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1 Introduction

This paper proposes a theory of what determines market liquidity and how liquidity evolves
over time. The theory is based on the interplay between information asymmetry and social
learning.

Liquidity is an elusive concept and the literature on it is plagued by challenges of both
definition and measurement.1 The theory in this paper refers to one particular notion of
liquidity: the liquidity of an asset class is the fraction of the potential gains from trade in
that asset class that are realized in equilibrium. If the potential gains from trade are large,
it is therefore tautologically true that asset liquidity has important consequences for social
welfare.

The theory is based on a minor modification of an otherwise standard model of trade
under asymmetric information in the spirit of Akerlof (1970). The assumption is that, rather
than being purely uninformed, asset buyers have access to some information, but their ability
to make use of that information depends on their collective experience. The model abstracts
from the specific features of the assets that are traded. However, to fix ideas it is useful to
think of it as applying to markets like IPOs, the primary market for asset backed securities
or the primary market for sovereign bonds.

The model works as follows. Every period, “investors” can create assets of heterogeneous
quality; these are more productive if held by “managers” rather than investors, so there are
gains from trade. Investors know the asset qualities but managers do not observe them, so
a classic lemons problem ensues.

Managers can alleviate their informational disadvantage by observing public, asset-specific
signals. However, for these signals to be useful, managers need to know how they correlate
with asset qualities. The key assumption in the model is that the joint distribution of signals
and asset qualities, summarized by the single parameter µ, is not known exactly. Agents
can learn about µ from commonly-observed past data. This data is based on a sample of
past assets and for each of them contains the signal it produced when it was created and an
indicator of how it turned out. The idea, then, is that agents turn to the historical track
record to guide them in making sense of the information available on any given asset, which
is standard practice among financial analysts. Damodaran (2008) offers a guide on the use of
“comparables” to determine which pieces of information about a particular asset one should
focus on and how to use them in valuation. One of the key challenges in practice is finding

1See Brunnermeier and Pedersen (2009) for a discussion of the conceptual issues and Goyenko et al. (2009)
for a discussion of measurement.
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a sufficiently large and sufficiently similar sample of historical precedents. In terms of the
model, the key question is at what rate observations are added to the historical sample.
This rate is assumed to depend positively on the level of investment and trade, a form of
learning-by-doing.

The model delivers several predictions about the relationship between investment, infor-
mation, and liquidity. The first result is that liquidity is increasing in the precision of agents’
estimates of µ. Knowing µ makes traders better able to extract information from signals,
reducing the degree of information asymmetry and increasing liquidity. Hence, liquidity is a
function of traders’ expertise. Asset prices, the level of investment and the volume of trade
are increasing in liquidity.

Depending on parameters, the model may feature an “illiquidity trap”. If at any point
in time, estimates of µ are sufficiently imprecise, then assets will be completely illiquid
and trade will break down. Depending on the parameters of the learning process and the
investment technolgy, this may imply that markets generate no data for agents to learn from,
which perpetuates the illiquidity. Whether or not the economy falls into an illiqudity trap
depends on the sample realizations during the first few periods. If the first observations
lead to precise and correct estimates of µ, then this will increase liquidity and reinforce the
learning process, which becomes self-sustaining. If instead they lead to imprecise estimates
of µ, because they conflict with each other or with agents’ prior, then signals will become
uninformative, leading to the illiquidity trap. Even under parameters such that there is no
permanent illiquidity trap, markets liquidity can be slow to recover after a disruption.

The model also predicts that markets will tend to become more liquid over time, as
traders accumulate more observations with which to estimate µ. Several studies have docu-
mented this feature of market maturation. Buckley (1997a,b) describes how this took place
in emerging market debt markets; Anderson and Gascon (2009) do so for the commercial
paper market.

