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1 Introduction

The recent explosion of research on the effects of volatility in macroeconomics and finance

shows that economists care about uncertainty shocks. Investors, on the other hand, do not.

In the period since 1996, it has been costless on average to hedge news about future volatility

in aggregate stock returns; in other words investors have been unwilling to pay anything for

insurance against volatility news. Many economic theories – both in macroeconomics and

in finance – have the opposite prediction. In recent macroeconomic models, for example,

shocks to uncertainty about the future can induce large fluctuations in the economy.1 But if

increases in economic uncertainty can drive the economy into a recession, we would expect

that investors would want to hedge those shocks. The fact that volatility shocks have been

unpriced thus presents a challenge to the recent macro literature on the effects of volatility

shocks.

As a concrete example, consider the legislative battles over the borrowing limit of the

United States in the summers of 2010 and 2011. Those periods were associated with increases

in both financial measures of uncertainty, e.g. the VIX, and also the measure of policy

uncertainty from Baker, Bloom, and Davis (2014). Between June and July, 2011, the 1-

month variance swap rate – a measure of investor expectations for S&P 500 volatility over

the next month – rose from 16.26 to 25.96 percent (annualized, computed at the end of

each month). However, those shocks also had small effects on realized volatility in financial

markets: annualized realized volatility during June and July, 2011, was 14.59 and 15.23

percent, respectively. The debt ceiling debate caused uncertainty about the future to be

high, but did not correspond to high contemporaneous volatility.2

Those facts make the debt-ceiling shocks the exact type of shock that is studied in

the recent literature. It is precisely changes in expectations of future uncertainty that can

have strong macroeconomic effects, because they affect all forward-looking decisions. In

1See, e.g., Bloom (2009), Bloom et al. (2014), Christiano, Motto, and Rostagno (2014), Fernandez-
Villaverde et al. (2011), and Gourio (2012, 2013)

2The table below reports realized volatility and the 1-month variance swap rate (nearly identical to the
VIX) for June to October of 2011. Realized volatility is computed as the sum of squared daily log returns
during a month, and the variance swap rate is the price traded on the last day of the month.

June July Aug. Sept. Oct.
1-month variance swap 16.26 25.96 31.68 42.32 28.53
Realized volatility 14.59 15.23 47.18 28.80 29.80

Except for August, when both the variance swap rate and realized volatility rose in tandem, for all other
months the changes in the two series are essentially unrelated.

Some of the volatility in the fall of 2011 was also due to uncertainty about the state of the European
economy.
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this paper, we directly measure how much people are willing to pay to hedge shocks to

expectations of future volatility. We find that those news shocks are unpriced: any investor

can buy insurance against volatility shocks for free, and therefore any investor could have

freely hedged the increases in uncertainty during the debt ceiling debate.

We measure the price of variance risk using novel data on a wide range of volatility-

linked assets both in the US and around the world, focusing primarily on variance swaps

with maturities between 1 month and 14 years. The data covers the period 1996–2014.

Variance swaps are assets that pay to their owner the sum of daily squared stock market

returns from their inception to maturity. They thus give direct exposure to future stock

market volatility and are the most natural and direct hedge for the risks associated with

increases in aggregate economic uncertainty.

The analysis of the pricing of variance swaps yields two simple but important results.

First, news about future volatility is unpriced – exposure to volatility news has not earned a

risk premium. Second, exposure to realized variance is strongly priced, with an annualized

Sharpe ratio of -1.7 – five times larger than the Sharpe ratio on equities.3 We find that it is

the downside component of realized volatility that investors are specifically trying to hedge,

consistent with the results of Bollerslev and Todorov (2011) showing that realized variance

is priced due to its correlation with large negative jumps. We conclude that over our sample,

investors were willing to pay a large amount of money for protection from extreme negative

shocks to the economy (which mechanically generate spikes in realized volatility), but they

did not pay to hedge news that uncertainty or the probability of a disaster has changed.

The results present a challenge to a wide range of models. In macroeconomics, there is

now a large literature following Bloom (2009) (who also studies the variance of aggregate

stock returns) arguing that shocks to uncertainty can have important effects on the aggregate

economy. If increases in future uncertainty have sufficiently important effects on the economy

that they affect investor utility, though, we would expect them to carry a risk premium. The

fact that they do not implies that volatility shocks are not a major driver of welfare.

From a finance perspective, Merton’s (1973) intertemporal capital asset pricing model

says that assets that have high returns in periods with good news about future investment

opportunities are viewed as hedges and thus earn low average returns. Since expected future

volatility is a natural state variable for the investment opportunity set, the covariance of an

asset’s returns with shocks to future volatility should affect its expected return, but it does

not.4

3The Sharpe ratio is equal to the average excess return divided by the standard deviation. It thus gives
a scale-free measure of the risk premium on an asset.

4Recently, Campbell et al. (2014) and Bansal et al. (2013) estimate an ICAPM model with stochastic
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Consumption-based models with Epstein–Zin (1991) preferences have similar predictions.

Under Epstein–Zin preferences, marginal utility depends on lifetime utility, so that assets

that covary positively with innovations to lifetime utility earn high average returns.5 If high

expected volatility is bad for lifetime utility (either because volatility affects the path of

consumption or because volatility reduces utility simply due to risk aversion), then volatility

news should be priced.6

As a specific parameterized example with Epstein–Zin preferences, we study variance

swap prices in Drechsler and Yaron’s (2011) calibrated long-run risk model. Drechsler and

Yaron (2011) is a key benchmark because it is a quantitative model that can match a wide

range of features of the dynamics of consumption growth, stock returns, and volatility. While

the model represents a major innovation in being able to both generate a large variance risk

premium (the average gap between the 1-month variance swap rate and realized variance)

and match results about the predictability of market returns, we find that its implications

for the term structure of variance swap prices and returns are distinctly at odds with the

data: as one would expect, it predicts that shocks to future expected volatility should be

strongly priced, counter to what we observe empirically.

We obtain similar results in Wachter’s (2013) model of time-varying disaster risk with

Epstein–Zin preferences. The combination of predictability in the long-run probability of

disaster and Epstein–Zin preferences results in a counterfactually high price for insurance

against shocks to expected future volatility relative to current volatility. In both Wachter

(2013) and Drechsler and Yaron (2011), Sharpe ratios earned by claims on future variance

from 3 months to 14 years ahead are similar to those earned by claims to realized variance

over the next month, whereas in the data the Sharpe ratios are all near zero (or positive)

for claims to variance more than two months in the future. So both models fail to match

our key stylized fact that only very short-term variance claims earn large negative Sharpe

ratios.7

volatility and find that shocks to expected volatility (and especially long-run volatility) are priced in the
cross-section of returns of equities and other asset classes. Although the focus on their paper is not the
variance swap market, Campbell et al. (2014) test their specification of the ICAPM model also on straddle
returns and synthetic volatility claims, and find that the model manages to explain only part of the returns
on these securities. This suggests that the model is missing some high-frequency features of the volatility
market.

5This is true in the most common calibrations with a preference for early resolution of uncertainty. When
investors prefer a late resolution of uncertainty the risk prices are reversed.

6Also see Branger and Völkert (2010) and Zhou and Zhu (2012) for discussions. Barras and Malkhozov
(2014) study the determinants of changes in the variance risk premium over time.

7Similar problems with matching term structures of Sharpe ratios in structural models have been studied
in the context of claims to aggregate market dividends by van Binsbergen, Brandt, and Koijen (2012). Our
results thus support and complement theirs in a novel context. See also van Binsbergen and Koijen (2015)
for a recent review of the broad range of evidence on downward sloping term structures. Our paper also
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More positively, we show that Gabaix’s (2012) model of rare disasters, which builds on

the work of Rietz (1988), Barro (2006), and many others, can qualitatively (though not

precisely quantitatively) match the stylized fact that Sharpe ratios on variance claims fall

to zero rapidly with maturity. In Gabaix’s model, the probability of a disaster is constant,

but the exposure of the stock market – its expected decline if a disaster occurs – varies

over time. The realization of a disaster is inevitably a state with high realized volatility

(since if returns are highly negative, squared daily returns will mechanically be high), so

variance swaps provide a direct hedge against the occurrence of a disaster, meaning they

earn a large negative Sharpe ratio. But since changes in the exposure of the stock market to

consumption disasters, which drive expected future return variance, are uncorrelated with

the current level of consumption, they are not priced shocks. The model is thus able to

simultaneously generate a large negative premium on realized stock return variance and zero

premium on news about future variance, just like in the data.8 That said, Gabaix’s (2012)

model is not a complete quantitative description of financial markets; we simply view it

as giving a set of sufficient conditions a model must satisfy to match the behavior of the

variance swaps.

Our work is related to three main strands of the literature. First, there is the recent

work in macroeconomics on the consequences of shocks to volatility, such as Bloom (2009),

Bloom et al. (2014), Christiano, Motto, and Rostagno (2014), Fernandez-Villaverde et al.

(2011), and Gourio (2012, 2013). We argue that if shocks to volatility are important to the

macroeconomy, then investors should be willing to pay to hedge them. The lack of a risk

premium on volatility news thus argues against theories in which aggregate volatility news

is a major driver of business cycles.

Second, we build on the consumption-based asset pricing literature that has recently

focused on the pricing of volatility, including Bansal and Yaron (2004), Drechsler and Yaron

(2011), Wachter (2013), Campbell et al. (2014), and Bansal et al. (2013). We argue that

consumption-based models with Epstein–Zin preferences are unlikely to explain the pricing

of volatility claims.

Finally, there is a large extant literature studying the pricing of volatility in financial

markets.9 Most closely related to us is a small number of recent papers with data on variance

relates to a large literature that looks at derivative markets to learn about general equilibrium asset pricing
models, for example Backus, Chernov and Martin (2011) and Martin (2014, 2015).

8An alternative possibility is that the variance market is segmented from other markets, as in, e.g.,
Gabaix, Krishnamurthy, and Vigneron (2007). In that case, the pricing of risks might not be integrated
between the variance market and other markets. We show, however, that our results hold not only with
variance swaps, but also in VIX futures and in the options market, which is large, liquid, and integrated
with equity markets, making it less likely that our results are idiosyncratic.

9A number of papers study the pricing of volatility in options markets, e.g. Jackwerth and Rubinstein
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swaps with maturities from two to 24 months, including Egloff, Leippold, and Wu (2010) and

Aı̈t-Sahalia, Karaman, and Mancini (2014), who study no-arbitrage term structure models.

The pricing models we estimate are less technically sophisticated than that of Aı̈t-Sahalia,

Karaman, and Mancini (2014), but we complement and advance their work in three ways.

First, we examine a vast and novel range of data sources. For S&P 500 variance swaps, our

panel includes data at both shorter and longer maturities than in previous studies – from one

month to 14 years. The one-month maturity is important for giving a claim to shorter-term

realized variance, which is what we find is actually priced. Having data at very long horizons

is important for testing models, like Epstein–Zin preferences, in which expectations at very

long horizons are the main drivers of asset prices. In addition, we are the first to examine

the term structure of variance swaps for major international indexes, as well as for the term

structure of the VIX obtained from options on those indexes. We are thus able to confirm

that our results hold across a far wider range of markets, maturities, and time periods than

previously studied.

Our second contribution to the previous term structure literature is that rather than

working exclusively within the context of a particular no-arbitrage pricing model for the term

structure of variance claims, we derive from the data more general and model-independent

pricing facts. Our results can be directly compared against the implications of different

structural economic models, which would be more difficult if they were only derived within a

specific no-arbitrage framework. Our key finding, that purely transitory realized variance is

priced while innovations to expectations are not, can be obtained from a simple reduced-form

analysis and in data both for the United States and other countries. Nevertheless, we also

confirm our results in a more formal no-arbitrage setting, whose main advantage is to yield

much more precise estimates of risk prices.

Our third and most important contribution is to explore the implications of variance

swaps for testing structural economic models. Our theoretical analysis leads us to the con-

clusion that the empirical facts in the variance swap market are most consistent with a model

in which variance swaps are used to hedge the realization of market crashes and in which

variation in expected future stock market volatility is not priced by investors, counter to the

predictions of recent asset pricing and macroeconomic models.

The remainder of the paper is organized as follows. Section 2 describes the novel datasets

(1996), Coval and Shumway (2001), Bakshi and Kapadia (2003), Broadie, Chernov and Johannes (2009),
Christofferson, Jacobs, Ornthanalai, and Wang (2008), and Kelly, Pastor, and Veronesi (2014). Lu and Zhu
(2010) and Mencia and Sentana (2013) study VIX futures markets, while Bakshi, Panayotov, and Skoulakis
(2011) show how to construct forward claims on variance with portfolios of options. In the Treasury bond
market, Cieslak and Povala (2014) find, similar to us, that short-run volatility is more strongly priced than
long-run volatility. See also Amengual and Xiu (2014) for an important recent study of jumps in volatility.
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we obtain for variance swap prices. Section 3 reports unconditional means for variance

swap prices and returns, which demonstrate our results in their simplest form. Section 4

analyzes the cross-sectional and time-series behavior of variance swap prices and returns

more formally in standard asset pricing frameworks. In section 5, we discuss what structural

general-equilibrium models can fit the data. We calibrate three leading models from the

literature, comparing them to our data, showing that only one matches the key stylized

facts. Section 6 concludes.

2 The data

This section discusses various ways that an investor can obtain exposure to volatility. They

are all obviously closely related. We have data on all of the major markets, both in the US

and internationally.

2.1 Variance swaps

We focus primarily on variance swaps. Variance swaps are contracts in which one party pays

a fixed amount at maturity, which we refer to as price of the variance swap, in exchange for

a payment equal to the sum of squared daily log returns of the underlying occurring until

maturity. In this paper, the underlying is the S&P 500 index unless otherwise specified. The

payment at expiration of a variance swap initiated at time τ and with maturity m is

Payoffm
τ =

τ+m∑

j=τ+1

r2j − V Sm
τ (1)

where time here is indicated in days, rj is the log return on the underlying on date j, and

V Sm
τ is the price on date τ of an m-day variance swap. We focus on variance swaps because

they give pure exposure to variance, their payoffs are transparent and easy to understand,

they have a relatively long time-series, and they are relatively liquid.

Our main analysis focuses on two proprietary datasets of quoted prices for S&P 500

variance swaps.10 Dataset 1 contains monthly variance swap prices for contracts expiring in

1, 2, 3, 6, 12, and 24 months, and includes data from December, 1995, to October, 2013.

