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1 Introduction

Trading support for one proposal in exchange for someone else’s support of a dif-

ferent proposal is a common aspect of voting in committees, legislatures, and other

bodies of group decision making. Whether as exchanges of favors in small informal

committees or as more elaborate deals in legislatures, common sense, anecdotes,

and systematic evidence, all suggest that the practice is a central component of

decision-making in groups.1 Yet we know very little about the properties of vote

trading. Efforts at a theory were numerous and enthusiastic in the 1960’s and 70’s

but have fizzled and disappeared in the last 40 years. John Ferejohn’s words in 1974,

towards the end of this wave of research, remain true today: ”[W]e really know very

little theoretically about vote trading. We cannot be sure about when it will occur,

or how often, or what sort of bargains will be made. We don’t know if it has any

desirable normative or efficiency properties.” (Ferejohn, 1974, p. 25)

One reason for the lack of progress is that the problem is difficult: not only

does vote bartering occur without the equilibrating properties of a continuous price

mechanism, not only does it cause externalities to allies and opponents of the trading

parties, but each exchange triggers new profitable exchanges. If we think of the

trades sequentially, as a subset of voters trade votes on a set of proposals, the

default outcomes of these proposals change, generating incentives for a new round

of vote trades, which will again change outcomes and trigger new trades. What is

the most productive approach to modeling such a complex process?

The perspective taken in this paper is inspired by a similarity between the logic of

sequential rounds of vote trading and the problem of achieving stability in sequential

rounds of matching among different agents, as originally proposed by Gale and

Shapley (1962).2 In line with the matching literature, we explore the properties

of a class of algorithms through which a sequence of decentralized pairwise vote

trades are realized, and in particular we use the familiar notion of stability from

that literature. An allocation of votes is stable if no pairwise-improving vote trade

1There is an substantial literature in political science documenting vote trading in legislatures.
For example, Stratmann (1992) provides evidence of vote trading in agricultural bills in the US
Congress.

2Roth and Sotomayor (1990) and Gusfield and Irving (1989) survey some of the main results,
from the perspective of economic theory and computer science, respectively. This continues to be
a very active area of research.
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exists.3 We ask whether a stable allocation of votes exists, whether the specific

algorithm we construct converges to a stable allocation, and whether we can say

anything about individuals’ preferences over the outcomes induced by stable vote

allocations.

We should note at the outset that the parallel to matching problems is imperfect.

The closest analogue is to a one-sided matching problem with externalities: a single

group of individuals who match in pairs but such that everyone has preferences not

only over his own partner, but over the composition of all matches. Here too there is

only one group–voters–and in principle everyone can match with everyone else,4 and

preferences are defined over the full set of matches. But in addition in our voting

problem preferences evolve endogenously in response to executed trades. Trades by

others can reverse a voter’s status as winner or loser and affect his desire to trade,

as well as his attractiveness as trading partner.

The committee we study is formed by an odd number of voters and faces several

proposals, each of which may pass or fail and, after trade, is voted upon separately

through majority voting. Every committee member can be in favor or opposed to

any proposal and attaches some cardinal value to his preferred direction prevailing.

Members’ preferences are separable across proposals. A vote trade is a physical

exchange of ballots. For most of our analysis and in the experiment, we allow pair-

wise trading only: two voters engage in a trade if one delivers his vote to the other

on one proposal, in exchange for the other’s vote on a different proposal. As in the

matching literature, a trading pair is said to block a given allocation of votes if it can

be better-off under an alternative allocation that is in the pair’s power to achieve,

keeping fixed the votes held by the other committee members. A stable allocation

is then an allocation of votes that cannot be blocked, i.e. such that no pair-wise

improving trade exists.

We define a further restrictions of the possible stable vote allocations as those

that are achievable from the initial vote allocation via a sequence of pairwise trades.

We consider a family of trading algorithms, according to which these trades can

3This notion of stability has also been used in the analysis of network formation. See Jackson
and Wolinsky (1996) for an early application, and Jackson and Watts (2002) for the analysis
of a dynamic algorithm building stable network configurations through the creation of pairwise
improving links.

4In contrast to two-sided matching problems where matches only occur between members of
two separate groups–men and women, students and schools, workers and firms.
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take place. In such an algorithm, an initial payoff improving exchange of votes

between two voters is selected among all possible pairwise improving trades, using

a specific selection rule, including random rules. This leads to a new allocation of

votes, and the algorithm again selects a pairwise improving trade from the set of

all pairwise improving trades. The algorithm continues until a vote allocation is

reached where there are no more pairwise improving trades. The family of such

algorithms is populated by considering all possible selection rules.

As remarked in Riker and Brams (1973), the requirement that a vote trade be

welfare improving for both traders implies that the votes being trade must be pivotal,

and we call the class of such algorithms the Pivot Algorithms. Our first result is

that a Pivot algorithm always generates a stable vote allocation in a finite number

of steps, for any number of voters, any number of proposals, and any configuration

of (separable) preferences.

This is an interesting result, not only for its generality but also because stability–

convergence to a vote allocation such that no further vote trade is profitable–was

one of the two central questions of the early literature on vote trading. The litera-

ture addressed the ambitious conjecture that vote trading may offer the solution to

majority cycles in the absence of a Condorcet winner. The original analysis (Park

(1967)), studied non-binding agreements when voters vote on the full package of

proposals (as opposed to voting separately on each proposal). Park considered only

majority coalitions and concluded that the process can converge only if a Condorcet

winner exists.5 Riker and Brams (1973) and Ferejohn (1974) simplified the prob-

lem by considering binding agreements and proposal-by-proposal voting, as in our

model. Their conclusions are ambiguous: Riker and Brams conjecture that even

if stability held for pair-wise trading it would be compromised by allowing trades

among larger coalitions of voters; Ferejohn suggests that a stable vote allocation

may not hold even for pair-wise trading if voters are forward-looking, but does not

fully specify the game structure.

The Pivot algorithm through which we model vote trades implies that voters

are myopic, and if pair-wise trades only are allowed, a stable vote allocation always

exists. In the second part of the paper, we allow vote-trading among coalitions

5The result was later echoed by other studies, for example Berholz (1973), Koehler (1975),
Schwartz (1981).
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of voters of any sizes. Our results confirm Riker and Brams’ conjecture. With

coalition-trading stability cannot be guaranteed: we construct an example with

well-behaved preferences where a cycle develops and trading need never end. In

addition, in our model, with proposal-by-proposal voting and binding trades, there is

no logical connection between coalitional stability in vote-trading and the existence

of a Condorcet winner. A coalition-stable vote allocation may exist in the absence of

a Condorcet winner, and may differ from the Condorcet winner when the Condorcet

winner exists.

The second conjecture at the core of the interest in vote trading in the 60’s

and 70’s concerned not the existence of stable vote allocations but their welfare

properties. It held that vote trading leads to Pareto superior outcomes because

it allows the expression of the intensity of preferences. The conjecture stemmed

from an early debate between Gordon Tullock and Anthony Downs6 and was stated

explicitly in Buchanan and Tullock (1965).7 As a general result, the claim was

rejected by Riker and Brams’ (1973) influential ”paradox of vote trading”: Riker

and Brams showed that if vote trading is pair-wise and binding, there are non-

pathological preferences such that each pair of voters individually gains from vote

trading and yet everyone strictly prefers the no-trade outcome. Opposite examples

where vote trading is Pareto superior to no-trade can easily be constructed too8,

and the literature eventually ran dry with the tentative conclusion that no general

statement on the desirability of vote trading can be made.

Our algorithm leads us to the same conclusion, but we reach some unexpected

results in special cases. In particular, when the committee is faced with only two

proposals (and thus, since each proposal can either pass or fail, four possible out-

comes), then for any number of voters and any (separable) preferences, the outcome

associated with all stable vote allocations must be unique, is always Pareto optimal,

is the Condorcet winner, if a Condorcet winner exists, and must be preferred by the

majority to the no-trade outcome if it differs from it. These results hold whether

trade is restricted to pairs of voters or coalitions are allowed. They are surprising

because it has always been understood that vote trades’ ambiguous welfare prop-

erties are due to the externalities inherent in the exchanges. But externalities are

6Tullock, 1959 and 1961, Downs, 1957, 1961.
7See also Coleman (1966), Haefele (1970), Tullock (1970), and Wilson (1969).
8For example, Schwartz (1975).
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clearly present in the two-proposal case, and yet the algorithm delivers an outcome

with desirable welfare properties.

Approaching vote trading through a mechanical algorithm allowed us to make

some progress by avoiding the difficulties of a strategic model. We have chosen

this direction, however, for a second reason too: we conjectured that it may have

predictive power. In the second part of the paper, we test the Pivot algorithm in

the laboratory. The barter nature of the task, and thus the lack of a common unit

of exchange, the changing profitability of trades in response to others’ trades, the

role of pivotality, all make the experiment unusually complex.9 For this reason, we

limit trades in the laboratory to pair-wise trades.

We study three treatments, corresponding to three sets of cardinal values for

each voter over each proposal. All treatments have five voters, but differ in the

number of proposals (two in treatment AB, and three in treatments ABC1 and

ABC2), and in the prediction of the Pivot algorithm. The Condorcet winner exists

in all three cases; it coincides with the unique stable outcome reachable through the

Pivot algorithm in treatments AB and ABC2; it differs in treatment ABC1.

Our experiment produces three main results. First, we find that stability is a

useful predictive tool. In all treatments, two thirds or more of the vote allocations

reached by experimental subjects are stable.

Second, although the final vote allocations provide some qualified support for

the Pivot algorithm’s ability to predict where vote trading will stop. Across all

treatments, across all voters, across all proposals, in every single case in which the

stable allocation reachable via the Pivot algorithm reflects a net purchase of votes,

or a net sale, we observe it in the data. Yet, the final outcomes differ from the Pivot

predictions, typically displaying more inertia around the no-trade outcome than the

algorithm would predict.

The reason, and this is our third result, is that, contrary to the Pivot-algorithm,

a large fraction of trades do not improve the myopic outcome for the traders but

increase the number of votes held on high-value issues–what we define as ”score-

increasing trades”. Trades that increase the number of votes held by the winning

side make further Pivot trades impossible and create a bias towards pre-trade out-

9To our knowledge, barter experiments are rare. Ledyard, Porter and Rangel (1994) is an
example that demonstrates the challenges to both design and data analysis.
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comes. Interestingly, score-increasing trades are not predictive of final vote alloca-

tions: trading stops when no opportunity for payoff gains remains, as in our stability

concept, even when it is still possible to increase votes on high value proposals.

The first experimental paper studying vote trading was McKelvey and Ordeshook

(1980). That paper reports results from a large series of experiments, all done

face-to-face and under various protocols designed to allow either pair-wise only or

coalitional trades, and either binding or non-binding agreements. The methodologies

are different enough to make a direct comparison of results nearly impossible, and

McKelvey and Ordeshook’s focus on alternative cooperative solution concepts has no

counterpart in our experiment.10 Closer to our computerized experimental protocols

are recent experiments on decentralized matching, in particular Echenique and Yariv

(2013).11 In that work, as in ours, a central finding is the extent to which the

experimental subjects succeed in reaching a far-from-apparent set of stable matches.

The set-up however differs substantially from ours, even within the perspective of

matching theory: a two-sided matching problem with no externalities and fixed

preferences, in Echenique and Yariv contrasting with the the one-sided matching

problem with externalities and evolving preferences in our case. In addition, the

substantive questions we ask are specific to vote-trading, not matching.

