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1 Introduction

The accumulation of greenhouse gases in the atmosphere is associated with an in-

crease in Earth’s surface temperature, affecting economic performance and ecosys-

tems as a whole. As temperature rises, the probability of crossing a climate tipping

point (CTP) increases. CTPs are large disturbances that are rare, difficult to pre-

dict, and irreversible. The most common examples of such events are the collapse

of the thermohaline circulation (THC) or the disintegration of the West Antarctic

Ice Sheet (WAIS). Solar geoengineering (SGE), and more specifically solar radiation

management (SRM), has been proposed as a way of limiting the probability of reach-

ing a climate tipping point. By reducing the amount of radiation reaching Earth’s

surface, temperatures can be kept at a level below which catastrophes can occur even

without reducing greenhouse gas concentrations. In this paper we analyze optimal

climate policy in the presence of CTPs when both emissions reductions (mitigation)

and SGE are available, using both an analytical theoretical model and numerical

simulations.

We build a parsimonious analytic model of climate change economics with CTPs

and SGE. We model a CTP as an irreversible event that changes the dynamics of the

climate-carbon system, resulting in a welfare loss relative to the state of the world

before the threshold is reached. The planner’s problem is solved using stochastic

dynamic programing techniques that allow us to accommodate the post-CTP tran-

sition in the system. In this model, the probability of reaching the tipping point is a

stochastic function of the atmospheric temperature. An important characteristic of

our model is that we build in a strong case of inertia, where temperatures tomorrow
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are a function of the stock of carbon in the atmosphere today, which is in turn a

function of mitigation yesterday. On the other hand, SGE today affects tempera-

tures tomorrow. Using the analytic model, we identify different roles for mitigation

and SGE. While both instruments help reduce damages before and after reaching the

CTP, SGE can reduce the risk of crossing the temperature threshold more quickly

than can mitigation. We explore three different SGE rules currently discussed in

the governance literature. The first rule is a Ban, in which society chooses not to

engage in SGE under any circumstances. In the second rule, SGE is freely used in

combination with mitigation. We call this the Insurance rule, since SGE can insure

against the risk of reaching a CTP. Third, we consider a rule where SGE is allowed

only when temperatures surpass the climate tipping point. This is called the Reme-

diation rule, since SGE can be thought of as only a “last-resort” policy in the event

that the tipping point is reached.

We then incorporate SGE into a quantitative integrated assessment model (IAM),

the DICE (Dynamic Integrated Climate-Economy) model, following Heutel et al.

(2015), to simulate a richer set of alternative scenarios allowing for both mitigation

and SGE in the presence of CTPs. In the quantitative model, we relax many as-

sumptions of the analytic model and confirm the results presented in the theory.

The simulation model allows us to consider three distinct types of tipping points: a

Climate Feedback CTP in which the climate sensitivity (the responsiveness of tem-

perature to the carbon stock) is changed after the CTP, a Carbon Sink CTP in

which the carbon dynamics are changed after the CTP, and an Economic Loss CTP

in which there is a direct welfare loss from the CTP. We are able to quantify the
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effects of alternative SGE rules under various CTP specifications in terms of several

outcome variables, including temperature, carbon stock, and the optimal carbon tax.

The Ban rule yields a carbon tax that is twice as high as the other two rules. Under

the Insurance rule, the risks associated with the tipping point are largely avoided.

The Remediation rules, reduces damages and carbon taxes only when the threshold

is crossed, but leaves current policy largely unaffected. Under all rules, and contrary

to what has been expressed previously in the geoengineering literature, a substantial

amount of mitigation is optimal to deal with the risks of climate change.

Our approach closely resembles that of Lemoine and Traeger (2014).1 That paper

uses a recursive version of DICE to consider CTPs where policymakers learn about

the position of the tipping point, and where the costs associated with crossing the

tipping point are a function of the state of the economy at the time the tipping point

is crossed. Like our paper, Lemoine and Traeger (2014) model a Climate Feedback

CTP and a Carbon Sink CTP. To that we add the Economic Loss CTP, as in Cai

et al. (2013). Furthermore, we add SGE to the model. To best of our knowledge,

our paper is the first to incorporate SGE in a model with CTPs.2

The use of SGE as part of the portfolio of options has been suggested in the

literature under diverse scenarios. The use of SGE as an insurance against catas-

trophic climate change has been proposed early in the literature (Keith (2000), Victor

(2008), Keith et al. (2010), Moreno-Cruz and Keith (2013)). The idea of SGE as a

complement to mitigation is proposed in the literature as a way to achieve any given

1In the appendix we present an alternative model, which more closely follows Naevdal (2003),
Naevdal (2006), and Naevdal and Oppenheimer (2007).

2By contrast, our earlier paper (Heutel et al. (2015)) and several others add SGE to an IAM
but without CTPs.
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temperature level at lower costs for society (Wigley (2006), Moreno-Cruz and Keith

(2013), Heutel et al. (2015)). Finally, banning SGE has been proposed because of

the large uncertainties surrounding the unintended consequences of SGE implemen-

tation and the asymmetry of impacts this intervention may have (Barrett (2008),

Blackstock and Long (2010), Moreno-Cruz (2015), Victor (2008)).

A unique contribution of this paper in terms of methods is to model stochastic

parameter values, rather than performing sensitivity analyses. Other studies have

traditionally considered only sensitivity analyses but failed to develop a solution for

the stochastic model. Among the papers that have actually modified DICE to include

stochastic parameters are Baker and Solak (2011), Kolstad (1996) and Lemoine and

Traeger (2014). However, none of these papers have included SGE as the source of

uncertainty.

Other papers have added SGE to IAMs and examined the policy implications.

Bickel and Lane (2009) and Goes et al. (2011) make several modifications to the DICE

model, including allowing SGE and refining the climate dynamics. Their specification

imposes an exogenous intermittency in SGE which makes it less effective. They

present summaries of policies with an optimal mix of mitigation and SGE (subject

to the intermittency). In contrast to Goes et al. (2011), Bickel and Agrawal (2013)

find that under some scenarios a substitution of SGE for mitigation can pass a cost-

benefit test. Gramstad and Tjøotta (2010) include SGE in DICE and conduct a

cost-benefit analysis of SGE under various assumptions about the level undertaken

and its costs. Emmerling and Tavoni (2013) use a different IAM, WITCH, to model

SGE and mitigation policy. None of these papers consider the possibility of climate
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tipping points. See Heutel et al. (2015) for a more thorough comparison between our

approach and previous papers introducing SGE on IAMs.

The rest of the paper is organized as follows. In section 2, we present our analytic

model and its predictions. Section 3 describes and performs numerical simulations

using the modified DICE model. A short conclusion section closes the paper. We

leave for an appendix the description of our numerical approach as well as an alter-

native modeling framework.

2 Theoretical Model

We consider the case of a regulator who solves an infinite-horizon optimization prob-

lem with the goal of minimizing the total costs of climate change. In the model,

the temperature threshold of CTPs is uncertain, there are different types of tipping

points, and SGE and mitigation are imperfect substitutes.3

Optimal policy depends on the state of the world and the dynamics of the climate

system. We use the following set of first order difference equations to represent the

3In the appendix, we present a simpler model in which the CTP threshold may be either uncertain
or deterministic, where there is only one type of CTP, and where SGE and mitigation are perfect
substitutes. Although these simplifications are unrealistic, the model presented in the appendix
offers valuable intuitions relative to the more versatile model presented here and to the numerical
simulations in the following section.
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dynamics of the system:

St+1 = eBAU
t −mt + (1− δt)St (1)

Tt+1 = λt(β ln(St/S0)− θtgt) + (1− γt)Tt (2)

S0 > 0 and T0 > 0 given.

Equation (1) captures the carbon dynamics. St is the stock of carbon in the atmo-

sphere, eBAU
t is business-as-usual emissions of greenhouse gases, mt is mitigation, and

δt is the absorption capacity of the planet. Equation (2) shows how temperature, Tt,

responds to changes in radiative forcing at time t. The radiative forcing potential of

carbon dioxide depends on the carbon stock St relative to its pre-industrial level S0.

βt captures the relation between carbon concentrations and radiative forcing. gt is

the amount of SGE implemented at time t expressed in units of radiative forcing, and

θt ∈ {0, 1} represents the rule regarding the availability of SGE: θ = 1 when SGE is

available and θ = 0 when it is not. λ represents the climate sensitivity of the system

that transforms radiative forcing into temperature levels. Finally, some fraction of

the heat stored in the atmosphere escapes; this effect is captured by the term γtTt

where γt is the heat transfer parameter (Naevdal and Oppenheimer (2007)). When

γt approaches 1, temperature is only a function of atmospheric concentrations and

independent of the temperature in previous periods.4

Equations (1)-(2) represent the inertia of the climate-carbon system in a simple

way but highlights the main difference between mitigation and SGE: temperature in

4This timing of events also features predominately in Naevdal and Oppenheimer (2007) and
Lemoine and Rudik (2014)
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period t+1 is a function of the stock of carbon in period t which in turn is a function

of mitigation in period t − 1. That is, at time t society has already committed to

an amount of warming in the next period. Mitigation efforts affect temperatures

only two periods ahead. SGE in period t, on the other hand, affects temperatures

in period t + 1. Therefore, mitigation efforts in period t create benefits in future

periods but can do little to reduce the warming we have committed for the next

period, while SGE can alter temperatures more quickly, reducing the inertia of the

climate-carbon cycle. These difference equations highlight the reason why SGE can

serve as an insurance against catastrophic climate change.

