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1. Introduction 

In a perfect and frictionless financial market, asset prices change to reflect new information 

about future cash flows and discount rates.  To the extent that there are common factors 

affecting either cash flows or discount rates, asset prices will move together to reflect innovations 

in such common factors. 

 However, there is growing evidence that prices move together for reasons that are 

seemingly unrelated to fundamentals.  Evidence of this excess comovement has been found 

among S&P500 index additions and deletions (Vijh, 1994; Barberis, Shleifer, and Wurgler, 2005), 

changes in S&P500 value and growth indices (Boyer, 2011), changes in the Nikkei 225 index 

(Greenwood and Sosner, 2007), changes in UK indices (Mase, 2008), changes in Nikkei 225 index 

weights (Greenwood, 2008), additions to many national market indices (Claessens and Yafeh, 

2011), stock splits (Green and Hwang, 2009), stocks with correlated trading among retail 

investors (Kumar and Lee, 2006), stocks with corporate headquarters in the same geographic 

area (Pirinsky and Wang, 2006), stocks with similar institutional ownership (Pindyck and 

Rotemberg, 1993), stocks in closed-end country funds (Hardouvelis et al., 1994; Bodurtha et al., 

1995), stocks in closed-end domestic funds (Lee et al., 1991), sovereign bonds (Rigobon, 2002), 

and commodity futures (Tang and Xiong, 2012).  

 Though excessive comovement in stock returns is attributed to several non-fundamental 

factors,1 the primary explanation is an asset class effect, which is created by correlated demand 

unrelated to fundamentals for assets in a particular class.  Theoretical models developed by Basak 

and Pavlova (2013), DeMarzo, Kaniel and Kremer (2004), and Barberis and Shleifer (2003), among 

                                                 
1 Barberis, Shleifer, and Wurgler (2005) propose three sources of friction and investor sentiment.  Excess investor 
demand for a particular group of securities may arise because of investor awareness (habitat) or because those 
stocks form an asset class that is easy to follow (category).  Third, the speed of information diffusion may increase 
for stocks included in the index.  Similar arguments are in Hou and Moskowitz (2005) and Pindyck and Rotemberg 
(1993).  Improvement in price discovery would cause the added stock to comove more strongly with index stocks 
than with non-index stocks.  Since it is difficult to empirically distinguish between the first two views, Greenwood 
(2008) combines them into a single demand-based theory, or an asset class effect.  The last source of friction, 
quicker adjustment in prices to new information is a desirable outcome of index additions because it makes prices 
more efficient even though it may increase comovement.  In other words, there was too little comovement in the 
absence of efficient information diffusion, which has now been increased to an appropriate level (Claessens and 
Yafeh, 2011).  Other explanations relate to transactions costs at an index level versus an individual stock level.  
However, we focus on the asset class effect as the generally accepted source of comovement.  
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others, are consistent with such an asset class effect.  However, the sources of this correlated 

demand are varied: investor behavior that causes investors to choose stocks based on styles or 

categories (Barberis and Shleifer, 2003); agents who care about relative wealth choosing assets 

held by other members of the community (DeMarzo, Kaniel and Kremer, 2004); or institutional 

investors who care about their performance relative to an index tilting their portfolios towards 

stocks that are in that index (Basak and Pavlova, 2013).   

 Two papers, von Drathen (2013) and Kasch and Sarkar (2013), challenge the empirical 

evidence mentioned above in the context of two specific events, FTSE 100 and S&P500 index 

turnover, respectively.  They both point out that these events coincide with changes in 

fundamentals.  Our focus is on providing a more general view of the issue and regression results 

in the existing literature and on understanding the mechanisms that underlie the link between 

momentum and comovement, as explained below. 

In this paper, we reexamine the evidence on comovement, focusing on two studies that 

document what appears to be strong support for this phenomenon, but in apparently unrelated 

contexts.  The first is Barberis, Shleifer, and Wurgler (2005), which is considered a classic paper 

on comovement.  Their sample consists of stocks that enter or leave the S&P500, an event that 

has been used by many other studies because index changes are generally believed to have little 

fundamental effect on the firm being added to or deleted from the index (Chen et al., 2004; Elliott 

et al., 2006).  Their hypothesis is that stocks in the index comove more with index stocks, whereas 

those not in the index comove more with non-index stocks. The second paper is Green and 

Hwang (2009), who study comovement before and after stock splits.  Specifically, their argument 

is that stocks with similar price levels comove more than would be justified by fundamentals, i.e., 

that a stock moves more with high-priced stocks prior to a split and more with low-priced stocks 

after a split.  As with index changes, splits appear to be useful events to study because they do 

not affect splitting firms in any fundamental way, although the announcement may signal private 

information.  

 In both cases, the primary evidence is in the form of differences between the coefficients 

in two regressions conducted before and after the event: (1) a univariate regression of the stock 

return on the return of the group it is joining, and (2) a bivariate regression of the stock return 
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on the returns of both the old group and the new group.  The bivariate regression results in 

Barberis, Shleifer, and Wurgler (2005) show that for additions to the S&P500 index, their 

coefficient on S&P500 returns increases dramatically after they join the index while the 

coefficient on non-index stocks declines.  In a similar vein, the bivariate regression results in 

Green and Hwang (2009) show that stocks after a split load more heavily on low-priced stocks 

(the new group) and less on high-priced stocks (the old group).   

 In order to better understand the implications of the excess comovement hypothesis for 

stock returns, we first develop a model closely related to that of Barberis, Shleifer, and Wurgler 

(2005). Some implications of our model are similar to those derived in their paper, but we 

highlight four additional important implications.   

First, the model suggests that a univariate regression of the stock return on the return of 

the old group after the event can be very informative, a specification not examined in Barberis, 

Shleifer, and Wurgler (2005) or Green and Hwang (2009).  

Second, the model indicates that the results of the bivariate regressions estimated by 

Barberis, Shleifer, and Wurgler (2005) and Green and Hwang (2009) are extremely sensitive to 

small changes in parameters. The sensitivity of these types of regression coefficients has been 

documented in the literature (Spanos and McGuirk, 2002).  Most critically for our analysis, this 

sensitivity implies that the interpretation of these coefficient estimates is not straightforward, 

and that they may well provide little or no information about the question of economic interest—

how much, if at all, is excess comovement responsible for the variation in stock returns. 

 Third, the model shows that changes in the parameters around the events, in particular 

shifts in loadings on the fundamental factor, can affect the univariate regression results. For 

example, an increase in the beta of a stock in the sample will generate an increase in the 

coefficient of the stock on the new group return after the event. In other words, these empirical 

results are also consistent with a change in fundamental comovement not just excess 

comovement. Of course, this phenomenon also has implications for the univariate regression of 

the stock return on the old group return discussed above, and, in fact, it is this regression that 

allows us to distinguish between the two competing explanations. 
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 Finally, the model shows that shifts around the event in the fundamental loadings and 

idiosyncratic risk of the group returns can cause significant shifts in the bivariate regression 

coefficients, even in a world with no excess comovement. For example, if the idiosyncratic risk of 

the return on one group increases, the bivariate regression will shift weight from the return of 

this group to that of the other. In this regression both groups serve as proxies for the fundamental 

factor. The magnitude of idiosyncratic risk relative to fundamental risk determines a group’s 

quality as a proxy and thus also the relative magnitude of its coefficient. 

 We begin our empirical analysis by reexamining comovement following index changes. 

We expand the Barberis, Shleifer, and Wurgler (2005) sample period of 1976-2000 to 1976-2012, 

using daily data, where they report their strongest results.2  In general, based on the two 

univariate regressions, we find that stocks added to the S&P500 index move more with the 

S&P500 index but they also move more with the old group of non-S&P index stocks.  The 

difference in beta changes is not significant for the 1976-87 period, nor is it significant for the 

2001-12 period.  The difference in beta changes is, however, significant for the 1988-2000 period.  

As in Barberis, Shleifer, and Wurgler (2005), the bivariate regression results show a significant 

increase in beta relative to the S&P500 index and a significant decrease in beta relative to the old 

group 

 For the stock split sample, evidence in support of comovement is essentially non-existent 

when the univariate regressions are analyzed: the increase in beta between returns on splitting 

stocks and returns on the new group (i.e., low-priced stocks) is almost equal to the increase in 

beta between returns on splitting stocks and returns on the old group (i.e., high-priced stocks).  

The bivariate regressions again show an increase in the beta with the new group, though there is 

no statistically significant decrease in beta relative to the old group.   

 These initial empirical results for the univariate regressions indicate that it may be 

increases in the fundamental betas of the stocks around the events that are driving much of the 

results reported in the literature as excess comovement.  The natural question is why do these 

                                                 
2 We end the S&P additions sample one year prior to the end of our data because we need one year of data after 
the event to compute regression coefficients. 
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betas increase, i.e., what do stocks added to the S&P500 and those undergoing splits have in 

common?  The answer is that both groups of stocks exhibit exceptional performance prior to the 

event.  In the language of the literature on cross-sectional momentum effects, they are winners.  

Following the usual momentum methodology, we find that betas of winner stocks increase 

during the formation period and continue to increase during the holding period, before declining 

at longer horizons.  Therefore, it is likely that at least some of the results reported by Barberis, 

Shleifer, and Wurgler (2005) and Green and Hwang (2009) are caused by the inclusion of 

momentum stocks in their samples. 

For the bivariate regression results, shifts around the event in the fundamental loadings 

and idiosyncratic risk of the group returns can cause exactly these types of effects, even in a 

world with no excess comovement. 

Given the apparent importance of fundamental stock betas and shifts in the 

characteristics of the group returns, we next turn to a more refined analysis that attempts to 

better measure and control for these changes. First, we improve the estimation of the betas by 

employing a Dimson (1979) approach to adjust for non-synchronous trading using leads and lags 

of the relevant indices in the regressions. Though the S&P500 index consists of some of the 

largest stocks in the U.S. economy, index changes are concentrated mainly among the smaller 

stocks in the index. Similarly, the trading frequency of stocks that split may differ from that of the 

stocks in either the low- or high-priced indices that we construct. We add two leads and lags of 

the index returns to pick up these effects. 

