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How are optimal taxes affected by the presence of superstar phenomena at the top of the

earnings distribution? To answer this question, we extend the Mirrlees model to incorpo-

rate an assignment problem in the labor market that generates superstar effects. Perhaps

surprisingly, rather than providing a rationale for higher taxes, we show that superstar

effects provides a force for lower marginal taxes, conditional on the observed distribution

of earnings. Superstar effects make the earnings schedule convex, which increases the

responsiveness of individual earnings to tax changes. We show that various common

elasticity measures are not sufficient statistics and must be adjusted upwards in optimal

tax formulas. Finally, we study a comparative static that does not keep the observed

earnings distribution fixed: when superstar technologies are introduced, inequality in-

creases but we obtain a neutrality result, finding tax rates at the top unaltered.

1 Introduction

Top earners make extraordinary figures, with differences in pay that, as one moves up the
scale, eclipse any apparent differences in skill. One way economists have sought to ex-
plain this phenomenon is by appealing to superstar effects—to use the term coined by Rosen
(1981) in the seminal contribution on the topic. According to this theory, better workers end
up at better jobs, with greater complementary resources at their disposal, and this magni-
fies workers’ innate skill differences. In principle, due to superstar effects, someone barely
5% more productive, at any given task, may earn 10 times more. This raises the obvious
question: should superstars pay superstar taxes?

The goal of this paper is to provide an answer to this question by studying optimal non-
linear taxation of earnings in the presence of superstar effects. Following Mirrlees (1971), a

∗In memory of Sherwin Rosen. We thank numerous superstar economists for useful discussions and com-
ments.
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vast theoretical and applied literature has provided insights into the forces that should shape
tax schedules. Particular attention has been given to taxes at the top. Given this focus, the
absence of superstar effects in the analyses is, potentially, an important omission. Our first
contribution is to incorporate superstar effects into the standard optimal taxation model.

With earnings in disproportion to inherent skills, it may appear intuitive that superstar
effects tilt the calculus balancing efficiency and equality, exacerbating inequality, and leading
to higher tax rates. Perhaps surprisingly, our results are precisely the opposite. Depending
on how one poses the exercise, we find that the superstar effects are either neutral or provide
a force for lower taxes.

It is useful to break up the broader question regarding the taxation of superstars by pos-
ing two distinct and sharper questions, as follows:

Question I. Given a tax schedule and an observed distribution of earnings, how do the
conditions for the efficiency of this tax schedule depend on whether or not the economy
features superstar effects?

Question II. Given a distribution of skills and preferences, how are optimal tax schedules
affected by the introduction of superstar effects that may affect the distribution of earn-
ings?

Question I holds the observed distribution of earnings fixed. The motivation for doing so
is straightforward, since at any moment it is a datum to those evaluating the taxation of
earnings, whether or not superstar effects are present. Indeed, the distribution of earnings
has been recognized as a key input into optimal tax formulas in standard analyses without
superstars (Saez, 2001). If anything, what is not directly observable is the extent to which,
in the background, superstar effects shape the observed distribution of earnings. Hence,
it is imperative to consider hypothetical scenarios that turn superstar effects on and off, so
to speak, while holding fixed the distribution of earnings. Doing so establishes whether
superstar effects matter per se, in addition to their impact on the distribution of earnings.
For these reasons, Question I is our favored perspective for thinking about the taxation of
superstars, since it directly informs current policy choices, which already condition on the
earnings distribution, by isolating the impact of superstar effects.

In contrast, Question II is based on a comparative static, one that envisions a change
in technology holding other primitives fixed. As a result, the distribution of earnings is
no longer held fixed: skill differences are potentiated and inequality typically rises when
superstar effects emerge (after all, this is what the superstars literature is all about). It is
natural to explore such a comparative static exercise and it is of obvious theoretical appeal,
but perhaps less relevant for current policy choices, which condition on the observed earn-
ings distribution. The comparative static becomes policy relevant, however, if one wishes
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to anticipate future changes in technology driven by superstar phenomena. Indeed, many
current discussions of inequality and technological change are cast in terms of a trend or
adjustment process that is still ongoing, as in the literature on the growing importance of in-
formation technology and automation. For such hypothetical extrapolations, a comparative
static result is precisely what is required.

We obtain three main results. Our first two results are geared towards Question I, that
is, taking the distribution of earnings as given we ask whether superstar effects matter. Our
first result is a neutrality result of sorts.

Result 1. The conditions for the efficiency of a tax schedule are unchanged relative to the
standard Mirrlees model when expressed in terms of two sufficient statistics: the distri-
bution of earnings and the earnings elasticities with respect to individual tax changes.

According to this first result, superstar effects do not directly affect whether taxes are opti-
mal or suboptimal, as long as we condition on the observed distribution of earnings and on
the elasticities of earnings with respect to individual tax changes, at each point in this dis-
tribution. These are the same two sufficient statistics that emerge in the standard Mirrlees
setting, where superstar effects are absent. In fact, not only are the same sufficient statis-
tics involved, but the conditions for efficient taxes and the formulas for optimal taxes are
identical.

How should one interpret this result? Conceptually, according to this neutrality result,
superstars do not inherently create a force for higher or lower tax rates—once we condition
on the correct sufficient statistics optimal tax formulas are unchanged. In particular, it does
not matter if superstars contribute towards inequality, as long as we take this greater in-
equality into account, by conditioning on the observed distribution of earnings. Similarly,
it does not matter if superstars affect the elasticity of earnings, as long as we condition on
the appropriate values for these elasticities. In this sense, the standard Mirrlees model’s
conditions for optimal taxes and insights carry over and are robust to the introduction of
superstars.

We view this neutrality result as an important conceptual benchmark that stresses that, at
least in theory, with just the right information nothing needs to be changed. As our second
result stresses, in practice, however, things are more challenging. In particular, unless one
obtains the elasticity of earnings off of superstar workers, using individual tax changes that
do not give rise to general equilibrium effects—a situation that seems rather unlikely—then
one must recognize that the required earnings elasticities are affected by the presence of
superstar effects.

Result 2. Superstar effects increase earnings elasticities, given underlying preferences or
common measures of elasticities, which omit superstar effects; this therefore provides
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a force for lower taxes, for a given distribution of earnings.

According to this result, typical elasticities must be adjusted upwards and we provide for-
mulas for undertaking such adjustments. As usual, higher elasticities provide a force for
lower tax rates. In particular, the top tax rate should be lower.1

Why is it that superstar effects push individual earnings elasticities up? There are several
forces at work. Indeed, the required adjustments depend on the type of elasticity one has
in hand to start with. We discuss three possible elasticity concepts and the forces leading to
adjustments in each case.

The most basic force has to do with the Le Chatelier principle. In assignment models,
workers sort into jobs and the equilibrium earnings schedule reflects the earnings across
these different jobs. The availability of different job options tends to make the earnings
schedule convex. This, in turn, increases the behavioral response to any tax change. Intu-
itively, a worker induced to provide greater effort by way of lower taxes anticipates being
matched with a better job, with better pay, and this further amplifies the incentive for ef-
fort.2 Thus, earnings elasticities that do not correctly capture this reallocation, which we
call “fixed-assignment” elasticities, are too low. In practice, this is especially likely when
elasticities are measured off of temporary and unexpected tax changes.

Matters are only made worse if one starts with earnings elasticities for non-superstar
workers, for whom earnings are proportional to effort. Empirically, this may correspond to
workers that are not near the top of the distribution. This then identifies what we call “ef-
fort” elasticities. Suppose we are willing to extrapolate such effort elasticities to workers in
superstar positions. However, before doing so, we must take into account that for superstar
workers earnings are a convex function of effort that goes through the origin, so that any
percentage change in effort induces a greater percentage change in earnings. As a result,
we must also adjust the the earnings elasticity upwards, relative to the effort elasticity. Al-
though this additional mechanical bias is not due to larger behavioral responses, it is still
relevant when extrapolating earnings elasticities from effort elasticities.

Finally, an important consideration is that we require elasticities with respect to individ-
ual tax changes. In contrast, often one starts with evidence from economy-wide tax changes,
or “macro” elasticities. Economy-wide changes in tax rates induce general equilibrium ef-
fects. We show that for progressive tax schedules these general equilibrium effects also
create a further bias, relative to elasticities based on a fixed assignment. In our benchmark

1Of course, this does not imply that taxes should be low in absolute terms, or lower than current levels. It
establishes a robust downward force on optimal taxes, coming from superstar effects, compared to a standard
economy with no superstars.

2We adopt a broad notion of effort here, one that is certainly not limited to hours of work for superstar earn-
ers who have “made it,” but also incorporates their entire lifetime choices, such as human capital accumulation
or anything else it took them to obtain their job.
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cases, the macro elasticity either coincides with the effort elasticity, or is even further down-
ward biased.

This discussion underscores that properly measuring the earnings elasticity required for
the neutrality implication in Result 1 demands a number of stringent conditions to be met.
First, the tax change cannot be temporary or unexpected—so that the workers have time for
any desired job reallocation. Second, we must observe a superstar worker—to make sure
we estimate an earnings rather than effort elasticity. Third, tax changes must be individual
in nature—to avoid general equilibrium effects in the earnings schedule. Whenever these
conditions are not met, Result 2 provides the necessary upwards adjustment for each of the
three elasticity measures discussed above.

An important distinguishing feature of our perspective is that we express the optimal-
ity conditions in terms of sufficient statistics, namely, the distribution of earnings and the
individual elasticities of earnings. This allows us to relate the required elasticities in the
presence of superstars to those that are likely to be estimated and to provide the adjustment
factors necessary. Indeed, we use the parametrization of Gabaix and Landier (2008), who
provide an application to CEOs, to inform the required adjustments, which turn out signifi-
cant. For instance, for an elasticity of .25 that ignores job reassignment, the correct earnings
elasticity is 1. This implies an upper bound to the top marginal tax rate of 25% instead of
57%. Based on the previous discussions, even greater adjustments are required for effort and
macro elasticities.

We said earlier that it may seem natural to expect superstar effects to push for higher
taxes. After all, superstars exacerbate inequality, leading to earnings that are out of pro-
portion with underlying skills. On first pass, one may expect taxes to be higher, to regain
a balance between equality and efficiency. Yet, we just arrived at the opposite conclusion,
showing that superstar effects provide a force for lower tax rates. This obtains for two intu-
itive reasons. First, we are conditioning on the earnings distribution, which soaks up any
effects that superstars may have on inequality. Indeed, in line with the spirit of Question I, it
would not make sense to do otherwise, since the earnings distribution is directly observable
and is already an input into standard optimal tax analysis. Second, as we discussed, super-
star effects increase the elasticity of earnings to tax changes. When taken together, we are in
a situation with higher elasticity for given inequality, so the tradeoff between efficiency and
equality is disturbed by superstars, but tilted towards efficiency, rather than equality. This
provides the force for lower tax rates.

Our third result provides a sharp answer to Question II, the comparative static that in-
troduces superstar effects without holding the distribution of earnings fixed.

Result 3. Superstars are neutral in terms of comparative statics: when holding preferences
and the distribution of skills fixed, the conditions for efficiency of a given tax schedule
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do not depend on whether superstar effects are present.

This provides a very different neutrality result. Instead of holding the earnings distribution
fixed, it considers a change in technology, such as the introduction of superstar effects, which
generally increases inequality. This result is based on the fact that the conditions for Pareto
efficiency can be expressed in terms of the primitive distribution of skills and the elasticity
of effort, determined by preferences only and invariant to the presence of superstar effects,
unlike the elasticity of earnings.

This suggests that when superstars are introduced optimal taxes are unchanged. Indeed,
this is the case in natural benchmark cases. The only caveat is that when performing a
comparative static of this sort the allocation will generally change, even if taxes do not,
and effort elasticities may depend on where they are evaluated. Likewise, for any given
social welfare function, marginal social welfare weights may also be affected by where they
are evaluated. Nevertheless, when preferences have constant elasticity and when marginal
social welfare weights are left unchanged, then one can conclude that taxes are unchanged.
In particular, this is the case at the top of the distribution, when one applies a zero weight at
the top, e.g. utilitarian or Rawlsian social welfare functions.

How does this last neutrality result relate to our two previous results? Result 1 shows
that the distribution of earnings affects efficient tax schedules. Typically, the higher inequal-
ity that comes with the introduction of superstar effects will justify higher tax rates. On the
other hand, Result 2 shows that superstar effects increase the elasticity of earnings. Accord-
ing to Result 3, these two opposing effects on optimal taxes precisely cancel.

Related Literature. We build on the positive literature on assignment models that are
able to generate superstar effects, surveyed in Sattinger (1993) and more recently Edmans
and Gabaix (2015) and Garicano and Rossi-Hansberg (2015). This literature has been inter-
ested in how these models can explain observed patterns of occupational choice and income
inequality. Our contribution is to add a normative perspective, characterizing optimal re-
distribution and taxation in a broad class of models used in the literature. Our baseline
model is a general one-on-one assignment model between workers and jobs that captures,
for example, Terviö (2008) and Gabaix and Landier (2008). Indeed, we inform our elas-
ticity adjustments using the empirical results of Gabaix and Landier (2008), and provide a
fully specified parametric example that is able to match their evidence. We later extend the
analysis to other settings, such as the one-to-many span-of-control models developed by Lu-
cas (1978) and Rosen (1982), as well as the knowledge-based hierarchy models in Garicano
(2000) and Garicano and Rossi-Hansberg (2015).

Our paper incorporates a richer labor market into the canonical Mirrlees model. The
standard Mirrlees model proceeds with the most basic of labor markets, where exogenous
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wage differences simply reflect exogenous skill differences. In contrast, labor economists
have developed much richer general equilibrium models of the labor market. Much research
has enriched the standard Mirrlees model in various of these directions, for example, by
considering labor indivisibilities, human capital accumulation, uncertainty, or sorting across
different occupations, as in the Roy model, to name just a few.

Recent contributions focus on models with worker sorting across jobs and their general
equilibrium effects. In particular, Rothschild and Scheuer (2013) and Ales et al. (2014) show
how endogenous sectoral wages and assignments affect optimal income tax schedules. In
these models, relative wages enter incentive constraints. The planner sets taxes with an
eye towards influencing these relative wages so as to relax these constraints, generalizing
the insight from the two-type model by Stiglitz (1982). The same effect is featured in the
models by Scheuer (2014) and Ales et al. (2015), which focus on occupational choice between
workers and managers and the role of endogenous firm size. The latter paper also works
with a version of the span-of-control model of Lucas (1978) and Rosen (1982), as we do in one
of our extensions, although, as we point out, our adaptation is different in crucial aspects.

While the present paper is part of this greater agenda extending the standard optimal tax
model to incorporate important features of real-world labor markets, it is also quite distinct.
Crucially, we focus on superstar effects, which none of the above papers have considered. In-
deed, in all these papers each individual faces a linear earnings schedule—whereas a convex
schedule is often taken to be the defining characteristic of superstar phenomena. To isolate
the effect of superstars, we purposefully abstract from Stiglitz effects, the central focus of
the above literature over the standard Mirrlees model. Moreover, although our model incor-
porates a richer labor market and features an equilibrium-determined wage schedule, our
results are not driven by general equilibrium effects from tax changes, as is the case with
Stiglitz effects. Indeed, Results 1 and 2 call for “partial equilibrium” earnings elasticities
with respect to individual tax changes.3

Perhaps equally importantly, we also take a fundamentally different approach in deriv-
ing our results. The literature so far has characterized the effects of richer labor markets
on taxes by computing optimal taxes and comparing them to standard Mirrleesian ones.
This involves fixing primitives, such as preference parameters and the skill distribution,
and calibrating technological parameters using data, e.g. occupational patters or the firm
size distribution. Instead, we take a “sufficient statistics” perspective, writing taxes directly
in terms of observable distributions and elasticities. We relate the relevant elasticities in the
presence of superstars to those that are likely to be estimated in standard settings. We can

3Similarly, as we discuss in the Conclusion, we abstract from externalities and other sources of inefficien-
cies, such as earnings from unproductive rent-seeking activities or positive spillovers from innovation. Such
inefficiencies call for standard Pigouvian adjustments to taxes, but these issues are, once again, conceptually
distinct from superstar effects, which are our focus.
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then show how these elasticities are affected by the presence of superstar effects. The effects
of superstars on taxes work exclusively through the sufficient statistics.

