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1 Introduction

The contribution of teachers to student educational achievement has been demonstrated re-

peatedly by researchers (Rivkin, Hanushek and Kain, 2005; Rockoff, 2004; Kane and Staiger,

2008; Chetty, Friedman and Rockoff, 2014). Consequently, school districts and states increas-

ingly have used teacher incentive pay programs as a tool for improving student performance.

The motivation for these programs is to provide monetary incentives for teachers to increase

effort and to try new strategies that lead to higher measured achievement. As of 1993, over 12

percent of teachers were covered by a merit pay system (Ballou, 2001). This percentage has

increased substantially in recent years as large school districts, such as Denver, CO, Houston,

TX, and Minneapolis, MN as well as the states of Florida, North Carolina and Tennessee have

implemented such systems. Incentives for teacher performance also play a large role in the

Obama Administration’s “Race to the Top” Initiative, suggesting that such programs are likely

to be an important aspect of education policy in the near future.

While there is some mixed evidence on the overall impact of incentive pay systems,1 little is

known about how particular aspects of incentive design affect student achievement. One of the

design features that has received the most attention in the literature is the size of the group used

to measure performance. At one extreme, many incentive pay programs, particularly in the

US, are group-based at the school or grade level. In these systems, the average performance of

the school or grade is used to make award determinations. At the other extreme are individual-

based incentive pay programs in which teachers are given awards based only on the performance

of their own students. There is growing evidence that basing awards on large groups reduces

the effectiveness of merit pay due to the free-rider problem (Muralidharan and Sundararaman

2011; Goodman and Turner 2013; Imberman and Lovenheim 2015). The existence of substantial

free-rider effects suggests that individual-based incentive pay systems may be more effective.

Prior work on how individual incentive pay affects student outcomes has not come to a

consistent conclusion, however. Quasi-experimental estimates of systems in which at least

some of the incentives are at the individual level find a mix of positive and null results (Dee

1See Neal (2011) for an overview of the literature.
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and Wyckoff, 2013; Sojourner, Mykerezi and West, 2014; Lavy, 2009; and Dee and Keys, 2004).

The clearest evidence on the overall effect of individual teacher incentive pay in the United

States comes from a randomized controlled trial done in the Metro Nashville Public Schools

(Springer et al. 2010).2 Teachers were randomly assigned to be eligible for merit pay, which was

awarded based on their value-added rank. The study finds no evidence that students assigned

to treated teachers exhibited higher test score growth.3

These studies focus on estimating average effects of exposure to a teacher incentive pay

program. While clearly a parameter of interest, average effects may miss important variation

across teachers in the specific incentives they face under these programs that are driven by

performance feedback. Individual incentives necessarily give feedback to teachers on their per-

formance, particularly relative to other teachers. In a system with sharp award thresholds,

this feedback allows teachers to update their beliefs about their likely proximity to an award

threshold: those who are close to the award thresholds face stronger incentives to change their

behavior than those far away, who are unlikely to affect their award determination through

changes in effort.4 Average estimates of individual incentive pay likely do not accurately char-

acterize program effects because they ignore the potentially large variation in incentive strength

across teachers.

In order for performance feedback to operate as a mechanism through which individual

teacher incentive pay influences the effort levels of certain teachers, the feedback needs to be

informative. That is, the performance measure needs to give teachers accurate information

about their relative productivity. This can be a particular problem when value-added models

are used as the performance measure, which is increasingly the case in individual incentive

pay systems. Value-added estimates have been show to exhibit substantial noise when using

one year of data for an individual teacher (Guarino et al., 2015).5 This is a design feature of

2International experimental evidence has found positive effects in India (Muralidharan and Sundararaman,
2011), but the Indian education system is starkly different from systems in developed countries, making it
difficult to compare results.

3A smaller scale experiment conducted in Chicago Heights (Fryer et al., 2012) finds similarly little impact.
Intriguingly, Fryer et al. (2012) do find large impacts from incentives set up to take advantage of loss aversion.

4This feedback mechanism also can impact teacher performance by providing information on the effectiveness
of any responses teachers are making to the incentive pay program.

5While it is standard practice to calculate teacher value-added using multiple years of data for evaluation
purposes, in a teacher incentive pay system this is very uncommon because typically the goal of these systems
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teacher incentive pay programs and of value-added models more generally that has received very

little attention in the literature. Thus, especially for lower-grade teachers who teach a small

number of students, it may not be feasible to obtain precise estimates of teacher value-added for

individual incentive pay systems to impact teacher behavior (and thus student achievement).

In this paper, we examine whether the specific incentives teachers face under an individual-

based, value-added rank-order tournament affects measured student performance. We begin by

specifying an illustrative theoretical model that highlights the role of performance feedback and

measurement precision in driving heterogeneous teacher responses to merit pay. In the model,

teachers are unsure of their ability and use their proximity to an award cutoff in the current

year to inform their likelihood of being proximal in the next year’s tournament. We show that

teachers close to award thresholds should be the most responsive to the incentive pay system

but that this responsiveness declines with the amount of noise in the value-added estimates.

Intuitively, if the value-added measure is simply random noise, it tells teachers nothing about

their actual ability and they should disregard it when making current effort decisions. The

theoretical model contributes to our understanding of incentive pay design by highlighting the

role measurement precision plays in driving teacher responses to incentives when teachers use

the achievement measures as feedback to update their beliefs about their own ability. To our

knowledge, this paper is the first to highlight these important design considerations related to

individual teacher incentive pay programs.

We then take the central prediction of the model to the data: teachers who are closer to

award thresholds in the current year should exhibit higher student growth in the subsequent

year because their expected marginal return to effort is higher. This is the first study to look

at this type of heterogeneous response by teachers to incentive pay.6 Our empirical analysis

uses 3rd-8th grade data from the Houston Independent School District’s (HISD) incentive pay

system, called ASPIRE (Accelerating Student Progress, Increasing Results and Expectations).

The ASPIRE program is a rank-order tournament based on teachers’ value-added scores on

is to reward teachers for their current year’s performance.
6A number of papers have looked at a similar phenomenon with regards to school accountability systems.

They have found mixed evidence that teachers and schools focus on students who are close to passing thresholds
(called ‘triaging’) on exams (Ladd and Lauen 2010; Neal and Schanzenbach 2010; Reback 2008).
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subject-specific standardized tests in mathematics, reading, language arts, science and social

studies. In the rank-order tournament, teachers in the top quartile of the district-wide value-

added distribution for each subject earn the top award amount, teachers in the 50th to 75th

percentiles earn a lower amount, and teachers who have below-median value-added scores do

not earn an award for that subject. The award amounts are substantial: in 2008-2009, the

maximum top quartile award was $7,700 and the maximum award for being above the median

was $3,850.7

Our empirical approach uses a variation on a technique developed in Saez (2010) to test for

“bunching” near a tax notch (i.e., a change in the marginal tax rate) to estimate the elasticity of

taxable income.8 The idea behind this estimator is that there is some counterfactual relationship

between current value-added rank and future test score performance that, in the absence of the

award incentives, should be smooth across the current value-added rank distribution. However,

in the presence of the award incentives, test scores should be higher than one would predict

using this counterfactual relationship in the area surrounding the award threshold. We therefore

predict future test scores as a function of a flexible polynomial in the distance to an award cutoff

in the current year and student characteristics, excluding teachers with value-added scores close

to the cutoff. We then use model estimates to generate predictions of what the achievement

of students who had the excluded teachers would have been in the absence of award incentives

in the threshold area; the difference between the actual and predicted test scores within this

area identifies the effect of the individual incentives on teachers who are proximal to an award

threshold.9

Our results indicate that teachers do not respond to the individual incentives imbedded

within the ASPIRE incentive pay system. Teachers near award thresholds in one year do not

exhibit excess growth in test scores in the following year, and this null result is robust to changes

7These awards include a 10% bonus for perfect teacher attendance.
8This method has been used subsequently by several researchers to estimate tax responsiveness (Kleven et

al. 2011; Sallee and Slemrod 2012; Chetty, Friedman and Saez 2013; Kleven and Waseem 2013; Bastani and
Selin 2014). To our knowledge, we are the first to apply this technique to the study of education in general and
teacher incentive pay in particular.

