically varies by birth cohort and the distribution

of educational outcomes adjusts slowly over time.

In this section, we introduce overlapping generations. We enrich the �time-in-school�model of Section

3.2 by assuming that individuals live for a �nite (but stochastic) time, the �rst part of which they spend in

school. A representative member of a cohort chooses at birth the duration of her tenure in the classroom

and joins the labor force once her schooling is complete. We allow productivity to rise and then fall with

experience, thereby capturing the employment life cycle that ultimately leads to retirement. Our goal

once again is to uncover conditions that allow for a BGP with ongoing capital-augmenting technological

progress and falling investment-goods prices, and to study the properties of such a growth path. We will

�nd, for example, that in the overlapping-generations (OLG) model, the capital share in national income

varies with the form and speed of technological change, unlike what we found to be true for an economy

with short lifespans, where the capital share is independent of 
K and 
L.

A potential obstacle to our constructing a balanced growth path in an OLG model is that, if younger

cohorts obtain more schooling and enter the workforce later in life than their more senior counterparts,

the age distribution of the employment pool will not be stationary over time. As we show below, it turns

out that the particular restriction on the production function that maintains balance between capital,

labor, and schooling� the analogue to Assumption 1� leads naturally to an evolving age distribution in

the workforce that retains a simple structure, thereby preserving balance across cohorts and facilitating

aggregation.

As before, the economy is populated by a unit mass of identical dynasties.21 A representative dynasty

comprises a continuum Nt of individuals at time t. Each individual gives birth to a new member of her

dynasty with an instantaneous probability � and faces an instantaneous probability � of death. These

21For continuity with the previous section and comparability with the literature, we continue to assume that families
maximize dynastic utility, including the discounted well-being of unborn generations. We could obtain similar results,
including the existence of a BGP, in a Yaari (1965) economy with (negative) life insurance and no bequests by following the
path laid out by Blanchard and Fischer (1989, ch.3).
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hazard rates remain constant over time. Therefore, the size of a dynasty is given by

Nt = e(���)(t�t0)Nt0 ;

and the size at time t of the surviving cohort born at b is �Nbe��(t�b). The population growth rate is

n = �� �.

Conditional on survival, there are three phases of life: schooling, work, and retirement. An individual

obtains s years of schooling, has a working life of �u years after leaving school, and then retires. Let u be a

worker�s labor-market experience. We assume that a �rm that employs K units of capital and L workers

with schooling s and experience u produces output F (AK;BL; s; u), where F (AK;BL; s; u) = 0 for u �

�u. Thus, workers with experience beyond �u cease to be productive and exit the labor market. The wage

rate of an individual with schooling s and experience u at time t isWt(s; u). There is disembodied capital-

augmenting technical change at rate gA, labor-augmenting technical change at rate 
L, and investment-

speci�c technical change at rate gq. The goods-market clearing condition Ct + It=qt = Yt and the capital

accumulation equation _Kt = It � �Kt remain as before.

We assume that individuals must obtain their education at the beginning of their lives.22 Each

individual designs a �stopping rule,�i.e., a duration s that she intends to remain in school conditional on

survival. These choices are made to maximize the expected present discounted value of lifetime earnings,

because that is optimal for the dynasty as a whole.23 For an individual born at time b, expected discounted

wage earnings at birth are given by

Z 1

b+s
e�

R t
b �zdze��(t�b)Wt (s; t� b� s) dt =

Z �u

0
e�

R b+s+u
b �zdze��(s+u)Wb+s+u (s; u) du , (10)

where we have used the fact that an individual born at b who obtains s years of schooling has labor market

experience u = t� s� b at time t. Let sb be the optimal schooling duration chosen by an individual born

at b. Then a person born at b starts to work at time b+sb and retires at time b+sb+ �u. On the balanced

growth path, educational attainment rises over time, so that the entry date b + sb is strictly increasing

in b. We denote by �(�) = � � s�(�) the birth date of an individual who enters the workforce at time � .

At time t0 a representative dynasty chooses a future path of consumption fct � 0g1t0 to maximize
22Blinder and Weiss (1976) have shown that models of life-cycle human-capital investments typically admit cycling with

stretches in and out of school, unless the discount rate is su¢ ciently high or su¢ ciently low. Of course, the data show that
most individuals concentrate their formal education at the beginning of life. To avoid the complications of (unrealistic)
cycling, we assume that the education technology requires an uninterrupted period of schooling.
23Considering the continuum of family members, a dynasty faces no uncertainty. So its members can self-insure and

behave as if risk-neutral with respect to investment decisions.
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dynastic utility,

Z 1

t0

e��(t�t0)Nt
c1��t � 1
1� � dt ,

subject to the budget constraint

Z 1

t0

e
�
R t
t0
�zdzNtctdt = pt0Kt0 +

Z 1

t0

e
�
R t
t0
�zdz

Z �(t)

�(t��u)
�Nbe

��(t�b)Wt(sb; t� b� sb)dbdt:

On the right-hand side of the budget constraint, we have the value of the dynasty�s capital at time t0

plus, for all future periods t, the discounted (to time t0) present value of wage income of all surviving

dynasty members who remain employed at time t.

The solution to the dynasty�s intertemporal maximization problem yields the Euler equation, _ct=ct =

(�t � �) =�, as usual. Moreover, by di¤erentiating the budget constraint, we again obtain the no-arbitrage

equation �t = Rt=pt + gp � �, from which it follows that

�
_ct
ct
=
Rt
pt
+ gp � � � �, (11)

much as is true in the model with short lifespans.

Let us revisit the problem facing �rms, before returning to the individuals�schooling choices. Much

is the same as before. The main di¤erence is that a �rm may hire workers from di¤erent cohorts who

vary in their schooling and experience. Firms must decide how much capital to allocate to each of their

workers. However, with constant returns to scale and competitive �rms that earn zero pro�ts, it is as

if each worker type indexed by s and u is hired by a separate �rm, or by a separate unit of the �rm.

At time t, a �rm that employs workers with schooling s and experience u � �u maximizes pro�ts by

choosing the number L of such workers and the capital K with which to equip them so as to maximize

F (AtK;BtL; s; u) � RtK �Wt (s; u)L, where Wt (s; u) is the competitive wage earned at time t by a

worker with schooling s and experience u. The �rst-order conditions imply, as before,

rt = fk [� (s; u; rt) ; s; u] ;

and

! (s; u; rt) = f [� (s; u; rt) ; s; u]� rt� (s; u; rt)
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for all workers fs; ug that are present in the workforce at time t, where f (k; s; u) � F (AtK=BtL; 1; s; u)

is the intensive production function, rt = Rt=At is the rental rate per e¤ective unit of capital, � (s; u; rt) is

the e¤ective capital to e¤ective labor ratio that the �rm applies to workers of type fs; ug when the rental

rate per e¤ective unit of capital is rt, and ! (s; u; rt) is the wage per e¤ective unit of labor for workers of

this type. In equilibrium, the wage schedule at time t satis�es Wt(s; u)=Bt � wt(s; u) = !(s; u; rt) and

the sum total of the equipment allocated to all workers exhausts the available supply of capital, or

Kt =
Bt
At

Z �(t)

�(t��u)
�Nbe

��(t�b)�(sb; t� sb � b; rt)db:

Despite being two dimensional, the wage schedule for e¤ective labor wt(s; u) changes over time only due

to changes in rt, which implicitly determines how much e¤ective capital is allocated to a worker with

schooling s and experience u.