In the model, unexpected events disrupt liquidity in the short term because they increase
buyers’ uncertainty as to whether they are using the correct model (i.e. the correct value of µ)
to evaluate assets. This increases informational asymmetry and lowers liquidity. Adrian and
Shin (2009) and Brunnermeier (2008) document how liquidity in the market for asset-backed
securities fell sharply after an unexpected increase in mortgage defaults in 2007. Further-
more, according to the model, unexpected events will be more disruptive in newer markets,
where traders have not had time to accumulate a long track record of observations and thus
revise their beliefs strongly in light of new information. Caballero and Krishnamurthy (2008)
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emphasize that market reactions to surprises tend to be more extreme in newer markets. If
the underlying structure of the economy can change over time, unexpected events will be
more common in times of structural change and therefore liquidity will be higher when the
underlying economy is more stable.

The learning-by-doing mechanism at the heart of the model is similar to that assumed
by Veldkamp (2005), van Nieuwerburgh and Veldkamp (2006) and Fajgelbaum et al. (2014),
all of whom assume that there is an association between the level of economic activity and
the rate at which agents learn. The main difference with this literature lies in what is the
object that agents are trying to learn about. Here agents are not learning about the level
of aggregate productivity but about the right way to evaluate assets. The mechanics of
illiquidity persistence in the model are also similar to the informational cascades described
by Banerjee (1992), though the logic is somewhat different. Here the learning process may
be interrupted not because agents stop paying attention to information but because trade
and investment collapse and no further information is generated.

The rest of the paper is organized as follows. Section 2 describes the environment; section
3 characterizes the static outcomes of the model; section 4 contains the main results about
liquidity dynamics and section 5 offers some final remarks.

2 The Model

Agents, endowments and technology There are two types of agents, investors and
managers. Each lives for only one period; once I introduce dynamics I study the continuous
time limit where the period is short. Both types of agents have large endowments of the
consumption good and are risk neutral.

Investors are ex-ante indentical and have access to a technology that lets them convert
c (K) consumption goods intoK units of capital. The function c is increasing and convex. As
a side-product, the technology also produces λK “lemons”, which look like units of capital
but are useless. λ is an exogenous parameter. I refer to capital and lemons collectively
as “assets”. An investor may (within the period) use a unit of capital to produce ZK

consumption goods. Z is a nonnegative random variable, distributed iid across investors
according to a continuous distribution F . It is realized after K is chosen. The law of large
numbers applies so F also represents the distribution of Z among investors. After production,
capital depreciates completely.

Managers are not able to convert consumption goods into capital but have access to a
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technology that produces θK consumption goods with one unit of capital.

Assumption 1.

1. F (θ) = 1

2. F (p)
F (p)+λ

θ < p for all p > 0

Part 1 of Assumption 1 says that investors are always less productive than managers. A
social planner would want all capital to be operated by managers. Part 2 of Assumption 1
ensures that no trade would take place under pure asymmetric information. It will hold if
λ is sufficiently high (i.e. there is a high proportion of lemons) and the left tail of F (·) is
sufficiently thin (i.e. there are few investors with extremely low productivity).

Information Each investor can tell apart the units of capital from the lemons among the
assets that he produced, but neither managers nor other investors can do so.

However, each asset emits a publicly observable signal s, which takes two possible values,
A and B, according to the following conditional probabilities:

Pr [s = A|Capital] = Pr [s = B|Lemon] = µ (1)

Pr [s = B|Capital] = Pr [s = A|Lemon] = 1− µ

where µ ∈ (0, 1). Assets are divisible and the law of large numbers applies so the probabilities
(1) also represent proportions in any investor’s portfolio.2

The value of µ is itself a random variable, realized at the beginning of time but initially
unknown to the agents, drawn from a distribution G0. This is meant to capture the idea
that market participants might not know what is the right model that applies to a particular
asset class.