Dataset 2 contains data on variance swaps with expirations that are fixed in calendar time,

10Both datasets were obtained from industry sources. Dataset 2 is obtained from Markit Totem, and
reports averages of quotes obtained from dealers in the variance swap market. Since the prices we observe
are a composite of quotes from many different dealers (on average 11), the quality of this dataset is very
high, and comparable to that of the widely used CDS dataset from Markit.

7



instead of fixed maturities. Common maturities are clustered around 1, 3, and 6 months,

and 1, 2, 3, 5, 10, and 14 years. Dataset 2 contains prices of contracts with maturities

up to five years starting in September, 2006, and up to 14 years starting in August, 2007,

and runs up to February, 2014. We apply spline interpolation to each dataset to obtain the

prices of variance swaps with standardized maturities covering all months between 1 and 12

months for Dataset 1 and between 1 and 120 months for Dataset 2 (though in estimating

the no-arbitrage model below we use the original price data without interpolation).11

Both variance swap datasets are novel to the literature. Variance swap data with matu-

rities up to 24 months as in Dataset 1 has been used before (Egloff, Leippold, and Wu, 2010,

Ait-Sahalia, Karaman, and Mancini, 2014, and Amengual and Xiu, 2014), but the shortest

maturity previous studies observed was two months. We show that the one-month variance

swap is special in this market because it is the exclusive claim to next month’s realized

variance, which is the only risk priced in this market. Observing the one-month variance

swap is critical for precisely measuring the price of realized-variance risk.

This is also the first paper to observe and use variance swap data with maturity longer

than two years. Since Epstein–Zin preferences imply that it is the very low-frequency compo-

nents of volatility that should be priced (Branger and Volkert, 2010; Dew-Becker and Giglio,

2014), having claims with very long maturities is important for effectively testing the central

predictions of Epstein–Zin preferences.

The variance swap market is large: the notional value of outstanding variance swaps at

the end of 2013 was $4 billion of notional vega.12 A notional of $4 billion vega means that

an increase in annualized realized volatility of one percentage point induces total payments

of $4 billion. This market is thus small relative to the aggregate stock market, but it is

non-trivial economically.

From a large market participant we obtained information about average bid-ask spreads

by maturity. Typical bid-ask spreads are 1 to 2 percent for maturities up to 1 year, 2 to 3

percent between 1 and 2 years, and 3 to 4 percent for maturities up to 10 years. The bid-ask

spreads are thus non-trivial, but also not so large as to prohibit trading. Moreover, they

are small relatively to the volatility of the prices of these contracts. At the short end, the

spreads are comparable to those found for corporate bonds by Bao, Pan, and Wang (2011)

(which is particularly notable given that the volatility of variance swap returns is far larger

11For the times and maturities for which we have both datasets, the prices are effectively identical: the
correlations between the two datasets are never below 0.996. We will also show below that the prices are well
explained by only two principal components, suggesting that interpolation should accurately recover prices.

12See the Commodity Futures Trading Commission’s (CFTC) weekly swap report. The values reported
by the CFTC are consistent with data obtained from the Depository Trust & Clearing Corporation that we
discuss below.
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than that of corporate bonds).

Table 1 shows the total volume (in notional vega) for all transactions between March

2013 and June 2014. In little more than a year, the variance swap market saw $7.2 billion of

notional vega traded. Only 11 percent of the volume was traded in short maturity contracts

(1-3 months); the bulk of the transactions occurred for maturities between 6 months and 5

years, and the median maturity was 12 months.

To check the accuracy of the quoted prices that we obtained, we compare them to those

reported for actual trades by Depository Trust & Clearing Corporation (DTCC), which has

collected data on all trades of variance swaps in the US since 2013.13 Appendix Figure A.1

shows the distribution of the percentage difference between our quotes and the transaction

prices for different maturity baskets. Quotes and transaction prices are in most cases very

close, with the median absolute percentage difference across all maturities approximately 1

percent.14

In addition to the prices of S&P 500 variance swaps, we also obtained prices for variance

swaps in 2013 and 2014 for the FTSE 100 (UK), Euro Stoxx 50 (Europe), and DAX (Ger-

many) indexes. This is the first paper to examine volatility claims in international markets

and we show that our main results are consistent globally.

2.2 Options

Next, we examine claims to variance constructed using option prices. We focus on the VIX

index, which is constructed using all available out-of-the money options and measures the

risk-neutral expectation of squared variation (e.g. variance if the asset follows a diffusion,

variance plus squared jumps if it follows a jump diffusion) integrated over the life of the

options (Jiang and Tian (2005); Carr and Wu (2009)). The VIX is usually reported for a

30-day maturity, but the formulas are valid at any horizon. While other portfolios of options

can be constructed that are also exposed to volatility in some way (for example straddles),

13DTCC was the only swap data repository registered under the Dodd–Frank act to collect data on variance
swaps in 2013. The Dodd–Frank act requires that all swaps be reported to a registered data repository.

14Since variance swaps are traded over the counter, it is possible that counterparty risk could influence
their prices. Given that variance swaps are standardized contracts covered by the ISDA Master Agreement,
their margining follows standard procedures: an initial margin is posted by both parties, and variational
margin is exchanged regularly depending on the value of the position. The residual counterparty risk in these
contracts depends on the possibility of jumps in the value of the contracts between exchanges of collateral,
and is therefore only a material issue when returns have high skewness and kurtosis at short horizons.
As we will discuss later, only short-term variance swaps have payoffs that are far from Gaussian, and are
therefore exposed to counterparty risk, and we argue below that for these contracts counterparty risk would
push against the results we observe. We conclude that if counterparty risk was indeed priced by market
participants, accounting for it would in fact make our results stronger.
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the VIX is unique in that it represents a pure claim to the variance of the chosen horizon (or

the squared variation when there are jumps), without any direct exposure to price movement

of the underlying, independently of the horizon.15

The VIX is calculated based on an extraordinarily deep market. Options are traded

in numerous venues, have notional values outstanding of trillions of dollars, and have been

thoroughly studied.16 Since options are exchange-traded, they involve no counterparty risk,

so we can use them to whether our results for variance swaps are affected by counterparty

risk.

We construct VIX-type portfolios for the S&P 500, FTSE 100, Euro Stoxx 50, DAX, and

CAC 40 indexes using data from Optionmetrics. We confirm our main results by showing

that term structures and returns obtained from investments in options are similar to those

obtained from variance swaps.17

2.3 VIX futures

Futures have been traded on the VIX since 2004. The VIX futures market is significantly

smaller than the variance swap market, with current outstanding notional vega of approx-

imately $500 million.18 Bid/ask spreads are smaller than what we observe in the variance

swap market, at roughly 0.1 percent, but as the market is smaller, we would expect price

impact to be larger (and market participants claim that it is). We collected data on VIX

futures prices from Bloomberg since their inception and show below that they yield nearly

identical results to variance swaps.

More recently, a market has developed in exchange-traded notes and funds available to

retail investors that are linked to VIX futures prices. These funds currently have an aggregate

notional exposure to the VIX of roughly $5 billion, making them comparable in size to the

15An alternative strategy to obtain variance exposure are straddles. Relative to the VIX, straddles are
easier to construct, but they are claims on the absolute value of the return, not its variance, which makes
the term structure more difficult to interpret given that expected absolute values are not linearly summable
across periods. In addition, obtaining exposure to realized variance through straddles requires constant
rebalancing, while variance swaps require no rebalancing throughout their lives (and the VIX is just the
price of a synthetic variance swap).

16Even in 1990, Vijh (1990) noted that the CBOE was highly liquid and displayed little evidence of price
impact for large trades.

17Recently, Boguth et al. (2012a,b) argue that returns measured on options portfolios can be substantially
biased by noise, one potential source of which is the bid/ask spread. The majority of our results pertain
directly to prices of volatility claims, as opposed to their returns, meaning that the issues noted by Boguth et
al. are unlikely to affect our analysis. Furthermore, when we analyze returns, the portfolios are not levered
to the degree that Boguth et al. argue causes biases in results.

18According to the CBOE futures exchange market statistics. See:
http://cfe.cboe.com/Data/HistoricalData.aspx
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variance swap market.

3 The term structure of variance claims

In this section we study average prices and returns of variance swaps. The key result that

emerges is that only very short-duration variance claims earn a risk premium in our data.

3.1 Variance Swap Prices

The shortest maturity variance swap we consistently observe has a maturity of one month,

so we treat a month as the fundamental period of observation. We define RVt to be realized

variance – the sum of squared daily log returns – during month t. The subscript from here

forward always indexes months, rather than days.

Given a risk-neutral (pricing) measure Q, the price of an n-month variance swap at the

end of month t, V Sn
t , is

V Sn
t = E

Q
t

[
n∑

j=1

RVt+j

]

(2)

where EQ
t denotes the mathematical expectation under the risk-neutral measure conditional

on information available at the end of month t.19

Since an n-month variance swap is a claim to the sum of realized variance over months

t + 1 to t + n, it is straightforward to compute prices of zero-coupon claims on realized

variance. Specifically, we define an n-month zero-coupon variance claim as an asset with a

payoff equal to realized volatility in month t+ n. The absence of arbitrage implies

Zn
t ≡ E

Q
t [RVt+n] (3)

= V Sn
t − V Sn−1

t (4)

Zn
t represents the market’s risk-neutral expectation of realized variance n months in the

future. We use the natural convention that

Z0
t = RVt (5)

19In the absence of arbitrage, there exists a probability measure Q such that the price of an asset with
payoff Xt+1 is 1

Rf,t+1
E

Q
t [Xt+1], where Rf,t+1 is the risk-free interest rate. Under power utility, for example,

we have E
Q
t [Xt+1] = EP

t

[

(Ct+1/Ct)
−ρ

EP
t [(Ct+1/Ct)

−ρ]
Xt+1

]

, where ρ is the coefficient of relative risk aversion, C is

consumption, and P is the physical probability measure. The price of a variance swap does not involve the
interest rate because money only changes hands at the maturity of the contract.
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so that Z0
t is the variance realized during the current month t. A one-month zero-coupon

variance claim is exactly equivalent to a one-month variance swap, Z1
t = V S1

t .

Figure 1 plots the time series of zero-coupon variance claim prices for maturities between

one month and ten years. The figure shows all series in annualized percentage volatility

units, rather than variance units: 100 × √
12× Zn

t instead of Zn
t . It also plots annualized

realized volatility, 100×
√

12× Z0
t , in each panel. The top panel plots zero-coupon variance

claim prices for maturities below one year, while the bottom panel focuses on maturities

longer than one year.

The term structure of variance claim prices is usually weakly upward sloping. In times of

distress, though, such as during the financial crisis of 2008, the short end of the curve spikes,

temporarily inverting the term structure. Volatility obviously was not going to continue at

crisis levels, so markets priced variance swaps with the expectation that it would fall in the

future.

Figure 2 reports the average term structure of zero-coupon variance claims for two dif-

ferent subperiods – 2008–2014, a relatively short sample for which we have data for longer

maturities, is in the top panel, while the full sample, 1996–2013, is in the bottom panel. The

term structure of zero-coupon variance claim prices is upward sloping on average, but the

figure also shows that it is concave, flattening out very quickly as the maturity increases. In

particular, the curve is much steeper at the very short end than everywhere else.

The top and bottom panel of Figure 2 differ in both the time period and the maturities

displayed. To better compare the two time periods, Figure 3 shows the average prices in

both periods for maturities up to 12 months. The figure shows that after 2008 the level

of the whole curve increased, and the curve became slightly steeper for maturities above 1

month. However, even after 2008 the curve is still much flatter at maturities above 3 months

than it is at the very short end, displaying the same pattern as in the full sample. Of course,

the economic significance of the ”flatness” of the curve is easiest to understand within the

context of a model. In section 5 we show formally that the curve of zero-coupon variance

swaps is ”too flat” in both subperiods relative to the implications of workhorse asset pricing

models.

The average zero-coupon term structures in Figures 2 and 3 provide the first indication

that the compensation for bearing risk associated with news about future volatility is small

in this market. The return on holding a zero-coupon variance claim for a single month is
Zn−1

t+1
−Zn

t

Zn

t

. The average return is therefore closely related to the slope of the variance term

structure. If the variance term structure is upward sloping between maturities n − 1 and

n, zero-coupon claims of maturity n will have negative average returns, implying that it is

12



costly to buy insurance against increases in future expected volatility n − 1 months ahead.

The fact that the curve is very steep at short horizons and flat at long horizons is a simple

way to see that it is only the claims to variance in the very near future that earn significant

negative returns.

3.2 Returns on zero-coupon variance claims

We now study the monthly returns on zero-coupon variance claims. The return on an n-

month zero-coupon claim corresponds to a strategy that buys the n-month claim and sells

it one month later as an (n− 1)-month claim, reinvesting then again in new n-month zero-

coupon variance claims. We define the excess return of an n-period variance claim following

Gorton, Hayashi, and Rouwenhorst (2013)20

Rn
t+1 =

Zn−1
t+1 − Zn

t

Zn
t

(6)

Given the definition that Z0
t = RVt, the return on a one-month claim, R1

t+1 is simply the

percentage return on a one-month variance swap. We focus here on the returns for maturities

of one to 12 months, for which we have data since 1995. All the results extend to higher

maturities in the shorter sample.

Table 2 reports descriptive statistics for our panel of monthly returns. Only the average

returns for the first and the second zero-coupon claims are negative, while all the others are

zero or slightly positive. Return volatilities are also much higher at short maturities, though

the long end still displays significant variability – returns on the 12-month zero-coupon claim

have an annual standard deviation of 17 percent, which indicates that markets’ expectations

of 12-month volatility fluctuates significantly over time.

Finally, note that only very short-term returns have high skewness and kurtosis. A buyer

of short-term variance swaps is therefore potentially exposed to counterparty risk if realized

variance spikes and the counterparty defaults. This should induce her to pay less for the

insurance, i.e. we should expect the average return to be less negative. Therefore, the

presence of counterparty risk on the short end of the term structure would bias our estimate

towards not finding the large negative expected returns that we instead find. On the other

hand, returns on longer-maturity zero-coupon claims have much lower skewness and kurtosis,

20Note that Zn−1
t+1 −Zn

t is also an excess return on a portfolio since no money changes hands at the inception
of a variance swap contract. Following Gorton, Hayashi, and Rouwenhorst (2013), we scale the return by
the price of the variance claim bought. This is the natural scaling if the amount of risk scales proportionally
with the price, as in Cox, Ingersoll, and Ross (1985). We have reproduced all of our analysis using the
unscaled excess return Zn−1

t+1 − Zn
t as well and confirmed that all the results hold in that case.
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which indicates that counterparty risk is substantially less relevant for longer maturities.