To generate a BGP, we need a functional-form assumption and parameter restrictions that are anal-

ogous to Assumptions 1, 2, and 3 for the model with short lifespans. Now we adopt

Assumption 4 The intensive production function can be written as f (k; s; u) = e��sh (ke��s; u), with

� > 0 and � 2 (0; 1), where

(i) h (z; u) is strictly increasing, twice di¤erentiable, and strictly concave in z � ke��s for all z > 0 and

0 � u < �u and h(z; u) = 0 for all u � �u; and

(ii) f(k; s; u) is log supermodular in k and s for all u 2 [0; �u).

An example of a function that satis�es Assumption 4(i) and (ii) is h (z; u) = ~h (u) (1 + z��)��=�, where

� > 0 and ~h (u) is �rst increasing and subsequently decreasing in u for 0 � u < �u and zero for u �

�u. This generates an aggregate production function of the form F (AK;BL; s; u) = ~h (u) (BL)1�� ��
(AK)�� + (e�sBL)��

���=�
.

Recall that Assumption 1 implies �KL < 1 in the model with short lifespans. By the same token

(and by an analogous argument), Assumption 4 implies �KL < 1 when u < �u in the OLG model. Now

de�ne Eh;z(z; u) to be the elasticity of h(z; u) with respect to z � ke��s. Assumption 4 implies that

Eh;z(z; u) is strictly decreasing in z when u < �u, in analogy to what came before. Moreover, the elasticity

Eh;z (z; u) equals the capital share in revenue at a �rm (or unit) that employs workers with schooling s

and experience u. To ensure that output is non-decreasing in schooling, we must have Eh;z (z; u) � �.
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Now de�ne dmax(u) = limz!0 Eh;z(z; u) and dmin(u) = limz!1 Eh;z(z; u). Let dmax = inf0�u<�u dmax(u)

and dmin = sup0�u<�u dmin(u).
24 We impose the following parameter restrictions.

Assumption 5 (i) � � sup0�u<�u dmax(u); (ii)
dmin
1�dmin < 
 < dmax

1�dmax (iii) (1� �)� > 
K ; and (iv)

����
(1��)� > 
, where 
 �

1
(1��)��
K

n
n� �+ (1� �)
L + (�� � �)

h
1� �
K

(1��)�

io
.

Part (i) guarantees that output is non-decreasing in schooling. Part (ii) provides for optimal schooling

that is positive and �nite. Part (iii) will be required for educational attainment to rise over time. Finally,

part (iv) is analogous to Assumption 3 in the model with short lifespans inasmuch as it ensures that the

integrals in the dynasty�s budget constraint are �nite.25 Note that since dmin < dmax � �, parts (ii) and

(iv) of Assumption 5 together imply that �� > �.

We return to the choice of schooling. Let us conjecture the existence of a BGP along which output,

aggregate consumption, and the capital stock grow at constant rates. On a BGP, the goods-market

clearing condition implies� as in Lemma 1� that aggregate consumption (as well as the value of the

capital stock) must grow at the same rate as output. Then the dynasty�s intertemporal optimization

requires a constant real interest rate,

� = � (gY � n) + �

and the no-arbitrage condition �t = Rt=pt+gp� � then implies that rt declines at constant rate gA�gp =

gA + gq = 
K . Using this observation, we show in the appendix that, along a BGP, choosing sb to

maximize the expected present discounted value of wages by the cohort born at b is equivalent to a

maximization problem involving the choice of xb � rbe
[(1��)��
K ]s. Moreover, the latter maximization

problem is independent of the birthdate b. We prove that the problem has a unique solution, x�, provided

(as we ultimately must assume) that the second-order condition is satis�ed. It follows that sb and rb are

tied together along any BGP by

x� = rbe
[(1��)��
K ]sb for all b. (12)

Now di¤erentiate the relationship between rb and sb, and use the fact that, on a BGP, rb falls at rate

24Whenever h(z; u) is log separable in z and u, Eh;z(�) is independent of u. Then dmin(u) and dmax(u) are constants.
Moreover, when h (z; u) = hu (u)

�
1 + z��

���=�
, dmin = 0 and dmax = �.

25Part (iv) can alternatively be written as

� > n+ (1� �)
�

L +

�� � �
(1� �)�
K

�
,

which is closer in form to what appears in Assumption 3.
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K . Then schooling by birth cohort must evolve according to

_sb =

K

(1� �)�� 
K
; (13)

that is, educational attainment rises linearly over time.26 This prediction of the model seems roughly

in accord with the U.S. experiences (as depicted in Figure 2) for the birth cohorts from 1876 until

approximately 1955, and then again for the later cohorts, albeit with schooling then growing more slowly

than before.

We take a momentary detour to comment on the role played by retirement in our model. Recall

that productivity falls to zero after experience reaches �u, at which point a surviving individual leaves

the workforce. We will see shortly that �u has no e¤ect on the steady-state growth rate. We introduced

the assumption that productivity falls to zero in order to counteract an implication of the (common but

clearly unrealistic) assumption that death occurs with a constant hazard rate. Given the evolution of

educational attainment dictated by (13), there must have been some birth cohorts in the distant past for

whom the non-negativity constraint that s � 0 was binding. With a constant probability of death, some

members of these ancient cohorts must still be alive at time t. Indeed, without retirement, there would

be a mass of workers at every moment with schooling s = 0. The presence of such individuals in the

labor force would complicate aggregation in the model. It seems best to assume that individuals must

eventually leave the workforce given the assumption (made for convenience) that individuals might live

unreasonably long lives.

Our next task is to calculate aggregate output, Yt. De�ne the function � (z; u) as the inverse of

hz (z; u), so that z � � [hz (z; u) ; u]. Then � (s; u; r) = e�s�
�
re(1��)�s; u

�
. At time t, a worker with

schooling s and experience u uses Bt� (s; u; rt) = Bte
�s�

�
rte

(1��)�s; u
�
units of e¤ective capital and pro-

duces Bte��sh
�
�
�
rte

(1��)�s; u
�
; u
	
units of output. Only individuals born at times b between �(t� �u)

and �(t) are employed at time t. Since rt declines at rate 
K and schooling evolves according to (13), it

follows that at time t an individual born at b 2 [� (t� �u) ;�(t)] with experience u = t� b� sb, produces

a �ow Bte
��sbh f� [e�
Kux�; u] ; ug of output.