Second, we control for the additional effects of changes in the idiosyncratic risk and 

fundamental factor loading of group returns on measured comovement using a matched sample 

approach.  For each index change and stock split, we choose a firm in the same size decile that 

comes closest based on momentum, i.e., has a similar return over the past year.  If beta changes 

are driven primarily by momentum, these stocks will exhibit similar changes to those in the S&P 

addition and stock split samples. We then adopt a difference in difference in difference approach, 

examining the differences in the changes of the betas before and after the event across the stocks 

in the original sample and the matched sample.  If changes in the properties of group returns are 
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driving the bivariate regression results, then matched stocks will exhibit similar patterns in their 

regression coefficients, even though they did not change groups around the event. 

The empirical results from this refined analysis are striking. For both S&P500 index 

additions and stock splits, the original sample and matched sample stocks exhibit differences in 

beta changes that are not significantly different. In other words, the differences between the 

changes across the two univariate regressions are statistically indistinguishable for the sample 

and control stocks. This result is compelling evidence that the apparent excess comovement is 

actually driven by changes in loadings on the fundamental component of returns, not by asset 

class effects. The control stocks also show similar changes in bivariate regression coefficients 

before and after the event to which the sample stocks are subject. Thus, the properties of group 

returns, not excess comovement, are clearly responsible for the anomalous results in the original 

samples. Moreover, this result is not simply an artifact of limited statistical power. The point 

estimates indicate that excess comovement is not economically significant either.  

A breakdown of our two adjustments, i.e., the Dimson adjustment and the matched 

control adjustment, shows that their importance differs dramatically for the two samples. For 

the stock split sample, the Dimson adjustment does little, but the momentum control is critical 

because these stocks exhibit very strong past performance and resulting beta changes. In 

contrast, for the S&P500 index addition sample, the momentum effect is somewhat weaker and 

both adjustments are necessary.  The differential momentum effect is consistent with a 

significantly greater proportion of winner stocks that split than the proportion of winner stocks 

that are added to the S&P500 index.  The Dimson adjustment becomes more important for 

S&P500 additions because the added stocks are among the smallest firms in the index, which can 

induce spurious cross-serial correlation between additions and the index, unlike for stock splits 

where relative sizes of splitting stocks and other stocks are not likely to be different.   

The paper is organized as follows. In the next section, we introduce the model and 

examine its implications for univariate and bivariate regressions.  Section 3 describes the data 

and methodology for momentum, index changes, and stock splits.  Section 4 contains the main 

empirical results for the original sample.  In Section 5, we revisit the model in light of these initial 

results, investigating specifically the effects of shifts in the parameters. In Section 6 we examine 
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the link between momentum and beta changes and then reexamine the data in the light of this 

evidence. We perform several robustness checks in Section 7, and conclude in Section 8.   

 

2. A Model 

In order to understand the implications of the regression results reported in the literature for the 

economic importance of the excess comovement phenomenon, it is useful to write down a 

relatively simple and stylized model in which the coefficients in these regressions can be 

calculated in closed form. Our goal is not to fully capture reality, but rather, in the spirit of the 

model in Barberis, Shleifer, and Wurgler (2005), to generate some general insights and 

predictions that we can use to interpret the subsequent empirical results. Our model is not 

identical to that in Barberis, Shleifer, and Wurgler (2005), although the key predictions are 

similar, because we want to construct the simplest possible model that both highlights the 

features of the univariate and bivariate regressions that we believe are important and captures 

the essence of the excess comovement hypothesis. 

 

2.1 Setup and Assumptions 

Denote as yt the return on a stock that is changing membership between groups 1 and 2 with 

returns x1t and x2t, respectively, e.g., non-S&P and S&P stocks or high-priced and low-priced 

stocks: 

222

2222
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)var()var()var( fttuititeitit

ttttt

ttttt

yttttttytt
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eufbx

eufbx

eucucfby
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     (1) 

where f is the fundamental, common return shock, which could easily be extended to a multi-

factor context; ui are group-specific, non-fundamental return shocks; and ei are idiosyncratic 

fundamental return shocks.  

For identification purposes assume 
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That is, non-fundamental, group-specific shocks are assumed to be uncorrelated across groups; 

the common fundamental factor is uncorrelated with the other shocks; and the idiosyncratic, 

fundamental shocks are uncorrelated with the non-fundamental shocks. 

The economic content of the excess comovement hypothesis is a statement about the 

loadings of stock y on the two non-fundamental, group-specific shocks, u1 and u2. Specifically, 

using underbars and overbars to denote values prior to and after the stock switches from group 

1 to group 2, the theoretical predictions of this hypothesis are 
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i.e., there is a zero loading on the group-specific shock of the group to which the stock does not 

belong, and a positive loading on the group-specific shock of the group to which the stock does 

belong. We also assume that all the other parameters of the model are constant in each sub-

period, i.e., the periods before and after the move of stock y between the groups, but that they 

can vary across the sub-periods. As above, we use underbars and overbars to designate these 

parameters. 

 

2.2 Assessing the Economic Magnitude of Excess Comovement 

The goal of our empirical analysis is to assess the economic magnitude of excess comovement. 

In the context of the model above, a natural measure of this quantity is the fraction of the 

variation in stock y’s return that is due to excess comovement, both prior to and after the event: 
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This measure is equivalent to the R-squared one would get if one regressed the stock return on 

the non-fundamental component of the corresponding group return. The analogous quantities 

for the group returns are 
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i.e., the fraction of the variance of group returns explained by the non-fundamental component 

In the literature, the focus is on two regressions run both before and after the stock 

switches groups—a univariate regression of the stock return on the return of the group that it is 

joining and a bivariate regression on the returns of both groups. As we argue below, a third 

regression—a univariate regression of the stock return on the group that it is leaving—is also 

informative. Therefore, consider the following three regressions run pre- and post-switch: 
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The probability limits of the univariate regression coefficients under the model above are 
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For the bivariate regression 
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 (see the appendix for detailed derivations). 

Furthermore, if the basic parameters of the model (the weights on the common factor, 

the variances of the non-fundamental shocks, and the variances of the fundamental shocks) are 

constant over time, which is the motivation behind looking at events that are apparently 

unconnected to fundamentals, i.e., 
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then 

bbbb 2211

2211








     (10) 

(again, see the appendix for details). Intuitively, when the stock switches from group 1 to group 

2, it begins to move with the non-fundamental shock to group 2 and ceases to move with the 

non-fundamental shock to group 1; therefore, its coefficient on group 1 returns decreases and 

its coefficient on group 2 returns increases, both in a univariate and a bivariate context. 

If we further assume that (i) the groups are fundamentally well-diversified, i.e., there is 

no idiosyncratic fundamental shock at the group level ( 02

2

2

1  ee  ), (ii) stock y has a loading of 

one on the non-fundamental group shock, i.e., 121  cc , and (iii) the loadings on the 
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fundamental shocks are all equal to unity, i.e., 121  bbby
, then we duplicate the more 

specific results contained in Prediction 2 of Barberis, Shleifer, and Wurgler (2005):3  

1,00,1 2121
 bbbb

      (11) 

This result is important because it illustrates a flaw in the interpretation of the bivariate 

regression coefficients. From an economic standpoint, we are not directly interested in these 

coefficients; the key parameters are the loadings of the stock return on the various factors in 

equation (1) and the variances of these factors, which determine the measures of excess 

comovement defined in equations (4) and (5) above. However, under the assumptions outlined 

above, the bivariate regression coefficients are completely independent of the variances of the 

non-fundamental component of group and stock returns as long as these quantities are strictly 

positive. Thus, even when the non-fundamental component of both stock y and group returns is 

economically meaningless, in the sense that it contributes essentially nothing to the variability of 

returns, the bivariate coefficients appear to suggest a dramatic and economically meaningful 

change in the comovement properties of stock returns as a stock switches groups. 

Of course, this extreme invariance result does depend on the assumed factor loadings, 

specifically the fact that the stock y and the groups load equally on both the fundamental and 

non-fundamental factors.4 However, in more general settings, it is still the case that the 

coefficients in the bivariate regression are sensitive to small changes in the parameters of the 

driving processes, and their magnitudes do not reflect the quantities of economic interest. The 

intuition is that all reasonably well-diversified stock portfolios tend to be very highly correlated. 

Thus, the correlation between the returns on the two groups of stocks will be close to one. This 

issue is the multi-collinearity in the bivariate regression that is discussed in Barberis, Shleifer, and 

                                                 
3 See the appendix for details. This result is not identical to that in Barberis, Shleifer, and Wurgler (2005). 

Specifically, their result is slightly weaker: 1,10,100,1 212121
 bbbbbb



 This difference is due to the fact that Barberis, Shleifer, and Wurgler (2005) assume a multi-factor structure for 
fundamentals, where each group loads on a common factor and its own, unique fundamental shock. Barberis, 
Shleifer, and Wurgler (2005) also allow for correlation across the group-specific, non-fundamental shocks.  
4 While this appears to be a strong assumption, it is essentially equivalent to saying that stock y is an “average” 
stock in both groups 1 and 2. This assumption is unlikely to be strictly true, but it may be a reasonable first 
approximation. 
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Wurgler (2005). As they rightly point out, multi-collinearity does not affect the consistency of the 

estimates in OLS. But, as the example above illustrates, the magnitudes of the coefficients in the 

bivariate regression may tell us very little, or even nothing, about what we really want to know, 

i.e., how much excess comovement affects returns. This concern is especially relevant if the 

strong assumptions above about the stability of the parameters across the two sub-periods, 

which are critical in deriving the results, are not valid. 

Fortunately, the coefficients in the univariate regressions isolate precisely the quantities 

of interest. Going back to the more general assumptions about stability of the parameters across 

the sub-periods, but making no assumptions about the magnitudes of the factor loadings, the 

differences between these coefficients pre- and post-switch are (see the appendix for details): 
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








      (12) 

Thus, empirical evidence that the coefficient on the return of the group to which a stock is moving 

(group 2) increases after the switch would appear to be strong evidence of excess comovement. 

The magnitudes of these differences are also informative about the economic importance of this 

phenomenon. Assuming the loadings on non-fundamental group shocks equal one, which will be 

true on average since the shock at the group level is the value-weighted average of the shocks to 

the stocks within the group, these quantities are the fraction of the variation of group returns 

explained by excess comovement. For example, an increase of 0.1 in the beta on group 2 or a 

similar decrease in the beta on group 1 would indicate that 10% of the variation in group returns 

is due to excess comovement. Multiplying this number by the ratio of group variance to stock 

variance will yield the corresponding R-squared for individual stocks. 