This approach is inspired by Saez (2001), who expressed optimal tax formulas in terms
of the income distribution and elasticities, and Werning (2007), who developed tests for the
Pareto efficiency of any given tax schedule in place as a function of these statistics. This test-
ing approach is particularly useful to derive Results 1 and 2, because it allows us to hold the
observed earnings distribution fixed when characterizing the effects of superstars. In con-
trast, computing optimal taxes for given redistributive motives requires taking into account
that the equilibrium income distribution changes when varying taxes and technology, as we
do when deriving Result 3.

In parallel and independent work, Ales and Sleet (2015) pursue a more structural, quan-
titative approach to optimal taxation in a similar assignment model. They also observe a
downward force on the optimal top marginal tax rate stemming from superstar effects, even
though through a different channel, adjusting the Pareto tail of the inferred skill distribu-
tion rather than earnings elasticities. Their goal of quantifying this force is an important
complement to our qualitative analytical results.

The paper is organized as follows. Section 2 introduces our baseline model and Section
3 sets up the planning problem for Pareto efficient taxes. Sections 4, 5 and 6 are devoted to
Results 1, 2 and 3, respectively. Section 7 discusses extensions of our baseline model and
Section 8 concludes. All proofs are relegated to an appendix.

2 Superstars in an Assignment Model

We first lay out our baseline model, based on a one-to-one assignment setting similar to
Terviö (2008). Assignment models capture the essence of the superstar phenomena intro-
duced by Rosen (1981).4 In Section 7, we discuss other settings, including first- and second-
generation span-of-control models. All of our results go through in these more general set-
tings.

2.1 Setup and Equilibrium

Our model blends the canonical Mirrlees model with an assignment model, by introducing
an effort decision in the latter.

4Rosen (1981) considered a setting where agents choose the scale of their production subject to given costs.
This model is close in spirit to the span-of-control models that we consider later.
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Preferences. There is a continuum of measure one of workers with different ability types
θ. The utility function for type θ is

U(c, y, θ),

where c is consumption and y denotes the effective units of labor supplied to the market,
or ’effort’ for short. The latter is best interpreted as a catch-all for what a worker brings to
the table, including what a worker does while on the job, e.g. the hours and intensity of
their work effort, as well as what they do before they even reach the job market to make
themselves more productive, e.g. their human capital investment. We assume standard
conditions on the utility function, including differentiability with Uc > 0, Uy < 0 and the
the single-crossing property, which requires that the marginal rate of substitution

MRS(c, y, θ) ≡ −
Uy(c, y, θ)

Uc(c, y, θ)

is decreasing in θ, so that more able agents (higher θ) find it less costly to provide y. The
canonical case studied by Mirrlees (1971) assumes U(c, y, θ) = u(c, 1− y/θ) for some utility
function u over consumption and leisure.

Ability is distributed according to the cumulative distribution function F(θ) with density
f (θ) and support Θ.

Technology. There is a unit measure of firms indexed by x, distributed according to the
cumulative distribution function G(x).5 There is a single final consumption good. Produc-
tion of this final good takes place through one-to-one matching between individuals and
firms. If an individual that provides y units of effort is matched with a firm of type x, then
the output of this match equals

A(x, y),

where the function A is non-negative, increasing, twice differentiable and strictly supermod-
ular: Axy(x, y) > 0.

An allocation specifies c(θ), y(θ) and a measure-preserving assignment rule, mapping
worker θ to firm x = σ(θ).6 The resource constraint is then

ˆ
c(θ)dF(θ) ≤

ˆ
A(σ(θ), y(θ))dF(θ) + E, (1)

5Without loss of generality, one may normalize the distribution of x to be uniform on [0, 1], so that x can be
interpreted as the quantiles of the distribution of some underlying firm characteristic.

6A measure-preserving transformation σ is such that µF(σ
−1(X)) = µG(X) for any subset of firms X, where

σ−1(X) denotes the set of workers θ with σ(θ) ∈ X, and µF, µG are the measures induced by the cumulative
distributions F and G, respectively.
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where E ∈ R is an endowment net of government consumption.
Following Terviö (2008) and Gabaix and Landier (2008), an important benchmark is when

A is linear in y, so that A(x, y) = a(x)y. Indeed, when A can be expressed as a product
A(x, y) = a(x)γ(y) one can always renormalize y so that γ(y) = y. Our examples fall into
this class.

Labor Markets. Individuals are paid according to a schedule W(y) that is endogenously
determined in equilibrium, but is taken as given by both individuals and firms.

Individuals choose effort y to maximize utility, taking as given the earnings schedule and
a nonlinear tax schedule T(w) set by the government. They solve

max
c,y

U(c, y, θ) s.t. c = W(y)− T(W(y)). (2)

with solution c(θ), y(θ), which by single-crossing are nondecreasing functions of θ.
Firm x maximizes profits, solving

max
y
{A(x, y)−W(y)}. (3)

Denote the solution by Y(x), which is monotone by the supermodularity of A. The necessary
first-order condition is

Ay(x, y) = W ′(y). (4)

Because firms are in fixed supply, they will earn economic profits. We assume equal own-
ership of firms across individuals. Alternatively, we may assume that firm profits accrue to
the government, either because the government owns all firms directly or because it fully
taxes their profits, as in Diamond and Mirrlees (1971). These standard assumptions allow us
to sidestep distributional effects from firm ownership, which are not at the heart of the issue
of superstar workers.7

Positive Assortative Matching. As we have noted, on the worker side y and θ are posi-
tively related, due to the single-crossing assumption. On the firm side x and y are positively
related, due to supermodularity of A. Together, these two facts imply that there is also a
positive relation between x and θ, given by an increasing assignment function σ(θ). We
incorporate this fact in the definition of an equilibrium below.

7Profits are possible because we have assumed a fixed distribution of firms. If instead we modeled endoge-
nous entry of firms, this would dissipate ex ante or average profits, negating their distributional effects. Such
an extension would take us away from the standard existing assignment models and is beyond the scope of
the present paper.
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Equilibrium Definition. An equilibrium consists of a tax schedule T(w), an earnings sched-
ule W(y), firms’ demands Y(x), workers’ consumption and effort c(θ), y(θ), and an increas-
ing assignment function σ(θ) mapping workers to firms satisfying: (i) Y(x) solves (3) given
W(y); (ii) c(θ), y(θ) solve (2) given W(y) and T(w); (iii) goods market clearing: the resource
constraint (1) holds with equality; and (iv) labor market clearing:

F(θ) = G(σ(θ)),

y(θ) = Y(σ(θ)).

The last condition (iv) ensures that the match between worker θ and firm x = σ(θ) is
consistent with their respective supply and demand choices, y(θ) = Y(σ(θ)), and that the
measure of firms demanding Y(x) or less, which equals G(x), coincides with the measure of
workers supplying y(θ) or less, which equals F(θ). Equivalently, we can write the equality
of supply and demand for each skill level in differential form as f (θ) = g(σ(θ))σ′(θ). This
is a common way of writing the market-clearing condition in hedonic markets.

By Walras’ law, the resource constraint implies that the government budget constraint

ˆ
T(W(y(θ)))dF(θ) + E + Π = 0

holds, where Π ≡
´
(A(x, Y(x))−W(Y(x)))dG(x) are aggregate profits.

2.2 Superstar Effects

Denoting by Γ(y) the inverse of y(θ), (4) becomes

W ′(y) = Ay(σ(Γ(y)), y). (5)

For a given effort schedule y(θ), this condition pins down the earnings schedule W(y) up
to a constant.8 This well-known marginal condition, which obtains in a wide set of assign-
ment models, is fundamental to the superstar effects on the earnings schedule. To see this,
differentiate to obtain

W ′′(y) = Ayθ(σ(Γ(y)), y) · σ′(Γ(y)) · Γ′(y) + Ayy(σ(Γ(y)), y). (6)

8In our model, with an equal number of firms and workers, this constant may not be uniquely determined.
With more firms than workers, only the top firms are active and earn positive profits. The lowest active firm
makes zero profits, pinning down the constant. If A(0, 0) = 0, this implies W(0) = 0.
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W(y)

Ū

y

c

Figure 1: Convex equilibrium earnings schedule.

By supermodularity, the first term is positive, providing a force for the earnings schedule to
be convex in effort. When A is linear in y, then A(θ, y) = a(x)y for some increasing function
a and so W ′(y) = a(σ(Γ(y))) is increasing in y. In this case, output is linear in y at the
firm level, but earnings are convex, W ′′(y) > 0, as individuals with higher y get matched to
higher-x firms, which is reflected in the earnings schedule. This is illustrated in Figure 1.

2.3 Two Examples based on Gabaix-Landier

Before turning to optimal taxation, it is useful to illustrate superstar equilibria in our model.
We do so by adapting the CEO application in Gabaix and Landier (2008). Given their focus,
their framework takes the distribution of effort y as given (“talent” in their terminology).
We provide two specific examples with endogenous effort that deliver this distribution in
equilibrium. We return to Gabaix-Landier’s specification and our two examples repeatedly.

Individual CEOs produce CSβy when matched with a firm of size S and supplying effort
y, for some parameter β > 0. Firm size is a function of the rank, 1− x, according to Zipf’s
law: S = C̃(1− x)−1; the distribution of x is uniform on [0, 1]. It follows that

A(x, y) = (1− x)−βy,

for some normalization of C. Letting n denote the rank of a CEO in the earnings distribution,
Gabaix-Landier find that near the top9

w(n) = κn−1/ρ, (7)

9That is, for n near zero. The four relations that follow may be understood as approximations, i.e. w(n) ≈
κn−1/ρ for small n. However, to simplify and avoid confusion, it is best to impose them exactly for all n ∈ [0, 1].
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so that earnings have a Pareto tail with parameter ρ.
We can restate problem (3) for firm x as maximizing (1− x)−βy(n)− w(n), implying

y′(n) = nβw′(n) = −κ

ρ
nβ− 1

ρ−1,

where we used that in equilibrium n = 1− x. For some constant of integration b,

y(n) = b− κ

βρ− 1
nβ− 1

ρ . (8)

When βρ > 1, effort is bounded above by b.10 Otherwise, effort is unbounded above. Com-
bining equations (7) with (8) gives the increasing and convex earnings schedule

W(y) =

κ̃ (b− y)
−1

βρ−1 if βρ > 1

κ̃ (y− b)
1

1−βρ if βρ < 1
(9)

for some constant κ̃,11 in the range of equilibrium values y ∈ [y(1), y(0)].
For some purposes, the Gabaix-Landier specification (7)–(9) is all we need. Indeed, given

our sufficient statistic approach, many of results do not require all primitives. However, to
describe a full economy, it remains to specify preferences and a skill distribution consistent
with (7)–(9). Our next two examples do precisely this, by picking preferences and then
backing out the distribution of skills.

On the one hand, Gabaix-Landier provide empirical support for β = 1 and ρ = 3, imply-
ing βρ > 1 and a bounded effort distribution. On the other hand, the standard Mirrlees case
has β = 0, implying βρ < 1 in the neighborhood of this benchmark model. Thus, we find it
helpful to span both cases: our first example is tailored to the case βρ < 1, while our second
captures the case βρ > 1.12

Example Economy A (βρ < 1). Our first example is most suitable for βρ < 1 and adopts a
standard parametrization of the Mirrlees model. Utility is quasilinear and iso-elastic,

U(c, y, θ) = c− 1
γ

(y
θ

)γ
,

10b is set such that profits of firm x = 0 are zero: A(0, y(1)) = y(1) = w(1) = κ and hence b = κβρ/(βρ− 1).
11Namely, κ̃ = κ

βρ
βρ−1 |βρ− 1|

−1
βρ−1 > 0.

12To simplify, we ignore the intermediate case where βρ = 1. As Gabaix-Landier discuss, there are three
families of distributions, from extreme value theory, that can describe the tail behavior of the effort distribution:
bounded for βρ > 1, fat-tailed unbounded for βρ < 1, and thin-tailed unbounded for βρ = 1. Given the
preferences in our examples below, the same is true for the tail of the distribution of skills.
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with γ > 1. The compensated and uncompensated elasticity of effort is 1/(γ− 1).
Consider the equilibrium under a linear tax schedule with constant marginal tax rate τ

(or the top bracket of a nonlinear schedule). Appendix A shows that (7)–(9) hold for a skill
distribution with a Pareto tail, so that F(θ) ≈ 1− (θ/θ)α for high θ, where α > 0 is the Pareto
parameter. In addition,

ρ =
γ− 1

γ

α

αβ + 1
, (10)

so that the Pareto parameter ρ is decreasing in β for fixed γ and α, which illustrates that
superstar effects induce a fatter tail and hence a more unequal earnings distribution in this
sense.13 Note that equation (10) implies βρ < 1.

An alternative to backing out the skill distribution that implies (7)–(9) exactly is to as-
sume a Pareto distribution throughout, i.e. F(θ) = 1− (θ/θ)α; then, as shown in the ap-
pendix, (7)–(9) hold approximately at the top.

Example Economy B (βρ > 1). This second example is most suitable for βρ > 1, as in the
benchmark parameterization in Gabaix-Landier. Utility is given by

U(c, y, θ) = c− 1
γ

(
a− θ

b− y

)γ

,

for some a, b, γ > 0. This utility satisfies standard assumptions: it is decreasing and concave
in y ≤ b and satisfies the single-crossing property. We will see later that it also has other
desirable (in fact, necessary) features, within the case βρ > 1. In particular, disutility from
effort goes to infinity as y → b, which is crucial to rationalize bounded effort choices with
unbounded earnings.

Consider the equilibrium under a constant marginal tax rate τ. Appendix A shows that
(7)–(9) hold for skill distribution F(θ) = 1− (a− θ)α for θ ≤ a, with αβ > 1. In addition,

ρ =
γ + 1

γ

α

αβ− 1
, (11)

which is decreasing in β, so that earnings inequality is again increasing in β. Note that (11)
implies βρ > 1. In particular, we can always find α and γ so that ρ = 3 and β = 1, consistent
with Gabaix-Landier’s favored parameterization.

13The distribution of effort y is also Pareto in equilibrium, but with parameter (γ − 1)α/(αβ + γ), which
exceeds the Pareto parameter of the earnings distribution when β > 0, implying less inequality in effort than
in earnings.
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3 Efficient Taxes and Planning Problem

We now turn to the normative study of optimal or efficient taxes T. We first develop a
planning problem that can be used to characterize efficient taxes. Our results in later sections
exploit the optimality conditions of this planning problem.

3.1 Planning Problem

We first establish a connection between incentive compatible allocations and allocations that
are part of an equilibrium with some taxes T. This implementation result allows us to for-
mulate a planning problem in terms of allocations directly.

Incentive Compatibility and Tax Implementation. For any allocation (c(θ), y(θ)), define
the utility assignment

V(θ) = U(c(θ), y(θ), θ). (12)

An allocation is incentive compatible when

V(θ) = max
θ′

U(c(θ′), y(θ′), θ) ∀θ. (13)

The following lemma relates equilibria with taxes and incentive compatible allocations.

Lemma 1. An allocation (c(θ), y(θ), σ(θ)) is part of an equilibrium for some tax schedule T(w) if
and only if it is resource feasible (1), incentive compatible (12)–(13) and σ(θ) = G−1(F(θ)).

The proof is contained in Appendix B.1. The key to the ’only if’ part is that, although the
earnings schedule is determined by the labor market and the government cannot observe or
tax effort y directly, it can, for any monotone earnings schedule W(y), create incentives using
the tax schedule to tailor consumption W(y) − T(W(y)) at will, subject only to incentive
compatibility.

By single-crossing, the global incentive constraints (12) and (13) are equivalent to the
local constraints

V′(θ) = Uθ(c(θ), y(θ), θ) ∀θ (14)

and the requirement
y(θ) is non-decreasing. (15)

Planning Problem. An allocation is (constrained) Pareto efficient if it solves

max
c,y,V

ˆ
V(θ) dΛ(θ) (16)
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subject to (12), (14), (15) and

ˆ
(B(θ, y(θ))− c(θ)) dF(θ) + E ≥ 0 (17)

for some c.d.f. of Pareto weights Λ(θ), where we have introduced the shorthand notation

B(θ, y) ≡ A(σ(θ), y)

for the output of type θ under the equilibrium assignment rule σ(θ) = G−1(F(θ)). The
function B inherits the properties of A, i.e. monotonicity and supermodularity. We refer
to an earnings tax T as Pareto efficient if it induces a Pareto efficient allocation. We will
consider cases where constraint (15) is not binding, abstracting from “bunching.”