The paper proceeds as follows. The next section presents our model and derives

the model’s theoretical predictions; section 3 discusses the experimental design;

section 4 reports the experimental results, and section 5 concludes. Longer proofs are

collected in the Appendix 1, and the instructions from a representative experimental

session are in Appendix 2.

10Fischbacher and Schudy (2010) conduct a voting experiment to examine the possible behavioral
role of reciprocity when a sequence of proposals come up for vote. There is no explicit vote trading,
but voters can voluntarily vote against their short term interest on an early proposal in hopes that
such favors will be reciprocated by other voters in later votes.

11Other related works are Nalbantian and Schotter (1995), Niederle and Roth (2011) and Pais,
Pinter and Vesztegz (2011). These papers have incomplete information and study the effects of
different offer protocols and other frictions. Kagel and Roth (2000) study forces leading to the
unraveling of decentralized matching.
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2 The Model

Consider a committee of N (odd) voters who must approve or reject each of K

independent binary proposals. The set of proposals is denoted P = {1, ..., k, ..., K}.
Committee members have separable preferences summarized by a set of cardinal

values Z, where zki is the value attached by member i to the approval of proposal

k, or the utility i experiences if k passes. Value zki is positive if i is in favor of k and

negative if i is opposed. Proposals are voted upon one-by-one, and each proposal k

is decided through simple majority voting.

Before voting takes place, committee members can trade votes. The initial al-

location of votes assigns one vote to each committee member over each proposal.

We treat votes as if they were physical ballots, specialized by proposal–for example,

imagine ballots of different colors for different proposals. A vote trade is thus mod-

eled as an actual exchange of ballots, with no enforcement or credibility problem,

where by exchange we mean that each trader must give away and receive at least

one vote. After trading, a voter may own zero votes over some proposals and several

over others, but cannot hold negative votes. We call vki the votes held by voter i

over proposal k, Vi = {vki , k = 1, .., K} the set of votes held by i over all proposals,

and V = {Vi, i = 1, .., N} the profile (or allocation) of vote holdings over all voters

and proposals. V denotes the set of feasible vote allocations: V ∈ V ⇐⇒
∑

i v
k
i = N

for all k and vki ≥ 0 for all vki ∈ V .12 The initial allocation of votes is denoted by

V0.

Given a feasible vote allocation V , we assume that at the time of voting, voters

who attach positive value to a proposal cast all votes they own over that proposal in

its favor, and voters who oppose it cast all available votes against it. We indicate by

P(V ) ∈ P the set of proposals that receive at least (N + 1)/2 favorable votes, and

therefore pass. We call P(V ) the outcome of the vote if voting occurs at allocation V .

Note that with K independent binary proposals, there are 2K potential outcomes

(all possible combinations of passing and failing for each proposal). Finally, we

define ui(V ) as the utility of voter i if voting occurs at V : ui(V ) =
∑

k∈P(V ) z
k
i .

Our focus is on the existence and properties of vote allocations that hold no

12Note that
∑

k v
k
i 6= K is feasible because we are allowing a voter to trade votes on multiple

issues in exchange for one or more votes on a single issue. Of course, the aggregate constraint∑
i

∑
k v

k
i = NK must hold.
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incentives for further trading. We can then define:

Definition 1 A pair of voters i, i′ is said to block V if there exists a feasible

vote allocation V̂ ∈ V such that V̂j = Vj for all j 6= i, i′, and ui(V̂ ) > ui(V ),

ui′(V̂ ) > ui′(V ).

Definition 2 An allocation V ∈ V is pair-wise stable if there exists no pair of

voters i, i′ who can block V .

We can show immediately that a feasible allocation of votes that yields dictator

power to a single voter i is trivially pair-wise stable: no exchange of votes involving

voter i can make i strictly better-off; and no exchange of votes that does not involve

voter i can make anyone else strictly better-off.13 Hence:

Proposition 1 A pair-wise stable vote allocation V exists for all Z, N , and K.

2.1 Dynamic adjustment.

Pair-wise stable allocations exist, but are they reachable through sequential decen-

tralized trades? To answer the question, we need to specify the dynamic process

through which bilateral trades take place. Our focus is on simple myopic algorithms.

We begin with the following definition:

Definition 3 A trade is minimal if it consists of a minimal package of votes such

that both members of the pair strictly gain from the trade.

Recall that a trade involves the exchange of at least one vote on each side.14

Concentrating on minimal trades allows to ”unbundle” complex trades into elemen-

tary trades. For any individual voter, multiple welfare-improving trades cannot be

bundled, and zero-utility trades cannot be bundled with strictly welfare-improving

trades.

13Other examples are easy to construct. For example, any allocation such that for all k, vkik ≥
n+1
2 , where ik is the voter who, among all, attributes highest value to winning on proposal k, is

pair-wise stable.
14Thus surrendering votes to an ally with no myopic utility change is not a trade.
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Although the literature does not make explicit reference to an algorithm, the

sequential myopic trades envisioned by Riker and Brams (1973) and Ferejohn (1974)

lend themselves naturally to such a formalization. In line with these earlier analyses,

we define the Pivot Algorithms as sequences of pair-wise trades yielding myopic strict

gains to both traders:

Definition 4 A Pivot Algorithm is any mechanism generating a sequence of

trades in the following way: Start from any vote allocation V0. If there is no minimal

pairwise (strictly) improving trade, stop. If there is one such trade, execute it. If

there are multiple pairwise improving trades, choose one according to a possibly

stochastic choice rule R. Continue in this fashion until no further improving trade

exists.

The definition above defines a whole family of algorithms, depending on the

choice rule that is applied when there are multiple improving trades. Rule R specifies

how the algorithm selects among multiple possible trades; for example, R may select

each potential trade with equal probability (fully random); or give priority to trades

with higher total gains; or to trades involving specific voters. The family of Pivot

algorithms corresponds to the class of possible R rules, and individual algorithms

differ in the specification of rule R. At this stage, it is not necessary to be more

specific about R.

Pivot trades are not restricted to two proposals only: a voter can trade his vote,

or votes, on one issue in exchange for other voters’ vote(s) on more than one issue.

The only constraint is the requirement that trades be minimal: zero-utility trades

cannot be bundled with welfare improving trades. If a trade is welfare improving

and minimal, it is a legitimate trade under Pivot.

A crucial property was anticipated by Riker and Brams and gives the name to

our algorithm:

Lemma 1 (Riker and Brams) Under the Pivot algorithms, all votes transferred

must be pivotal.

Proof. Immediate from the requirement of minimal trades and the definition of

Pivot algorithms.
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2.2 Existence of stable vote allocations

The question we want to ask is whether a stable vote allocation is reachable through

the Pivot algorithms. We define:

Definition 5 An allocation of votes V is Pivot-stable and is denoted by VT (R)

if it is stable and reachable through a Pivot algorithm in a finite number of steps,

following rule R.

Does a Pivot-stable allocation always exist? Surprisingly, the answer is clear-cut

and positive. Pivot-stable vote allocations always exist, for the entire class of Pivot

algorithms, independently of the rules R through which competing claims to trade

are resolved. We can state:

Theorem 1 For all K, N , Z, a Pivot-stable allocation of votes exists for all R.

Proof. Consider trades dictated by the Pivot algorithm. By Lemma 1, if a

trade occurs at V0 it can only concern proposals that at V0 are decided by minimal

majority. But by minimality of trade, it then follows that the same proposals must

still be decided by minimal majority in any subsequent votes allocation Vt, with

t > 0. But since V0 = {1,1,1, ..}, no more than one vote is ever traded on any

given proposal (although trades could involve bundles of proposals). Now consider

voter i with values Zi and absolute values |Zi| ≡ Xi. We call i’s score at step t the

function σit(Xi, Vit) defined by:

σit =
K∑
k=1

xki v
k
it

where xki is the (absolute) value i attaches to each proposal k, and vkit is the number

of votes i holds on that proposal at t. If i does not trade at t, then σit+1 = σit. If

i does trade, then, by the argument above, i’s vote allocation must fall by one vote

on some proposals {k, k′, ..} that i was winning and increase by one vote on some

other proposals {k̃, k̃′, ..} that i was losing. Call the first set of proposals Pi,t and

the second P−i,t. Note that although the two sets may have different cardinality, by

10



definition of pair-wise improving trade,
∑

k∈Pi,t
xki <

∑
k∈P−i,t

xki and, since a single

vote is traded on each proposal,
∑

k∈Pi,t
xki v

k
it <

∑
k∈P−i,t

xki v
k
it+1. Hence if i trades

at t, σit+1 > σit: for all i, σit(Xi, Vit) must be non-decreasing in t. At any t, either

there is no trade and the Pivot-stable allocation has been reached, or there is trade,

and thus there are two voters i and i′ for which σit+1 > σit and σi′t+1 > σi′t. But

σit(Xi, Vit) is bounded above and the number of voters is finite. Hence trade must

stop in finite steps: a Pivot-stable allocation of votes always exists.15 Note that we

have made no assumptions on R, the rule through which trades are selected when

multiple are possible. A Pivot-stable allocation of votes exists for any R.�

The generality of the result is surprising: a Pivot-stable allocation always exists,

regardless of the number of voters and proposals, for all (separable) preferences,

and regardless of the order in which different possible trades are chosen. As we

said, the parallel to the matching literature is imperfect, and indeed no such result

can be found there. In one-sided matching problems, it is well-known that a stable

match may not exist.16 When it does exist, it is not the case that any sequence

of decentralized myopic matchings will converge to a stable matching. Cycles are

possible. If preferences are strict, one converging sequence of matchings always

exists, but if matchings are decentralized, guaranteeing convergence requires some

randomness in the selection of blocking pairs: a random rule assigning a positive

probability of selection to any blocking pair.17 The difficulty of achieving stability is

increased by the presence of externalities. We are not aware of comparable results for

one-sided matching problems with externalities. In two-sided matching problems,

guaranteeing the existence of a stable match in the presence of externalities requires

a very stringent definition of blocking.18 In our problem, the score function we

have defined above is not subject to cycles. Because it is always non-decreasing in

t, convergence to a stable allocation of votes is guaranteed for any selection rule

15It is not difficult to find the upper boundary on the number of trades needed to reach a Pivot-
stable allocation. It equals the maximum number of trades that could shift all individuals’ votes

to their respective highest-value proposal, or
[
K(K−1)

2

] [
(N−1)

2

]
.

16Gale and Shapley (1962).
17Diamantoudi et al. (2004). The result that randomness in the selection of the blocking pair

induces convergence builds on Roth and Vande Vate (1990), who established it in the case of
two-sided matching.

18Sasaki and Toda (1996). Two individuals block an existing match if they strictly gain from
matching with one another under any possible rematching by all others.
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among blocking pairs.

2.3 Preferences over stable outcomes

Definition 6 An outcome P(V ) is Pivot-stable if it is achieved from a Pivot-

stable allocation of votes.

We denote by P(VT (R)) the set of all stable outcomes reachable with positive

probability through a Pivot algorithm with rule R. What are the welfare proper-

ties of P(VT (R))? We have modeled vote trading through an algorithm, and our

institution-free approach demands a welfare evaluation that is equally institution-

free. We ask whether outcomes in P(VT (R) must belong to the Pareto set; whether

they must include the Condorcet winner, if one exists, and more generally whether

they can be ranked, in terms of majority preferences, relative to the no-trade out-

come.

Our first set of answers is unexpectedly positive. Because we characterize results

that hold for all R, we can use the simpler notation P(VT ) with element P(VT ). We

can show:

Proposition 2 If K = 2, then, for all N , Z, and R: (1) P(VT ) is unique.19 (2)

P(VT ) is Pareto optimal. (3) If a Condorcet winner exists, then P(VT ) is the Con-

dorcet winner. (4) P(VT ) can never be the Condorcet loser. (5) If P(VT ) 6= P(V0),

then a majority prefers P(VT ) to P(V0).