 Finally, one might think that the problems in the bivariate regression are due solely to the 

multi-collinearity problem associated with the high correlation between the group returns. This 

conjecture is not true, since orthogonalizing the variables is not a complete solution. Consider, 

for example, a trivariate regression of the stock return on the fundamental factor and the 

components of the two group returns that are orthogonal to this factor—the non-fundamental 
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factor and the idiosyncratic shock. In this regression, the magnitudes of the coefficients on these 

orthogonal components are relatively uninformative about the economic magnitude of excess 

comovement, completely so when the group returns are perfectly well-diversified. These 

coefficients will equal the stock’s loadings on the non-fundamental shocks, ,ic  but they contain 

no information about the variance of these shocks, 2

ui , the key terms in equations (4) and (5). 

In the more general setting, changes in the magnitude of idiosyncratic volatility at the group level 

also affect these coefficients. 

 

3. Data and Empirical Methodology 

Given these preliminary theoretical results, we turn to a reexamination of the empirical evidence 

in the next section, preceded in this section by a brief description of the data and the empirical 

methodology. The CRSP stock files at the University of Chicago and Standard and Poor’s are the 

primary sources of data.  In general, we follow the methodologies in Barberis, Shleifer, and 

Wurgler (2005) and Green and Hwang (2009) for constructing our tests. For index changes, we 

follow the methodology of Barberis, Shleifer, and Wurgler (2005) except that we use only daily 

data because their results are weaker with weekly and monthly data.  Barberis, Shleifer, and 

Wurgler (2005) use additions to the S&P500 from 1976 to 2000 and deletions from 1979 to 2000, 

whereas our initial sample extends from 1976 to 2012 for index additions.5  However, subperiod 

analysis corresponds to their subperiods.  Index deletions are evaluated for robustness in Section 

7.  Like Barberis, Shleifer, and Wurgler (2005), we estimate betas in the pre-inclusion period using 

12 months of data ending the month before the announcement of the stock’s addition to the 

S&P500 and betas in the post-inclusion period using 12 months of data starting the month after 

the inclusion of the stock in the S&P500.   

 For stock splits, we follow the methodology in Green and Hwang (2009) and the 

clarifications obtained directly from the authors, though some differences in methodology 

persist.  Like Green and Hwang (2009), our sample consists of all common stocks where the stock 

                                                 
5 We limit our main analysis to index additions with share codes of 10 and 11 to remain consistent with Barberis, 
Shleifer, and Wurgler (2005).  However, the results are similar if the sample contains all index additions. 
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price was $10 or more before the stock split.6  The high-price index consists of stocks whose 

prices are ±25% of the price of the splitting stock just prior to the split.  The low price index 

consists of all stocks whose price is above $5 and within ±25% of the post-split price calculated 

based on the pre-split price and the split ratio. The Green and Hwang (2009) sample covers the 

period 1971-2004. We extend this sample to 2012, and, after replicating their results for their 

original subperiods, we use the same subperiods as in the S&P additions sample for the 

subsequent analysis.  

 For momentum, which will become an important control variable, we follow a 

methodology that is similar to that in Jegadeesh and Titman (2001) and form momentum 

portfolios using a 12-month formation period, one skip month, and 12-month holding period.  

More specifically, at the end of each June from 1976 through 2011, stocks with a price of at least 

$10 that do not fall into the bottom size decile of NYSE stocks are assigned to 10 momentum 

deciles based on their cumulative returns over the preceding 252 days.7  We estimate betas for 

each stock based on a rolling window of 252 days from two years before formation of momentum 

portfolios through two years after formation, and compare beta changes for the top and bottom 

momentum portfolios.  Thus, betas for years -2 and -1 are estimated over rolling windows ending 

504 and 252 trading days before portfolio formation, respectively.  Post-formation momentum 

portfolio betas allow for a 21-trading day skip, and are estimated over 252 days ending 273 and 

525 trading days after portfolio formation.  The top return decile and the bottom return decile in 

the formation period are identified as winner stocks and loser stocks respectively.  

 

4. Reexamining the Empirical Evidence 

The first step in our analysis is to recreate, extend, and reexamine the univariate and bivariate 

regressions reported in the literature for the S&P500 index addition and stock split samples, given 

the insights from the model in Section 2. These are the regressions specified in equation (6), and 

                                                 
6 For consistency with their results, we only include stock splits identified by CRSP with a distribution code ‘5523’.  
However, inclusion of stocks splits with a CRSP distribution code ‘5533’ produces similar results. 
7 The sample ends in 2011 because we are evaluating beta changes up to two years after formation of momentum 
portfolios. 
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they are estimated twice, once before the event and once after. Note that the first regression, 

the return on the stock on the return of the group that it is leaving, is not examined in the 

literature. The implications of the coefficients in these regressions for the excess comovement 

hypothesis are discussed in Section 2.2. 

 The results are presented in Tables 1 and 2 for S&P500 index additions and stock splits, 

respectively. In each case, Panel A shows the univariate regression results and Panel B the 

bivariate regression results. In Panel A, the set of 3 columns beginning with the third column 

contain the betas relative to the old group portfolio (non-index stocks or high-priced stocks) 

before and after the event and the associated changes, the next set of 3 columns contain the 

analogous numbers relative to the new group portfolio, and the final column shows the 

difference between the changes in the two coefficients across the event. Panel B is organized in 

the same way except that the coefficients are those on the two group returns in the bivariate 

regressions before and after the event. 

 Turning first to the S&P500 additions sample, the results from the univariate regressions 

on the S&P500 index (the new group, i.e., group 2) for two sub-periods, 1976-87 and 1988-2000, 

are consistent with those reported by Barberis, Shleifer, and Wurgler (2005) in their Panel A of 

Table 1.8  For 1976-87, we report a change in beta of 0.062 (Δβ2) based on a sample of 197 index 

additions compared with 0.067 in Barberis, Shleifer, and Wurgler (2005) based on a sample of 

196 index additions.  For 1988-2000, we and Barberis, Shleifer, and Wurgler (2005) both find an 

increase in beta of 0.214 after stocks are added to the S&P500 index.  This increase in the 

difference is consistent with the excess comovement hypothesis since the latter period coincides 

with an increase in indexing. Interestingly, however, this difference is less than a third as large 

(0.071 vs. 0.214) for the very last sub-period, 2001-2012, which was not covered in the original 

sample, when indexing gained even more importance. Notwithstanding this anomaly, on their 

own, these results would naturally be interpreted, in the context of the model in Section 2, as 

evidence of excess comovement: The stock begins to load more heavily on the index return after 

it joins the index. Moreover, the economic magnitude of this effect, particularly in the 1988-2000 

                                                 
8 Standard and Poor’s did not publicly announce index changes until September 1976.  Therefore, the first period 
begins in September 1976.  However, for ease of reference, we term the period 1976-87.  
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sub-period, is large. Specifically, a coefficient of 0.214, assuming that we can interpret this 

average across stocks as the effect at the group level, implies that more than 20% of the variance 

of S&P500 returns is explained by excess comovement, i.e., the non-fundamental group-specific 

shock. Of course, individual stock returns are more variable than those of diversified portfolios, 

so the corresponding R-squareds at the stock level would be significantly smaller. 

 Looking at the univariate results with the non-index returns as the independent variable 

shows that this simple interpretation is not completely accurate. To be consistent with excess 

comovement, the change in the coefficient relative to the old group from before to after the 

stock joins the index (Δβ1) should be negative. That is, the stock should load less heavily on non-

index returns when it is in the index, a change not examined in prior studies. Instead, we find that 

this change (Δβ1) is approximately equal in magnitude to the coefficient change for the other 

regression (Δβ2) for the 1976-87 and 2001-12 periods. Consequently, the measure of total excess 

comovement, the difference between these changes (Δβ2-Δβ1), is small and statistically 

insignificant for these two subperiods. Taken together, these results suggest that it may be 

changes in loadings on the fundamental factor that are more important, except for the 1988-

2000 subperiod. In other words, it is not that stocks are moving more with S&P500 returns after 

they join the index, simply that they are moving more with all stocks. 

 The model in Section 2 implies that the bivariate results are unreliable in terms of 

assessing the economic magnitude of any excess comovement, but, for completeness, we 

present results from the bivariate regressions in Panel B. These results are similar to those 

reported in Barberis, Shleifer, and Wurgler (2005) for matching subperiods.  Their bivariate 

regressions show an increase in the beta with the S&P index (new group) and a decrease in the 

beta with non-S&P500 stocks (old group).  For example, for the full sample the average beta on 

the non-S&P group decreases by 0.305, while the beta on the S&P500 increases by 0.338. 

 Interestingly, these results are very different from those in the univariate regressions, 

where both coefficients increase. The bivariate regression coefficients may say little about the 

magnitude of excess comovement, but this discrepancy suggests that there are additional shifts 

in the model parameters across the events. Changes in the fundamental loadings of the group 
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returns and in the idiosyncratic risk of these portfolios will affect the bivariate coefficients much 

more than their univariate counterparts, as we demonstrate in the next section.  

The results for stock splits are reported in Table 2, first with the Green and Hwang (2009) 

sub-periods. The changes in beta relative to the new group reported in Table 2, columns 6-8, for 

matching sub-periods are very close to those reported by Green and Hwang (2009) in their Panel 

A of Table 2: we report a change of 0.196 for 1971-1990 with a sample of 2,350 splits compared 

to their change in beta of 0.204 with a sample of 2,302 splits for the same period.  For the 1991-

2004 period, the samples are marginally different: Green and Hwang (2009) report an increase 

of 0.255 in beta with a sample of 2,303 splits compared to 0.248 with a sample of 2,478 splits in 

this paper.  The second sets of results use the subperiods in Table 1 for consistency in the 

following tables; the results are very similar, and there is little variation over time. As for index 

changes, the univariate regressions results are striking. The coefficient on low-priced stocks 

increases significantly after the split for all sub-periods and is consistent with the notion of excess 

comovement documented in the earlier studies.  

We also examine the change in beta relative to the old, high-priced group before and after 

the split.  From Panel A of Table 2, columns 3-5, we can see that Δβ1 is significantly positive for 

all sub-periods, which suggests that the beta of the splitting stock increases not only relative to 

the new group (low-priced stocks) but also relative to the old group (high-priced stocks).  Turning 

to the difference in the change in betas, Δβ2-Δβ1, we find that these numbers are small. For two 

of the sub-periods they are negative. Although the differences of 0.03 and 0.01 are statistically 

significant in the 1988-2000 period and the full 1976-2012 sample, the economic magnitudes are 

very small and unimportant. Overall, the evidence is that the splitting stocks move more with 

both the old group and the new group to approximately the same extent. Thus, there is little or 

no reliable evidence of excess comovement following stock splits.  The vast majority of the 

apparent effect is attributable to an increase in the fundamental beta of these stocks.  

