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1 Introduction

Many dynamic games of interest in economics have state spaces that are potentially very large,

and solution algorithms considered in the economics literature do not scale to problems of this size.

Consider the game of Chess, which is a two-player board game involving sequential moves on a

board consisting of 64 squares and which can be characterized as Markovian, with the existing

board configuration serving as the current state. Since games end after the maximum allowable 50

number of moves, solving for pure Markov-perfect equilibrium strategies is in principle achievable

using backward induction, since all allowable positions of pieces and moves could be mapped into an

extensive form game tree.1 In practice, however, there are at least two challenges to implementing

this type of solution method.

The first challenge is the high number of possible branches in the game tree. For example,

an upper bound on the number of possible terminal nodes is on the order of 1046.2 Fully solving

for equilibrium strategies requires computing and storing state transition probabilities at each of a

very large number of nodes, which is both analytically and computationally intractable.

The second challenge is deriving the strategies of opponents. Equilibrium reasoning motivates

fixed-point methods for deriving equilibrium best responses. However, it is not clear that equi-

librium assumptions will generate good approximations of opponent play in Chess, since players

may engage in suboptimal strategies, making Nash-style best responses derived a priori possibly

suboptimal. Similarly, it is not clear whether developing and solving a stylized version of Chess

would produce strategies relevant for playing the game.

Recently, researchers in computer science and artificial intelligence have made considerable

progress deriving strategies for high-dimensional dynamic games such as Chess using a general

approach very different from that used by economists, which has two broad themes. First, to derive

player strategies, they rely more heavily on data of past game play than on equilibrium assumptions.

Second, instead of focusing on deriving optimal strategies, they focus on continually improving upon

the best strategies previously implemented by other researchers or game practitioners. This general

approach has provided a series of successful strategies for high-dimensional games.3

In this paper, we propose an approach which proceeds in this spirit, combining ideas developed

by researchers in computer science and artificial intelligence with those developed by econome-

tricians for studying dynamic games to solve for policy improvements for a single agent in high-

1Recently, researchers have found that this is even more complicated for games like Chess, which may have no
uniform Nash equilibria in pure or even mixed positional strategies. See Boros, Gurvich and Yamangil (2013) for this
assertion.

2See Chinchalkar (1996).
3These include, inter-alia, the strategy of the well-publicized computer program “Deep Blue”(developed by IBM),

which was the first machine to beat a reigning World Chess Champion, and the counterfactual regret-minimization
algorithm for the complex multi-player game Texas Hold’em developed by Bowling, Burch, Johanson and Tammelin
(2015), which has been shown to beat successful players in practice.

2



dimensional dynamic games, where strategies are restricted to be Markovian. For an illustration, we

consider the problem of computing a one-step improvement policy for a single retailer in the game

considered in Holmes (2011). He considers the decision by chain store retailers of where to locate

physical stores. We add to his model the decision of where to locate distribution centers as well.

In our game, there are 227 physical locations in the United States and two rival retailers, which

each seek to maximize nation-wide profits over seven years by choosing locations for distribution

centers and stores.

This game is complicated for several reasons. First, store location decisions generate both

own firm and competitor firm spillovers. On the one hand, for a given firm, clustering stores in

locations near distribution centers lowers distribution costs. On the other hand, it also cannibalizes

own store revenues, since consumers substitute between nearby stores. For the same reason, nearby

competitor stores lower revenues for a given store. Second, the game is complicated because it is

dynamic, since we make distribution center and store decisions irreversible. This forces firms to

consider strategies such as spatial preemption, whereby firm entry in earlier time periods influences

the profitability of these locations in future time periods.

Using our algorithm, we derive a one-step improvement policy for a hypothetical retailer and

show that our algorithm generates a 289 percent improvement over a strategy designed to approxi-

mate the actual facility location patterns of Wal-Mart. This algorithm can be characterized by two

attributes that make it useful for deriving strategies to play high-dimensional games. First, instead

of deriving player strategies using equilibrium assumptions, we utilize data on a large number of

previous plays of the game. Second, we employ an estimation technique from Machine Learning

that reduces the dimensionality of the game in a data-driven manner, which simultaneously makes

estimation feasible.

The data provides us with sequences of actions and states describing many plays of the game,

indexed by time, and the assumption that strategies are Markovian allows us to model play in

any particular period as a function of a set of payoff relevant state variables.4 Using this data,

we estimate opponent strategies as a function of the state, as well as a law of motion. We also

borrow from the literature on the econometrics of games and estimate the choice-specific value

function, making the choice-specific value function the dependent variable in an econometric model.5

After fixing the strategy of the agent for all time periods beyond the current time period using a

benchmark strategy, we use the estimated opponent strategies and law of motion to simulate and

then estimate the value of a one-period deviation from the agent’s strategy in the current period.6

4We note that in principle there is some scope to test the Markov assumption. For example, we could do a
hypothesis test of whether information realized prior to the current period is significant after controlling for all payoff
relevant states in the current period.

5See Pesendorfer and Schmidt-Dengler (2008) for an example using this approach. Also see Bajari, Hong, and
Nekipelov (2013) for a survey on recent advances in game theory and econometrics.

6 In practice, the benchmark strategy could represent a previously proposed strategy that represents the highest
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This estimate is used to construct a one-step improvement policy by maximizing the choice-specific

value function in each period as a function of the state, conditional on playing the benchmark

strategy in all time periods beyond the current one.

Since the settings we consider involve a large number of state variables, estimating opponent

strategies, the law of motion, and the choice-specific value function in this algorithm is infeasible

using conventional methods. For example, in our spatial location game, one way to enumerate the

current state is to define it as a vector of indicator variables representing the national network

of distribution center and store locations for both firms. This results in a state vector that con-

tains 1817 variables and achieves an average cardinality in each time period on the order of 1085.7

Although this enumeration allows us to characterize opponent strategies, the law of motion, and

choice-specific value functions of this game as completely non-parametric functions of the state

variables, it is potentially computationally wasteful and generates three estimation issues. First,

the large cardinality of the state vector makes it unlikely that these models are identified. Second,

if they are identified, they are often ineffi ciently estimated since there are usually very few observa-

tions for any given permutation of the state vector. Moreover, when estimating the choice-specific

value function, remedying these issues by increasing the scale of the simulation is computation-

ally infeasible. Third, when the number of regressors is large, researchers often find in practice

that many of these regressors are highly multicollinear, and in the context of collinear regressors,

out-of-sample predictive accuracy under most norms is often maximized using a relatively small

number of regressors. To the extent that some state variables are relatively unimportant, these

estimation and computational issues motivate the use of well-specified approximations. However, in

high-dimensional settings, it is often diffi cult to know a priori which state variables are important.

As a consequence, we utilize a technique from Machine Learning which makes estimation and

simulation in high-dimensional contexts feasible through an approximation algorithm that selects

the parsimonious set of state variables that minimizes the loss associated with predicting our out-

payoffs agents have been able to find in practice. For example, in spectrum auctions, we might use the well known
"straightforward bidding" strategy or the strategy proposed by Bulow, Levin, and Milgrom (2009).

71817 = 227 ∗ 2 (own distribution center indicators for two merchandise classes) + 227 ∗ 2 (own store indicators
for two types of stores) + 227 ∗ 2 (opponent distribution center indicators for two merchandise classes) + 227 ∗ 2
(opponent store indicators for two types of stores) + 1 (location-specific population variable). The state space
cardinality for the second time period is calculated as follows. In each time period, we constrain the number of
distribution centers and stores that each firm can open, and at the start of the game (in the first time period),
we allocate firm facilities randomly as described in the Appendix. Only locations not currently occupied by firm i
facilities of the same type are feasible. In the first time period, the number of feasible locations for placing facilities of
each type in the second time period include: 220, 226, 211, and 203, and among available locations, each firm chooses
4 distribution centers and 8 stores of each type. The order of the resulting cardinality of the state space in the second
period (only including the cardinality of the state attributable to firm i facilities; also not including the cardinality
of the population variable) is the product of the possible combinations of distribution centers and store locations of

each type, i.e.
(
220
4

)
∗
(
226
4

)
∗
(
211
8

)
∗
(
203
8

)
≈ 107 ∗ 107 ∗ 1013 ∗ 1013 = 1043. The cardinality of the

state attributable to firm −i facilities is calculated in a similar manner, and the total cardinality of the state (not
considering the population variable) is the product of the cardinality attributable to firm i and −i facilities. State
space cardinality calculations attributable to firm i facilities for all time periods are available in the Appendix.
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comes of interest using a fixed metric. Machine Learning refers to a set of methods developed

and used by computer scientists and statisticians to estimate models when both the number of

observations and controls is large, and these methods have proven very useful in practice for pre-

dicting accurately in cross-sectional settings. See Hastie et al. (2009) for a survey. There has been

relatively little attention to the problem of estimation when the number of controls is very large

in econometrics until recently. See Belloni, Chernozhukov, and Hansen (2010) for a survey of some

recent work. In our illustration, we utilize a Machine Learning method known as Component Wise

Gradient Boosting (CWGB), which we describe in detail in Section 2.2. This technique was devel-

oped and characterized theoretically in a series of articles by Breiman (1998, 1999), Friedman et

al. (2000), and Friedman (2001). Also see Hastie et al. (2009) for an introduction to the method.8

As with many other ML methods, CWGB works by projecting the estimand functions of interest

onto a low-dimensional set of parametric basis functions of regressors, with the regressors and basis

functions chosen in a data-driven manner. CWGB methods can accommodate non-linearity in the

data generating process, are computationally simple, and, unlike many other non-linear estimators,

are not subject to problems with convergence in practice. As a result of the estimation process,

CWGB often reduces the number of state variables dramatically, and we find that these parsimo-

nious approximations perform well in our application as compared with other variable and model

selection procedures, suggesting that many state representations in economics might be computa-

tionally wasteful.9 For example, we find that choice-specific value functions in our spatial location

game are well-approximated by between 6 and 7 state variables (chosen from the original 1817).

Our algorithm contributes a data-driven method for deriving policy improvements in high-

dimensional dynamic Markov games which can be used to play these games in practice. High-

dimensional dynamic games include, for example, Chess, Go, Texas Hold ’em, spectrum auctions,

and the entry game we study in this paper. It also extends a related literature in approximate

dynamic programming (ADP). ADP is a set of methods developed primarily by engineers to study

Markov decision processes in high-dimensional settings. See Bertsekas (2012) for an extensive sur-

vey of this field. Within this literature, our approach is most related to the rollout algorithm, which

is a technique that also generates a one-step improvement policy based on a choice-specific value

function estimated using simulation. See Bertsekas (2013) for a survey of these algorithms. Al-

though originally developed to solve for improvement policies in dynamic engineering applications,

the main idea of rollout algorithms—obtaining an improved policy starting from another subopti-

8We choose this method because among the methods considered, it had the highest level of accuracy in out-of-
sample prediction. We note that there are relatively few results about “optimal” estimators in high-dimensional
settings. In practice, researchers most often use out-of-sample fit as a criteria for deciding between estimators.