Finally, we note that we obtain the same results using options, which are exchange traded

and not affected by counterparty risk.

Given the different volatilities of the returns at different ends of the term structure,

it is perhaps more informative to examine Sharpe ratios (average excess returns scaled by

standard deviations), which measure compensation earned per unit of risk. Figure 4 shows

the annual Sharpe ratios of the 12 zero-coupon claims. The Sharpe ratios are negative

for the one- and two-month claims (at -1.4 and -0.5, respectively), but all other Sharpe

ratios are insignificantly different from zero. The results at the short end of the curve

indicate that investors are willing to pay a large premium to hedge realized volatility. What

is new and surprising in this picture is the fact that investors are not willing to pay to

hedge any innovations in expected volatility, even two or three months ahead. A claim to

volatility at a horizon beyond one month is purely exposed to news about future volatility:

its return corresponds exactly to the change in expectations about volatility at its maturity.

Pure news about future expected volatility will therefore affect its return, whereas purely

transitory shocks to volatility that disappear before its maturity will not affect it at all. Our

results therefore show that news about future volatility has commanded a small to zero risk

premium.21

3.3 Evidence from other markets

The results for variance swaps can also be confirmed in the options market. We exploit the

well-known fact that if realized variance is calculated using sufficiently small time periods, a

variance swap can be replicated by a portfolio of options with the same maturity (Jiang

and Tian (2005)).22 The term structure of synthetic zero-coupon variance claim prices

constructed from options should then align well with the term structure of actual variance

swap prices. The appendix reports details of the construction of the synthetic variance swap

prices.

21The declining term structure of Sharpe ratios on short positions in volatility is consistent with the
finding of van Binsbergen, Brandt, and Koijen (2012) that Sharpe ratios on claims to dividends decline with
maturity, and that of Duffee (2011) that Sharpe ratios on Treasury bonds decline with maturity. For a
review, see van Binsbergen and Koijen (2015).

22The most famous use of that result is in the construction of the VIX index, which uses 1-month options,
and corresponds to the price of a 1-month variance swap. Due to the discretization inherent in the practical
calculation of the payoff of a variance swap (using daily returns, rather than instantaneous returns), the
VIX is not identical to the price of a variance swap. While the difference in prices of variance swaps and
option-based synthetic contracts is economically informative, its magnitude is far smaller than the differences
in prices of zero-coupon volatility claims across maturities (Bollerslev and Todorov (2011) and Ait-Sahalia
et al. (2014)).
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Figure 5 shows the term structure of prices and Sharpe ratios of zero-coupon variance

claims obtained from the variance swap data compared to the synthetic claims for maturities

up to 1 year. While the curves obtained using options data seem noisier, the curves deliver

the same message: the volatility term structure is extremely steep at the very short end but

quickly flattens out for maturities above two months, and Sharpe ratios rapidly approach

zero as the maturity passes two months.23 Appendix Figure A.3 shows that we obtain similar

results with VIX futures.24,25

Figure 6 shows that our results also extend to international markets. Figure 6 plots aver-

age term structures obtained from both variance swaps and synthetic option-based variance

claims for the Euro Stoxx 50, FTSE 100, CAC 40 and DAX indexes.26 To ease the compar-

ison across markets, in this figure we plot the term structures relative to the prices of the

respective 2-month claims, so that all the curves are equal to 1 at the two-month maturity.

Both panels of the figure show that the international term structures have an average

shape that closely resembles the one observed for the US (the solid line in both panels),

demonstrating that our results using US variance swaps extend to the international mar-

kets.27

4 Asset pricing

We now formally examine the pricing of risks in the variance market.

4.1 Reduced-form estimates

We begin by exhibiting our main pricing result in a simple reduced-form setting: investors

pay to hedge the immediate realized volatility but not shocks to expected volatility. To test

that claim, we need to disentangle shocks to realized variance from shocks to expectations

23Given the high liquidity of the options market, we might have expected option-based portfolios to be
less noisy. However, the synthetic variance portfolios load heavily on options very far out of the money
where liquidity is relatively low. This demonstrates another advantage of studying variance swaps instead
of options.

24VIX futures are not exactly comparable to variance swaps because they are claims on the V IX, not
on V IX2. A convexity effect makes the prices of claims on variance and volatility different, but the Figure
shows that it is quantitatively small.

25We have also compared our data to the CBOE’s 3-month and mid-term volatility indexes (VXV and
VXMT) and find that our data is nearly identical to those two series in the period when the CBOE calculates
them.

26We do not plot Sharpe ratios for these markets because the data is of relatively poor quality, and the
series of returns are very noisy.

27In the appendix (Figure A.2) we also confirm that for the indexes for which we have both variance swap
prices and synthetic prices obtained from options, the two curves align well.
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of future volatility. This subsection focuses just on the returns of the variance claims with

maturity of 12 months or less since they require less interpolation; all the economically

interesting results are clearly visible in that maturity range.

4.1.1 Extracting innovations

As usual in the term structure literature, we begin by extracting principal components from

the term structure of zero-coupon variance claims. The first factor explains 97.1 percent

of the variation in the term structure and the second explains an additional 2.7 percent.

The loadings of the variance swaps on the factors are plotted in the top panel of Figure 7,

while the time series of the factors are shown in the bottom panel of the figure. The first

factor captures the level of the term structure, while the second measures the slope. As we

would expect, during times of crisis, the slope turns negative. The level factor captures the

longer-term trend in volatility and clearly reverts to its mean more slowly.

The two factors explain 99.9 percent of the variation in variance swap prices and thus

encode essentially all the information contained in variance swap prices. So if we find that

the shocks to both factors are unpriced, then that means that no forward-looking information

in the term structure, whether it is driven by expectations for volatility or risk premia, is

priced.

To extract shocks to variance and expectations, we estimate a first-order vector autore-

gression (VAR) with the two principal components and realized variance (RV ). Including

RV in the VAR allows us to separately identify shocks to the term structure of variance

swaps and transitory shocks to realized volatility. The three estimated innovations are posi-

tively correlated: the correlation between RV and level shocks is 0.7, and that between RV

and slope shocks is 0.6.

We rotate the three shocks using a Cholesky factorization where the first shock affects all

three variables, the second affects only the slope and RV , and the third shock affects only

RV . We will therefore refer to the third shock as the pure RV shock. The pure RV shock

allows us to measure the price of risk for a shock that has only a transitory effect on realized

variance and no effect on the term structure of variance swap prices, while the other two

rotated shocks affect both current realized variance and also expectations of future variance.

Impulse response functions are reported in Appendix Figure A.4.
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4.1.2 Risk prices

We estimate risk prices for the three shocks using the Fama–MacBeth (1973) procedure on

1- to 12-month zero-coupon variance claims.28 The top panel of Table 3 reports the loadings

of each variance swap return on the three orthogonalized shocks. Short-maturity variance

swaps are exposed to all three shocks with the expected signs. The higher maturities are

mostly exposed to the level and slope shocks, with essentially no exposure to the pure RV

shock.

The bottom panel of Table 3 reports the estimated annualized risk prices. Of the three

shocks, only the pure RV shock has a statistically significant risk price. The risk price is

also economically highly significant: it implies that an asset that was exposed only to the

pure RV shock would earn an annualized Sharpe ratio of -2.72. Since the three shocks all

have the same standard deviation, the magnitudes of the risk prices are directly comparable.

Those for shocks 1 and 2 are five to eight times smaller than that for the pure RV shock,

and thus economically far less important.29

Table 3 thus shows that investors do not price shocks to the level and slope, but they

accept large negative returns to hedge transitory RV shocks. No forward-looking information

about volatility is priced.

4.1.3 Controlling for the market return

One possible explanation for why realized variance is priced is that it provides a good hedge

for aggregate market shocks. To test that possibility, we add the market return as an

additional factor in the estimation.30 The first column of Table 4 shows that indeed the

zero-coupon volatility claims are heavily exposed to the market return. But when the pure

RV shock is included, the market return is no longer significantly priced. The R2 of the

model for the cross-section of average returns also rises from 37.7 to 99.7 percent when the

pure RV shock is included.

28The results are robust to estimating the risk prices using one- and two-step GMM.
29Despite the good fit of the model in terms of R2, the GMM and the GRS test reject the null that all the

average pricing errors are zero. This is because the pricing errors, while being small relative to the overall
average returns of these contracts, are still statistically different from zero. The same applies to the tests in
the remaining sections of the paper.

30We add the market return as a test asset to impose discipline on its risk premium. For readability and
to ensure that the risk premium on the market is matched relatively closely, we increase the weight on the
market return by of factor of 12 as a test asset in our cross-sectional tests. That way, the market return
carries as much weight in the pricing tests as do all the variance claims combined. The market factor, though,
is still the monthly market return, as are all our zero-coupon variance returns.
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4.1.4 Upside and downside volatility

As discussed above, realized variance is a combination of the diffusive component of returns

and the realization of jumps. Our pricing results show that investors want to hedge the

transitory component of this combination, but not news about its future expected values.

So far, we have not disentangled the two components: the most striking of our empirical

results is that news about future expected RV is unpriced, which means that investor must

not care about both shocks to expected diffusive volatility and shocks to the expected jump

probability. We do not need to disentangle the two to conclude that investors care about

neither.31

However, it is interesting to understand why investors are willing to pay so much to hedge

transitory realized variance. Existing literature on the variance risk premium, focusing on the

short-term variance risk premium (particularly, the 30-day VIX), has addressed this question

by explicitly modeling the jump process. Bollerslev and Todorov (2011), for example, show

that investors are mostly worried about unexpected price jumps, and that is the component

of transitory volatility they are paying to hedge.

Here we follow a different approach to show that agents mostly desire protection against

realized downside component of realized variance.32 Following Andersen and Bondarenko

(2007), we decompose the realized variance in a month, RVt, into an upper and a lower

semivariance: the integrated realized variances computed only when prices are above or

below a threshold. In particular, following Andersen and Bondarenko (2007) we construct

the upper RV in each month as

RV U
t =

∑

j∈t

(rj)
2Ij(Fj > F0)

where j ∈ t indicates days j in month t, Ij(Fj > F0) is an indicator that the futures price

Fj of the underlying in day j is above the starting point F0 at the beginning of the month.

Similarly, we construct

RV D
t =

∑

j∈t

(rj)
2Ij(Fj ≤ F0)

Andersen and Bondarenko (2007) discuss two useful properties of these realized barrier

variances (or semivariances), which can be interpreted as the volatility of the upward and

31One alternative possibility would be that for some reason news about diffusive volatility and news about
jump risk have risk prices with opposite signs. We leave investigation of that theory for future work and
simply note for now that the extant asset pricing models we examine below do not consider it. In the models
we are aware of, investors are averse to both diffusive and jump-related volatility.

32See also Kilic and Shaliastovic (2015).
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downward price movements. First, the two components sum to RVt,

RVt = RV U
t +RV D

t

Second, the price of claims to RV U
t and RV D

t can be obtained from option prices in a

manner similar to how the V IX is computed. We refer to these two prices as V IXU
t and

V IXD
t . (V IXU

t )
2 is the no-arbitrage price of a contract whose payoff is RV U

t+1, and (V IXD
t )2

is the no-arbitrage price of a contract whose payoff is RV D
t+1. Andersen and Bondarenko

(2007) also derive a relation between the three prices,

V IX2
t = (V IXU

t )
2 + (V IXD

t )2

Finally, just as in the case of the VIX, we can compute the prices of the two claims for

different maturities and study the term structure.

Figure 8 plots the term structure of the zero-coupons obtained from V IX, as well as

those for V IXU and V IXD. As before, maturity zero corresponds to the average RVt,

RV U
t and RV D

t , respectively. The slopes between the zero- and one-month maturities then

represent precisely the returns on the 30-day V IX, V IXU , and V IXD. We can see that

most of the negative average return that investors are willing to accept to hold the VIX

comes from the extremely negative monthly return of the V IXD (about -30% per month),

while V IXU commands a return much closer to zero.33 This confirms the intuition that the

reason investors dislike realized volatility is due to its downside component (which Bollerslev

and Todorov (2011) show is dominated by downward jumps).

4.2 The predictability of volatility

Since the key result of the paper concerns the pricing of volatility shocks at different horizons,

a natural question is how much news there actually is about future volatility. The total risk

premium for assets that hedge volatility news – which we showed at the beginning of Section

3 to be zero – is the product of the quantity of risk (how much news about future volatility

investors receive), and the price of this risk (how averse investors are to such news). Perhaps

the reason that investors are willing to pay little to hedge volatility news is that there is not

a lot of news in the first place. If volatility is not predictable, there is no news for investors

to actually hedge, and the quantity of risk is low. We argue that it is the price of risk, not

the quantity of risk, that explains why risk premia for variance news are low. Investors do

33Note that contrary to the case of the VIX, for V IXU and V IXD the slope between maturities above
one month cannot be interpreted exactly in terms of returns since the barrier is moving over time.
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receive news about future volatility, but they seem indifferent to that news.

We begin by noting that the results in the previous section already explicitly focus on

the price of risk of volatility, rather than the quantity. The reported risk prices measure

compensation per unit of risk, so they are unaffected by how much news there is about

future volatility. If volatility were not very predictable, the quantity of news risk would be

low, but the price per unit of risk would still be estimated correctly from our cross-sectional

regressions. So our previous analysis already shows that the low risk premia are due to a low

price of variance news risk.34

And indeed, a large empirical literature shows clearly that volatility is predictable. An-

dersen et al. (2003), Ait-Sahalia and Mancini (2008), Bandi, Russell, and Yang (2008), and

Brownlees, Engle, and Kelly (2011) show that volatility is predictable based on lagged re-

turns of the underlying and past volatility. Campbell et al. (2014) focus on longer horizons

(up to 10 years) and show that both the aggregate price-earnings ratio and the Baa-Aaa

default spread are useful predictors of long-run volatility.