We model a climate tipping point as an irreversible change in the climate-carbon

system that occurs after a given temperature threshold is crossed. We define the

vector νt = ν = [λt, βt, δt, γt] that captures the state of the climate system at time

t. When the threshold is crossed, and at least one of the parameters changes, the

change in the dynamics of the system is represented by an vector νt = ν̃. If the CTP

is reached at time t̄, then we have:

νt+1 = νt, ν0 = ν

νt̄+1 − νt̄ = ν̃ (3)

The regulator minimizes net costs, which are the sum of the costs of implement-

ing mitigation, mt, and SGE, gt, plus the damages associated with climate change.

The implementation costs are given by c(mt, gt), where cm > 0, cmm > 0, cg > 0,

cgg > 0 and cmg = 0. Damages are given by D(Tt, St, gt) and are a function of the
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current state of the world. They are increasing and convex in temperature and at-

mospheric carbon concentrations, that is DT > 0, DTT > 0, DS > 0, DSS > 0. Solar

geoengineering also create damages, Dg > 0 and Dgg > 0. To capture the current

state of knowledge regarding the side-effects of SGE, we assume damages from SGE

are stochastic. Damages per unit of SGE, φt, are known at time t, but not known at

time t+ 1. We capture this stochastic process via a stochastic equation given:

φt+1 = f(φt) (4)

The exact location of the temperature threshold leading to a CTP is unknown

to the regulator, but the probability of crossing the threshold is known to be an

increasing function of the temperature at time t. In this specification of CTPs, the

probability of crossing the threshold is captured by an endogenous hazard function

given by h(Tt+1). This hazard function captures the idea that as temperature in-

creases, the likelihood of crossing the threshold in the next period also increases.

We can solve the regulator’s problem via backwards induction. We first analyze

the situation after the CTP has be crossed, and then move backward to analyze the

situation before the CTP has not been crossed. After the threshold is crossed, the

value function is given by V (St, Tt, φt, ν̃), where ν̃ captures the state of the dynamics

of the climate-carbon system. We obtain the solution to V (St, Tt, φt, ν̃) by solving
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the following Bellman equation:

V (St, Tt, φt, ν̃) = min
mt,gt

{c(mt, gt) +D(Tt, St, gt|φt) + βtEφ[V (St+1, TT+1, φt+1, ν̃)]}

(5)

subject to equations (1)-(2) and the stochastic equation (4). We take expectations

over the future value function because SGE damages are stochastic.

Before crossing the CTP, the Bellman equation of this problem is as follows:

V (St, Tt, φt, ν) = min
mt,gt

{c(mt, gt) +D(Tt, St, gt|φt)

+βEφ [(1− h(Tt+1))V (St+1, Tt+1, φt+1, ν) + h(Tt+1)V (St+1, Tt+1, φt+1, ν̃)]}

(6)

where V (S, T, ν) is the value function in period t given the state of the world.

With probability 1−h(Tt, Tt+1) the system remains unchanged and with probability

h(Tt, Tt+1) the CTP is crossed.

The first order conditions with respect to mitigation and SGE are given by the

following equations:5

cm(mt, gt) + βEφ

(

VS(St+1, Tt+1, φt+1, ν)
∂St+1

∂mt

+

h(Tt+1)
[

ṼS(St+1, Tt+1, φt+1, ν̃)− VS(St+1, Tt+1, φt+1, ν)
] ∂St+1

∂mt

)

︸ ︷︷ ︸

DWIS

= 0

(7)

5To simplify notation we write XY (Y ) ≡ ∂X(Y )/∂Y.
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and

cg(mt, gt) + βEφ

(

VT (St+1, Tt+1, φt+1, ν)
∂Tt+1

∂gt
+

h(Tt+1) [VT (St+1, Tt+1, φt+1, ν̃)− VT (St+1, Tt+1, φt+1, ν)]
∂Tt+1

∂gt
︸ ︷︷ ︸

DWIT

+

hT (Tt+1)
∂Tt+1

∂gt
[V (St+1, Tt+1, φt+1, ν̃)− V (St+1, Tt+1, φt+1, ν)]

)

︸ ︷︷ ︸

MHE

= 0

(8)

The main difference between mitigation and SGE can be seen by comparing these

two equations. The interpretation of equation (7) is straightforward. The marginal

cost of mitigation equals the expected marginal climate damages from one extra

unit of carbon in the atmosphere. The term VS is the reduction in future climate

costs achieved by reducing the stock of carbon in the atmosphere by one unit. The

term h[ṼS − VS] is called the “differential welfare impact”, DWIS and captures the

difference in the marginal climate costs associated with changes in the carbon stock

incurred if the system crosses a CTP (Lemoine and Traeger (2014)).

The interpretation of equation (8) yields a similar result, but includes one extra

adjustment. Equation (8) states that the marginal costs of SGE equal the marginal

benefits, given by the expected reduction in damages associated with a marginal

reduction in temperature. The second term, h[ṼT − VT ], DWIT , is the differential

welfare impact associated with a change in temperature. The third term, hT [Ṽ−V ], is

the “marginal hazard effect”, MHE, captures the marginal reduction in the hazard

associated with an increase in SGE. The MHE does not appear in equation (7)
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because the threshold is a function of temperature in the next period, not carbon

concentrations. Thus, the MHE captures the insurance properties associated with

SGE: by increasing SGE we reduce the hazard rate and thus reduce the expected

costs of climate change.

2.1 Comparing SGE rules

The regulator chooses the optimal levels of mitigation and SGE subject to one of

three rules regarding SGE availability. These three rules encompass different options

presented in the solar geoengineering debate, that we assume are exogneous to the

regulator:

(a) Ban: SGE is never allowed; θt = 0 for all t.

(b) Insurance: SGE is always allowed; θt = 1 for t.

(c) Remediation: SGE is allowed only after the CTP has been reached; θ = 0 for

t < t̄ and θ = 1 for t > t̄.

We expect the behavior of the system to satisfy the following hypotheses. Before

the CTP is crossed:

i.) The optimal amount of mitigation under different rules is such that:

mban > mremediation > minsurance

ii.) The optimal amount of SGE under different rules is such that:

0 = gban < gremediation < ginsurance
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iii.) Temperature levels under different rules is such that

T ban > T remediation > T insurance

iv.) Atmospheric carbon concentrations levels under different rules is such that:

Sban < Sremediation < Sinsurance

The intuition regarding the previous hypothesis is as follows. Consider first the

Ban rule. In this case, SGE is zero at all times, and so equation (8) does not apply.

Under this setup of enhanced inertia, the role of mitigation is to decrease damages,

but little can be done to decrease the propensity to cross the tipping point. This is

related to the notion of committed warming: temperatures will continue to increase

for several decades into the future, even if we reduce emissions today. DWIS in

equation (7) implies that the benefits of mitigation occur in the future, and mitigation

reduces damages before and after the CTP is crossed. While mitigation cannot do

much about the propensity to cross the CTP in the immediate future, mitigation

reduces the risk of crossing the threshold in the long-term. This effect implies that

the presence of CTPs increases the optimal amount of mitigation, relative to the case

without CTPs and all damages have to be dealt with mitigation alone.

Next, consider the Insurance rule, where SGE can be freely used at any period.

This is the case captured by equations (7)-(8); both mitigation and SGE are used

to tackle climate change. That is, by construction the Insurance rule represents the

optimal policy, and the outcomes under the other two rules must be sub-optimal.6

6This of course follows from the assumption that all costs, damages, and risks of SGE are
included in our model. Bans or limits on SGE use are generally recommended due to the fear of
unforeseen damages excluded from models.
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The differential welfare impacts DWIS and DWIT increase both mitigation and

SGE, and the MHE increases SGE. We can also show that, given functional form

assumptions on implementation costs and climate damages, the introduction of SGE

reduces the amount of mitigation and increases atmospheric carbon concentrations,

relative to the Ban rule.

Finally, consider the Remediation rule, where SGE can be used only after the

CTP has been crossed. Under this rule, both mitigation and SGE levels account

for the DWI, but now the MHE cannot be dealt with using SGE because once the

threshold is crossed, the changes in the climate-carbon system cannot by reversed,

even if we substantially reduce temperatures with SGE. It follows that, relative to the

Insurance rule, the amount of SGE will be lower, and the amount of mitigation will be

higher. This in turn results in higher temperatures and lower carbon concentrations

before the threshold is crossed, relative to the Insurance rule. Relative to the Ban

rule, mitigation is lower, carbon concentrations are higher, and temperature is lower.