9As with other Machine Learning estimators, the relative performance of CWGB as compared with other methods
may depend on the application considered. In general, Machine Learning methods do not necessarily dominate
existing estimators in econometrics. For example, Hansen (forthcoming) shows that whether the Lasso estimator
generates a lower mean-squared error than OLS depends on the extent to which many of the true coeffi cients on
regressors are equal to zero, i.e. the extent to which the parameter space is "sparse."

5



mal policy using a one-time improvement—has been applied to Markov games by Abramson (1990)

and Tesauro and Galperin (1996). We appear to be the first to formalize the idea of estimating

opponent strategies and the law of motion as inputs into the simulation and estimation of the

choice-specific value function when applying rollout to multi-agent Markov games. This is facili-

tated by separating the impact of opponent strategies on state transitions from the payoff function

in the continuation value term of the choice-specific value function, which is a separation commonly

employed in the econometrics of games literature. Additionally, we extend the rollout literature

by using a recently developed Machine Learning estimator to select regressors in high-dimensional

contexts in a data-driven manner.

We note that in practice there are several limitations to the approach we describe. A first is that

we do not derive an equilibrium of the game. Hence we are unable to address the classic questions

of comparative statics if we change the environment. That said, to the best of our knowledge, the

problem of how to derive equilibria in games with very large state spaces has not been solved in

general. We do suspect that finding a computationally feasible way to derive policy improvements

in this setting may be useful as researchers make first steps in attacking this problem. A second

limitation is that we assume opponent strategies are fixed. In practice, competitors might reoptimize

their strategies after observing our play.10 A third limitation is that we do not derive theoretical

characterizations of the optimality properties of our Machine Learning estimator or policy function

improvements, i.e. whether our policy function improvements converge generally. Many Machine

Learning estimators, including the one we use in this paper, simultaneously perform model selection

and estimation at the same time. This feature can generate corner solutions, making the derivation

of fundamental estimator properties, such as consistency and asymptotic distributions, potentially

more challenging. Although Machine Learning estimators are typically used on datasets that are

very large, often making sampling distributions a less important criteria than predictive accuracy,

sampling distributions may influence the convergence of our policy function improvements in the

context of smaller samples.

That said, it is not clear that equilibrium theory is a particularly useful guide to play in these

settings, even if theory tells us that equilibrium exists and is unique. In economics, much of the

guidance has been based on solving very stylized versions of these games analytically or examining

the behavior of subjects in laboratory experiments. Our method complements these approaches

by providing strategies useful for playing high-dimensional games in practice. Artificial intelligence

and computer science researchers, along with decision makers in industry and policy have used data

as an important input into deriving strategies to play games. We believe that our example shows

that certain economic problems may benefit from the intensive use of data and modeling based on

10 It may be possible to mitigate this problem to some extent in practice. For example, if researchers can observe
newly reoptimized opponent play, they can reestimate opponent strategies and use our method to derive new policy
improvements to compete against these strategies.
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econometrics and Machine Learning.

The rest of the paper proceeds as follows. The next section describes the class of games for

which our algorithm is useful and then describes Component-Wise Gradient Boosting as well as an

algorithm for generating policy function improvements. Section 3 describes two applications, the

chain store entry game described previously as well as an application in progress where we seek to

improve-upon a recently developed strategy for Texas Hold’em. Section 4 concludes.

2 Method Characterization

2.1 Game Model

In this section, we formally characterize a class of games for which our method is useful for

finding policy function improvements.

2.1.1 Preliminaries

We define a discrete number of time periods, denoted as t = 1, ..., T with T <∞, and a discrete
number of players, denoted as i ∈ I ≡ {1, ..., N}. We refer to the competitors of a reference player i
as players −i, where −i ≡ {¬ (i ∩ I)}. Finally, we denote observations of player actions and states
(defined below) found within data using the index l = 1, ..., L with L <∞.

2.1.2 State

Define a state vector, denoted as st for each t, as

st ≡ (s1t, ..., sKst) ∈ St ⊆ RKs

where s1t, ..., sKst represent a set of Ks state variables at time t, St represents the support of st,
and RKs represents the Ks-ary Cartesian product over Ks sets of real numbers R. The set St can
be discrete, continuous, or both. In practice, the number of state variables, i.e. Ks, can be large.

At time t, the state at time t+ 1 is random and is denoted as St+1 with realization St+1 = st+1.

Importantly, in the econometrics of games literature, researchers often seek to model functions

of the state, such as payoffs, opponent strategies, and the law of motion (defined formally in the

subsections that follow), using general functional forms. In these settings, the cardinality of St,
denoted as |St|, becomes important, and this cardinality is potentially very large. For example,
in our entry game application, although Ks = 1817, the average |St| (average by time period) is
greater than 1085. See the Appendix for a derivation of the cardinality of the state in our entry

game application.

We also define the dimension-reduced state vector that remains as a result of the Component-

Wise Gradient Boosting (CWGB) estimation process described in Section 2.2. Define this state
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vector, denoted as s̃t for all t, as

s̃t ≡
(
s1t, ..., sKs,GBt

)
∈ S̃t ⊆ RKs,GB

where Ks,GB represents the number of state variables that remain after CWGB, such that

Ks,GB ≤ Ks. In practice, it is often the case that the dimension of s̃t is much smaller than the

dimension of the original state vector st, i.e. Ks,GB is much smaller than Ks, making the cardinality

of S̃t much smaller than the cardinality of St. This cardinality reduction plays an important role
in making the forward simulation step of our algorithm feasible (see Section 2.2), since we only

simulate realizations of the dimension-reduced state rather than realizations of the original state.

2.1.3 Actions

Each player chooses a vector of feasible actions, denoted as ait for all t, and defined as

ait ≡ (a1it, ..., aKait) ∈ Ait ⊆ RKa

where a1it, ..., aKait represent a set of Ka action variables at time t, Ait represents the discrete
support of ait, and RKa represents the Ka-ary Cartesian product over Ka sets of real numbers

R. We abuse the notation of ait by suppressing its possible dependence on st. We further define
the profile of actions across all competitors −i as a−it ≡ (a1t, ...,ai−1t,ai+1t, ...,aNt) with support
A−it ⊆ RKa(N−1), and a profile of actions across all players including i as at ≡ (a1t, ...,aNt) with
support At ⊆ RKaN .

The action vector serves as either an outcome variable or set of regressors in the models es-

timated in Section 2.2. In practice, when actions represent an outcome, we redefine Ait so as to
constrain its cardinality to be suffi ciently small, since our method requires us to evaluate policies

at each action in Ait for a subset of states. This often means that we will redefine the problem such
that each action we consider is a scalar rather than a vector, which is separately denoted as ait to

distinguish it from ait. For example, in our entry game application, Ka = 1 and ait is a scalar 0, 1

indicator over the choice of placing a facility in a given location, which gives |Ait| = 2 for all t.
When actions represent a set of regressors, as is the case when estimating the law of motion in

Section 2.2, we allow the dimensionality of the action vector to remain high. As is the case with the

state vector, the CWGB estimation process selects a subset of the original action variables, which

we define as

ãit ≡
(
a1it, ..., aKa,GBit

)
∈ Ãit ⊆ RKa,GB

where Ka,GB ≤ Ka.
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2.1.4 Law of Motion

We make the following assumption on the evolution of states over time.

Assumption (A1). States evolve according to the Markov property, i.e. for all st+1 ∈ St+1,
st ∈ St, and at ∈ At,

F (St+1 ≤ st+1|s1, ..., st,a1, ...,at) = F (St+1 ≤ st+1|st,at)

where,

F (St+1 ≤ st+1|st,at) ≡ Pr (S1t+1 ≤ s1t+1, ..., SKst+1 ≤ sKst+1|st,at)

Here, F (.) represents the cdf of St+1, which we deem the law of motion. In some applications,

the law of motion may vary across time periods, although we abstract away from this possibility for

expositional simplicity. We allow the transitions for a subset of state variables to be independent

of player actions.

2.1.5 Period Return

The von Neumann-Morgenstern utility function for player i at time t is:

ui (st,ait,a−it) ≡ πi (st,ait,a−it) + εit

where εit is a continuous random variable observed only by player i at time t and which has a

density f (εit) and cumulative distribution function F (εit). The error εit can be interpreted as

a preference shock unobserved by both the econometrician as well as by the other players and

which makes player strategies as a function of the state random (see Section 2.1.6). It can also be

interpreted as an unobserved state variable. See Rust (1987) for a discussion of this interpretation

within the context of dynamic optimization problems. We make the following assumption on the

distribution of εit.

Assumption (A2). The private shock εit is distributed iid across agents, actions, states, and

time.

The term πi (st,ait,a−it) is a scalar which is a function of the current state st and the action

vector for players i and −i, i.e. πi (st,ait,a−it) : St × Ait × A−it → R, where R is the set of real
numbers. We assume payoffs are additively separable over time.

2.1.6 Strategies

We assume that players choose actions simultaneously at each time t. A strategy for agent i is

a vector-valued function ait = δi (st, εit), which maps the state at time t and agent i’s time t private

shock to agent i’s time t action vector ait. From the perspective of all other players −i, player i’s
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policy function as a function of the state can be represented by the conditional probability function

σi (Ait = ait|st), such that:

σi (Ait = ait|st) =
∫
I {δi (st, εit) = ait} dF (εit)

where dF (εit) ≡ f (εit) dεit and where the notation Ait emphasizes that actions are random

from the perspective of other players (we use the notation Ait when actions are a random vari-

able rather than a random vector). Abusing notation, we often abbreviate σi (Ait = ait|st) as
σi. Further define the product of the profile of policy functions for all players −i at time t as
σ−i (A−it = a−it|st) ≡

∏
j∈−i

σj (Ajt = ajt|st), which we abbreviate as σ−i (a−it|st). Finally, we sep-

arately denote a potentially suboptimal policy function for player i at time t as σi, which plays a

special role in our policy improvement algorithm detailed in Section 2.2. For simplicity, we abstract

away from the possibility that each player’s policy function changes over time. It is straightforward

to relax this simplification in what follows.