Occasionally, after its payoff is realized, an asset it will emit an additional “ex-post”
public signal z ∈ {H,L} with the following conditional probabilities:

Pr [z = H|Capital] = Pr [z = L|Lemon] = γ (2)

Pr [z = L|Capital] = Pr [z = H|Lemon] = 1− γ

where γ > 0.5 is a known parameter (if γ = 1 this means agents find out for sure whether a
particular asset was capital or a lemon). When an ex-post signal z is published, agents can

2Due to risk neutrality, this assumption is inconsequential.
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contrast it to the original signal s to update their beliefs about µ. Each cohort can observe
the entire history of past {s, z} pairs.

The two signals s and z play different roles in the model. The original signal s is a
composite of hard-to-interpret public information about an asset that is available at the time
it trades. In the context of an IPO, s represents the content of the company’s prospectus,
analyst reports about its industry, the biography of its founders, etc. This information is used
to value the company; uncertainty about µ represents uncertainty about how to translate
information into valuation.

The ex-post signal z represents the information that is publicly available after the asset
trades. In the context of an IPO, z may represent the company’s financial statements for
the first few years after the IPO. While these might also not be definitive about whether
the company turned out to be a good investment (in terms of the model, γ is less than 1)
they have the advantage that there is less ambiguity about how to interpret them. Since
it’s too late to use this information for trading the asset that generated it, agents only use
it to update their valuation models for the next asset that comes along.3 For instance, after
observing IPOs of several packaged foods companies, they might observe that the profit
margins of individual companies in the industry are extremely stable but sales growth is
hard to predict. The next time the observe a package foods company with high sales growth
but low margins, they will conclude that it’s likely to be a lemon in a way that would not
have been possible with less experience.

The publication of ex-post signals takes place randomly over time at an aggregate Poisson
rate φt. φt is endogenous; its determinants are discussed below and capture a form of learning
by doing.

Markets There is no market for management services. In order for an agent to operate a
unit of capital he must either build it himself (which is only possible for investors) or buy it
in the market for capital. The market for capital is competitive but subject to information
asymmetries.

3Of course, this information will be reflected in secondary markets for the asset, but the focus here is on
the primary market.
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3 Static Equilibrium

Equilibrium definition Since all agents are short-lived, it is possible to define an equi-
librium of the static economy that takes place each period. The equilibrium will depend on
the beliefs about µ that agents have upon entering the period. As is well known (Wilson
1980, Hellwig 1987), there is more than one way to formulate a competitive equilibrium
in environments with asymmetric information, depending on whether the sellers have ways
of signaling their type, for instance by committing to retain a fraction of the asset. The
definition here implicitly assumes they cannot do so.

An investor must decide how much to invest and, conditional on the realization of Z,
whether to sell each kind of asset in his portfolio. An investor that invests K will have a
portfolio made up of

µK units of capital with s = A

(1− µ)K units of capital with s = B

λ (1− µ)K lemons with s = A

λµK lemons with s = B

Denote by σXs (Z) ∈ [0, 1] the fraction of units of type X ∈ {Capital,Lemon} with signal
s ∈ {A,B} that an investor chooses to sell if his productivity is Z. The investor’s problem
is:

max
K,σXs(Z)

E


(

[Z + µσCA (Z) (pA − Z) + (1− µ)σCB (Z) (pB − Z)]

+λ [(1− µ)σLA (Z) pA + µσLB (Z) pB]

)
K

−c (K)

 (3)

The expectation operator is needed because both the realization of Z and the true value of
µ are uncertain.4

Equilibrium prices must satisfy a zero-profit condition for managers, given by

pA =
E [µσCA (Z)]

E [µσCA (Z) + λ (1− µ)σLA (Z)]
θ (4)

pB =
E [(1− µ)σCB (Z)]

E [(1− µ)σCB (Z) + λµσLB (Z)]
θ (5)

In equations (4) and (5), the numerator is the expected number of s-labeled units of capital
sold by investors and the denominator is the expected total number of s-labeled assets