To corroborate our intuition, in the next section we develop and implement and

numerical simulation that allows us to explore the dynamics of the system in a more

comprehensive framework.7

3 Numerical Simulations

The analysis presented in the preceding sections rely on a parsimonious model. In

this section, we extend the generality of our analysis by modifying an integrated as-

7In the simpler model presented in the appendix, we are able to theoretically prove these hy-
potheses, while in our more complicated model they remain hypotheses. See the appendix for
details on the proofs and the intuitions behind them.
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sessment model, DICE, to incorporate CTPs and the possibility of SGE. We consider

several types of CTPs and allow uncertainty, not only on the location of the tipping

point, but also on the damages from SGE.

3.1 Summary of Modifications to DICE

The dynamic integrated climate-economy (DICE) model has been widely used to

study climate change and optimal climate policy. A summary of the model’s assump-

tions and equations is available in Nordhaus (2008) and replicated for completeness

in the appendix. The model can be used to calculate optimal climate mitigation

policy, including the optimal path for the carbon price.

Here we briefly summarize our modifications to DICE. These are based on the

modifications in Heutel et al. (2015), and more detail is available there, as well as

in this paper’s appendix. There are six modifications made to DICE to incorporate

SGE and CTPs.

3.1.1 SGE Intensity

We include a choice variable for the intensity of SGE, g, analogous to DICE’s choice

variable for the intensity of mitigation, m. Thus, in addition to choosing an optimal

mitigation path, our model solves for an optimal SGE path. Both m and g are

proportions; m is the proportion of emissions that are abated and is between 0 and

1. g is the proportion of radiative forcing that is reduced (see below), and it can take

values greater than 1.

15



3.1.2 SGE’s Effect on Radiative Forcing

SGE affects the radiative forcing of Earth’s atmosphere, reducing the amount of

sunlight entering and thereby reducing temperature. DICE has a dynamic model

of temperature based on radiative forcing, and radiative forcing itself is determined

by carbon concentrations. SGE reduces radiative forcing directly, therefore almost

instantaneously reducing temperatures. Setting SGE to g = 1 corresponds to reduc-

ing radiative forcing to its pre-industrial levels. By considering g > 1, we effectively

allow for SGE to reduce temperature even below preindustrial levels, which can be

necessary to deal with the inertia of the climate system and the warming we have

already committed to.

3.1.3 SGE Implementation Cost

SGE implementation is costly. Our specification of costs is analogous to DICE’s

specification of the cost of mitigation. It is a convex (quadratic) function of the

intensity of SGE g. It is calibrated from back-of-the-envelope calculations based on

Crutzen (2006), Rasch et al. (2008), and a recent study on the costs of deployment

(McClellan et al. (2012)). As in DICE, costs are expressed as a fraction of gross

output. Implementation costs are small; in our calibration the costs of SGE at

intensity g = 0.1 is 0.06% of gross output. Instead, the larger costs of SGE come

from its potential damages.
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3.1.4 SGE Damages

Solar SGE may directly cause damages, for instance, by reducing the upper ozone

layer (Heckendorn et al. (2009)). We model these damages analogously to DICE’s

specification of damages from climate change. They are modeled as a fractional

lost of potential output. We know of no study that attempts to quantify these

damages, and thus this parameterization is inherently uncertain. We attempt to be

conservative (i.e., biased against SGE) in our parameterization and assume that full

SGE (g = 1) causes damages equal to 3% of gross output. This is of the order of

climate change damages in DICE from a 6 degrees Celsius temperature increase.

We also assume that SGE damages are stochastic and are drawn from a log-

normal probability distribution before each period starts.

3.1.5 Climate Change Damages Directly from Carbon

In DICE, climate change damages are a function of global temperature only. Since

SGE will reduce temperatures but not reduce atmospheric or ocean carbon con-

centrations, in our model damages from climate change are separated out between

damages from temperature, from atmospheric carbon concentrations, and from ocean

carbon concentrations. High ocean carbon concentrations result in ocean acidifica-

tion, which can lead to damages (Brander et al. (2012)). High atmospheric carbon

concentrations may yield benefits (Pongratz et al. (2012)) or damages (Bony et al.

(2013)). Just like with damages from SGE, these damages are mostly unknown. We

keep the total level of climate change damages identical to the calibrated level in

DICE. We assume that the majority (80%) of climate change damages come directly

17



from temperature, but a small amount of damages may come from ocean concentra-

tions (10%) and from atmospheric concentrations (10%). As shown in Heutel et al.

(2015), this implies that SGE is not a perfect substitute for mitigation.8

3.1.6 Climate Tipping Points

The incorporation of climate tipping points into DICE along with SGE is unique to

this paper and not found in Heutel et al. (2015)9. CTPs are modeled as irreversible

events. In dynamic programming language, these are absorbing states, meaning that

once we hit a tipping point we enter a new state in terms of climate or economic

systems, where there is no chance of returning to the old state. We consider three

types of CTPs: two affecting climate dynamics and one affecting economic costs.

The first two CTPs are analogous to the two CTPs modeled in Lemoine and Traeger

(2014).

(i) Climate feedback: Crossing this CTP strengthens the temperature feedback

loop by increasing the marginal effect of carbon on temperature.10 In the

IAM, after this CTP is crossed the climate sensitivity variable increases from

3◦C to 5◦C.11

(ii) Carbon sink: Crossing this CTP reduces the natural capacity of the planet

8In Heutel et al. (2015), we explore this calibration using sensitivity analysis. The qualita-
tive behavior of the system remains the same so long as the temperature damages dominate the
outcomes.

9CTPs are incorporated into DICE in Lemoine and Traeger (2014), but without SGE.
10In our analytical model, this amounts to an increase in λt in equation (2).
11Climate sensitivity measures the steady-state temperature increase due to doubling atmospheric

carbon levels; see the appendix for details.
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to absorb carbon.12 In the IAM, after crossing this CTP, carbon sinks are

weakened by 50%.13

(iii) Economic loss: Crossing this CTP causes a loss of economic welfare equiva-

lent to a 10% proportional increase in the damages from climate change.

As in Lemoine and Traeger (2014), the probability of reaching a CTP in the next

state is a function of the atmospheric temperature in the current state. A CTP

is reached once we cross an unknown threshold temperature. The CTP threshold

temperature takes a uniform distribution. The minimum value is the current tem-

perature (since once the current temperature has been reached, we know the CTP

threshold cannot be below it), and the maximum temperature is calibrated so that

the expected value of the threshold temperature is 2.5◦C in 2005. Therefore, in each

period, the probability of reaching the threshold temperature in the next period is

uniformly distributed between Tt, the current temperature, and T̄ , the upper limit

temperature:

p = max
{
0,

min(Tt+1, T̄ )− Tt
T̄ − Tt

}
(9)

Uncertainty in the timing of tipping points is introduced in the DICE model as a

binary variable with its probability associated with observed atmospheric tempera-

ture. The value of this variable is set to zero for the states before crossing the tipping

point. Once a tipping point is crossed the variable changes into one and stays at

one for the rest of the simulation. Depending on the type of CTP, subsequent state

variables (including temperature, carbon concentration, and economic output) are

12In our analytical model, this is a decrease in δt in equation (1).
13See the appendix for details.
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calculated.

3.2 Solution Algorithm

The evolution of the climate-economy system under uncertain tipping points is mod-

eled as a Markov decision process. We define St as the state variable with multiple

dimensions. For this problem, the state variable has eight dimensions: capital, at-

mospheric temperature, lower ocean temperature, atmospheric carbon concentration,

upper ocean carbon concentration, lower ocean carbon concentration, radiative forc-

ing, and a binary state variable capturing whether or not the CTP has been crossed.

Given the values of the state variable parameters at each time step, the mitigation ac-

tion, the SGE action, and the realization of uncertainty (crossing the tipping point),

we can calculate the state variable parameters for the next time step.

Since the state variable parameters and action space are continuous, finding an

exact solution for this problem through conventional backward induction methods

is infeasible. Therefore, to solve the DICE model with stochastic tipping points, we

use the two-step-ahead approximation method described in Shayegh and Thomas

(2015). The approximation technique was tested and tuned in the deterministic case

and then applied to the stochastic model.14 In this technique at each time step t,

a value function V̄t is defined and used to capture the future utility from taking a

candidate action at:

14To test the accuracy of this solution algorithm, we use it to replicate the results in Lemoine
and Traeger (2014). This exercise is described in the appendix. It is worth emphasising that our
approach does not require a reduction in the dimension of the state space, and we are able to solve
the problem using the full set of transition equations used in the original DICE model.
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V̂t(St) = max
at

{Ut(St, at) + V̄t(St)} (10)

where V̂t(St) is the optimal value of state St based on the value approximation. The

advantage of this technique is in using endogenous parameters to calculate the value

function approximation by assuming a deterministic trajectory for the two steps into

the future at any given time. The deterministic trajectory allows us to calculate

the utilities of these two future steps and bring them back to the present time using

an artificial and tunable discount rate. The adjusted value is then used as a proxy

for the uncertain value of all future states. These values reflect the social utility

under the deterministic assumption and are used to construct the value function of

the current state. The optimal action (mitigation and SGE) is found by maximizing

this value function. The algorithm starts at time t = 1 and progresses until the last

time step. After calculating all value functions, these values are used to update the

coefficients of the approximate value function in previous states. The algorithm then

iterates until the error (the difference between approximate values of V̄t and optimal

values of V̂t+1) converges to approximately zero.