2.1.7 Value Function and Choice-Specific Value Function

Value Function. Let β be a common discount factor. We define the following ex ante value

function for player i at time t,

Vi (st, εit) ≡

max
ait∈Ait

 ∑
a−it∈A−it

(
πi (st,ait,a−it) + εit + βESt+1,εit+1 [Vi(st+1, εit+1)|st,ait,a−it]

)
σ−i (a−it|st)


(1)

where,

ESt+1,εit+1 [Vi(st+1, εit+1)|st,ait,a−it] =∫
st+1∈St+1

∫
εit+1

Vi(st+1, εit+1)dF (st+1|st,ait,a−it) dF (εit+1)

where it is assumed agent i makes the maximizing choice ait in each period t = 1, ..., T and

that the value function is implicitly indexed by the profile of policy functions for all agents. We

allow opponent strategies to be optimal or suboptimal, which facilitates the use of our method in

practical game settings. The expectation ESt+1,εit+1 is taken over all realizations of the state St+1,
conditional on the current state and actions, and the unobserved private shock for agent i in period

t+ 1.
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Choice-Specific Value Function. We also define the following ex ante choice-specific value

function for player i:

Vi (st, εit;ait, σi) ≡∑
a−it∈A−it

(
πi (st,ait,a−it) + εit + βESt+1,εit+1 [Vi(st+1, εit+1;σi)|st,ait,a−it]

)
σ−i (a−it|st) (2)

where,

ESt+1,εit+1 [Vi(st+1, εit+1;σi)|st,ait,a−it] =∫
st+1∈St+1

∫
εit+1

Vi(st+1, εit+1;σi)dF (st+1|st,ait,a−it) dF (εit+1)

Our choice-specific value function represents the value of a particular action choice ait, condi-

tional on the state st, the agent’s private shock, εit, and a potentially suboptimal strategy played

by agent i beyond the current time period, σi. Both value functions we define abstract away from

the possibility that the value function changes over time. This simplification is not necessary for

implementing our method and can be relaxed if researchers have access to enough data to effi ciently

estimate separate choice-specific value functions per time period.

2.2 Policy Function Improvement

In this section, we outline our algorithm for generating a one-step improvement policy as well

as our Machine Learning estimator of choice.

Algorithm 1 We generate a one-step improvement policy according to the following steps:

1. Estimate the strategies of competitors, and, if necessary, the law of motion and the payoff

function, using a Machine Learning estimator to select a parsimonious subset of state vari-

ables.

2. Fix an initial strategy for the agent.

3. Use the estimated competitor strategies, payoff function, law of motion, and fixed agent strat-

egy to simulate play.

4. Use this simulated data to estimate the choice-specific value function.

5. Obtain a one-step improvement policy.
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6. Repeat by returning to step 1 and using the one-step improvement policy as the fixed initial

agent strategy.

Since we seek to improve a strategy of a reference agent i, we assume the researcher knows

F (εit+1) for this agent. In particular, for expositional clarity, we set εit = 0 for all t = 1, ..., T for

agent i. Prior to describing the steps of Algorithm 1 in detail, we describe our Machine Learning

estimator.

2.2.1 Component-Wise Gradient Boosting

We use Component-Wise Gradient Boosting (CWGB) in Algorithm 1, Step 1, to estimate

models corresponding to opponent strategies, and, if necessary, the law of motion and payoff func-

tion for a reference agent i. CWGB is a specific variant of boosting methods, which are a popular

class of Machine Learning methods that accommodate the estimation of both linear and nonlin-

ear models. Boosting methods work by sequentially estimating a series of simple models, deemed

"base learners," and then forming a "committee" of predictions from these models through weighted

averaging. See Hastie et al. (2009) for a survey of boosting methods.

We present the linear variant of CWGB we employ and then briefly discuss how this setup can

be generalized to nonlinear contexts. To facilitate the description of CWGB, we show how it can

be used to estimate the opponents’strategy functions, i.e. σj for j ∈ −i, which are estimations
employed in Algorithm 1, Step 1. We assume researchers have access to a random sample of previous

plays of the game for each player j ∈ −i, i.e. {ajlt, slt}L,Tl=1,t=1, where the subscript l = 1, ..., L indexes
individual observations of play attributable to player j. For the purposes of this description, we

assume the support of ajt is binary, 0, 1, which means that the linear CWGB estimator we employ

effectively estimates a linear probability model of the probability of choice ajt conditional on the

dimension-reduced state vector s̃t.11 The estimator works according to the following steps.

Algorithm 2 CWGB Estimator (Linear)

1. Initialize the iteration 0 model, denoted as σ̂c=0j , by setting σ̂c=0j = 1
LT

L∑
l=1

T∑
t=1

ajlt, i.e. ini-

tializing the model with the empirical mean of the outcome variable.12

2. In the first step, estimate Ks univariate linear regression models (without intercepts) of the re-

lationship between ajt and each skt as the sole regressor, denoted as b̂ (s1t) = β̂s1ts1t, ..., b̂ (sKst) =

β̂sKstsKst where each b (.) is a linear base learner and each β̂skt is a univariate linear regression

parameter.13

11Section 2.2.2 discusses the case where the support of ajt is not binary.
12We abuse notation slightly here, since in principle, L can vary by time period.
13These linear regression models could also be estimated with an intercept term, which would vary for each of the

Ks models.
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3. Choose the model with the best OLS fit, denoted as b̂W1 (sW1t) for some W1 ∈ {1, ...,Ks}.
Update the iteration 1 model as σ̂j (Ajt = ajt|sW1t)

c=1 = σ̂c=0j + b̂W1 (sW1t) and use it to

calculate the iteration 1 fitted residuals.

4. Using the iteration 1 fitted residuals as the new outcome variable, estimate an individual

univariate linear regression model (without an intercept) for each individual regressor skt

as in iteration 1. Choose the model with the best OLS fit, denoted as b̂W2 (sW2t) for some

W2 ∈ {1, ...,Ks}. Update the iteration 2 model as:

σ̂j (Ajt = ajt|sW1t, sW2t)
c=2 = σ̂j (Ajt = ajt|sW1t)

c=1 + λb̂W2 (sW2t)

where λ is called the "step-length factor," which is often chosen using k-fold cross-validation

(we set λ = 0.01). Use σ̂j (Ajt = ajt|sW1t, sW2t)
c=2 to calculate iteration 2 residuals.

5. Continue in a similar manner for a fixed number of iterations to obtain the final model (we use

C = 1000 iterations). The number of iterations is often chosen using k-fold cross-validation.

As a consequence of this estimation process, it is usually the case that some regressors never

comprise the best fit model in any iteration. If so, then this variable is excluded from the final

model, yielding the dimension-reduced state vector s̃t defined in section 2.1.2 and the estimated

opponent strategy models σ̂j (Ajt = ajt |̃st) for each ajt ∈ Ajt and j ∈ −i. CWGB estimates are
easily computed using one of several available open-source packages, including H2O as well as

mboost and gbm in R.14 For the linear variant of CWGB, we use the glmboost function available

in the mboost package of R. See Hofner et al. (2014) for an introduction to implementing CWGB

in R using the mboost package.

The total number of iterations C and the step length factor λ are tuning parameters for the

algorithm, typically chosen using k-fold cross-validation. Cross-validation is a subset of the out-of-

sample testing that is used as the primary criteria for judging the performance of Machine Learning

models in practice. Out-of-sample testing involves the creation of a training dataset, which is used

to estimate the models of interest, and a testing dataset (a "holdout" sample), which is used to

evaluate the performance of these estimators. The separation of training and testing datasets is

important for evaluating estimators, since in general, adding regressors to a model often reduces

training sample prediction error but does not necessarily improve out-of-sample prediction error. A

common criteria for evaluating estimator performance on the testing dataset is the Mean-Squared

Error (MSE) criteria. Training and testing models is feasible in settings where the number of

observations is large, since this allows both datasets to have a suffi cient number of observations to
14H2O is an open source software developed for implementing Machine Learning methods on particularly

large datasets and is available from http://0xdata.com/. The documentation for the gbm and mboost packages
in R, respectively, are available from http://cran.r-project.org/web/packages/gbm/index.html and http://cran.r-
project.org/web/packages/mboost/index.html.
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generate precise estimates. See Hastie et al. (2009) for an introduction to the common practice of

training and testing in Machine Learning.

Of C and λ, the number of iterations (C) has proven to be the most important tuning parameter

in CWGB models, and the most useful practical criterion for choosing λ is that it should be small

(e.g., λ = 0.01 or λ = 0.1, see Hofner et al. (2014) and Schmid and Hothorn (2008)). On the

one hand, choosing a C that is too large may result in overfitting, i.e. low MSE in sample, but

poor MSE out-of-sample. On the other hand, choosing a C that is too low also results in poor

out-of-sample performance. As a consequence, C is often chosen by minimizing cross-validation

error on randomly chosen holdout samples. For example, when performing 10-fold cross validation

for a given value of C in this context, the researcher randomly chooses 10% of the observations

to include in a holdout sample. Then Algorithm 2 is run on the remaining 90% of the data, i.e.

the training sample, to obtain the estimated model, which used to compute the MSE on the 10%

testing sample. This process is repeated nine additional times using the same value of C, each with

a different randomly chosen holdout and training sample, and the total MSE across all 10 folds is

recorded. A 10-fold cross-validation procedure is carried out for every candidate value of C, and the

value of C that generates the lowest total MSE is chosen. More generally, K-fold cross-validation

generates K testing samples. The mboost package provides a simple command for implementing

K-fold cross-validation automatically.15

Generalizations of CWGB are achieved primarily through the choice of alternative base learners

b (.), subsets of regressors included in each base learner model, and loss functions. For example,

nonlinear versions of gradient boosting might employ regression trees instead of linear b (.), or they

might use subsets of regressors larger than one as part of the base learning models to accommodate

interactions among regressors. We direct readers interested in a more comprehensive introduction

to boosting methods to Hastie et al. (2009) and Hofner et al. (2014).

2.2.2 Opponent Strategies, Period Return, and the Law of Motion (Step 1)

The first step of Algorithm 1 involves estimating opponent strategy functions, and if needed,

the payoff function for agent i and the law of motion. To do so, we make the following assumption.

Assumption (A3). Researchers have access to iid random samples of the form (i) {ajlt, slt}L,Tl=1,t=1
for each j ∈ −i, (ii) {πi (slt,alt) , slt,alt}L,Tl=1,t=1, and (iii) {s̃lt+1, s̃lt, ãlt}

L,T
l=1,t=1.