9This is different from the Saez (2010) method as he tries to estimate deviations from the predicted values in
terms of the density of the tax distribution - how many taxpayers there are close to the cutoff. In our context,
the outcome is not whether there are more teachers near a cutoff but rather whether the actions of teachers
who are near the cutoff result in higher performance than expected.
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in the bandwidth that defines which teachers are proximal to an award as well as to the type of

polynomial used to estimate the counterfactual. We also do not find any evidence of an effect for

teachers with different characteristics, such as experience and race/ethnicity. These findings are

surprising given the clear predictions of the model and the fact that Imberman and Lovenheim

(2015) find sizable effects among high school teachers who face a similar program but at the

group level. We argue that these results can be reconciled by the fact that the individual value-

added estimates are very noisy. Indeed, we show that the year-to-year transitions in value-added

rank in the areas surrounding the cutoffs is essentially uniformly distributed. This implies that

value-added estimates in one year tell teachers very little about their relative ability, and as

our model predicts they ignore the information.

Hence, our preferred interpretation of the evidence is not that individual incentives are in-

effective, per se, but when performance measures contain too much noise to provide meaningful

feedback to teachers, responses will be small. This paper highlights the roles of teacher feed-

back and measurement precision as key design features in an individual incentive pay program

that have not received attention in prior research. Our results therefore provide important

guidance for the optimal design of teacher incentive pay programs. Nonetheless, we caution

that we cannot identify the overall impact of the incentive program, and it remains possible

that teachers respond homogenously across the value-added distribution in a way that leads to

higher overall performance.

The rest of this paper is organized as follows: Section 2 describes the previous literature.

Section 3 provides a theoretical model of how teachers may respond to tournament based

incentive pay. Section 4 describes the ASPIRE program, section 5 provides a description of the

data, and the estimation strategies are presented in Section 6. Section 7 shows our results, and

Section 8 concludes.

2 The ASPIRE Incentive Pay Program

The ASPIRE program is a rank-order tournament based on teachers’ value-added scores on

subject-specific standardized tests in math, reading, language arts, science and social stud-
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ies that was implemented by HISD in 2006-2007. We focus on the individual teacher based

tournaments that are used for 3rd through 8th grade teachers who teach core subjects - math,

reading, English, science and social studies.10 Each teacher who teaches a 3rd through 8th grade

self-contained (e.g. a single teacher for all major subjects) class is entered into a rank-order

value-added tournament for each grade and subject she teaches. Thus, teachers can win a

separate award for every individual tournament in which they are entered. This feature of the

program means that self-contained classroom teachers in elementary schools typically compete

in all five subject-specific tournaments in the grade in which they teach. Other teachers are

“departmentalized,” meaning they teach only certain subjects to students. They are entered

into tournaments with all other departmentalized teachers in the same subject and school type.

For example, a departmentalized math teacher in an elementary school (grades 3-5) would

compete against all other departmentalized math teachers who teach in an elementary school

in Houston. Departmentalized math teachers in middle school (grades 6-8) are entered into a

separate tournament.

Award determinations are based on each teacher’s place in the subject-specific and, for

self-contained classroom teachers, grade-specific value-added distribution.11 Value-added is

calculated for each teacher using the Education Value-Added Assessment System (EVAAS)

by the SAS Corporation. The system is based on a model developed by William Sanders

and co-authors originally under the moniker “Tennessee Value-Added Assessment System”

(Sanders, Saxton and Horn, 1997; Wright, Sanders and Rivers, 2006). Teacher value-added is

calculated by estimating a linear mixed model that regresses student achievement on a set of

weighted indicators for each teacher the student had in the current and prior two years along

with indicators for subject, grade and year. No other controls are included. By construction,

the model shrinks estimates so that those with fewer observations are attenuated towards the

grade-subject-year mean.

While in this study we use the student level test scores as our outcome measure, it nonethe-

10High school teachers compete in grade-school-subject groups, and these tournaments are studied in Imber-
man and Lovenheim (2015).

11Self-contained classroom teachers in grades 3-5 are compared to other self-contained teachers in the same
grade, separately for each subject. Only elementary school teachers can be self-contained; all middle school
teachers are departmentalized.
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less is useful to understand how the value-added measure is calculated as this might inform the

teachers’ behavior. To more clearly see the implications of the model structure, Ballou, Sanders

and Wright (2004) point out that the following system of equations must hold:

Y g
0 = bg0 + ug0 + eg0

Y g+1
1 = bg+1

1 + ug+1
1 + ug0 + eg+1

1

Y g+2
2 = bg+2

2 + ug+2
2 + ug+1

1 + ug0 + eg+2
2

...

Y g+t
t = bg+2

2 +
t∑
0

(ug+k
k ) + eg+t

t (1)

where Y is achievement, b is the district-grade-year mean, u is a teacher effect, g is grade level

of the student, t is time, and e is random error. Note that each achievement score incudes

each prior teacher’s effect on the student, and thus the teacher effects “stack” over time. By

recursively solving backwards from period T , Ballou, Sanders and Wright show that the teacher

effect is calculated as

ugT = (Y g
T − Y g−1

T−1) + (bgT − bg−1
T−1) + (egT − eg−1

T−1) (2)

so that the teacher effect in grade g and year T is the sum of the annual change in the student’s

achievement, the district-wide achievement, and the student-specific error. In practice, the

EVAAS system only includes a students’ current and two prior teachers in the model, implicitly

assuming that ug−k
T−k = 0 ∀k ≥ 3.

There are a couple of important limitations to this model. First, since in equation (2)

there is no parameter on Y g−1
T−1 , the model does not allow for decay in student achievement.

Second, Guarino, Reckase and Wooldridge (2014) show that models like this are more subject

to bias than simpler lagged dependent variable models. Third, the lack of controls for student

characteristics is controversial and may contribute to bias.12

To administer the incentive awards, the value-added measures produced by this model are

12See Ballou, Sanders and Wright (2004) for a discussion of this issue.
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ranked within subject and grade for self-contained teachers or within subject and school type

for departmentalized elementary school teachers and for middle school teachers. Each year

there is a new set of tournaments, and the value-added analysis is redone incorporating the

new data. Teachers who receive value-added scores greater than zero (indicating value-added

greater than the district-wide grade-subject mean) and who are above the median value-added

in the tournament receive an award. The award doubles if the teacher is within the top quartile

of value-added. Table 1 provides details on the ASPIRE system for the 3rd through 8th grade

tournaments.

For the time period of this study, awards were based on two types of exams, depending on

the grade and subject. In math and reading, the Texas Assessment of Knowledge and Skills

(TAKS) exams are used, which were state standardized tests that are also used for school

accountability ratings. TAKS exams were used for science in 5th and 8th grades and for social

studies in 8th grade as well. Texas did not administer state standardized tests in science and

social studies for other grades, nor does it test language arts. Thus, for these subjects and

grades, award determination was based on Stanford Achievement Test scores. The Stanford

test is a nationally-normed, grade-specific exam that is administered to students throughout the

United States. Teacher value-added was then reported in terms of a normal-curve equivalent

(NCE) of the state-wide distribution for TAKS and district-wide distribution for Stanford. For

ease of comparison to other papers in the literature, we convert the NCE scores into student

standard deviation units.

In addition to the teacher award, there are a series of awards for school-wide performance.13

Each of these awards is relatively small, ranging from $150 to $750 apiece, hence we do not

consider them in our analysis.14 In 2006-07 and 2007-08, teachers could earn up to $5,500

from the individual awards. This amount includes a 10% attendance bonus that is given to

13Each year there are four types of campus-wide awards for which teachers are eligible. These awards included
a bonus for school-wide performance, an award for being in the top half of a state-wide comparison group of
schools determined by the state education agency, an award for the school being given one of the two highest
accountability ratings, and a writing performance award.