The algorithm is developed in MATLAB and is available upon request. The full

description of the model and approximation algorithm is presented in the appendix.

3.3 Results and Discussion

In this section we discuss the results from applying our numerical simulation to the

three types of tipping points under the three different rules regarding the availability

of SGE. We analyze the optimal climate policy portfolio of mitigation and SGE, and
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then the resulting carbon price, temperature, and carbon concentrations.

3.3.1 Optimal policy intervention

In Figure 1 we present the amount of mitigation and SGE implemented under dif-

ferent CTP types and SGE rules. The three CTP types are organized by rows, and

the three SGE rules are organized by columns. We begin by comparing a single row

across columns and then move on to compare across rows.

In each panel, the horizontal axis shows the year of the simulation. The vertical

axis shows the amount of climate intervention for mitigation and SGE. Because

mitigation is expressed as a fraction of total emissions and SGE is a fraction of total

radiative forcing, we can plot them both in the same axis. Mitigation is constrained

to be a number between 0 and 1, because we do not allow for negative emissions.

SGE, on the other hand, can exceed 100% reduction in radiative forcing. The optimal

amount of mitigation is shown in blue and the optimal amount of SGE is shown in

orange. As a baseline case, we plot two bold continuous lines to capture the amount

of mitigation and SGE in the absence of any form of CTPs. The average value

of mitigation and SGE for the uncertain cases are shown in dashed lines, and the

shaded areas represent the 95% confidence intervals, given the uncertainty of the

CTP threshold.

Thus, within any panel, to compare policy with and without CTPs, compare

the solid line (without CTPs) to the dotted line (the mean value with CTPs) or

the shaded area (the 95% confidence interval with CTPs). To compare policy with

and without SGE, compare results under the Ban rule (no SGE) to those under
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the Insurance rule (free and optimal use of SGE). The Remediation rule simulations

represent the case where SGE can only be used after the CTP is reached.

The top-left panel in Figure 1 shows the Ban rule, where SGE is not allowed.

By construction, SGE is zero for all periods. Comparing the continuous blue line

to the dashed blue line shows that the presence of a CTP increases the average

amount of mitigation in each period. This is consistent with recent findings in the

literature (Lemoine and Traeger, 2015). The blue area comprises the 95% confidence

interval for optimal mitigation. Under this scenario, once the CTP is crossed, the

marginal impact of one extra unit of emissions increases and therefore the benefits

of mitigation also increase. The top of the blue zone captures the realization where

the tipping point is not crossed and the bottom line captures the realization where

the tipping point is crossed earliest. The differences between the continuous line

and the bottom line of the blue zone captures the extra benefits of mitigation after

the threshold is crossed. The difference with the top of the blue zone also captures

the risk reduction effects of early mitigation intervention. Because once the CTP is

crossed the risk reduction motive disappears, the amount of mitigation falls.

Next, consider the case of the Insurance rule in the top-middle panel in Figure

1. Here, both mitigation and SGE are used from the beginning of the simulation.

Comparing this panel and the first panel, we can see that the amount of mitigation

is substantially reduced relative to the Ban rule, while SGE comprises the bulk of

climate policy. The attractiveness of SGE stems from factors other than its costs,

mainly the quickness of response that allows SGE to reduce future damages not only

by reducing the DWI but also by reducing the MHE. The increase in SGE due to
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the MHE is the difference between the horizontal axis and the bottom line in the

orange area. To see this, compare the orange areas under the Insurance rule and

the Remediation rule. As we move to the Remediation rule in the right panel, the

effect of MHE on SGE is eliminated. Also, under the Remediation rule the amount

of mitigation can be just as high as under the Ban rule, when the CTP is never

crossed (and no SGE is allowed), and as low as under the Insurance rule, when the

CTP is crossed early.

In the last two panels in the top row of Figure 1, the shaded ares are larger,

relative to the Ban rule. This reflects the introduction of uncertainty in the damages

of SGE, but also the quick response associated with SGE, which makes it more

responsive to risk and its resolution.

Next we discuss the other CTP types. The second row presents the results for

the Carbon Sink tipping point. Under the Ban rule, there is almost no difference in

the mitigation level whether or not CTPs are possible. For the other rules, there is

only a small difference between the optimal mitigation levels. SGE behaves about

the same under the Insurance rule as it does for the other CTP type, but the amount

of SGE is slightly larger under the Remediation rule for the Carbon Sink CTP. The

reduction in the natural carbon decay rate caused by the Carbon Sink CTP increases

temperature, thereby increasing the marginal benefits of SGE.

The third row presents simulations under an Economic Loss tipping point. Policy

under this CTP is very different than the other two CTPs because the economic loss,

once the threshold is crossed, cannot be attenuated by either mitigation or SGE.

Thus, before the threshold is reached, both mitigation and SGE will be implemented
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at a higher intensity relative to the other CTP types, because the risk of crossing the

CTP is too high. But once the threshold is reached, the incentives for mitigation and

SGE are drastically diminished. Damages are proportional to output, so a reduction

in output also reduces damages and therefore the incentives to do either mitigation

or SGE.15

Figure 1 verifies the hypothesis derived from our theoretical model. It shows

that mban > mremediation > minsurance and that 0 = gban < gremediation < ginsurance

(although the difference between mremediation and minsurance is insubstantial). There

is no qualitative difference across CTP types in policy response. However, SGE

behavior is qualitatively different between the Insurance and Remediation rules.

Under the Insurance rule, average SGE intensity with CTPs (the dotted line) is

higher than SGE intensity without CTPs (the solid line). Under the Remediation

rule, the opposite is true.

3.3.2 Optimal carbon price

In Figure 2, we present the optimal carbon price (in $/tC) under the different CTP

types and SGE rules. The panels are organized as in Figure 1. The green shaded

area shows the 95% confidence interval for the possible CTP outcome realizations.

The top line reflects cases where the CTP is not reached inside the planning horizon,

and the bottom line reflects cases where the CTP is reached very early. The red line

shows the outcome when there are no CTPs, and the dashed line shows the mean

value of the stochastic cases.

15This result is also found in Cai et al. (2013).
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We consider first the case of the Ban rule under the Climate Feedback tipping

point. The presence of a CTP increases the price of carbon, reflecting the risk

associated with a tipping point. Crossing the CTP early reduces the carbon price

as those risks are eliminated. Moving to the next two panels, we can see that the

carbon price is the lowest under the Insurance rule, followed by the Remediation

rule. When SGE is introduced, the marginal damages associated with each unit of

carbon in the atmosphere are reduced, less mitigation is used and the carbon price

falls.16 Under the Insurance rule, the uncertainty band is narrow, but under the

Remediation rule, the uncertainty band is very large, reflecting the use of SGE only

after the CTP has been reached. If the CTP is never reached, since SGE cannot be

used, mitigation levels remain high and so the carbon price stays also high. If the

CTP is reached early, SGE is used and so mitigation and the carbon price fall.

Comparing these results to the two other CTP types, we see generally the same

outcomes. The carbon price is the lowest and exhibits the narrowest uncertainty

band under the Insurance rule. The uncertainty in the carbon price is highest for

the Economic Loss tipping point. As soon as the tipping point is reached, irreversible

losses are incurred and there is little that can be done to deal with those losses. When

SGE use is restricted, either under the Ban rule or the Remediation rule, the mean

carbon price and the uncertainty in the carbon price are substantially higher than

when SGE use is unrestricted (Insurance rule).

16This is consistent with the findings in Heutel et al. (2015)
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3.3.3 Temperature and Atmospheric Carbon Concentrations

Lastly, we show how temperature and carbon concentrations behave under the dif-

ferent scenarios. Figure 3 presents the temperature (in degrees ◦ C deviation from

preindustrial temperatures). For all CTP types, the lowest temperature occurs under

the Insurance rule. SGE is used most intensively when it is used to avoid crossing

a CTP that is difficult to control with SGE after being crossed; this is true of the

Carbon Sink and Economic Loss tipping points. Under the Insurance and Remedia-

tion rules we even observe negative temperature changes at the end of the planning

horizon. The uncertainty regarding the future temperatures is largest under the Re-

mediation rule. Since using SGE after crossing the tipping point cannot eliminate

all damages from the tipping point, the mean value of temperature under the Reme-

diation rule (dotted line) is higher than in the case without any tipping points (solid

line).

In Figure 4 we show the resulting atmospheric carbon concentrations, measured in

GtC, under the optimal amount of climate intervention in each scenario. Compared

to the Ban rule, allowing SGE yields the highest concentrations of carbon, although

temperatures are lower. In the time horizon presented (200 years), carbon eventually

decreases under the Ban rule but continues to increase under the other rules. The

Carbon Sink CTP exhibits the highest carbon concentrations across all SGE rules

and also the highest amounts of uncertainty. The Insurance rule, while keeping

temperature to very low levels, allows for high concentration levels.