We invoke (A3)(i) to estimate a separate strategy function model for each j ∈ −i, with each
model denoted as σ̂j (Ajt = ajt |̃st).16 As a prerequisite to estimation, we assume the action space
can be redefined in a way that makes it low-dimensional, as described in Section 2.1.3. In our

15See Hofner et al. (2014) for details on selecting C using cross-validation.
16 If feasible, in some contexts it may be desirable to estimate separate strategy function models for each feasible

action, i.e. σ̂j (Ajt = ajt |̃st) for ajt ∈ Ajt. We employ this estimation strategy in our entry game application,
described in Section 3.
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application described in Section 3, we assume the support of the action is binary 0,1, noting that

there are more general forms of boosting estimators capable of classification in the case of discrete

categorical variables with more than two choices.17 For the binary case, we propose estimating a

linear probability model using CWGB as demonstrated in Algorithm 2. We abuse the notation of

s̃t, since in practice, the state variables included in s̃t may vary across models.

Often, the payoff function for agent i may be known. However, in many settings, it may be

desirable and feasible to estimate these payoff functions. Under (A3)(ii), we assume researchers

have access to a random sample of scalar payoffs for agent i along with corresponding states and

actions. We propose estimating the payoff function using CWGB and denote this estimate as

π̂i (s̃t, ãt), where again, s̃t and ãt represent the dimension-reduced state and action vectors selected

by CWGB, keeping in mind that the selected state variables may be different from those selected

by CWGB to produce the opponent strategy function estimates.

Under some circumstances, such as in the entry game application we study in Section 3, the law

of motion is deterministic and need not be estimated. In settings where the law of motion must

be estimated, the outcomes (st+1) will be high-dimensional, making the estimation of the law of

motion infeasible or at least computationally burdensome. We therefore propose estimating only the

evolution of the state variables collected across all dimension-reduced states selected by the CWGB

estimation processes for all opponent strategy functions and the payoff function. We abuse the

notation of this state vector by also denoting it as s̃t = (s1t, ..., sMt), whereM is the total number of

state variables retained across all CWGB-estimated opponent strategy and payoff function models.

This restricts attention only to those state variables selected under the CWGB selection criteria

for all other estimands of interest, rather than the state variables that comprise the original state

vector st. If the action vector is also high-dimensional, we use the dimension-reduced action vector

ãt selected in the payoff function estimation process. Using (A3)(iii) we assume researchers have

access to a random sample of these state and action variables. Estimation of the law of motion using

the retained state and action variables can proceed flexibly and the exact estimator used depends

on the application and on the nature of the state variables. We propose estimating a separate model

for each outcome state variable included in s̃t+1. These estimated models are denoted as f̂k (s̃t, ãt)

for each k = 1, ...,M . If skt+1 is continuous, f̂k (s̃t, ãt) can be estimated using linear regressions,

which generates models that takes the form skt+1 = f̂k (s̃t, ãt) + m̂t for k = 1, ...,M , where m̂t is

a residual. If skt+1 is discrete and it’s support is binary 0, 1, then a parametric or semiparametric

estimator of the probability of this state transition as a function of s̃t and ãt can be used (for

example, a probit model or again, OLS). If skt+1 is discrete and its support is categorical, then an

estimator for categorical variables can be used (for example, the multinomial logit).

17This includes, e.g., the recently proposed gradient boosted feature selection algorithm of Zheng et al. (2014). We
note that the implementation of this algorithm requires large datasets, i.e. those where the number of observations
is much larger than the number of regressors.
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2.2.3 Initial Strategy for Agent (Step 2)

The second step involves fixing an initial strategy for the agent, i.e., choosing the potentially

suboptimal policy function for player i, i.e. σi. In practice, this policy function can be any

optimal or suboptimal policy, including previously proposed strategy that represents the highest

payoffs researchers or game players have been able to find in practice. For example, if we were

studying a game such as multi-player Texas Hold’em, we might start with the counterfactual regret

minimization strategy recently proposed by Bowling et al. (2015). Regardless of the choice of σi,

Algorithm 1 is designed to weakly improve upon this strategy. However, a particularly suboptimal

choice for σi may slow the convergence of our one-step improvements in subsequent iterations.

2.2.4 Simulating Play (Step 3)

We simulate play for the game using σ̂j (Ajt = ajt |̃st) for all j ∈ −i, the law of motion, the
payoff function, and σi. We describe the case where both the law of motion and period return

functions are estimated since it is straightforward to implement what follows when these functions

are known and deterministic. Our simulation focuses only on the state variables selected across

all CWGB-estimated models for opponent strategies and the period return function, i.e. s̃t as

introduced in Section 2.2.2. Denote simulated variables with the superscript ∗. First, we generate
an initial state s̃∗1. This can be done by either randomly selecting a state from the support of s̃1

or by restricting attention to particular "focal" states. For example, in an industry game, focal

states of interest might include the current state of the industry or states likely to arise under

certain policy proposals. We then generate period t = 1 actions. For competitors, we choose

actions a∗−i1 by drawing upon the estimated probability models generated by opponent strategies

σ̂j (Ajt = ajt |̃st) for each j ∈ −i. For the agent, we choose actions a∗i1 by using the fixed agent
strategy σi generally while randomly permuting a deviation to this action in some simulation runs

or time periods. Given choices for a∗i1 and a
∗
−i1, and also given s

∗
1, we draw upon the estimated

law of motion models f̂k (s̃∗1, ã
∗
1) for k = 1, ...,M to generate s∗2. We draw s̃∗k2 from these models in

two ways, depending upon whether s̃k2 is discrete or continuous. For discrete state variables, f̂k (.)

is a probability distribution, and we draw upon this probability distribution to choose s̃∗k2. For

continuous state variables, f̂k (.) is a linear regression model. We use this linear regression model to

generate a prediction for the next period state variable, which represents it’s mean value. We then

draw upon the empirical distribution of estimated residuals generated by our original sample (see

Section 2.2.2) to select a residual to add to the model prediction. This gives s̃∗k2 = f̂k (s̃
∗
t , ã
∗
t )+ m̂

∗
t .

We choose each a∗it, a
∗
−it, and s̃

∗
t+1 for t = 2, ..., T similarly by randomly deviating from σi, and

also by drawing upon σ̂j (.) and f̂ (.), respectively. This simulation sequence produces data used

to estimate the choice-specific value of a one-period deviation from σi. In all time periods, we

compute payoffs and generate the simulated sums for each t = 1, ..., T :
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Vi (s̃
∗
lt; a
∗
ilt;σi) =

T∑
τ=t

(β)τ−t πi (s̃
∗
lτ , ã

∗
lτ ) (3)

The simulated sums represent the discounted payoffs of choice a∗ilt, given that the agent plays

σi, each opponent j ∈ −i plays according to σ̂j (.), and the law of motion evolves as dictated by
f̂k (.) for k = 1, ...,M . These simulated sums provide us with outcome variables for estimation of

the choice-specific value functions in Step 4.

The low-dimensionality of each s̃t greatly reduces the simulation burden in two ways. First, the

simulation only needs to reach points in the support of each s̃t, rather than all points in the full

support of st, which is computationally infeasible. Second, reducing the number of regressors may

lead to more reliable estimates of σ̂j (.), and f̂k (.) due to a variety of potential statistical issues

encountered in settings where the number of regressors is large. When the number of regressors is

large, researchers often find in practice that many of these regressors are highly multicollinear, and

in the context of collinear regressors, out-of-sample prediction is often maximized using a relatively

small number of regressors. A large number of regressors may also cause identification issues using

conventional models. Good estimates of these models lead to better predictions, which in turn allow

the simulation to reliably search across the space of state variables that are strategically likely to

arise when forming data for the choice-specific value function estimates. This in turn generates

more reliable estimates of the choice-specific value functions, which leads to better improvements

in Step 5.

The simulation process provides us with a sample of simulated data of the form:

{Vi (s̃∗lt, a∗ilt;σi) , s̃∗lt, a∗ilt}
L,T
l=1,t=1

for player i. We use this simulated data to estimate the choice-specific value function for agent

i in the next step.

2.2.5 Estimating Choice-Specific Value Function (Step 4)

If there is smoothness in the value function, this allows us to pool information from across

our simulations in Step 3 to reduce variance in our estimator. Note that the simulated choice

specific value function will be equal to the choice specific value function plus a random error due to

simulation. If we have an unbiased estimator, adding error to the dependent variable of a regression

does not result in a biased estimator.

We propose pooling the simulated data {Vi (s̃∗lt, a∗ilt;σi) , s̃∗lt, a∗ilt}
L,T
l=1,t=1 over time and estimating

separate choice-specific value functions for each action ait ∈ Ait using linear regressions (with

intercepts), where each Vi (s̃∗lt, a
∗
ilt;σi) is the outcome variable and s̃

∗
lt are the regressors. We denote

each estimated model as V̂i (s̃t, ait;σi).
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2.2.6 One-Step Improvement Policy (Step 5)

We generate a one-step improvement policy for player i, denoted as σ̂1i , which represents policy

function which maximizes the estimated choice-specific value function in the corresponding period

t conditional on σi, i.e. we seek the policy function vector σ̂
1
i
18 such that, for all t = 1, ..., T − 1:

σ̂1i ≡
{
σi : S̃t → Ait

∣∣∣∣∣ σi = argmaxait∈Ait
{
V̂i (s̃t, ait;σi)

}
for all s̃t ∈ St

}
(4)

Each σ̂1i is "greedy" in that it searches only for the action choices that maximize the estimated

choice-specific value function in the current period conditional on the agent’s fixed strategy σi,

rather than the actions that maximize the value of choices across all time periods. Once σ̂1i is

obtained, this strategy vector can be used to generate σi in the following iteration, repeating

Algorithm 1 again to obtain a second-step improvement σ̂2i , and so forth until a suitable stopping

rule is met.

3 Empirical Illustrations

3.1 Application In Progress (Texas Hold’Em)

In an application in progress, we apply our algorithm to the popular poker game Texas Hold’em,

which is a game of imperfect information with a state space cardinality of 3.16 × 1017. Bowling
et al. (2015) developed an iterative counterfactual regret minimization (CFR) algorithm, which is

the best performing strategy developed for Texas Hold’em to date. We use the CFR strategy as

an input to our method, inserting it as the initial fixed strategy for our reference agent and also as

the strategy for opponents. Using these inputs, we attempt to derive a policy that improves-upon

the CFR strategy.