14Principals and assistant principals also were given awards for school-wide performance. The incentives
under these awards were only partially aligned with those of teachers, as they were based on performance by
the entire school in each subject, not by each teacher and subject. Importantly, the incentives of principals and
vice principals are unlikely to be affected by whether an individual teacher in their school is marginal for an
award.
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teachers who take no sick days during the year. The maximum total award a teacher could

receive was $8,030. In 2008-09, HISD increased award amounts substantially. The maximum

award jumped to $7,700, with a total maximum award of $11,330. Given that the base salary

for a new teacher with a bachelor’s degree in that year was $44,027, up to 20% of a teacher’s

total wage compensation was determined by performance bonuses, with up to 14% from the

individual award portion. The average award across all core teachers in HISD (including high

schools) was $3,614 in 2009-10. Thus, the large bonus amounts relative to base pay suggests

that the awards were highly salient and desired by teachers.

One potential problem with the ASPIRE program is that the use of the EVAAS value-

added methodology for determining award receipt might make the award formula complex and

difficult for teachers to understand. We note that for us to see a response we need only that

the teachers know their approximate position in the distribution and that they understand that

increasing the test scores of their students will increase their award likelihood. There is some

evidence from surveys conducted by HISD that indicate teachers were well informed and had

a good understanding of the system.15 If becoming marginal for an award induces teachers to

learn more about the system, this could be a mechanism underlying our results rather than a

potential threat to identification.

As detailed in Table 1, the system is designed such that, within a given year, each teacher

is eligible for the same maximum award amount. Since teachers who instruct in multiple core

subjects (e.g., self-contained teachers) are entered in multiple tournaments, the award amounts

for a given step in the award function are reduced so that they are proportional to the inverse

of the number of subjects taught. Thus, the teacher’s total award increases when she exceeds

a threshold as follows:

AwardIncrementjt =
MaxAwardt
2× Subjectsjt

(3)

For example, in 2009-10 when the maximum individual award, excluding the attendance bonus,

is $7,000, a teacher with one course earns $3,500 for winning the median award and that

increases by another $3,500 if she wins the top quartile award. On the other hand, a teacher

15The survey results can be found at http://www.houstonisd.org/portal/site/researchaccountability. See Im-
berman and Lovenheim (2015) for a discussion of this survey.
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who teaches all 5 subjects - which includes all self-contained teachers in elementary schools

- receives awards in $700 increments. Thus, over the study period, the marginal value of

winning a given award ranges from $500 to $3,500. Figure 1 shows how the average award

for a teacher changes as a teacher exceeds an award threshold in a given subject (units on

the horizontal axis are standard deviations of the teacher value-added distribution). A teacher

who exceeds a median award threshold in a given subject receives an incremental bonus that

averages approximately $1,000 while teachers who exceed the top quartile award threshold

average approximately $1,500.

3 Theoretical Model

In order to generate predictions about how teacher effort, and thus student performance, should

change with a teacher’s proximity to an award threshold in the prior year, we develop a model

of teacher behavior under an individual incentive pay scheme. The three core components

of the model are: 1) teachers differ in their ability, a, which will make some teachers more

likely to be close to award margins than others, 2) teachers have imperfect knowledge of their

own ability, and 3) teachers do not know exactly where next year’s award cutoff will be. The

second and third components generate uncertainty, as teachers cannot perfectly predict how

close they are to an award cutoff in a given year. Furthermore, this setup highlights the role of

performance pay systems in providing teachers feedback about their ability, which has received

little attention in prior work.

Each teacher has an exogenous ability level, a, and provides effort, e, which are translated

into value-added: V = V (e, a). We assume higher effort and ability both lead to higher value-

added (∂V
∂e

> 0, ∂V
∂a

> 0), the marginal benefit of effort declines with effort (∂
2V
∂e2

< 0) and

higher-ability teachers have a higher return to effort ( ∂2V
∂e∂a

> 0). The cost of teacher effort is

given by C = C(e), with C ′(e) > 0 and C ′′(e) > 0. Student test scores also are a function

of teacher effort and ability, but the function that maps effort and ability into test scores

(S = S(e, a)) is allowed to be different than the mapping for value-added.16

16Although the function form is allowed to differ, we still assume that (∂S∂e > 0 and ∂S
∂a > 0).
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We focus on a two-period model in which teachers do not have full information about their

own ability. However, they have some prior belief about their ability relative to other teachers

that they update when they receive new information. Both time periods are assumed to have an

incentive pay system in which there is a sharp cutoff based on value-added for award eligibility.

That is, in each period, teachers compete in a rank-order tournament in which they win award

A if their value-added is above some exogenous threshold, V ∗
t , t ∈ {1, 2}. We assume the

award threshold is exogenous for simplicity, and we note that with several hundred teachers

competing in each award tournament, the effects of strategic interactions are likely to be very

small while increasing the complexity of the model dramatically. Instead, we model V ∗
t as a

random variable that represents teachers’ beliefs over the location of the award cutoff.

In the first period, teachers have some belief about their ability, a1, which we assume is

exogenously assigned from some common distribution across teachers. Teachers exert effort

in period 1, e1, and based on that effort they receive an award if value added is greater than

the award threshold, V ∗
1 . Then, based on the realization of value-added in period 1, teachers

update their beliefs about their ability in the following manner:

a2 = a1 + λ(V1 − a1),where λ ∈ [0, 1]. (4)

Equation (4) states that teachers will update their beliefs about their ability using the distance

between their period 1 outcome and their prior belief. The parameter λ represents the weight

teachers place on the new information. It can be thought of as the signal-to-noise ratio of V1 or

the reliability of the signal about ability contained in the first period value-added outcome. If

λ = 0, then teachers place no weight on the prior year’s score, while if λ = 1, they completely

replace their prior belief about their ability with the prior year’s value-added estimate.

The perceived probability a teacher wins award A in period 2 based on her information set

from period 1 is given by:

P (A) = P (V (e2, a2) > V ∗
2 )

= P (V (e2, a1 + λ(V1 − a1)) > V ∗
2 ). (5)
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Uncertainty in this model is driven by the fact that teachers do not know the exact cutoff in

each period. We assume they have a belief over the distribution of the location of the cutoff

that is normally distributed with a mean equal to the prior year’s cutoff.17 This ensures beliefs

are distributed symmetrically around the prior year’s cutoff, which should represent the best

“guess” of where the current year’s cutoff is. Let V ∗
2 = V ∗

1 +ψ, where ψ is a normally-distributed

random variable with mean zero and variance σ2. The likelihood of winning the award in period

2 is given by:

P (A) = P (V (e2, a1 + λ(V1 − a1)) > V ∗
1 + ψ)

= P (V (e2, a1 + λ(V1 − a1))− V ∗
1 > ψ)

≡ Φ

(
V (e2, a1 + λ(V1 − a1))− V ∗

1

σ

)
. (6)

Letting V2 ≡ V (e2, a2), each teacher faces the same expected utility function for period 2, given

by:

E(U2) = APr(V2 − V ∗
1 > ψ)− C(e2)

= AΦ

(
V2 − V ∗

1

σ

)
− C(e2). (7)

Let Ṽ2 ≡ V2 − V ∗
1 . Then the associated first order condition is:

Aϕ

(
Ṽ2
σ

)
1

σ

∂V2
∂e2

− C ′(e2) = 0 (8)

and the second order condition is:

Aϕ
(

Ṽ2

σ

)
1
σ
∂2V2

∂e22
+ Aϕ′

(
Ṽ2

σ

)
1
σ
∂V2

∂e2
− C ′′(e2)

= Aϕ
(

Ṽ2

σ

)
1
σ
∂2V2

∂e22
− AṼ2ϕ

(
Ṽ2

σ

)
1
σ2

∂V2

∂e2
− C ′′(e2) < 0, (9)

17We model uncertainty in this way because it matches the setup of the ASPIRE program. However, the
implications of the model are the same if there is a fixed value-added threshold that is known and one introduces
uncertainty into the function that maps effort into value-added. Thus, the theoretical predictions of this model
relate to a broader set of individual incentive pay programs with known, fixed cutoffs.
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where the negative sign in equation (9) is assumed in order to ensure that the solution to the first

order condition leads to a maximum.18 The goal of the theoretical analysis is to understand how

optimal effort changes when one is closer to or farther from the award threshold in the previous

period. To illustrate the model’s predictions for period 2 effort as a function of proximity to the

cutoff in period 1, we calculate how optimal effort in period 2 responds to period 1 value-added.