Moreover, the literature has found that multiple factors are needed to explain the dy-

namics of volatility expectations. Standard stochastic volatility models (e.g. Adrian and

Rosenberg (2008)) as well as the reduced-form VAR model of Campbell et al. (2014) all

point to the existence of different factors driving the volatility process, with the factors dif-

fering by their level of persistence. The presence of different factors driving the current and

future evolution of RV is what allows the separate estimation of the price of realized variance

shocks and the prices of shocks to future expected variance. Our pricing results from the

previous sections exploit the multivariate nature of the volatility process to price separately

shocks to RV and shocks to future expectations of RV, and the standard errors on the risk

prices reflect our ability to empirically distinguish between the different shocks.

To give a sense of the magnitude of the predictability of volatility at different horizons

Table 5 reports R2s from predictive regressions for realized volatility at different frequencies

and horizons. One of the advantages of working with predictors other than variance swap

prices is that we can use a much longer sample to establish the predictability of volatility,

since we can compute RV and the predictors all the way back to 1926 (we also look at the

predictability by variance swap prices in the appendix, despite the much shorter sample

available).

34Of course, the lower the amount of risk, the harder it is to estimate the price of risk; this effect is fully
captured by the standard errors on the estimates of the price of risk. In the limit, if there were no news
about future volatility at all, our analysis would not be able to provide an estimate of the price of risk of
volatility news. Instead, in the data there is sufficient news about future expected volatility to enable us to
pin down the price of these shocks (more precisely so when imposing the restrictions of the term structure
model, explored below).
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The first pair of columns focuses on forecasts of monthly realized variance, while the

second pair repeats the exercise at the annual frequency. The R2s for monthly volatility

range from 45 percent at the 1-month horizon to 20 percent at the 12-month horizon. In

predicting annual volatility, R2s range between 56 and 21 percent for horizons of 1 to 10

years.

The third pair of columns in Table 5 reports, as a comparison, the results of forecasts

of dividend growth.35 R2s for dividend growth are never higher than 9 percent. So in

the context of financial markets, there is an economically large amount of predictability of

volatility. The appendix takes an extra step beyond Table 5 and shows, using Fama and Bliss

(1987) and Campbell and Shiller (1991) regressions, that nearly all the variation in variance

swap prices is actually due to variations in expected volatility, rather than risk premia.

We conclude by noting that while there is ample evidence of the predictability of volatility

at the horizons relevant for this analysis (from 3 months upwards), the result that the risk

premium for volatility news is close to zero would have strong implications for macroeconomic

and financial models even if it was driven by low quantity of expected volatility risk. If there

is not much volatility news, then the macro literature showing that volatility news can drive

the business cycle would seem irrelevant. Similarly, asset pricing models in which news

about future volatility plays an important role (like the ICAPM or several versions of the

long-run-risks model) would lose this source of priced risk. Nonetheless, in this paper we

build on the wealth of evidence supporting the predictability of volatility, and show that the

high price of expected volatility risk implied by many models is strongly at odds with what

we observe in the data.

4.3 A no-arbitrage model

In this section, we extend the pricing results reported above by considering a more formal

estimation. We analyze a standard no-arbitrage term structure model for variance swaps.

The model delivers implications strongly supportive of our reduced-form results. Because

the no-arbitrage model uses the prices of the variance swaps, rather than just their returns,

and because it uses a full no-arbitrage structure, it is able to obtain much more precise

estimates of risk prices. We show that not only are the risk prices on the level and slope

factors statistically insignificant, but they are also economically small.

The no-arbitrage model has three additional advantages over the reduced-form analysis:

it explicitly allows for time-variation in the volatility of shocks to the economy and risk prices,

35We compare predictability of volatility to that of dividends since realized variance in each month is the
stochastic payment of the variance swap contract in that month.
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the standard errors for the risk prices take into account uncertainty about the dynamics of

the economy (through the VAR), and it links us more directly to the previous literature.

Furthermore, because the inputs to the estimation of the no-arbitrage model are the observed

variance swap prices rather than monthly returns, the results in this section do not rely on

any interpolation and we can simultaneously use the full time series from 1996 to 2013 and

every maturity from one month to 14 years.

4.3.1 Risk-neutral dynamics

As above, we assume that the term structure of variance swaps is governed by a bivariate

state vector (s2t , l
2
t )

′. Rather than state the factors as a level and slope, we now treat them

as a short- and a long-term component, which will aid in the estimation process. s2t is the

one-month variance swap price: s2t = E
Q
t [RVt+1]. The other state variable, l2t , governs the

central tendency of s2t .

We begin by specifying the conditional risk-neutral mean of the states,

E
Q
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where v
Q
l is a constant to be estimated which captures the unconditional mean of realized

variance. l2t can be viewed as the risk-neutral trend of s2t . The first two rows of (7) are the

discrete-time counterpart to the standard continuous-time setup in the literature, e.g. Egloff,

Leippold, and Wu (2010) and Ait-Sahalia, Karaman, and Mancini (2014).36 We diverge from

Egloff, Leippold, and Wu (2010) and Ait-Sahalia, Karaman, and Mancini (2014) in explicitly

specifying a separate process for realized variance, noting that it is not spanned by the other

shocks. The specification of a separate shock to RVt+1 allows us to ask how shocks to both

realized variance and the term structure factors are priced.37

Given the assumption that s2t = E
Q
t [RVt+1], the price of an n-period variance swap V Sn

t

36For admissibility, we require that 0 < ρQs < 1, ρQl > 0, and v
Q
l > 0. These restrictions ensure that

risk-neutral forecasts of s2t and l2t , hence variance swap prices at various maturities, are strictly positive.
37From a continuous-time perspective, it is not completely obvious how to think about a ”shock” to realized

variance that is completely transitory. There are two standard interpretations. One is that the innovation in
RVt+1 represents the occurrence of jumps in the S&P 500 price. Alternatively, there could be a component of
the volatility of the diffusive component of the index that has shocks that last less than one month. At some
point, the practical difference between a jump and an extremely short-lived change in diffusive volatility is
not obvious. The key feature of the specification is simply that there are shocks to the payout of variance
swaps that are orthogonal to both past and future information contained in the term structure.
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is

V Sn
t = E

Q
t

[
n∑

i=1

RVt+i

]

= E
Q
t

[
n∑

i=1

s2t+i−1

]

(8)

which can be computed by applying (7) repeatedly, and which implies that V Sn
t is affine in

s2t and l2t for any maturity.

4.3.2 Physical dynamics and risk prices

Define Xt ≡ (s2t , l
2
t , RVt)

′. We assume that X follows a VAR(1) under the physical measure:38
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εt+1 ∼ N
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In our main results, we follow Egloff, Leippold, and Wu (2010) and Ait-Sahalia, Karaman,

and Mancini (2014) and assume that the market prices of risk are proportional to the states,

so that the log SDF, mt+1, is

mt+1 − Et [mt+1] = Λ′

tVt (Xt+1)
−1/2

εt+1 (11)

where Λt =






λsst

λllt

λRV st




 (12)

where the superscript 1/2 indicates a lower triangular Cholesky decomposition. The term

Vt (Xt+1)
−1/2 standardizes and orthogonalizes the shocks εt+1. Λt thus represents the price

of exposure to a unit standard deviation shock to each component of Xt+1.

To maintain the affine structure of the model, we need the product Vt(Xt+1)
1/2Λt to be

affine in Xt. The specification for Λt in (12) is therefore typically accompanied by a structure

38Admissibility requires that vQl and the feedback matrix in (9) be non-negative, which ensures that the
forecasts of Xt, and hence future volatility, be strictly positive.
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for the conditional variance similar to that of Cox, Ingersoll, and Ross (1985),

Vt(Xt+1) =






σ2
ss

2
t 0 σs,RV s

2
t

0 σ2
l l

2
t 0

σs,RV s
2
t 0 σ2

RV s
2
t




 (13)

which guarantees that Vt(Xt+1)
1/2Λt is affine in Xt.
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4.3.3 Empirical results

The estimation uses standard likelihood-based methods. The appendix describes the details.

We use both Dataset 1 and Dataset 2, meaning that the number of variance swap prices

used in the estimation varies over time depending on availability.

Model fit Table 6 reports the means and standard deviations of the variance swap prices

observed and fitted by our model together with the corresponding root mean squared errors

(RMSE). The average RMSE across maturities up to 24 months is 0.73 annualized volatility

points (i.e. the units in Figure 1).40 For maturities longer than 24 months, since we do not

have time series of variance swap prices with fixed maturities for the entire sample, we cannot

report the sample and fitted moments for any fixed maturity. Instead, we stack all contracts

with more than 24 months to maturity into one single series and compute the RMSE from

the observed and fitted values of this series. The corresponding RMSE is reported in the

last row of Table 6. At 0.87 percentage points, it compares favorably with the RMSE for the

shorter maturities. Table 6 suggests that our models with two term structure factors plus

RV are capable of pricing the cross-section of variance swap prices for an extended range of

maturities. Even when maturities as long as 14 years are included in estimation, the data

does not seem to call for extra pricing factors.

Risk prices The steady-state risk prices in the model are reported in Table 7 along with

their standard errors. As in the previous analysis, we find clearly that it is the purely

39It is important to note that the specifications of Λt in (12) and Vt(Xt+1) in (13) introduce tight re-

strictions on the difference Et(Xt+1) − E
Q
t (Xt+1). In the appendix, we therefore consider two alternative

specifications for the variance process Vt (Xt+1) and the risk prices Λt that are more flexible in certain di-
mensions. The results, both in terms of point estimates and standard errors, are essentially identical across
the various specifications that we consider, so we report results for this specification here since it is most
common in the literature.

40When we exclude the financial crisis, using a sample similar to that of Egloff, Leippold, and Wu (2010),
we obtain an RMSE of 0.33 percentage points, which is nearly identical to their reported value. The increase
in fitting error in the full sample is, not surprisingly, brought about by the large volatility spikes that occurred
during the crisis.
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transitory shock to realized variance that is priced (RV -risk). The Sharpe ratio associated

with an investment exposed purely to the transitory RV shock – analogous to the pure RV

shock above – is -1.70.

In the VAR analysis in the previous section, the pure RV shock had no immediate impact

on the level and slope factors, but it could potentially indirectly affect future expected

variance through the VAR feedback. In the no-arbitrage model, that effect is shut off through

the specification of the dynamics. That is, the RV shock here is completely transitory – it

has no impact on expectations of volatility on any future date. The other two shocks are

forced to account for all variation in expectations. The fact that the results are consistent

between the no-arbitrage model and the reduced-form analysis in the previous section helps

underscore the robustness of our findings to different modeling assumptions.

The short- and long-term factors earn risk premia of only -0.11 and -0.18, respectively,

neither of which is significantly different from zero. The lack of statistical significance is not

due to particularly large standard errors; the standard errors for the risk prices for the s2t

and l2t shocks are in fact substantially smaller than that for the RV shock. Moreover, Sharpe

ratios of -0.11 and -0.18 are also economically small. For comparison, the Sharpe ratio of

the aggregate stock market in the 1996–2013 period is 0.43. So the risk premia on the short-

and long-term components of volatility are between 25 and 42 percent of the magnitude of

the Sharpe ratio on the aggregate stock market. On the other hand, the Sharpe ratio for

the RV shock is nearly four times larger than that for the aggregate stock market and 10 to

15 times larger than the risk prices on the other two shocks. Our no-arbitrage model thus

clearly confirms the results from the previous sections.

Time-series dynamics The estimated parameters determining the dynamics of the state

variables under the physical measure are (equation 9):
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The key parameter to focus on is the persistence of l2t . The point estimate is 0.9814,

with a standard error of 0.0013. At the point estimate, long-term shocks to variance have

a half-life of 37 months. That level of persistence is actually higher than the persistence

of consumption growth shocks in Bansal and Yaron’s (2004) long-run risk model, and only

slightly smaller than the persistence they calibrate for volatility, 0.987. Our empirical model

thus allows us to estimate risk prices on exactly the type of long-run shocks that have been

considered in calibrations. As we discuss further below, the fact that we find that the
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long-term shock to volatility is unpriced is strongly at odds with Epstein–Zin preferences.

5 Economic interpretation

The key message of our empirical analysis is that the average investor in the variance swap

market is not willing to pay for protection against news about high future volatility. In other

words, investors do not hedge volatility intertemporally. That fact immediately suggests that

models based on Epstein–Zin (1991) preferences, where intertemporal hedging effects are

central, will struggle to match the data. To confirm that intuition, we simulate two models

with Epstein–Zin preferences. The first is the long-run risk model proposed by Drechsler

and Yaron (2011), and the second is a discrete-time version of the model with time-varying

disaster risk proposed by Wachter (2013). In both cases, we show that the models imply

that the Sharpe ratios earned from rolling over long-term zero-coupon variance claims are

almost as negative as those earned from holding just the one-month variance swap, counter

to what we observe empirically in Figure 4.

The evidence we provide that there is no intertemporal hedging runs counter to many

models beyond Epstein–Zin. Merton’s ICAPM, for example, implies that shocks to expected

volatility should be priced since volatility affects the investment opportunity set.41 The

variance swap market thus is not well explained by the ICAPM. Similarly, in models with

value-at-risk or leverage constraints, the constraint on financial intermediaries depends on

expected volatility, rather than realized volatility.42 In general, then, it is forward-looking

volatility that is relevant in most asset pricing models.

The lack of intertemporal hedging in the variance swap market suggests a myopic model

of investors. We therefore consider a simple model in which investors have power utility.

While it is well known that the power utility model fails to match many asset pricing facts

when consumption follows a process with low volatility, Rietz (1988), Barro (2006), Martin

(2013), and others show that allowing for a small probability of a large decline in consumption

can render the power utility model consistent with standard asset pricing moments. Gabaix

(2012) extends the disaster model to allow for a time-varying exposure of the stock market to

disasters. We find that Gabaix’s model is able to match both the qualitative and quantitative

features of the variance swap market. This suggests that investors in the variance swap

market are mostly worried about large negative shocks to the economy in which returns

41This is true even if volatility does not predict returns. If volatility rises but expected returns remain
constant, then the investment opportunity set has deteriorated.

42For example, financial intermediaries might be limited in the total amount of risk they may take. When
expected volatility is higher, their demand for risky securities will fall.
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collapse and variance spikes, and are purchasing variance swaps to hedge these, and only

these, shocks.43

5.1 Structural models of the variance premium

5.1.1 A long-run risk model

Drechsler and Yaron (2011), henceforth DY, extend Bansal and Yaron’s (2004) long-run risk

model to allow for jumps in both the consumption growth rate and volatility. DY show that

the model can match the mean, volatility, skewness, and kurtosis of consumption growth

and stock market returns, and generates a large variance risk premium that forecasts market

returns, as in the data. DY is thus a key quantitative benchmark in the literature.