Proof: See Appendix 1.

Proposition 1 is interesting because it highlights that the lack of Pareto optimal-

ity in vote trading examples, in particular Riker and Brams’ paradox of vote trading,

is not an immediate result of voting externalities. Externalities are not eliminated

when K = 2, and yet the outcome of the Pivot algorithm (the same myopic vote-

trading rule studied by Riker and Brams) is always Pareto optimal. Similarly, when

K = 2 vote trading performs well in terms of majority preferences.20

19Note that uniquess of P(VT ) does not imply uniqueness of VT .
20Possibly, but not necessarily also in terms of total utilitarian welfare. In a finite electorate,

results on utilitarian welfare depend on the distributions from which values are drawn.
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In fact, there is another scenario in which, for all values Z, the Pivot-stable

outcome is related to majority preferences:

Proposition 3 If N = 3, then for all K, Z, and R: (1) If a Condorcet winner

exists, P(VT ) is unique and is the Condorcet winner. (2) P(VT ) can never be the

Condorcet loser.

Proof: See Appendix 1.

The intuition behind Proposition 3 is straightforward: with three voters, any

Pivot trade between a pair reflects the majority’s preferences. We know from Park

(1967) and Kadane’s (1972) that if there is a Condorcet winner, it can only be the

no-trade outcome21, and thus with three voters there cannot be any trade under the

Pivot algorithm. If the Condorcet loser exists, it must be such that all proposals

are decided in the direction favored by the minority, but since any trade reflects the

majority’s preferences, such an outcome is impossible to reach.

The results from Pivot trading are less predictable in the general case:

Proposition 4 If K > 2 and N > 3, then: (1) There exist Z such that for any

R no outcome in the Pareto set is Pivot-stable. (2) There exist Z such that the

Condorcet winner exists, but for any R it is not Pivot-stable.

Proof: We prove the two statements by example, and because the examples are

simple and instructive, we report them here in detail. (1) Consider the following

example, with K = 5 and N = 5:

Each row in Table 1 is a proposal (A,B,C,D, and E) and each column a voter

(1, 2, 3, 4, and 5). Each cell {k, i} reports zki , the value attached by voter i to proposal

k passing. No voter is pivotal, and thus V0 cannot be blocked. The unique stable

outcome is P(VT ) = P(V0) = {∅}, all proposals fail. Yet, all proposals failing is

not Pareto optimal: it is Pareto-dominated by all proposals passing. The example

suggests the importance of allowing for trades among coalitions of more than two

voters, a point to which we return below.

(2) Consider the following example, with K = 3 and N = 5:

21Because the majority must prefer the no-trade outcome to any outcome that differs from
no-trade in the resolution of a single issue.
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1 2 3 4 5
A 10 −1 −1 −1 −1
B −1 10 −1 −1 −1
C −1 −1 10 −1 −1
D −1 −1 −1 10 −1
E −1 −1 −1 −1 10

Table 1: Preference profile such that no outcome in the Pareto Set is Pivot Stable.

1 2 3 4 5
A 4 −7 1 −1 4
B 1 1 −4 4 −1
C −3 4 2 −2 2

Table 2: Preference profile such that the Condorcet Winner is not Pivot Stable.

For the preference profile in Table 2, P(V0) = {ABC} is the Condorcet winner

but this example has a unique Pivot-stable outcome P(VT ) = {A}. It is not difficult

to verify that there are three possible trade chains but all stop at P(VT ) = {A}.
Indicating in order the voters engaged in the trade, the proposals on which they

trade votes (in lower-case letters)22, and, in parenthesis, the outcome correspond-

ing to that allocation of votes, we can describe the three chains as {{13cb(A),

45bc(ABC), 23ab(C), 45ca(A)}, {23ab(C), 45ba(ABC), 13cb(A)}, and {23ab(C),

45ca(A), 45bc(ABC), 13cb(A)}. �

Note that result (2) in Proposition 3 immediately implies:

Corollary 1 If K > 2 and N > 3, then there exist Z such that for all R, P(VT ) 6=
P(V0), but P(V0) is majority preferred to P(VT ).

The first example is an immediate implication of Lemma 1: under the Pivot

algorithm, trade can occur only between pivotal voters. If the vote allocation does

not correspond to minimal majority, no pivotal voters exist. Thus the status quo

is Pivot-stable, and delivers the unique Pivot-stable outcome; if such an outcome is

Pareto-inferior, then the stable outcome does not belong to the Pareto set.

22For example, 13cb indicates that voter 1 acquires a C vote from voter 3, in exchange for a B
vote.
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The second example is more unexpected. Why does the positive result with

K = 2 not extend to a larger number of issues? Intuitively, the problem is that

previous trades over some issues k and k′ can make it impossible for a pair of voters

to execute a different, desired trade over k′ and k′′. Thus, contrary to the K = 2

case, the Pivot algorithm does not allow voters to exploit all opportunities for mutual

agreements.

2.4 Coalitional Trades

A natural aspect of vote trading is the possibility of forming coalitions, indeed the

incentive to do so. The experiment we describe below focuses on pair-wise trades,

but our approach can be extended to the study of coalitions and sheds some light

on the debates in the early literature on vote-trading. In this subsection, we derive

two main results. First, the stability highlighted by our theorem on pair-wise trades

does not generalize to vote-trading within larger coalitions of voters. Second, in our

model, there is no logical connection between stability under coalitional trade and

existence of the Condorcet winner.

We begin by redefining stability in the presence of coalitions. A coalition of

voters C = {i, i′, i′′, ..} is said to block V if there exists a feasible vote allocation

V̂ ∈ V such that V̂j = Vj for all j /∈ C, and ui(V̂ ) > ui(V ) for all i ∈ C. The

allocation V ∈ V is coalition-stable if there exists no coalition of voters C who can

block V . Up to now, we have restricted C to be of size 2; here we allow C to have

any size between 2 and N .

As in the case of pair-wise trades, the first observation is that a coalition-stable

allocation always exists: a feasible allocation of votes that gives decision power

to a single voter over all proposals remains trivially stable because no coalition

that excludes the dictator can change the outcome, and the dictator cannot strictly

gain from participating in any coalition. The interesting question is not whether a

stable allocation exists, but rather whether it can be reached through the relevant

extensions of our algorithm to coalitional trades.

To extend the algorithm, the previous definitions need to be amended. Keeping

in mind that a vote trade must, by definition, include at least two voters and at

least two issues, we define:
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Definition 7 A coalition-improving trade is minimal if it concerns: (1) the min-

imal package of votes such that all members of the coalition strictly gain from the

trade; and (2) the minimal number of members such that the outcome corresponding

to V̂ can be achieved.

Definition 8 A C-Pivot Algorithm is any mechanism generating a sequence of

trades in the following way: Start from any vote allocation V0. If there is no min-

imal coalitional (strictly) improving trade, stop. If there is one such trade, execute

it. If there are multiple coalitional improving trades, choose one according to a pos-

sibly stochastic choice rule RC. Continue in this fashion until no further coalitional

improving trade exists.

The C-Pivot Algorithm is the natural generalization of the Pivot Algorithm to

coalitions. Note again that coalitions can be of any size and we have imposed no rule

selecting among them in the order of trades, when several coalition-improving trades

are possible. We call C-Pivot stable an allocation of votes that cannot be blocked

by any coalition and is reachable via the C-Pivot algorithm in a finite number of

steps, and define a C-Pivot stable outcome as an outcome PC(VT ) that corresponds

to a C-Pivot stable allocation of votes.

In the presence of coalitions, stability becomes a more elusive goal:

Proposition 5 There exist K, N , Z, and RC such that the C-Pivot algorithm never

converges to a stable vote allocation.

Proof: See Appendix 1.

In the presence of coalitions, stability may fail because trades can be profitable for

the coalition even when the pair-wise trades that are part of the overall exchange are

not: coalition members benefits from the positive externalities that originate from

the trades of other members. As a result, the score function defined in the proof

of the Theorem in section 3 is no longer monotonically increasing in the number of

trades, and the logic of that proof does not extend to coalition trades.

But if a C-Pivot stable allocation exists, does it have desirable welfare properties?

A first, positive result is immediate:
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Proposition 6 If a C-Pivot stable outcome exists, then it cannot be Pareto domi-

nated.

Regardless of the history of previous trades, if an outcome is Pareto dominated,

then the coalition of the whole can always reach the Pareto superior outcome. But

then the allocation corresponding to the Pareto dominated outcomes cannot be

C-Pivot stable.23

But further results are more ambiguous:

Proposition 7 Consider Z such that the Condorcet winner exists. (1) If either

K = 2 or N = 3, then the C-Pivot stable outcome always exists, is unique, and

coincides with the Condorcet winner. (2) If K > 2 and N > 3, if a C-Pivot stable

outcome exists, it need not coincide with the Condorcet winner.

Proof. (1) See Appendix 1. (2) Consider Example 2, in the proof of Proposition

4. There are two C-stable outcomes: P(VT ) = {A}, reached through pair-wise

trades as described earlier, and P(VT ) = {A,B}, if we allow |C| > 2. The second

stable outcome is reached through the following trades: after voters 2 and 3 have

traded votes on A and B, a coalition of voters 1, 4, and 5 is formed; 4 gives an A vote

to 1; 5 gives a B vote to 4, and a C vote to 1. Note that the trade is minimal, and

the resulting vote allocation cannot be blocked. Hence P(VT ) = {A,B}. Neither

outcome is the Condorcet winner.�

Proposition 7 establishes that a C-stable outcome, when it exists, has no nec-

essary link to the Condorcet winner. In some cases, (K = 2 or N = 3), the two

must coincide; in others, (K > 2 and N > 3), the existence of the Condorcet winner

gives no information about the welfare properties of C-stable outcomes. The result

is driven by two central assumptions of our model: (1) vote trades are binding, and

(2) voting occurs proposal-by-proposal.

23Note that if the coalition trade is not minimal, it can be made so by eliminating redundant
trades or traders.
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3 The Experiment

The experiment was run at the Columbia Experimental Laboratory for the Social

Sciences (CELSS) in November 2014, with Columbia University students recruited

from the whole campus through the laboratory’s ORSEE site. No subject par-

ticipated in more than one session. After entering the computer laboratory, the

students were seated randomly in booths separated by partitions; the experimenter

then read aloud the instructions, projected views of the computer screens during

the experiment, and answered all questions publicly.24

Because the design of the trading platform presents some challenges, we describe

it here is some detail.25

At the start of each treatment, a subject saw on his computer screen the matrix

of values, denominated in experimental points, and the vote allocation. To help

intuition, the two alternatives for each issue–Pass or Fail–were identified with two

colors–Orange or Blue–, and each individual’s values were written in the color of the

individual’s preferred alternative.26 The screen also showed the votes totals and the

points the subject would win if voting were held immediately. Each subject started

with one vote on each issue.

After having observed the matrix of values and the current vote allocation, a

subject could post a bid for a vote on one of the issues, in exchange for his vote on

a different issue. The bid appeared on all committee members’ monitors, together

with the ID of the subject posting the bid. A different subject could then accept

the bid by clicking the offer and highlighting it.27

A central feature of vote trading is that the preferences and vote holdings of the

specific individuals making a trade determine the effect of the trade. Contrary to

standard market experiments, then, subjects must not only post potentially prof-

itable bids, but also consider the specific identity of their trading partner. In adapt-

ing the bidding platform used in market experiments, we added a confirmation step.