This is equivalent to how optimal effort in period 2 responds to distance to the period 1 cutoff

because V ∗
1 is fixed and known in period 2. Applying the implicit function theorem to equation

(8) evaluated at the actual value of V1 and the associated value of e2 that makes equation (8)

hold (i.e., e∗2) yields:

∂e2
∂V1

=
λA 1

σ
{ϕ
(

Ṽ2

σ

)
∂2V2

∂e2∂a2
+ ϕ′

(
Ṽ2

σ

)
∂V2

∂e2
}

C ′′(e2)− Aϕ
(

Ṽ2

σ

)
1
σ
∂2V2

∂e22
− Aϕ′

(
Ṽ2

σ

)
1
σ
∂V2

∂e2

=
λA 1

σ
{ϕ
(

Ṽ2

σ

)
∂2V2

∂e2∂a2
− Ṽ2

σ
ϕ
(

Ṽ2

σ

)
∂V2

∂e2
}

AC ′′(e2)− ϕ
(

Ṽ2

σ

)
1
σ
∂2V2

∂e22
+ AṼ2ϕ

(
Ṽ2

σ

)
1
σ2

∂V2

∂e2

=
λA 1

σ
ϕ
(

Ṽ2

σ

)
{ ∂2V2

∂e2∂a2
− Ṽ2

σ
∂V2

∂e2
}

C ′′(e2) + A 1
σ
ϕ
(

Ṽ2

σ

)
{∂2V2

∂e22
− A 1

σ
Ṽ2

∂V2

∂e2
}

(10)

By the second order condition assumption, the denominator in equation (10) is positive, but

the equation cannot be signed in general. In order to develop the testable predictions from this

model that will inform our empirical strategy, we focus on how optimal period 2 effort responds

to changes in period 1 value-added around the period 1 cutoff. Equation (10) is maximized

when Ṽ2 = 0, as at this point ϕ
(

Ṽ2

σ

)
{ ∂2V2

∂e2∂a2
− Ṽ2

σ
∂V2

∂e2
} attains its largest value. To see this, first

note that ϕ
(

Ṽ2

σ

)
is maximized when Ṽ2 = 0 since the mean of ψ is 0. Then consider the case

where Ṽ2 = ϵ < 0. In this case, ϕ(ϵ) < ϕ(0). Thus, a sufficient condition for Ṽ2 = 0 to maximize

equation (10) is

∂2V2
∂e2∂a2

− ϵ
∂V2
∂e2

<
∂2V2
∂e2∂a2

− 0
∂V2
∂e2

, (11)

18The partial effects in equations (8) and (9) are with respect to V rather than Ṽ because V ∗
1 is a constant

in period 2.
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which simplifies to

−ϵ∂V2
∂e2

< 0. (12)

Equation (12) holds since ∂V2

∂e2
< 0 by assumption and ϵ < 0, which implies ∂e2

∂V1
(ϵ) < ∂e2

∂V1
(0). On

the other side of the cutoff, the same argument works in reverse with ϵ > 0 as we move from

Ṽ2 = ϵ to Ṽ2 = 0. Thus, when one moves away from the period 1 cutoff in either direction,

optimal effort declines.

The intuition for this result is straightforward: on average, the cost of effort is unrelated to

value-added but the expected return to effort is larger the closer one is to an award threshold.

Thus, effort is maximized at the period 1 threshold and declines as one moves away from it in

either direction. The empirical implication of this prediction is that period 2 effort, and hence

period 2 test scores, should be largest for teachers who have a value-added score in a range

surrounding the period 1 cutoff. Put differently, teachers who are close to a cutoff should be

inclined to increase their effort more than teachers who are far from a cutoff. This prediction

forms the basis for our empirical approach.

The parameter λ plays an important role in the predictions of this model as well. When

λ = 0, equation (10) equals zero. As λ increases, equation (10) becomes larger in absolute

value, reaching its maximum at λ = 1. The intuition for this result is that when λ is close to

zero, prior year’s value-added gives teachers a very noisy and uninformative signal as to what

their relative ability is. At the limit, if value-added is just random noise, then λ will equal zero

and teachers will be unresponsive in period 2 to information received in period 1. As the signal

value of period 1 value-added grows (i.e., λ approaches 1), teachers respond more to the period

1 outcome. The implication of this prediction is that teachers can be unresponsive to the merit

pay system if the assignment variable is too noisy to give teachers adequately-powered signals

about how to respond to the monetary incentives they face. Nonetheless, we note that while

teachers would not respond differentially across the distribution of prior value-added scores in

this scenario, they could still respond positively (or negatively) to the incentive pay system as
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a whole.19

4 Data

The data for this analysis come from administrative student-teacher matched records that we

obtained through a special agreement with HISD for school years 2006-2007 through 2009-

2010. For each teacher, we have information on which subjects and grades were taught in each

year, value-added in each subject and grade taught, school in which the teacher works, and

demographic information such as race/ethnicity, gender, experience, and highest degree earned.

The teachers are linked over time through an anonymized identification number. Student data

includes test scores for the Texas Assessment of Knowledge and Skills (TAKS) and the Stanford

Achievement Test (SAT). Four subjects are covered for each exam - math, reading, science and

social studies. Stanford exams also include a language portion. We also have data on student

demographic characteristics and we use gender, race/ethnicity and economic disadvantage as

controls in some specifications.

Students and teachers are matched at the subject level so there are up to five records on each

student-year. While the incentive system covers grades 3 through 8, we drop 3rd grade students

and teachers so as to ensure that we have access to a lagged test score for all students. In 2009,

HISD changed how they placed middle school teachers into tournaments and so for that year

we only include elementary teachers. Exams are standardized within the district by subject

grade and year. In each subject and grade we use the exam that is used for the calculation of

awards. For TAKS this includes all grades for math and reading, grades 5 and 8 for science,

and grade 8 for social studies. The Stanford exam is used for language in all grades, science in

grades 4, 6 and 7, and grades 4 through 7 in social studies.

Table 2 provides means and standard deviations of the variables used in this study at the

student-subject-year and teacher-subject-year levels. We also split the sample in Table 2 by

the teacher’s place in the award distribution to see how characteristics vary by award type. In

general, higher-VA teachers have students with slightly higher socio-economic status and overall

19We lack a control group that would allow us to test for an overall effect of this program on teacher perfor-
mance.
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the district is highly economically disadvantaged (80%) and heavily minority (30% black and

60% Hispanic). Teachers who receive larger awards have higher achieving students, which is

expected given current achievement is the key input into value-added. When we look at teacher

characteristics, award receipt appears to have little relationship with teacher gender, education

or experience. Mechanically, value-added scores also increase with higher award receipt and, as

expected, we see evidence of mean reversion when looking at the change in award receipt. What

is particularly interesting and relevant to our theoretical analysis is the standard deviations of

both current value-added and the annual within-teacher change in value-added. These are

further highlighted in Figure 2, where we plot the distribution of value-added scores and the

change in value-added scores by teacher-subject-year. The standard deviation in value-added

across the full sample is 1.96, while the standard deviation in the change in value-added is 2.12.

We argue below that the breadth of these distributions provide suggestive evidence that the

lack of response we find to the incentive pay system is likely due to the substantial noise in the

value-added measures.