Observe that, perhaps surprisingly, the Pareto problem for our superstar economy re-
duces to a standard Mirrleesian problem, except for the additional output function B in the
resource constraint, which summarizes production by agent θ in equilibrium. In other words,
the Pareto problem simplifies because we are taking into account that the assignment, at the
end of the day, must be positively assorted between y and x. This reflects the fact that in this
model the equilibrium assignment is unaffected by the rest of the allocation c(θ), y(θ).14

However, this does not imply that assignment plays no role. Indeed, off the equilibrium
a single agent θ may deviate and increase y discretely (surpassing its immediate peers and
neighbors in an interval [θ, θ + ε)), in which case this agent will match with a higher-x firm,
i.e. the one corresponding to the rank in y, not θ. Hence, B summarizes output only in
equilibrium, not off equilibrium. In other words, in equilibrium everyone falls in line, but
workers are not predestined and can reach for the stars if they wish. Since agents have
the potential to match with different firms, this shapes competition, the earnings schedule,
incentives and the response of individual earnings to taxes.

Explicit and Implicit Marginal Tax Rates. Using (5), the necessary condition for (2) im-
plies

By(θ, y(θ))(1− T′(W(y(θ)))) = MRS(c(θ), y(θ), θ).

This condition allows us to back out the implied marginal earnings taxes from any incentive
compatible allocation:

τ(θ) ≡ T′(W(y(θ))) = 1− MRS(c(θ), y(θ), θ)

By(θ, y(θ))
. (18)

14This is not crucial for our analysis. As we show in Section 7, our results extend to settings where the
equilibrium assignment is endogenous to taxes.

16



4 Result 1: Neutrality

We now investigate the implications of superstar effects for taxes. We use the first-order
conditions of the Pareto problem (16) to derive a general efficiency test for earnings taxes
T(w) in our assignment model, extending Werning (2007). Since first-order conditions are
necessary, any Pareto efficient allocation needs to pass this test.15 Our main interest is in
how this test differs from a standard Mirrlees economy, and how the additional parameters
in our model, such as the properties of technology that govern superstar effects, enter it.

4.1 Elasticity Concepts

We will derive conditions for Pareto efficiency and express them in terms of elasticities. A
crucial question will be which elasticities will be relevant for the different questions we ask.

The first elasticity concept that will be useful are total earnings elasticities. In particular,
for a given earnings schedule W and tax T, define the uncompensated earnings function by

w(1− τ, I) ∈ arg max
w

U((1− τ)w− T(w) + I, W−1(w), θ),

where W−1 is the inverse of W. Here, we increase the marginal tax rate by a small amount τ

and the intercept by a small amount I to measure the earnings response. The uncompensated
earnings elasticity is then

εu(w) =
∂w

∂(1− τ)

∣∣∣∣
τ=I=0

1− T′(w)

w
. (19)

Income effects on earnings are captured by the parameter

η(w) = − ∂w
∂I

∣∣∣∣
τ=I=0

(1− T′(w)), (20)

and the compensated earnings elasticity leaves utility constant with

εc(w) = εu(w) + η(w), (21)

by the Slutsky equation.
Three observations are in order. First, these are elasticities for earnings, so they take into

account the shape of the equilibrium earnings schedule W(y).16 Second, these elasticities
15Under additional assumptions, such as when preferences take the separable form U(c, y, θ) = u(c) −

φ(y, θ) as in Examples 1 and 2, a transformed version of the Pareto problem can be shown to be convex, so the
first-order conditions are sufficient and any allocation that passes the test is Pareto efficient.

16This is in contrast to pure effort elasticities. Our earnings elasticities are therefore more closely related to
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are micro, partial equilibrium elasticities that hold the earnings schedule W(y) fixed. At
the macro level, of course, general equilibrium effects imply that the earnings schedule is
endogenous to the tax schedule. Third, these elasticities measure earnings responses under
a given (nonlinear) tax schedule T in place. We will return to a detailed discussion of these
elasticities in Section 5 and contrast them with other elasticity concepts.

4.2 An Efficiency Test

We denote the equilibrium earnings distribution under a given tax schedule by H(w) with
corresponding density h(w). This allows us to state our first result.

Proposition 1. Any Pareto efficient earnings tax T(w) satisfies

T′(w)

1− T′(w)
εc(w)

ρ(w)−
d log

(
T′(w)

1−T′(w)
εc(w)

)
d log w

− η(w)

εc(w)

 ≤ 1 (22)

at all equilibrium earnings levels w, where

ρ(w) ≡ −
(

1 +
d log h(w)

d log w

)
is the local Pareto parameter of the earnings distribution.

Proposition 1, proved in Appendix B.2, reveals three, perhaps surprising, insights. First,
for a given tax schedule T, the observed distribution of earnings h as well as the earnings
elasticities εc and εu (which imply η = εc − εu) are sufficient to evaluate the efficiency test.
Conditional on these sufficient statistics, no further knowledge about the structural param-
eters of the economy and the superstar technology are required. Among these sufficient
statistics, the distribution of earnings is directly observable; in principle, the elasticity of
earnings may be estimated, although, as we argue below, identifying it is challenging.

Second, condition (22) is the same as in a standard Mirrlees model with linear production
(see Werning, 2007). Of course, as is common with sufficient statistics, the earnings distribu-
tion and elasticities are endogenous in general, and we will later show how they are affected
by superstar effects. Nonetheless, once we have measures for them from the equilibrium
under a given tax schedule, the formula is completely independent of whether there are
superstars or not. In this sense, superstars are neutral conditional on the sufficient statistics.

the empirical literature on taxable income elasticities than, for instance, traditional labor supply elasticities as
measured by hours. Keane (2011), Chetty (2012), Keane and Rogerson (2012) and Saez et al. (2012) provide
recent surveys. See Section 5 for more details.
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Third, the relevant elasticities turn out to be precisely the earnings elasticities defined in
the previous subsection, taking the equilibrium earnings schedule W(y) and the tax T as
given. Indeed, this is the key channel through which superstar effects enter the test formula.
Therefore, a crucial question that we address in the next section is how superstar effects
affect these earnings elasticities and how they may compare with the elasticities typically
estimated in the empirical literature.

Intuition. Condition (22) provides an upper bound for Pareto efficient marginal tax rates
at w. The intuition can be grasped by imagining a reduction in taxes locally around a given
earnings level w, and checking whether the induced behavioral responses lead to an increase
in tax revenue; if they do, there is a local Laffer effect, and the original tax schedule cannot
have been Pareto efficient. As in Werning (2007), this can be done by comparing the (posi-
tive) effect on revenue of those who initially earn less than w and thus increase their earnings
to benefit from the tax reduction at w, and the (negative) effect of those initially above w who
reduce their earnings.

If the earnings density falls quickly at w (the local Pareto parameter is positive and large)
the first effect is likely to outweigh the second, and we are more likely to reject Pareto ef-
ficiency based on (22). Similarly to a high earnings elasticity (in front of the brackets), this
pushes for a lower upper bound on the marginal tax at w. On the other hand, if the tax sched-
ule is very progressive (T′ increases quickly) or the earnings elasticity increases quickly at
w, then the second term in brackets is negative and large in absolute value, and we lose
more revenue from the second group than we gain from the first. Hence, a local Laffer effect
becomes less likely, allowing for higher taxes. The same is true if income effects are large (so
η is positive and large) for the reasons emphasized in Saez (2001).

Rawlsian Optimum. In fact, there is a tight connection between the efficiency test and the
optimal tax schedule under a Rawlsian criterion, which effectively only puts positive Pareto
weight on the lowest θ-type in (16). The optimum then sets the tax rate at the maximal level
consistent with (22). This leads to the following corollary.

Corollary 1. The optimal Rawlsian tax schedule satisfies

T′(w)

1− T′(w)
=

1
εc(w)wh(w)

ˆ ∞

w
exp

[ˆ s

w

η(t)
εc(t)

dt
t

]
dH(s) ∀w.

This corresponds to the integral version of (22) evaluated as an equality everywhere.

The role of earnings elasticities and the earnings distribution. We illustrate the useful-
ness of Proposition 1 in the simpler case when there are no income effects on earnings, so εc
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and εu coincide, and the marginal tax rate τ is flat. Hence, (22) reduces to

τ

1− τ
ε(w)

[
ρ(w)− d log ε(w)

d log w

]
≤ 1 ∀w. (23)

The upper bound on τ now only depends on the shape of the equilibrium earnings distri-
bution h(w) (as captured by the local Pareto parameter ρ(w)) and the pattern of earnings
elasticities ε(w). The same holds, by Corollary 1, for the optimal Rawlsian tax schedule,
which now reduces to

T′(w)

1− T′(w)
=

(
ε(w)

wh(w)

1− H(w)

)−1

∀w, (24)

the inverse of the earnings elasticity times the Pareto parameter of earnings.17

This motivates two questions that we will investigate in the following. First, suppose
we have a tax T in place and observe the empirical earnings distribution in the resulting
equilibrium. Given this earnings distribution, does the presence of superstar effects make
it more or less likely that the efficiency test (23) is passed, i.e., does it push for lower or
higher taxes? We see that this crucially depends on how superstars affect earnings elastic-
ities, which we will explore in detail in the next Section 5. Second, for given fundamentals
(in particular a given skill distribution and preferences), how do superstar effects change
the set of Pareto efficient taxes? For instance, how do superstars affect revenue-maximizing
marginal tax rates through their effect, in view of (24), on both the earnings distribution and
earnings elasticities? We turn to this comparative static exercise in Section 6.

5 Result 2: Superstars and Earnings Elasticities

In the previous section, we showed that the test for the efficiency of a given tax schedule only
depends on the (directly observable) earnings distribution as well as the earnings elasticities
of superstars under this tax. In this section, we explain how to apply the test in practice if
available estimates of earnings elasticities in fact do not appropriately account for superstar
phenomena. A closely related question we also address is how the efficiency test would
change if we believed that the observed earnings distribution was generated by a standard
economy without superstars.

17Recall that, if H is a Pareto distribution with parameter ρ, then ρ(w) = −
(

1 + d log h(w)
d log w

)
= wh(w)

1−H(w)
= ρ.
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5.1 Estimated versus Required Elasticities

To apply the efficiency test, we need the correct earnings elasticities for superstars, as defined
in Section 4.1. Suppose, however, that the empirical estimates of earnings elasticities we
have access to do not properly capture superstar effects. This could be for the following
reasons:

1. The estimates measure short-run effects only, where individuals do not switch jobs
(firms) in response to tax changes, but only vary their effort on the job, holding the
assignment fixed. These estimates are therefore not based on the earnings schedule
W(y), which reflects the fact that individuals are matched with better firms when they
increase effort.

2. The elasticities are estimated based on samples of standard individuals, who are not
superstars themselves. For example, the estimates could come from individuals lower
in the earnings distribution, where superstar effects simply are not present. Or even
if they are based on samples of high-income individuals, they could be from settings
where superstar phenomena only play a limited role.

3. The estimates are macro elasticities, which measure earnings responses to tax changes
including the general equilibrium effects on the entire earnings schedule W(y). For
instance, this is the case whenever identification comes from large tax reforms with
aggregate effects. These elasticities are not the required ones, because they account for
changes in the equilibrium earnings schedule in response to tax changes, instead of
holding W(y) fixed when measuring earnings responses.

In the next 3 subsections, we address these scenarios and show in each case how the esti-
mated elasticities need to be adjusted in order to use them for the efficiency test.

5.2 Fixed-Assignment Elasticities

Consider the equilibrium under a given earnings tax T in place, with equilibrium earn-
ings schedule W(y) and effort allocation y(θ). Pick an individual in this equilibrium with
observed earnings w0. We can back out this individual’s effort y0 = W−1(w0) and type
θ0 = Γ(y0). We can always write earnings as follows:

w0 = B(θ0, y0)− π(θ0),

i.e. as the difference between output and profits at the firm type θ0 is matched with.
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Figure 2: Equilibrium schedule W(y) versus fixed-assignment schedule Ŵ0(y).

Fixed-Assignment Earnings Schedules. To formalize the idea that the empirically es-
timated elasticity of earnings at w0 captures behavioral responses under fixed assignment
only, suppose that it is based on the following “non-superstar” earnings schedule

Ŵ0(y) = B(θ0, y)− π(θ0). (25)

Ŵ0 is the schedule that results from letting the individual with earnings w0 stay at the firm
she is assigned to in the superstar equilibrium. In fact, by (5),

Ŵ ′0(y0) = By(θ0, y0) = W ′(y0),

so Ŵ0(y) both coincides with and is tangent to the original superstar earnings schedule W(y)
at w0, but otherwise follows the shape of the output function B(θ0, y) of the firm that type θ0

is matched with in equilibrium. Hence, this is precisely the relationship between effort and
earnings that this individual would perceive when confined to staying with the same firm.

In the case where A is linear in y (and hence B(θ, y) = b(θ)y for some increasing function
b), the interpretation is particularly simple: then Ŵ0(y) is linear, and given by the line that is
tangent to W(y) at w0:

Ŵ0(y) = w0 + b(θ0)(y− y0) = w0 + W ′(y0)(y− y0).

In this sense, Ŵ0 neatly captures the absence of superstar effects, as it ignores the convexity of
the true earnings schedule W and instead describes a standard, linear relationship between
earnings and effort, as illustrated in Figure 2.
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Adjusting Fixed-Assignment Elasticities. Denote the resulting earnings elasticities and
income effect by ε̂u(w0), η̂(w0) and ε̂c(w0), defined as in (19)–(21) when replacing W by
Ŵ0. The following result shows how they differ from the elasticity terms required for the
efficiency test (22):

Proposition 2. For any given earnings level w0 in an equilibrium with earnings tax T, let ε̂c(w0)

and η̂(w0) be the compensated earnings elasticity and income effect, respectively, based on the earn-
ings schedule Ŵ0 defined in (25). Let y0 be such that w0 = W(y0) = Ŵ(y0) and θ0 = Γ(y0). Then
we have

εc(w0) =
ε̂c(w0)

Φ̂(w0)
> ε̂c(w0)

where

Φ̂(w0) ≡ 1− ε̂c(w0)
Byθ(θ0, y0)Γ′(y0)w0

W ′(y0)2 ∈ [0, 1),

and
η(w0)

εc(w0)
=

η̂(w0)

ε̂c(w0)
.

Proposition 2, proved in Appendix B.4, shows that we always have to adjust the esti-
mated compensated earnings elasticity upwards before we can use it for the efficiency test.
The income effect term in (22) in turn is correctly captured by the estimates. Taken together,
this adjustment provides a force for a lower upper bound to the set of efficient marginal tax
rates at w0 compared to the case where we naively use the non-superstar elasticities, as we
will illustrate further below.

The intuition for why superstar effects increase the earnings elasticity is based on a direct
application of the Le Chatelier principle (Samuelson, 1947). The equilibrium earnings sched-
ule W(y) is the upper envelope of the non-superstar, short-run earnings schedules Ŵ0(y)
across all earnings levels w0, as depicted in Figure 2. As a result, it is more convex than each
short-run schedule. Indeed, as becomes clear from the definition of the adjustment factor
Φ̂(w0) in the proposition, this additional convexity is directly related to the supermodular-
ity of the output function Byθ > 0, and hence the very origin of superstar effects.

This is particularly transparent in the case where B is linear in y, so by (6) the adjustment
can be written as

Φ̂(w0) = 1− ε̂c(w0)

W ′′(y0)y0
W ′(y0)

W ′(y0)y0
W(y0)

∈ [0, 1). (26)

Here, the fixed-assignment elasticity simply ignores the convexity of the earnings schedule.
Figure 3 shows why a more convex earnings schedule leads to a higher compensated earn-
ings elasticity. Observe that (26) puts an upper bound on ε̂c for a given equilibrium earnings
schedule, since Φ̂ ≥ 0 in any equilibrium by Proposition 2.