24A copy of the instructions and sample trading screens are in an online Appendix.
25The computerized trading platform was implemented the Multistage program, an open source

software developed at Caltech’s Social Science Experimental Laboratory (SSEL). The software is
available for public download at http://multistage.ssel.caltech.edu:8000/multistage/.

26Thus all experimental values were positive and indicated earnings from one’s preferred alter-
native winning (relative to zero earning if it lost).

27We reproduce in Appendix B three screenshots shown during instructions.
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After a bid is accepted, a window appears on the bidder’s screen detailing the ef-

fects of that specific trade–what the outcome would be upon immediate voting–and

asking the bidder to confirm or reject the trade. If the trade is rejected, a message

appears on the screen of the rejected trade partner, informing him of the rejection.

After a trade was concluded, the vote tally on each issue was updated and

conveyed to all subjects via a specific message on all screens. The message also

reported the post-trade voting outcome if voting were to occur immediately. Note

that the value matrix and the updated vote holdings were always present on the

screen.

The market was open for three minutes.28 However, in a market where each

concluded trade can trigger a new chain of desired trades, it is particularly important

to ensure that all desired trades have the time to be executed. Thus the time limit

was automatically extended by 10 seconds whenever a new trade occurred within

10 seconds of the expected closure.

Only trades of a single vote on one issue against a single vote on a different issue

were allowed, again to limit the complexity of the task. No bid could be posted if

a subject did not have enough votes to execute it if accepted; thus a voter could

post multiple bids only as long as he had enough votes to execute them all, had all

been accepted. Posted bids could be canceled at any time, an important feature

in a market where somebody else’s executed trade can make an existing posted bid

suddenly unprofitable.

Once the market closed, voting took place automatically, with all votes on each

issue cast by the computer in the direction preferred by each subject. Then a new

round started.

The experiment consisted of three treatments, AB, ABC1, and ABC2, each

corresponding to a different matrix of values. In all three treatments, the size of

the voting committee was five (N = 5), while the number of issues depended on

the treatment: K = 2 in treatment AB, and K = 3 in treatments ABC1, and

ABC2. In each committee, subjects were identified by ID’s randomly assigned by

the computer, and issues were denoted by A and B (in treatment AB), and A, B

and C (in treatments ABC1 and ABC2). Each session started with two practice

rounds; then three rounds of treatment AB, and then five rounds each of ABC1

28Two minutes in treatment AB, with two issues only.
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and ABC2, alternating the order.29 We did not alternate the order of treatment

AB because its smaller size (K = 2) made it substantially easier for the subjects,

and thus we used it as further practice before the more complex treatments. This

is also the reason for the smaller number of rounds (three for AB, versus five for

ABC1 and ABC2).

Committees were randomly formed, and ID’s randomly assigned at the start of

each new treatment, but the composition of each group and subjects’ ID’s were kept

unchanged for all rounds of the same treatment, to help subjects learn. All but one

sessions consisted of 15 subjects, divided into three committees of five subjects.30

At the end of each session, subjects were paid their cumulative earnings from all

rounds, converting experimental points into dollars via a preannounced exchange

rate, plus a fixed show-up fee. Each session lasted about 90 minutes, and average

earnings were $34.

We designed the three treatments according to the following criteria. First, we

wanted a K = 2 treatment, both as further training for the subjects and because

of the sharp theoretical predictions of the Pivot algorithm in this case. Second,

we chose value matrices for which the stable outcome reachable via Pivot trades is

unique but requires multiple trades. In AB, the path to stability is unique, while

in both ABC1 and ABC2 the Pivot stable outcome can be reached via multiple

paths, with no path being clearly focal. Third, we chose matrices such that not only

is the Pivot stable outcome unique, but the stable vote allocation reached via Pivot

trades is unique, even with multiple possible trading paths. Fourth, we designed

matrices for which the Condorcet winner exists, but need not correspond to the

Pivot stable outcome: it does in AB (by necessity–see Proposition 2), and in ABC2

(by construction), but not in ABC1. Finally, we wanted ABC1 and ABC2 to be

superficially very similar and to have Pivot trading paths of similar multiplicity and

length, allowing us to test whether the different force of attraction of the Condorcet

winner predicted by the theory is reflected in the data. Note that we do not specify

R, the selection rule when multiple trades are possible, but let the experimental

subjects select which trades to conclude. Our theoretical results hold for all R.

The three preference profiles used in the experiment are given in Table 3.

29Two of the sessions had only two treatments: AB and ABC1 in one case, and A and ABC2
in the other.

30One session had only ten subjects, divided into two groups.
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AB
1 2 3 4 5

A 49 −29 −29 12 −12
B 12 −12 −49 29 49

ABC1
1 2 3 4 5

A 23 −23 10 −10 23
B −10 −10 23 −23 10
C 18 −18 −18 18 −18

ABC2
1 2 3 4 5

A −21 15 −9 21 9
B 15 9 15 −15 −15
C −9 −21 21 9 21

Table 3: Preference profiles used in experiment.

Session Treatments # Subjects # Groups # Rounds

s1 AB,ABC1, ABC2 10 2 3,5,5

s2 AB,ABC2, ABC1 15 3 3,5,5

s3 AB,ABC1, ABC2 15 3 3,5,5

s4 AB,ABC2, ABC1 15 3 3,5,5

s5 AB,ABC2 15 3 3,5

s6 AB,ABC1 15 3 3,5

Table 4: Experimental Design. Note: A programming error in sessions s5 and s6
made the last five rounds of data unusable.

In all three cases, the initial vote allocation V0 is unstable. In the case of matrix

AB, P = {B} is the Condorcet winner and the unique Pivot-stable outcome. The

Pivot algorithm follows a unique path, of length two (i.e. consists of a sequence of

two trades). Matrix ABC1 has identical properties to the matrix of values discussed

in the proof of Proposition 4. The Condorcet winner exists and corresponds to

P = {A}, but the unique Pivot-stable outcome is P = {A,B,C}. In matrix ABC2,

the Condorcet winner is P = {A,B,C}, and corresponds to the unique Pivot stable

outcome. With both matrices ABC1 and ABC2, the Pivot algorithm can follow

three different paths, and for both matrices two of these paths have length four, and

one has length three.31

Table 4 reports the experimental design.

31The possible paths are detailed in the Appendix.
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Treatment Tot trades groups × rounds Mean trades Median s.d Max Pivot

AB 115 51 2.25 2 1.92 13 2

ABC1 211 70 3.0 3 1.67 9 3,3,4

ABC2 175 70 2.5 2 1.36 7 3,3,4

Table 5: Number of trades.

4 Experimental Results.

4.1 Trading

How much trading did we see? Table 5 reports basic statistics on observed trades.

”Pivot” refers to the predicted number of trades under the Pivot algorithm. The

unit of analysis is the group per round.

A histogram of the number of trades per treatment (Figure 1) shows clearly the

higher frequency of few trades in the AB treatment, with K = 2. Between the two

K = 3 treatments, ABC2 has consistently higher fractions of low trades, but the

differences are not striking–56 percent of rounds end with two or fewer trades in

ABC2, as opposed to 41 percent in ABC1, and 80 percent end with three or fewer

trades in ABC2, as opposed to 76 percent in ABC1. In all treatments, few rounds

include five or more trades.

As expected, the bidder’s option of rejecting trades, and thus discriminating over

who accepted the original bid, was important. In columns 2-4 of Table 3, we report

the total number of bids, how many of these found a taker in the market, and how

many of these acceptances were then rejected by the bidder. A large fraction of all

posted bids found a counterpart–from a minimum of 77 percent in ABC2 to more

than 95 percent in AB–but about a third of these accepted trades were rejected by

the bidder– 32 percent in A, 29 percent in ABC1, and 34 percent in ABC2. As the

last column of the table shows, some rejected trades were associated with a strict

increase in myopic payoff for the bidder, but the number is small–between 10 and

20 percent of rejections in all treatments.

Whether in terms of number of trades or of any other variable studied below,

the data show no evidence of learning or of order effects–behavior appears very

consistent across rounds, and regardless of whether ABC1 or ABC2 was played
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Figure 1: Number of trades. Frequencies

Treatment Tot bids Accepted Rejected by bidder Rejected with payoff gain

AB 177 169 54 6

ABC1 368 296 85 15

ABC2 345 267 92 11

Table 6: Bids, accepted bids, and rejected trades. Tot bids excludes canceled bids.

first. Thus we present the experimental results aggregating over rounds and order.

4.2 Stability

Our point of departure is the definition of stable vote allocations. Is the stability

requirement satisfied in the vote allocation to which our subjects converge at the

end of each round? Figure 2 shows the CDF of steps to stability for the three

treatments, in blue, as well as in 5,000 simulations with random trading, in grey,

with the dottted line. The horizontal axis measures the minimal number of Pivot

trades necessary to reach stability, and the vertical axis the proportion of final vote

allocations not further from stability than the corresponding number of trades.

The fraction of stable vote allocations in the experimental data was 76 percent in

AB, and 64 percent in both treatments ABC1 and ABC2. In all treatments, more
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Figure 2: Steps to stability. Cumulative distribution functions.

than 80 percent of all vote allocations were within one step (one trade) of stability,

although the figure also shows the predictably easier convergence to stability in the

AB treatment, with only two proposals. In all three treatments, the distribution

corresponding to random trading FOSD’s the distribution for the experimental data.

The simulation of random trades provides the yardstick of comparison for our

data. We will use it repeatedly in what follows, and it is worth describing the

methodology in some detail. In each treatment, we constructed the random trades

by randomly selecting an individual, one or two issues (in the two- and three-issue

treatments, respectively), a partner, and a direction of trade, all with equal probabil-

ity, and enacting the trade as long as both traders’ budget constraints are satisfied.

If budget constraints are violated, we cancel the proposed trade and restart. In

each group, a trade occurs with specified probability over a short time interval, with

both parameters calculated to match the observed average length of rounds and the
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average number of trades in the treatment.32 For each treatment, we repeated the

procedure 5,000 times, each time focusing on a group.33

Figure 2 reports information on the stability of the vote allocations reached at

the end of trading. But our data also give us information on dynamic convergence.

Do successive trades move the vote allocation towards stability?

Figures 3 and 4 show, for each treatment, the dynamic path of the vote alloca-

tion, as captured by the succession of trades. The horizontal axis measures time,

in seconds. A marker corresponds to a trade. Thus, for any given marker, the hor-

izontal axis indicates when the trade took place, within the maximal round length

observed in the data for each treatment.34 The vertical axis measures distance from

stability, defined, as in Figure 2, by the minimal number of Pivot trades necessary

to reach a stable allocation. Such number is calculated first for the vote allocation

characterizing each group in the treatment at that moment in that round, and then

averaging over the groups. The figure is drawn pooling over all groups and all ses-

sions, for given treatment, and each curve, with its own shade and marker symbol,

reports data from the same round (1-3 for AB and 1-5 for ABC1 and ABC2). The

jumps between dots are relatively small because a trade concerns a single group,

while the others’ vote allocations remain unchanged.

All curves decline, almost perfectly monotonically, showing the dynamic conver-

gence towards stability. To help us evaluate such convergence, the black curve in

each panel reports the steps from stability calculated from the 5,000 simulations

with random trading.

After the first minute, in all three treatments, the curve corresponding to random

trades remains higher than the curve corresponding to any round of experimental

32Given the average length of a round in the treatment, time is divided into a grid of 100 cells,
and in each cell a group can trade with probability p, such that 100p equals the mean number of
trades per round in the treatment.