An individual with experience u at time t was born at �(t � u) and has t � u � �(t � u) years of

schooling. Therefore, using (13) to relate the schooling of individuals born at �(t � u) to the schooling

26Assumption 5(iii) ensures that _sb > 0. To see the parallel with the short lifespan model, (12) could be written instead
as x� = rte

(1��)�s�(t) , thereby relating a cohort�s schooling to the cost of e¤ective capital upon entry into the workforce.
Similarly, we could rewrite (13) as d

�
s�(t)

�
=dt = 
K= (1� �)�, measuring the rate of increase in the schooling among those

just entering the workforce.
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of those born at �(t0), we have

s�(t�u) = t� u��(t� u) = t0 ��(t0) +

K

(1� �)� (t� t0 � u) . (14)

Since the size at time t of the cohort born at b is �Nbe��(t�b) = �e(���)(b�t0)Nt0e
��(t�b), the number of

workers with experience u at time t is Lt (u) = �Nt0e
��t0e��(t�t0)e��(t�u) = �Nte

�[�(t�u)�t] and using

(14) gives

Lt (u) = �Nte
�[�(t0)�t0]e

�� 
K
(1��)� (t�t0)e

��
h
1� 
K

(1��)�

i
u
. (15)

Combining these observations, aggregate output at time t is given by

Yt = Bt

Z �u

0
Lt (u) e

��s�(t�u)h
�
�
�
e�
Kux�; u

�
; u
	
du .

Since x� = rt�ue
(1��)�s�(t�u) = rte


Kue(1��)�s�(t�u) , aggregate output at t is

Yt = Bt

Z �u

0
Lt (u) r

� �
1��

t

�
e�
Kux�

� �
1�� h

�
�
�
e�
Kux�; u

�
; u
	
du . (16)

Using (16), we can readily calculate the growth rate of output on a BGP, which is27

gY = n+ 
L +
�� � �
(1� �)�
K . (17)

Note the similarity between (17) and gY in part (ii) of Proposition 2, except that the progeneration

rate � enters the former but does not exist as a separate parameter in the model with short lifespans.

Note too that Assumption 5(ii) and (iv) imply �� > �, as we have observed previously, so the growth

rate again is increasing in both the rate of labor-augmenting technological progress and the total rate of

capital-augmenting technological progress.28

How do factor shares evolve along the BGP that we have just described? Recall that an individual

27 In performing this calculation, we use Lt (u) = e
h
n� 
K

(1��)��
i
(t�t0)Lt0 (u), Bt = e


L(t�t0)Bt0 , and rt = e
�
K(t�t0)rt0 .

28The transversality condition on the BGP requires � > gY , which in turn requires

�� � �
(1� �)� > 
 ;

where we recall that


 � 1

(1� �)�� 
K

�
n� �+ (1� �)
L + (�� � �)

�
1� �
K

(1� �)�

��
.

This condition has been assumed to hold in part (iv) of Assumption 5.
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with schooling s and experience u works at time t with Bte�s�
�
rte

(1��)�s; u
�
e¤ective units of capital.

This equals Bte�s�(t�u)� [e�
Kux�; u] for individuals who are still in the workforce at time t, given that

schooling evolves according to (13) and rt declines at rate 
K . Then, since the schooling level of a worker

with experience u at time t is given by (14) and there are Lt(u) such individuals in the labor force, it

follows from the capital-market clearing condition that

Kt =
Bt
At

Z �u

0
Lt (u) e

�s�(t�u)�
�
e�
Kux�; u

�
du .

Now, using rt = Rt
At
and x� = rte


Kue(1��)�s�(t�u) , capital income amounts to

RtKt = rtBt

Z �u

0
Lt (u) r

� 1
1��

t

�
e�
Kux�

� 1
1�� �

�
e�
Kux�; u

�
du . (18)

Thus, on the balanced growth path, aggregate capital income grows at the same rate gY as aggregate

output, which implies that the capital (and labor) share is constant. Combining (15), (16), and (18)

yields

�K =

R �u
0 e

�
h
�+ ����

(1��)�
K

i
u
e�
Kux�� [e�
Kux�; u] duR �u

0 e
�
h
�+ ����

(1��)�
K

i
u
h f� [e�
Kux�; u] ; ug du

: (19)

We are ready to summarize our main �ndings for the model with overlapping generations. We have

Proposition 3 Suppose that Assumptions 4 and 5 hold in the model with overlapping generations. Then

the OLG economy has a unique balanced growth path. On the BGP,

(i) aggregate output, aggregate consumption, and aggregate wages grow at rate

gY = n+ 
L +
�� � �
(1� �)�
K ;

(ii) the educational attainment of new cohorts rises according to

_sb =

K

(1� �)�� 
K
;

(iii) the aggregate capital share is constant.

Before leaving this section, we o¤er several further observations about the BGP in the OLG model.

First, since at time t there are Lt (u) workers with experience u, (15) implies that the time t labor force

is
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Lt = �Nte
�[�(t0)�t0]e

�� 
K
(1��)� (t�t0)

Z �u

0
e
��
h
1� 
K

(1��)�

i
u
du ,

so that the labor force participation rate is

Lt
Nt

= �e�[�(t0)�t0]e
�� 
K

(1��)� (t�t0)
Z �u

0
e
��
h
1� 
K

(1��)�

i
u
du .

It follows that, on the BGP, the participation rate declines at a constant rate �
K= (1� �)�. That is,

as time devoted to school rises over time, a smaller fraction of the population works. The FRED data

(Series LNS11300001) show that labor force participation among men has been declining steadily in the

United States since the start of the series in 1948.

Second, the fraction of workers with less than u years of experience at time t is

R u
0 Lt (z) dz

Lt
=

R u
0 e

��
h
1� 
K

(1��)�

i
z
dzR �u

0 e
��
h
1� 
K

(1��)�

i
z
dz

.

This fraction is constant over time. In other words, the distribution of experience among those in the

labor force does not vary along the BGP. There are, however, shifts in the distribution of schooling in the

labor force. At time t the fraction of workers with experience below u also equals the fraction of workers

with at least t0 � �(t0) + 
K
(1��)� (t� t0 � u) years of schooling. Therefore, the schooling of workers at

all levels of experience increases by 
K= (1� �)� per year. Consequently, the entire density of schooling

shifts to the right at this constant rate.

We can also calculate the returns to schooling and the returns to experience along the BGP. We �nd29

@ logWt(s; u)

@s
= �� � �(1� �)

Eh;z
�
�
�
rte

(1��)�s; u
�
; u
	

1� Eh;z
�
�
�
rte(1��)�s; u

�
; u
	

and

@ logWt(s; u)

@u
=
hu
�
�
�
rte

(1��)�s; u
�
; u
�

h
�
�
�
rte(1��)�s; u

�
; u
� 1

1� Eh;z
�
�
�
rte(1��)�s; u

�
; u
	 .