Figures 3 and 4 are consistent with our initial hypotheses. Temperatures are

such that T ban > T remediation > T insurance and carbon concentration levels are such
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that Sban < Sremediation < Sinsurance. Carbon concentrations are highest when SGE

is allowed (Insurance and Remediation), reflecting the fact that SGE and mitigation

are (imperfect) substitutes.

3.3.4 Summary

These simulations demonstrate that SGE can be used as a substitute, albeit an

imperfect substitute, for mitigation in managing the risks of CTPs. Without the

availability of SGE (the Ban rule), the presence of CTPs causes more mitigation to

be used and consequently a higher carbon price. Depending on the type of CTP,

temperatures and carbon stocks may be higher or lower with the CTP than without

it.

Under the optimal policy portfolio (the Insurance rule), CTPs increase the use

of SGE but do not substantially affect mitigation or the optimal carbon price. Thus,

nearly all of the risk of CTPs is managed by SGE rather than by mitigation.

When SGE is restricted to only be allowed after the CTP is reached (the Reme-

diation rule), mitigation is used much more intensively before the CTP is crossed,

since it is the only policy option that can manage that risk. Once the CTP is crossed

and SGE is allowed, SGE is used less intensively than under the Insurance rule, since

there is no benefit in terms of reduced probability of CTP risk (no marginal hazard

effect). The Remediation rule does not increase welfare and in fact substantially

increases policy uncertainty, especially in regards to optimal mitigation levels and

the carbon price.
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4 Conclusion

We consider optimal climate policy when solar geoengineering is included as a policy

option and tipping points are potential threats. Solar geoengineering is part of

the optimal policy portfolio for two reasons. First, it provides a means to control

temperature at (potentially) a lower cost than mitigation. Second, it can be used as

insurance against the risk of reaching a climate tipping point. Thus, refraining from

using SGE only until a tipping point has been reached (our Remediation rule) is not

a welfare-maximizing policy.

Our analytic results were reached using a simple model; we have done so to con-

centrate on the importance of SGE in dealing with mega-disasters caused by CTPs.

Our numerical approach modifies the DICE model to incorporate SGE, three rules

governing its use, and three types of tipping points. The simulation results confirm

our predictions from the analytical model, but they also provide us with a quantita-

tive characterization of alternative policy scenarios. As with any integrated assess-

ment model, results depend on the parametrization and calibration of the model,

much of which could be highly speculative.17

We find that tipping points call for more action, but this action can take the

form of a combination of mitigation and SGE, rather than mitigation alone. This

allows for a climate policy with lower carbon taxes and overall lower risk, relative to

a world without SGE. SGE will not eliminate the risk from CTPs altogether, but it

may substantially reduce it.

17See Pindyck (2013) for a critique of IAMs.
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A The Stochastic DICE model with Tipping Points

In this appendix, we describe in more detail our modifications to the DICE model to

incorporate SGE and CTP. We modify the DICE model that has been first introduced

by Nordhaus (Nordhaus, 1993) and the model parameters and equations have been

represented in (Nordhaus, 2008). We have modified the DICE 2007 version of the

model in order to include a probability of the tipping points and the SGE action.

We model the stochastic DICE as a Markov decision process with a state space, an

action space, an information space, a transition function, and a reward function.

• State Space

The global climate-economy system can be defined as a state with seven contin-

uous variables: T at
t is atmospheric temperature (degrees Celsius above prein-

dustrial), T lo
t is lower ocean temperature (degrees Celsius above preindustrial),

Mat
t is the atmospheric concentration of carbon (Giga Tons of Carbon, GTC),

Mup
t is the concentration in the biosphere and upper oceans (GTC), M lo

t is the

concentration in deep oceans (GTC), Kt is capital ($trill), and Ft is radiative

forcing (W/m2). We define the state space as St = {T at
t , T

lo
t ,M

at
t ,M

up
t ,M lo

t , Kt, Ft}.
18

18And, as described in the text, when CTPs are added to the model, there is an eighth state
variable representing whether or not the CTP has been reached.
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• Action Space

At each time step, a mitigation action (control rate) at and a SGE action gt

are taken which indicate the percentage reduction of GHG emissions and the

percentage of radiative forcing reduction respectively. Both actions are costly

and impose immediate costs to the economy but prevent the future damage

costs of higher temperature due to the abated emissions or lowered radiative

forcing. Taking actions at and gt at any given state will determine the next

state deterministically. Therefore the action space is defined as at ∈ [0, 1] and

gt > 0

• Information Space

We can introduce uncertainty into this system by modeling two types of un-

certainty, one from the atmospheric temperature shocks and the other from

the SGE damage dynamic. We define a Normal probability distribution for

the temperature shocks and a truncated Lognormal distribution for the SGE

damage coefficient. For the analysis here we assume Wt = Normal(1, 0.0068)

for the weather shocks and νgt = Lognormal(ln(0.03), 1) for the SGE damage

cost function.

• Transition Functions

The gross economic output, Yt, is calculated from the given level of technology,

capital, and labor in the current state:

Yt = Γt ×Kβ
t × L1−β

t (A.1)
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where Γt is technology and Lt is labor at time t. β is the output elasticity

of capital. The net output, Qt, is calculated after subtracting climate change

damages and mitigation and SGE costs from the gross output:

Qt = Yt −
(
∆(T at

t ) + A(at) +G(gt)
)
× Yt (A.2)

∆(T at
t ) =

(1− u3)(1 + νgt g
2
t )

1 + ξ1(Wt × (T at
t )2) + ξ2(Mat

t −Mat
0 )2 + ξ3(M

up
t −Mup

0 )2
(A.3)

A(at) = θ1 × aθ2t (A.4)

G(gt) = θg1 × g
θ
g
2

t (A.5)

where ∆ is the damage function that depends on the atmospheric temperature,

atmospheric carbon concentration and upper ocean carbon concentration. The

state of the world determines the value of u3: if the economic tipping point

has not passed yet, u3 = 0 and if the tipping point is passed u3 = 10%. The

parameters ξ1, ξ2, and ξ3 are the damage cost coefficients and are adjusted to

replicate the damage cost of the original DICE model for the year 2005. The

parameters θ1 and θ2 are the coefficients of the mitigation cost function A(at)

and θg1 and θg2 are the coefficients of SGE cost function.

Part of the net output at each time step is saved and invested back in the form

of the capital and the rest is consumed:

Kt+1 = (1− δ)× Kt + θ3 × Qt (A.6)

where δ is the capital depreciation rate and θ3 is the saving rate. The industrial
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emissions Et are found from the carbon intensity of the output σt, taking into

account the abatement decision:

Et = σt × (1− at)× Yt (A.7)

Other state variables in the next time epoch are found as:

Mat
t+1 = Et + (1− u2)× Mat

t + φ21 × Mup
t (A.8)

Mup
t+1 = u2 × Mat

t + φ22 × Mup
t + φ32 × M lo

t (A.9)

M lo
t+1 = φ23 × Mup

t + φ33 × M lo
t (A.10)

where φ21, ..., φ33 are carbon cycle transition coefficients. The parameter u2

indicates the carbon sink tipping point. When the tipping point is crossed it

drops to half of its initial value.

The temperature equations for the next state are:

T at
t+1 = T at

t + η1 ×
{
Ft+1 − η2T

at
t − η3 × {T at

t − T lo
t }

}
(A.11)

T lo
t+1 = T lo

t + η4 × {T at
t − T lo

t } (A.12)

Ft+1 = η2u1(log
(Mat

t+1−Mat
0 )

2 )× (1− gt) (A.13)

where η1, ..., η4 are temperature coefficients and u1 is the tipping point indicator

for the climate sensitivity. If the tipping point is crossed, u1 will go up from

3◦C to 5◦C.
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• Reward Function

The reward is calculated as the social utility of consumption at each time epoch:

Ut =

{
(1− θ3)× Qt

}1−α

1− α
(A.14)

where α is the elasticity of marginal utility of consumption. The objective is

to maximize the sum of discounted expected social utilities over the modeling

horizon given uncertainty in climate sensitivity:

max
at∈A(St)

E

{ T∑

t=0

γt U t

(
St, at,Wt

)
}

(A.15)

• Look-ahead approximation heuristic

To demonstrate the algorithm, consider a simple transition between two states

St to St+1 as shown in Figure A.1. The uncertainty from the weather shocks

and SGE damage cost is shown as ∆T . After observing this information and

taking the action at at state St, we will be able to calculate the next state St+1 .

In order to find the optimal action a∗ we deploy our two-step-ahead algorithm.

First, under the deterministic assumption, the value of the current state St will

be calculated by taking any candidate action at and two consecutive null actions

to obtain two post-decision states Sa
t and S0

t+1 and with immediate rewards of

Uat
t , U0

t+1, and U0
t+2. The post-decision state variable Sa

t is a transient state

between the current state St and the next state St+1. This state is generated by

implementing the chosen action at on the current state St but before realization

of the random parameter ∆Tt+1. The optimal action is the one that maximizes
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the value of the current sate:

a∗t (St) = argmaxat
(
Uat
t + V̄t(S

a
t )
)

(A.16)

The value function V̄t is the approximation of the post-decision state Sa
t . For

this problem we consider a very simple function approximation with only one

parameter V̄t(S
a
t ) = θ1 × U0

t+2, where θ1 is the tunable parameter of the value

function approximation and defines the “policy”. The initial value of this

parameter is assumed to be one and it is updated at the end of each iteration.