3.2 Chain Store Entry Game Institutional Background and Data

According to the U.S. Census, U.S. retail sales in 2012 totaled $4.87 trillion, representing 30

percent of nominal U.S. GDP. The largest retailer, Wal-Mart, dominates retail trade, with sales

accounting for 7 percent of the U.S. total in 2012.19 Wal-Mart is not only the largest global retailer,

it is also the largest company by total revenues of any kind in the world.20 Notwithstanding their

importance in the global economy, there has been a relative scarcity of papers in the literature

18As with the other policy functions, we abuse notation by suppressing the dependence of σ̂1i on the corresponding
states.
19Total U.S. retail sales collected from the Annual Retail Trade Survey (1992-2012), available:

http://www.census.gov/retail/. Wal-Mart share of retail sales collected from the National Retail Federation, Top 100
Retailers (2013), available: https://nrf.com/resources/top-retailers-list/top-100-retailers-2013.
20Fortune Global 500 list (2014), available: http://fortune.com/global500/.
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studying chain store retailers in a way that explicitly models the multi-store dimension of chain

store networks, primarily due to modeling diffi culties.21

Wal-Mart, along with other large chain store retailers such as Target, Costco or Kmart, operate

large networks of physical store and distribution center locations around the world and compete

in several product lines, including general merchandise and groceries, and via several store types,

including regular stores, supercenters, and discount warehouse club stores. For example, by the end

of 2014, Wal-Mart had 42 distribution centers and 4203 stores in the U.S., with each distribution

center supporting from 90 to 100 stores within a 200-mile radius.22

In our illustration, we model a game similar to the one considered by Holmes (2011), who

studies the physical store location decisions of Wal-Mart. Our game consists of two competing

chain store retailers which seek to open a network of stores and distribution centers from the

years t = 2000, ..., 2006 across a finite set of possible physical locations in the United States.23

One location corresponds to a metropolitan statistical area (MSA) as defined by the U.S. Census

Bureau and is indexed by l = 1, ..., L with support L and L = 227 possible locations.24 We

extend the game in Holmes (2011) by modeling the decision of where to locate distribution centers

as well as stores. Each firm sells both food and general merchandise and can open two types

of distribution centers—food and general merchandise—and two types of stores—supercenters and

regular stores. Supercenters sell both food and general merchandise and are supplied by both types

of distribution centers, while regular stores sell only general merchandise and are supplied only by

general merchandise distribution centers.25

At a given time period t, each firm i will have stores and distribution centers in a subset of

locations, observes the facility network of the competitor as well as the current population of each

MSA, and decides in which locations to open new distribution centers and stores in period t + 1.

We collect MSA population and population density data from the US Census Bureau.26 As in

Holmes (2011), we focus on location decisions and abstract away from the decision of how many

21For recent exceptions, see Aguirregabiria and Vicentini (2014), Holmes (2011), Jia (2008), Ellickson, Houghton,
and Timmins (2013), and Nishida (2014).
22The total number of stores figure excludes Wal-Mart’s 632 Sam’s Club discount warehouse club stores.
23Throughout the paper, we use the notation t = 2000, ..., 2006 and t = 1, ..., T with T = 7 interchangeably.
24Census Bureau, County Business Patterns, Metropolitan Statistical Areas, 1998 to 2012. Available at:

http://www.census.gov/econ/cbp/. All raw data used in this paper, which includes a list of MSA’s used, is available
from: http://abv8.me/4bL.
25Additionally, each firm operates import distribution centers located around the country, where each import

distribution center supplies both food and general merchandise distribution centers. We abstract away from decisions
regarding import distribution center placement, fixing and making identical the number and location of import
distribution centers for both firms. Specifically, we place import distribution centers for each competitor in the
locations in our sample closest to the actual import distribution center locations of Wal-Mart during the same time
period. See the Appendix for details.
26Our population density measure is constructed using MSA population divided by MSA land area by square miles

in 2010, both collected from the U.S. Census Bureau. Population data by MSA was obtained from the Metropolitan
Population Statistics, available: http://www.census.gov/population/metro/data/index.html. Land area in square
miles by MSA in 2010 was obtained from the Patterns of Metropolitan and Micropolitan Population Change: 2000
to 2010, available: http://www.census.gov/population/metro/data/pop_data.html.
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facilities to open in each period. Instead, we constrain each competitor to open the same number

of distribution centers of each category actually opened by Wal-Mart annually in the United States

from 2000 to 2006, with the exact locations and opening dates collected from data made publicly

available by an operational logistics consulting firm.27 We also constrain each competitor to open

two supercenters for each newly opened food distribution center and two regular stores for each

newly opened general merchandise distribution center.28 Finally, we use the distribution center

data to endow our competitor with a location strategy meant to approximate Wal-Mart’s actual

expansion patterns as documented by Holmes (2011), which involved opening a store in a relatively

central location in the U.S., opening additional stores in a pattern that radiated from this central

location out, and never placing a store in a far-off location and filling the gap in between. This

pattern is illustrated in Figure 1.29

3.3 Chain Store Entry Game Model

In this section, we adapt our theoretical game model developed in Section 2.1 to the chain

store entry game characterized in Section 3.2.

State. Our state vector is comprised of indicator variables over facility placement decisions

by firm i and firm −i across all locations, as well as a location-specific characteristic (population),
resulting in Ks = 8L+1 = 1817 variables. For example, the first L indicator variables take a value

of 1 if firm i has placed a general merchandise distribution center in location l, 0 otherwise. The

next L indicators work similarly with respect to firm i food distribution centers, and so forth for firm

i regular stores and supercenters. Similarly, the final 4L indicators represent facility placements by

firm −i. Finally, we include a discrete variable representing the population for a given location l.
Actions. As introduced in Section 3.2, we force each competitor to open a pre-specified ag-

gregate number of distribution centers and stores in each period.30 The set of feasible locations is

constrained by the period t state, since for a given facility type q, firm i can open at most one

facility per location.31 Further, we restrict firms to open at most one own store of any kind in each

MSA, with firms each choosing regular stores prior to supercenters in period t. Given these con-

straints and also given the designated number of aggregate facility openings in each period, at time

27This included thirty food distribution centers and fifteen general merchandise distribution centers. Wal-
Mart distribution center locations with opening dates were obtained from MWPVL International, available:
http://www.mwpvl.com/html/walmart.html. We also provide a list in the Appendix.
28This results in a total of sixty supercenters and thirty regular stores opened over the course of the game by each

firm.
29Data prepared by Holmes (2011), available: http://www.econ.umn.edu/~holmes/data/WalMart/.
30We force firms to open the following number of facilities in each period (food distribution centers, general

merchandise distribution centers, regular stores, and supercenters): (4, 4, 8, 8) in t = 2000, (5, 2, 4, 10) in t = 2001,
(6, 1, 2, 12) in t = 2002, (2, 3, 6, 4) in t = 2003, (3, 3, 6, 6) in t = 2004, and (3, 1, 2, 6) in t = 2005. Note that these
vectors each represent facility openings for the next period, e.g. (4, 4, 8, 8) in t = 2000 designates the number of
openings to be realized in t = 2001.
31See the Appendix for details.
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t, firm i chooses a vector of feasible actions (locations) ait with Ka = 4L = 908. This action vector

is comprised of indicator variables over facility placement choices by firm i across all locations.

For example, the first L indicator variables take a value of 1 if firm i chooses to place a general

merchandise distribution center in location l at time t+1, 0 otherwise. Similarly, the remaining 3L

indicator variables represent placement decisions for food distribution centers, regular stores, and

supercenters, respectively. We assume that once opened, distribution centers and stores are never

closed. As documented by Holmes (2011), Wal-Mart rarely closes stores and distribution centers

once opened, making this assumption a reasonable approximation for large chain store retailers.32

Law of Motion. Since we assume the state is comprised of only the current network of

facilities and populations, rather than their entire history, this game is Markov. Since we assume

that all players have perfect foresight with respect to MSA-level population, the law of motion is a

deterministic mapping from the current state and the current actions taken by players i and −i to
the state in period t+ 1.

Strategies. The policy function for each agent maps the current state to location choices in

the following period. The probabilities induced by the strategy of opponent −i are also defined as
before, since our agent i does not observe the period t location choices of opponent player −i until
time period t+ 1.33

Period Return. The period t payoffs for firm i represents operating profits for location l.

In this game, operating profits are parametric and deterministic functions of the current location-

specific state and are similar to the operating profits specified by Holmes (2011). Since customers

substitute demand among nearby stores, operating profits in a given location are a function of both

own and competitor facility presence in nearby locations. They are also a function of location-

specific variable costs, distribution costs, population, and population density. For simplicity of

exposition, we ignore the separate contribution of population density in the period return when

defining the state and instead use population as the lone non-indicator location-specific character-

istic of interest. The Appendix provides the details of our profit specification.

Choice-Specific Value Function. The choice-specific value function for agent i in this game is

a "local" facility and choice-specific value function, which is defined as the period t location-specific

discounted expected operating profits of opening facility q ∈ {f, g, r, sc} in location l for firm i,

where f represents food distribution centers, g represents general merchandise distribution centers,

32Also see MWPVL International’s list of WalMart distribution center openings and closing for additional support
for this assertion, available from: http://www.mwpvl.com/html/walmart.html.
33Since in our illustration our state is "location-specific" in that it includes only the population of a particular

location l (rather than the vector of populations across all locations), we ignore the effect of populations across
locations on opponent strategies. Although this is likely a misspecification, we define the state in this way to take
advantage of cross-sectional differences in location populations when estimating the choice-specific value function,
rather than relying only on across-time variation. We show in our Results section that our state is well-approximated
by our specification. In practice, researchers with access to large datasets might include the entire vector of populations
or other location-specific characteristics in the state.
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r represents regular stores, and sc represents supercenters. We denote this facility-specific choice-

specific value function as Vi
(
st, a

q
ilt;σi

)
, where aqilt replaces the action vector ait and represents the

decision by firm i of whether to locate facility q in location l, 0 otherwise. We focus on facility and

location-specific value functions in order to take advantage of cross-sectional differences in value

when estimating the choice-specific value function in the next section. The choice-specific value

function is also conditional on a set of profit parameters, which is a dependence we suppress to

simplify the notation. Details regarding all parameters are presented in the Appendix.34

3.4 Chain Store Entry Game Policy Function Improvement

We adapt our algorithm to derive a one-step improvement policy over a benchmark strategy

in our chain store entry game.