In the cross-section, log wages increase with educational attainment (holding experience constant), albeit

at a declining rate. This is reminiscent of a Mincer wage equation (Mincer, 1974), except that Mincer

posited a linear relationship between log wages and years of schooling. Over time, the returns to schooling

29We use ! (s; u; r) = e��s
n
h
�
�
h
re(1��)�s; u

i
; u
�
� re(1��)�s�

h
re(1��)�s; u

io
.
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rise as rt declines, for workers with a given s and u. Finally, if h (z; u) is log separable in z and u, then the

returns to experience holding u constant are increasing in s, while the returns to experience conditional

on s and u fall over time.

Finally, we turn to the determinants of the long-run capital share. Unfortunately, the expression

in (19) does not provide a simple and transparent relationship between �K and the rates of technical

progress, in large part because the economy is populated by individuals with di¤erent levels of schooling

and varied experience who therefore work with di¤erent amounts of capital. To illustrate how changes in

technological progress impact the capital share and the wage pro�le, we resort to numerical simulation

of a parameterized version of the model.

For the simulation exercise, we use the production function

F (AtK;BtL; s; u) = ~h(u) (BtL)
1�� �AtK�� + (e�sBtL)

�����=� for u < �u,

which, as we discussed above, corresponds to h(z; u) = ~h(u) [1 + z��]��=�. We adopt a simple, quadratic

experience pro�le, ~h(u) = 1 + 0:2
�
1� (2u=�u� 1)2

�
and specify a working life of �u = 40 years. We set

the birth and death rates equal to � = � = 0:01. For each calibration, we choose the production function

parameters �, �, and �, so that in the baseline case (
K = 0:02 and 
L = 0:01) the capital share is 0:35,

the average local elasticity of substitution between capital and labor is 0:6, and educational attainment

increases by one year each decade.

We will �nd that the sensitivity of the capital share to changes in technological progress is governed

by the real interest rate. For this reason, we must choose the intertemporal elasticity of substitution and

the discount rate with care. What interest rate should we target? On the one hand, the low riskless rate

of return in the U.S. economy over many decades suggest that we ought to choose parameters to match

a low value of �. On the other hand, our model features equality on the margin between the internal

rate of return on schooling and the discount rate. But rates of return on schooling have been high in

the United States and elsewhere, which suggests choosing parameters that yield a higher value for �. It

is impossible to choose parameters that simultaneously match the low riskless rate and the high rate of

return on schooling.30 Instead of taking a strong stand on the appropriate interest rate for our model,

we present comparative statics under both low-interest-rate and high-interest-rate scenarios.

Table 1 shows two sets of simulation results. In the top part of the table, which presents a scenario
30The gap may be explained by factors outside the model such as �nancing constraints, risk compensation, or a utility

cost of schooling.
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Low Interest Rate: � = :01; � = 1


K 
L
Growth in

per capita Income
Annual Increase
in Schooling

Capital Share Interest Rate

0:03 0:01 0:028 0:158 0:348 0:038
0:02 0:01 0:022 0:1 0:35 0:032
0:01 0:01 0:016 0:048 0:352 0:026

0:02 0:02 0:032 0:1 0:35 0:042
0:02 0:01 0:022 0:1 0:35 0:032
0:02 0 0:012 0:1 0:35 0:022

High Interest Rate: � = :01; � = 3


K 
L
Growth in

per capita Income
Annual Increase
in Schooling

Capital Share Interest Rate

0:03 0:01 0:038 0:158 0:288 0:123
0:02 0:01 0:028 0:1 0:35 0:095
0:01 0:01 0:019 0:048 0:402 0:068

0:02 0:02 0:038 0:1 0:303 0:125
0:02 0:01 0:028 0:1 0:35 0:095
0:02 0 0:018 0:1 0:394 0:065

Table 1: Response of Long-Run Growth Rate, Schooling, Capital Share, and Interest Rate to Changes in
Rates of Technological Progress

with a baseline interest rate of 3.2% per year, a decrease in the rate of capital-augmenting or investment-

speci�c technical change of one percentage point per year reduces the output growth rate by a little

more than half a percentage point per year and reduces the rate of increase in educational attainment

by a half-year of schooling per decade. However, in this case, the capital share moves hardly at all. In

the bottom part of the table, which presents a scenario with a higher baseline rate of 9.5 percent per

year, a decline in 
K has a similar impact on output growth and on the rate of increase in educational

attainment, but the impact on the capital share is much more substantial.

What accounts for this di¤erence? The impact of a change in 
K on factor shares re�ects the respon-

siveness of schooling decisions to changes in the rate of technological progress. When the interest rate is

low, an individual�s choice of schooling re�ects the allocation of e¤ective capital she anticipates through-

out her lifetime. As 
K falls, so does the allocation of e¤ective capital later in life, and this reduces

the optimal time in school. The relatively elastic response of schooling cushions the impact of capital

deepening on the factor shares, much as in the model with short lifespans, for which we found that �K is

independent of 
K and 
L. Indeed, we show in the appendix that, in the OLG model, as the interest rate

approaches the growth rate of the economy from above, the capital share approaches (�� � �) = (�� �),
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which also is independent of 
K and 
L. In contrast, if individuals discount future wages heavily, then

their educational decisions will largely re�ect their capital allocation and the state of technology shortly

after their time in school. The response of s to a change in 
K or 
L will be muted by the relative

disregard for capital and technology later in life. With a dampened response of schooling, the impact on

the capital share is greater. Interestingly, a slowdown in the rate of labor-augmenting technical change

has similar e¤ects on output growth and the capital share as a fall in the rate of capital-augmenting

technological progress in both cases.

5 Conclusion

Over at least the last half century, the United States has experienced balanced growth; nearly constant

growth rates of output per worker, capital, and consumption, and roughly constant factor shares until

quite recently. Uzawa�s Growth Theorem established that, in a conventional neoclassical growth model,

balanced growth can be realized only if technical change is purely labor-augmenting or the elasticity of

substitution between capital and labor is unity. But the price of capital equipment has been falling

precipitously over time and the elasticity of substitution appears to be signi�cantly less than one. We

have shown that if labor quantity and labor quality do not enter the aggregate production function

symmetrically, capital-augmenting technological change can be reconciled with balanced growth, provided

that schooling increases over time and that capital and schooling are su¢ ciently complementary. Our

model matches trends for the U.S. economy that suggest balance as well as others that may appear to

re�ect unbalanced growth, such as a linear increase in educational attainment and a falling labor-force

participation rate. We achieve this while also matching conventional estimates of the capital-labor

elasticity of substitution and life-cycle earnings pro�les.

The basic mechanism in our model is straightforward: over time, growing stocks of e¤ective capital

raise the returns to schooling, which induces individuals to spend more time in school. Inasmuch as capital

and labor are complements, capital accumulation tends to lower capital�s share in national income, but this

is o¤set by the subsequent rise in schooling, because capital and schooling are also complements. When

capital and schooling are more complementary than capital and labor, the second e¤ect can neutralize

the �rst. Although the presence of these o¤setting forces is natural enough, restrictions on how schooling

enters the production function are needed to maintain exact balance along an equilibrium trajectory.