The unreliable bivariate regressions show an increase in comovement with the new 

group. For example, over the full period the beta on high-priced stocks falls by 0.026, while the 

beta on low-priced stocks increases by 0.239. However, as with the S&P500 additions sample, 

this discrepancy between the univariate and bivariate regression results may be an indication of 
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shifts in the properties of the group returns in addition to the increase in the fundamental beta 

of the individual stocks suggested by the univariate regression results. 

 

5. Model Implications and Parameter Instability 

The empirical results in Section 4 suggest that the fundamental betas of the stocks in the two 

samples are increasing around the event. Moreover, there are more complex patterns in both 

the univariate and bivariate coefficients that are potentially consistent with changes in the 

parameters of the model that are not associated with excess comovement. Specifically, in one 

subperiod the S&P additions sample shows an increase in the relative beta on the S&P500 in the 

univariate regression, and both samples show shifts in the loadings from the group that the stock 

is leaving to the group that it is joining in the bivariate regressions. 

In this section, we again turn to the model from Section 2 to consider in more detail the 

effects of three forms of parameter instability that can potentially explain these results—(1) 

changes in the fundamental betas of the stocks, (2) changes in the idiosyncratic risk of group 

returns, and (3) changes in the fundamental betas of group returns. Throughout this analysis we 

assume that there is no excess comovement at all, i.e., 

2,1022
 iuiui       (13) 

so that all the changes in the coefficients are driven by changes in fundamentals. 

 While the univariate and bivariate are available in closed form, as shown in Section 2, it 

is easier to get the economic intuition for the effects of parameter instability in the context of 

some simple numerical examples, where the parameter values are chosen to be representative 

of those in the data.9 We start with a base case and examine variants of this example in the 

subsections to follow. For the base case we assume (1) no parameter instability, i.e., the 

parameters are the same before and after the group switch, and (2) perfect symmetry across the 

                                                 
9 In our stylized model there is a single unobservable fundamental factor. To calibrate this model we use the value-
weighted CRSP portfolio to proxy for this factor. The properties of the group returns, i.e., their betas with respect 
to this factor and their residual risk, vary across the two samples and across the two groups within each sample, so 
for ease of exposition we use parameter values within the range spanned by the data. 
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two groups, i.e., the parameters governing the two group returns are the same. More specifically, 

we assume 

%1%73.11

2,1%2.01
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with volatilities computed on a daily basis. These daily volatilities imply an annualized volatility 

of the fundamental factor of 15.9% and annualized total (idiosyncratic) volatilities at the group 

and stock levels of 16.2%  (3.2%)  and 31.7% (27.5%), respectively. The qualitative nature of the 

results below are not affected by the precise parameterization. For convenience, we further 

assume that the idiosyncratic shocks at the group level are uncorrelated 

0),cov(),cov( 2121
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(15)

 

This covariance influences the bivariate regression coefficients, but this assumption has no 

qualitative effect on the key results, i.e., the changes in coefficients across the event. 

The resulting univariate and bivariate regression coefficients are 

000.0490.0

000.0962.0

22112121

22112121
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   (16) 

These base case results and the associated parameter inputs are summarized in the first row of 

Table 3, Panels B and A, respectively, along with the corresponding inputs and results for the 

three other numerical examples discussed in Sections 5.1-5.3 in the succeeding rows.  Due to the 

assumptions of parameter stability and symmetry, the coefficients are identical across the two 

groups and across the pre- and post-event period. The univariate coefficients are slightly less 

than 1 because idiosyncratic risk at the group level causes a slight attenuation of the coefficient. 

In other words, the group return is proxying for the fundamental factor, but it is not a perfect 

proxy because there is a small amount of idiosyncratic risk. In the bivariate regressions, the 

fundamental loading is split equally across the two groups with similar but somewhat smaller 

attenuation. 
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5.1 Changes in Stock Betas 

First, consider the case where the loading of stock y on the fundamental factor, 
ytb , is allowed 

to vary across the sub-periods but all the other parameters are kept at their values in equations 

(14) and (15). Specifically, assume  

2.10.1  yy bb
             

(17)
 

i.e., the fundamental loading of the stock increases by 20% after the event. 

The resulting univariate and bivariate regression coefficients are10 

098.0588.0490.0

192.0154.1962.0

22112121

22112121
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          (19) 

The increase in the fundamental loading of the stock from 1.0 to 1.2 shows up almost one for 

one in the regression coefficients, with this change being split equally between the two bivariate 

coefficients. 

For the univariate regressions, these results coincide closely with those in Table 2, Panel 

A for the stock split sample. With the exception of the 1988-2000 sample period, they also look 

like those in Table 1, Panel A for the S&P additions sample. In other words, there is clear evidence 

of an increase in the fundamental loadings of the stocks across the events. However, the bivariate 

results paint a more complex picture in both cases. It is clearly not the case that this increase 

shows up equally in both coefficients in these regressions. Thus, for the bivariate regression 

results to be consistent with the absence of excess comovement, there must be other shifts in 

the parameters. We turn next to the effect of changes in the idiosyncratic risk of the group 

returns. 

 

  

                                                 
10 For ease of reference, we tabulate these results in the second row of Table 3, Panels A and B. 
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5.2 Changes in Group Idiosyncratic Risk 

Let us return to the base case parameter values, with the exception that we now allow the 

idiosyncratic risk of the group 1 returns to vary across the event. Specifically, 

%20.0%24.0%20.0 2
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2
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i.e., the idiosyncratic volatility of group 1 returns increases by 20%. Note that because the group 

is well-diversified and thus idiosyncratic risk is small to begin with, this increase moves the total 

annualized volatility of group 1 returns from 16.2% to only 16.3%. 

The resulting univariate regression coefficients are 

000.0016.0962.0946.0962.0
22112211
    (21a) 

and the bivariate regression coefficients are 

086.0090.0577.0400.0490.0
22112121


bbbbbbbb
   (21b) 

(see the third row of Table 3, Panels A and B). The group one return is now a slightly poorer proxy 

for the fundamental factor after the event. This effect shows up in the univariate regression as a 

small decline of 0.016 in the group one beta. However, the effects on the bivariate regression 

coefficients are much more dramatic. After the event, the regression shifts substantial weight 

from the group one return to the group two return. Even though the volatility of the group one 

return has only gone up slightly, this return is highly correlated with the group two return, so 

even a small deterioration in its ability to proxy for the fundamental factor causes a large move 

in the coefficients. Specifically, the coefficient on the group one return declines by 0.1, more than 

5 times the magnitude of the move in its univariate counterpart, and in sharp contrast to the 

result in Section 5.1 above where, as expected, the bivariate coefficients move by about half as 

much as those in the univariate regressions. There is also a roughly corresponding increase in the 

coefficient on the group two return.  Note that we obtain these spurious results with bivariate 

regressions though we explicitly assumed no excess comovement in the setup.   

 There are two additional features to note about changes in the idiosyncratic volatility of 

group returns. First, at these parameter values the magnitude of the percentage change in the 
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bivariate coefficients is approximately equal to the percentage change in idiosyncratic volatility—

20% in the numerical example above. Second, a qualitatively and quantitatively similar effect 

arises if the idiosyncratic volatility of group two returns declines. The key point is that 

economically small movements in volatility can produce shifts in the coefficients in the bivariate 

regressions as documented for both the S&P500 and stock split samples. However, these shifts 

cannot explain the differences between the changes in the univariate coefficients in the 1988-

2000 subsample for S&P500 additions. To resolve this anomaly, we next consider shifts in the 

fundamental betas of the group returns. 

 

5.3 Changes in Group Betas 

Finally, to see the effects of a change in the fundamental beta of the group returns, consider 

again the base case with parameter stability and symmetry across the groups, except that the 

beta of group 2 (the group that the stock is joining) changes across the event. Specifically, 

8.00.10.1 2211  bbbb      (22) 

i.e., the fundamental loading of the group 2 returns declines by 20% across the event.  

The resulting univariate and bivariate regression coefficients, as also reported in the final 

row of Table 3, Panels A and B, are 

014.0105.0476.0595.0490.0
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Given these parameter values, the increase in the univariate coefficient on group 2 (0.215) is 

approximately equal to the decrease in the fundamental beta of the group 2 returns (0.200). The 

primary effect is that the group two return is now less sensitive to the fundamental factor after 

the event and therefore the loading on this return must increase in order to explain the 

unchanged fundamental loading of the stock. 

In the bivariate regression, this increase shows up as a smaller 0.105 increase in the 

coefficient on the group one return with little change in the coefficient on the group two return. 
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As in the univariate regression, the loadings are adjusting so that the fundamental loading of the 

stock is almost fully captured. However, after the event the regression favors the group one 

return as a proxy for the fundamental factor because, with a decreased beta but unchanged 

idiosyncratic volatility, the group two return has now become a relatively poorer proxy. 

 

5.4 A Matched Sample Approach 

Subsections 5.1-5.3 illustrate that parameter instability can generate effects on the univariate 

and bivariate regression coefficients similar to those seen in the data, even in our stylized model 

and, more importantly, in the complete absence of excess comovement. Of course, excess 

comovement can also generate movements in the coefficients. The question is whether we can 

distinguish between these competing explanations. We can potentially identify shifts in the 

parameters in the data that are consistent with the logic above, but it is important to remember 

that our numerical results are in the context of a stylized model. The real data generating 

processes are undoubtedly more complex. However, there is a different approach that will allow 

us to determine if the empirical results are driven by excess comovement. In particular, shifts in 

the properties of the group returns will show up in the regression results regardless of the 

identity of the stocks whose returns are used as the dependent variables. If we can find a sample 

of stocks that match the key features of the changes in properties of the stock returns in the two 

samples, i.e., the movements in their fundamental betas, then all the other effects associated 

with the group returns will show up in regressions using this matched sample. We pursue this 

exercise in Section 6. 