Opponent Strategies and the Law of Motion (Step 1). In our illustration, we do not

estimate models corresponding to opponent strategies. Instead, we force the competitor to open

distribution centers in the exact locations and at the exact times chosen by Wal-Mart from 2000

to 2006, placing stores in the MSA’s closest to these distribution centers. Specifically, for σ̂−i for

all simulations, we force our competitor to place food and general merchandise distribution centers

in the MSA’s in our sample closest to the exact locations of newly opened Wal-Mart distribution

centers of each kind during the years 2000 to 2006, as detailed in Tables 4 and 5. We then open

regular stores in the two closest feasible MSA’s to each newly opened firm i general merchandise

distribution center. After making this decision, we determine the closest firm i general merchandise

distribution center to each newly opened firm i food distribution center and open supercenters in the

two feasible MSA’s closest to the centroid of each of these distribution center pairs. Additionally,

we do not estimate a law of motion, since it is deterministic in our example. We also do not estimate

34There are two primary differences between the model developed in Section 2.1 and the model implied by our chain
store game. The first difference is the timing of actions. In the chain store application, in period t, agents decide
on store locations in period t + 1. This makes the time t period return deterministic, since all player actions have
already been realized. The second difference is that the law of motion is deterministic, since the state is comprised of
indicators over location choices, and period t actions deterministically determine period t+ 1 location choices. Also,
we assume perfect foresight by all competitors on the population variable, which represents the only variable in the
state vector that is not a location indicator. As in Section 2.2, we assume that εit = 0 for t = 1, ..., T for our reference
agent. As a result, the choice-specific value function for the value of placing facility q in location l in our chain store
entry game for the reference agent i takes the form:

Vi (st; a
q
ilt, σi) = πi (st) + βESt+1 [Vi(st+1;σi)|st,ait (a

q
ilt)] (5)

where,

ESt+1 [Vi(st+1;σi)|st,ait (a
q
ilt)] =

∑
a−tt∈A−it

Vi(st+1 (st,ait (a
q
ilt) ,a−it) ;σi)σ−i (a−it|st)

where the randomness in St+1 is due only to the randomness in the opponent’s strategy σ−i (a−it|st), the notation
ait (a

q
ilt) indicates that facility choices by agent i across all locations at time t are conditional on the facility and

location-specific choice aqilt, and the notation st+1 (st,ait (a
q
ilt) ,a−it) indicates that st+1 is conditional on st, ait (a

q
ilt),

and a−it.
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the payoff function for agent i, since we assume that it is known.

Initial Strategy for Agent (Step 2). In our illustration, for the first-step policy improve-

ment, we choose distribution center locations randomly over all remaining MSA’s not currently

occupied by an own-firm general merchandise or food distribution center, respectively (the num-

ber chosen per period is constrained as previously described). We then open regular stores and

supercenters in the closest feasible MSA’s to these distribution centers exactly as described for the

competitor. For second-step policy improvements and beyond, we use the previous step’s improve-

ment strategy as the fixed agent strategy.

Simulating Play (Step 3). We simulate play for the game using the opponent’s strategy

as described in Step 1, the law of motion, and σi. We generate an initial state s∗1 by 1) for the

agent, randomly placing distribution centers around the country and placing stores in the MSA’s

closest to these distribution centers, and 2) for the competitor, placing distribution centers in the

exact locations chosen by Wal-Mart in the year 2000 and placing stores in the MSA’s closest to

these distribution centers. This results in seven food distribution centers, one general merchandise

distribution center, two regular stores, and fourteen supercenters allocated in the initial state

(t = 2000). In all specifications, store placement proceeds as follows. We open regular stores in the

two closest feasible MSA’s to each newly opened firm i general merchandise distribution center.

After making this decision, we determine the closest firm i general merchandise distribution center

to each newly opened firm i food distribution center and open supercenters in the two feasible

MSA’s closest to the centroid of each of these distribution center pairs. We then generate period

t = 1 actions. For the competitor, we choose locations a∗−i1 according to the opponent strategy

from Step 1. For the agent, we choose a subset of facility locations using the fixed agent strategy

σi, and the remaining facilities randomly, i.e. by choosing a
q∗
il1 = 1 or aq∗il1 = 0 for each facility

q ∈ {f, g, r, sc} and each location l = 1, ..., L by drawing from a uniform random variable. For

example, in t = 2000, of the 8 supercenters agent i must choose to enter in t = 2001, we choose 6

using σi and 2 randomly (i.e., we place supercenters in the two feasible locations with the highest

random draws). These choices specify the state in period t = 2, i.e. s∗2. We choose each a
q∗
ilt and

a∗−it for t = 2, ..., T − 1 similarly using σi, a subset of random location draws, and the opponent

strategy. For each location l and period t = 1, ..., T −1, we calculate the expected profits generated
by each choice aq∗ilt ∈ {0, 1}, i.e. the simulated sums presented in definition 3, substituting a

q∗
ilt for

a∗ilt. This provides us with a sample of simulated data of the form
{
Vi
(
s∗lt, a

q∗
ilt;σi

)
, s∗lt, a

q∗
ilt

}L,T
l=1,t=1

for firm i and each simulation run.

Estimating Choice-Specific Value Function (Step 4). We focus on eight estimands,

Vi
(
st, a

q
ilt;σi

)
for each q ∈ {f, g, r, sc} and choice aqilt ∈ {0, 1}. Defining the state as "location-

specific" through the location-specific population variable allows us to exploit differences in value

across locations when estimating the choice-specific value functions. This simplification is not
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necessary for implementing Algorithm 1 but greatly reduces the simulation burden, since each

individual simulation effectively provides 227 sample observations rather than 1. We employ CWGB

Algorithm 2, with outcomes Vi
(
s∗lt, a

q∗
ilt;σi

)
and regressors s∗lt, and we pool observations across

simulation runs, locations, and time. This estimation process produces eight models, denoted as

V̂i
(
s̃t, a

q
ilt;σi

)
for q ∈ {f, g, r, sc} and aqilt ∈ {0, 1}, where we abuse notation by not acknowledging

the potential differences in the dimension-reduced vectors s̃t across models, which need not include

the same state variables.35

One-Step Improvement Policy (Step 5). To derive each σ̂1i , we first compute the difference

in the CWGB estimated local choice and facility-specific value functions between placing a facility

q in location l versus not, i.e. V̂i
(
s̃t, a

q
ilt = 1;σi

)
−V̂i

(
s̃t, a

q
ilt = 0;σi

)
, for each facility type q ∈

{f, g, r, sc} and location l = 1, ..., L. Then, for each q, we rank these differences over all locations
and choose the highest ranking locations to place the pre-specified number of new facilities allowed

in each period. This algorithm for choosing facility locations over all time periods represents our

one-step policy improvement policy σ̂1i .
36 A second-step policy improvement is obtained by using

σ̂1i to generate σi, and repeating the steps of Algorithm 1.37

3.5 Chain Store Entry Game Results

The models resulting from using the CWGB procedure are presented in Table 1. Table 1 lists

both the final coeffi cients associated with selected state variables in each model, as well as the pro-

portion of CWGB iterations for which univariate models of these state variables resulted in the best

fit (i.e. the selection frequency). For example, during the CWGB estimation process which gen-

erated the model for general merchandise distribution centers and agilt = 1, i.e. V̂i
(
s̃t, a

g
ilt = 1;σi

)
,

univariate models of the population variable were selected in 53 percent of the iterations.

This table reveals three salient features of these models. The first is that the CWGB procedure

drastically reduces the number of state variables for each model, from 1817 to an average of 7

variables. For example, one of the most parsimonious models estimated is that for regular stores

with arilt = 1, i.e. V̂i (s̃t, arilt = 1;σi), which consists of a constant, the population covariate, and

indicators for own regular store entry in five markets: Allentown, PA, Hartford, CT, Kansas City,

MO, San Francisco, CA, and Augusta, GA. This reduces the average state space cardinality per

35 In our chain store entry game application, we estimate the choice-specific value function using CWGB rather than
OLS, where OLS is proposed in Section 2.2. This is necessary because our state vector remains high-dimensional in
the chain store game, since we do not estimate opponent policy functions, our agent’s payoff function is known, and
since the law of motion is deterministic. In settings where the policy functions of opponents and (if necessary) the
agent’s payoff function are estimated using CWGB, the CWGB estimator typically reduces the dimension of the state
vector suffi ciently, making further model selection unnecessary when estimating the choice-specific value function.
36We note that by choosing σ̂1i in this way, we do not choose a true greedy maximum action vector ait in each period

t, since focusing on location and facility-specific choice-specific value functions effectively assumes that facilities in all
other locations are chosen according to σi. Nonetheless, we show in the next Section that σ̂1i generates a substantial
improvement in our illustration.
37Our code for implementing the chain store application is available at: http://abv8.me/4g8.
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time period from more than 1085 (not including population) to 32 (25) multiplied by the cardinality

of the population variable.

The second and related feature is that all models draw from a relatively small subset of the

original 1816 own and competitor facility presence indicators. It is also interesting to observe

which MSA indicators comprise this subset, which is made up primarily of indicators associated

with medium-sized MSA’s in our sample scattered across the country. What explains this pattern

is that in the simulated data used for estimation, even across many simulations, only a subset of

MSA’s are occupied by firm facilities. Among those occupied, occasionally, the agent experiences

either heavy gains or heavy losses, which are compounded over time, since we do not allow firms

to close facilities once they are opened. These particularly successful or painful facility placements

tend to produce univariate models that explain levels of the choice-specific value function well,

which results in their selection by the CWGB procedure, typically across several models. For

example, a series of particularly heavy losses were sustained by the agent as a result of placing a

regular store in Augusta, GA, which induced the CWGB procedure to choose this indicator at a

high frequency—25 percent, 15 percent, and 18 percent of iterations—across three different models,

with each model associating this indicator with a large negative coeffi cient. As a result, our one-step

improvement policy σ̂1i tended to avoid placing distribution centers and stores in this location.