The restrictions are in a sense analogous to those usually imposed on preferences in a dynamic model
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in order to generate balanced growth. Speci�cally, while it may be natural to assume that income

and substitution e¤ects o¤set one another as wages rise, the intratemporal utility function must be

speci�ed in a particular away so as to maintain perfect balance along an equilibrium trajectory. Just as

balanced-growth preferences are consistent with a range of intertemporal elasticities of substitution and

labor-supply elasticities, so too are the restrictions we impose on the production function consistent with

a range of elasticities of substitution between capital and labor and between capital and schooling.
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Appendix for �Balanced Growth Despite Uzawa�

by

Gene M. Grossman, Elhanan Helpman, Ezra Ober�eld and Thomas Sampson

Proofs from Section 2

Proof of Lemma 1

By assumption Ct < Yt. Therefore, the resource constraint Yt = Ct+It=qt ensures It > 0. The capital accumulation

equation is _Kt = It � �Kt implying

gK =
_Kt

Kt
=

It
Kt

� �:

On a BGP gK is constant meaning that since It > 0 the growth rates of I and K must be the same. Thus, gI = gK .

Di¤erentiating the resource constraint and rearranging gives

(gC � gY )
Ct
Yt
+ (gI � gq � gY )

It=qt
Yt

= 0:

Substituting for It=qtYt
= 1� Ct

Yt
in this expression and using gI = gK we have

(gK � gq � gC)
Ct
Yt
= gK � gq � gY :

If both sides of this expression equals zero we immediately obtain gY = gC = gK � gq as claimed in the lemma.

Otherwise, since the growth rates are constant on a BGP it must be that C and Y grow at the same rate implying

gY = gC . But then the resource constraint implies
It=qt
Yt

= 1 � Ct
Yt
is constant and, since gI = gK , this ensures

gY = gK � gq. Therefore, the lemma holds.

Proof of Proposition 1

Since factors are paid their marginal products the capital share is �K = AtKtFK (AtKt; BtLt; st) =Yt. Note also

that because F has constant returns to scale in its �rst two arguments FK (AtKt; BtLt; st) = FK(kt; 1; st) where

1



kt = AtKt=BtLt. Therefore, on a BGP where the capital share is positive and constant we have31

0 =
_�K
�K

= gA + gK � gY +
d logFK (kt; 1; st)

dt
= 
K +

d logFK (kt; 1; st)

dt
;

where the �nal equality uses Lemma 1 and 
K = gA + gq.

Taking the derivative of FK and using kFKK + FKL = 0 we have


K = �
FKK _kt + FKs _st

FK
=
FLK
FK

_kt
kt
� FKs _st

FK
=

1

�KL

FL
F

_kt
kt
� FKs _st

FK
:

Since 1� �K = FL=F this can be rearranged to give

�KL
K = (1� �K)
_kt
kt
� �KL

FKs _st
FK

: (20)

To simplify (20) it will be useful to derive an expression for FKs=FK . Note that

@ [Fs=FL]

@K
=
FKs
FL

� FLKFs
F 2L

=
FK
FL

�
FKs
FK

� 1

�KL

Fs
F

�
: (21)

Rearranging, we have FKs

FK
= FL

FK

@[Fs=FL]
@K + 1

�KL

Fs
F . Plugging this into (20) gives

�KL
K = (1� �K)
_kt
kt
� �KL

FL
FK

@ [Fs=FL]

@K
_st �

Fs _st
F

: (22)

Finally, di¤erentiating the production function Yt = F (AtKt; BtLt; st) yields

gY = �K (gA + gK) + (1� �K) (gB + gL) +
Fs _st
F

;

= gA + gK � (1� �K)
_kt
kt
+
Fs _st
F

:

Using Lemma 1 and 
K = gA + gq this implies

31 Instead of assuming constant factor shares, this expression can also be obtained by assuming the rental price of capital
Rt declines at rate gq. To see this di¤erentiate Rt = AtFK (kt; 1; st).
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K = (1� �K)
_kt
kt
� Fs _st

F
:

Substituting this expression into (22) gives equation (1). This completes the proof.

Generalization of Proposition 1

Proposition 1 assumes technical change is factor augmenting, but we can generalize the proposition by relaxing

this restriction. Suppose the production function is Y = F̂ (K;L; s; t) where technical change is captured by the

dependence of F̂ on t. We can decompose technical change into a Harrod-neutral component and a non-Harrod-

neutral residual. Technical change is Harrod-neutral if, holding the capital-output ratio and schooling �xed, it

does not a¤ect the marginal product of capital (Uzawa 1961). Therefore, we can de�ne the non-Harrod-neutral

component of technical change as the change in the marginal product of capital for a given capital-output ratio

and schooling.

Let ' be the capital-output ratio and de�ne �̂ ('; s; t) by

' =
�̂ ('; s; t)

F̂ (�̂ ('; s; t) ; 1; s; t)
:

�̂('; s; t) is the capital-labor ratio that ensures the capital-output ratio equals ' given s and t. Di¤erentiating this

expression with respect to t while holding s and ' constant and using �K = �̂F̂K=F̂ implies

�̂t
�̂
=

1

1� �K
F̂t

F̂
: (23)

When technical change is Harrod-neutral �̂t @@�̂ log F̂K +
@
@t log F̂K = 0. Thus, we de�ne the non-Harrod-neutral

component of technical change 	 by

	 � ��KL
�
�̂t

@

@�̂
log F̂K (�̂ ('; s; t) ; 1; s; t) +

@

@t
log F̂K (�̂ ('; s; t) ; 1; s; t)

�
:

From this de�nition we have
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	 = ��KL

 
F̂KK �̂t

F̂K
+
F̂Kt

F̂K

!
;

= ��KL

 
F̂KK

F̂K

�̂

1� �K
F̂t

F̂
+
F̂Kt

F̂K

!
;

=
F̂t

F̂
� �KL

F̂Kt

F̂K
; (24)

where the second line follows from (23) and the third line uses �̂F̂KK = �F̂KL, the de�nition of �KL and 1� �K =

F̂L=F̂ . Note that in the case where technical change is factor augmenting we have F̂ (K;L; s; t) = F (AtK;BtL; s)

which implies 	 = (1� �KL)gA.

Using the expression for 	 given in (24) we obtain the following generalization of Proposition 1.

Proposition 4 Suppose the production function is Y = F̂ (K;L; s; t) and that investment-speci�c technological

progress occurs at constant rate gq. If there exists a BGP along which the income shares of capital and labor are

constant and strictly positive when factors are paid their marginal products, then

(1� �KL) gq +	 = �KL
F̂L

F̂K

@
h
F̂s=F̂L

i
@K

_s:

To avoid repetition, we omit the proof of Proposition 4 since it follows the same series of steps used to prove

Proposition 1. Suppose either s is constant as in Corollary 1 or the production function can be written in terms

of a measure of human capital H(L; s; t) implying
@[F̂s=F̂L]

@K = 0 as in Corollary 2. Then Proposition 4 implies that

a BGP with constant and strictly positive factor shares can exist only if 	 = 0 and either �KL = 1 or gq = 0.