4The investor could infer µ from observing the proportions of each signal in his own portfolio but by then
the investment decision is already sunk, and knowing µ does not change the selling decision.
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sold. Equations (4) and (5) could have multiple solutions. Equilibrium requires that prices
correspond to the highest solution.5

Definition 1. An equilibrium consists of

1. A level of investment K and selling decisions σXs (Z).

2. Prices ps.

such that

1. K and σXS (Z) solve the investor’s problem (3) taking ps as given.

2. Prices are equal to the highest solution of equations (4) and (5) respectively.

Notice that the quantities of A-labeled and B-labeled asseted that are traded will depend
on the realized value of µ, since that determines how many units of capital and lemons end
up carrying each label. The definition of equilibrium implicitly assumes that managers stand
ready to absorb however many units end up being put up for sale at the equilibrium price.

Equilibrium characterization It is immediate from problem (3) that σLs (Z) = 1 when-
ever ps > 0 and that σCs (Z) = 1 if and only if ps ≥ Z. In other words, all investors sell
their lemons if they can get a positive price for them, but only sell their capital if the price
is greater than their own productivity. Replacing this in (4) and (5) results in

pA =
µ̂F (pA)

µ̂F (pA) + λ (1− µ̂)
θ (6)

pB =
(1− µ̂)F (pB)

(1− µ̂)F (pB) + λµ̂
θ (7)

where µ̂ ≡ E (µ). Notice that beliefs about µ enter the pricing condition only through their
mean µ̂. The binary distribution has the property that that µ̂ is a sufficient statistic for the
problem of inferring whether an asset is a lemon. In other words, agents interpret signals as
though they knew that the value of µ was equal to µ̂.

Definition 2. The informativeness of signals given beliefs about µ is τ ≡ 2 |µ̂− 0.5|.
5This requirement can be derived formally by assuming that there are markets at every possible price and

agents select at what prices to trade, as in Kurlat (2012). Generically, if there are prices p and p′ > p that
satisfy the zero-profit condition, there must be a price p′′ ∈ (p, p′) such that both buyers and seller prefer to
trade at p′′ rather than at p.
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When µ̂ = 0.5, then τ = 0 and the signals convey no information, since each of them
is believed to be equally likely to come from a unit of capital or from a lemon. When τ

approaches 1, then signals perfectly reveal the type of asset that generates them.

Lemma 1. Let p (τ) ≡ max {pA, pB}.

1. p (τ) is equal to the highest solution to

p =
(1 + τ)F (p)

(1 + τ)F (p) + λ (1− τ)
θ (8)

2. There exists a cutoff τ ∗ > 0 such that for τ ≤ τ ∗, p (τ) = 0 and for τ > τ ∗, p (τ) is
strictly increasing in τ .

3. For any τ , min {pA, pB} = 0.

Lemma 1 says that, under Assumption 1, when signals are sufficiently uninformative,
prices collapse to zero, which implies no capital is traded. Trade can only take place if
signals are sufficiently informative. When this is the case, there will be no trade conditional
on a bad signal and positive trade conditional on a good signal, with prices increasing in the
signal’s informativeness. Which of the two signals is considered good depends on whether
µ̂ > 0.5, but the entire model is symmetric around µ̂ = 0.5 and allocations depend only on
τ .

Turn now to the investment decision. Assume without loss of generality that µ̂ ≥ 0.5

so pA ≥ 0 and pB = 0. The ex-post value of an asset for an investor depends on whether
it is a unit of capital or a lemon, what signal it emits and the productivity of the investor,
according to:

Case Value
Lemon, s = A pA always sold
Lemon, s = B 0 useless and pB = 0

Capital, s = A max {pA, Z} sold if Z < pA

Capital, s = B Z never sold since pB = 0

Therefore the ex-ante value is

V = E [λ (1− µ) pA + µmax {pA, Z}+ (1− µ)Z]

= λ (1− µ̂) pA + µ̂

F (pA) pA +

ˆ

Z≥pA

ZdF (Z)