The third salient feature apparent from Table 1 is that population is the state variable selected

most consistently. Across all CWGB models, population is selected with a frequency of roughly

53 percent in each model, while facility presence indicator variables are selected at much smaller

rates.38

For a variety of parameter specifications, Table 2 compares per-store revenues, operating in-

come, margins, and costs, averaged over all time periods and simulations, for three strategies: 1) the

one-step improvement policy for the agent, 2) a random choice agent strategy, where distribution

centers and stores are chosen as specified for σi (in all time periods t, ..., T − 1), and 3) the com-
petitor’s strategy (benchmark). The three parameter specifications correspond to three scenarios:

a baseline specification, a high penalty for urban locations, and high distribution costs.39 As shown

in this table when comparing revenues, in the baseline scenario, the one-step improvement policy

outperforms the random choice strategy by 354 percent. Similarly, it outperforms the competi-

tor’s strategy by 293 percent. In the high urban penalty and high distribution cost specifications,

the one-step improvement policy outperforms the random choice strategy by 355 percent and 350

38For comparison, in the Appendix (Table 8), we estimate OLS models of the choice-specific value functions of
interest by using only the state variables selected by the corresponding boosted regression model from Table 1.
Overall, the post selection OLS models have similar coeffi cients to the boosted regression models.
39The parameter values in the baseline specification were chosen to calibrate competitor per-store returns to those

actually received by Wal-Mart in the U.S. during the same time period. The high urban penalty and high distribution
cost specifications were chosen to explore the sensitivity of the relative returns generated by our one-step improvement
policy to these parameters.
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percent, respectively, and the competitor strategy by 293 percent and 294 percent, respectively.

The relative returns of the one-step improvement policies seem fairly invariant to the parameter

specifications, which is understandable since each is constructed using a choice-specific value func-

tion estimated under each respective parameter specification. The one-step improvement policies

appear to adjust the agent’s behavior accordingly in response to these parameter changes.

Table 3 provides a comparison of per-store revenues, operating income, margins, and costs by

revenue type and strategy, averaged over all time periods and simulations in the baseline scenario,

and compares these to Wal-Mart’s revenue and operating income figures for 2005. The competitor’s

strategy generates average operating income per store (of both types) of $4.40 million, which is

similar to that actually generated by Wal-Mart in 2005 of $4.49 million, and larger than the of

the random choice strategy, which generates $3.26 million. The one-step improvement policy does

much better, with an operating income per store of over $18 million, corresponding to revenues

per store of $244 million, versus $62 million for the competitor and $54 million for the random

choice strategy. Moreover, the one-step improvement policy achieves a slightly higher operating

margin than the other two strategies: 7.55 percent versus 7.09 percent for the competitor and 6.07

percent for the random choice strategy. One reason for the success of the improvement strategy

appears to be that it targets higher population areas than the other strategies, which generates

higher revenues in our simulation. Specifically, it targets MSA’s with an average population of

2.39 million versus 0.84 million for the random choice strategy and 1.01 million for the competitor.

That the average population of competitor locations is relatively small is understandable, since

the competitor progresses as Wal-Mart did, placing distribution centers and stores primarily in the

Midwest and radiating out towards the east coast, while the improvement strategy searches for

value-improving locations for distribution centers and stores in a less restricted manner across the

country.

These facility placement pattern differences are visually detectable in Figure 2, which shows

distribution center and store location patterns for the agent and the competitor in a representative

simulation, with the agent using the one-step improvement policy. As shown in these figures, the

agent scatters distribution centers and stores across the population dense MSA’s in the United

States, while the competitor has a concentration of distribution centers and stores primarily in the

Midwest and east coast. By the end of 2006, the agent has a strong presence on the West coast

with eight facilities in California, while the competitor only opens four facilities in this region.

Although visually these pattern differences seem subtle, they generate large differences in revenues

and operating income, as highlighted by Table 3.

Finally, we generate additional policy improvements after the first one-step policy improvement

by randomly deviating from each one-step policy improvement and otherwise repeating the steps

of Algorithm 1. As shown in Figure 3, the first one-step policy improvement generates almost all
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gains in payoffs, and all subsequent policy improvements generate returns very close to the first

one-step policy improvement. For example, using the baseline specification, while the first one-step

policy improvement generates total revenues per store for the agent of $244.44 million, up from

the total revenues per store generated by the random choice strategy of $53.61 million, the second

through fifth-step policy improvements generate total revenues per store of between $244.43 and

$244.60 million. Similarly, while the first one-step policy improvement generates operating income

per store of $11.55 million, up from the operating income per store generated by the random choice

strategy of $1.94 million, the second through fifth-step policy improvements generate operating

income per store of between $11.23 million and $11.55 million.

4 Conclusion

This paper develops a method for deriving policy function improvements for a single agent in

high-dimensional Markov dynamic optimization problems and in particular dynamic games. The

approach has two attributes that make it useful for deriving policies in realistic game settings.

The first is that we impose no equilibrium restrictions on opponent behavior and instead estimate

opponent strategies directly from data on past game play. This allows us to accommodate a richer

set of opponent strategies than equilibrium assumptions would imply. A second is that we use a

Machine Learning method to estimate opponent strategies and, if needed, the payoff function for

a reference agent and the law of motion. This method makes estimation of the agent’s choice-

specific value function feasible in high-dimensional settings, since as a consequence of estimation,

the estimator reduces the dimension of the state space in a data-driven manner. Data-driven

dimension-reduction proceeds by choosing the state variables that minimize the loss associated

with predicting the outcomes of interest according to a fixed metric, making the estimates low-

dimensional approximations of the original functions. In our illustration, we show that our functions

of interest are well-approximated by these low-dimensional representations, suggesting that data-

driven dimension-reduction might serve as a helpful tool for economists seeking to make their

models less computationally wasteful.

We use the method to derive policy function improvements for a single retailer in a dynamic

spatial competition game among two chain store retailers similar to the one considered by Holmes

(2011). This game involves location choices for stores and distribution centers over a finite number

of time periods. This game becomes high-dimensional primarily because location choices involve

complementarities across locations. For example, clustering own stores closer together can lower

distribution costs but also can cannibalize own store revenues, since consumers substitute demand

between nearby stores. For the same reason, nearby competitor stores lower revenues for a given

store. Since we characterize the state as a vector enumerating the current network of stores and

distribution centers for both competitors, the cardinality of the state becomes extremely large (on
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the order of > 1085 per time period), even given a relatively small number of possible locations

(227). We derive an improvement policy and show that this policy generates a nearly 300 percent

improvement over a strategy designed to approximate Wal-Mart’s actual facility placement during

the same time period (2000 to 2006).
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Figure 1: Wal-Mart Distribution Center and Store Diffusion Map (1962 to 2006).
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Figure 2: Simulation Results, Representative Simulation (2000 to 2006).
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Figure 3: Multi-step Policy Improvement.
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5 Appendix

5.1 Section 3.2 Details

Import Distribution Centers. During the 2000 to 2006 time period, Wal-Mart operated

import distribution centers in Mira Loma, CA, Statesboro, GA, Elwood, IL, Baytown, TX, and

Williamsburg, VA. See http://www.mwpvl.com/html/walmart.html for this list. For our simulation

(over all time periods), we endow each firm with an import distribution center in each MSA in our

sample physically closest to the above listed cities. These include [with Wal-Mart’s corresponding

import distribution center location in brackets]: Riverside, CA [Mira Loma, CA], Savannah, GA

[Statesboro, GA], Kankakee, IL [Elwood, IL], Houston, TX [Baytown, TX], and Washington, DC

[Williamsburg, VA].

General Merchandise and Food Distribution Centers. We constrain each competitor to

open the same number of general merchandise and food distribution centers in each period as actu-

ally opened by Wal-Mart. Additionally, we constrain the competitor to open general merchandise

and food distribution centers in the MSA’s in our sample closest to the actual distribution centers

opened by Wal-Mart in the same period. Tables 4 and 5 present both the distribution centers

opened by Wal-Mart, as well as the distribution center locations opened by the competitor in all

simulations.

Table 4: General Merchandise Distribution Centers

Year Wal-Mart Location Competitor’s Location

2000 LaGrange, GA Columbus, GA
2001 Coldwater, MI Jackson, MI
2001 Sanger, TX Sherman, TX
2001 Spring Valley, IL Peoria, IL
2001 St. James, MO Columbia, MO
2002 Shelby, NC Hickory, NC
2002 Tobyhanna, PA Scranton, PA
2003 Hopkinsville, KY Clarksville, TN
2004 Apple Valley, CA Riverside, CA
2004 Smyrna, DE Dover, DE
2004 St. Lucie County, FL Miami, FL
2005 Grantsville, UT Salt Lake City, UT
2005 Mount Crawford, VA Cumberland, MD
2005 Sealy, TX Houston, TX
2006 Alachua, FL Gainesville, FL
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Table 5: Food Distribution Centers

Year Wal-Mart Location Competitor’s Location

2000 Corinne, UT Salt Lake City, UT
2000 Johnstown, NY Utica-Rome, NY
2000 Monroe, GA Athens, GA
2000 Opelika, AL Columbus, GA
2000 Pauls Valley, OK Oklahoma City, OK
2000 Terrell, TX Dallas, TX
2000 Tomah, WI LaCrosse, WI
2001 Auburn, IN FortWayne, IN
2001 Harrisonville, MO KansasCity, MO
2001 Robert, LA New Orleans, LA
2001 Shelbyville, TN Huntsville, AL
2002 Cleburne, TX Dallas, TX
2002 Henderson, NC Raleigh, NC
2002 MacClenny, FL Jacksonville, FL
2002 Moberly, MO Columbia, MO
2002 Washington Court House, OH Columbus, OH
2003 Brundidge, AL Montgomery, AL
2003 Casa Grande, AZ Phoenix, AZ
2003 Gordonsville, VA Washington, DC
2003 New Caney, TX Houston, TX
2003 Platte, NE Cheyenne, WY
2003 Wintersville (Steubenville), OH Pittburgh, PA
2004 Fontana, CA Riverside,CA
2004 Grandview, WA Yakima,WA
2005 Arcadia, FL PuntaGorda,FL
2005 Lewiston, ME Boston,MA
2005 Ochelata, OK Tulsa,OK
2006 Pottsville, PA Reading,PA
2006 Sparks, NV Reno,NV
2006 Sterling, IL Rockford,IL
2007 Cheyenne, WY Cheyenne,WY
2007 Gas City, IN Muncie,IN

5.2 Section 3.3 Details

State Space Cardinality Calculation. Calculations for the cardinality of the part of the state

space attributable to firm i as defined in our illustration are listed in Table 6.
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Constraints on firm location choices. For a given firm i, we allow each location l to accom-

modate up to four firm i facilities at one time: one import distribution center, one food distribution

center, one general merchandise distribution center, and one store of either type. Symmetrically,

the competitor firm can also place up to four facilities in the same location l, for a maximum

number of eight facilities per location. We assume that neither firm can place two of its own stores

(regardless of type) in one location. This approximates actual store placement patterns by big box

retailers such as Wal-Mart well for small MSA’s, which usually accommodate only one own-store

at a time, but less so for larger MSA’s, which might contain several own-stores. One additional

constraint we impose is that in each period t, each firm chooses regular stores prior to choosing

supercenters. Since we allow only one firm i store of any type per MSA, each firm’s constrained

set of possible supercenter locations are a function of period t regular store location choices.