 

6. Comovement Revisited 

It would be a remarkable coincidence if selecting samples based on S&P500 index additions and 

stock splits was independently choosing stocks whose betas increase after the event. However, 

as it turns out, these two samples have something in common. The stocks in both samples have 

abnormally good performance before the event. This phenomenon is well known for stock 

splits—only companies whose stock price goes up split their stocks—but it is also intuitive for 
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index additions—S&P is biased towards larger, better-performing stocks for inclusion in their 

flagship index, holding other criteria constant. Moreover, the goal of making the index 

representative of the market in terms of industry balance also leads to the inclusion of industries 

and firms within these industries that have performed relatively well. 

To examine the extent of these effects, for each stock in the two samples we record in 

which momentum decile it falls. In other words, when stocks are ranked into 10 portfolios based 

on returns over the past year (i.e., from losers to winners), how many of our sample stocks are 

in each portfolio? These results, along with the mean and median returns of the sample stocks 

are reported in Table 4. If the decision to include a stock in the S&P500 or to split were 

independent of past returns, we would expect approximately 10% of the sample to fall in each 

decile. In contrast, both samples are tilted heavily towards winner stocks, with the effect being 

more pronounced for the split sample. For example, 57% of the split sample falls into the top 2 

deciles, while the corresponding number for S&P500 additions is 37%. Average returns for these 

samples are 109.1% and 41.6%, although the medians are lower, suggesting a right-skewed 

distribution.  

Given this evidence, the questions are (1) whether selecting on positive past performance 

can explain the beta increases that are consistent with the initial empirical results in Section 4, 

and (2) whether controlling for this effect eliminates the appearance of excess comovement. We 

look at the former question in Section 6.1 and the latter in Section 6.2. 

 

6.1 Momentum and Beta 

In examining changes in beta following periods of good performance, we follow the momentum 

methodology described in Section 3.  While our focus is on winners, we report the winner and 

loser stock betas beginning 2 years before the holding period and continuing up to 2 years after 

the beginning of the holding period.11 The results, in Table 5 and Figure 1, show that betas of 

winner stocks increase dramatically during the formation period and continue to increase during 

                                                 
11 These tests require a long trading period potentially leading to a survivorship bias. The results, however, are 
virtually unaffected even when shorter periods are used. 
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the holding period. They stabilize thereafter for a few months and begin to decline.  Specifically, 

we find that betas of winner stocks increase from 0.976 to 1.143 (a statistically significant change 

of 0.167) from Year-1 to Year 0, and from 0.964 in Year-2 to 1.143 in Year 0, a statistically and 

economically significant increase of 0.179.  The betas continue to increase further during the 

holding period to 1.271 (a statistically significant change of 0.128) from Year 0 to Year+1 before 

declining to 1.166 in Year+2.  

 This pattern of consistently increasing betas for stocks with high past returns has the 

potential to explain the results in Section 4. The betas of the stocks in the sample increase around 

the event in question, and therefore they comove more with all stocks after the event, both 

stocks in the group they are joining and stocks in the group they are leaving. 

    

6.2 Comovement with Momentum Matched Firms (and Dimson’s betas) 

For the analysis in this subsection, we make two adjustments in order to better assess the 

magnitude of excess comovement, if any, present in the data. First, because we are using daily 

data, nonsynchronous trading may limit our ability to get accurate regression coefficients. To the 

extent that stocks do not all trade simultaneously at the end of each day, the observed return on 

a stock will be potentially correlated with leads and lags of the returns on a given portfolio (Denis 

and Kadlec (1994)). The correct adjustment for this effect in order to uncover the true regression 

coefficient is to sum the coefficients in a regression which includes these leads and lags (Dimson 

(1979)). Nonsynchronous trading is likely more important for the stock splits sample since these 

stocks are smaller and less liquid on average than those added to the S&P500. However, this 

adjustment is likely to be more important for the S&P500 additions sample when we examine 

changes in coefficients pre- and post-event. The intuition is that it is changes in nonsynchronous 

trading across the two periods that matter for examining differences in coefficients, and while 

there is little evidence of major liquidity effects associated with stock splits that is not true for 

index additions. Throughout the analysis in this section, we use two leads and lags for all portfolio 

returns used as independent variables. 
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Second, following up on the Section 6.1 results, where we find evidence of increasing 

betas in momentum stocks, and the matched sample logic of Section 5.4, we also compare 

comovement of sample stocks with a matched sample that exhibits similar momentum 

characteristics.  Barberis, Shleifer, and Wurgler (2005) use a sample of firms matched by size and 

industry, but do not control for momentum, which appears to be the critical factor due to the 

beta patterns associated with winner stocks. Consequently, for each addition, we select a 

matched firm from the same size decile that is not a member of the S&P500 index and is closest 

in terms of lagged 252-day return to the added firm at the time of inclusion.12  Due to the 

exceptional performance of some firms in the sample, a perfect match is not possible. While the 

average and median returns of the matched stocks are only slightly lower than those of the 

original sample, for stocks in the top 10 percent of the sample, the matched stocks have returns 

that are significantly lower, albeit still high, in some cases.13  

Like Barberis, Shleifer, and Wurgler (2005), Green and Hwang (2009) construct a sample 

matched by size and industry without controlling for momentum.  The matched sample that we 

use in this paper for stock splits controls for both size and momentum.  For each stock split, we 

first select a group of firms from the high-priced portfolio that fall in the same size decile.  

Thereafter, we choose firms that are closest to the splitting firm in terms of momentum.  The 

matched firm is the one that comes closest in price and momentum to the sample firm within 

the same size decile. Given the more challenging matching criteria and the more extreme positive 

returns of the stock split sample, it is not surprising that the match is somewhat worse than for 

the S&P500 additions sample. In this case, even the median return of the matched sample is 

more than 7% below that of the original sample, with much larger differences for stocks with the 

most extreme returns. In spite of this issue, it is still worth examining the results, realizing that if 

the magnitudes of beta changes are correlated with the magnitudes of returns, particularly for 

very high returns, the matched sample will not exhibit quite the same shifts in fundamentals as 

the original sample.  

                                                 
12 In results not presented here, requiring the matched firm to be from the same industry as the sample firm does 
not change the results. 
13 In the interests of brevity, these results are not tabulated in the paper. 
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Tables 5 and 6 present the results for the S&P500 index addition and stock split samples, 

respectively. In both cases, Panel A provides the univariate regression results, while those for the 

bivariate regression are reported in Panel B. Within each panel, we first present the results for 

the sample of event stocks. These results are comparable to those in Tables 1 and 2, except that 

we now use the Dimson adjustment to estimate the coefficients. We then provide the estimation 

results for the matched sample. Finally, we show the difference between the original and 

momentum-matched samples. 

For the S&P500 index additions, the Dimson adjustment alone generally accounts for 

more than 50% of the effect that appears in the original analysis. For example, Δβ2 in the most 

significant sub-period (1988-2000) drops from 0.214 to 0.078. Not surprisingly, this large change 

is primarily due to an increase in the estimated beta prior to the addition of the stock to the 

index. It is prior to being included in the index that the stock is likely to be less liquid, and 

therefore the Dimson adjustment is also likely to be more important. Looking at the differences 

between the coefficient changes across regressions, Δβ2-Δβ1, only in this same sub-period is the 

coefficient statistically positive with a value of 0.129 and a t-statistic of 2.55. However, a similar 

result holds for the matched sample in 1988-2000. For these firms we get a value of 0.111 with a 

t-statistic of 2.23. Across all sub-periods there is no single difference above 0.020 between the 

original and matched samples. To put it succinctly, there is absolutely no evidence of any excess 

comovement once we control for the momentum effect.  

That said, one might legitimately wonder why, in the 1988-2000 subperiod, both the 

sample and matched stocks exhibit univariate regression coefficients that vary so much across 

S&P500 and non-S&P500 stocks. The answer, as discussed in Section 5, is a shift in fundamental 

parameters over the event period. First, it is important to note that the anomalous result above 

is confined to the years 1999 and 2000. For the other years in the subperiod, there are no 

statistically significant effects. However, in these two years the effect reported in Panel A of Table 

6 is much larger. The explanation is a shift in the fundamental betas of the two groups of stocks, 

S&P500 stocks and non-S&P500 stocks, across the event dates. The betas of these portfolios with 

respect to the value-weighted market behave very differently.  In results not tabulated here, we 

find that the average beta of the S&P500 portfolio decreases by 0.06 while that of the non-
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S&P500 portfolio increases by 0.16. Depending on the other parameters, this effect alone would 

suggest an increase in the beta of a stock on the S&P500 of more than 0.20 relative to that on a 

portfolio of non-S&P500 stocks as shown in Section 5.3. This relative increase shows up primarily 

as an increase in beta on the S&P500 because the fundamental betas of the stocks in both the 

S&P500 addition and matched samples are also increasing. We speculate that the movements in 

the fundamental betas of the group portfolios are due to the technology boom at that time. As 

high risk technology stocks become more important in the overall market, the S&P500, which is 

relatively light in these stocks, exhibits a declining beta throughout this period. Regardless of the 

precise explanation, the fact that the effect shows up in the matched sample is clear evidence 

that it is a result of parameter instability at the group level. 

For the bivariate regressions, the same basic results of no excess comovement hold. There 

are no statistically significant differences between the beta changes associated with the S&P 

addition sample and the matched sample. Moreover, while some of the individual beta changes 

have magnitudes of 0.1 or slightly higher in both samples, none of these individual differences is 

statistically significant. Again, the fact that similar patterns show up in the matched sample is an 

indication it is the properties of the group returns not the stocks that is changing across the event. 

In this case, the shifts in loadings across the two groups are consistent with changes in the relative 

fractions of idiosyncratic risk as illustrated in Section 5.2. 

 For stock splits, we have already established that even the original sample exhibits little 

or no evidence of excess comovement when comparing the univariate regression results across 

low-priced stocks (the new group) and high-priced stocks (the old group).  Nevertheless, it is still 

worthwhile looking briefly at the results with Dimson betas for a momentum matched sample.  

Though we estimate Dimson betas for uniformity, we don’t anticipate Dimson betas making a 

significant difference because non-synchronous trading is unlikely to be different for the high-

priced and low-priced groups.  On the other hand, almost all splitting stocks are likely to be 

momentum stocks so a properly matched sample should also exhibit similarly high changes in 

betas.  

 The basic results in Table 7 are affected little by the Dimson adjustment—comovement 

with both portfolios increases after the split by similar amounts. Not surprisingly, the same 
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phenomenon shows up in the matched sample, although it is smaller than in the original sample. 