33Note that random trading is a demanding comparison when applied to the stability of vote
allocations. The reason is that a large fraction of feasible trades take the vote allocation away from
minimal majority, and hence make pivot trades impossible, and the allocation stable. For example,
in treatment AB, where breaking minimal majority on a single issue is sufficient to induce stability,
a single random vote trade from any unstable allocation has never less than a 30 percent chance
of inducing stability.

34The trading period lasts 180 seconds, but there is a 10 second delay with each trade, to give
time to subjects to study the new vote allocations. In addition, 10 more seconds are added at the
end of the period if any trade takes place in the last 10 seconds.
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data.35 Notice also the lack of learning in the data–there is no systematic difference

between earlier and later rounds.36

Figure 3: Dynamic convergence to pivot stable outcomes. Data vs. Random. 
AB matrix.

4.3 Vote Allocations

For all three value matrices used in our experiment, the Pivot algorithms predict

a unique stable vote allocation. Is such an allocation reached by the experimental

subjects? Figure 5 reports the number of votes held by each voter at the end of a

round, averaged over all rounds of the same treatment. Each panel corresponds to a

treatment and reports the number of votes by voter ID, i.e. by the vector of values

corresponding to each column of the value matrix. The blue columns represent the

experimental data, the grey columns the Pivot prediction, and the red line the no-

trade status quo (or equivalently, the average vote holding after random trading).

35With the exception of two trades in round 5 in ABC2.
36To verify that results were not driven by averaging, we computed CDF’s of steps to stability

for the data and for the random simulations, as in Figure 1, at all 30-second intervals. In all
treatments and at all times, the CDF corresponding to random trading FOSD’s the CDF from the
data.
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Figure 4: Dynamic convergence to pivot stable outcomes. Data vs. Random. 
ABC1, ABC2.

The figure reports data from all rounds, but remains effectively identical if we select

stable vote allocations only.

It is clear from the figure that the vote distribution in the data is less sharply

variable across issues than theory predicts, as we would expect in the presence of

noise. Yet, the qualitative predictions are strongly supported. There are five voters

in each treatment, holding votes over two (in AB) or three issues (in ABC1 and

ABC2)–a total of forty points. Of these forty, the theory predicts that 14 should

be above 1–the voter should be a net buyer over that issue– and 15 below 1–the

voter should be a net seller. The prediction is satisfied in every single case, across

all treatments. When the theory predicts holding a single vote–11 cases for which

the voter should exit trade with the same number of votes held at the start–, the

data show three cases where the average vote holding is below 1, five where it is

above, and three where it is effectively indistinguishable from 1. On average, our

subjects hold 0.56 votes when the theory predicts 0; 1.05 when the theory predicts

1, and 1.43 when the theory predicts 2.07.37

37The theory predicts that voter 3 in treatment ABC1 should hold three votes.
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Figure 5: Average vote allocations at the end of each round, by voter type. Top Panel AB.
Middle Panel ABC1. Bottom Panel ABC2.

28



4.4 Trades

According to our results so far, final vote allocations tend to be stable; dynamic

trading moves towards stability, and final individual vote holdings mirror qualita-

tively the properties of Pivot-stable allocations. But can we say more about the

specific trades we see in the lab? In particular, are these trades compatible with the

Pivot algorithm?

4.4.1 Pivot trades.

The class of Pivot algorithms is a class of mechanical selection rules among feasible

pair-wise trades. It is not a model of individual behavior. Accordingly, it should be

tested not on individual trades, but on binary trades–i.e. by considering the fraction

of all trades associated with myopic strict increases in payoff for both traders. We

plot such a fraction in Figure 6. The blue columns correspond to the experimental

data, the light grey columns to the simulations with random trading, and the error

bars indicate 95 percent confidence intervals (under the null of random trading).38

The figure shows clearly the subjects’ search for gains. With random trading,

the frequency of payoff gains for both traders is 3 percent in AB and 1 percent in

ABC1 and ABC2, or less than one fifth of what we observe in AB, and less than one

tenth in ABC1 and ABC2. In all cases, the probability that the data are generated

by random trades is negligible.

But if the trading behavior of the experimental subjects is not random, it is also

true that the fraction of trades consistent with the Pivot algorithm is small: 17

percent in AB, 26 percent in ABC1 and 18 percent in ABC2. Which other trades

are subjects concluding?

4.4.2 Other trades.

We find that a much larger share of the data can be explained by extending the Pivot

algorithm in one of two directions. First, while the Pivot algorithm selects trades

with strict gains in payoffs, in every treatment more than 40 percent of all trades

result in no change in payoff for either trader. Zero-gain trades are trades involving

38Note that under the null all observations are independent. Thus no correction for correlation
is required.
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Figure 6: Fraction of Pivot Trades

non-pivotal votes, and thus preserving the status quo outcome; they could be the

result of buying votes from allies with weak preferences, for example, or of buying

losing votes, to strengthen one’s favorite side’s margin of victory. No (myopic)

rationality requirement is violated by trades that are only weakly-improving, either

for one or both traders, and our algorithm could be extended to accommodate such

trades.

Second, as we note in the proof of the Theorem, every Pivot trade corresponds to

an increase in the score function σit(Xi, Vit) for the two traders involved.39 But not

all increases in score correspond to Pivot trades: trades that shift votes from low to

high-value proposals do not cause strict myopic payoff gains if they do not change

the resolution of the high-value proposals, either because they continue to be lost or

39Recall that σit(Xi, Vit) is defined by:

σit =
K∑

k=1

xki v
k
it

where xki is the absolute valuation attached by i to proposal k passing, and vkit is the number of
votes on k held by i at t.

30



because they were already won. Such trades could reflect difficulties understanding

pivotality, but could also mirror behavior that is more forward-looking than Pivot

algorithms. Myopic gains are evaluated assuming voting occurred immediately. In

fact, in the uncertain and complex enviroment of our experiment, subjects may

want to accumulate votes on high value proposals, regardless of their resolution

under immediate voting, because they conjecture that further trades are likely to

take place before voting actually occurs.

Figure 7 shows, for each treatment, the fraction of binary trades consistent with

Pivot trades (in dark blue), weak payoff increases for both traders (light blue), and

score increases, again for both traders (in orange).40

Figure 7: Types of Trades

By construction, Pivot trades are a subset of both of the other two categories,

and thus must explain a lower fraction of observed trades. What is surprising is

how much smaller. The figure shows that Pivot trades are of the order of one third

of all weakly-payoff-improving trades in treatments A and ABC2, and about two

fifths in treatment ABC1. Similar numbers apply to score-improving trades.

The frequency of different types of trades is informative, but what we need to

understand is the intentionality of such trades. As we remarked about Figure 6,

Pivot trades are not very frequent, but they appear intentional: they cannot be

explained by random trading. Is that true of other types of trades?

Figure 8 plots, for the representative case of the AB treatment, the observed

fractions of Pivot trades, zero-payoff change trades, and score-increasing-not-Pivot

trades, together with the corresponding fractions under random trading and the 95

40The experimental matrices do not allow for weak score increases.
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percent confidence interval under the null hypothesis of random trading.

Figure 8: AB trades by type v/s random.

The figure makes clear that although the fraction of zero-payoff changing trades

is large, we cannot rule out that it is the result of noisy trading: because all non-

pivotal trades have zero effect on payoffs, for any given vote distribution a large share

of feasible trades belongs to this class and thus is chosen under random trading. The

figure does show, however, that this is not true for non-Pivot-score-increasing trades:

the fraction observed in the data in significantly higher than under random trading

(p < 0.0001).

We can make these observations more precise through a simple statistical model.

4.4.3 A simple statistical model

The model does not aim at explaining behavior but at classifying the types of trades,

lending some rigor to the comments suggested by the figures. In line with the data

just reported, we suppose that executed trades are selected according to four myopic

criteria, synthetic summaries of the rules followed by the pairs of traders: (1) Pivot

trades; (2) zero-payoff changing trades; (3) score-improving trades; (4) some other

criterion we ignore, and such that the trade appears to us fully random. When
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AB ABC1 ABC2
probP 0.06 [0, 0.14] 0.19 [0.13, 0.25] 0.11 [0.05, 0.17]

prob0 0.11 [0, 0.23] 0.07 [0, 0.16] 0 [0, 0.10]

probS 0.41 [0.28, 0.55] 0.34 [0.25, 0.43] 0.39 [0.29, 0.49]

probR 0.42 [0.27, 0.57] 0.40 [0.29, 0.52] 0.50 [0.35, 0.59]

Table 7: Model parameter estimates with 95% confidence intervals.

executing a trade, each pair of traders follows one of these rules. Each trade can

then be written in terms of the probability of following the four criteria: probP

for Pivot trading; prob0 for zero-payoff changing trades, probS for score improving

trades, and probR for random trades. Call Tt the set of all trades feasible at t, where

a trade is defined by a pair of traders, a pair of proposals, and the direction of trade.

Similarly, call T P
t the set of all feasible Pivot trades, T 0

t the set of all feasible zero-

payoff trades, and T S
t the set of all feasible score-improving trades. Suppose that

we observe a Pivot trade. The probability of such a trade equals probP/|T P
t | +

probS/|T S
t | + probR/|Tt|. Similarly, the probability of a score-improving but not

Pivot trade is given by probS/|T S
t |+ probR/|Tt|. Assuming that different trades are

independent, the likelihood of observing the data set is simply the product of the

probabilities of each trade.The probabilities probP , prob0, probS, and probR can

then be estimated immediately through maximum likelihood. The only challenge is

that the sets of feasible trades, Tt, T
P
t , T 0

t , and T S
t , all evolve over time, as budget

constraints become binding, and the changes in vote allocations alter the payoff

effects of different vote exchanges.

We report our estimates in Table 7, together with the 95 percent confidence

intervals.41

According to our statistical model, trade is very noisy and, as Figure 8 lead us

to expect, there is no evidence of intentional zero-profit trades in any of the three

treatments (in all treatments the 95 percent confidence interval for prob0 includes 0).

There is however a significant probability of Pivot trades in treatments ABC1 and

ABC2, and of score-improving trades in all three treatments. Again as implied by

the figures, probP and probS are not fully collinear and can be estimated separately.

41We constructed the confidence intervals by bootstrapping the data and estimating the model’s
parameters 1000 times. The changing sets of different types of trades make the procedure compu-
tationally demanding.
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Score-improvement is a less powerful hypothesis than Pivot trading but explains a

larger fraction of the data.

4.4.4 Score-improving trades

Observing that a rising score can explain a substantial fraction of the experimental

trades does not imply that the increase in score is the final objective pursued by our

subjects. A first reason to be skeptical is the frequency of rejected trades reported

in Section 4.1. Recall that about a third of all accepted bids are rejected by the

bidder. Contrary to payoff changes, score increases do not depend on the identity

of the trading partner: if score increases were the goal of the trades, they could be

secured by the bidder and there would be no reason to reject any partner.42

A second cause for doubt comes from investigating whether subjects have indeed

exploited all opportunities for score increases when trade comes to an end. We have

defined stability as the absence of any feasible pairwise strictly payoff-improving

trade. We can construct the similar concept of score stability, defined as the absence

of any feasible pairwise score-improving trade, and enquire whether score stability

is a useful characterization of final vote allocations.43 Figure 9 plots the CDF’s of

minimal steps from score stability in the three treatments (in orange), together with

the CDF of minimal steps to payoff stability (in blue).

Figure 9: CDF’s score and payoff stability

Score stability is a much weaker explanation of final vote allocations than payoff

42In fact, in all treatments more than two thirds of the trades rejected by the bidder would have
caused the bidder an increase in score.