Profit Specification. For a given firm i, sales revenues for a store in location l depend on the

proximity of other firm i stores and firm −i stores, where −i denotes the competitor firm. Note
that since we allow only one store of any kind per MSA, we can refer to a store by its location,

i.e. we refer to a store in location l as store l. Let the portion of the state vector attributable

to locations for food distribution centers (f), general merchandise distribution centers (g), regular

stores (r), and supercenters (sc) be denoted as sfit, s
g
it,s

r
it, and s

sc
it , where each vector is of length

L, and sqit ≡
(
sq1t, ..., s

q
Lt

)
for q ∈ {f, g, r, sc}. Also denote the population for location l at time t

as poplt. For store l of firm i at time t, denote food revenues as Rfilt
(
sscit , s

sc
−it, poplt

)
and general

merchandise revenues as Rgilt (sit, s−it, poplt), where sit ≡ I (srit + sscit > 0) with support Sit, I (.)
represents the indicator function, each element of sit is denoted as silt, food revenues are a function

of the proximity of supercenter locations for both firms, general merchandise revenues are a function

of the proximity of store locations of both types for both firms, and both classes of revenue are a

function location-specific population poplt.40 Although we do not model consumer choice explicitly,

our revenue specification implies that consumers view other own-stores and competitor-stores as

substitutes for any given store.41

We assume that revenues are a function of the parameter vector ϑi = (αi, δi,−i, δi,i) and specify

total revenues for store l and firm i at time t in the following way:

Rilt
(
sscit , s

sc
−it, sit, s−it, poplt;ϑi

)
= Rfilt

(
sscit , s

sc
−it, poplt;ϑi

)
+Rgilt (sit, s−it, poplt;ϑi) (6)

where,

40 It is conceivable that close-proximity regular stores could cannibalize food revenues of a given supercenter store
l to the extent that consumers buy food incidentally while shopping for general merchandise. In that case, a nearby
regular store might attract the business of these consumers, who could refrain from making the incidental food
purchases they might have made at supercenter store l. Because we expect this effect to be small, we model food
revenues as conditional only on the presence of nearby supercenters.
41Holmes (2011) specifies revenue in a similar way but derives consumers’store substitution patterns from demand

estimates obtained using data on Wal-Mart sales.
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Rfilt
(
sscit , s

sc
−it, poplt;ϑi

)
=

sscilt ∗

αipoplt
1 + δi,−i∑

m6=l

ssc−imt
dlm

∗ I {dlm ≤ 60}+ δi,i
∑
m6=l

sscimt
dlm
∗ I {dlm ≤ 60}



Rgilt (sit, s−it, poplt;ϑi) =

silt ∗

αipoplt
1 + δi,−i∑

m6=l

s−imt
dlm

∗ I {dlm ≤ 60}+ δi,i
∑
m6=l

simt
dlm
∗ I {dlm ≤ 60}


In this specification, both classes of revenue depend on the proximity of own-stores and competitor-

stores through the terms δi,i
∑
m6=l

syimt
dlm
∗I {dlm ≤ 60} and δi,−i

∑
m6=l

sy−imt
dlm
∗I {dlm ≤ 60} for y ∈ {sc,�},

respectively, where m indexes a location different from location l, and dlm represents the distance

from location l to a different location m. The parameters δi,i and δi,−i represent the average effect

on revenues of close-proximity own-stores and competitor-stores, respectively. Since we assume

that the parameters δi,i and δi,−i are negative, intuitively, these terms represent a deduction to

revenues induced by own-stores or competitor-stores that are close in proximity to store l, since we

assume that consumers view these stores as substitutes for store l. With respect to own-stores, this

revenue substitution effect is deemed own-store "cannibalization," which is an important dimension

of chain-store location decisions as documented by Holmes (2011) for the case of Wal-Mart. With

respect to competitor stores, this effect reflects competition. The strength of the effect is weighted

by dlm, with stores in locations that are farther away from store l having a smaller effect on revenues

than those that are close by. The indicators I {dlm ≤ 60} take a value of 1 if location m is closer

than 60 miles away from location l, 0 otherwise, which imposes the assumption that stores located

farther than 60 miles have no effect on store l revenues. This assumption is slightly unrealistic,

but we impose it since our sample only includes 227 MSA’s in the U.S., which means there are few

MSA’s within, for example, a 30 mile radius of any MSA in our sample. With more MSA’s, this

cutoff distance can be reduced. We assume that the parameters δi,i and δi,−i are the same across

revenue categories to simplify the exposition. Both types of revenue are dependent on population

at time t, xlt, through a common scalar parameter αi. Additionally, since regular stores don’t sell

food, Rfilt = 0 for all regular stores.

As in Holmes (2011), we abstract from price variation and assume each firm sets constant

prices across all own-stores and time, which is motivated by simplicity and is not necessarily far

from reality for a chain-store retailer like Wal-Mart, which is known to set prices according to an

every-day-low-price strategy. Denoting µ as the proportion of sales revenue that is net of the cost
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of goods sold (COGS), then µReilt (.) represents revenues net of COGS for firm i, store l, time t,

and revenue type e ∈ {g, f}.
Firms incur three types of additional costs: 1) distribution costs attributable to store sales,

2) store-level variable costs, and store-level fixed costs. In order to sell a given set of goods in

time period t at store l, as in Holmes (2011), we assume that each firm incurs distribution costs to

deliver these goods from general merchandise or food distribution centers (or both for supercenters)

to store l. In addition, we assume that firms incur distribution costs when transporting these goods

from import distribution centers to either general merchandise or food distribution centers. We

introduce these latter distribution costs in order to model location decisions for general merchandise

and food distribution centers. Denote the distribution costs incurred by firm i to sell goods from

store l at time t as DCilt, which take the form: DCilt = ςdglt + ιdimplgt + ςdflt + ιdimplft . Here, d
g
lt and

dflt represent the distance from store l to the nearest firm i general merchandise distribution center

or food distribution center, respectively. In our game simulation, if store l is a regular store, we

assume that it is supplied exclusively by the own-general merchandise distribution center in the

MSA physically closest to store l. Similarly, if store l is a supercenter, it is supplied exclusively by

the own-food distribution center and own-general merchandise distribution center in the MSA(’s)

closest to store l. Further, dimplgt represents the distance between the general merchandise distribution

center that supplies store l and the nearest import distribution center, while dimplft represents the

distance between the food distribution center that supplies store l (if store l is a supercenter) and

the nearest import distribution center. We assume that distribution costs are a fixed proportion

of these distances, captured by the parameters ς and ι, and interpret fixed distribution costs as the

costs incurred to operate a truck over the course of one delivery of goods per day, aggregated over

one year. This model approximates the daily truck delivery distribution model actually employed

by Wal-Mart, as documented by Holmes (2011). Finally, if store l is a regular store, ςdflt+ιd
imp
lft = 0

since regular stores do not sell food.

The remainder of our costs for both firms are specified almost exactly as in Holmes (2011) for

the case of Wal-Mart, so we describe them succinctly and direct the interested reader to that work

for additional description. Firms incur variable costs in the form of labor, land, and other costs (all

costs not attributable to land or labor). Variable land costs are motivated by the store modification

patterns of Wal-Mart, which frequently changes parking lot size, building size, and shelf space to

accommodate changes in sales patterns. The quantity of labor, land, and other inputs needed are

assumed to be a fixed proportion of total store revenues, such that for firm i, store l, and time

t, Laboreilt = νLaborReilt, Land
e
ilt = νLandReilt, and Other

e
ilt = νOtherReilt, for merchandise segment

e ∈ {g, f}. The prices of land and labor per unit of input are represented by wages and rents specific
to store l at time t, denoted as wagelt and rentlt. We collect data on rents and wages for each

time period and each MSA. We define rents as the median (per-MSA) residential home value per
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square-foot from Zillow, and wages as the annual retail sector payroll divided by the total number

of employees (per-MSA), provided by the U.S. Census County Business Patterns dataset (MSA

level).42 The price of the other input is normalized to 1. We focus only on fixed costs that vary by

location, since costs that are constant across locations do not matter for the decision of where to

locate stores and distribution centers. As documented by Holmes (2011), there are disadvantages

for big box retailers like Wal-Mart of locating stores in urban locations, including, for example,

increased non big box retailer shopping options for consumers. The fixed-cost disadvantage of

locating stores in urban locations is modeled as a as a function of the population density at time t

of the location hosting store l, denoted as Popdenlt.43 This function, u (Popdenlt), is quadratic in

logs, e.g.:

u (Popdenlt) = ω0 + ω1 ln (Popdenlt) + ω2 ln (Popdenlt)
2

Given this specification for revenues and costs, firm i operating profits for store l at time t take

the following form:

πi (st) ≈ πilt ≡
[[
ψgilt − ςd

g
lt − ιd

imp
lgt

]
+
[
ψfilt − ςd

f
lt − ιd

imp
lft

]
− u (Popdenlt)

]
(7)

where,

ψeilt = µReilt −WageltLabor
e
ilt −RentltLandeilt −Othereilt for merchandise segment e ∈ {g, f}

If store l is a regular store, the profit component
[
ψfilt − ςd

f
lt − ιd

imp
lft

]
= 0, since regular stores

sell only general merchandise. We assume that if firm i operates no store in location l at time t,

then πilt = 0. Note that we use the ≈ notation to make clear that the we omit population density
from the location-specific state described in Section 3.3 and instead only include location-specific

population.

We define a discount factor β and set it to β = 0.95. As in Holmes (2011), we define an exogenous

productivity parameter ρ that represents gradual increases in average sales per-store, motivated by

gradual increases in average sales per-store experienced by Wal-Mart.44 Profit parameter values

for each specification are presented in Table 7.

42The Zillow data is available from http://www.zillow.com/, and the Census data is available from
http://www.census.gov/econ/cbp/.
43See Section 3.2 for details on our population density definition and data source.
44Unlike in Holmes (2011), for simplicity of exposition, we make this productivity parameter constant over time.

One source of these increases is an expansion in the variety of products offered for sale.
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5.3 Section 3.5 Details

Table 8 presents OLS models of the choice-specific value functions of interest using state variables

selected by the corresponding boosted regression models in Table 1 and simulation data generated

under the baseline specification of parameters.
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