5 Empirical Models

Using the administrative teacher-subject-year level data described in the previous section, we

test whether students assigned to teachers who are closer to an award cutoff in a given year have

higher test score growth. To do this, we adapt the bunching estimator first used by Saez (2010)

to estimate the elasticity of taxable income. The original application of this technique examines

excess density around a change in the marginal tax rate. Instead, we estimate whether there is

excess test score growth in an area surrounding the prior year’s test score cutoff.

We first estimate a model that allows us to predict subsequent test scores as a function of

flexible distance to an award cutoff in the current year, excluding those who are “local” to an

award cutoff. Specifically, we estimate the following model:

Sijty+1 = α+ βSijty + g(V Ajty − V A∗
ty) + δXijty + ψy + ϕt + ϵijty, (13)
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where S is the test score of student i assigned to teacher j in merit pay tournament t and year

y + 1. We control for current year’s test score, year fixed effects (ψy), and tournament fixed

effects (ϕt). Note that because all tournaments are subject specific, the tournament fixed effects

also control for subject differences in the models in which we pool across subjects. Equation (13)

also contains a vector of student demographic controls (X) that includes student race/ethnicity,

grade fixed effects, gender, and whether the student is economically disadvantaged (i.e., eligible

for free or reduced price lunch or another state or federal anti-poverty program). The term

g(Vjty − V ∗
ty) is a polynomial in the distance between the current period value-added and the

award cutoff. We estimate this model separately for the distance to the median and 75th

percentile cutoffs.

Estimating equation (13) requires us to specify who is “local” to the cutoff, the order of

the polynomial, and the estimation sample outside of the proximal cutoff area. Because there

is no way to know ex ante how close to the cutoff teachers need to be to be affected by the

ASPIRE incentives, we use a sequentially widening donut around each cutoff of 1.0, 1.5 and 2.0

value-added points. Thus, for example, we exclude all students with teachers who are within 1

value-added point of a cutoff (0.5 points on either side of the cutoff) and estimate equation (13).

Recall that value-added is calculated in terms of student-level test score standard deviations,

so this ostensibly excludes all students with teachers whose value-added places them within a

half of a student standard deviation of an award cutoff. Widening the donut allows us to test

whether our results are sensitive to which teachers we consider local to an award margin.

To determine the specific form of g(·), we use a Bayesian Information Criterion (BIC). The

BIC chooses the polynomial that best fits the data with a penalty for adding extra terms. It is

based on the Aikaike Information Criterion (AIC) but adjusts the penalty term for the number

of observations. We thus choose the polynomial that minimizes the BIC, setting a maximum

of six terms. Finally, we restrict the model to use observations that are either 2.5 value-added

units above or below the cutoff (i.e., a range of 5 value-added points). We do this to avoid

using observations that are very far away from award margins to make test score predictions.

We will show later that estimates of equation (13) on this sample provide extremely accurate

test score predictions outside of the local treatment area.
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For our empirical test, we want to estimate whether students who have teachers with value-

added inside the local award margin donut have higher than predicted test scores. We thus

use equation (13) and predict test scores for each student located in the donut. We term this

prediction Ŝ. Then, we calculate the average difference between actual and predicted test scores

for each student as our measure of the extent to which teachers respond to the incentives they

face under the ASPIRE program:

TE =
1

Nd

Nd∑
i=1

Sijty+1 − Ŝijty+1, (14)

where Nd is the number of students in the local treatment donut. We estimate equation (14)

pooled across all subjects as well as separately by subject. In order to obtain standard errors

for statistical inference, we block boostrap the entire estimation process (equations (13) and

(14)) at the teacher-year level using 500 replications. The standard errors shown in the results

below are the standard deviations of TE over these bootstrap replications.

The main identification assumption in our estimation procedure is that students are not

sorting on unobservable attributes to teachers in a way that would place some students who

would otherwise be outside of the donut into the donut and vice-versa. We view such sorting

as unlikely because students and parents do not know where the new cutoff is. While there

may be some sorting across the cutoff, as long as the sorting occurs within the donut it will

not bias our estimates. Furthermore, we do not allow the polynomial to vary across the cutoff.

The model therefore assumes that there is not a large discontinuity at the cutoff in student test

scores. That is, the relationship between value-added and subsequent test scores should move

somewhat smoothly through the award threshold. In order to provide some evidence on the

validity of this assumption, we estimate a regression discontinuity model of winning the award

in a given year on subsequent test score outcomes. This model is similar to equation (13), but

we allow the running variable to differ across the cutoff and include an indicator for whether

the teacher is above the cutoff.

Table 3 presents regression discontinuity estimates pooled across subjects using bandwidths
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of 0.5, 0.75 and 1.0 and a linear spline in distance to the cutoff.20 At most, there is a small

relationship between award receipt and subsequent award performance. For the low award, the

estimates are negative but quite small in absolute value and are not statistically significantly

different from zero at even the 10% level. For the higher award, we do see some evidence of a

positive effect, but only for the larger bandwidths. Furthermore, these estimates are small, at

about 2% of a standard deviation, and they only are significant at the 10% level. On the whole,

these results support the way in which we have modeled the running variable in equation (13)

as any jump in subsequent test score performance at the award cutoff is small.21

In Appendix Table A-1, we estimate the regression discontinuity model using teacher and

student observable characteristics as the dependent variable. These estimates test for the

validity of the RD design in this setting, and they provide indirect evidence on the likelihood of

sorting into the local treatment window. Whether a teacher wins an award is far more salient

than how close a teacher is to an award threshold. Hence, if there is little sorting with respect to

this observable feature of the ASPIRE system, it is unlikely there will be differential sorting into

the local treatment donut. Appendix Table A-1 shows little evidence that teacher or student

characteristics jump at the award threshold. There is one statistically significant estimate out

of 20 in the table, and on the whole the coefficients are close to zero. It therefore does no

appear that students sort according to teacher award determination, nor are teachers with

different characteristics more likely to win an award. Online Appendix Figure A-1 reinforces

this conclusion by showing the distribution of value-added relative to the cutoff.22 For the top

20We have conducted extensive tests for the sensitivity of these results to the use of higher order polynomials
in the running variable and to the use of different bandwidths. Our results are not sensitive to these modeling
assumptions.

21A question arises as to why future test scores may respond to a teacher winning an award. One possibility
is that winning an award generates an increase in job satisfaction, which in turn could improve student per-
formance. Links between job satisfaction and productivity have been shown in other sectors (Bockerman and
Ilmakunnas, 2012; Jones et. al., 2009). Judge et. al., 2001 provides for a review of the early literature. Another
possibility is that teachers treat the awards as a signal of their teaching ability. This could affect achievement
in two ways. First, teachers may gain direct utility from the positive feedback, which in turn would increase
job satisfaction and performance. Research in both economics and psychology show that workers respond to
feedback about their performance, though the relationship is not necessarily positive (Ederer, 2010; Ferdor,
1991; Podsakoff and Farh, 1989; Pearce and Porter, 1986; Stone and Stone, 1985; Ilgen, Fisher and Taylor,
1979). The other possible pathway is that a positive signal makes it more likely that a teacher will remain in the
profession, leading her to invest in more teacher-specific human capital. Further, it should be noted that Ahn
and Vigdor (2014) find evidence in North Carolina that schools as a whole respond to the receipt of school-wide
rewards.

22Although the awards are based on value-added percentile, teachers can appeal, which can create heaping
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award, there is little evidence of excess density right over the cutoff. For the low award, there

is a small increase in the density right above the award threshold. But, this appears to be a

natural feature of the distribution as the lower value-added cutoff tends to be at zero, which

is the mean of the distribution. Tests of discontinuities of the density show no statistically

significant changes (McCrary, 2008).