Thus, a BGP is possible only if technical change that a¤ects the production function is Harrod-neutral and either

the elasticity of substitution between capital and labor equals one or there is no investment-speci�c technological

change.

Proofs from Section 3

Implications of Assumption 1

f(k; s) is strictly log supermodular if and only if fksf > fkfs. Using Assumption 1 to compute these derivatives

it follows that f is strictly log supermodular if and only if Eh(z)� Eh0(z)� 1 > 0 where Eh(z) = zh0 (z) =h (z) and

Eh0(z) = zh00 (z) =h0 (z). Now the elasticity of substitution �KL between capital and labor is
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�KL =
�fk
kfkk

�
1� kfk

f

�
=
Eh [k(1� s)�]� 1
Eh0 [k(1� s)�]

: (25)

Concavity of h implies Eh0 < 0 meaning that �KL < 1 if and only if Eh � Eh0 � 1 > 0 which, as observed above, is

equivalent to f being strictly log supermodular.

From the de�nition of the intensive-form production function in Assumption 1 we have

FKsF

FKFs
=
fksf

fkfs
=
� � 1� Eh0 [k(1� s)�]
� � Eh [k(1� s)�]

:

Substituting this expression and (25) into (21) gives

@ (Fs=FL)

@K
=
FKFs
FLF

�
� � 1� Eh0 [k(1� s)�]
� � Eh [k(1� s)�]

� Eh0 [k(1� s)�]
Eh [k(1� s)�]� 1

�
:

Therefore, @ (Fs=FL) =@K > 0 if and only if the marginal product of each input is positive and (��1)(Eh�Eh0�1) <

0. Since � < 1 this inequality holds if and only if f is strictly log supermodular.

Second Order Condition of the Planner�s Problem

The planner chooses st to maximize Yt. The �rst order condition is

D0(st)D(st)
���

�
� (��� 1)h

�
AtKt

BtNt
D (st)

��1
�
+ (�� 1)h0

�
AtKt

BtNt
D (st)

��1
�
AtKt

BtNt
D (st)

��1
�
= 0;

and the second order condition is

(�� 1)D(st)��(��1)�2 [D0(st)]
2 AtKt

BtNt
f�(�� � 1)h0(z�) + (�� 1)z�h00(z�) + (�� 1)h0(z�)g < 0:

Using �� � 1 = (�� 1)Eh(z�) the second order condition holds if and only if

Eh(z�)� Eh0(z�)� 1 > 0;
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which holds for any possible z� if and only if f is strictly log supermodular.

Transition Dynamics of the Planner�s Problem

After solving for optimal schooling we can write the planner�s problem as

max
fctg

Z 1

t0

Nte
��(t�t0) c

1��
t � 1
1� � dt

subject to

_Kt = qt [Y (Kt)�Ntct]� �Kt:

where Y (Kt) is given by (4).

Solving this problem we �nd the planner chooses a consumption path that satis�es

_ct
ct
= ��+ � + gq

�
+
1

�

�� � 1
�� 1 qt

Y (Kt)

Kt
: (26)

Now let ~Yt = e�gY (t�t0)Y (Kt), ~Ct = e�gY (t�t0)Ntct and ~Kt = e�gK(t�t0)Kt where gY is de�ned in part (i) of

Proposition 2 and gK = gY + gq. Using (26) and the capital accumulation equation together with the fact that qt,

At, Bt and Nt grow at constant rates gq, gA, 
L and n, respectively, we have

~Yt = ~Y
�
~Kt

�
= A

���1
��1
t0 (Bt0Nt0)

�(1��)
��1 z�

1���
��1 h (z�) ~K

���1
��1
t ;

_~Ct =

"
�gY + n�

�+ � + gq
�

+
qt0
�

�� � 1
�� 1

~Y ( ~Kt)
~Kt

#
~Ct; (27)

_~Kt = �(gY + gq + �) ~Kt + qt0

h
~Y
�
~Kt

�
� ~Ct

i
: (28)

Since consumption and schooling can jump, Kt (or, equivalently ~Kt) is the economy�s only state variable. The pair

of di¤erential equations (27) and (28) govern the evolution of the economy from any initial condition Kt0 .
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Figure 3: Transitional dynamics and stability of the balanced growth path

Figure 3 depicts a familiar phase diagram. The vertical line labeled CC has ~K = ~K� such that

~Y ( ~K�)
~K�

=
1

qt0

�� 1
�� � 1 [� (gY � n) + �+ � + gq] :

From (27), we see that _~Ct = 0 along this line. The curve labeled KK has ~C = ~Y ( ~K)� (gY + gq + �) ~K=qt0 . This

curve, which from (28) depicts combinations of ~C and ~K such that _~Kt = 0, can be upward sloping (as drawn) or

hump-shaped. In either case, the two curves intersect on the upward sloping part of KK.32 The intersection gives

the unique steady-state values of ~K = ~K� and ~C = ~C�, which in turn identify the unique BGP. As is clear from

the �gure, the BGP is reached by a unique equilibrium trajectory that is saddle-path stable.

Necessity of Functional Form

Consider an economy that satis�es the assumptions required for Lemma 1 to hold and has production function

F (K;L; s; t) which is constant returns to scale in its �rst two arguments. Suppose factors are paid their marginal

products and schooling is chosen to satisfy

st = argmax
s
F (Kt; Lt; s; t) subject to Lt = D (s)Nt:

We assume this optimization problem has a unique interior maximum.

32To see this, note that ~Y 0
�
~Kt

�
= ���1

��1
~Y ( ~Kt)
~Kt

. Consequently, the slope of the KK curve is ���1
��1

~Y ( ~Kt)
~Kt

� gY +gq+�

qt0
which

is positive when ~K = ~K� by (3).
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Suppose the economy is on a BGP from time T onwards with constant and strictly positive factor shares. With

a slight abuse of notation de�ne ~F by

~F (K;L; s; t) = ~F
h
AtKD (s)

a
; BtLD (s)

�b
i
� F

h
AtKD (s)

a
; BtLD (s)

�b
; sT ;T

i
;

where b = 1 + a�K= (1� �K), while At and Bt are de�ned by

At � egY (t�T )D(st)
�aKT

Kt
;

Bt � egY (t�T )D(st)
bLT
Lt
:

Since a and b jointly satisfy a single restriction, ~F de�nes a one dimensional family of functions.