23



Ū
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Figure 3: Compensated earnings elasticity with superstar effects (left) and without (right).

Gabaix-Landier Economy. We can illustrate the magnitude of this adjustment using the
Gabaix-Landier parameterization from Section 2.3. By (9), the elasticities of the earnings
schedule and the marginal earnings schedule are

W ′(y)y
W(y)

=
1

βρ− 1
y

b− y
and

W ′′(y)y
W ′(y)

=
βρ

βρ− 1
y

b− y
.

Substituting this in the adjustment factor (26) gives18

εc(w) =
ε̂c(w)

1− βρε̂c(w)
(27)

and Proposition 2 ensures that the denominator is positive. Recall that Gabaix-Landier find
β = 1 and ρ = 3. This implies a drastic upwards adjustment of the fixed-assignment elas-
ticities. For instance, if ε̂c = 1/4, then the correct earnings elasticity is in fact εc = 1. Any
fixed-assignment elasticity ε̂c > 1

βρ = 1
3 is inconsistent with an equilibrium. This is illus-

trated in the left panel of Figure 4 for ε̂ ∈ [0, 1/3).

Tax Implications of Superstar Earnings Elasticities. In general, the test condition in
Proposition 1 not only depends on the level of the earnings elasticity, but also on how it
changes along the earnings distribution, as captured by the term d log εc(w)/d log w in (22).
We therefore obtain particularly clean results in the important case where both marginal tax
rates and elasticities are locally constant, such as in the top bracket of earnings:

Corollary 2. Suppose that, as w→ ∞, T′(w), ρ(w), εc(w) and η(w) all converge asymptotically to
the constants τ, ρ, εc and η, respectively. Suppose the same holds for the fixed-assignment elasticities

18Note that the framework in Gabaix and Landier (2008) indeed features an output function A(x, y) that is
linear in y. Hence (26) applies.
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Figure 4: Unadjusted and adjusted earnings elasticities (left panel) and upper bound on top
tax rate using unadjusted and adjusted earnings elasticities (right panel).

ε̂c(w)→ ε̂c, η̂(w)→ η̂. Then (22) implies

τ

1− τ
≤ 1

εc (ρ− η/εc)
≤ 1

ε̂c (ρ− η̂/ε̂c)
.

Using the non-superstar elasticities delivers a less stringent upper bound to top marginal
tax rates. Conversely, realizing that the earnings distribution is in fact the result of superstar
effects pushes for a more stringent, lower upper bound to the top marginal tax rate. Alter-
natively, this provides a comparison of the predictions for optimal taxation of a superstar
economy relative to a standard Mirrlees economy.

For the case of no income effects and using the Gabaix-Landier parameterization, the
upper bound to the top marginal tax rate can be written as

τ ≤ 1
1 + ρε

=
1

1 + ρ ε̂
1−βρε̂

.

For instance, based on the Gabaix-Landier numbers β = 1 and ρ = 3, if ε̂ = 1/4, then
τ ≤ 25%. Erroneously using the unadjusted ε̂ instead of ε, one would have concluded that
τ ≤ 57%. The right panel in Figure 4 compares the correct upper bound to the unadjusted
one as a function of the elasticity ε̂ ∈ [0, 1/3).

25



5.3 Effort Elasticities

We now turn to the second scenario, where the estimated elasticities are effort elasticities,
estimated in a Mirrleesian setting without superstar effects, where earnings simply equal
effort. The question is whether we can extrapolate these standard elasticities to superstars.

Suppose individuals work with linear technology and are on a linear part of the tax
schedule, as considered by Hausman (1985) and Saez (2001). Then individuals choose effort
according to

y(1− τ, I) ∈ arg max
y

U((1− τ)y + I, y, θ)

where τ is the marginal tax rate and I is virtual income. The resulting uncompensated effort
elasticity, income effect on effort, and compensated effort elasticity are

ε̃u(y) =
∂y

∂(1− τ)

1− τ

y
, (28)

η̃(y) = −(1− τ)
∂y
∂I

(29)

and
ε̃c(y) = εu(y) + η(y), (30)

respectively. These effort elasticities are only a function of the utility function U—and in
general of the allocation c, y at which they are evaluated—but do not incorporate the equi-
librium earnings schedule W, in contrast to the earnings elasticities from Section 4.1. For
instance, under the quasilinear and iso-elastic preference specification in Example A, the
uncompensated and compensated effort elasticities coincide and are given by the constant
structural parameter ε̃ = 1/(γ− 1).19

The following lemma shows, however, that the effort elasticities are still constrained by
the earnings schedule in equilibrium, by the workers’ optimality conditions. In particular, as
can be seen from Figure 1, in equilibrium the workers’ indifference curves must have greater
curvature than the earnings schedule, i.e. the necessary second-order conditions must be
satisfied. The curvature of the indifference curve equals the reciprocal of the compensated
effort elasticity, leading to the following bound.

19This could be viewed as corresponding to hours elasticities (see e.g. MaCurdy, 1981; Eissa and Hoynes,
1998; Blundell et al., 1998; and Ziliak and Kniesner, 1999), although of course our notion of effective effort is
broader, or taxable income elasticities for non-superstar individuals where effort equals earnings (see e.g. Saez,
2010, for estimates based on bunching at kink points in the Earned Income Tax Credit schedule).
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Lemma 2. In any equilibrium with earnings schedule W, we must have

ε̃c(y) ≤ 1
W ′′(y)y
W ′(y)

.

The proof is in Appendix B.5. This property will be useful in the following, when char-
acterizing the relationship between effort and earnings elasticities. In particular, whenever
W(y)→ ∞ as y→ b for some bound b < ∞ (as in the Gabaix-Landier economy for βρ > 1),
then the right-hand side of the above inequality goes to 0, which requires that ε̃c vanishes
at the top. This will indeed be the case for the preferences in Example B. Intuitively, for
an unbounded earnings distribution to be consistent with a bounded effort distribution, it
must become increasingly costly for agents to increase effort as they approach the top, oth-
erwise all agents would trade off a finite effort cost for an infinite earnings benefit. This
unbounded cost from effort must be reflected in the elasticity and is incompatible with elas-
ticities bounded away from zero.

Adjusting Effort Elasticities. How do these standard effort elasticities relate to the earn-
ings elasticities of a superstar with given earnings w0 and effort y0? For the sake of the
argument, it will be useful to make the case most favorable for an extrapolation of the effort
elasticities. Hence, let us assume here (i) that A is linear in y: A(x, y) = a(x)y (so the non-
superstar counterfactual indeed involves linear production) and (ii) that T is locally linear
at w0 (so individuals are indeed in an income bracket with a constant marginal tax rate, as
assumed in the definition of the effort elasticities). Both assumptions are satisfied in our
examples. This leads to the following result, proved in Appendix B.6:

Proposition 3. Consider a superstar equilibrium and an individual with earnings w0 and effort
y0 = W−1(w0). Let the compensated effort elasticity ε̃c(y0) and income effect on effort η̃(y0) be
defined as in (30) and (29), respectively. Under conditions (i) and (ii), we have

εc(w0) =
ε̃c(y0)

Φ̃(y0)
> ε̃c(y0) (31)

with

Φ̃(y0) =
1

W ′(y0)y0
W(y0)

− ε̃c(y0)

W ′′(y0)y0
W ′(y0)

W ′(y0)y0
W(y0)

∈ [0, 1) (32)

and
η(w0)

εc(w0)
=

η̃(y0)

ε̃c(y0)

1
W ′(y0)y0

W(y0)

<
η̃(y0)

ε̃c(y0)
. (33)
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Because the superstar earnings schedule W(y) is convex in effort rather than linear, the
Le Chatelier principle again requires an upward adjustment of the compensated elasticity,
as in Proposition 2. However, there is now an additional correction, which results from
the fact that we must translate the elasticity of y into an elasticity of W(y). This explains
the mechanical term W ′(y)y/w (i.e. the elasticity of the earnings schedule) in (32) and (33).
Since W is a convex function that goes through the origin, its elasticity is bigger than one,
which implies a further upward adjustment of the compensated elasticity, and a reduction of
the income effect. In view of Proposition 1 and Corollary 2, both of these new adjustments
push for lower taxes for a given earnings distribution.

Gabaix-Landier Economy. The required adjustments (31) and (32) simplify under the
Gabaix-Landier specification. In particular, using the effort distribution (8) and the earnings
schedule (9) we obtain, at any point in the distribution,

εc =
ε̃c

(βρ− 1) b−y0
y0
− βρε̃c

=
ε̃c

βρ−1

βρn
1
ρ−β−1

− βρε̃c
. (34)

The first expression is written in terms of effort, the second in terms of rank (and we omitted
the dependence of εc and ε̃c on y or n to simplify notation); both will be useful. Note that
for the bottom (n = 1) the effort elasticity adjustment is the same as the fixed-assignment
elasticity adjustment from the preceding section, given by (27); this reflects the fact that
W ′(y)y
W(y) = 1 for the lowest worker. The adjustment is larger, for a given ε̃c, for lower n as we

move up the distribution towards the top; this is because W ′(y)y
W(y) increases with y.

If βρ < 1, then at the top, as n→ 0,

εc =
ε̃c

1− βρ− βρε̃c > ε̃c, (35)

since, by Lemma 2, ε̃c ≤ 1−βρ
βρ , ensuring that the denominator is positive. We see that the

adjustment is increasing in the superstar parameter β and vanishes if β = 0. For a given
observed earnings distribution and hence Pareto parameter ρ, this implies a lower upper
bound on the set of Pareto efficient top marginal tax rates τ. For instance, with no income
effects as in Example A, we have

τ

1− τ
ερ ≤ 1, (36)

which should be compared to erroneously using the effort elasticity ε̃ < ε.

If βρ > 1, as supported by Gabaix-Landier, then, since βρn
1
ρ−β → ∞ as n → 0, the

adjustment becomes unbounded for any given ε̃c. Erroneously using such an unbounded
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Figure 5: Adjusted earnings elasticities for effort elasticities at bottom, median and top 10%.

earnings elasticity in (36) would appear to imply that only a zero top tax rate can be Pareto
efficient. Figure 5 illustrates this. The left panel shows the relationship between the earnings
elasticity and the effort elasticity (34) at a given rank n, for the bottom, median and top 10%
and β = 1, ρ = 3. But the adjustment explodes as we move to effort elasticities of higher-
ranked individuals; this reflects the fact that W ′(y)y

W(y) is unbounded. Conversely, any given
earnings elasticity requires lower and lower effort elasticities as we move up the earnings
distribution. Indeed, this is illustrating Lemma 2. Recall that, when βρ > 1, holding ε̃c fixed
as n→ 0 is incompatible with an equilibrium. Instead, we require

ε̃c(y) ≤ 1
W ′′(y)y
W ′(y)

=
βρ− 1

βρ

b− y
y

,

so ε̃c(y) must vanish towards the top at least at the rate of (b − y)/y. The specification in
Example B features precisely that property and

ε̃(y) =
1

γ + 1
b− y

y
.

Naively using this effort elasticity in the efficiency test (36), we would erroneously con-
clude that the upper bound to the set of Pareto efficient top marginal tax rates is 100%. How-
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ever, substituting in (34) reveals that the earnings elasticity is in fact constant and equals20

ε =
1

γ(βρ− 1)− 1
> 0. (37)

The efficiency test for the top marginal tax rate and a given observed earnings distribution
becomes

τ

1− τ

ρ

γ(βρ− 1)− 1
≤ 1, (38)

implying a well-defined upper bound on τ strictly less than 1.21

5.4 Macro Elasticities

The earnings elasticities required for Proposition 1 measure partial equilibrium behavioral re-
sponses, in the sense that they hold the equilibrium earnings schedule fixed when varying
taxes. The third scenario is therefore one where the estimated elasticities are macro elastic-
ities, which capture the general equilibrium effects of tax changes. This would be the case
when elasticities are estimated using large tax reforms with aggregate effects or using cross-
country comparisons.22 These estimates will capture the fact that the entire equilibrium
earnings schedule W(y) shifts in response to the reform, leading to an additional earnings
response even if an individual were to keep her effort y unchanged.

To fix ideas, consider again a superstar equilibrium for a given tax schedule T, with earn-
ings schedule W(y), and pick some earnings level w0 with associated effort y0 = W−1(w0)

and type θ0 = Γ(y0). Suppose we increase marginal tax rates by τ for everyone. We ask
what is the macro elasticity of earnings at w0, incorporating all equilibrium responses, and
how it compares to the correct, partial equilibrium elasticities from Section 4.1.

Macro Earnings Schedules. We begin with two key observations: First, for any value
of τ, the equilibrium assignment will be the same; i.e., type θ0 will stay matched with the
same firm. The macro elasticity will therefore be akin to the fixed-assignment elasticity from
Section 5.2, where earnings follow the equilibrium output function B(θ0|y). However, the
difference is that the macro elasticity will also incorporate the shift in the earnings schedule,

20γ(βρ− 1) ≥ 1 by Lemma 2.
21Using the Gabaix-Landier parameters β = 1 and ρ = 3, this is purely a function of the preference parameter

γ. Depending on γ, any upper bound on the top tax rate in (0, 1) can be justified, and we can always adjust
the underlying skill distribution to make it consistent with the numbers in Gabaix-Landier.

22The former approach includes studies based on time series of aggregate income shares in affected tax
brackets (e.g. Feenberg and Poterba, 1993; Slemrod, 1996; and Saez, 2004) or studies based on panel data (e.g.
Feldstein, 1995; Auten and Carroll, 1999; Gruber and Saez, 2002; and Kopczuk, 2005). For the latter approach,
see e.g. Prescott (2004) and Davis and Henrekson (2005).
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so even when individual θ0 sticks to effort y0, her earnings will not remain at w0. This shift
is due to the shift in profits π(θ0|τ) of the firm that θ0 is matched with in response to the
change in τ.

As a result, the macro earnings response at w0 is determined according to the macro
earnings schedule

W0(y|τ) = B(θ0, y)− π(θ0|τ). (39)

To keep the underlying general equilibrium effects tractable, we make two simplifying
assumptions for the purpose of this subsection: (i) We again assume A (and hence B) to
be linear in y; and (ii) we abstract from income effects, so preferences are quasilinear in
consumption. Then individual θ0 chooses her earnings as follows:

w0(τ) ∈ arg max
w

(1− τ)w− T(w)− φ(W−1
0 (w|τ), θ0) (40)

for some disutility of effort function φ(y, θ) that is increasing and convex in y and super-
modular in (y, θ) (to ensure single-crossing). The compensated and uncompensated macro
earnings elasticities then coincide and are defined as

ε(w0) =
dw0

d(1− τ)

∣∣∣∣
τ=0

1− T′(w0)

w0
. (41)

Adjusting Macro Elasticities. With these definitions, we have the following result (see
Appendix B.7 for a proof):

Proposition 4. 1. Consider a superstar equilibrium and an individual with earnings w0 and
effort y0 = W−1(w0). Let the macro earnings elasticity ε(w0) be as defined in (41), the fixed-
assignment elasticity ε̂(w0) as in Section 5.2, and the effort elasticity ε̃(y0) as in (28). Under
conditions (i) and (ii), we have

ε̂(w0) =
ε(w0)

Φ(w0)
(42)

with

Φ(w0) = 1 +
χ(w0)

ε̃(y0)

1
W ′(y0)y0

W(y0)

and χ(w0) =
∂W0(y0|τ)
∂(1− τ)

∣∣∣∣
τ=0

1− T′(w0)

w0
. (43)

2. If the tax schedule is weakly progressive (T′′(w) ≥ 0 ∀w), then χ(w0) ≤ 0, so the macro
elasticity is always smaller than the fixed-assignment elasticity.

As the first part of the Proposition shows, the macro elasticity is closely related to the
fixed-assignment elasticity, with an adjustment χ that captures precisely the shift in the
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equilibrium earnings schedule due to general equilibrium effects. The second part shows
that this adjustment lowers the macro elasticity under a progressive tax schedule. Recall that
Proposition 2 showed that the fixed-assignment elasticity is smaller than the correct earn-
ings elasticity. A fortiori, any estimate based on the macro elasticity will also underestimate
the correct earnings elasticity when there are superstar effects.