6 Results

We first present the results graphically in Figure 3, as the graphical results provide a clear

demonstration of our main findings. Figure 3 shows the distribution of value-added surrounding

the cutoff (left y-axis) as well as the predicted and actual test score distributions in year y + 1

both outside and inside the local treatment area using a donut of 1.5 value-added points. In

both panels, the predicted and actual test scores are virtually identical outside of the treatment

area. This indicates that our model has very good within-sample prediction and explains the

data with considerable accuracy. As such, it is evidence that the out-of-sample predictions

we make in the donut range will also be highly accurate estimates of what achievement would

have been had those teachers been far from an award margin. As discussed in Section 5, the

treatment effect is calculated as the area between the actual and predicted test scores within

the local treatment donut. Figure 3 shows that these curves are indistinguishable, meaning

that the treatment effects are essentially zero.

Figure 3 presents results pooled across subjects, but there could be important differences

by subject. In Figure 4, we show predicted and actual test scores in year y + 1 as a function

of distance to the median cutoff separately by subject. Figure 5 contains the same information

but relative to the top quartile cutoff. There is little evidence that the actual test scores are

higher than the predicted for either cutoff or for any subject within the local treatment area.

Figures 3 and 4 suggest there is no effect of being close to an award margin on subsequent

performance. The estimation results in Table 4 reinforce this conclusion. Here, we show

estimates of equation (14) using the three different definitions of being local to a cutoff. We

right above the cutoff.
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present estimates by award level as well as pooled results and results by subject. The cross-

subject pooled estimates are very close to zero and are not sensitive to the size of the local

treatment donut. In columns (2) and (5), we can rule out positive effects larger than 1% of a

standard deviation at the 5% level. Outside of science for the top quartile award, there also is

no systematic evidence of a positive effect for any subject. While there are some positive and

negative estimates that are statistically significant at the 5 or 10 percent level, the estimates

are not robust to altering the size of the local treatment area. For science, there is a positive

effect of about 2% of a standard deviation across specifications for the high award. While

this provides some evidence of teacher responsiveness to performance incentives, the estimated

effect is nonetheless very small. Given that we only find an impact for one subject at one award

threshold and that this estimate, while statistically significant, is economically insignificant,

we conclude that on the whole there is very little evidence that teachers proximal to an award

threshold exhibit larger performance gains in the subsequent year.

While the overall results are essentially zero, it is possible that they hide impacts for certain

types of teachers. In Table 5, we examine whether there is any evidence of heterogeneity across

types of teachers or students taught. First, we explore the role of teacher experience. Since

novice teachers may have less knowledge of their ability, they may be more affected by the

feedback from value-added estimates. However, we do not see any effect of being close to a

performance cutoff for teachers of any experience level. Given research that suggests that males

are more responsive to tournaments than females (Gneezy, Niederle and Rusticini, 2004) we

investigate gender effects. While the sample sizes for males are relatively small, male and female

teachers nonetheless appear equally unresponsive. This is consistent with findings of little

gender difference in incentive pay in Israel (Lavy 2008). Another possibility is that teachers

may respond more to information early in the program since the information is more novel.

Hence, we also look at differential responses by the year of the program but find no evidence of

responses to being on an incentive margin in any year of the program. Finally, since teachers

with more students will have more precise measures of value-added, these teachers may be

more inclined to incorporate the information into their behavior. We therefore split teachers

by the average number of students they teach within each subject over the years we observe
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them. The results indicate that teachers with more students in a subject do not exhibit larger

responses.23 We highlight that the degree to which each teacher’s value-added is informative

of ability may not be the relevant parameter, however, as teachers may be responding to how

noisy these measures are on average.

7 Discussion

Our results show clearly that teachers who are proximal to an award cutoff in a given year do

not have higher test score growth in the subsequent year. This is somewhat surprising, since

the theoretical model predicts that such teachers face stronger incentives than those father

away from the threshold. There are two potential explanations for the lack of results. The

first is that teachers are unresponsive to financial incentives. They may already be putting

forth a maximal amount of effort, or they may not know how to increase student achievement.

Further, it is possible they are not knowledgeable about the financial incentives available to

them under the ASPIRE program. We do not favor this interpretation, however. In related

work, we found teachers in sufficiently small groups responded to the incentives they faced

under the ASPIRE program (Imberman and Lovenheim 2015). While this prior study focused

on high school teachers, the basic structure of the award program was the same. Relatedly,

it is unlikely that high school teachers knew about the program but elementary and middle

school teachers did not. The sizable bonuses available under ASPIRE further act to make the

program salient.

The second potential explanation for our results comes directly from the model: if the value-

added measure contains a sufficient amount of noise, teachers should not infer any signal from

it about their likely location relative to the cutoff in the next year. That is, if λ is close to zero,

being proximal in one year does not tell one anything about the likelihood of being proximal

in the next year. Our preferred interpretation of the results is that the EVAAS value-added

measure, when applied to one year of teacher data,24 leads to noisy value-added estimates that

23Figures A-2 through A-5 present graphical results for these groups.
24The EVAAS model includes multiple years of data, but the value-added measure estimates the contribution

of teachers to student test score gains in each year rather than averaged over several years. It is in this sense
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did not allow teachers to infer much about their true ability. There are two pieces of evidence

to support this interpretation. Panel (b) of Figure 2 shows the distribution of the within-

teacher change in value-added. There is a wide distribution of the change in value-added, with

a standard deviation equal to 2.1 This standard deviation is larger than standard deviation

of value-added across teachers (panel a), suggesting that there is much volatility in teacher

value-added changes over time.

Table 6 presents further evidence that the value-added measure used in the incentive pay

system contains substantial noise. The table shows the joint distribution of value-added quin-

tiles in years t and t + 1. Thus, it shows the likelihood of being in each quintile in the next

year conditional on being in a given quintile in the current year. Only 29% of the distribution

is on-diagonal. Particularly in quintiles 2, 3 and 4, which are the relevant quintiles for being

proximal to an award threshold, the distribution is almost uniform. It thus is not surprising

that teachers were unresponsive to the award incentives, as being close to an award threshold

told them little about their likelihood of being close in the subsequent year. The tabulations

in Table 6 suggest that λ is close to zero, and as a result teachers do not respond to proximity

to an award threshold by increasing effort. While it still is possible that all teachers increased

their effort due to the ASPIRE program, prior work examining average effects among teach-

ers exposed to a teacher-level value-added merit pay tournament shows that this is unlikely

(Springer et al. 2010). Rather, it appears that teachers did not respond much to the individual

value-added incentives because the measure used to determine awards was too noisy to provide

useful information about the returns to effort. We note that this is entirely consistent with the

findings in Imberman and Lovenheim (2015), as the group-based value-added used in the high

schools would benefit from more observations that likely reduce the inter-temporal variance

within groups. Our results therefore point to the precision of the value-added measure being

used as an important design feature in individual merit pay tournaments that has received little

attention in previous research.

that the EVAAS model uses only one year of data when calculating value-added.
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8 Conclusion

This paper estimates the effect of the specific incentives teachers face under a teacher-based in-

centive pay program in the Houston Independent School District, called ASPIRE. The ASPIRE

program is a rank-order value-added tournament in which teachers compete against others who

teach the subject and similar grades across the district. Those with value-added over the me-

dian earn an award, and the award amount doubles for those in the top quartile. The awards are

substantial in size, which makes it likely teachers knew about and responded to the program.

We first build a theoretical model that guides our empirical approach. The intuition for

the model follows from the fact that teachers whose ability places them closer to an award

threshold are likely to be the most responsive, as they face the highest expected marginal

return to effort. However, if teachers do not know their ability, they will infer it from how close

they were to the cutoff in the prior year. The degree to which they can make such an inference

is proportional to the precision of the value-added measure as a measure of underlying ability.

The central prediction of the model that we test empirically is that those closer to an award

threshold in the prior year will exert more effort and have higher student test score growth.

We take this prediction to the data using student-teacher linked administrative data on all

elementary and middle school students in HISD. Our empirical approach adapts the bunching

estimator pioneered by Saez (2010) and estimates whether there is excess test score growth

among teachers who were near to a cutoff in the prior year. Our results show conclusively that

this is not the case: teachers do not respond differentially to the ASPIRE incentives based on

their proximity to the cutoff in the prior year.