The value of state is calculated from V̂t(St) = maxat
(
Uat
t + V̄t(S

a
t )
)
. Once

the optimal action a∗ is found, a realization of the uncertain parameter is

drawn from the sample path and the values of state variables of the next

state St+1 is calculated accordingly. The approximate value is used to update

the approximation function that was used to estimate the value of the post-

decision state Sa
t using the following stochastic gradient algorithm: θnew1 =

θold1 − α × (V̄t − V̂t+1) × U0
t+2 The step size α is chosen as [U0

t+2]
−2 to simplify

the updating equation and guarantees the convergence. Therefore the new

coefficient for the next iteration is calculated as

θnew1 = θold1 −
V̄1 − V̂2
U1(S0

2 , 0)
(A.17)
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Figure A.1: An example of the two-step-ahead algorithm for for the DICE model.

B Comparing our numerical solution to Lemoine

and Traeger (2014)

In this appendix, we verify the two-step-ahead solution algorithm from Shayegh and

Thomas (2015) by using it to solve the model in Lemoine and Traeger (2014). We

demonstrate that our results are identical to theirs, which was solved by them using

an alternative solution algorithm. In that study, for numeric efficiency, they refor-

mulated the DICE-2007 model to use effective labor units for capital and combined

biosphere and shallow ocean stock for carbon dynamics. Moreover, they downscale

the original decadal time steps in the DICE model to an annual step size. Their so-

lution is based on approximating the value function using a 104 basis of Chebychev

polynomials.

Compared to Lemoine and Traeger (2014)’s solution method, our method is sig-

nificantly simpler, is faster to converge, and uses only one tunable parameter for each
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approximation. We keep the original structure of the DICE model and use the three

carbon circulation layers (atmosphere, upper ocean, and lower ocean). Furthermore,

we keep the decadal structure of the DICE model and show that the results follow

Lemoine and Traeger (2014)’s very closely.

We consider the two types of CTPs modeled by Lemoine and Traeger (2014)

for this comparison. The first, the Climate Sensitivity tipping point, increases the

climate sensitivity parameter and therefore amplifies global warming. We consider

three levels of increased climate sensitivity and model them separately. The second

tipping point, the Carbon Sink, increases the lifetime of CO2 in the atmosphere by

reducing the fraction of atmospheric emissions that is transferred to the upper ocean

layer at each time step. We reduce this fraction by either 25%, 50%, and 75%. The

Climate Sensitivity tipping point changes the effect of emissions on temperature, and

the Carbon Sink tipping point changes the timing of such an effect. The results are

shown in Figures B.1 and B.2, for the case in which the CTP happens to never be

crossed, in order to see how the modeled policymaker adjusts to the possibility over

time.

Figure B.1 shows the carbon concentrations, and Figure B.2 shows temperature,

both comparing the results of our model that has decadal time steps and a two-layer

ocean with the results from Lemoine and Traeger (2014).19 The results are nearly

identical.20 This verifies that the solution method from Shayegh and Thomas (2015)

19The figures from Lemoine and Traeger (2014) are cut and pasted directly from their paper.
Note that all the results in this section are without SGE and without the Economic Loss CTP,
since we are solely concerned in replicating the model in Lemoine and Traeger (2014).

20Our model generates slightly higher temperature that can be attributed to the longer time
steps.

46



is appropriate to use in this context.
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Figure B.1: Comparison of carbon concentration results in our model with the
Lemoine and Traeger’s model. We replicated the tipping points definition from
their model but used the original DICE model’s time step and carbon circulation
structure.
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Figure B.2: Comparison of temperature results in our model with the Lemoine and
Traeger’s model. We replicated the tipping points definition from their model but
used the original DICE model’s time step and carbon circulation structure.
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C Alternative Theoretical Model

In this appendix we present an alternative theoretical model that employs more

simplifying assumptions than the model presented in the paper. In particular, this

alternative model considers only one type of CTP (a fixed drop in utility), includes

a case where the threshold of the CTP is known with certainty (though also includes

a case in which the threshold location is uncertain), and models SGE and mitigation

as perfect substitutes. The benefit of these simplifying assumptions is that the model

provides some additional intuition and closed-form solutions, which are relevant to

our numerical simulations. In particular, with this simpler model we can formally

prove the predictions about how outcomes differ under the different SGE rules, while

in the model in the main text these predictions are just hypotheses. The structure of

this model is substantially different than that of the model in the paper; in particular,

the model in the paper uses a dynamic programming approach. Thus, the paper’s

model is not merely an extension of the simpler model, so we present this model in

an appendix.

First, we present the case where the threshold location is known with certainty.

Then, we present the case of an uncertain threshold location.

C.1 Known Threshold Location

The dynamics governing the change in temperature are represented by the following

first-order differential equation:

Ṫ ≡
dT

dt
= S0 −m− θg − δT (C.1)
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where T represents temperature, m and g are mitigation and SGE, respectively;

both measured in terms of their potential to reduce temperature. We assume society

chooses whether or not to make SGE available to the regulator. And the regulator

takes this choice as given. The parameter θ ∈ {0, 1} represents the rule regarding the

availability of SGE: θ = 1 when SGE is available and θ = 0 when it is not. S0 is the

radiative forcing caused by the unabated concentration of greenhouse gases. Some

fraction of the heat stored in the atmosphere escapes; this effect is captured by the

term δT where δ is the heat transfer parameter (Naevdal and Oppenheimer (2007)).

All variables are a function of time, but we omit reference to the time variable to

avoid notation clutter.

The costs of mitigation are a strictly increasing and strictly convex function of m

denoted by Cm(m) with Cm(0) = 0. SGE costs are a strictly increasing and strictly

convex function denoted by Cg(g) with Cg(0) = 0. For simplicity, and in order to

explore the model further, we assume quadratic costs for both mitigation and SGE;

that is

Cm(m) =
1

2
βm2 and Cg(g) =

1

2
γg2. (C.2)

We model a climate tipping point (CTP) as an irreversible loss in welfare that

occurs after a given temperature threshold T̄ is crossed. In particular, before the

threshold is crossed society receives a constant stream of utility α = A. When the

threshold is crossed, α jumps to zero. A regulator chooses the level of mitigation
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and SGE that maximizes welfare. This problem can be stated as

W (t) = max
{m,g}

∫ ∞

0

[α− Cm(m)− Cg(g)] e
−rtdt (C.3)

subject to:

Ṫ = S0 −m− θg − δT, T (0) = 0 (C.4)

α̇ = 0, α(0) = A (C.5)

α(t̄+)− α(t̄−) = −α(t̄−) (C.6)

Equation (C.6) describes how, at the time when the CTP is reached (t̄), the utility

α drops to zero. At all other periods it is constant (equation C.5).

In principle, if the costs of avoiding crossing the threshold are too high, the

regulator could allow it to be crossed. We assume that the utility loss from crossing

the CTP is high enough so that it is never optimal to cross, which we ensure by setting

A > Cm(S
0). Moreover, in order for the problem to be economically interesting, we

assume that the threshold is below the steady-state temperature level in the absence

of regulation, that is T̄ < S0

δ
. Under these two assumptions, the threshold will

never be crossed but will be reached at some finite time t = t̄. When the location

of the threshold is known, the regulator can optimally choose t̄. That is, without

uncertainty, the optimal policy is to just reach the threshold temperature T̄ but

not exceed it. The utility loss from the CTP never occurs, and after reaching the

threshold temperature, the temperature will be maintained at that level.

The problem is solved backwards in two stages. In the second stage, we find the
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solution to the problem after the threshold is reached. In the first stage, we analyze

the problem starting at t = 0, using the welfare of the second stage as a scrap value

function that depends only on the reaching time t̄.

C.1.1 After Reaching the Threshold

After the threshold T̄ is reached, the temperature must be kept at that constant

level to avoid triggering the CTP: T = T̄ and Ṫ = 0. Thus, for all t > t̄, the problem

for the regulator is:

W (t|t > t̄) = max
{m,g}

∫ ∞

t̄

[A− Cm(m)− Cg(g)] e
−rtdt (C.7)

subject to:

0 = S0 −m− θg − δT̄ (C.8)

The optimality condition is given by:

θC ′
m(m) = C ′

g(g) (C.9)

After reaching the threshold, mitigation and SGE will be kept at constant levels,

which we denote m̄ and ḡ. Equation (C.9) shows that once the threshold is reached,

the optimal policy is such that the marginal costs of mitigation and SGE are equal-

ized. Combining equations (C.8) and (C.9), the optimal values of m̄ and ḡ can be

calculated. Using the functional forms defined above, the optimal policy after the
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threshold is crossed is given by:

m̄ =
γ

γ + θ2β
[S0 − δT̄ ] and ḡ =

θβ

γ + θ2β
[S0 − δT̄ ] (C.10)

Replacing equation (C.10) back into equation (C.7) yields:

W (t|t > t̄) =
1

r

[

A−
1

2

βγ

γ + θ2β

[
S0 − δT̄

]2
]

e−rt̄ = W̄e−rt̄ (C.11)

which is constant over time and is a function of t̄ and parameters only.