The structure of the endowment process is

∆ct = µ∆c + xt−1 + εc,t (14)

xt = µx + ρxxt−1 + εx,t + Jx,t (15)

σ̄2
t = µσ̄ + ρσ̄σ̄

2
t−1 + εσ̄,t (16)

σ2
t = µσ + (1− ρσ) σ̄

2
t−1 + ρσσ

2
t−1 + εσ,t + Jσ,t (17)

where ∆ct is log consumption growth, the shocks ε are mean-zero and normally distributed,

and the shocks J are jump shocks. σ2
t controls both the variance of the normally distributed

shocks and also the intensity of the jump shocks. There are two persistent processes, xt and

σ̄2
t , which induce potentially long-lived shocks to consumption growth and volatility. We

follow DY’s calibration for the endowment process exactly.

Aggregate dividends are modeled as

∆dt = µd + φxt−1 + εd,t (18)

Dividends are exposed to the persistent but not the transitory part of consumption growth.

Equity is a claim on the dividend stream, and we treat variance claims as paying the realized

variance of the return on equities.

DY combine that endowment process with Epstein–Zin preferences, and we follow their

calibration. Because there are many parameters to calibrate, we refer the reader to DY for

the full details. However, the parameters determining the volatility dynamics are obviously

43We do not explicitly consider here habit-formation models as in Campbell and Cochrane (1999), since
conditional on the habit the agent behaves as a standard power utility investor, with an effective risk aversion
that depends on the current level of the habit.
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critical to our analysis. Note that the structure of equations (16) and (17) is the same as

the VAR in our no-arbitrage model in equation (9). The parameters governing volatility in

DY’s calibration and the corresponding values from our estimation are:

DY Estimates

ρσ 0.87 0.82

ρσ̄ 0.987 0.9814

stdev(εσ̄,t) 0.10 0.05

stdev(εσ,t + Jσ,t) 1.10 1.48

The two feedback coefficients, ρσ and ρσ̄, are nearly identical to our estimated values.

Their long-term component, σ̄2, has a persistence of 0.987, which compares favorably with

our estimate of 0.9814. Similarly, their calibration of ρσ = 0.87 is comparable to our es-

timate of 0.82. The calibration deviates somewhat more in the standard deviations of the

innovations.

Overall, though, DY’s calibration implies volatility dynamics highly similar to what we

observe empirically. The close match is not surprising as DY’s model was calibrated to fit

the behavior of the (one-month) VIX and realized variance. As a robustness check, though,

in the appendix we also simulate DY setting the standard deviations of the innovations to

match our empirical estimates and obtain implications for variance swap prices that are

essentially unchanged.

Given the high quality of DY’s calibration, if the long-run risk model fails to match the

term structure of variance swap prices, it is not because it has an unreasonable description

of the dynamics of volatility. Rather, we would conclude that the failure is due to the

specification of the preferences, namely Epstein–Zin with a representative agent.

5.1.2 Time-varying disaster risk

The second model we study is a discrete-time version of Wachter’s (2013) model of time-

varying disaster risk. In this case, consumption growth follows the process,

∆ct = µ∆c + σ∆cε∆c,t + J∆c,t (19)

where ε∆c,t is a mean-zero normally distributed shock and Jt is a disaster shock. The

probability of a disaster in any period is Ft, which follows the process

Ft = (1− ρF )µF + ρFFt−1 + σF

√

Ft−1εF,t (20)
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The CIR process ensures that the probability of a disaster is always positive in the continuous-

time limit, though it can generate negative values in discrete time. We calibrate the model

similarly to Wachter (2013) and Barro (2006). Details of the calibration are reported in the

appendix. The model is calibrated at the monthly frequency. In the calibration, the steady-

state annual disaster probability is 1.7 percent as in Wachter (2013). σF is set to 0.0075 (εF

is a standard normal), and ρF = 0.871/12, which helps generate realistically volatile stock

returns and a persistence for the price/dividend ratio that matches the data. If there is no

disaster in period t, Jt = 0. Conditional on a disaster occurring, Jt ∼ N (−0.30, 0.152), as in

Barro (2006). Finally, dividends are a claim to aggregate consumption with a leverage ratio

of 2.8.44

Wachter (2013) combines this specification of disasters with Epstein–Zin preferences.

One of her key results is that a model with time-varying disaster risk and power utility has

strongly counterfactual predictions for the behavior of interest rates and other asset prices.

She thus argues that time-varying disaster risk should be studied in the context of Epstein–

Zin preferences. We follow her in assuming the elasticity of intertemporal substitution is 1,

and we set risk aversion to 3.6.45

5.1.3 Time-varying recovery rates

The final model we study is a version of Gabaix’s (2012) model of disasters with time-

varying recovery rates. Because the probability of a disaster is constant, power utility and

Epstein-Zin are equivalent in terms of their implications for risk premia. We use power utility

in our calibration, which eliminates the intertemporal hedging motives present in the two

previous models. In this model, the expected value of firms following a disaster is variable.

Specifically, we model the consumption process identically to equation (19) above, but with

the probability of a disaster, Ft, fixed at 1 percent per year (Gabaix’s calibration). Following

Gabaix, dividend growth is

∆dt = µ∆d + λε∆c,t − Lt × 1 {J∆c,t 6= 0} (21)

44The occurrence of a disaster shock implies that firm value declines instantaneously. To calculate realized
variance for periods in which a disaster occurs, we assume that the shock occurs over several days with
maximum daily return of -5 percent. For example, a jump of 20% would occur over 4 consecutive days, with
a 5% decline per day. This allows for a slightly delayed diffusion of information and also potentially realistic
factors such as exchange circuitbreakers. The small shocks ε∆c,t are treated as though they occur diffusively
over the month, as in Drechsler and Yaron (2011).

45Given the calibration of the endowment, if risk aversion is raised any higher the model does not have
a solution. The upper bound on risk aversion is a common feature of models in which the riskiness of the
economy varies over time.
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λ here represents leverage. 1 {·} is the indicator function. Dividends are thus modeled as

permanently declining by an amount Lt on the occurrence of a disaster. The value of L is

allowed to change over time and follows the process

Lt = (1− ρL) L̄+ ρLLt−1 + εL,t (22)

We calibrate L̄ = 0.5 and ρL = 0.871/12 as in the previous model, and εL,t ∼ N (0, 0.16).

We set the coefficient of relative risk aversion to 7 to match the Sharpe ratio on one-month

variance swaps. Other than the change in risk aversion, our calibration of the model is nearly

identical to Gabaix’s (2012), which implies that we will retain the ability to explain the same

ten puzzles that he examines. He did not examine the ability of his model to match the term

structure of variance claims, so this paper provides a new test of the theory.

5.2 Results

We now examine the implications of the three models for the zero-coupon variance curve.46

Figure 9 plots population moments from the models against the values observed empirically.

The top panel reports annualized Sharpe ratios for zero-coupon variance claims with matu-

rities from 1 to 12 months. Our calibration of Gabaix’s model with time-varying recovery

rates matches the data well: it generates a Sharpe ratio for the one-month claim of -1.3,

while all the forward claims earn Sharpe ratios of zero, similarly to what we observe in the

data.

The two models with Epstein–Zin preferences, on the other hand, both generate Sharpe

ratios for claims on variance more than one month ahead that are counterfactually large,

especially when compared to the Sharpe ratio of the 1-month variance swap. For both the

long-run risk and the time-varying disaster model, the Sharpe ratio on the three-month

variance claim is roughly three-fourths as large as that on the one-month claim, whereas the

three-month claim actually earns a slightly positive return empirically.

The economic intuition for the result is straightforward. If investors are risk-averse, then

periods of high volatility are periods of low utility. And under Epstein–Zin preferences,

periods with low lifetime utility are periods with high marginal utility. Investors thus desire

to hedge news about future volatility, and forward variance claims allow them to do so.

Moreover, volatility in all future periods affects lifetime utility symmetrically (discounted

by the rate of pure time preference), which is why investors in these models pay the same

46We focus on variance swaps rather than the VIX or SVIX because we have a full term structure out to
ten years, whereas the VIX and SVIX are limited by data on option prices. The conclusions are unchanged
across the contracts.
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amount to hedge volatility at any horizons.

The expected returns on the variance claims are closely related to the average slope of the

term structure. The bottom panel of Figure 9 reports the average term structure in the data

and in the models. The figure shows, as we would expect, that neither model with Epstein–

Zin preferences generates a curve that is as concave as we observe in the data. Instead, the

DY model generates a curve that is too steep everywhere (including on the very long end),

while the time-varying disaster model generates a curve that is too flat everywhere.47 On

the other hand, the average term structure in the model with time-varying recovery rates

qualitatively matches what we observe in the data – it is steep initially and then perfectly

flat after the first month.

The comparison between the calibrated models and the data reported in Figure 9 does

not take into account the statistical uncertainty due to the fact that we only observe variance

swap prices in a specific sample. To directly test the models against the data, we simulate

the calibrated models and verify how likely we would be to see a period in which the variance

swap curve looks like it does in our data. In particular, the left-hand column of Figure 10

plots results from 10,000 215-month simulations of the models (the number of months in

our full sample). In each simulation, we calculate the average term structure of the variance

curve, and normalize the value at the third month to 1 so that we are sampling the shape of

the term structure rather than its level. We then plot the median and 95-percent sampling

interval of the term structure from the simulations.

Both the long-run risk model and time-varying disaster risk model have a hard time

in matching the empirical shape of the variance term structure in the simulations, and

particularly producing a steep slope at the short end of the curve and a small slope for higher

maturities. Gabaix’s model with time-varying recovery rates performs qualitatively better:

the 1-month variance swap is priced significantly higher than average realized volatility, but

the slope is zero for all the rest of the curve. The long-run risk and time-varying disaster

models are statistically rejected at the short end of the curve, while the long-run risk model

is rejected at the long end of the curve. It is true that Gabaix’s model does not provide an

accurate quantitative fit, but its success is nevertheless notable given how few free parameters

it has.

The right-hand column of figure 10 simulates variance swap prices in the models out to

maturities of 10 years. The sampling intervals are wider because our sample with 10-year

maturities only runs for 70 months. The story is similar to that in the right-hand column,

though: all three models fail quantitatively, but the time-varying recovery model is the one

47The models have similar Sharpe ratios but different slopes of the term structure because the latter
depends on the expected return, not the Sharpe ratio.
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that best matches the qualitative features of the term structure.

DY’s long-run risk model is calibrated in such a way that it nearly exactly matches

our estimated volatility dynamics and it still fails to match the basic features of the term

structure of variance claims. We therefore conclude from Figures 9 and 10 that models with

a major intertemporal hedging motive, such as Epstein–Zin preferences, do not match the

main features of the variance swap market. On the other hand, a model in which investors

have power utility, and hence make investment choices myopically, is able to better match

our data.

The main features of the models that affect their ability to match our data can be

summarized as follows. In models with Epstein–Zin preferences, investors will pay to hedge

shocks to expected future volatility, especially at long horizons. Long-term zero-coupon

variance claims should thus have large negative returns because they provide such a hedge.

But in the data, we observe shocks to future expected volatility and find that their price is

close to zero. Models with power utility, or where the variation in expected stock market

volatility is independent of consumption volatility, solve that problem since investors are

myopic and shocks to future expected volatility are not priced. However, the models also

need to explain the high risk price associated with the realized volatility shock. In a power

utility framework, this can be achieved if states of the world with high volatility are associated

with large drops in consumption, as in a disaster model.

5.3 The behavior of volatility during disasters

In order for variance swaps to be useful hedges in disasters, realized volatility must be high

during large market declines. A number of large institutional asset managers sell products

meant to protect against tail risk that use variance swaps, which suggests that they or their

investors believe that realized volatility will be high in future market declines.48

In the spirit of Barro (2006), we now explore the behavior of realized volatility during

consumption disasters and financial crises using a panel data of 17 countries, covering 28

events. We obtain two results. First, volatility is indeed significantly higher during disasters.

Second, the increase in volatility is not uniform during the disaster period; rather, volatility

spikes for one month only during the disaster and quickly reverts. It is those short-lived but

extreme spikes in volatility that make variance swaps a good product to hedge tail risk.

We collect daily market return data from Datastream for a total of 37 countries since

1973. We compute realized volatility in each month for each country. To identify disasters,

48In particular, see Man Group’s TailProtect product (Man Group (2014)), Deutsche Bank’s ELVIS prod-
uct (Deutsche Bank, 2010) and the JP Morgan Macro Hedge index.
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we use both the years marked by Barro (2006) as consumption disasters and the years marked

by Schularick and Taylor (2012), Reinhart and Rogoff (2009) and Bordo et al. (2001) as

financial crises.49 Given the short history of realized volatility available, our final sample

contains 17 countries for which we observe realized volatility and that experienced a disaster

during the available sample. Table 8 shows for each country the first year of our RV sample

and the years we identify as consumption or financial disasters.

The first three columns of Table 8 compare the monthly annualized realized volatility

during disaster and non-disaster years. Column 1 shows the maximum volatility observed in

any month of the year identified as a disaster averaged across all disasters for each country.

Column 2 shows the average volatility during the disaster years, and column 3 shows the

average volatility in all other years.

Comparing columns 2 and 3, we can see that in almost all cases realized volatility is indeed

higher during disasters. For example, in the US the average annualized realized volatility is

25 percent during disasters and 15 percent otherwise. Column 1 reports the average across

crises of the highest observed volatility. Within disaster years there is large variation in

realized volatility: the maximum volatility is always much higher than the average volatility,

even during a disaster. Disasters are associated with large spikes in realized volatility, rather

than a generalized increase in volatility during the whole period.

To confirm this result, in Figure 11 we perform an event study around the peak of

volatility during a disaster. For each country and for each disaster episode, we identify the

month of the volatility peak during that crisis (month 0) and the three months preceding

and following it. We then scale the volatility behavior by the value reached at the peak, so

that the series for all events are normalized to 1 at the time of the event. We then average

the rescaled series across our 28 events.

The figure shows that indeed, the movements in volatility that we observe during disasters

are short-lived spikes, where volatility is high for essentially only a single month. In the

single months immediately before and after the one with the highest volatility, volatility is

40 percent lower than its peak, and it is lower by half both three months before and after

the worst month.