We argue that the lack of responsiveness among teachers to the incentives they face under the

ASPIRE program is driven, at least in part, by the imprecision of the value-added estimates.

Thus, they do not appear to be an informative signal of teacher ability, which significantly

mutes the incentives embedded in the merit pay system. From a policy perspective, this is an

important finding as it highlights that the feedback mechanism inherent in individual incentive

pay systems as well as the precision of the value-added estimate are core parameters of interest in

the design of incentive pay. Because teachers will use the incentive pay measures as information
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about their ability to inform their effort decisions, it is critical that these measures provide

accurate information about their ability. However, due to small class sizes and the common

use of merit pay systems based on a single year of teacher performance, there is a technological

constraint that exists in the design of teacher merit pay. Individual-based incentives may not

generate achievement gains because it is not possible to calculate value-added measures that

are sufficiently precise using one year of a given teacher’s outcomes. A potential solution to this

problem is to use group-based outcomes that can increase precision. However, as Imberman and

Lovenheim (2015) and Goodman and Turner (2013) show, group-based incentive pay can lead

to free riding. Taken together, these studies suggest that there is a balance that needs to be

struck between the group size and the amount of measurement noise when designing incentive

pay systems in order to maximize their effectiveness on student achievement.
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Figure 2: Distributions of Teacher Value-Added
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(a) Value-Added Distribution
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(b) Distribution of Annual Change in Value-Added

Observations are at the teacher-subject-year level. Data is pooled over all subjects. Changes are calculated
as VA in year t-1 minus VA in year t within teacher and subject.
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Figure 3: Donut Prediction Estimates: Actual vs. Predicted Achievement
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(a) Low Award Cutoff
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(b) High Award Cutoff

Plots show the actual kernel estimates of student achievement in the year following receipt of a value-
added score and predicted values estimated using only observations outside 0.75 VA points from the cutoff.
The estimation model includes a quintic in prior value-added, the student’s lagged achievement, student
ethnicity, gender, grade level, economic disadvantage the year of the tournament and indicators for the
specific tournament. All subjects are included in the model. Test scores are standardized within grade,
subject and year and the outcome is for the test score used in determining the teacher’s award.
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Figure 4: Donut Prediction Estimates for Low Cutoff by Subject: Actual vs. Pre-
dicted Achievement
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Plots show the actual kernel estimates of student achievement in the year following receipt of a value-added
score and predicted values estimated using only observations outside 0.75 VA points from the cutoff. The
estimation model includes a polynomial in prior value-added, the student’s lagged achievement, student
ethnicity, gender, grade level, economic disadvantage the year of the tournament and indicators for the
specific tournament. The polynomial order is determined by minimizing the Bayesian Information Criterion
of between one and six order polynomials. The order for each subject is provided in Table 5. Test scores
are standardized within grade, subject and year and the outcome is for the test score used in determining
the teacher’s award.
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Figure 5: Donut Prediction Estimates for High Cutoff by Subject: Actual vs. Pre-
dicted Achievement
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Plots show the actual kernel estimates of student achievement in the year following receipt of a value-added
score and predicted values estimated using only observations outside 0.75 VA points from the cutoff. The
estimation model includes a polynomial in prior value-added, the student’s lagged achievement, student
ethnicity, gender, grade level, economic disadvantage the year of the tournament and indicators for the
specific tournament. The polynomial order is determined by minimizing the Bayesian Information Criterion
of between one and six order polynomials. The order for each subject is provided in Table 5. Test scores
are standardized within grade, subject and year and the outcome is for the test score used in determining
the teacher’s award.
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Table 2: Descriptive Statistics of Teacher and Student Demographic
Variables

Below Median Between Median Above Top
Award and Top Award Quartile Award

Student Characteristics
Female 0.50 0.50 0.51

(0.50) (0.50) (0.50)
Economic Disadvantage 0.83 0.79 0.75

(0.37) (0.41) (0.43)
Black 0.29 0.28 0.26

(0.45) (0.45) (0.44)
Hispanic 0.61 0.58 0.58

(0.49) (0.49) (0.49)
White 0.07 0.10 0.12

(0.25) (0.29) (0.32)
Gifted 0.15 0.18 0.22

(0.36) (0.39) (0.41)
LEP 0.27 0.24 0.24

(0.45) (0.43) (0.43)
Achievement (Std Devs) -0.04 0.15 0.33

(0.88) (0.88) (0.87)

Observations 292,765 146,191 153,108

Teacher Characteristics
Female 0.78 0.82 0.81

(0.42) (0.38) (0.39)
Grad Degree 0.27 0.26 0.28

(0.44) (0.44) (0.45)
Experience 8.56 8.89 8.69

(8.69) (9.06) (8.39)
Value-Added Score -1.39 0.56 2.43

(1.29) (0.37) (1.36)

Observations 7,856 3,787 3,777

∆ VA 0.91 -0.22 -1.26
(2.02) (1.84) (2.10)

Observations 3,018 1,585 1,708

Source: HISD administrative data from 2006-2009. “LEP” denotes limited English proficiency.
Standard deviations are shown in parentheses. Student characteristics are based on student-
subject-year level observations. Teacher characteristics use teacher-subject-year level observa-
tions.

35



Table 3: Regression Discontinuity Estimates of the Effect of Winning an
Award on Subsequent Value-Added - Pooled Subjects

Median Award Top Quartile Award
(1) (2) (3) (4) (5) (6)

0.50 Bandwidth
Win Award -0.0452 -0.0268* -0.0166 0.0165 0.0108 0.0137

(0.0285) (0.0147) (0.0124) (0.0312) (0.0162) (0.0150)

Observations 154,703 108,042

0.75 Bandwidth
Win Award -0.0247 -0.0161 -0.0089 0.0349 0.0233* 0.0222*

(0.0232) (0.0121) (0.0103) (0.0264) (0.0138) (0.0123)

Observations 224,176 159,553

1.00 Bandwidth
Win Award -0.022 -0.016 -0.0078 0.0171 0.0201 0.0201*

(0.0203) (0.0106) (0.0090) (0.0240) (0.0125) (0.0108)

Observations 281,514 214,097
Student characteristics N N Y N N Y
Year indicators N Y Y N Y Y
Subject indicators N Y Y N Y Y

Source: HISD administrative data as described in the text. All regressions include a linear spline in
prior value-added score. “Student Characteristics” include controls for race, gender, grade level, and
tournament-by-subject indicators. Standard errors clustered at the teacher level are in parentheses: ***
indicates significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance
at the 10% level.
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Table 4: The Effect of Being Close to an Award Cutoff on Achievement: Difference
Between Actual and Predicted within Donut

Median Award Top Quartile Award
Subject Donut Size (VA) → 1.0 1.5 2.0 1.0 1.5 2.0

(1) (2) (3) (4) (5) (6)

All Mean Difference -0.005 -0.006 -0.006 -0.001 -0.002 0.002
Subjects (0.005) (0.008) (0.010) (0.005) (0.006) (0.005)

BIC Min Polynomial 3 3 3 2 2 2
# of Obs in Donut 147,279 213,183 267,515 101,488 150,663 202,730
Total Observations 592,064 592,064 592,064 592,064 592,064 592,064

Math Mean Difference 0.006 0.051** -0.001 -0.021** -0.014 -0.005
(0.014) (0.022) (0.041) (0.010) (0.011) (0.011)

BIC Min Polynomial 4 4 4 2 2 2
# of Obs in Donut 26,234 37,548 47,659 16,440 24,232 33,712
Total Observations 135,503 135,503 135,503 135,503 135,503 135,503

Reading Mean Difference -0.006 0.006 0.004 0.008 0.013 0.020***
(0.009) (0.010) (0.012) (0.009) (0.008) (0.007)

BIC Min Polynomial 2 2 2 1 1 1
# of Obs in Donut 32,991 48,259 59,030 24,727 36,890 48,557
Total Observations 110,701 110,701 110,701 110,701 110,701 110,701