Intuition. When we increase 1 − τ, everyone increases effort in the absence of income
effects. Due to complementarities at the firm level, this leads to an increase in profits for
each firm, and hence a reduction in earnings holding effort fixed. The assumption of a
progressive tax schedule guarantees that this downward shift of the earnings schedule leads
to a further increase in effort, and hence profits, because marginal tax rates decrease as we
move down the earnings distribution. The general equilibrium effects therefore eventually
imply an additional negative effect on earnings, reducing the macro earnings elasticity.

Examples. Proposition 4 can be nicely illustrated using our examples. For the isoelas-
tic preferences in Example A with a Pareto skill distribution, Appendix A shows that the

equilibrium earnings schedule is W(y) = ky
1

1−βρ + w0 with k = C̃(1− τ)
− βρ

(γ−1)(1−βρ) . This
immediately implies that, at the top, the general equilibrium correction in (43) converges to

χ = − βρ

(γ− 1)(1− βρ)
,

which is negative as predicted by the second part of Proposition 4. We also know that the
effort elasticity is ε̃ = 1/(γ− 1) and the earnings elasticity is ε = 1/(γ(1− βρ)− 1) at the
top by (35). Finally, by (27), the fixed-assignment elasticity at the top is

ε̂ =
1

1/ε + βρ
=

1
(γ− 1)(1− βρ)

< ε.

Taking this together allows us to derive the macro elasticity at the top using (42) and (43):

ε = ε̂
(

1 +
χ

ε̃
(1− βρ)

)
=

1
γ− 1

.

The macro elasticity at the top coincides with the effort elasticity. We can therefore summa-
rize the relationships between the four elasticity concepts in this case as follows:

ε̃ = ε < ε̂ < ε.
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In all three scenarios, the estimated elasticity is smaller than the required superstar earnings
elasticity ε, with the macro and effort elasticities ε̄ and ε̃ being even smaller than the fixed-
assignment elasticity ε̂.

Similar results can be shown to apply for Example B. Indeed, at the top one finds that
ε̄ < ε̃ = 0 < ε̂ < ε.

5.5 Replicating the Superstar Equilibrium without Superstars

We finally address the second question we raised at the beginning of this section: How
would we have tested for Pareto efficiency if we had believed that the observed earnings
distribution came from a standard economy without superstars, holding fixed the tax T
in place? Clearly, posing this question assumes a positive answer to the following: Are
there economies that replicate the same outcome as in the superstar economy, but without
superstar effects? We shall show this is indeed the case. This amounts to a recalibration
exercise: We pick preferences Û(c, w, θ) and a skill distribution F(θ) for a standard Mirrlees
economy with linear technology where earnings equal effort, w = y, such that, under the
earnings tax T, we get the same earnings distribution H(w) as in the superstar economy.
We already know that the test formula in Proposition 1 equally applies to this recalibrated
non-superstar economy, so the only remaining question is which elasticity corresponds to
the required earnings elasticities for the recalibrated economy.

Recalibrating Preferences. We show first that one can construct Û such that the correct
elasticities coincide precisely with the fixed-assignment elasticities ε̂u(w), η̂(w) and ε̂c(w) from
Section (5.2), for example. Fix an earnings tax T and the resulting superstar equilibrium,
with effort y(θ), earnings w(θ) = W(y(θ)), output B(θ, y(θ)) and profits

π(θ) ≡ B(θ, y(θ))− w(θ).

Denote by B−1(θ, .) the inverse function of B(θ, .) with respect to its second argument and
let

∆(θ, w) ≡ B−1(θ, w + π(θ)).

Using this, define the new utility function

Û(c, w, θ) ≡ U(c, ∆(θ, w), θ).

Intuitively, Û incorporates the firm level production function B into preferences, holding
again fixed the equilibrium matching and accounting for the fact that individuals do not
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earn the entire output because there are profits in the superstar equilibrium. Consider a
standard Mirrlees model with linear technology (so output, effort and earnings are all the
same), preferences Û, and endowment E + Π with

Π =

ˆ
π(θ)dF(θ).

Leave the skill distribution F unchanged. Then we have the following Corollary to Proposi-
tion 2 (see Appendix B.8 for a proof):

Corollary 3. In the non-superstar economy with preferences Û and earnings tax T, each type θ

chooses the same earnings and consumption as in the superstar economy with preferences U and tax
T. The test for Pareto efficiency of T is given by (22) when replacing εc(w) and η(w) by ε̂c(w) and
η̂(w).

In other words, if we believed that the observed earnings distribution was generated by
a standard economy with no superstars, we would evaluate the efficiency of the existing tax
schedule T based on the same condition as in the superstar economy, but using the lower
compensated earnings elasticity ε̂c(w).

Recalibrating the Skill Distribution. An alternative is to vary the underlying skill distri-
bution in the non-superstar economy to match the empirical distribution of earnings in the
superstar economy, instead of recalibrating preferences. We use Example A to show that this
leads to similar results.

In Example A, both the skill and the equilibrium earnings distribution are (approxi-
mately) Pareto, the former with parameter α and the latter with parameter ρ given by (10).
Now construct a standard economy with linear production and the same preferences (de-
scribed by parameter γ), but with another skill distribution (in fact, a Pareto distribution
with parameter α̃), such that, under the same tax τ, we replicate the same earnings distri-
bution as in the superstar economy. In the standard economy, the Pareto parameter of the
earnings distribution will be

ρ̃ =
γ− 1

γ
α̃,

so we need to set α̃ such that ρ̃ = ρ:

α̃ =
α

αβ + 1
< α.

This is intuitive: To generate the same earnings distribution, the underlying skill inequality
in the non-superstar economy must be higher than in the superstar economy. However,
since earnings and effort coincide in the standard economy, the earnings elasticity is simply
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1/(γ − 1) and hence less than the earnings elasticity in the superstar economy, as we saw
in Section 5.3. In other words, accounting for superstars again requires the use of a higher
earnings elasticity than in the non-superstars counterfactual, holding fixed the observed
earnings distribution.

6 Result 3: Comparative Statics

So far, we have been concerned with how of superstars affect the set of Pareto efficient taxes
conditional on a given, observed earnings distribution. In this section, we explore the com-
parative static effects of introducing superstar technology holding other fundamentals fixed.
These primitives include the parameters of the utility function U and the skill distribution
F(θ). In other words, we ask whether, for a given skill distribution and preferences, the in-
troduction of superstar effects leads to higher or lower taxes. We also show which statistics,
such as elasticities or the parameters of the superstar technology, determine these effects.

6.1 An Efficiency Test in Terms of Primitives

As in Section 3, we begin with a test that any Pareto efficient tax schedule has to satisfy, now
however expressed in terms of fundamentals.

Proposition 5. Any Pareto efficient earnings tax T is such that

τ(θ)

1− τ(θ)
ξ(θ)

p(θ)−
d log

(
τ(θ)

1−τ(θ)
ξ(θ)

)
d log θ

− η̃(θ)

ε̃c(θ)

y′(θ)θ
y(θ)

 ≤ 1 (44)

for all θ, where

p(θ) = −
(

1 +
d log f (θ)

d log θ

)
is the local Pareto parameter of the skill distribution and

ξ(θ) ≡
(
−∂ log MRS(c(θ), y(θ), θ)

∂ log θ

)−1

≥ 0

is the inverse of the elasticity of the marginal rate of substitution w.r.t. θ.

See Appendix B.9 for the proof. Note that ξ(θ) is a preference parameter. For example,
in the canonical specification U(c, y, θ) = u(c, y/θ), the elasticity of the marginal rate of
substitution w.r.t. θ is directly related to the elasticity of the marginal rate of substitution
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w.r.t. y, and we show in Appendix B.9 that

ξ(θ) =
ε̃c(θ)

1 + ε̃u(θ)
,

leading to the following immediate corollary:

Corollary 4. If U(c, y, θ) = u(c, y/θ), any Pareto efficient earnings tax T is such that

τ(θ)

1− τ(θ)

ε̃c(θ)

1 + ε̃u(θ)

p(θ)−
d log

(
τ(θ)

1−τ(θ)
ε̃c(θ)

1+ε̃u(θ)

)
d log θ

− η̃(θ)

ε̃c(θ)

y′(θ)θ
y(θ)

 ≤ 1 (45)

for all θ.

These results reveal three insights. First, the formula for the efficiency test (44) (and its
special case (45)) does not feature any parameters related to the superstar technology. This
is similar to Proposition 1, and so is the intuition for the terms in the test condition. Sec-
ond, however, it shows that effort elasticities need to be used when taking the underlying
skill distribution as an input. This is in contrast to our results in Section 3, where earnings
elasticities were the key sufficient statistic when using the earnings distribution as an input.
Third, the test inequality (45) is in fact identical to the one that would obtain in a standard
Mirrlees model (see Werning, 2007). Of course, the effort elasticities and effort schedule y
are endogenous in general, so superstar effects can affect the equilibrium at which they are
evaluated, but we will next present natural benchmark cases where not even this matters.

Examples. First, suppose preferences take the quasilinear and iso-elastic form (as in Ex-
ample A). Then (45) simplifies to

τ(θ)

1− τ(θ)

1
γ

p(θ)−
d log

(
τ(θ)

1−τ(θ)

)
d log θ

 ≤ 1 ∀θ, (46)

which is only a function of the tax schedule, the skill distribution, and the preference pa-
rameter γ. For instance, if the tax schedule is locally linear, such as at the top of the earnings
distribution with flat marginal tax rate τ, then the efficiency test is simply

τ

1− τ

p(θ)
γ
≤ 1.

We see that this is completely independent of the equilibrium earnings schedule W(y) or the
allocation c(θ), y(θ). The condition puts an upper bound on the top marginal tax rate that
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is decreasing in the effort elasticity (recall that 1/γ = ε̃/(1 + ε̃)) and the Pareto parameter
(recall that a higher Pareto parameter implies a thinner tail of the skill distribution). Indeed,
in Example A when F is a Pareto distribution, the Pareto parameter is constant p(θ) = α,
and we obtain

τ

1− τ
≤ γ

α
. (47)

This shows particularly clearly, and perhaps surprisingly, that superstars are completely
neutral: introducing superstar effects does not affect the set of Pareto efficient taxes for given
fundamentals. The parameters of the output function A (such as the superstar parameter β)
play no role whatsoever.

Neutrality. Superstar effects both make the earnings distribution more unequal and in-
crease the earnings elasticity. In our examples, these effects precisely cancel for given funda-
mentals. For Example A, recall the Pareto parameter of the earnings distribution (10):

ρ =
γ− 1

γ

α

αβ + 1
,

which we saw was decreasing in β (capturing the fatter tail of the distribution when superstar
effects become stronger). Using this, we can rewrite the earnings elasticity at the top, (35), in
terms of fundamentals:

ε =
1 + αβ

γ− 1
,

which is increasing in β. As a result, the effects exactly balance out, and ερ = α/γ is inde-
pendent of β. This also shows that (36) and (47) are equivalent.

The same is true in Example B. In this case, recall the Pareto parameter of the earnings
distribution (11):

ρ =
γ + 1

γ

αβ

αβ− 1
,

decreasing in β. Using this, we can rewrite the earnings elasticity (37) in terms of primitives:

ε =
αβ− 1
γ + 1

,

which is again increasing in β. Substituting both, the test inequality (38) becomes

τ

1− τ
ερ =

τ

1− τ

α

γ
≤ 1,

i.e. precisely condition (47) as in Example A. Hence, despite the extreme effects of the super-
star technology on earnings inequality—giving rise to an unbounded earnings distribution
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with a fat tail even though the skill distribution is bounded—, the efficiency test does not
change for a given skill distribution and utility function.

6.2 Optimal Tax Schedules in Terms of Primitives

As in Section 3, we can exploit the tight relationship between testing for Pareto efficient
taxes and optimal tax schedules for any given Pareto weights, this time however in terms
fundamentals. This will allow us to characterize the comparative static effects of super-
stars on optimal tax schedules. For example, we can ask whether, for given preferences and
skills, the increased role of superstar effects should lead to an increase or decrease in the
top marginal tax rate, for given redistributive preferences. A natural benchmark is again the
Rawlsian case where our goal is to maximize revenue from the top tax bracket.

The following result, proved in Appendix B.10, provides a formula for optimal taxes:

Proposition 6. The optimal tax schedule for any distribution of Pareto weights Λ satisfies

τ(θ)

1− τ(θ)
=

1
θ f (θ)ξ(θ)

ˆ ∞

θ

(
1− λ(s)Uc(s)

η f (s)

)
exp

(ˆ s

θ

η̃(t)
ε̃c(t)

dy(t)
y(t)

)
dF(s), (48)

where η is the multiplier on (17) and λ is the density corresponding to Λ.

When U(c, y, θ) = u(c, y/θ), we have ξ = ε̃c/(1+ ε̃u) as before, so (48) is exactly the same
as in a standard Mirrlees model. Thus, our neutrality result extends to optimal tax schedules
given fundamentals, in the sense that superstars do not change the formula for optimal taxes.
In a linear tax framework, Diamond and Mirrlees (1971) derived optimality conditions for
tax rates, providing a system of equations expressed in terms of taxes and own- and cross-
price elasticities for a finite set of goods. Notably, they observed that these conditions do
not depend on the curvature of technology (second derivatives of the production function).
However, since our non-linear tax framework is different, our Result 3 is not an implication
of their result.

Examples. For instance, with the preferences from Example A, the optimal tax schedule
in terms of θ is given by

τ(θ)

1− τ(θ)
= γ

Λ(θ)− F(θ)
θ f (θ)

,

independent of superstar effects. Similarly, with the preferences from Example B, it is given
by

τ(θ)

1− τ(θ)
= γ

Λ(θ)− F(θ)
(a− θ) f (θ)

,
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again a closed form function of preference parameters and the skill distribution only. As a
result, even though the emergence of superstar technology may lead to a dramatic increase
in earnings inequality for a given underlying skill distribution, it does not affect the optimal
taxes for any given Pareto weights.23

In the Rawlsian case where positive social welfare weight is put only on the lowest skill
type, we have Λ(θ) = 1 for all θ, so formula (48) simplifies accordingly. With the preferences
and skill distributions assumed in Examples A and B, for instance, the optimal Rawlsian
marginal tax rates are therefore constant and given by

τ

1− τ
=

γ

α
,

so they are simply the highest Pareto efficient taxes, as given by the upper bound (47).24

Hence, the revenue-maximizing top marginal tax rate is also unaffected by superstar effects.

7 Extensions

In this section, we demonstrate that our results are not specific to the simple one-to-one
matching model considered so far. They extend to alternative and more general settings
with superstar effects, including the first- and second-generation span-of-control models we
turn to next.

7.1 Span-of-Control with Identical Workers

Managers and Workers. We begin with the canonical span-of-control model going back
to Lucas (1978) and Rosen (1982), adding an intensive effort margin for managers. There is
a unit mass of managers with skill θ ∼ F who provide effective effort y as before. Rather
than being matched with an exogenous set of firms, managers own the firms and hire a
homogeneous labor input to produce output. There is a unit mass of identical workers who
each supply one unit of labor inelastically at zero cost. A manager who exerts y units of

23These results imply that a given individual of type θ faces the same optimal marginal tax rate, no matter
whether technology features superstar effects or not. This is the standard way of reporting the predictions of
optimal nonlinear taxes in the literature. Since the distribution of θ is fixed and since earnings are monotone in
θ, it is equivalent to reporting marginal taxes as a function of the quantiles of the earnings distribution, a useful
normalization (i.e. it answers “what is the tax on the top x%?”). In general, this does not mean that the tax
schedule when written in terms of earnings, T(w), is unchanged. The reason, of course, is that the distribution
of earnings changes when superstar effects emerge.

24More generally, formula (48) for the Rawlsian case is the integral version of (44) when it holds as an equality
everywhere.
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effective effort and who hires L units of labor produces output according to

A(L, y),

and we again assume that A is supermodular, so ALy > 0. Denoting the wage per unit of
labor by ω, a manager’s earnings (profits) are A(L, y) − ωL. The government imposes a
nonlinear earnings tax T on these profits as well as a (lump-sum) tax on workers’ incomes
ω. Managers hire labor to maximize profits taking the wage as given, so their earnings are

W(y|ω) = max
L

A(L, y)−ωL (49)

with optimal labor demand L(y|ω) conditional on any given wage ω.