43Note that a score-stable allocation always exists in pair-wise trading (by the proof of the
Theorem).
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stability: the fraction of score-stable final vote allocations is 34 percent in AB, 14

percent in ABC1, and 6 percent in ABC2; the corresponding numbers for payoff-

stability are 76 percent, 64 percent, and again 64 percent. Not only does the orange

CDF FOSD’s the blue CDF (in AB and ABC1), but the gaps are large.

Our conclusion then is that subjects do engage in score-improving trades, even

when such score improvements are not accompanied by myopic increases in pay-

offs. But they recognize payoff-stable vote allocations and tend to stop trading at

that point. Subjects do not pursue score improvements for their own sake, and

stop trading long before achieving maximal score improvements. Thus non-Pivot

score-improving trades are unlikely to reflect primarily confusion about pivotality

or payoffs, and more likely to result from some cautionary behavior in front of

uncertainty about future trades.

4.5 Outcomes

Which outcomes did the experimental subjects reach? Figure 10 plots the frequency

of different outcomes observed over the full data (light blue), or restricting attention

to stable outcomes only (dark blue).

Figure 10: Frequency of outcomes. All data and stable allocations only.

Outcomes are ordered from lowest to highest aggregate payoff (thus the order is
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different in ABC1 and ABC2). A star indicates the Condorcet winner, and a dot

the Pivot stable outcome.

The figure shows two immediate regularities. First, in all treatments, the Con-

dorcet winner is the most frequent outcome, whether we consider all outcomes, or

stable outcomes only. Second, in all treatments, the frequency of outcomes corre-

lates positively and significantly with aggregate payoffs. However, because both the

Condorcet winner and aggregate payoffs also correlate perfectly with persistence of

pre-trade outcomes44, both results may reflect the inertia built into the market by

the frequent zero-gain trades.

In terms of Pivot predictions, we see a higher frequency of the Condorcet winner,

relative to the second most frequent outcome, in treatments AB and ABC2, where

the Condorcet winner is Pivot-stable. And among stable outcomes we see a small

spike in the frequency of outcome {A,B,C} in treatment ABC1 where it is Pivot-

stable, relatively to the outcome’s low payoff-rank. On the whole, however, the clean

predictions on outcomes derived from the Pivot algorithm are not evident in the

data. Contrary to a goods market, the outcomes of vote-trading are very sensitive

to deviations–one subject’s missed trading opportunity affects the final result of

voting for all. As shown by Figure 11, the outcomes we observe are qualitatively in

line with the trades’ characteristics highlighted by the statistical model.

The figure reports the frequency of different outcomes in the data (considering

here all final vote allocations, whether stable or unstable) and, in columns denoted

by diagonal stripes, in 5,000 trading simulations in which, given the vote allocation,

a trade is selected randomly, following the estimated probabilities in Table 7. As

in all simulations in the paper, at each time interval the probability of a trade

occuring is calculated so as to replicate, on average, the observed number of trades

in the treatment. The model simulations match the ordinal ranks of the different

outcomes’ frequencies, although they consistently overestimate the frequency of the

Condorcet winner. Such overestimation, however, is mostly mechanical: the result of

the relatively high probability of random trades, and the likelihood that such random

trades leave outcomes unchanged. Because zero-gain trades result in non-Pivotal

vote allocations, they make Pivot-trades impossible, and thus bias the simulations

44In our matrices, the fewer the changes in the resolution of the different issues, the higher the
aggregate payoff.
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Figure 11: Simulated Outcomes

towards pre-trade outcomes and the Condorcet winner.

5 Conclusions

The aim of this paper is to develop a theoretical framework for studying vote trad-

ing in committees and to use the framework to help us understand data from a

vote trading laboratory experiment. The theoretical framework has two essential

features: (1) a notion of stability; and (2) a class of rational vote trading algorithms.

With respect to (1), we define as stable those vote allocations for which there are

no strict payoff-improving vote trades between any two voters. We then extend this

definition to allow for coalitional trades. With respect to (2), we describe a fam-

ily of algorithms called Pivot Algorithms, which define sequences of rational trades

between pairs, or coalitions, of voters. We show that if trades are limited to pairs

of voters, Pivot Algorithms always converge to a stable vote allocations. The result

however breaks down for coalitional trades. We show that the outcomes reached

through the algorithms have desirable welfare properties in special cases (when only

two proposals are on the table, or when the committee consists of three voters and

the Condorcet winner exists) but need not be desirable in general.

The experiment delivered three main findings. First, our notion of stability helps
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in explaining the experimental data. Overall, two-thirds of the final vote allocations

in the experiment are stable, and more than eighty percent are at most one trade

away from stability. Second, although final vote allocations are in line with the

theory, final outcomes show a clear bias towards the pre-trade outcome. In vote-

trading environments, individual deviations from predicted trades can have large

impacts. In particular, trades that cumulate votes on the side that is already winning

make pivotal trades impossible and consolidate the pre-trade outcome. Finally, an

analysis of trade-by-trade data lends weak support to the pivot algorithm itself. We

classify trades though a simple statistical model and find that score-improving trades

are more prevalent in the data than strict payoff-improving trades. Score-improving

trades are vote exchanges in which each voter trades a vote on a less important issue

in exchange for a vote on a more important issue, without necessarily benefiting from

the trade (either because the outcome does not change, or because the directions of

preferences are such that one voter suffers a loss). Because such trades co-exist with

the subjects’ ability to recognize stable vote allocations–i.e. to stop trading in the

absence of further opportunities for payoff increases, we conjecture that they may

be precautionary more than irrational. It is an intriguing conclusion, suggesting the

possibility of farsighted behavior by the experimental subjects, in a very complex

environment. We leave the discussion of such a possibility to future research.
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Appendix 1. For online Publication

Proposition 2. If K = 2, then, for all N , Z, and R: (1) P(VT ) is unique.

(2) P(VT ) is Pareto optimal. (3) If a Condorcet winner exists, then P(VT ) is the

Condorcet winner. (4) P(VT ) can never be the Condorcet loser. (5) If P(VT ) 6=
P(V0), then a majority prefers P(VT ) to P(V0).

Proof. (1). At any step t, if there is a unique blocking pair, then Vt+1 is deter-

mined uniquely and to any unique vote allocation corresponds a unique outcome.

Multiplicity can arise only if at any step there are multiple blocking pairs (possibly

with some voters belonging to more than one pair). But if K = 2 any trade by any

of the blocking pairs must induce the identical change in outcome. Thus at any step

the outcome of the vote is unique. And since a Pivot-stable outcome exists, it must

be unique. Note that the Pivot-stable vote allocation need not be unique.

(2) With K = 2, there are four possible outcomes: {{∅}, {1}, {2}, {1, 2}}.
Suppose, with no loss of generality, that P(V0) = {1, 2}. With K = 2, P(VT ) ∈
{{1, 2}, {∅}}. Majority voting at V0 implies that at least one trader must rank

P(V0) strictly above all other outcomes. But if trade occurs and V0 is blocked,

there must be at least two voters who strictly prefer {∅} to P(V0). One of those

voters must have preferences: {2} � {∅} � {1, 2} � {1}, and the other {1} �
{∅} � {1, 2} � {2}. Thus, if V0 is blocked, no outcome is Pareto-dominated and

all are Pareto-optimal. If V0 is not blocked, P(V0) = P(VT ) by definition, and again

it is Pareto-optimal.

(3) Again suppose, with no loss, that P(V0) = {1, 2}. There are four possible

preference types, which we call T1,2, T∅, T1, and T2, with rankings as in Table 8.

Preferences are transitive and the outcome in any cell is preferred to the outcome(s)

below it; two outcomes are in the same cell when either could be ranked above the

other.

Call n1,2 the number of voters of type T1,2, and similarly for the other types.

With P(V0) = {1, 2}, both proposals are supported by a majority of voters. Call

M1 (M2) the number of voters who prefer 1 (2) to pass rather than fail. Then M1 =

n1,2 + n1 ≥ (N + 1)/2, and M2 = n1,2 + n2 ≥ (N + 1)/2. We begin by asking

whether any of the four possible outcomes could be the Condorcet winner. With

P(V0) = {1, 2}, it follows immediately that {1, 2} is preferred by the majority to
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T1,2 T∅ T1 T2
1, 2 ∅ 1 2
2 2 ∅ ∅
1 1 1, 2 1, 2
∅ 1, 2 2 1

Table 8: K = 2, possible preference types.

{P 1} and to {2}–more generally the no-trade outcome must be majority preferred

to any outcome that differs in the direction in which a single proposal is decided.

This is Park (1967) and Kadane’s (1972) result: if there is a Condorcet winner, it

can only be the no-trade outcome. Here that is P(V0) = {1, 2}. Suppose then that

P(V0) is the Condorcet winner.

If either M1 > (N + 1)/2 or M2 > (N + 1)/2, no voter is pivotal, V0 cannot

be blocked, and P(VT ) trivially equals P(V0), the Condorcet winner. Hence the

proposition holds. The more interesting case is when M1 = M2 = (N + 1)/2, V0 is

blocked, and trade takes place. Notice that in such a case (N + 1)/2 = n1,2 + n1 =

n1,2 + n2. Hence n1 = n2. Call such a number m. {1, 2} (P(V0)) is the Condorcet

winner if it beats {∅} but the ranking of the two outcomes by types T1 and T2 is

ambiguous. Call mPP
1 (m∅

1 ) the number of voters of type T1 who rank {1, 2} above

(below) {∅}, and similarly for voters of type T2. P(V0) = {1, 2} beats {∅} if and

only if (n+ 1)/2+ mPP
1 +mPP

2 > (n− 1)/2+ m∅
1 +m∅

2 , or:

1 > (m∅
1 +m∅

2 )−
(
mPP

1 +mPP
2

)
(1)

Note that (m∅
1 +m∅

2 ) +
(
mPP

1 +mPP
2

)
= 2m, an even number. But if the sum of

two numbers is even, the difference of those two numbers is also even. Hence {1, 2}
is the Condorcet winner if and only if (m∅

1 +m∅
2 ) =

(
mPP

1 +mPP
2

)
− 2R, where R

is an integer strictly larger than 0.

We now show that if {1, 2} is the Condorcet winner, than it must also be the

Pivot-stable outcome. Any pair of traders blocking V0 must be such that one of them

is counted in m∅
1 and one is counted in m∅

2 . With K = 2, voters can only trade votes

once. Hence V0 is blocked once if min(m∅
1 ,m

∅
2 ) = 1 and any Vt such that Pt = {1, 2}

can potentially be blocked s times if min(m∅
1 ,m

∅
2 ) = s. Similarly, if V0 is blocked and
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V1 is such that P1 = {∅}, V1 will be blocked if min(mPP
1 ,mPP

2 ) = 1. As above, any Vt

such that Pt = {∅} can potentially be blocked s′ times if min(mPP
1 ,mPP

2 ) = s′. Thus

{1, 2} is the Pivot-stable outcome if and only if min(mPP
1 ,mPP

2 ) ≥ min(m∅
1 ,m

∅
2 ).

Now recall that (m∅
1 + mPP

1 ) = (m∅
2 + mPP

2 ) since both sums must equal m. Thus

if {1, 2} is the Condorcet winner and (m∅
1 +m∅

2 ) =
(
mPP

1 +mPP
2

)
− 2R, it must be

that m∅
1 = mPP

2 −R and m∅
2 = mPP

1 −R. Hence min(mPP
1 ,mPP

2 ) = min(m∅
1 ,m

∅
2 )+

R, or min(mPP
1 ,mPP

2 ) ≥ min(m∅
1 ,m

∅
2 ), and {1, 2} is the Pivot-stable outcome. Note

that identifying P(V0) with {1, 2} is with no loss of generality. The proof can be

restated as follows: the only candidate for Condorcet winner is P(V0), and when

P(V0) is the Condorcet winner, then it must also be the Pivot-stable outcome.