6 Conclusion

This paper shows that it is only the transitory part of realized variance that is priced.

That fact is not consistent with a broad range of structural asset pricing models. It is

49See Giglio et al. (2014) for a more detailed description of the data sources.
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qualitatively consistent with a model in which investors desire to hedge rare disasters, but

even that model does not match all the quantitative features of the data. Interestingly, the

data is not consistent with all disaster models. The key feature that we argue models need in

order to match our results is that variation in expected stock market volatility is not priced

by investors, whereas the transitory component of volatility is strongly priced.

The idea that variance claims are used to hedge crashes is consistent with the fact that

many large asset managers, such as Deutsche Bank, JP Morgan, and Man Group sell products

meant to hedge against crashes that use variance swaps and VIX futures. These assets have

the benefit of giving tail protection, essentially the form of a long put, but also being delta

neutral (in an option-pricing sense). They thus require little dynamic hedging and yield

powerful protection against large declines.

More broadly, shocks to expected volatility, such as that observed during the recent

debt ceiling debate, are a major driving force in many current macroeconomic models. If

aggregate volatility shocks are a major driver of the economy, we would expect investors

to desire to hedge them. We find, though, that the average investor is indifferent to such

shocks. The evidence from financial markets is thus difficult to reconcile with the view that

volatility shocks are an important driver of business cycles or welfare.
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Figure 1: Time series of zero-coupon variance claim prices
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Note: The figure shows the time series of zero-coupon variance claim prices of different maturities. For
readability, each line plots the prices in annualized volatility terms, 100 ×

√
12× Zn

t , for a different n.
The top panel plots zero-coupon variance claim prices for maturities of 1 month, 3 months, and one year.
The bottom panel plots zero-coupon variance claim prices for maturities of 1 year, 5 years and 10 years.

Both panels also plot annualized realized volatility, 100×
√

12× Z0
t .
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Figure 2: Average zero-coupon variance claim prices
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Note: The figure shows the average prices of zero-coupon variance claims of different maturity, across
different periods. The top panel shows average prices between 2008 and 2013, when we observe maturities
up to 10 years.The bottom panel shows averages between 1996 and 2013, for claims of up to 1 year
maturity. In each panel, the ”x” mark prices of maturities we directly observe in the data (for which

no interpolation is necessary). All prices are reported in annualized volatility terms, 100 ×
√
12× Zn

t .

Maturity zero corresponds to average realized volatility, 100×
√

12× Z0
t .
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Figure 3: Subsample analysis of zero-coupon variance claims
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Note: The figure compares the average prices of zero-coupon variance claims for maturities up to 1 year,
for the two subsamples of the top and bottom panel of figure 2.

Figure 4: Annualized Sharpe ratios for zero-coupon variance claims
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Note: The figure shows the annualized Sharpe ratio for the zero-coupon variance claims. The returns are
calculated assuming that the investment in an n-month variance claim is rolled over each month. Dotted
lines represent 95% confidence intervals. The sample used is 1996-2013.

42



Figure 5: Synthetic zero-coupon variance claims: prices and Sharpe ratios
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Note: See Figure 2. The solid line in the top panel plots average prices of zero-coupon variance claims
calculated using the formula for the VIX index and data on option prices from the CBOE. The dotted
line is the set of average prices of zero-coupon variance claims constructed from variance swap prices. The
bottom panel plots annualized Sharpe ratios for zero-coupon variance claims returns with prices calculated
using the VIX formula and CBOE option data. Dotted lines in the bottom panel represent 95% confidence
intervals. The sample covers the period 1996-2013.
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Figure 6: Average zero-coupon variance claim prices for international markets
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Note: The figure plots the average prices of zero-coupon variance claims as in Figure 2 for different
international indices. The series for the S&P 500 (both in the top and bottom panel) is obtained from
variance swaps (as in Figure 2). The top panel shows international curves obtained using option prices,
using the same methodology used to construct the VIX for the S&P 500 (as in Figure 5). Options data is
from OptionMetrics. The series cover FTSE 100, CAC 40, DAX, and STOXX 50, for the period 2006-2014.
The bottom panel shows international curves obtained using variance swaps on the FTSE 100, DAX, and
STOXX 50, for one year starting in April 2013. All series are rescaled relative to the price of the 2-month
zero-coupon variance price (so they all cross 1 at maturity 2 months).
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Figure 7: Principal components of variance swap prices
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Note: The top panel plots the loadings of the variance swap prices on the level and slope factors (first
two principal components). The bottom panel plots the time series of the level and slope factors. Both
are normalized to have zero mean and unit standard deviation and are uncorrelated in the sample. The
sample covers the period 1996-2013.
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Figure 8: Decomposing the upward and downward volatility components
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Note: The solid thick line plots average prices of zero-coupon variance claims calculated using the formula
for the VIX index. The dashed line plots the zero-coupon prices of the downside component of the VIX,
V IXD. The thin solid line plots the zero-coupon prices of the upside component of the VIX, V IXU . All
series are constructed using option data from CBOE. The sample covers the period 1996-2013.
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Figure 9: Sharpe ratios and average term structure in different models
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Note: Notes: The top panel gives the population Sharpe ratios from the three models and the sample
values from the data. The bottom panel plots population means of the prices of zero-coupon claims. All
the curves are normalized to have the same value for the realized variance.
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Figure 10: Slope of the term structure in different models
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Note: Simulated zero-coupon variance claim prices from structural models. All curves are normalized to
equal 1 at three months. The dotted lines are 95-percent sampling intervals from the simulations. The
left-hand column simulates the models for 215 months to match our sample of 1- to 12-month variance
claims. The right-hand column simulates 70 months to match the sample with up to 10-year claims.
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Figure 11: Average behavior of RV during consumption disasters and financial crises
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Note: We calculate realized variance in each month of a crisis and scale it by the maximum realized
variance in each crisis. The figure plots the average of that scaled series for each country and crisis in
terms of months relative to the one with the highest realized variance.
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Table 1: Volume of variance swaps across maturities

Maturity (months) Volume (million vega) Voume (percentage)

1 402 6%

2 403 6%

3 78 1%

4-6 1037 14%

7-12 1591 22%

13-24 2371 33%

25-60 1315 18%

60+ 48 1%

Total 7245 100%

Note: Total volume of variance swap transactions occurred between March 2013 and June 2014 and
collected by the DTCC.

Table 2: Characteristics of returns

Maturity (months) Mean Std Min 25th p. Median 75th p. Max Skew Exc.Kurt.

1 -25.6 69.0 -86.2 -59.2 -40.7 -16.5 687.1 6.1 54.3

2 -5.6 47.8 -59.3 -32.5 -18.2 9.5 376.0 3.9 23.3

3 0.8 34.0 -46.1 -21.4 -4.9 15.0 249.4 2.7 14.1

4 0.7 27.4 -42.2 -17.1 -5.4 11.4 170.4 1.9 7.5

5 0.2 22.5 -37.3 -14.1 -3.6 9.9 126.7 1.6 5.2

6 0.5 19.7 -31.0 -12.3 -3.7 12.9 100.6 1.3 3.3

7 0.6 18.7 -31.4 -12.4 -2.4 11.0 90.7 1.1 2.5

8 0.8 17.4 -29.8 -11.4 -2.9 11.7 81.6 1.0 2.0

9 0.9 16.2 -27.7 -10.3 -1.8 9.6 74.6 0.9 1.7

10 1.2 15.6 -30.0 -9.7 -1.9 10.0 70.8 0.9 1.5

11 1.5 16.0 -32.6 -9.7 -1.9 11.3 69.7 0.9 1.3

12 1.8 17.4 -35.0 -10.2 -2.1 12.2 70.4 1.0 1.4

Note: The table reports descriptive statistics of the monthly returns for zero-coupon variance claims (in

percentage points). For each maturity n, returns are computed each month as Rn
t+1 =

Zn−1

t+1
−Zn

t

Zn
t

. Given the

definition that Z0
t = RVt, the return on a one-month claim, R1

t+1 is the percentage return on a one-month
variance swap.
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Table 3: Reduced-form pricing estimates

Panel A: Betas Shock 1 Shock 2 Pure RV

Maturities (months)

1 0.38 -0.19 0.32

2 0.40 -0.11 0.05

3 0.28 0.00 -0.01

4 0.22 0.04 -0.01

5 0.18 0.05 0.00

6 0.15 0.06 0.00

7 0.13 0.06 0.01

8 0.12 0.06 0.01

9 0.11 0.06 0.00

10 0.11 0.06 0.00

11 0.11 0.06 0.00

12 0.11 0.06 0.00

Panel B: Risk Prices

Risk prices -0.51 -0.33 -2.72***

Standard error 0.44 0.64 0.47

R2 0.998

Note: Results of Fama–MacBeth regressions using the 12 zero-coupon claims as test assets and the three
rotated VAR innovations as pricing factors. Shock 1 has effects on all three factors; shock 2 affects only
the slope and RV, and pure RV only affects RV on impact. The top section reports betas on the three
factors. The bottom setion reports estimated risk prices and the Fama–MacBeth standard errors. ***
denotes significance at the 1-percent level. Risk prices are annualized by mutiplying by

√
12.
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Table 4: Pricing results for the CAPM

(1) (2)

CAPM CAPM + pure RV

Panel A: Betas Rm Pure RV Rm

VS, maturities

1 -7.11 0.36 -7.87

2 -6.93 0.08 -7.11

3 -5.04 0.01 -5.07

4 -3.97 0.01 -3.98

5 -3.14 0.01 -3.16

6 -2.59 0.01 -2.62

7 -2.32 0.02 -2.36

8 -2.13 0.01 -2.17

9 -2.03 0.01 -2.05

10 -2.01 0.01 -2.03

11 -2.06 0.01 -2.08

12 -2.17 0.01 -2.18

Market 1.00 0 1.00

Panel B: Risk Prices

Risk prices 0.0105*** -0.72*** 0.0046

Standard error 0.0034 0.12 0.0032

R2 0.377 0.997

Note: See Table 3. Pricing results for the CAPM and for the CAPM with pure RV. The test assets are
the 12 zero-coupon variance claims and the market portfolio. The market portfolio is given 12 times as
much weight as the variance claims to ensure that it is priced correctly in the estimation.
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Table 5: Forecasting volatility at different horizons: R2

monthly RVt+n yearly RVt+n yearly ∆dt+n

Predictor: RVt RVt RVt RVt ∆dt ∆dt

with PEt, DEFt

√ √ √

Months Years Years

1 0.39 0.45 1 0.41 0.56 1 0.00 0.09

2 0.21 0.34 2 0.10 0.25 2 0.00 0.02

3 0.18 0.32 3 0.05 0.09 3 0.06 0.07

6 0.15 0.26 5 0.02 0.04 5 0.05 0.07

12 0.10 0.18 10 0.00 0.21 10 0.02 0.03

Note: The first column of the table reports R2 of predictive regressions of monthly volatility n months
ahead at the monthly frequency. The second column reports R2 of predictive regressions of yearly volatility
n years ahead at the yearly frequency. The second column reports R2 of predictive regressions of yearly
log dividend growth n years ahead at the yearly frequency. The left side of each column reports univariate
regressions using the lagged value of the target, while the right side of each column adds the market
price-earnings ratio and the default spread as predictors. The sample is 1926-2014.

Table 6: Average prices and pricing errors for the no-arbitrage model

Maturity Sample Fitted RMSE

(months) Mean Std Mean Std

1 21.24 8.00 21.70 7.86 1.00

2 21.89 7.55 21.88 7.55 0.33

3 22.22 7.25 22.04 7.30 0.40

6 22.75 6.64 22.42 6.74 0.63

12 23.20 6.06 22.99 6.11 0.53

24 23.65 5.58 23.87 5.45 0.61

>24 0.87

Note: Prices are reported in annualized volatility terms. The RMSE is calculated using the deviation of
the fitted price from the sample price in annualized voaltility terms.
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Table 7: Steady-state risk prices

Sources of risk Estimates Standard Error

s2t -risk −0.11 0.31

l2t -risk −0.18 0.12

RV-risk −1.70∗∗∗ 0.48

Note: Estimates of steady-state risk prices from the no-arbitrage model. Risk prices are annualized by
multiplying by

√
12. *** denotes significance at the 1-percent level.

Table 8: Realized volatility during disasters

Country Peak Vol. Mean Vol. Mean Vol. Sample Consumption Financial

during disaster during disaster outside disaster start year disasters crises

US 47.5 25.2 14.9 1926 1933 1929, 1984, 2007

UK 24.6 16.4 15.1 1973 1974, 1984, 1991, 2007

France 72.1 31.4 16.6 1973 2008

Japan 40.9 21.4 15.1 1973 1992

Australia 33.7 13.8 15.1 1973 1989

Germany 83.1 28.1 14.3 1973 2008

Italy 55.1 23.0 19.2 1973 1990, 2008

Sweden 52.3 27.7 19.5 1982 1991, 2008

Switzerland 67.1 27.4 12.1 1973 2008

Belgium 66.1 32.0 12.4 1973 2008

Finland 29.3 18.9 25.0 1988 1993 1991

South Korea 80.0 43.6 24.6 1987 1998 1997

Netherlands 77.7 33.2 14.7 1973 2008

Spain 69.4 30.5 17.1 1987 2008

Denmark 37.2 14.7 14.4 1973 1987

Norway 44.2 20.2 20.7 1980 1988

South Africa 36.9 17.8 18.5 1973 1977, 1989

Note: Characteristics of annualized monthly realized volatility during and outside disasters across coun-
tries. Returns data used to construct realized volatility for the US is from CRSP, for all other countries
from Datastream. Consumption disaster dates are from Barro (2006). Financial crisis dates are from
Schularick and Taylor (2012), Reinhart and Rogoff (2009) and Bordo et al. (2001).
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A.1 Synthetic variance swap prices

We construct option-based synthetic variance claims for maturity n, V IX2
n,t using the meth-

ods described by the CBOE (2009) in their construction of the VIX index, using data from

Optionmetrics covering the period 1996 to 2012.