Superstar Effects. Here, superstar effects arise simply because more talented managers,
who exert higher effort y, will hire more workers, thereby increasing their scale.25 Indeed,
by the envelope theorem,

W ′(y|ω) = Ay(L(y|ω), y) > 0

and
W ′′(y|ω) = AyL(L(y|ω), y)L′(y|ω) + Ayy(L(y|ω), y).

The first term is positive by supermodularity of A and because L′(y|ω) > 0 by Topkis’s
theorem, providing a force for the managers’ earnings schedule to again be convex in their
effort. For example, if A(L, y) = Lαy with α ∈ (0, 1), then

L(y|ω) = y
1

1−α

( α

ω

) 1
1−α and W(y|ω) = (1− α)y

1
1−α

( α

ω

) α
1−α ,

which are both increasing and convex in y.
Ales et al. (2015) consider a similar model, but with the important difference that output

is given by θγ A(L, y) and assuming that A exhibits constant returns to scale. In that case,
because of the latter property, earnings are linear in effort for any given manager and, in
this sense, there are no superstar effects. On the other hand, the direct “scale of operations”
effect of manager skill on output, governed by the parameter γ, introduces Stiglitz (1982)-
type effects, which we have abstracted from here.

Pareto Problem. For the purposes of this section, it will be convenient to index managers
directly by the quantiles of the skill distribution t = F(θ), which is without loss of generality.

25Similarly, in Rosen (1981), individuals can directly increase the scale of their production.

40



Then managers’ preferences as a function of t are simply

U(c, y, F−1(t)).

By the same arguments as in Section 3.1, the Pareto problem for the nonlinear profit tax on
managers and the lump-sum tax on workers is

max
c(t),y(t),cw,ω

λwu(cw) +

ˆ
λ(t)U

(
c(t), y(t), F−1(t)

)
dt

s.t.
U
(

c(t), y(t), F−1(t)
)
≥ U

(
c(t′), y(t′), F−1(t)

)
∀ t, t′ (50)

ˆ
c(t)dt + cw ≤

ˆ
A(L(y(t)|ω), y(t))dt (51)

ˆ
L(y(t)|ω)dt = 1, (52)

where cw is the consumption of workers, u is their utility of consumption, c(t) is the con-
sumption allocated to managers of talent t, λw and λ(t) are the respective Pareto weights,
and the last equation (52) is the labor market clearing condition. Observe that the wage ω

only appears in the last two constraints (51) and (52). This allows us to rewrite the Pareto
problem as follows:

max
c(t),y(t),cw

λwu(cw) +

ˆ
λ(t)U

(
c(t), y(t), F−1(t)

)
dt (53)

s.t. (50) and ˆ
c(t)dt + cw ≤ Ψ({y}), (54)

where
Ψ({y}) ≡ max

ω

ˆ
A(L(y(t)|ω), y(t))dt s.t.

ˆ
L(y(t)|ω)dt = 1. (55)

Hence, Ψ({y}) is the equilibrium aggregate output in the economy for any given effort
schedule y(t) for managers. With this decomposition, and for any given cw, we see that
the Pareto problem (53) subject to (50) and (54) is the same as our original Pareto problem
(16) subject to (13) and (17) from Section 3.1 when we replace

´
B(t, y(t))dt by Ψ({y}). Since

all our results are based on the necessary first-order conditions of the planning problem, they
all go through if it remains true that the partial derivative of this aggregate output w.r.t. y(t)
coincides with the marginal earnings in equilibrium at that effort level. This relationship is
indeed established by the following lemma, proved in Appendix B.11:
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Lemma 3. Let Ψ({y}) be defined as in (55). Then

∂Ψ({y})
∂y(t)

= W ′(y(t)|ω)

for any ω and t.

Because of Lemma 3, all of our results in Propositions 1 to 6 immediately extend to the
earnings tax for managers in this model.

7.2 Span-of-Control with Heterogeneous Workers

In this section, we demonstrate how our results extend to modern, richer models of orga-
nizational hierarchies, including those developed by Garicano and Rossi-Hansberg (2004,
2006) and, most recently, Fuchs et al. (2015).26 Here, higher-skilled managers not only lever-
age their talent by hiring more workers, they are also matched with teams of higher-skilled
workers, generating yet an additional source of superstar effects. Moreover, these models
allow for an endogenous sorting of individuals into hierarchical layers.

Knowledge-based Hierarchies. As in Garicano and Rossi-Hansberg (2004) and Fuchs
et al. (2015), we consider the simplest possible setting in which hierarchies consist of two
layers, managers and workers (or producers).27 In fact, we closely follow the setup in Fuchs
et al. (2015) where individuals use time and knowledge to solve problems, with the only
addition that we incorporate an intensive effort margin to generate a role for taxes.

There is free entry of risk-neutral firms. Each firm hires one manager and n workers,
where n may be non-integer. There is also a continuum of heterogeneous individuals of
unit mass indexed by their talent t who are each endowed with one unit of time and can
become either managers or workers. As in the preceding subsection, we associate t with
the quantiles of the skill distribution F, so t ∼ U(0, 1). Individuals provide effective effort
y and have preferences U(c, y, F−1(t)). For the purposes of this subsection, w.l.o.g. we also
normalize effective effort such that y ∈ [0, 1].

Workers and Managers. Each worker is faced with a problem of random difficulty x ∼
U(0, 1), distributed independently across problems. She manages to solve the problem on
her own if her effective effort exceeds the problem’s difficulty level. Formally, if her effective
effort is yp, she can solve the problem whenever x < yp, thus with probability yp. If she fails,

26See also Garicano and Rossi-Hansberg (2015) for a recent survey of this literature.
27Extending our results to larger numbers of layers, such as in Garicano and Rossi-Hansberg (2006), is

straightforward.
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she can seek help from a manager. It costs a manager h units of her time to help a worker
with an unsolved problem. Hence, if a manager is matched with workers who provide effort
yp, her time constraint implies that she can help n of them, where n is such that

1 = hn(1− yp) ⇒ n =
1

h(1− yp)
. (56)

As a result of this time constraint, a manager can increase his team size only by being
matched more talented workers, who provide more effort and can therefore solve more
problems on their own.28

A manager with effort ym can solve a problem for which a worker asks for help if x < ym.
A solved problem generates output 1 and an unsolved problem produces 0. Hence, if a
manager provides effective effort ym and helps one worker of effort yp with an unsolved
problem, expected output is

ym − yp

1− yp
.

In turn, if a manager of effort ym is matched with n workers of effort yp, expected output is

A(ym, yp) = nyp + n(1− yp)
ym − yp

1− yp
= nym =

ym

h(1− yp)
,

where the last step uses the time constraint (56). Observe that A is strictly supermodular
and weakly convex in both arguments.

Equilibrium. As before, equilibrium will involve an earnings schedule W(y) that is taken
as given by both firms and individuals. For concreteness, denote by Wm(ym) the earnings
of managers who exert effort ym and by wp(yp) those of workers (producers) with effort yp.
Expected profits for a firm with a manager of effort ym and workers of effort yp are

Π = n(A(ym, yp)− wp(yp))−Wm(ym) =
ym − wp(yp)

h(1− yp)
−Wm(ym) (57)

and firms choose ym and yp to maximize Π given the earnings schedule and thus wp(yp) and
Wm(ym). The government imposes a nonlinear earnings tax T(w) paid by all individuals.

In this model, it is straightforward to see that the equilibrium for any given T and hence
effort schedule y that is monotone increasing is exactly as described in Lemma 1 and Corol-

28By single-crossing preferences, the effort schedule y will again be increasing in talent t in any equilibrium.
Moreover, note that we are restricting attention to assignments where all workers who are matched with a
given manager have the same talent. This is without loss as there will be positive assortative matching in any
equilibrium.

43



t

workers self −employed managers

positive assortative matching 10

Figure 6: Equilibrium sorting and matching

lary 1 in Fuchs et al. (2015): there is a partition of the talent space into three intervals
[0, t1], (t1, t2), and [t2, 1], such that (i) individuals in [0, t1] become workers matched with
managers, (ii) individuals in (t1, t2) are unmatched and work on problems on their own as
self-employed producers, (iii) individuals in [t2, 1] become managers and are matched with
workers, and (iv) there is strictly positive assortative matching between workers in [0, t1]

and managers in [t2, 1]. Figure 4 illustrates this pattern.
In other words, the lowest skill types become workers, trying to solve the easiest prob-

lems. The highest skill types become managers, providing help with the unsolved prob-
lems left by workers. Those with intermediate skill may remain unmatched, working on
problems without help from managers. We assume there is risk pooling among these self-
employed, so their earnings are simply equal to their expected output and hence effective
effort: W(y(t)) = y(t) for t ∈ (t1, t2). Note that this set of self-employed may not exist
depending on parameters: we may have t1 = t2 in equilibrium.

Matching Managers and Workers. By property (iv), for a given threshold t1 and effort
schedule y, managers of type tm will be matched with workers of type tp = P(tm), where
the matching function P(t) satisfies

h
ˆ t1

P(t)
(1− y(s))ds =

ˆ 1

t
ds ∀t ≤ 1. (58)

This constraint simply requires that, for any manager type t ≤ 1, the total time available
to managers in the interval [t, 1] equals the total time required to help with the problems
left unsolved by workers in the interval [P(t), t1]. Conditional on t1 and a y-schedule, there
is a unique function P(t) that satisfies this constraint, namely, the function that solves the
differential equation

P′(t) =
1

h(1− y(P(t)))
∀t ≤ 1, (59)

with initial condition P(1) = t1, where (59) follows from differentiating (58) w.r.t. t. Observe
that this then also uniquely pins down the manager cutoff t2, namely such that P(t2) = 0.

Interestingly, and in contrast to the models we have considered so far, (59) implies that
the effort schedule y, and hence the tax schedule T, now affects the equilibrium assignment
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of workers to managers. When workers matched with a manager of type t put more effort,
they leave fewer problems unsolved and the manager runs out of time less quickly. This
manager can therefore help more workers, and the rate at which we move to lower skilled
workers assigned to marginally worse managers increases: For this reason, P′(t) is increas-
ing in y(P(t)).

Superstar Effects. This also reveals how superstar effects are different in this framework
compared to the previous subsection: Better managers here get matched with more work-
ers, even though all managers face the same time constraint, precisely because they get to
supervise better workers, who put more effort, and who each require less time to get help.
In addition, there are now also superstar effects for workers, as better workers get matched
with better managers, who can help them with more problems, boosting their productivity.

Indeed, we can verify that the equilibrium earnings schedule is convex. The firm’s first-
order condition for ym in (57) implies

W ′m(y(t)) =
1

h(1− y(P(t)))
, (60)

which is increasing along the y-schedule among managers. Similarly, the first-order condi-
tion for yp yields

w′p(yp) =
ym − wp(yp)

1− yp
.

Moreover, by free entry, firms make zero profits, so

wp(yp) = ym −Wm(ym)h(1− yp).

Substituting this and using the equilibrium assignment function P, we obtain

w′p(y(P(t))) = Wm(y(t))h, (61)

which is also increasing along the y-schedule. Of course, the earnings schedule is linear in
the intermediate segment between y(t1) and y(t2), if it exists, leading to an overall earnings
schedule W(y) that is weakly convex.29

29Conditional on an effort schedule y and the thresholds t1 and t2, the overall earnings schedule W(y) is
entirely pinned down by (60) and (61) as well as the indifference conditions Wm(y(t2)) = y(t2) and wp(y(t1)) =
y(t1) at the thresholds.
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Pareto Problem. By the same arguments as in Section 3.1, we are now ready to write down
the Pareto problem for the earnings tax T:

max
c,y,P,t1,t2

ˆ 1

0
λ(t)U(c(t), y(t), F−1(t))dt

s.t. ˆ 1

0
c(t)dt ≤

ˆ 1

t2

y(t)
h(1− y(P(t)))

dt +
ˆ t2

t1

y(t)dt, (62)

(50), (59) and P(1) = t1, P(t2) = 0. The first integral on the right-hand side of (62) is total
output produced by matched agents (integrating over managers), and the second is total
output produced by the self-employed.

A key observation is again that P, t1 and t2 only enter constraints (59) and (62), which
allows us to decompose the Pareto problem as follows:

max
c,y

ˆ 1

0
λ(t)U(c(t), y(t), F−1(t))dt (63)

s.t. (50) and ˆ 1

0
c(t)dt ≤ Ψ({y}), (64)

where

Ψ({y}) = max
P,t1,t2

ˆ 1

t2

y(t)
h(1− y(P(t)))

dt +
ˆ t2

t1

y(t)dt (65)

s.t. (59) and P(1) = t1, P(t2) = 0. Hence, similar to the previous subsection, Ψ({y}) is ag-
gregate output in the economy under the equilibrium assignment for any given (monotone)
effort schedule y.30 The Pareto problem (63) s.t. (50) and (64) is therefore again identical to
our original Pareto problem (16) subject to (13) and (17) from Section 3.1 when we replace´

B(t, y(t))dt by Ψ({y}). Since all our results are based on the necessary first-order condi-
tions of the planning problem, they all go through if it remains true that the partial derivative
of this aggregate output w.r.t. y(t) coincides with the marginal earnings in equilibrium at
that effort level. The following lemma again establishes precisely this relationship:

Lemma 4. Let Ψ({y}) be defined as in (65). Then

∂Ψ({y})
∂y(t)

= W ′(y(t))

for all t.

30By single-crossing and (50), any incentive compatible effort schedule y must be monotone, so we will
evaluate Ψ only for monotone schedules.
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The proof is in Appendix B.12. Despite the additional complexities of this model, in
particular the richer effects of taxes on equilibrium matching, this implies again that our
results extend to the earnings tax for both workers and managers in this model.

7.3 A General Production Function Approach

Both of our previous extensions concluded by showing that, in equilibrium, there exists
an aggregate production function Ψ({y}) that maximizes total output, given effort choices
{y}, as well as the property that marginal earnings W ′(y(t)) equal the derivative of Ψ with
respect to y(t). This suggests starting at the end of this line of reasoning, in a more general
and abstract manner.

To pursue this, we now simply postulate that there exists an aggregate production func-
tion

Φ(M),

where M denotes a positive measure over the set of possible effort levels Y. Typically, Φ(M)

will be defined by maximizing output over all feasible allocations, given the distribution of
effort M. We also assume that the equilibrium measure M maximizes aggregate profits

Φ(M)−
ˆ

W(y)dM.

This may be taken as a defining property of competitive equilibria.
Starting with a distribution of types t ∈ [0, 1], an allocation y : [0, 1] → Y induces a

particular measure My. Define
Ψ({y}) ≡ Φ(My).

It then follows that in equilibrium {y}maximizes

Ψ({y})−
ˆ

W(y(t))dt.

A necessary condition is that

W ′(y(t)) =
∂Ψ({y})

∂y(t)
, (66)

the desired marginal condition.31 Our results then follow directly for this more general
formulation.

31More formally, by ∂
∂y Ψ({y}) we mean the following. The Fréchet derivative of Ψ at some {y} in direction

h is a linear function
∂Ψ({y}, h) =

ˆ
δ(t)dh(t).
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It is worth pointing out that this formulation allows for arbitrary effects of taxes on the
equilibrium assignment. This is because taxes can distort the effort schedule y(t), which in
turn affects matching. However, the marginal condition (66) implies a form of efficiency con-
ditional on a given effort schedule, as (private) marginal earnings coincide with the (social)
marginal product. In other words, taxes distort the assignment through their effect on ef-
fort, but not conditional on effort. Distortions conditional on effort could arise, for instance,
when part of the matching surplus is untaxed, as in Jaffe and Kominers (2014). These issues
are not inherently related to superstar effects. They would emerge, more broadly, in any Roy
model with untaxed activities, such as household production or an informal sector.

8 Conclusion

This paper extends the Mirrlees optimal taxation model by enriching the labor market to
incorporate an assignment problem between workers and firms. As first shown by Rosen
(1981), assignment models of this sort are capable of producing superstar phenomena, where
innate skill differences are greatly magnified in terms of earnings. Despite the potential to
dramatically increase inequality, our results show that these superstar effects do not provide
a basis for higher taxation. Indeed, depending on the interpretation, they are either neutral
or provide a force for lower taxes.