We attribute these differences to our inability to match some of the high returns on the splitting 

stocks in our matched sample. When taking differences across the samples, the values are 

economically very small and predominantly statistically insignificant.  

Similar results obtain for the bivariate regressions and excess comovement is not evident 

in any sub-period except during 1991-2004. We attribute this result to the imperfect match. 

Nevertheless, the bivariate regression results are still puzzling. As an example, consider the 

results for both samples (i.e., the stock split sample and the matched sample) over the full period. 

In both cases, the coefficient on high priced stocks decreases, while that on low-priced stocks 

increases, and the changes are statistically significant in all cases. Clearly this result is not due to 

excess comovement since it shows up in the matched sample, and there is no change in group 

membership for these stocks. However, as noted in Section 5.2, small changes in the 

characteristics of the group portfolios can have large effects on these bivariate coefficients. In 

particular, increases in the idiosyncratic volatility of the returns on the high-priced group relative 

to that of the low-priced group are consistent with this phenomenon. A relative increase in 

idiosyncratic risk makes the group return a poorer proxy for the common (fundamental) factor, 

thus decreasing the weight that the regression puts on this return and increasing the weight on 

the other group return.  

These results highlight the dangers of interpreting the coefficients from bivariate 

regressions, but they only strengthen our overall conclusion that there is no meaningful evidence 

of excess comovement. 

 

7. Robustness Checks  

We reconfirm the baseline results on comovement by repeating our analysis with weekly data 

and for index deletions.  
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7.1 Weekly Data 

Though Barberis, Shleifer, and Wurgler (2005) and Green and Hwang (2009) present evidence of 

comovement using daily, weekly and monthly data, their results are strongest with daily data.  

Accordingly, the main results in the paper are based on daily data.  Here we test the results with 

weekly data for S&P 500 additions and stock splits.  Essentially, using weekly data has an effect 

similar to adding two leads and two lags to the beta estimates, as we do above.  Not surprisingly, 

the results are much weaker with weekly data than with daily data.  Once a matched sample is 

used to control for changes in fundamental factors, there is no evidence of residual excess 

comovement in univariate regressions for S&P 500 additions or for stock splits.  In addition, there 

is no evidence of comovement for stock splits in the bivariate regressions.14  However, there is 

weak evidence of comovement in bivariate regressions for the S&P 500 additions sample, which 

is not surprising given the prior discussion of instability of coefficients in bivariate regressions. 

 

7.2 Index Deletions 

Our baseline analysis has considered only S&P 500 index additions because they are more 

interesting, important, and the focus of prior research.  Since stocks are both added to and 

deleted from the S&P500 index, usually at the same time, it is informative to also study index 

deletions for a reverse comovement effect.  Unlike index additions, which are always voluntary 

and at the discretion of the Index committee of Standard and Poor’s, index deletions may be 

voluntary or involuntary.  Index deletions are involuntary when a firm ceases to exist (mergers 

and bankruptcies) or when a firm ceases to meet primary criteria established by Standard and 

Poor’s (reincorporation in a foreign country).  Voluntary index deletions may occur because a 

firm is no longer representative of the U.S. economy, the industry is less representative of the 

economy, or the firm has become too small in size.   

                                                 
14 Results are not reported in the interests of brevity. 
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We repeat the analysis of S&P 500 index additions with a sample of primarily voluntary 

deletions.15 Due to a smaller deletions sample and deleted firms potentially undergoing 

structural changes, we expect evidence of comovement in index deletions to be weaker.  In 

addition, we anticipate that a significant fraction of the comovement may be explained by non-

synchronous trading.  We duplicate the analyses in Tables 1 and 6 for index deletions,16 and find 

that the results are consistent with our results for index additions.  Relative to Table 1, we find 

that the deleted firms move less with the S&P 500 index after deletion based on both univariate 

and bivariate regression coefficients, and that the results are primarily derived from the 1979-

2000 period, as in Barberis, Shleifer, and Wurgler (2005).  Relative to Table 6 with a matched 

sample and Dimson adjustments, we find that there is no residual evidence of excess 

comovement for the S&P 500 deletions sample.  Thus, the analysis for index deletions 

corroborates evidence for index additions to suggest an absence of excess comovement.    

 

8. Conclusion 

Motivated by a simple model that captures the essence of the excess comovement hypothesis, 

we revisit the results of two well-known papers in the literature on comovement before and after 

S&P500 index additions (Barberis, Shleifer, and Wurgler, 2005) and stock splits (Green and 

Hwang, 2009).  The model implies that looking at univariate regressions rather than bivariate 

regressions is more informative about the economic magnitude of the effect of interest, and, in 

particular, that the differences between the coefficients in univariate regressions on the returns 

of the group that the stock is leaving and the group that it is joining identify this effect.  When 

we conduct this empirical exercise, the evidence points strongly to the conclusion that the 

existing results are due not to excess comovement but to changes in the comovement of stocks 

with fundamentals. These beta changes themselves are a feature common to winner stocks, an 

empirical phenomenon the documentation of which may be new to the literature.  By making 

sure to measure these fundamental betas accurately, and controlling for this effect using a 

                                                 
15 As for index additions, we extend the sample to 2012.  The sample sizes for overlapping periods are similar to 
those in Barberis, Shleifer, and Wurgler (2005).     
16 Results are not tabulated here for brevity. 
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matched sample of winner stocks, we show that there is no longer any evidence of meaningful 

excess comovement from either an economic or statistical standpoint. 
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Appendix: Proofs 

 

Assume the driving processes for returns prior to the group switch are 
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Univariate Regressions 

In the univariate regressions 
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Computing the coefficients prior to and after the switch of stock y from group 1 to 
group 2: 
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Assuming the parameters other than stock y’s loadings on the fundamental factor and 
the non-fundamental group shocks are fixed across the 2 sub-periods, i.e., 
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Bivariate Regressions 

Consider the bivariate regression: 
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where the coefficients reflect a natural symmetry. It is convenient to rewrite these expressions 
in terms of the univariate coefficients defined above: 



35 

 




























































1

2

1
2122

21

2

2

1

2
2112

21

2

2

1

2
21

1

1

2

21

21

2

21

2121221

1

)var(

)var(
),(corr

),(corr1

1

)var(

)var(
),(corr

),(corr1

1

)var(

),cov(

)var(

)var(
),(corr

)var(

),cov(

),(corr1

1

)var()var()),(corr1(

)var()var(),(corr),cov()var(),cov(







t

t
tt

tt

b

t

t
tt

tt

t

tt

t

t
tt

t

tt

tt

tttt

ttttttttt

b

x

x
xx

xx

x

x
xx

xx

x

xy

x

x
xx

x

xy

xx

xxxx

xxxxxyxxy

 

As above, computing these values prior to and after the switch of stock y from group 1 to group 
2: 
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Again assuming the parameters other than the weights on the non-fundamental group shocks 
are fixed across the 2 sub-periods, 
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Table 1: S&P Additions 
 
We estimate the univariate and bivariate regressions 

ttbtbt
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for a sample of stocks that are added to the S&P 500 index from 1962 through 2012.  The pre-event 
estimation period covers a one year window ending at the end of the month preceding announcement, 
while the post-event period covers the one year window starting the month after the effective date of 

index change.  
t

x
1

 and tx2  are returns to non-S&P 500 index and S&P 500 index at time t.  Panel A 

reports the univariate regression results, and Panel B reports the bivariate regression results.  In each 
cell, the first number is the mean and the second number is the corresponding t-statistic, where 
standard errors are clustered by month.   

Panel A.  Univariate Regressions 

  Non-S&P500 Group S&P500 Diff. of Diff. 

Sample Period nobs 1
  

1  1  2
  

2  2  12  

 
1976-1987 197 

1.271 
29.422 

1.313 
27.202 

0.042 
1.055 

0.962 
24.643 

1.024 
26.830 

0.062 
2.305 

0.020 
0.763 

1988-2000 269 
1.263 

29.839 
1.278 

27.503 
0.015 
0.313 

0.984 
24.669 

1.198 
23.830 

0.214 
6.243 

0.199 
4.938 

2001-2012 214 
1.050 

30.548 
1.125 

28.736 
0.075 
2.496 

1.086 
27.526 

1.157 
35.741 

0.071 
2.439 

-0.004 
-0.137 

1976-2012 680 
1.198 

49.851 
1.240 

46.610 
0.042 
1.734 

1.010 
43.566 

1.134 
44.294 

0.125 
6.556 

0.083 
4.080 

 
Panel B.  Bivariate Regressions 

  Non-S&P Group S&P500 Diff. of Diff. 

Sample Period nobs b1
  

b1  b1  
b2

  
b2  b2  bb 12    

1976-1987 197 
0.907 

15.366 
0.632 

11.692 
-0.274 
-4.627 

0.340 
5.884 

0.602 
10.626 

0.262 
5.733 

0.537 
5.377 

1988-2000 269 
1.011 

23.314 
0.647 

11.554 
-0.364 
-5.877 

0.281 
10.557 

0.667 
18.177 

0.386 
8.789 

0.750 
7.373 

2001-2012 214 
0.951 

13.407 
0.691 
9.456 

-0.260 
-4.323 

0.127 
2.229 

0.473 
9.323 

0.347 
6.379 

0.607 
5.414 

1976-2012 680 
0.962 

29.394 
0.657 

18.504 
-0.305 
-8.708 

0.249 
9.143 

0.587 
21.347 

0.338 
12.249 

0.643 
10.675 
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Table 2: Stock Splits 
 
We estimate the univariate and bivariate regressions 
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for a sample of 2-for-1 stock splits from 1962 through 2012.  Our sample include all ordinary common 

stock two-for-one splits with a pre-split price of $10 or greater during our sample period.  tx1 and tx2  

are return to a portfolio of high priced stocks whose price belongs to [3p/4, 5p/4] and low price stocks 
with prices within [1p/4, 3p/4] at time t, where p is the pre-split price before effective date of split.  The 
pre-event (post-event) window is defined as the one year ending (beginning) one month before (after) 
the split date. Panel A reports the univariate regression results and Panel B reports the bivariate regression 
results.  In each cell, the first number is the mean and the second number is the corresponding t-statistic, 
where standard errors are clustered by month.   
 
Panel A.  Univariate Regressions 

  High-Priced Group Low-Priced Group Diff. of Diff. 