Di¤erentiating the de�nitions of At and Bt together with the constraint Lt = D(st)Nt and using Lemma 1 we

obtain


K �
_At
At
+ gq = a(n� gL);


L �
_Bt
Bt

= gY � n�
�K

1� �K

K :


K is the total rate of capital-augmenting technical change, while 
L is the rate of labor-augmenting technical

change. When both n and the labor force growth rate gL are constant then 
K and 
L are also constant. Also,

provided schooling is increasing over time n > gL implying that a > 0 if and only if 
K is strictly positive.

We can now prove the following proposition. Part (i) shows that on the BGP F has a one dimensional family

of representations of the form ~F
h
AtKD (s)

a
; BtLD (s)

�b
i
. From the expressions for 
K and 
L above we see

that each member of this family has a di¤erent combination of capital-augmenting and labor-augmenting technical

change. When we say the production function can be represented by ~F we mean that the equilibrium allocation

on the BGP is the same under ~F as under F . However, this does not imply that counterfactual experiments

using ~F will necessarily coincide with counterfactuals under F . The �rst order impact of some policy changes

(e.g., schooling subsidies, capital taxation) depends on �KL and �Ks � (FKFs)=(FKsF ). Therefore, in part (ii)

of the proposition we show that if �KL is constant on the BGP then �KL = ~�KL � ( ~FK ~FL)=( ~FKL ~F ) and that
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~�Ks � ( ~FK ~Fs)=( ~FKs ~F ) can be written as a function of ~�KL, a and b. Consequently, if �KL and �Ks are constant

on the BGP then there exist unique values of a and b such that ~�KL = �KL and ~�Ks = �Ks. Thus, knowing �KL

and �Ks is su¢ cient to separate the roles played by capital-augmenting and labor-augmenting technical change.

Moreover, when a and b are chosen appropriately counterfactual analysis using ~F instead of F will, to a �rst order,

give accurate predictions.

Proposition 5 Suppose for all t � T the economy�s equilibrium trajectory fYt;Kt; Lt; stg is a BGP with constant

and strictly positive factor shares. On the BGP,

(i) The production function F can be represented by ~F in the sense that for all t � T

~F (Kt; Lt; st; t) = F (Kt; Lt; st; t) ;

~FK (Kt; Lt; st; t) = FK (Kt; Lt; st; t) ;

~FL (Kt; Lt; st; t) = FL (Kt; Lt; st; t) ;

~Fs (Kt; Lt; st; t) = Fs (Kt; Lt; st; t) ;

(ii) ~�KL and ~�Ks satisfy
1

~�Ks
� 1 = (a+ b)

�
1

~�KL
� 1
�
;

and if �KL is constant then ~�KL = �KL.

Proof. Without loss of generality let T = 0. Output at t � 0 is given by

F (Kt; Lt; st; t) = Yt = egY tY0 = egY tF (K0; L0; s0; 0) = F
�
egY tK0; e

gY tL0; s0; 0
�
;

= F
�
AtKtD (st)

a
; BtLtD (st)

�b
; s0; 0

�
;

= ~F (Kt; Lt; st; t) :

To show the marginal products of capital are equal, we use the facts that the capital share is constant over time

and capital is paid its marginal product. Therefore
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KtFK (Kt; Lt; st; t)

Yt
= �K =

K0FK (K0; L0; s0; 0)

Y0
=
egY tK0FK (e

gY tK0; e
gY tL0; s0; 0)

egY tY0
;

=
AtKtD (st)

a
FK

�
AtKtD (st)

a
; BtLtD (st)

�b
; s0; 0

�
Yt

;

=
Kt
~FK (Kt; Lt; st; t)

Yt
:

Dividing each side by Kt=Yt gives FK (Kt; Lt; st; t) = ~FK (Kt; Lt; st; t). Identical logic using the labor share gives

FL (Kt; Lt; st; t) = ~FL (Kt; Lt; st; t).

To complete the proof of part (i) we show equality of the marginal products of schooling. Optimal schooling

choice implies

D0 (st)Lt
D (st)

= � Fs (Kt; Lt; st; t)

FL (Kt; Lt; st; t)
:

This means the ratio of the marginal product of schooling to output can be written as

Fs (Kt; Lt; st; t)

Yt
= � (1� �K)

D0 (st)

D (st)
:

We now show that same equation holds for ~F . Di¤erentiating ~F with respect to s and dividing by output gives

~Fs (Kt; Lt; st; t)

Yt
=

1

Yt

D0 (st)

D (st)

h
aAtKtD (st)

a
FK

�
AtKtD (st)

a
; BtLtD (s)

�b
; s0; 0

�
�bBtLtD (st)�b FL

�
AtKtD (st)

a
; BtLtD (st)

�b
; s0; 0

�i
;

= [a�K � b (1� �K)]
D0 (st)

D (st)
;

= �(1� �K)
D0 (st)

D (st)
:

To prove part (ii) we start by noting that when �KL is constant on the BGP, the homogeneity of F implies
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�KL =
FK (K0; L0; s0; 0)FL (K0; L0; s0; 0)

FKL (K0; L0; s0; 0)F (K0; L0; s0; 0)
;

=
FK (e

gY tK0; e
gY tL0; s0; 0)FL (e

gY tK0; e
gY tL0; s0; 0)

FKL (egY tK0; egY tL0; s0; 0)F (egY tK0; egY tL0; s0; 0)
;

=
FK

�
AtKtD (st)

a
; BtLtD (st)

�b
; s0; 0

�
FL

�
AtKtD (st)

a
; BtLtD (st)

�b
; s0; 0

�
FKL

�
AtKtD (st)

a
; BtLtD (st)

�b
; s0; 0

�
F
�
AtKtD (st)

a
; BtLtD (st)

�b
; s0; 0

� ;
=
~FK (Kt; Lt; st; t) ~FL (Kt; Lt; st; t)
~FKL (Kt; Lt; st; t) ~F (Kt; Lt; st; t)

;

= ~�KL:

Next de�ne ĥ(z) � F (z; 1; s0; 0). Then we have

~F (K;L; s; t) = BtLD(s)
�bĥ

�
AtK

BtL
D(s)a+b

�
:

Noting the equivalence between this expression and the functional form assumed in Assumption 1 and using

reasoning analogous to that employed above to derive the implications of Assumption 1 we have

~�KL =
Eĥ
h
AtK
BtL

D(s)a+b
i
� 1

Eĥ0
h
AtK
BtL

D(s)a+b
i ;

~�Ks =

b
a+b � Eĥ

h
AtK
BtL

D(s)a+b
i

b
a+b � 1� Eĥ0

h
AtK
BtL

D(s)a+b
i :

On the BGP we also have

�K =
Kt
~FK (Kt; Lt; st; t)

Yt
= Eĥ

�
AtKt

BtLt
D(st)

a+b

�
:

Combining these expressions and using b = 1 + a�K= (1� �K) we have that on the BGP

1

~�Ks
� 1 = (a+ b)

�
1

~�KL
� 1
�
:
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This completes the proof.