It is worth clarifying that this force for lower taxes does not, by itself, imply that taxes
at the top of the earnings distribution should be low or lower than current tax rates. Other
forces or considerations, unrelated to superstars, may be at play at the top shaping the opti-
mal level of taxes. Here we mention a few.

Stiglitz effects. As mentioned in the introduction, an active current literature explores how
general equilibrium effects affect the optimal policy when tax instruments are limited. This
literature revisits Stiglitz (1982) but using richer Roy models where relative wages across
different sectors enter incentive constraints and tax policy seeks to manipulate wages to relax
these constraints, typically implying lower taxes at the top. Since these “Stiglitz effects” are
separate from superstar effects, we have abstracted from them in this paper.

Inefficiencies and uncertainty. It has been argued that some top earners earn excessive in-
comes not just because of superstar effects, but because their pay exceeds their marginal
product. This could be due to rent-seeking (Rothschild and Scheuer, 2014a), inefficient bar-
gaining (Piketty et al., 2014) or other inefficiencies (Rothschild and Scheuer, 2014b; Lock-

for some δ : [0, 1]→ R. We define
∂

∂y(t)
Ψ({y}) = δ(t).
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wood et al., 2014) at the top of the income distribution.32 On the other hand, pay can be
below the marginal product, for instance for innovators that only appropriate a fraction of
the value of their innovations, as in endogenous growth models. Finally, some top incomes
may be due to luck. Inefficiencies and uncertainty of this kind provide additional Pigouvian
and insurance motives for taxation. However, these issues arise even in standard Mirrlees
models without superstar effects. To isolate the role of superstars, we have, therefore, ig-
nored them here.

Low effort elasticities. One may argue that superstars at the top of the earnings distribution
have very low labor supply elasticities at the margin, because their pay and effort are so
high or because they are intrinsically motivated. Of course, this argument for higher taxes
at the top is completely unrelated to the presence of superstar effects and is also present
in a standard Mirrleesian model. Whatever the effort elasticity of top earners, our second
result shows that this elasticity needs to be adjusted upwards when accounting for superstar
effects. For instance, our Example B features an effort elasticity that converges to zero at the
top, yet the correct earnings elasticity is a positive constant.

Aggregation. Our analysis has focused on the tax treatment of superstars. In reality, pre-
sumably not all top earners are subject to superstar effects, and even those who are may
operate using different technologies, which differ in the degree to which superstar effects
play a role. Such heterogeneity raises the question how to appropriately weight the adjust-
ments we have derived here across the population of individuals at any given income level.
This largely quantitative issue is beyond the scope of the current paper.
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A Appendix: Derivations for Examples A and B

A.1 Example A

Exact Earnings Schedule and Approximate Pareto Skill Distribution. We begin with Example A
in Section 2.3 and construct the skill distribution F(θ) as claimed in the text. Taking W(y) as given by
(9), individuals solve

max
y

(1− τ)W(y)− 1
γ

(y
θ

)γ
.

The first-order condition is

(1− τ)
κ̃

1− βρ

(
κβρ

1− βρ
+ y
) 1

1−βρ−1

= yγ−1θ−γ

and the second-order condition for a maximum is satisfied if γ(1− βρ) > 1. Substituting y(n) from
(8) for y yields

θ(1− τ)
1
γ

(
κ̃

1− βρ

) 1
γ
(

κ

1− βρ
nβ− 1

ρ

) βρ
1−βρ

1
γ

=

(
κ

1− βρ
nβ− 1

ρ − κβρ

1− βρ

) γ−1
γ

,

which simplifies after substituting κ̃ to

θ(1− τ)
1
γ n−

β
γ =

(
κ

1− βρ

) γ−1
γ (

nβ− 1
ρ − βρ

) γ−1
γ

or equivalently

θ = (1− τ)−
1
γ

(
κ

1− βρ

) γ−1
γ
(

n
β

γ−1

(
n−

1−βρ
ρ − βρ

)) γ−1
γ

.

This implicitly defines n = 1− F(θ) given θ and hence F(θ). Rewriting this as

θ = (1− τ)−
1
γ

(
κ

1− βρ

) γ−1
γ
(

n−
γ(1−βρ)−1
(γ−1)ρ − βρn

β
γ−1

) γ−1
γ

reveals that, if γ(1− βρ) > 1, then for sufficiently small for n ≈ 0 (i.e., at the top of the skill distribu-
tion)

θ ≈ (1− τ)−
1
γ

(
κ

1− βρ

) γ−1
γ

n−
γ(1−βρ)−1

γρ .

Hence,
n = 1− F(θ) ≈ (θ/θ)α

for some θ, with
α =

γρ

γ(1− βρ)− 1
.

In other words, θ has a Pareto tail with parameter α > 0. Conversely, solving for ρ yields (10) and,
since α > 0, we indeed must have γ(1− βρ) > 1.

Exact Pareto Skill Distribution and Approximate Earnings Schedule. We next derive the equi-
librium earnings schedule for Example A when F(θ) = 1− (θ/θ)α, that is, F is a Pareto distribution
for all θ ≥ θ. We do so by guessing and verifying a schedule of the form W(y) = kyδ + w0 for some

53



parameters k, δ, w0. Taking τ and W(y) as given, individuals solve

max
y

(1− τ)kyδ − 1
γ

(y
θ

)γ
.

The first-order condition yields the y-schedule

y(θ) = θ
γ

γ−δ (δk(1− τ))
1

γ−δ (67)

as well as its inverse
Γ(y) = y

γ−δ
γ (δk(1− τ))−

1
γ .

Note that we require δ < γ, which we will verify below. We know from the assignment condition (5)
that W ′(y) = By(Γ(y), y), so using B(θ, y) = θ−αβθαβy, this becomes

δky = yαβ γ−δ
γ (δk(1− τ))−

αβ
γ θ−αβ.

Matching coefficients requires

δk = (δk(1− τ))−
αβ
γ θ−αβ

and
δ− 1 = αβ

γ− δ

γ
.

Solving this yields

δ = γ
αβ + 1
αβ + γ

as claimed in the text and
k =

1
γ

αβ + γ

αβ + 1
(1− τ)−

αβ
γ+αβ θ

− αβγ
γ+αβ .

Observe that we indeed have δ < γ because γ > 1 by assumption. Using these expressions for δ and
k in (67) yields the equilibrium effort schedule y(θ). Finally, w0 is determined such that profits of the
lowest firm x = 0 are zero, so B(θ, y(θ)) = y(θ) = W(y(θ)) = ky(θ)δ + w0.

Using n = 1− F and (67), we can write

y(n) = Cn−
αβ+γ

α(γ−1) = Cnβ− 1
ρ

for some constant C, where the second step used (10). Hence, (8) holds approximately for small
enough n. Again using (10), we have δ = 1/(1− βρ), so

W(y) = ky
1

1−βρ + w0.

For large enough y, this approximates (9). This finally implies that (7) also holds approximately.

A.2 Example B

We guess and verify an earnings schedule of the form W(y) = k(b− y)−δ for some constants k, δ > 0.
Taking τ and W(y) as given, individuals solve

max
y

(1− τ)k(b− y)−δ − 1
γ

(
a− θ

b− y

)γ
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with first-order condition
(b− y)δ−γ

(1− τ)δk
= (a− θ)−γ. (68)

From the equilibrium condition (5) and B(θ, y) = (a− θ)−αβy, we have

W ′(y) = By(Γ(y), y) = (a− Γ(y))−αβ,

so
kδ(b− y)−δ−1 = [(1− τ)δk]−

αβ
γ (b− y)

(δ−γ)αβ
γ .

Matching coefficients requires

kδ = [(1− τ)δk]−
αβ
γ

and
δ + 1 = (γ− δ)

αβ

γ
,

which we can solve for δ:
δ = γ

αβ− 1
αβ + γ

and similarly for k:

k = (1− τ)−
αβ

γ+αβ
γ + αβ

γ(αβ− 1)
.

Note that, since we assumed αβ > 1, we have δ, k > 0. Using this in (68), effort is given by

y(θ) = b− (1− τ)−
1

γ+1 (a− θ)
γ+αβ
γ+1 = b− (1− τ)−

1
γ+1 n

γ+αβ
α(γ+1) = b− (1− τ)−

1
γ+1 nβ− 1

ρ ,

where the last step used (11). Hence, we match (8) for some appropriate κ. The same is true for (9)
and hence (7).

B Appendix: Omitted Proofs

B.1 Proof of Lemma 1

Take any allocation satisfying conditions (1), (12) and (13). Take any W(y) solving (5) and define T
by

T(W(y(θ))) = c(θ)−W(y(θ)),

for all observed equilibrium earnings levels {W(y(θ)) : θ ∈ Θ} (set T sufficiently high otherwise, for
all off-equilibrium earning levels).

Conversely, any equilibrium implies a resource-feasible incentive-compatible allocation (c(θ), y(θ))
with σ(θ) = G−1(F(θ)). In particular, given T and the equilibrium earnings schedule W, y(θ) must
solve

max
y

U(W(y)− T(W(y)), y, θ).

and imply the allocation c(θ) = W(y(θ))− T(W(y(θ))). Thus,

U(c(θ), y(θ), θ) = max
y

U(W(y)− T(W(y)), y, θ) ≥

U(W(y(θ′))− T(W(y(θ′))), y(θ′), θ) = U(c(θ′), y(θ′), θ),
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which establishes incentive compatibility, (12) and (13).

B.2 Proof of Proposition 1

Pareto problem. The Pareto problem (16) s.t. (12), (14) and (17) can be rewritten as

max
c,V

ˆ
V(θ)dΛ(θ)

s.t.
V ′(θ) = Uθ(e(V(θ), y(θ), θ), y(θ), θ) ∀θ

and ˆ
(B(θ, y(θ))− e(V(θ), y(θ), θ))dF(θ) ≥ 0,

where e(V, y, θ) is the inverse function of U(c, y, θ) w.r.t. its first argument. The corresponding La-
grangian is, after integrating by parts

L =

ˆ
V(θ)dΛ(θ) + η

ˆ
[B(θ, y(θ))− e(V(θ), y(θ), θ)] dF(θ)

−
ˆ

µ′(θ)V(θ)dθ −
ˆ

µ(θ)Uθ(e(V(θ), y(θ), θ), y(θ), θ)dθ,

where µ(θ) are the multipliers on the incentive constraints and η is the multiplier on the resource
constraint.

First-order conditions. The first-order condition for V is (dropping arguments and using eV =
1/Uc)

−µ′Uc − µUθc = η f −Ucλ ≤ η f

for any non-negative Pareto weights g. Define µ̂ ≡ Ucµ/η, so

µ̂′ =
Ucµ′

η
+

µ

η

[
Ucθ + Uccc′ + Ucyy′

]
.

Substituting this yields

−µ̂′ + µ̂
Uccc′ + Ucyy′

Uc
≤ f .

Note that

Uccc′ + Ucyy′

Uc
=

Ucc
c′
y′ + Ucy

Uc
y′

=
−UccUy + UcyUc

U2
c

y′ = − ∂

∂c

[
−

Uy

Uc

]
y′ = −MRScy′

since c′/y′ = −Uy/Uc = MRS by the local incentive constraints. Hence, the first-order condition for
V implies

− µ̂′ − µ̂MRScy′ ≤ f . (69)
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The first-order condition for y is (using ey = MRS)

η(By −MRS) f = µ(Uθc MRS + Uθy)

or
By −MRS

MRS
f =

µ̂

Uc

Uθc MRS + Uθy

MRS
.

By (18), this becomes
τ

1− τ
f =

µ̂

Uc

Uθc MRS + Uθy

MRS
.

Also,

−Uθc
Uy

Uc
+ Uθy = Uc

UyθUc −UcθUy

U2
c

= −Uc
∂

∂θ

[
−

Uy

Uc

]
= −Uc

∂MRS
∂θ

,

so the first-order condition for y finally becomes

τ

1− τ
f = −µ̂

∂ log MRS
∂θ

. (70)

Elasticities. To rewrite these first-order conditions for Pareto efficiency in terms of elasticities, we
compute the earnings elasticities defined in Section 4.1. Recall that the earnings function w(1− τ, I)
is defined by

max
w

U((1− τ)w− T(w) + I, W−1(w), θ)

with first-order condition

MRS((1− τ)w− T(w) + I, W−1(w), θ) = (1− τ − T′(w))W ′(W−1(w)).

This implies (dropping arguments)

∂w
∂(1− τ)

∣∣∣∣
τ=I=0

=
W ′ −MRScw

MRSc(1− T′) + MRSy
1

W ′ − (1− T′)W ′′
W ′ + T′′W ′

and hence the (uncompensated) earnings elasticity is

εu =
∂w

∂(1− τ)

∣∣∣∣
τ=I=0

1− T′

w
=

W ′/w−MRSc

MRSc +
MRSy
MRS −

W ′′
W ′ +

T′′
1−T′W

′
. (71)

Moreover,
∂w
∂I

∣∣∣∣
τ=I=0

=
−MRSc

MRSc(1− T′) + MRSy
1

W ′ − (1− T′)W ′′
W ′ + T′′W ′

,

so

η ≡ −(1− T′)
∂w
∂I

∣∣∣∣
τ=I=0

=
MRSc

MRSc +
MRSy
MRS −

W ′′
W ′ +

T′′
1−T′W

′

and

εc = εu + η =
W ′/w

MRSc +
MRSy
MRS −

W ′′
W ′ +

T′′
1−T′W

′
. (72)
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As a result, for later use,
εc − εu

εc =
η

εc = MRSc
w

W ′
(73)

and
1

wεc =
1

W ′

(
MRSc +

MRSy

MRS
− W ′′

W ′

)
+

T′′

1− T′
. (74)

Identification. To relate the first-order conditions to the equilibrium earnings distribution, note
that, for an equilibrium earnings schedule w(θ) = W(y(θ)), the earnings distribution H satisfies
H(w(θ)) ≡ F(θ) and therefore

f (θ) = h(w(θ))w′(θ).

The individuals’ problem for a given earnings tax T(w) is

max
w

U(w− T(w), W−1(w), θ)

with first-order condition

MRS(w− T(w), W−1(w), θ) = (1− T′(w))W ′(W−1(w)).

Differentiating this w.r.t. w yields(
MRSc(1− T′) + MRSy

1
W ′

)
w′ + MRSθ =

(
−T′′W ′ + (1− T′)

W ′′

W ′

)
w′,

so
w′(θ) =

−MRSθ

MRSc(1− T′) + MRSy
W ′ + T′′W ′ − (1− T′)W ′′

W ′

or, dividing both numerator and denominator by MRS = (1− T′)W ′,

w′(θ) =
−∂ log MRS/∂θ

1
W ′

(
MRSc +

MRSy
MRS −

W ′′
W ′

)
+ T′′

1−T′

= −∂ log MRS
∂θ

wεc(w) (75)

by (74). Next, define ˆ̂µ(w) ≡ µ(w−1(w)) where w−1(w) is the inverse of w(θ), so

µ̂′(θ) = ˆ̂µ′(w(θ))w′(θ).

Using this and w′(θ) = W ′(y(θ))y′(θ) in (69) yields

− ˆ̂µ′(w(θ))w′(θ)− ˆ̂µ(w(θ))
∂MRS(θ)

∂c
w′(θ)

W ′(y(θ))
≤ h(w(θ))w′(θ)

or

− ˆ̂µ′(w)− ˆ̂µ(w)
∂MRS(w)

∂c
1

W ′(W−1(w))
≤ h(w). (76)

Similarly, we can rewrite (70) using (75) as

µ̂ =
τ

1−τ hw′

− ∂ log MRS
∂θ

=
τ

1− τ
hwεc(w)
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and so
ˆ̂µ(w) =

T′(w)

1− T′(w)
εc(w)wh(w). (77)

Test Inequality. Taking logs of (77) yields

log ˆ̂µ(w) = log
(

T′(w)

1− T′(w)
εc(w)

)
+ log h(w) + log w

and differentiating w.r.t. log w:

ˆ̂µ′(w)w
ˆ̂µ(w)

=
d log ˆ̂µ(w)

d log w
=

d log
(

T′(w)
1−T′(w)

εc(w)
)

d log w
+

d log h(w)

d log w
+ 1. (78)

Returning to (76), multiply through by w/ ˆ̂µ(w)

−
ˆ̂µ′(w)w

ˆ̂µ(w)
− ∂MRS

∂c
w

W ′
≤ h(w)

w
ˆ̂µ(w)

.