Language Mean Difference -0.018* -0.010 0.007 0.012 0.009 0.007
(0.009) (0.013) (0.011) (0.009) (0.009) (0.009)

BIC Min Polynomial 3 3 2 1 1 1
# of Obs in Donut 27,129 39,459 50,238 20,437 30,175 39,422
Total Observations 97,077 97,077 97,077 97,077 97,077 97,077

Science Mean Difference 0.022 -0.006 -0.070 0.020** 0.021** 0.018*
(0.018) (0.029) (0.054) (0.010) (0.010) (0.011)

BIC Min Polynomial 6 6 6 1 1 1
# of Obs in Donut 35,440 51,147 63,696 20,689 31,936 44,160
Total Observations 134,064 134,064 134,064 134,064 134,064 134,064

Social Mean Difference -0.004 -0.042** -0.010 -0.001 -0.011 -0.043**
Studies (0.017) (0.019) (0.030) (0.012) (0.014) (0.017)

BIC Min Polynomial 5 5 5 3 3 5
# of Obs in Donut 25,485 36,770 46,892 20,437 27,430 36,879
Total Observations 114,719 114,719 114,719 114,719 114,719 114,719

Source: Estimates of equation (13) using HISD administrative data as described in the text. All estimates include
controls for student race, gender, grade level, economic disadvantage, year, and tournament indicators. “All-
subjects” model also includes tournament-by-subject indicators. The BIC Min Polynomial is the order for the
polynomial in value-added that minimizes the Bayesian Information Criterion up to a maximum of 6. The donut
size is the width of the range of value-added around the award cutoff that is not used to estimate the empirical
model. Predicted values for observations in that range are then calculated using this estimation and the average
difference in the donut between actual and predicted achievement provides the impact estimate. Bootstrap standard
errors clustered at the teacher-year level (500 reps) are in parentheses: *** indicates significance at the 1% level,
** indicates significance at the 5% level, and * indicates significance at the 10% level.37
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Table 6: Distribution of Value-added Quintile
Changes

Year t
Value-Added Year t+ 1 Value-Added Quintile

Quintile 1 2 3 4 5 Sum
1 0.073 0.042 0.028 0.020 0.017 0.180
2 0.042 0.042 0.045 0.037 0.025 0.191
3 0.031 0.045 0.045 0.045 0.031 0.198
4 0.030 0.041 0.046 0.050 0.049 0.217
5 0.019 0.025 0.037 0.050 0.083 0.214

Sum 0.196 0.195 0.201 0.203 0.206 1.000

Source: HISD administrative data as described in the text. The tabula-
tions in each cell show the proportion of teachers in a given quintile in
year t who are in the given quintile in year t+ 1.
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Figure A-1: Densities of Lagged Value-Added Distributions
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Figure A-2: Donut Prediction Estimates by Teacher Experience: Actual vs. Pre-
dicted Achievement
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(b) Top Quartile Award Cutoff

Plots show the actual kernel estimates of student achievement in the year following receipt of a value-added
score and predicted values estimated using only observations outside 0.75 VA points from the cutoff. The
estimation model includes a polynomial in prior value-added, the student’s lagged achievement, student
ethnicity, gender, grade level, economic disadvantage the year of the tournament and indicators for the
specific tournament. The polynomial order is determined by minimizing the Bayesian Information Criterion
of between one and six order polynomials. The order for each sub-group is provided in Table A-X. Test scores
are standardized within grade, subject and year and the outcome is for the test score used in determining
the teacher’s award.
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Figure A-3: Donut Prediction Estimates by Teacher Gender: Actual vs. Predicted
Achievement
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(b) Top Quartile Award Cutoff

Plots show the actual kernel estimates of student achievement in the year following receipt of a value-added
score and predicted values estimated using only observations outside 0.75 VA points from the cutoff. The
estimation model includes a polynomial in prior value-added, the student’s lagged achievement, student
ethnicity, gender, grade level, economic disadvantage the year of the tournament and indicators for the
specific tournament. The polynomial order is determined by minimizing the Bayesian Information Criterion
of between one and six order polynomials. The order for each sub-group is provided in Table 5. Test scores
are standardized within grade, subject and year and the outcome is for the test score used in determining
the teacher’s award.
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Figure A-4: Donut Prediction Estimates by Year of Tournament: Actual vs. Pre-
dicted Achievement
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(b) Top Quartile Award Cutoff

Plots show the actual kernel estimates of student achievement in the year following receipt of a value-added
score and predicted values estimated using only observations outside 0.75 VA points from the cutoff. The
estimation model includes a polynomial in prior value-added, the student’s lagged achievement, student
ethnicity, gender, grade level, economic disadvantage the year of the tournament and indicators for the
specific tournament. The polynomial order is determined by minimizing the Bayesian Information Criterion
of between one and six order polynomials. The order for each sub-group is provided in Table 5. Test scores
are standardized within grade, subject and year and the outcome is for the test score used in determining
the teacher’s award.

44



Figure A-5: Donut Prediction Estimates by Number of Students Taught in Subject:
Actual vs. Predicted Achievement
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(b) Top Quartile Award Cutoff

Plots show the actual kernel estimates of student achievement in the year following receipt of a value-added
score and predicted values estimated using only observations outside 0.75 VA points from the cutoff. The
estimation model includes a polynomial in prior value-added, the student’s lagged achievement, student
ethnicity, gender, grade level, economic disadvantage the year of the tournament and indicators for the
specific tournament. The polynomial order is determined by minimizing the Bayesian Information Criterion
of between one and six order polynomials. The order for each sub-group is provided in Table 5. Test scores
are standardized within grade, subject and year and the outcome is for the test score used in determining
the teacher’s award.
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Table A-1: Regression Discontinuity Estimates of
Teacher and Student Characteristics
at Award Cutoffs - 0.75 Bandwidth

Ind. Var.: Indicator For Whether Win Award
Dependent Median Top Quartile
Variable Award Award
Teacher Characteristics

Female
-0.003 -0.084∗∗

(0.029) (0.034)

Has Grad Degee
-0.017 0.024
(0.028) (0.034)

Experience
-0.393 -1.188
(0.609) (0.734)

Student Characteristics

Female
0.003 0.005
(0.004) (0.006)

Economically Disadvantaged
0.021 -0.004
(0.016) (0.021)

Black
0.005 -0.016
(0.018) (0.019)

Hispanic
0.014 0.016
(0.021) (0.024)

White
-0.007 -0.002
(0.010) (0.014)

Gifted
-0.024∗ -0.008
(0.014) (0.018)

Limited English Proficiency
0.014 0.018
(0.017) (0.019)

Lagged Achievement
-0.015 0.025
(0.030) (0.037)

Observations 224,176 159,553

Source: HISD administrative data as described in the text. All re-
gressions include a linear spline in prior value-added score. Stan-
dard errors clustered at the teacher level are in parentheses: **
indicates significance at the 5% level and * indicates significance
at the 10% level.
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Table A-2: Regression Discontinu-
ity Estimates of the
Effect of Winning an
Award on Subsequent
Value-Added by Sub-
ject

Median Top Quartile
Award Award
(i) (ii)

Math

Win Award
0.002 0.046
(0.027) (0.033)

Observations 38,055 24,607

Reading

Win Award
0.010 0.023
(0.028) (0.030)

Observations 48,960 37,378

Language

Win Award
-0.040∗ 0.002
(0.021) (0.022)

Observations 49,087 38,152

Science

Win Award
0.043 0.015
(0.030) (0.032)

Observations 51,283 31,971

Social Studies

Win Award
0.020 0.038
(0.028) (0.033)

Observations 36,791 27,445

Bandwidth = 0.75 value-added points. Source:
HISD administrative data as described in the
text. All regressions include a linear spline in
prior value-added score. Controls include con-
trols for race, gender, grade level, year, tourna-
ment indicators. Standard errors clustered at
the teacher level are in parentheses: *** indi-
cates significance at the 1% level, ** indicates
significance at the 5% level, and * indicates sig-
nificance at the 10% level.
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