(4) By Kadane’s ”improvement algorithm”, if P(V0) = {1, 2}, then not only is

{1, 2} majority preferred to {1} and to {2}, but {1} and {2} are majority preferred

to {∅}. Hence if there is a Condorcet loser, it can only be {∅}. But if {∅}
is the Condorcet loser, it means that {1, 2} is majority preferred to {∅}. Hence

P(V0) = {1, 2} is the Condorcet winner, and by (2) above P(VT ) = P(V0).

(5). From (2) above, if P(V0) is the Condorcet winner,then P(VT ) = P(V0).

Thus if P(VT ) 6= P(V0), P(V0)is not the Condorcet winner. If, with no loss of

generality, P(V0) = {1, 2}, then if P(VT ) 6= P(V0), P(VT ) = {∅}. By Kadane’s

argument, P(V0) = {1, 2} is majority preferred to {1} and to {2}. Hence if P(V0)is

not the Condorcet winner,{∅} must be majority preferred to {1, 2} = P(V0). But

{∅} = P(VT ). Hence if P(VT ) 6= P(V0), P(VT ) must be majority preferred to

P(V0).�

Proposition 3. If N = 3, then for all K, Z, and R: (1) if a Condorcet winner

exists, P(VT ) is unique and is the Condorcet winner.(2) P(VT ) can never be the

Condorcet loser.45

Proof. (1). Select any k proposals, with k = 2, .., K − 1. Call P(V0, k
−) the

outcome that would follow if the k proposals were decided against the majority

preference at V0, and the remaining K − k according to the majority preference

at V0, i.e. as if one vote trade was executed on the k proposals and none on the

remainder. If the Condorcet winner exists, by Park and Kadane, it can only be

P(V0). Thus for any P(V0, k
−) at least two of the three voters prefer P(V0) to

45Result (1) replicates the result in Koehler (1975), under slightly different assumptions. We
find however that the result is limited to N = 3.
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P(V0, k
−). But then no trade can take place. If the Condorcet winner exists, V0

cannot be blocked. Thus P(VT ) equals P(V0) and is the Condorcet winner.

(2) We begin by reiterating, and generalizing, an argument we used above in the

proof of Proposition 2.

Lemma 2. Call P−(V0) the outcome obtained by choosing the minority’s pre-

ferred direction for each proposal at V0. If a Condorcet loser exists, it can only be

P−(V0).

Proof of Lemma 2. The Lemma follows from Kadane’s improvement algo-

rithm. Select k from the K proposals (k = 1, .., K − 1). Consider the outcome

P(V0, k
−) obtained by deciding those k proposals in the direction favored by the

minority at V0, and the remainder K − k in the direction favored by the major-

ity. Now consider the outcome obtained by switching one additional proposal from

the majority to the minority’s preferred direction at V0: P(V0, k
−, (k + 1)−), where

the argument k− is maintained to make clear that the selection of the original k

proposals has not changed. Then, by construction, P(V0, k
−) is majority preferred

to P(V0, k
−, (k + 1)−). It follows that for any P 6= P−(V0) there always exists an

outcome P′ that differs only by switching the direction of one proposal from the

majority’s to the minority’s at V0 such that P is majority preferred to P′. Hence if

a Condorcet loser exists, it can only be P−(V0). �

We can now prove (2). By Lemma 2, if a Condorcet loser exists it can only be

P−(V0). The result follows if we can show that if P−(V0) is Pivot-stable, it cannot

be the Condorcet loser. Suppose P−(V0) is Pivot-stable, and call V −0 any allocation

of votes such that P(V −0 ) = P−(V0). Given preferences Z, consider any allocation

of votes V (Z) such that V −0 can be reached from V (Z) through a strictly pair-wise

improving trade. Since P−(V0) 6= P(V0) and P−(V0) is Pivot-stable, V (Z) must

exist. With N = 3, the existence of a strictly pair-wise improving trade implies that

P(V −0 ) = P−(V0) is majority preferred to P(V (Z)). Hence if P−(V0) is Pivot-stable,

it cannot be the Condorcet loser, and the result is proven. �

Proposition 5. There exist K, N , Z, and RC such the C-Pivot algorithm never

reaches a stable vote allocation.

Proof. Consider the following example, where as usual rows represent proposals,

columns represent voters and the entry in each cell is zki , the value attached by voter
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1 2 3 4 5 6 7
A 3 −2 −2 −2 1 1 1
B −2 3 −2 −2 1 1 1
C −2 −2 3 −2 1 1 1
D −2 −2 −2 3 1 1 1

Table 9: Profile where C-Pivot never converges.

i to proposal k passing.

At V0, all proposals pass, and ui(V0) = −3 for i = {1, 2, 3, 4}. Consider a

coalition composed of such voters, and the following coalition trade: voter 1 gives

his A vote to voter 2, in exchange for his B vote; voter 3 gives his C vote to voter

4, in exchange for his D vote. At V1, all proposals fail and ui(V1) = 0 for all i ∈ C.

The trade is strictly improving for all members of the coalition. In addition, it

is a minimal trade, since V1 cannot be reached by the coalition by trading fewer

votes, nor can it be reached by a smaller coalition (each of the two pair-wise trades

alone is welfare decreasing for the pair involved). But note that V1 is not C-Pivot

stable: voters 1 and 2 can block V1 by trading back their respective votes on A and

B, reaching outcome P(V2) = {A,B}, and enjoying a strictly positive increase in

payoffs: uj(V2) = 1 for j = {1, 2}. The same argument applies to voters 3 and 4. At

V2, us(V2) = −4 for s = {3, 4}, but 3 and 4 can block V2, trade back their votes on

C and D, and obtain a strict improvement in their payoff: P(V3) = {A,B,C,D},
and us(V3) = −3 for s = {3, 4}. Note that the sequence of trades has generated

a cycle: V3 = V0, an allocation that is blocked by coalition C = {1, 2, 3, 4}, etc..

Hence for RC that selects the blocking coalitions in the order described, no C-Pivot

stable allocation of votes can be reached.�

The logic we exploited in the proof of the Theorem in section 3 does not extend to

coalition trades. Because of the externalities present in coalitional trades, the score

function we defined earlier is no longer monotonically increasing in the number of

trades. In the example, voters 1, 2, 3, and 4 have a score of 9 before the coalition

trade and a score of 8 after the trade.46 Cycles become possible, and stability cannot

46In the example, the coalition trade can be divided into two separate pair-wise trades, but this
feaure plays no important role. It is easy to generate examples where coalition trades are linked
in a chain. What matters is that scores can fall after a welfare-improving coalition trade.
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be guaranteed.

Proposition 7. Consider Z such that the Condorcet winner exists. (1) If

either K = 2 or N = 3, then the C-Pivot stable outcome always exists, is unique,

and coincides with the Condorcet winner. (2) If K > 2 and N > 3, if a C-Pivot

stable outcome exists, it need not coincide with the Condorcet winner.

Proof. (1) (i) Consider first the case K = 2. The following Lemma establishes

that the existence of a C-Pivot stable outcome:

Lemma 3. If K = 2, then for all N , Z, and R a C-Pivot stable allocation V

always exists.

Proof of Lemma 3. We need two further Lemmas:

Lemma 4. If at V0 both proposals pass by minimal majority, then if K = 2 all

C-Pivot trades must be pair-wise trades.

Proof of Lemma 4. By minimality of the coalition trades, if at V0 both pro-

posals pass by minimal majority then at each step of the algorithm both proposals

must be decided by minimal majority. At each step t any coalition must include a

voter with preferences {1} � P(Vt) and a voter with preferences {2} � P(Vt), and

each must have at least one vote to trade away, or they would not be part of the

minimal coalition. But if the proposals are decided by minimal majority, the two

voters could just trade among themselves. Hence the minimal coalition must be a

pair.�

Lemma 5. If K = 2, there can be at most one trade that is not pair-wise, and

it can only be the first.

Proof of Lemma 5. By Lemma 4, if non pair-wise coalition trades occur, it

must be that at V0 at least one proposal is not decided by minimal majority. Any

blocking coalition at V0 must then involve more than two voters. But by minimality,

after the coalition trade both proposals must be decided by minimal majority. But

then from t = 1 onward, all trades can only be pair-wise trades.�

We can now prove Lemma 3. If V0 cannot be blocked, then it is trivially stable.

If it can be blocked, then Lemma 4 and 5 imply that any voter can at most trade

once. Hence the trades must converge to a stable votes allocation. We can say more:

a stable votes allocation must be reached in at most (N − 1)/2 steps, the maximal
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number of possible pair-wise trades.�

We can now prove that the C-Pivot stable outcome must coincide with the

Condorcet winner, when the Condorcet winner exists, and thus be unique.47 If at

V0 both proposals pass by minimal majority then by Lemma 4 Proposition 2 applies

and the result follows. Suppose then that at V0 at least one proposal is not decided

by minimal majority. If there is no blocking coalition, V0 is trivially stable, and

since the Condorcet winner can only be P(V0), then the stable outcome coincides

with the Condorcet winner, if it exists. Suppose then that at least one blocking

coalition exists (and note that it must include more than two voters). If several

exist, select one by rule RC . After the first coalitional trade, P(V1) = {∅}. With

K = 2, all members of a minimal coalition can only trade once, regardless of the

coalition’s size. We can construct a fictional vote allocation Ṽ0 and preferences Z̃

such that ṽk0i = vk1i and z̃ki = zki for all i /∈ C, and ṽk0i = 1 and z̃ki = −1 for all i ∈ C,

k = 1, 2. Note that P(Ṽ0) = P(V1) = ∅, and Z̃ respects all individuals’ ranking

between the only possible outcomes, {1, 2} and {∅}, but Ṽ0 and Z̃ guarantee that, as

required, all i ∈ C will not trade any further. At Ṽ0, both proposals are decided by

minimal majority, and starting from Ṽ0 all minimal coalitions will be pair-wise. As

a result, starting from Ṽ0, Proposition 2 applies. Note that, if P(V0) = {1, 2} is the

Condorcet winner, then a majority prefers P(V0) to P(Ṽ0). Hence, by Proposition

2, P (Ṽ0) cannot be Pivot stable. The C-Pivot stable outcome is then P(V0). But

P(V0) is the Condorcet winner and the result is proven.

(ii). Consider now the case N = 3. Recall that the Condorcet winner can only

be P(V0). If N = 3, and the Condorcet winner exists, then no welfare improving

trade exists at V0. Hence P(V0) is trivially C-Pivot stable, and is the Condorcet

winner.�

Trade paths for the experimental matrices.