Transition Dynamics in the �Time-in-School�Model

Start by observing that combining rt = Rt=At with the no arbitrage condition �t = Rt=pt + gp � � and pt = 1=qt

gives

rt =
1

qtAt
(�t + gq + �) : (29)

Individuals�optimal schooling choices imply �(st; rt)(1� st)� = z� for all t � t0 where z� takes the same value

as in the planner�s problem. Therefore, aggregate output is given by (4) as in the planner�s problem.

Using the functional form assumption imposed on f , the �rst order condition for pro�t maximization (5) yields

rt = (1� st)�(1��)h0(z�):

Substituting this expression into the capital market clearing condition kt = �(st; rt) and using (29) shows the real

interest rate satis�es

�t = �gq � � + qtA
���1
��1
t

�
BtNt
Kt

z�
��(1��)

��1

h0(z�):

Combining this equation with the representative dynasty�s Euler equation _ct=ct = (�t � �)=� and using Eh(z�) =

(�� � 1)=(�� 1) and (4) gives

_ct
ct
= ��+ � + gq

�
+
1

�

�� � 1
�� 1 qt

Y (Kt)

Kt
:

Noting that this equation is identical to equation (26) we see that consumption per capita satis�es the same

di¤erential equation as in the planner�s problem. Since the capital accumulation equation is also the same in both

cases we conclude that consumption and the aggregate capital stock follow the same equilibrium trajectory as in

the planner�s problem.
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Schooling Choice in the �Manager-Worker�Model

Recall that the production function can be written as ~F
�
AtKD(s)

�(1��); BtLD(s)
���� = BtLD(s)

���h [kD(s)�]

where s =M=L and D(s) = [1 + s=(1�m)]�1. Since WMt = ~FM and WLt = ~FL, di¤erentiating yields

WMt = �BtD(st)
���D

0(st)

D(st)
h [ktD(st)

�] f�� + Eh [ktD(st)�]g ;

WLt = BtD(st)
���h [ktD(st)

�]

�
1� Eh [ktD(st)�] + �

stD
0(st)

D(st)
f� � Eh [ktD(st)�]g

�
:

Substituting these expressions into (9) and using D0(s) = �D(s)2=(1�m) implies that, in equilibrium,

Eh

"
kt

�
1 +

st
1�m

���#
=
�� � 1
�� 1 :

The fact that Eh(z) is declining in z ensures stability of the equilibrium.

Proofs from Section 4

Derivation of Equation (12)

The function �(z; u) is de�ned as the inverse of hz(z; u) so that z = � [hz(z; u); u]. Using Assumption 4 and the

de�nition of �, the �rst-order conditions from pro�t maximization imply

� (s; u; r) = e�s�
h
re(1��)�s; u

i
;

! (s; u; r) = e��s
n
h
�
�
h
re(1��)�s; u

i
; u
�
� re(1��)�s�

h
re(1��)�s; u

io
:

Therefore, the wage at time b + s + u of an individual born at b who has s years of schooling and u years of

experience is

Wb+s+u (s; u) = Bb+s+ue
��s
n
h
�
�
h
rb+s+ue

(1��)�s; u
i
; u
�
� rb+s+ue(1��)�s�

h
rb+s+ue

(1��)�s; u
io

:
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Since Bt grows at rate 
L and on a BGP rt declines at rate 
K it follows that along a BGP the wage function can

be written as

Wb+s+u (s; u) = Bbe

L(s+u)e��s

�
h
�
�
�
e�
Kuxb; u

�
; u
�
� e�
Kuxb�

�
e�
Kuxb; u

�	
;

where xb � rbe
[(1��)��
K ]s.

Now consider the optimal choice of schooling. From substituting the wage equation above into (10) it follows

that maximizing the expected present discounted value of lifetime earnings is equivalent to choosing xb to maximize

v (xb) where

v (xb) = x b

Z �u

0

e�(�+��
L)u
�
h
�
�
�
e�
Kuxb; u

�
; u
�
� e�
Kuxb�

�
e�
Kuxb; u

�	
du; (30)

and

 � 
L + �� � �� �
(1� �)�� 
K

: (31)

Note that this maximization problem is independent of time of birth b. Therefore, the solution is the same for

every cohort.

Di¤erentiating (30) yields

v0 (xb) = ( + 1)x
 �1
b

Z �u

0

e�(�+��
L)uh
�
�
�
e�
Kuxb; u

�
; u
��  

 + 1
� Eh;z

�
�
�
e�
Kuxb; u

�
; u
��

du;

and

v00(xb) = ( � 1)v
0(xb)

xb
+ ( + 1)x �1b

Z �u

0

e�(�+�+
K�
L)u�z
�
e�
Kuxb; u

� �
e�
Kuxb�

 

 + 1
� Eh;z

�
�
�
e�
Kuxb; u

�
; u
��
� h

�
�
�
e�
Kuxb; u

�
; u
� @Eh;z (� [e�
Kuxb; u] ; u)

@z

�
du:

We assume that if the �rst order condition v0(xb) = 0 has a solution x� then the second order condition v00(x�) < 0
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holds. Since v0(xb) is continuous it follows that if a solution to the �rst order condition exists, this solution is

unique and maximizes v(xb).

Substituting � = �(gY � n) + � and (17) into (31) shows that on a balanced growth path

 =
1

(1� �)�� 
K

�
n� �+ (1� �)
L + (�� � �)

�
1� �
K

(1� �)�

��
= 
;

where 
 is de�ned in Assumption 5. Consequently, part (ii) of Assumption 5 implies dmin <  =( + 1) < dmax.

Since h(z; u) is strictly concave in z we must have �z(z; u) < 0. Recalling the de�nitions of dmin and dmax

it then follows that  
 +1 > Eh;z (� [e�
Kuxb; u] ; u) for all u 2 [0; �u) when xb is chosen su¢ ciently small and

 
 +1 < Eh;z (� [e

�
Kuxb; u] ; u) for all u 2 [0; �u) when xb is chosen su¢ ciently large. Therefore, continuity of v0(xb)

guarantees the �rst order condition has a solution. This solution x� satis�es (12) for all b.

Capital Share

The capital share, �K , is given by (19). Using the �rst order condition v0(x�) = 0 we can rewrite this equation

as

�K =
 

 + 1

R �u
0
e�(��gY )ue

�
h
�+

(����)
K
(1��)�

i
u
h f� [e�
Kux�; u] ; ug duR �u

0
e�(��gY )ue

�
h
�+

(���)
K
(1��)�

i
u
x�� [e�
Kux�; u] du

R �u
0
e
�
h
�+

(���)
K
(1��)�

i
u
x�� [e�
Kux�; u] duR �u

0
e
�
h
�+

(����)
K
(1��)�

i
u
h f� [e�
Kux�; u] ; ug du

;

where  is given by (31). Finally, taking the limit as �� gY converges to zero from above, we have

lim
��gY&0

�K = lim
��gY&0

 

 + 1
=
�� � �
�� � :
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