Sample Period nobs 1
  

1  1  2
  

2  2  12  

 
1971-1990 2,350 

0.736 
48.771 

0.929 
54.709 

0.193 
17.138 

0.847 
49.059 

1.043 
60.555 

0.196 
18.554 

0.002 
0.443 

1991-2004 2,478 
0.798 

45.714 
1.014 

43.778 
0.216 

11.102 
0.937 

43.783 
1.186 

39.479 
0.248 

12.020 
0.033 
3.448 

1976-1987 1,867 
0.729 

40.663 
0.919 

45.952 
0.190 

14.620 
0.847 

40.182 
1.036 

50.304 
0.189 

15.136 
-0.001 
-0.189 

1988-2000 2,383 
0.796 

44.584 
1.001 

42.256 
0.205 

10.371 
0.968 

46.228 
1.206 

39.782 
0.237 

11.141 
0.032 
3.256 

2001-2012 794 
0.932 

30.602 
1.141 

36.926 
0.209 
8.553 

0.887 
28.309 

1.084 
36.203 

0.197 
8.518 

-0.012 
-0.976 

1976-2012 5,044 
0.792 

63.604 
0.993 

66.954 
0.200 

17.930 
0.910 

64.844 
1.124 

63.436 
0.213 

18.142 
0.013 
2.281 

 
  



41 

 

 
Panel B.  Bivariate Regressions 

  High-Priced Group Low-Priced Group Diff. of Diff. 

Sample Period nobs b1
  

b1  b1  
b2

  
b2  b2  bb 12    

1971-1990 2,350 
-0.013 
-0.724 

-0.043 
-1.721 

-0.030 
-1.011 

0.865 
38.366 

1.085 
41.082 

0.220 
7.235 

0.250 
4.231 

1991-2004 2,478 
0.041 
1.379 

0.003 
0.092 

-0.038 
-1.271 

0.883 
28.630 

1.171 
34.457 

0.289 
6.884 

0.326 
4.729 

1976-1987 1,867 
-0.016 
-0.938 

-0.068 
-2.336 

-0.052 
-1.539 

0.863 
34.684 

1.101 
35.398 

0.238 
6.884 

0.290 
4.311 

1988-2000 2,383 
0.001 
0.027 

-0.035 
-1.096 

-0.036 
-1.160 

0.951 
29.898 

1.224 
37.527 

0.273 
6.124 

0.309 
4.229 

2001-2012 794 
0.356 
6.585 

0.420 
8.493 

0.064 
1.594 

0.568 
14.599 

0.707 
17.584 

0.140 
3.841 

0.075 
1.036 

1976-2012 5,044 
0.050 
2.598 

0.024 
1.085 

-0.026 
-1.271 

0.858 
43.961 

1.097 
48.520 

0.239 
9.363 

0.265 
5.956 
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Table 3: Numerical Examples 
 
We calculate the univariate and bivariate regression coefficients implied by the model in Section 2 for four numerical examples. In all cases, 
we assume no excess comovement, no correlation between idiosyncratic shocks at the group level, the same amount of idiosyncratic risk at 
the stock level, and the same amount of fundamental risk: 

%1%73.10),cov(),cov(0 2121

2

2

2

2

2

1

2

1  ffeyeyuuuu eeee   

The base case (top row) assumes perfect symmetry. The subsequent examples allow for parameter instability across the event, specifically 
(1) a change in the stock beta, (2) a change in idiosyncratic risk at the group level, and (3) a change in group beta. In each case, the deviations 
from the base case for both the input parameters and the regression coefficients are highlighted in bold. 
 
Panel A. Inputs  
 

Case types Fundamental Loadings Group Idiosyncratic Volatility 

      
1b  1b  2b  2b  yb  yb  1e  1e  2e  2e  

Base Case 1.0 1.0 1.0 1.0 1.0 1.0 0.20% 0.20% 0.20% 0.20% 
(1) Change in stock beta 1.0 1.0 1.0 1.0 1.0 1.2 0.20% 0.20% 0.20% 0.20% 
(2) Change in group i-risk 1.0 1.0 1.0 1.0 1.0 1.0 0.20% 0.24% 0.20% 0.20% 
(3) Change in group beta 1.0 1.0 1.0 0.8 1.0 1.0 0.20% 0.20% 0.20% 0.20% 

 
 
Panel B. Regression Coefficients 
 

 Univariate Bivariate 

Case types Coefficient Change Coefficient Change 

      
1

  
1  

2
  

2  
11    

22    
b1

  
b1  

b2
  

b2  b1 -
b1

  b2 -
b2

  

Base Case 0.962 0.962 0.962 0.962 0.000 0.000 0.490 0.490 0.490 0.490 0.000 0.000 
(1) Change in stock beta 0.962 1.154 0.962 1.154 0.192 0.192 0.490 0.588 0.490 0.588 0.098 0.098 
(2) Change in group i-risk 0.962 0.946 0.962 0.962 -0.016 0.000 0.490 0.400 0.490 0.577 -0.090 0.086 
(3) Change in group beta 0.962 0.962 0.962 1.176 0.000 0.215 0.490 0.595 0.490 0.476 0.105 -0.014 
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Table 4: Past Return Performance of Sample Stocks 
 
For each stock in the sample we record which momentum decile portfolio it would be in based 
on its returns over the prior 12 months. The table reports the percentage of stocks in the S&P500 
additions and stock splits samples that fall in each decile and the mean and median return on 
these stocks over the prior year. 
 
 

 Frequency (%) 

 
Decile 

S&P500 
Additions 

Stock 
Splits 

Losers 2.94 0.28 
2 3.68 0.89 
3 5.00 1.61 
4 4.12 2.92 
5 12.06 4.78 
6 9.12 7.66 
7 11.91 10.09 
8 14.12 14.75 
9 16.62 21.36 
Winners 20.44 35.66 

Mean Return 41.6% 109.1% 
Median Return 25.0% 63.9% 
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Table 5:  Beta Changes and Momentum 
 
At the end of each June from 1976 through 2011, stocks with a price of at least $10 that do not fall into the bottom size decile of NYSE stocks are 
assigned into 10 momentum deciles based on their cumulative returns over the preceding 252 days.   We estimate betas for each stock based on 
a rolling window of 252 days from two years before formation of momentum portfolios through two years after formation, and compare beta 
changes for both the top and bottom two momentum portfolios.  Thus, betas for years -2 and -1 are estimated over rolling windows ending 504 
and 252 trading days before portfolio formation, respectively.  Post-momentum portfolio formation years allow for a 21-trading day skip, and 
are estimated over 252 days ending 273 and 525 trading days after portfolio formation.  In each cell, the first number is the time series average 
of the mean, and the second number is the corresponding t-statistic. 
 

Momentum 
Decile 

Year 
 -2 

Year  
-1 

Year 
 0 

Year  
1 

Year  
2 

Year 0 – 
Year -2 

Year 0 – 
Year -1 

Year 1 – 
Year 0 

Year 2 – 
Year 0 

10 (Winners) 
0.964 0.976 1.143 1.271 1.166 0.179 0.167 0.128 0.023 

21.865 20.588 21.313 21.163 25.997 4.139 4.891 3.217 0.553 

9 
0.918 0.916 0.981 1.038 0.994 0.063 0.065 0.057 0.013 

21.974 21.109 21.917 23.529 27.510 2.161 2.693 2.194 0.448 

Middle 
6 Deciles 

0.818 0.829 0.832 0.834 0.841 0.014 0.003 0.002 0.009 

29.606 28.510 27.432 26.003 25.132 0.642 0.221 0.150 0.438 

2 
0.903 0.925 0.917 0.876 0.888 0.014 -0.007 -0.042 -0.029 

28.188 28.429 23.377 20.214 20.436 0.579 -0.373 -2.546 -1.251 

1 (Losers) 
1.047 1.094 1.092 1.031 1.015 0.045 -0.003 -0.061 -0.077 

31.351 32.901 21.759 20.707 21.423 1.229 -0.091 -1.977 -2.219 
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Table 6: S&P Additions with Matched Sample and Dimson Adjustments 
 
We estimate the univariate and bivariate Dimson (1979) regressions for a sample of stocks that are added 
to the S&P 500 index from 1976 through 2012 and for a portfolio of matched firms.  The pre-event 
estimation period covers a one year window ending at the end of the month preceding announcement, 
while the post-event period covers the one year window starting the month after the effective date of 

index change.  tx1  is return to non-S&P 500 index at time t, while tx2  is return to the S&P 500 index at 

time t.  The match firm for each addition is identified as the one with closest momentum from the same 
size decile as the addition firms.  The Dimson beta is defines as a simple sum of the lag, concurrent, and 
lead coefficients from the following regressions with two leads and lags. In each cell, the first number is 
the mean and the second number is the corresponding t-statistic, where standard errors are clustered by 
month.   
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Panel A.  Univariate Regressions 

   Non-S&P500 Group S&P500 Diff. of Diff. 

 Sample Period nobs 1
  

1  1  2
  

2  2  12    

Sample 

1976-1987 187 
1.190 

28.734 
1.272 

28.294 
0.081 
2.017 

1.156 
26.699 

1.190 
29.071 

0.033 
0.820 

-0.048 
-2.096 

1988-2000 245 
1.193 

27.716 
1.142 

23.419 
-0.051 
-0.919 

1.161 
29.551 

1.239 
25.360 

0.078 
1.527 

0.129 
2.549 

2001-2012 203 
1.007 

26.383 
1.020 

25.779 
0.013 
0.348 

1.187 
29.117 

1.168 
27.880 

-0.020 
-0.483 

-0.033 
-1.187 

1976-2012 635 
1.133 

46.873 
1.141 

42.120 
0.008 
0.312 

1.168 
49.382 

1.202 
45.861 

0.034 
1.260 

0.025 
1.093 

Match 

1976-1987 187 
1.060 

27.537 
1.066 

26.633 
0.006 
0.143 

0.985 
27.133 

0.989 
23.089 

0.004 
0.103 

-0.002 
-0.085 

1988-2000 245 
1.103 

23.047 
1.071 

19.611 
-0.031 
-0.493 

1.087 
25.860 

1.167 
17.404 

0.080 
1.156 

0.111 
2.232 

2001-2012 203 
0.976 

21.149 
0.994 

24.104 
0.017 
0.437 

1.138 
22.733 

1.132 
23.749 

-0.006 
-0.126 

-0.023 
-0.877 

1976-2012 635 
1.050 

40.310 
1.045 

38.185 
-0.005 
-0.160 

1.073 
42.135 

1.103 
33.184 

0.030 
0.916 

0.035 
1.552 

Sample 
-Match 

1976-1987 187 
0.130 
2.721 

0.206 
3.783 

0.076 
1.321 

0.171 
3.965 

0.201 
3.752 

0.030 
0.550 

-0.046 
-1.998 

1988-2000 245 
0.090 
1.821 

0.070 
1.363 

-0.020 
-0.392 

0.074 
1.481 

0.072 
1.445 

-0.002 
-0.029 

0.018 
0.601 

2001-2012 203 
0.031 
0.537 

0.026 
0.506 

-0.004 
-0.094 

0.050 
0.806 

0.036 
0.660 

-0.014 
-0.247 

-0.009 
-0.458 

1976-2012 635 
0.083 
2.764 

0.096 
3.097 

0.013 
0.447 

0.095 
3.104 

0.099 
3.179 

0.004 
0.121 

-0.009 
-0.631 
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Panel B.  Bivariate Regressions 

   Non-S&P500 Group S&P500 Diff. of Diff. 