Substitute (77) on the RHS and (78) on the LHS, and use (73) for the income effect, to get

−
d log

(
T′(w)

1−T′(w)
εc(w)

)
d log w

− d log h(w)

d log w
− 1− η(w)

εc(w)
≤ wh(w)

T′(w)
1−T′(w)

h(w)εc(w)w
,

which simplifies to

T′(w)

1− T′(w)
εc(w)

−d log
(

T′(w)
1−T′(w)

εc(w)
)

d log w
− d log h(w)

d log w
− 1− η(w)

εc(w)

 ≤ 1

as claimed in Proposition 1.

B.3 Proof of Corollary 1

The Rawlsian optimal tax schedule obtains as a special case where λ(θ) = 0 for all types except for
the lowest, and hence where (76) holds with equality. Integrating this ODE yields

ˆ̂µ(w) =

ˆ ∞

w
exp

[ˆ s

w

∂MRS(t)
∂c

1
W ′(W−1(t))

dt
]

h(s)ds =
ˆ ∞

w
exp

[ˆ s

w

η(t)
εc(t)

dt
t

]
dH(s)

where the second equality follows from (73). Substituting this in (77) delivers the result.

B.4 Proof of Proposition 2

We obtain the fixed-assignment elasticities as a special case of (71) and (72) replacing W by Ŵ0 and
evaluating at w0, y0. Using Ŵ ′0(y0) = W ′(y0), this yields

ε̂u =
W ′/w0 −MRSc

MRSc +
MRSy
MRS + T′′

1−T′W
′ − Ŵ ′′0

W ′

,
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η̂ =
MRSc

MRSc +
MRSy
MRS + T′′

1−T′W
′ − Ŵ ′′0

W ′

and

ε̂c = ε̂u + η̂ =
W ′/w0

MRSc +
MRSy
MRS + T′′

1−T′W
′ − Ŵ ′′0

W ′

. (79)

This immediately implies η̂/ε̂c = MRScw0/W ′ = η/εc and hence the second part of the proposition.
For the first, use the fact that, by (6),

W ′′(y0) = Byθ(θ0, y0)Γ′(y0) + Byy(θ0, y0) = Byθ(θ0, y0)Γ′(y0) + Ŵ ′′0 (y0).

Hence, we can write

εc =
W ′/w0

MRSc +
MRSy
MRS + T′′

1−T′W
′ − Ŵ ′′0

W ′ −
ByθΓ′

W ′

=

(
1
ε̂c −

ByθΓ′w0

W ′2

)−1

=
ε̂c

Φ̂

as claimed in the proposition.
Finally, note that the workers’ first-order condition can be written as(

W ′(1− T′)−MRS
)

Uc = 0,

so the necessary second-order condition for a maximum is

W ′′(1− T′)−W ′2T′′ −MRScW ′(1− T′)−MRSy ≤ 0

or equivalently

MRSc +
MRSy

MRS
+

T′′

1− T′
W ′ − W ′′

W ′
≤ 0.

This implies
W ′/w0

ε̂c ≥ W ′′ − Ŵ ′′0
W ′

=
ByθΓ′

W ′

and hence

ε̂c ByθΓ′w0

W ′2
≤ 1 ⇔ Φ̂ ≥ 0.

B.5 Proof of Lemma 2

The individual’s problem is
max

y
U((1− τ)W(y), y, θ).

The necessary first-order condition is

(1− τ)Uc(c, y, θ)W ′(y) + Uy(c, y, θ) = 0

or equivalently (
(1− τ)W ′(y)−MRS(W(y), y, θ)

)
Uc(W(y), y, θ) = 0.
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The necessary second-order condition is (after using the first-order condition to cancel terms and
dropping arguments)

(1− τ)W ′′ −
(

MRScW ′ + MRSy
)
≤ 0

or
W ′′y
W ′
≤ MRScy +

yMRSy

MRS
=

1
εc ,

where the last step uses (80).

B.6 Proof of Proposition 3

The effort elasticities can be obtained as a special case from (71), (72) and (73) as a special case for
W(y) = y and T′(w) = τ. Then we have

ε̃c =
1/y

MRSc +
MRSy
MRS

(80)

and
η̃

ε̃c = MRScy. (81)

Comparing the former with (72) and following the same steps as in the proof of Proposition 2 yields
(31) and (32). Comparing the latter with (73) yields (33). The inequalities follow, first, from W ′′ > 0
since W is convex by (6) when A is linear in y. Second, W ′y/w < 1 again by convexity of W(y) and
W(0) = 0 because 0 ≤W(0) ≤ A(x, 0) = 0. Finally, Φ̃ > 0 follows from Lemma 2.

B.7 Proof of Proposition 4

Under the assumption that B(θ, y) = b(θ)y, we have

W−1
0 (w|τ) = (w + π(θ0|τ))/b(θ0)

so the first-order condition corresponding to (40) is

(1− τ − T′(w))b(θ0) = φy

(
w + π(θ0|τ)

b(θ0)
, θ

)
,

which yields (using b = W ′ and φy = MRS)

dw0

d(1− τ)

∣∣∣∣
τ=0

=
W ′ − MRSy

W ′
∂π(θ0|τ)
∂(1−τ)

∣∣∣
τ=0

MRSy
W ′ + T′′W ′

and hence

ε(w0) =
dw0

d(1− τ)

∣∣∣∣
τ=0

1− T′(w0)

w0
=

W ′/w0
MRSy
MRS + T′′

1−T′W
′

(
1− w0

W ′y
MRSyy
MRS

∂π(θ0|τ)
∂(1− τ)

∣∣∣∣
τ=0

1− T′

w0

)
.

The first result follows from observing that (i) the term in front of the brackets equals ε̂ when utility
is quasilinear in c and B is linear in y (by comparison with (79)), (ii)

MRSyy
MRS

=
1
ε̃
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by (80), and (iii)
∂π(θ0|τ)
∂(1− τ)

∣∣∣∣
τ=0

= − ∂W0(y0|τ)
∂(1− τ)

∣∣∣∣
τ=0

by (39).
For the second part, write the problem of an individual of type θ as

y(θ|τ) ∈ arg max
y

(1− τ)b(θ)y− T(b(θ)y− π(θ|τ))− e(y, θ). (82)

By Topkis’s theorem, we know that (i) y is increasing in 1− τ for each θ when holding π fixed, and
that (ii) y is increasing in π for each θ holding τ fixed when T′′ ≥ 0.

Next, from the firms’ problem (3) and by the envelope theorem,

π′(θ|τ) = b′(θ)y(θ|τ) ∀θ

and, since profits are zero for the lowest firm,

π(θ|τ) =
ˆ θ

θ
b′(s)y(s|τ)ds. (83)

Hence, π is increasing in 1− τ for each θ if y(θ|τ) is increasing in 1− τ for each θ. Therefore, the fixed
point of (82) and (83), i.e., the schedules y(θ|τ) and π(θ|τ) that satisfy (82) and (83) simultaneously
for any given τ, involves a profit schedule such that

∂π(θ|τ)
∂(1− τ)

∣∣∣∣
τ=0

> 0

if T′′ ≥ 0. This implies χ < 0 in the proposition.

B.8 Proof of Corollary 3

In the recalibrated non-superstar economy, individuals solve

max
w

Û(w− T(w), w, θ) = U(w− T(w), ∆(θ, w), θ)

with first-order condition

(1− T′(w))Uc(w− T(w), ∆(θ, w), θ) +
Uy(w− T(w), ∆(θ, w), θ)

By(θ, ∆(θ, w))
= 0.

To see that the original w(θ) satisfies this for each θ, substitute

(1− T′(w(θ)))W ′(y(θ))Uc(w(θ)− T(w(θ)), y(θ), θ) + Uy(w(θ)− T(w(θ)), y(θ), θ) = 0,

and observe that this is the first-order condition in the original superstar economy since By(θ, ∆(θ, w(θ))) =
By(θ, y(θ)) = W ′(y(θ)). Note that each θ will also have the same y(θ) = ∆(θ, w(θ)) as before.

We now compute the earnings elasticities corresponding to Û in the non-superstar economy. The
uncompensated earnings function is

ŵ(1− τ, I) ∈ arg max
w

Û((1− τ)w− T(w) + I, w, θ) = U((1− τ)w− T(w) + I, ∆(θ, w), θ)
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with first-order condition

(1− τ − T′(w))By(θ, ∆(θ, w)) = MRS((1− τ)w− T(w) + I, ∆(θ, w), θ).

Hence, the uncompensated earnings elasticity is

By/w−MRSc

MRSc +
MRSy
MRS + T′′

1−T′ By −
Byy
By

= ε̂c

since By = Ŵ ′0 and Byy = Ŵ ′′0 when evaluated at θ such that w(θ) = w0. The equality of the income
effect and compensated earnings elasticity can be shown analogously.

We also note that Û satisfies single-crossing locally at the original allocation. The marginal rate of
substitution associated with Û is

ˆMRS(c, w, θ) =
MRS(c, ∆(θ, w), θ)

By(θ, ∆(θ, w))

and we require this to be decreasing in θ for single-crossing. Differentiating, we require

MRSθ + MRSy∆θ

By
− MRS

B2
y

(
Byθ + Byy∆θ

)
< 0.

We know MRSθ < 0 by single-crossing of the original utility function U, and Byθ > 0. The remaining
terms are (

MRSy

MRS
−

Byy

By

)
∆θ .

By definition of ∆(θ, w),
B(θ, ∆(θ, w)) = w + π(θ) ∀w, θ.

Differentiating w.r.t. θ,
Bθ + By∆θ = π′

and hence

∆θ(θ, w) =
π′(θ)− Bθ(θ, ∆(θ, w))

By(θ, ∆(θ, w))
.

By the envelope theorem, π′(θ) = Bθ(θ, y(θ)) = Bθ(θ, ∆(θ, w(θ))). This implies that ∆θ = 0 when
evaluated at w(θ). Hence, the remaining terms vanish at the original allocation.

B.9 Proof of Proposition 5

Recall the first-order conditions for V and y from Appendix B.2, given by (69) and (70), and rewrite
them as

− µ̂MRScy′ = −µ̂
η̃

ε̃c
y′

y
= f − gUc/η + µ̂′ ≤ f + µ̂′ (84)

and

µ̂ =
τ

1− τ
θ f
(
−MRSθθ

MRS

)−1

=
τ

1− τ
θ f ξ, (85)
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where we used η̃/ε̃c = MRScy and the definition of ξ. Take logs of (85) and differentiate w.r.t. log θ

µ̂′θ

µ̂
=

d log
(

τ
1−τ

)
d log θ

+ 1 +
d log f
d log θ

+
d log ξ

d log θ
.

Multiplying (84), dropping the Pareto weights, by θ/µ̂ yields

− µ̂′θ

µ̂
− η̃

ε̃c
y′θ
y
≤ θ f

µ̂
=

1
τ

1−τ ξ

or finally
τ

1− τ
ξ

[
−

d log
(

τ
1−τ

)
d log θ

− 1− d log f
d log θ

− d log ξ

d log θ
− η̃

ε̃c
y′θ
y

]
≤ 1.

If preferences are such that U(c, y, θ) = u(c, y/θ), then, defining l = y/θ,

MRS(c, y, θ) = − ul(c, y/θ)

θuc(c, y/θ)

and it can be shown with some algebra that

−MRSθθ

MRS
= 1 + y

MRSy

MRS
.

Using (80) and (81), this implies

ξ =
ε̃c

1 + ε̃u

as claimed in the text.

B.10 Proof of Proposition 6

For general Pareto weights Λ, (84) is the differential equation

−µ̂
η̃

ε̃c
y′

y
= f − λUc/η + µ̂′,

which we can solve for µ̂:

µ̂(θ) =

ˆ ∞

θ

(
1− λ(s)Uc(s)

η f (s)

)
exp

(ˆ s

θ

η̃(t)
ε̃c(t)

dy(t)
y(t)

)
dF(s).

Substituting this in (85) yields the result.

B.11 Proof of Lemma 3

The first-order condition corresponding to (55) is
ˆ

AL(L(y(t)|ω), y(t))
∂L(y(t)|ω)

∂ω
dt− η

ˆ
∂L(y(t)|ω)

∂ω
dt = 0,
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where η is the multiplier on the labor market clearing constraint (52). The first-order condition corre-
sponding to (49) is

AL(L(y(t)|ω), y(t)) = ω ∀t.

Hence η = w. Next,

∂Ψ({y}) = Ay(L(y(t)|ω), y(t)) + AL(L(y(t)|ω), y(t))L′(y(t)|ω)− ηL′(y(t)|ω)

= Ay(L(y(t)|ω), y(t)) = W ′(y(t)|ω).

B.12 Proof of Lemma 4

Recall the definition of Ψ

Ψ({y}) = max
P,t1,t2

ˆ 1

t2

y(t)
h(1− y(P(t)))

dt +
ˆ t2

t1

y(t)dt

s.t.
P′(t) =

1
h(1− y(P(t)))

∀t ∈ [t2, 1]

and P(1) = t1, P(t2) = 0. The corresponding Lagrangian is, after integrating by parts

L =

ˆ 1

t2

y(t)
h(1− y(P(t)))

dt +
ˆ t2

t1

y(t)dt−
ˆ 1

t2

µ′(t)P(t)dt−
ˆ 1

t2

µ(t)
h(1− y(P(t)))

dt.

For any t ∈ (t2, 1), we therefore immediately have

∂Ψ({y})
∂y(t)

=
1

h(1− y(P(t)))
.

Together with (60), this implies
∂Ψ({y})

∂y(t)
= W ′m(y(t))

for the managers as desired.
As for workers, let M(t) denote the inverse of P(t), with

M′(t) = h(1− y(t)) ∀t ∈ [0, t1] (86)

and M(t1) = 1, M(0) = t2. Using this, it is convenient to rewrite the output from matched agents by
integrating over workers rather than managers:

ˆ 1

t2

y(t)
h(1− y(P(t)))

dt =

ˆ P(1)

P(t2)

y(M(t))
h(1− y(t))

h(1− y(t))dt

=

ˆ t1

0
y(M(t))dt.

Hence, we can rewrite Ψ as

Ψ({y}) = max
M,t1,t2

ˆ t1

0
y(M(t))dt +

ˆ t2

t1

y(t)dt
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s.t. (86) and and M(t1) = 1, M(0) = t2. The corresponding Lagrangian is

L =

ˆ t1

0
y(M(t))dt +

ˆ t2

t1

y(t)dt + µ(t1)M(t1)− µ(0)M(0)−
ˆ t1

0
µ′(t)M(t)dt

−
ˆ t1

0
µ(t)h(1− y(t))dt + ξ1(M(t1)− 1) + ξ2(M(0)− t2).

The first-order condition for M(t), t ∈ (0, t1), is µ′(t) = y′(M(t)), the first-order condition for M(0)
is µ(0) = ξ2, and the first-order condition for t2 is y(t2) = ξ2. Hence, µ(0) = y(t2) and

µ(t) =
ˆ t

0
y′(M(s))ds + y(t2).

For any t ∈ (0, t1) we therefore have

∂Ψ({y})
∂y(t)

= hµ(t) = h
ˆ t

0
y′(M(s))ds + hy(t2).

In addition, we have Wm(y(t2)) = y(t2), which pins down Wm entirely:

Wm(y(t)) =
ˆ t

t2

W ′m(y(s))y
′(s)ds + y(t2) =

ˆ t

t2

y′(s)
h(1− y(P(s)))

ds + y(t2)

or

Wm(y(M(t))) =
ˆ t

0

y′(M(s))
h(1− y(s))

h(1− y(s))ds + y(t2) =

ˆ t

0
y′(M(s))ds + y(t2).

Hence,
∂Ψ({y})

∂y(t)
= hWm(y(M(t))).

Together with (61), this shows that
∂Ψ({y})

∂y(t)
= w′p(y(t))

for workers as desired.
Finally, as for the self-employed, trivially

∂Ψ({y})
∂y(t)

= 1 = W ′(y(t)).
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