C.1.2 Before Reaching the Threshold

Before reaching the threshold, the Hamiltonian of the problem is given by:

H = A− Cm(m)− Cg(g) + p[S0 −m− θg − δT ] (C.12)

where p is the co-state variable associated with the increase in temperature. Applying

the maximum principle, the optimality conditions are given by:

C ′
m(m) + p = 0 (C.13)

C ′
g(g) + θp = 0 (C.14)

ṗ = (r + δ)p (C.15)

As usual, p has the interpretation of the social cost of a marginal increase in

temperature, and it is equated to the marginal cost of mitigation and the marginal

54



cost of SGE, as in equations (C.13) and (C.14). The optimal policy ensures that

the marginal costs of all climate intervention technologies are equalized. Equation

(C.15) can be interpreted as an arbitrage rule for investing in reducing temperature.

By investing today, and paying a price p, society saves in costs of intervention in the

future; thus reducing ṗ. Directly from equation (C.15) the solution for p is given by:

p(t) = κe(r+δ)t (C.16)

where p must be negative because the increase in temperature decreases welfare;

hence κ < 0. Using the functional forms defined above the optimal levels of mitiga-

tion and SGE are given by:

m(t) = −
1

β
κe(r+δ)t, and g(t) = −

θ

γ
κe(r+δ)t (C.17)

where κ = βγ

γ+θ2β
f(t̄), and f(t̄) = − r+2δ

δ

S0−(S0−δT̄ )eδt̄

e(r+2δ)t̄−1

As we mentioned above, when the location of the threshold is known, the regulator

can choose the optimal time to reach the threshold. Specifically, the optimal reaching

time satisfies the following condition:

H (t̄) = −
∂W (t|t > t̄)

∂t̄
ert̄. (C.18)

Replacing the values from equations (C.16) and (C.17) back into equation (C.12),
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and evaluating at t = t̄ yields:

H (t̄) = A+
1

2

[
γ + θ2β

βγ

]

κ2e2(r+δ)t̄ + κe(r+δ)t̄[S0 − δT̄ ] (C.19)

and using equation (C.11), the righthand side of equation (C.18) is given by:

−
∂W (t|t > t̄)

∂t̄
ert̄ = A−

1

2

[
βγ

γ + θ2β

]

[S0 − δT̄ ]2 (C.20)

The optimal policy solution, that is, the values of κ (which gives m(t) and g(t))

and t̄, depends on the rule regarding the availability of SGE. We turn to study the

different rules next.

C.1.3 Comparing SGE Rules

The regulator chooses the optimal levels of mitigation and SGE subject to one of the

three rules regarding SGE availability:

(a) Ban: SGE is never allowed, that is, θ = 0 for all t > 0.

(b) Insurance: SGE is always allowed , that is, θ = 1 for t > 0.

(c) Remediation: SGE is allowed only after the threshold has been reached, that

is, θ = 0 for t < t̄ and θ = 1 for t ≥ t̄.

Each rule can be compared under different criteria. Here, we compare them in

terms of optimal reaching time, temperature level, and welfare. In the analysis that

follows, we denote the different optimal policies using the superscripts ban, ins, and
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rem. We start by comparing optimal reaching times for the different policies, then

we analyze them in terms of temperature changes and welfare levels.

Proposition 1: The optimal reaching times under the Ban and the Insurance

rules are the same. Under the Remediation rule, the threshold is reached sooner,

compared to the other two policies: t̄rem < t̄ban = t̄ins.

Proof: We use Figure C.1 to help with the proof. The optimal reaching time

can be shown to occur when:

S0 − δT̄ = −Lf(t̄)e(r+δ)t̄ (C.21)

where L = 1 for ban and ins, and L = γ+β

γ

[

1 +
√

β

β+γ

]

> 1 for rem. When L > 1

the slope of the right hand side of the equality defined in equation (C.21) is steeper,

which implies a lower reaching time.

( )No SRM
m t

( )SRM
Lm t

t

0
S Td-

No SRM
t

SRM
t

Figure C.1: Optimal reaching time.
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Proposition 1 establishes that the threshold is reached at the same time in the

ban and ins rules, that is when SGE is not available or when SGE is always available.

However, when SGE is only available after the threshold has been reached (rem),

there is an incentive to reach the threshold faster. The reason behind this result

is that it is too costly to deal with the problem with only one instrument; hence,

the regulator finds it optimal to allow a faster approach to the threshold in order

to be able to use SGE. This result, however, does not imply higher levels of climate

intervention once the threshold is reached.

Proposition 2:

i.) mban(t̄ban−) = m̄ban, mins(t̄ins−) = m̄ins, gins(t̄ins−) = ḡins, and mrem(t̄rem−) <

m̄rem. For the rem rule there is a jump at time t = t̄.

ii.) For t ≤ t̄rem: mban(t) = mins(t) + gins(t) > mrem(t). For t̄rem < t < t̄ban:

mrem(t) > mins(t) + gins(t) = mban(t). For t > t̄ban: mrem(t) = mins(t) + gins(t) =

mban(t)

Proposition 2 shows how the intervention level varies under the different SGE

rules. Figure C.2 presents this result graphically. From Proposition 1.i, if the reach-

ing time is the same for ban and ins, it must be true that mitigation in ban is equal to

the total amount of intervention in ins (see Figure C.2). Also, directly from Propo-

sition 1.ii, if the system reaches the threshold fastest under rem, then a lower level

of mitigation must be implemented under this rule. Once the threshold is reached,

however, the amount of intervention increases to m̄+ ḡ (see Figure C.2).

The change in the reaching time t̄ for the different rules has implications in terms

of temperature levels and welfare over time. From Propositions 1 and 2, it is difficult
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Figure C.2: Comparing optimal policies. Climate intervention outcomes under the
Ban, Insurance and Remediation rules.

to predict what are temperature and welfare under the different rules. In particular,

we should expect temperature to be the same under rules ban and ins, but welfare

can differ. Also, under rule rem, temperature can be lower given the earlier jump to

a higher level of climate intervention. The next proposition shows results regarding

temperature and welfare.

Proposition 3:

i.) For t < t̄ban, T ban = T ins < T rem. For t > t̄ban, T ban = T ins = T rem = T̄ .

ii.) For t < t̄rem, W ban < W ins < W rem. For t̄rem < t < t̄ban, W ban < W rem <

W ins. For t > t̄ban, W ban < W ins = W rem

The results in Proposition 3 are illustrated in Figure C.3. Proposition 3.i fol-

lows directly from Proposition 2. (see Panel A in Figure C.3). The lower level of

mitigation under rem for t < t̄rem implies higher temperature relative to ban and

ins. Proposition 3.ii says that welfare under ban is lower than ins. Given the as-

59



sumption of increasing and convex costs of mitigation, and from Proposition 2.i, it

follows that it is cheaper to deal with climate change using two instruments. Thus,

while the Insurance and the Ban rules are no different in terms of reaching time and

temperature levels, the Insurance rule is better in terms of welfare. The Remediation

rule also shows higher welfare levels, compared to the Ban. However, it is not clear

whether the welfare is higher under Insurance or Remediation. This result follows

from the lower level of mitigation as well as the fact that there are not direct costs

associated to temperature. That is, temperature is a bad only in terms of crossing

the threshold. However, once the threshold is reached, society must deal with higher

costs of intervention to keep temperature constant. These costs are larger relative

to the Insurance rule. Thus, whether the discounted welfare is higher (lower) under

the Insurance rule relative to the Remediation depends on whether area X is smaller

(larger) than area Y . We will explore this aspect with our numerical simulation.

Under the assumption of a known CTP temperature, allowing SGE technologies

is always better than not allowing for them. Contrary to what has been proposed in

the literature before Victor (2008) Keith et al. (2010), the Remediation rule yields

higher temperature, lower welfare, and a faster approach to the threshold relative to

the other two rules.

As we said above, it is unlikely policy makers will know the tipping tempera-

ture. In the next section we introduce uncertainty and analyze the optimal mix of

mitigation and SGE and the ranking of the different SGE rules.
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C.2 Unknown Threshold Location

The exact temperature threshold leading to a CTP is likely to be unknown to the

regulator. When the location of the threshold is unknown, the procedure to derive the

optimal policy must be modified to include this new risk. The specific characteristics

of this threshold problem makes it suitable to the use of piecewise deterministic

control techniques.

In the deterministic case the threshold ends up being reached but never crossed.

In the unknown location case, however, the threshold may end up being crossed.

When the threshold is crossed, we assume that SGE is fast enough to maintain tem-

peratures at the threshold level. After the threshold has been reached or crossed, the

problem becomes deterministic, since the only source of uncertainty is the location

of the threshold. The residual value after the threshold is reached is calculated using

standard deterministic optimal control techniques.