In particular, we construct V IX2
n,t for maturity n on date t as

V IX2
n,t ≡

2

n

∑

i

∆Ki

K2
i

exp (−nRn,t)P (Ki) (A.1)

where i indexes options; Ki is the strike price of option i; ∆Ki =
Ki+1−Ki−1

2
unless i is the

first or last option used, in which case ∆Ki is just the difference in strikes between Ki and

its neighbor; Rn,t is the n-day zero-coupon yield (from Fama and Bliss (1987)); and P (Ki)

is the midpoint of the bid-ask spread for the out-of-the-money option with strike Ki. The

summation uses all options available with a maturity of n days. We deviate slightly here

from the CBOE, which drops certain options with strikes very far from the current spot. For

each t and n, we require the presence of at least 4 out-of-the-money calls and puts. We create

V IX2
n,t for all monthly maturities by interpolating between available option maturities, using

the same techniques as the CBOE.

Under the assumption that the price of the underlying follows a diffusion (i.e. does not

jump), it is the case that

V IX2
n,t = E

Q
t

[
ˆ t+n

t

σ2
jdj

]

(A.2)

≈ E
Q
t

[
n∑

j=1

RVt+j

]

(A.3)

where σ2
t is the instantaneous volatility at time t.1 The second line simply notes that the

integrated volatility is approximately equal to the sum of squared daily returns (where the

quality of the approximation improves as the sampling interval becomes shorter). In other

words, when the underlying follows a diffusion, V IX2
n,t corresponds to the price of an idealized

variance swap where the squared returns are calculated at arbitrarily high frequency.

Given V IX2
n,t prices at the monthly intervals, we also construct zero-coupon variance

claims, V IXZn,t as

V IXZn,t = V IX2
n,t − V IX2

n−1,t (A.4)

1See Carr and Wu (2009).
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The zero-coupon prices obtained from options are very close to those obtained from

variance swaps. Figure 5 in the text compares the two curves for the S&P 500. Figure A.2

compares the curves for the STOXX 50, FTSE 100 and DAX, and shows that the curves are

similar for international markets as well (though in that case there is more noise).

A.2 Decomposing the source of variation of variance

swap prices

In this section we investigate whether the variation in variance swap prices is primarily driven

by changes in expected future volatility or changes in risk premia.2

Using the definition of zero-coupon variance claims, the following identity holds, for each

maturity n:

Zn
t − Z0

t = [EtRVt+n −RVt] +

[

−Et

n−1∑

j=0

r
n−j
t+1+j

]

(A.5)

where rnt is the one-period return of the n-period zero-coupon claim. An increase in the n-

period zero-coupon variance price must predict either an increase in future realized variance

or lower future variance risk premia. Following Fama and Bliss (1987) and Campbell and

Shiller (1991), we can then decompose the total variance of Zn
t − Z0

t into the component

that predicts future RV , and the component that captures movements in risk premia. Note

that just as in Fama and Bliss (1987) and Campbell and Shiller (1991), we perform this

decomposition in changes (predicting the change in volatility rather than the level of volatil-

ity), because the previous empirical literature and our term-structure estimates of Section

4.3 highlight the presence of a very persistent factor in the volatility process.

The right side of Table A.1 shows this decomposition for different maturities between

1 month and 1 year. We see that most of the variation in variance swap prices can be

attributed to movements in the expectation of future realized variance, not risk premia. In

particular, at horizons of 3 to 12 months, essentially all the variation in prices is due to

variation in expected volatility rather than variation in risk premia.

At the same time, we know from Table 2 and Figure 1 that prices of both short-term

and long-term claims vary substantially: this indicates that the expectation of future realized

variance changes dramatically over time. For example, the standard deviation of innovations

in the 12-month zero-coupon claim is 17% per year. Given the finding in this section that the

variance of Z12
t is driven entirely by changes in volatility expectations, we see that investors’

2A similar exercise was conducted by Mixon (2007), using S&P 500 options to predict future implied
volatility.
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expectations of future volatility in fact vary substantially over time.

A.3 Estimation of the no-arbitrage model

In this appendix, we provide more details on the estimation of the no-arbitrage model. We

also report the estimated parameters and more detailed pricing results.

A.3.1 Estimation Strategy

For estimation purposes, a standard and convenient practice of the term structure literature

is to assume that some fixed-weights “portfolios” of VS prices are priced perfectly. These

portfolios in turn allow one to invert for the latent states which are needed in the computation

of the likelihood scores of the data.

A challenge in implementing this practice in our context is that for parts of our sample

the set of available maturities may change from one observation to the next. In the later

part of our sample, we use VS prices with maturities up to 14 years, whereas the longest

maturity for the earlier sample is only two years.

To tackle this issue, we maintain the assumption from the term structure literature

that the current term structure of the VS prices perfectly reveals the current values of

states. Nonetheless, we depart from the standard term structure practice by using some

time-varying-weights “portfolios” of VS prices in identifying the states at each point in time.

The portfolios weights are determined in a way to optimally accommodate different sets of

maturities at each point in the sample.

To begin, let Dt denote the vector of observed data obtained by stacking up the vector

of VS prices on top of the realized variance RVt. Because VS prices are affine in states, we

can write:

Dt = A+BXt. (A.6)

All entries of the last column of B, except for the last row, are zeros because VS prices are

only dependent on s2t and l2t . In addition, since the last entry of Dt corresponds to RVt, the

last row of A is 0 and the last row of B is (0,0,1). Keep in mind that the length of Dt can

vary from time to time due to different maturity sets for the observed VS data.

We assume that Dt is observed with iid errors:

Do
t = Dt + et (A.7)

where Do
t denotes the observed counterpart of Dt. Adopting a standard practice in the
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term structure literature, we assume that the observational errors for the VS prices are

uncorrelated and have one common variance σ2
e . Because observed RVt is used in practice

to determine payoffs to VS contracts, it is natural to assume that RVt is observed without

errors. Combined, if a number of J VS prices are observed at time t, the covariance matrix

of et, Σe, takes the following form:

Σe =

(

IJ σ
2
e 0J×1

01×J 0

)

, (A.8)

where IJ denotes the identity matrix of size J .

We now explain how we can recursively identify the states. Assume that we already know

Xt. Now imagine projecting Xt+1 on Do
t+1 conditioning on all information up to time t. Our

assumption (borrowed from the term structure literature) that the current term structure

of the VS prices perfectly reveals the current values of the states implies that the fit of this

regression is perfect. In other the words, the predicted component of this regression, upon

observing Do
t+1,

Et(Xt+1) + covt(Xt+1, D
o
t+1)vart(D

o
t+1)

−1(Do
t+1 − Et(D

o
t+1)), (A.9)

must give us the values for the states at time t + 1: Xt+1. All the quantities needed to

implement (A.9) are known given Xt. Specifically, Et(Xt+1) = K0+K1Xt and vart(D
o
t+1) =

Vt(Xt+1) + Σe where Vt(Xt+1) is computed according to each of our three specifications for

the covariance. Et(D
o
t+1) is given by A + BEt(Xt+1). And covt(Xt+1, D

o
t+1) is given by

Vt(Xt+1)B
′. Clearly, the calculation in (A.9) can be carried out recursively to determine the

values of Xt for the entire sample.

Our approach is very similar to a Kalman filtering procedure apart from the simplifying

assumption that Do
t+1 fully reveals Xt+1. That is, Vt(Xt+1|Do

t+1) ≡ 0. In a term structure

context, Joslin, Le, and Singleton (2013) show that this assumption allows for convenient

estimation, yet delivers typically highly accurate estimates.

We can view (A.9) as some “portfolios” of the observed data Do
t+1 with the weights given

by: covt(Xt+1, D
o
t+1)vart(D

o
t+1)

−1. As a comparison, whereas the term structure literature

typically choose, prior to estimation, a fixed weight matrix corresponding to the lower princi-

pal components of the observed data, we do not have to specify ex ante any loading matrix.

Our approach determines a loading matrix that optimally extracts information from the

observed data and, furthermore, can accommodate data with varying lengths.

As a byproduct of the above calculations, we have available the conditional means and
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variances of the observed data: Et(D
o
t+1) and Vt(D

o
t+1). These quantities allow us to compute

the log QML likelihood score of the observed data as (ignoring constants):

L =
∑

t

−1

2
||vart(Do

t+1)
−1/2(Do

t+1 − Et(D
o
t+1))||22 −

1

2
log|vart(Do

t+1)|. (A.10)

Estimates of parameters are obtained by maximizing L. Once the estimates are obtained,

we convert the above QML problem into a GMM setup and compute robust standard errors

using a Newey West matrix of covariance.

A.3.2 Alternative variance specifications

Constant variance structure

In the first alternative specification, we let Vt(Xt+1) be a constant matrix Σ0. Since both

Et(Xt+1) and E
Q
t (Xt+1) are linear in Xt, Λt is also linear in Xt. We refer to this as the CV

(for constant variance) specification.

Flexible structure

It is important to note that the specifications of Λt in (12) and Vt(Xt+1) in (13) introduce

very tight restrictions on the difference: Et(Xt+1) − E
Q
t (Xt+1). Simple algebra shows that

the first entry of the product Vt(Xt+1)
1/2Λt is simply a scaled version of s2t . This means that

the dependence of Et(Xt+1) and E
Q
t (Xt+1) on l2t and RVt and a constant must be exactly

canceled out across measures. Similar arguments lead to the following restrictions on the

condition mean equation:

Et






s2t+1

l2t+1

RVt+1




 =






0

v
Q
l

0






︸ ︷︷ ︸

K0

+






ρs 1− ρQs 0

0 ρl 0

ρs,RV 0 0






︸ ︷︷ ︸

K1






s2t

l2t

RVt




 . (A.11)

So in the CIR specification, the conditional mean equation only requires three extra

degrees of freedom in: ρs, ρl, and ρs,RV . The remaining entries to K0 and K1 are tied to

their risk-neutral counter parts. By contrast, all entries of K0 and K1 are free parameters

in the CV specification. Whereas CV offers more flexibility in matching the time series

dynamics of Xt, the parsimony of CIR, if well specified, can potentially lead to stronger

identification. However, this parsimony of the CIR specification, if mis-specified, can be
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restrictive. For example, in the CIR specification, RVt is not allowed to play any role in

forecasting X.

In the flexible specification, we would like to combine the advantages of the CV specifica-

tion in matching the time series dynamics of X and the advantages of the CIR specification

in modeling time-varying volatilities.

For time-varying volatility, we adopt the following parsimonious structure:

Vt(Xt+1) = Σ1 s
2
t , (A.12)

where Σ1 is a fully flexible positive definite matrix. This choice allows for non-zero covari-

ances among all elements of X.

The market prices of risks are given by:

Λt =Vt(Xt+1)
−1/2(Et(Xt+1)− E

Q
t (Xt+1)), (A.13)

where the superscript 1/2 indicates a lower triangular Cholesky decomposition. Impor-

tantly, we do not require the market prices of risks to be linear, or of any particular form.

This is in stark contrast to the CIR specification which requires the market prices of risks to

be scaled versions of states. As a result of this relaxation, no restrictions on the conditional

means dynamics are necessary. Aside from the non-negativity constraints, the parameters

K0,K1 that govern Et(Xt+1) = K0+K1Xt are completely free, just as in the CV specification.

In particular, RVt is allowed to forecast X and thus can be important in determining risk

premiums. We label this specification as the FLEX specification (for its flexible structure).

A.3.3 Additional estimation results

Table A.2 reports the risk neutral parameters of our no arbitrage models: ρQs , ρ
Q
l , and v

Q
l .

As expected, these parameters are very strongly identified thanks to the rich cross-section

of VS prices used in the estimation. Recall that our risk-neutral construction is identical for

all three of our model specifications. As a result, estimates of risk neutral parameters are

nearly invariant across different model specifications.

The effect of including the crisis is that the estimates for ρQs and v
Q
l are higher, whereas

the estimate of ρQs is the same. A higher vQl is necessary to fit a higher average VS curve. A

higher estimate for ρQs implies that risk-neutral investors perceive the short-run factor s2t as

more (risk-neutrally) persistent. In other words, movements of the one-month VS price (s2t )

will affect prices of VS contracts of much longer maturities.

We report the time series parameters – K0, K1, and other parameters that govern the
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conditional variance Vt(Xt+1) – for the CV, CIR, and FLEX specifications in Tables A.3,

A.4, and A.5, respectively.

The values of annualized steady-state risk prices implied by each model specification are

reported in A.6. Regardless of how the quantity of risk (Vt(Xt+1)) is modeled, RV-risk is

always very significantly negatively priced. The point estimates and standard errors are

similar across the various specifications for the variance process (and hence the physical

dynamics), emphasizing the results of our findings. The table also shows that the results are

similar regardless of whether the financial crisis is included in the estimation sample. Since

the financial crisis was a period when the returns on variance swaps were extraordinarily

high, excluding it from the data causes to estimate risk prices that are even more negative

than in the full sample.

A.4 Calibration and simulation of the models

This section gives the details of the three models analyzed in the main text.

A.4.1 Long-run Risk (Drechsler and Yaron)

Our calibration is identical to that of Drechsler and Yaron (DY; 2011), so we refer the reader

to the paper for a full description of the model. We have confirmed that our simulation

matches the moments reported in DY (tables 6, 7, and 8, in particular). Here we report

an extra set of results that modifies DY’s calibration to match our empirical estimates.

Specifically, we change the standard deviation of the innovations to σ̄2 from 0.10 to 0.05. We

also multiply the volatility of both the diffusive and jump innovations in σ2 by 1.35. Those

two changes make the processes for σ2 and σ̄2 match the one we estimate in the no-arbitrage

model.

The following table reports results from three simulations of the model – the original DY

calibration, a calibration with risk aversion raised to 16, and the calibration with the change

in the volatility parameters:

Moment Original High RRA Empirical volatility

E[var premium] 9.06 11.30 11.79

stdev[var premium] 12.28 18.78 22.42

The variance premium here measures the difference between the 1-month variance swap

price and realized variance (it is the ”level difference” from DY). As we would expect, the
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variance premium rises when we raise risk aversion. The “original” column corresponds to

the calibration used in the main text. Shifting to the calibration that matches the estimated

volatility process in the final column we can see reduces the mean and standard deviation of

the variance premium, but only to a level similar to DY’s original calibration. The reason for

this is that Epstein–Zin preferences emphasize long-run shocks, and the estimated volatility

process puts more weight on the short-run than the long-run shock to volatility compared

to DY’s original calibration.

Figures A.5 and A.6 replicate figures 9 and 10 but comparing now DY’s original calibra-

tion, our version with higher risk aversion, and the version with the calibration of volatility

to the empirical estimates. In all three cases, the Sharpe ratios at all maturities are sub-

stantially negative, roughly the value of the Sharpe ratio of the aggregate stock market. The

term structures are also far too steeply upward sloping.