(1) Matrix AB. There is a unique Pivot path. At V0, with P(V0) = {B}, 1

trades his B vote to 3 in exchange for 3’s A vote, leading to P(V1) = {A}; then

2 trades his B vote to 4 in exchange for 4’s A vote. The resulting vote alloca-

tion is stable, and P(V2) = P(VT ) = {B}. (2) Matrix ABC1. P(V0) = {A} is

47In fact, with K = 2 it is possible to show that the C-Pivot stable outcome is always unique,
whether or not the Condorcet winner exsts, and it is always Pareto optimal and always majority
preferred to P(V0).
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the Condorcet winner, but V0 is not stable. The unique Pivot-stable outcome is

P(VT ) = {A,B,C}. Three alternative paths, of length {4, 4, 3} lead to it. Indicat-

ing first the ID’s of the trading partners, and then, in lower-case letters, the issue

on which an extra vote is acquired by the voter listed first, the three paths are:

{13cb, 45bc, 23ab, 45ca}, {23ab, 45ca, 45bc, 13cb}, and {23ab, 45ba, 13cb}. (3) Matrix

ABC2. P(V0) = {A,B,C} is the Condorcet winner and the unique Pivot-stable

outcome. However V0 is not stable. Three alternative paths, of length {4, 4, 3} lead

to P(VT ) = {A,B,C}. They are: {15ab, 34ba, 24cb, 15bc}, {24cb, 15bc, 15ab, 34ba},
and {24cb, 15ac, 34ba}.
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Appendix 2. For online publication

VOTE TRADING INSTRUCTIONS

Make yourself comfortable, and then please turn off phones and don’t talk or

use the computer. Thank you for agreeing to participate in this decision making

experiment. You will be paid for your participation in cash, at the end of the

experiment. Different participants may earn different amounts. What you earn

depends partly on your decisions and partly on the decisions of others. If you have

any questions during the instructions, raise your hand and your question will be

answered. If you have any questions after the experiment has begun, raise your

hand and an experimenter will come and assist you.

The experiment today is a committee voting experiment, where you will have

an opportunity to trade votes before voting on an outcome. The experiment will be

in three parts. At the end of the experiment you will be paid the sum of what you

have earned in all three parts of the experiment, plus your promised show-up fee of

10 dollars. Everyone will be paid in private and you are under no obligation to tell

others how much you earned. Your earnings during the experiment are denominated

in POINTS. For this experiment every 100 POINTS earns you 6 DOLLARS.

Here are the instructions for Part 1.

You will be randomly assigned to one of 3 committees, each composed of 5

members. Each committee is completely independent of the others, and the decision

taken in one committee has no effect on the others. The committee will vote using

majority rule to decide on 2 different motions, denoted A and B. Each motion can

either pass or fail depending on how the committee votes. There will be a separate

vote on each motion. The computer will assign you a committee member number

(1, 2, 3, 4, or 5). Part 1 consists of 3 rounds.

You will be told, for each motion, whether you prefer it to pass or to fail. The

computer will assign you (and each other member) a value for each motion which

will be a number between 1 and 100. You will earn your value for a motion if you

prefer that motion to pass and it passes, or if you prefer it to fail and it fails. This

is your only source of earnings. Your earnings for the round are equal to the sum of

your earnings over the two motions.

Each committee member starts a round with 1 vote to cast on each motion. Then
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there will be a 2 minute trading period, during which you and the other members

of your committee will have an opportunity to trade votes with each other. For

example, you may wish to trade your A vote in exchange for some other member’s

B vote. We will describe exactly how to do this shortly.

After the trading period ends, you will proceed to the voting stage. Once every-

one has voted, you will be told what the final votes were in your committee and how

much you earned in that round. This will complete the first round. The remaining

2 rounds in Part 1 follow the same rules. Each committee member starts the round

with a single vote on each motion. Your committee member number, preferences

for each motion (pass or fail), your value for each motion, and the preferences and

values of the other four members of your committee all stay the same for all 3 rounds

of part 1 of the experiment.

Your earnings for part 1 are the sum of your earnings in all 3 rounds. After

round 3 ends, I will read you instructions for part 2 of the experiment.

We now describe in detail how you and the other members of your committee

can trade votes. When we begin a round, you will see a screen like this, although

the exact numbers may be different. [Display Screen 1] On the right of the screen is

an Information Table that contains a lot of information, so please listen carefully. It

displays each member’s preference for each motion (pass or fail), value, and number

of votes. If the member prefers the motion to fail, then the value is written in a

blue color. If the member prefers the motion to pass, then the value is written in an

orange color. You can simply think of there being two sides - the orange side and

the blue side - on each motion. The number of votes held by each member on each

motion is in parentheses. Because no trading has occurred yet, each member holds

exactly one vote on each motion.

Your own row is specifically labeled and the label is highlighted in gray. The last

row in the table is labeled ”outcome”. This row tells you, for each motion, what the

total vote would be if voting took place now, by showing the column sum of votes

on each motion. The number of votes for is given first, in orange, and the number

of votes against is given second, in blue. If the votes in favor of a motion exceed

the votes against, then all voters who prefer the motion to pass will earn their value

for that motion, and all voters who prefer the motion to fail will earn zero for that

motion. Similarly, if the votes in favor of a motion failing exceed the votes in favor
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of it passing, then all voters who prefer the motion to fail will earn their value for

that motion, and all voters who prefer the motion to pass will earn zero for that

motion. There is a check mark next to your value if the outcome of that motion

is the outcome you prefer. This means that you earn your value for that motion.

In this example, if there were no votes traded at all, then on motion A, there are

2 votes held by members who prefer A to pass and 3 held by members who prefer

A to fail, so motion A fails. On motion B, there are 3 votes held by members who

prefer B to pass and 2 held by members who prefer B to fail, so motion B passes.

Since ID 1 (You) prefers both motions to pass, he earns his value for motion B but

earns 0 for motion A.

To the left of the table, in grey, is the trading window. At any time during

the trading period, any committee member may post a trade offer by requesting

1 vote on one motion in exchange for 1 vote on some other motion. Suppose the

participant on the slide in front of the room wanted to post a trade requesting one

A vote in exchange for one B vote. This is done by entering a 1 in the A box under

”Requests” and a 1 in the B box under ”Offers”. [Screen 2]. You can only trade 1

vote for 1 vote; you can neither request nor offer multiple votes.

After you have entered this trade request and clicked the ”submit trade offer”

button, the trade is posted in the trading panel for everyone in your committee

to see. [SCREEN 3] If another committee member wants to accept your trade

request, they may click on it to highlight it, and then click on the ”accept selected

offer” button.[SCREEN 4] You now have 10 seconds to either confirm or reject the

accepted trade. A message will pop-up on your screen. [SCREEN 5]. The message

tells you what the outcome of the vote would be if you either accept or reject the

trade and voting took place without any further trade. If you reject the trade or do

nothing for 10 seconds, the trade does not occur. The committee member who had

accepted your offer is informed that you declined to confirm the trade.[SCREEN 6].

Your offer is reposted in the trading window, and some other voter can accept it. If

you confirm the trade, then the voter who accepted the offer now holds 0 A votes

and 2 B votes, you now hold 2 A votes and 0 B votes, and the Information Table

is updated accordingly. The new Information Table is displayed for 10 seconds on

a popup screen for everyone in your group to see. [SCREEN 7]

If you have a standing offer listed in the trading window, you may cancel it by
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first clicking on it and then clicking the ”cancel selected offer” button.[SCREEN 8]

The trading period continues for 2 minutes. The timer at the top tells you how

much time remains in the trading period. The clock is frozen when the Information

Table is shown after a trade, with the new vote holdings. If a trade occurs within

10 seconds of the end of the trading period, the trading period is automatically

lengthened by 10 more seconds.

You are free to post trade requests at any time, but you are not allowed to offer

to trade away a vote on a motion if you currently hold 0 votes for that motion or

already have an offer posted on the trading window that would result in holding 0

votes if accepted. In that case you would first have to cancel your existing posted

offer. Also remember that you can only trade one vote for one motion in exchange

for one vote for another motion. If you try to do a trade that is not allowed, you

will either receive an error message, or the action buttons will become gray and be

deactivated, preventing you from proceeding with that trade.

When the trading period for the round is over, we proceed to the voting stage.

Your screen will now look something like this: [SCREEN 9]. In this stage you do

not really have any choice. You are simply asked to click a button to cast all the

votes you hold at the end of trading. The computer will automatically cast your

votes on each motion according to the preferences you were assigned. For example,

if you prefer motion B to fail and you hold two B votes after the trading period,

those two votes will be cast automatically against motion B. Please cast all your

votes without delay by clicking on the vote button.

After you and the other members of the committee have voted, the results are

displayed and summarized. [SCREEN 10]

As the experiment proceeds, at the bottom of each screen you will see a history

table, summarizing the results of the previous rounds [SCREEN 11. Go over the

different columns] If you switch to tab view, each round will be shown separately].

We then proceed to the next round, where you again start out with one vote on

each motion and the rules are the same as in the first round. Remember that your

assigned committee number, preferences for motions, values for motions, and those

of the other members of your committee all stay the same for all 3 rounds of part 1

of the experiment. After the first 3 rounds are completed, we will read instructions

for the second part of the experiment.
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To give you some experience with the trading screen, we will conduct two practice

rounds. The rules will be the same as they will be in the paid rounds, but the values

and preference assignments, for or against a motion, are not the same as they will

be in the paid rounds. You are not paid for the practice rounds, so they have no

effect on your final earnings. The only purpose of the practice rounds is to help you

become familiar with the computer interface and the trading rules.

This summary slide [SCREEN 12: Summary slide] will remain up during the

experiment to remind you of the rules on trading and on time.

Are there any questions before we proceed to the first practice round? [START

SERVER]

Please click on the icon marked Multistage Client on your desktop. Then enter

the number of your carrel (on the right side of the carrel), click enter, and then wait.

Remember that you are not allowed to use the computer for any other purposes while

waiting during the experiment (email, browsing, etc.).

[CONNECT EVERYONE AND START]

Please complete the practice rounds on your own. Feel free to raise your hand if

you have a question.

[WAIT FOR SUBJECTS TO COMPLETE PRACTICE ROUNDS]

The practice rounds are now over. Remember, you will not be paid the earnings

from the practice rounds.

If you have any questions from now on, raise your hand, and an experimenter

will come and assist you. We will now begin the paid rounds.

(Play 3 real rounds for Part 1) [After last ROUND, read:]

We will now proceed to Part 2. The rules for part 2 are the same as for part

1, but there are now 3 motions for your group to vote on. You can only trade one

vote on one motion for one vote on another motion. The trading period will last

3 minutes. As before, 10 seconds will be added to the clock if a trade takes place

within 10 seconds of the time limit.

The values and pass/fail preferences will be different from part 1, and your com-

mittee number as well as the composition of your committee may change. However,

both the preferences and the composition of the committee will remain the same for

all of Part 2. Part 2 will last for 5 rounds. At the end of the 5 rounds, we will stop
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and read the instructions for Part III.

Are there any questions before we begin?

(Play 5 real rounds for part 2) [After last ROUND, read:]

We will now proceed to Part 3. Part 3 is identical to Part 2, but the values

and pass/fail preferences may be different. Your committee number as well as the

composition of your committee may also change. Part 3 will again last for 5 rounds

and again the trading period is 3 minutes (plus 10 seconds if a trade is concluded

within 10 seconds of the time limit).

This is the end of the experiment. You should now see a popup window, which

displays your total earnings in the experiment. Please record this and your Com-

puter ID on your payment receipt sheet, rounding up to the nearest dollar. After

you are done, please, click ok to close the popup window. Do not close any other

windows on your computer and do not use your computer for anything else. Also

enter 10 dollars on the show-up fee row. Add the two numbers and enter the sum

as the total.

[Write output]

We will pay each of you in private in the next room in the order of your computer

numbers. Remember you are under no obligation to reveal your earnings to the other

players. Please do not use the computer; be patient, and remain seated until we call

you to be paid. Do not converse with the other participants or use your cell phone.

Thank you for your cooperation.
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Figure 12: Screenshots for a subject posting a bid (on the left), and for a subject
accepting a posted bid (on the right).

Figure 13: Confirmation request for the bidder.
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