Under the Ban rule, once the threshold is reached, there will be no effective

climate intervention policy available because of the inertia associated with the climate

system and the ineffectiveness of mitigation to quickly reduce temperatures. The

CTP utility loss will occur, mitigation will be zero, and the temperature will reach

its maximum level. Under the Insurance and Remediation rules, once the threshold

is reached, SGE and mitigation will be employed to maintain temperature at T̄ to

avoid the utility loss.

Following Naevdal (2003, 2006), we assume the location of the threshold T̄ is

distributed according to the function h(T̄ ) with support [0,∞]. If a value T > 0 is

attained without reaching the threshold, then it must be true that T̄ > T . Thus, as
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temperature increases, the regulator updates her beliefs about the threshold temper-

ature. The updated probability distribution is given by φ(T (t)) = h(T̄ )/
∫∞

T
h(T̄ )dT̄

over the range [T,∞]. We can then transform the distribution in state-space to a

distribution over time using the following function:

ψ(t) =







Ṫ if Ṫ ≥ 0

0 if Ṫ < 0.
(C.22)

The previous function captures the idea that only new values of T remain risky

and provide new information. Whenever a value of T has already taken place there

is no longer risk. Introducing this function, the hazard rate of the occurrence of the

CTP is given by:

λ(T (t), t) = φ(T (t))ψ(t). (C.23)

Without further loss of generality, we assume that h(T̄ ) is exponential so the

function φ(T (t)) = φ0. This implies a Poisson arrival rate for t̄. This process in

time is different from a traditional Poisson process because the regulator can reduce

the probability of an event happening by simply reducing Ṫ . By implementing

mitigation and SGE, the regulator reduces the risk of crossing the threshold. In

particular, whenever ψ(t) = 0 the probability of crossing the threshold is zero.

The problem for the regulator is given by:

W (t) = max
{m,g}

E

[∫ ∞

0

[α− Cm(m)− Cg(g)] e
−rtdt

]

(C.24)
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subject to:

Ṫ = S0 −m− θG− δT , T (0) = T0 (C.25)

α̇ = 0, α(0) = A (C.26)

The jump in the state variable that occurs at time t̄ depends on whether or not SGE

is available at the moment the threshold is reached. If SGE is not available at t = t̄

(under the Ban rule), then

α(t̄+)− α(t̄−) = −α(t̄−) (C.27)

If SGE is available (under the Insurance or Remediation rule), the loss of utility

associated to crossing the tipping point can be avoided, but at a cost. In particular,

α(t̄+)− α(t̄−) = −Ā (C.28)

where Ā = 1
2

βγ

γ+β
[S0 − ∆T ]2 are the costs associated with m̄ and barg that keep

temperature at the threshold level. Finally, t̄ follows a Poisson process with hazard

rate given by equation (C.23).

Following Naevdal (2003, 2006) and Naevdal and Openheimer (2007), the risk-

augmented Hamiltonian is given by:

H = α−Cm(m)−Cg(g)+p(e
0−m−θg− δT )+λ(T,m, g) [W (t|t > t̄)− z] (C.29)

W (t|t > t̄) is the value of the objective function after the threshold is crossed.
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Unlike in the deterministic case, here where the threshold is uncertain it may end up

being crossed. Under the Ban rule, since SGE is not available, once the threshold is

crossed temperature will be allowed to reach its maximum level by setting m = 0.

Hence, temperature will stabilize at T 0 = S0/δ, α jumps to zero, andW (t|t > t̄) = 0.

Under the other two rules, SGE is available after reaching the CTP. We maintain the

assumption that damages from crossing the CTP are sufficiently high, so SGE will

be used after reaching the CTP to keep temperature fixed at T̄ and avoid triggering

the CTP utility loss. Thus, α jumps from A to A − Ā and W (t|t > t̄) =
∫∞

t̄
(A −

Ā)e−r(t−t̄) = W̄ where W̄ was defined in equation (C.11).

z is the value of the remaining welfare starting from any time t, given by

z(t) = ertE

[∫ ∞

t

[α− Cm(m)− Cg(g)] e
−rsds

]

(C.30)

The differential equation governing the evolution of z is:

ż = rz − [α− Cm(m)− Cg(g)]− λ(T,m, g)
[
θW̄ − z

]
(C.31)

Therefore, the term λ(T,m, g)
[
θW̄ − z

]
represents the expected loss of welfare that

society would suffer if the threshold is crossed at any given time t.

Having defined z and W (t|t > t̄), the maximum principle can be applied to

equation (C.29) to obtain the following optimality conditions:

−C ′
m(m)− p+ λ′m(T,m, g)

[
θW̄ − z

]
= 0 (C.32)
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−C ′
g(g)− p+ λ′g(T,m, g)

[
θW̄ − z

]
= 0 (C.33)

ṗ = (r + δ + λ(T,m, g))p− λ′T (T,m, g)
[
θW̄ − z

]
(C.34)

The interpretation of equations (C.32) and (C.33) are very similar to the de-

terministic case. The marginal costs of mitigation and SGE are equalized to the

marginal benefits of a reduction in temperature. However, in this case, the bene-

fits have two components. First, a marginal increase in the level of mitigation (or

SGE) directly reduces the temperature level, this effect is captured by p. Second,

a marginal increase in mitigation (or SGE) also reduces the probability of the tem-

perature threshold being crossed. This second component is captured by λ′(T,m, g)

which is a decreasing function of m and g.

Equation (C.34) captures the benefits from implementing SGE sooner. As in

the deterministic case, the first term captures the direct effect, which is equivalent

to the discounted reduction in future mitigation and SGE implementations. In this

case, however, the hazard rate is part of the discounting term. Once the threshold

is crossed, the benefits from mitigation are zero, thus the present value of climate

intervention is discounted harder given the possibility of them not being useful after

the threshold has been crossed. The second term shows the direct benefits in terms

of a reduction in the probability of crossing the threshold. Increasing mitigation and

SGE reduce temperature and with it the risks of reaching a CTP.

Using the functional forms defined above, the optimal policy is the solution to
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the following set of equations:

m = −
p

β
−
φ0

β

[
θW̄ − z

]
(C.35)

g = −
p

γ
−
θφ0

γ

[
θW̄ − z

]
(C.36)

ṗ = (r + δ)p+ δφ0
[
θW̄ − z

]
+ φ0(S0 −m− θg − δT )p (C.37)

ż = rz − α +
1

2
βm2 +

1

2
γg2 − φ0(S0 −m− θg − δT )

[
θW̄ − z

]
(C.38)

Ṫ = S0 −m− θg − δT (C.39)

C.2.1 Comparing SGE Rules

From equations (C.35)-(C.39) and evaluating at Ṫ = 0, ż = 0, and ṗ = 0 the steady

state equilibrium levels of emissions, SGE, and temperature are given by:

m∗ =

√
[

γ[r + δ]

φ0[γ + θ2β]

]2

+
2γθW̄

β[γ + θ2β]
−

γ[r + δ]

φ0[γ + θ2β]
> 0 (C.40)

g∗ = θ





√
[

β[r + δ]

φ0[γ + θ2β]

]2

+
2βθW̄

γ[γ + θ2β]
−

β[r + δ]

φ0[γ + θ2β]



 ≥ 0 (C.41)

T ∗ =
S0

δ
+

1

δ




[r + δ]

φ0
−

√
[
[r + δ]

φ0

]2

+
2[γ + θ2β]θW̄

γβ



 ≤
S0

δ
(C.42)

where the equality in (C.42) hold when SGE is banned, θ = 0. The steady state

behavior of the system is captured in the following proposition:

Proposition 4:
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i.) The steady state levels of climate intervention under the three different SGE

rules are such that m∗ban > m∗ins + g∗ins > m∗rem.

ii.) The steady state levels of temperature under the three different SGE rules are

such that T ∗ban < T ∗ins < T ∗rem.

Proposition 4 establishes that under the Ban rule, there will be more mitigation

than the combined levels of intervention under the Insurance rule, which in turn

exhibits higher intervention levels than the Remediation rule. Compared to the

deterministic case, the main difference is that here the Ban and Insurance rules

show different intervention levels. The reason is clear: without SGE the risk of

crossing the threshold makes the regulator more cautious, and in order to avoid the

loss of utility A, the regulator decides to pay a “risk premium” in terms of higher

mitigation costs. The risk premium payment disappears in the deterministic case

because the regulator can decide when to reach the threshold, which allows her

to optimally choose mitigation levels to ensure the threshold is not crossed. The

ranking of climate intervention levels transfer directly in terms of temperature. The

Ban rule exhibits the lowest temperature in steady state reflecting the precautionary

behavior induced by the inability of mitigation to quickly reduce temperatures. This

result,however, follows from our assumption that climate damages are only represent

by the loos of utility associated with the CTP. When we allow for damages to be

a continuous function of temperature and carbon, we should observe more climate

intervention overall, implying the Insurance and Remediation rules will exhibit lower

temperature levels in steady state.

Although the risk-augmented Hamiltonian allows for a simpler derivation of the
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results and a cleaner interpretation of the optimality conditions, it comes at the cost

of not being able to find an analytic solution for the system of equations.
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Figure C.3: Comparing temperature and welfare. Panel A shows temperature levels.
Panel B shows welfare levels.
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