 Sample Period nobs b1
  

b1  b1  
b2

  
b2  b2  bb 12    

Sample 

1976-1987 187 
0.756 

10.061 
0.809 

10.040 
0.053 
0.489 

0.462 
7.552 

0.452 
5.819 

-0.010 
-0.100 

-0.063 
-0.307 

1988-2000 245 
0.803 

14.017 
0.693 
9.300 

-0.110 
-1.271 

0.438 
8.225 

0.562 
8.152 

0.123 
1.579 

0.233 
1.473 

2001-2012 203 
0.901 

10.262 
0.791 
7.895 

-0.109 
-1.220 

0.148 
1.765 

0.270 
2.817 

0.123 
1.219 

0.232 
1.241 

1976-2012 635 
0.820 

19.467 
0.759 

15.474 
-0.062 
-1.145 

0.352 
8.889 

0.436 
9.269 

0.084 
1.583 

0.146 
1.399 

Match 

1976-1987 187 
0.844 

12.157 
0.803 

12.962 
-0.041 
-0.491 

0.221 
3.462 

0.265 
4.522 

0.044 
0.558 

0.085 
0.542 

1988-2000 245 
0.800 

12.115 
0.785 

10.199 
-0.015 
-0.177 

0.368 
6.708 

0.406 
5.661 

0.038 
0.452 

0.053 
0.332 

2001-2012 203 
0.893 
8.893 

0.808 
7.155 

-0.086 
-0.819 

0.107 
1.087 

0.209 
1.918 

0.102 
0.905 

0.188 
0.881 

1976-2012 635 
0.843 

18.253 
0.798 

15.937 
-0.045 
-0.856 

0.241 
5.467 

0.301 
6.242 

0.060 
1.122 

0.105 
1.027 

Sample
-Match 

1976-1987 187 
-0.087 
-0.816 

0.006 
0.059 

0.093 
0.648 

0.241 
2.806 

0.187 
1.886 

-0.054 
-0.415 

-0.147 
-0.550 

1988-2000 245 
0.003 
0.040 

-0.092 
-1.035 

-0.095 
-1.019 

0.070 
0.942 

0.156 
1.955 

0.086 
0.930 

0.181 
1.014 

2001-2012 203 
0.008 
0.067 

-0.016 
-0.111 

-0.024 
-0.188 

0.041 
0.392 

0.061 
0.432 

0.020 
0.147 

0.044 
0.170 

1976-2012 635 
-0.022 
-0.399 

-0.039 
-0.598 

-0.017 
-0.244 

0.111 
2.179 

0.135 
2.178 

0.024 
0.347 

0.041 
0.304 
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Table 7: Stock Splits with Matched Sample and Dimson Adjustments 
 
We estimate the univariate and bivariate Dimson (1979) regressions for a sample of sample of 2-for-1 
stock splits from 1976 through 2012.  Our sample include all ordinary common stock two-for-one splits 

with a pre-split price of $10 or greater during our sample period.  tx1 and tx2  are return to a portfolio of 

high priced stocks whose price belongs to [3p/4, 5p/4] and low price stocks with prices within [1p/4, 3p/4] 
at time t, where p is the pre-split price before effective date of split.  The pre-event (post-event) window 
is defined as the one year ending (beginning) one month before (after) the split date. The Dimson beta is 
defines as a simple sum of the lag, concurrent, and lead coefficients from the following regressions with 
two leads and lags. In each cell, the first number is the mean and the second number is the corresponding 
t-statistic, where standard errors are clustered by month. In each cell, the first number is the mean and 
the second number is the corresponding t-statistic, where standard errors are clustered by month.   
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Panel A.  Univariate Regressions 

   High-Priced Group Low-Priced Group Diff. of Diff. 

 Sample Period nobs 1
  

1  1  2
  

2  2  12    

Sample 
 
 

1976-1987 1,606 
0.924 

55.306 
1.120 

42.904 
0.197 
8.486 

0.981 
55.824 

1.154 
51.170 

0.172 
8.603 

-0.024 
-2.271 

1988-2000 2,097 
0.963 

42.614 
1.132 

41.875 
0.168 
5.572 

1.056 
45.824 

1.267 
40.457 

0.211 
7.029 

0.043 
2.834 

2001-2012 727 
1.042 

29.491 
1.222 

37.391 
0.180 
5.181 

0.961 
26.458 

1.135 
34.593 

0.174 
5.621 

-0.006 
-0.411 

1976-2012 4,430 
0.962 

69.502 
1.142 

67.815 
0.181 

10.295 
1.014 

72.336 
1.204 

66.694 
0.191 

11.367 
0.010 
1.172 

Match 

1976-1987 1,606 
0.858 

48.739 
0.957 

42.268 
0.099 
5.078 

0.901 
50.803 

0.981 
48.675 

0.080 
4.855 

-0.019 
-2.349 

1988-2000 2,097 
0.847 

46.451 
0.943 

40.139 
0.095 
3.492 

0.926 
49.136 

1.046 
33.341 

0.120 
4.236 

0.025 
2.112 

2001-2012 727 
0.991 

30.774 
1.116 

42.113 
0.125 
4.538 

0.917 
29.015 

1.029 
37.387 

0.112 
4.852 

-0.013 
-1.031 

1976-2012 4,430 
0.875 

70.200 
0.976 

66.242 
0.102 
6.620 

0.915 
75.350 

1.020 
59.093 

0.104 
6.856 

0.003 
0.375 

Sample
-Match 

1976-1987 1,606 
0.066 
4.459 

0.163 
8.755 

0.098 
4.774 

0.080 
5.694 

0.173 
9.602 

0.093 
4.620 

-0.005 
-0.688 

1988-2000 2,097 
0.116 
6.757 

0.189 
9.134 

0.073 
3.493 

0.131 
7.490 

0.222 
10.703 

0.091 
4.638 

0.018 
1.619 

2001-2012 727 
0.050 
1.823 

0.105 
3.372 

0.055 
1.790 

0.045 
1.727 

0.106 
3.437 

0.062 
2.099 

0.007 
0.582 

1976-2012 4,430 
0.087 
8.081 

0.166 
12.819 

0.079 
5.911 

0.098 
9.204 

0.185 
14.350 

0.087 
6.826 

0.008 
1.249 
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Panel B.  Bivariate Regressions 

   High-Priced Group Low-Priced Group Diff. of Diff. 

 Sample Period nobs b1
  

b1  
b1  

b2
  

b2  b2  bb 12    

Sample 

1976-1987 1,606 
0.262 
7.176 

0.152 
3.754 

-0.109 
-1.915 

0.722 
20.178 

0.993 
25.398 

0.272 
4.645 

0.381 
3.349 

1988-2000 2,097 
0.177 
4.073 

0.008 
0.161 

-0.170 
-3.172 

0.866 
18.434 

1.238 
27.571 

0.372 
5.726 

0.542 
4.741 

2001-2012 727 
0.471 
7.325 

0.464 
8.411 

-0.007 
-0.101 

0.554 
11.453 

0.731 
13.473 

0.176 
3.055 

0.183 
1.513 

1976-2012 4,430 
0.256 
9.363 

0.135 
4.514 

-0.121 
-3.492 

0.762 
27.557 

1.066 
36.602 

0.304 
7.847 

0.425 
5.973 

Match 

1976-1987 1,606 
0.317 
9.210 

0.172 
4.637 

-0.144 
-2.832 

0.588 
17.657 

0.810 
20.767 

0.221 
4.132 

0.366 
3.549 

1988-2000 2,097 
0.226 
6.847 

0.109 
3.114 

-0.117 
-2.725 

0.698 
21.726 

0.941 
24.571 

0.243 
4.906 

0.360 
4.129 

2001-2012 727 
0.455 
8.797 

0.482 
9.691 

0.027 
0.432 

0.518 
12.138 

0.616 
14.502 

0.098 
1.893 

0.072 
0.651 

1976-2012 4,430 
0.296 

13.273 
0.193 
7.960 

-0.103 
-3.482 

0.628 
29.628 

0.840 
33.409 

0.211 
6.631 

0.315 
5.314 

Sample-
Match 

1976-1987 1,606 
-0.055 
-1.279 

-0.020 
-0.508 

0.035 
0.603 

0.133 
3.086 

0.184 
4.745 

0.050 
0.841 

0.015 
0.134 

1988-2000 2,097 
-0.049 
-1.240 

-0.101 
-2.548 

-0.053 
-0.944 

0.168 
4.067 

0.298 
7.071 

0.130 
2.347 

0.182 
1.672 

2001-2012 727 
0.015 
0.231 

-0.018 
-0.268 

-0.033 
-0.470 

0.037 
0.604 

0.115 
1.745 

0.078 
1.116 

0.112 
0.813 

1976-2012 4,430 
-0.040 
-1.517 

-0.058 
-2.228 

-0.018 
-0.496 

0.134 
4.955 

0.226 
8.443 

0.092 
2.575 

0.110 
1.568 
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Figure 1: Beta Changes and Momentum 
 
We estimate market betas of winner and loser stocks defined as the top and bottom deciles of stocks 
sorted on past 12-month returns, skipping the most recent month, as in Jegadeesh and Titman (2001), 
for the sample period 1976-2011. These betas are estimated over rolling windows of 252 days (1 year). 
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