A.4.2 Time-varying disasters (Wachter)

The key equations driving the economy are

∆ct = µ∆c + σ∆cε∆c,t + J∆c,t (A.14)

Ft = (1− ρF )µF + ρFFt−1 + σF

√

Ft−1εF,t (A.15)

∆dt = λ∆ct (A.16)

where ε∆c,t and εF,t are standard normal innovations. This is a discrete-time version of

Wachter’s setup, and it converges to her model as the length of a time period approaches

zero. The model is calibrated at the monthly frequency. Conditional on a disaster occurring,

J∆c,t ∼ N (−0.3, 0.152) . The number of disasters that occurs in each period is a Poisson

variable with intensity Ft. The other parameters are calibrated as:

Parameter Value

µ∆c 0.02/12

σF 0.0075

ρF 0.871/12

Parameter Value

σ∆c 0.02/sqrt(12)

λ 2.8

µF 0.017/12

In the analytic solution to the model, the price/dividend ratio for a levered consumption

claim takes the form pdt = z0 + z1Ft. The Campbell–Shiller approximation to the return
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(which becomes arbitrarily accurate as the length of a time interval shrinks) is

rt+1 = θpdt+1 +∆dt+1 − pdt (A.17)

= θpdt+1 + λ∆ct+1 − pdt (A.18)

It is straightforward to show analytically (the derivation is available on request) that

pdt = z0 + z1Ft (A.19)

In the absence of a disaster, we treat the shocks to consumption and the disaster probabil-

ity as though they come from a diffusion, so that the realized variance is θ2z20σ
2
FFt−1+λσ2

∆c.

When a disaster occurs, we assume that the largest daily decline in the value of the stock

market is 5 percent. So, for example, a 30-percent decline would be spread over 6 days. The

results are largely unaffected by the particular value assumed. The realized variance when

a disaster occurs is then θ2z20σ
2
FFt−1 + λσ2

∆c − (0.05) J∆c,t (assuming J∆c,t ≤ 0).

The model is solved analytically using methods similar to those in DY. Specifically,

household utility, vt, is

vt = (1− β) ct +
β

1− α
logEt [exp ((1− α) vt+1)] (A.20)

α is set to 3.6 and β = 0.981/12. The recursion can be solved because the cumulant-generating

function for a poisson mixture of normals (the distribution of J∆c) is known analytically

(again, see DY).

The pricing kernel is

Mt+1 = β exp (−∆ct+1)
exp ((1− α) vt+1)

Et [exp ((1− α) vt+1)]
(A.21)

Asset prices, including those for claims on realized variance in the future, then follow imme-

diately from the solution of the lifetime utility function and cumulant-generating function

for J∆c. The full derivation and replication code is available upon request.

We attempted to keep the calibration as close as possible to Wachter’s. The two dif-

ferences are that we increase risk aversion somewhat in order to try to generate a larger

variance risk premium and that we use a normal distribution for the disasters rather than

the empirical distribution used by Wachter (to allow us to obtain analytic results). It is im-

portant to note that risk aversion cannot be increased past 3.7 because the model no longer

has a solution.
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As with the DY model, we checked that the moments generated by our solution to the

model match those reported by Wachter. We confirm that our results are highly similar,

in particular for her tables 2 and 3, though not identical since we use slightly different risk

aversion and a different disaster distribution.

A.4.3 Disasters with time-varying recovery (Gabaix)

∆ct = µ∆c + ε∆c,t + J∆c,t (A.22)

Lt = (1− ρL) L̄+ ρLLt−1 + εL,t (A.23)

∆dt = λε∆c,t − L× 1 {J∆c,t 6= 0} (A.24)

The model is calibrated at the monthly frequency. Conditional on a disaster occurring,

J∆c,t ∼ N (−0.3, 0.152) . The probability of a disaster in any period is 0.01/12. The other

parameters are calibrated as:

Parameter Value

µ∆c 0.1/12

stdev(ε∆c) 0.02/
√
12

ρL 0.871/12

L̄ 0.5

stdev(εL) 0.035

λ 5

Agents have power utility with a coefficient of relative risk aversion of 7 and a time

discount factor of 0.961/12.
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Figure A.1: Quotes vs. transaction prices
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Note: The figure shows the distribution of percentage difference between variance swap price quotes and
actual transaction prices, computed as (transaction price - quote)/quote. The quotes are our main sample,
while transaction prices are obtained from the DTCC and begin in 2013. Each panel shows the histogram
for a different bucket of maturity of the variance swap contracts.
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Figure A.2: International zero-coupons variance claim prices from options and variance swaps
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Note: In each panel (corresponding to STOXX 50, FTSE 100 and DAX), the solid line plots average prices
of zero-coupon variance claims calculated using the formula for the VIX index and data on international
option prices from Optionmetrics. The dotted line plots the average prices of the same claims computed
from international variance swaps. The sample covers the period 2013:4-2014:2.
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Figure A.3: VIX futures vs. zero-coupon variance swap prices
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Note: the top panel plots the time series of the 2-month zero-coupon variance swap and the 1-month
VIX future price from the CME, in annualized volatility terms. The bottom panel plots the time series of
the 7-month zero-coupon variance swap and the 6-month VIX future price from the CME, in annualized
volatility terms. The sample covers the period 2006:10-2012:9.
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Figure A.4: Impulse response functions of level, slope and RV
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Note: Each panel plots the response of one of the variables in the VAR (level, slope, and RV) to one of
the three orthogonalized shocks. The shocks are orthogonalized with a Cholesky factorization with the
ordering level-slope-RV.
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Figure A.5: Sharpe ratios and average term structure in the long-run risk model

Notes: The top panel gives the population Sharpe ratios from the two models and the sample values from the 
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Note: The top panel gives the population Sharpe ratios from the two models and the sample values from
the data. The bottom panel plots population means of the prices of zero-coupon claims. All the curves
are normalized to have the same value for the realized variance.
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Figure A.6: Slope of the term structure in the long-run risk model
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Note: Simulated zero-coupon variance claim prices from structural models. All curves are normalized to
equal 1 at three months. The dotted lines are 95-percent sampling intervals from the simulations.
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Table A.1: Predictive regressions

Horizon Predictor: Slope and Curvature Predictor: Zn
t − Z0

t

(months) Dep var: RVt+n −RVt Dep var: RVt+n −RVt Dep var: −
∑n−1

j=0 r
n−j
t+1+j

R2 R2 coeff. R2 coeff.

1 0.08 0.17 0.63∗∗∗ 0.07 0.37∗

(0.22) (0.22)

2 0.22 0.18 0.71∗∗∗ 0.04 0.29∗

(0.17) (0.17)

3 0.31 0.24 0.83∗∗∗ 0.01 0.17

(0.14) (0.14)

6 0.36 0.34 0.95∗∗∗ 0.001 0.05

(0.09) (0.09)

12 0.38 0.41 1.10∗∗∗ 0.001 -0.10

(0.09) (0.09)

Note: Results of regressions forecasting changes in realized variance. The left side reports the R2 of a
regression of changes in realized volatility between month t and month t + n on the level and the slope
at time t. The right side reports the coefficients of univariate regressions of changes in realized volatility
(left column) and returns to volatility claims from t to t+ n (right column) on the difference between the
zero-coupon prices of maturity n (Zn

t ) and realized volatility (Z0
t ) at time t. * indicates significance at

the 10-percent level, ** the 5-percent level, and *** the 1-percent level.

Table A.2: Risk neutral parameters

1996:2007 1996:2013

Specifications ρ
Q
s ρ

Q
l v

Q
l ρ

Q
s ρ

Q
l v

Q
l

CV
Est. 0.66∗∗∗ 0.99∗∗∗ 0.65∗∗∗ 0.83∗∗∗ 0.99∗∗∗ 1.01∗∗

Stderr. 0.06 0.00 0.14 0.07 0.01 0.48

CIR
Est. 0.68∗∗∗ 0.99∗∗∗ 0.65∗∗∗ 0.84∗∗∗ 0.99∗∗∗ 0.99∗∗

Stderr. 0.05 0.00 0.14 0.06 0.01 0.44

FLEX
Est. 0.66∗∗∗ 0.99∗∗∗ 0.64∗∗∗ 0.83∗∗∗ 0.99∗∗∗ 1.01∗∗

Stderr. 0.06 0.00 0.14 0.07 0.01 0.47

Note: The table reports the risk-neutral estimated dynamics of the term structure model, for the three
specifications CV, CIR and FLEX, and separately for the full sample (1996-2013) and the pre-crisis sample
(1996-2007).
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Table A.3: Time series parameter estimates for the CV specification

Sample K0 K1 Σ∗

1996:2007

Est.
6.49∗∗∗ 0.65∗∗∗ 0.14∗∗ 0.03 15.42∗∗∗ 0 0
3.36∗∗∗ 0.08 0.83∗∗∗ 0.02 3.87∗∗∗ 5.25∗∗∗ 0
1.98 0.56∗∗∗ 0 0.12 10.57∗∗∗ -2.62 14.08∗∗∗

Std. err.
2.42 0.08 0.07 0.12 3.23 - -
1.12 0.10 0.08 0.07 0.73 0.73 -
2.11 0.07 - 0.10 2.36 2.63 2.07

1996:2013

Est.
8.99∗∗∗ 0.56∗∗∗ 0.08 0.19∗∗ 20.59∗∗∗ 0 0
2.43∗∗∗ 0 0.91∗∗∗ 0.06∗∗∗ 3.26 7.04∗∗∗ 0
5.67∗ 0.20 0 0.57∗∗∗ 30.00∗∗ -2.14 25.49∗∗∗

Std. err.
2.48 0.13 0.05 0.09 5.07 - -
0.90 - 0.03 0.01 2.09 0.97 -
2.92 0.13 - 0.15 13.38 2.94 4.23

Note: The table reports the time-series parameter estimates for the CV specification. Σ∗ is the lower
triangular Cholesky decomposition of Σ0. For admissibility, K0 and K1 are constrained to be non-negative.
Those entries for which the non-negativity constraint is binding are set to zero and thus standard errors are
not provided. The table reports the estimates separately for the full sample (1996-2013) and the pre-crisis
sample (1996-2007).

Table A.4: Time series parameter estimates for the CIR specification

Sample K0 K1 Σ∗

1996:2007

Est.
0 0.66∗∗∗ 0.32∗∗∗ 0 5.16∗∗∗ 0 3.53∗∗∗

0.65∗∗∗ 0 0.99∗∗∗ 0 0 0.98∗∗∗ 0
0 0.69∗∗∗ 0 0 3.53∗∗∗ 0 6.74∗∗∗

Std. err.
- 0.07 0.05 - 1.82 1.18

0.14 - 0.00 - - 0.23 -
- 0.01 - - 1.18 - 1.69

1996:2013

Est.
0 0.82∗∗∗ 0.16∗∗ 0 7.17∗∗ 0 9.42∗

0.99∗∗ 0 0.98∗∗∗ 0 0 1.42∗∗ 0
0 0.75∗∗∗ 0 0 9.42∗ 0 23.56∗

Std. err.
- 0.04 0.06 - 2.84 - 5.42

0.44 - 0.00 - - 0.58 -
- 0.09 - - 5.42 - 12.88

Note: The table reports the time-series parameter estimates for the CIR specification. The diagonal
elements of Σ∗ correspond to the variance parameters σ2

s , σ
2
l , and σ2

RV . The (3,1) entry of Σ∗ correspond
to the covariance parameter σs,RV . The table reports the estimates separately for the full sample (1996-
2013) and the pre-crisis sample (1996-2007).
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Table A.5: Time series parameter estimates for the FLEX specification

Sample K0 K1 Σ∗

1996:2007

Est.
2.31 0.74∗∗∗ 0.19∗∗ 0.01 2.26∗∗∗ 0 0

2.18∗∗∗ 0.09∗ 0.87∗∗∗ 0 0.58∗∗∗ 0.78∗∗∗ 0
0.11 0.60∗∗∗ 0 0.13 1.56∗∗∗ -0.24 2.04∗∗∗

Std. err.
1.49 0.08 0.08 0.08 0.42 - -
0.81 0.05 0.06 - 0.08 0.08 -
0.75 0.08 - 0.09 0.29 0.31 0.27

1996:2013

Est.
4.54∗∗∗ 0.68∗∗∗ 0.08∗∗ 0.19∗∗ 2.59∗∗∗ 0 0
1.37∗∗ 0 0.93∗∗∗ 0.07∗∗∗ 0.44∗ 1.09∗∗∗ 0
0.67∗∗∗ 0.36∗∗∗ 0 0.51∗∗ 3.32∗∗∗ -0.34 3.20∗∗∗

Std. err.
1.30 0.08 0.04 0.08 0.48 - -
0.55 - 0.02 0.02 0.23 0.12 -
0.05 0.11 - 0.20 1.24 0.43 0.48

Note: The table reports the time-series parameter estimates for the FLEX specification. Σ∗ is the lower
triangular Cholesky decomposition of Σ0. For admissibility, K0 and K1 are constrained to be non-negative.
Those entries for which the non-negativity constraint is binding are set to zero and thus standard errors are
not provided. The table reports the estimates separately for the full sample (1996-2013) and the pre-crisis
sample (1996-2007).

Table A.6: Annualized steady state risk prices, all specifications

1996:2007 1996:2013

Specifications Sources of risks Estimates Standard Error Estimates Standard Error

CV
s2t -risk -0.23 0.22 -0.08 0.14
l2t -risk 0.05 0.18 -0.21 0.14
RV-risk −2.78∗∗∗ 0.65 −1.44∗∗∗ 0.43

CIR
s2t -risk -0.18 0.36 -0.11 0.31
l2t -risk 0.04 0.14 -0.18 0.12
RV-risk −3.92∗∗∗ 0.91 −1.70∗∗∗ 0.48

FLEX
s2t -risk -0.23 0.30 -0.14 0.16
l2t -risk 0.06 0.22 -0.17 0.19
RV-risk −3.17∗∗∗ 0.78 −1.69∗∗ 0.73

Note: Estimates of steady-state risk prices from the no-arbitrage model. Risk prices are annualized by
multiplying by

√
12. *** denotes significance at the 1-percent level. Results are reported for the full

sample (1996-2013), and restricted to 1996-2007.
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