+ (1− µ̂)E (Z)
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The case where µ̂ ≤ 0.5 is symmetric so V can be expressed simply as a function of τ :6

V (τ) =
1

2

(1− τ) (λp (τ) + E (Z)) + (1 + τ)

F (p (τ)) p (τ) +

ˆ

Z≥p(τ)

ZdF (Z)


 (9)

Lemma 2. V is increasing in τ

From expression (9), it is immediate that V (0) = E (Z) and V (1) = θ. When signals are
uninformative, no gains from trade are realized so the value for investors is just the expected
marginal product under their own technology. When information is perfect, investors can
capture the entire value that is generated when capital is operated by managers at their
higher productivity θ. Lemma 2 says that, between these two extremes, the value for in-
vestors increases monotonically with the informativeness of signals. It is worth noting that
this is not a general feature of all models of trade under asymmetric information. Levin
(2001) shows that there may be cases where V can be a nonmonotonic function of buyers’
information. Here, Assumption 1 ensures that the information asymmetry is sufficiently
severe that improving buyers’ information is always helpful.

Definition 3. The level of liquidity is V (τ)−E(Z)
θ−E(Z)

.
I define the liquidity of assets as the fraction of the potential gains from trade that are

realized. Its complement is the loss of value that results from the fact that they can only
be traded in a market where there is asymmetric information. In this definition, liquidity is
not purely an attribute of the assets themselves but of the entire equilibrium. In particular,
it is immediate from Lemma 2 and the definition of liquidity that liquidity is increasing in
the informativeness of signals.

6By assumption, the technology for producing capital also produces lemons in a fixed proportion λ. One
could instead imagine that there might be separate technologies for producing capital and for producing
lemons. In that case, it’s immediate that the ex-ante value of a unit of capital is

V C (τ) =
1

2

(1− τ)E (Z) + (1 + τ)

F (p (τ)) p (τ) +

ˆ

Z≥p(τ)

ZdF (Z)




and the value of a lemon is
V L (τ) =

1

2
(1− τ) p (τ)

so that V (τ) = V C (τ) + λV L (τ). V C (τ) is monotonically increasing in τ while V L (τ) is nonmonotonic.
For τ < τ∗, then V L (τ) = 0 because trade breaks down so lemons cannot be sold; on the other hand,
limτ→1 V

L (τ) = 0 since all lemons are detected and cannot be sold either. Hence the incentive to produce
lemons would be maximal for intermediate values of τ .
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Under this definition of liquidity, it’s straightforward to show that both investment and
trade are positively associated with liquidity. From program (3), the first order condition
for investment reduces to:

c′ (K) = V (τ) (10)

The expected fraction of capital that will be traded is

x (τ) = F (p (τ))
1 + τ

2
(11)

Proposition 1. The level of investment K (τ) and the expected fraction of capital traded
x (τ) are increasing in the informativeness of signals τ .

Proposition 1 establishes a link between liquidity, investment and trade. Liquidity is
valued by investors because it measures the extent of gains from trade that are realized and
(given that managers make zero profits) captured by investors. Investment will be higher
when signals are more informative because this makes assets more liquid. This in turn results
in more trade.

4 Dynamics

The only link between different periods in the economy comes from the evolution of beliefs
about µ. These will depend on the initial distribution G0 from which µ is drawn and on the
{s, z} pairs that are publicly observed thereafter.

Assumption 2. µ is drawn from the following distribution:

µ =

{
µ̄ with probability g0

1− µ̄ with probability 1− g0

(12)

where µ̄ > 0.5.

If µ = µ̄, then equation (1) implies that signal A is more likely to come from a unit of
capital and signal B is more likely to come from a lemon, but it’s the other way around if
µ = 1−µ̄. At any given point in time, beliefs about µ can be summarized by gt = Prt (µ = µ̄)

and the resulting informativeness of signals is

τt = 4 |gt − 0.5| (µ̄− 0.5)
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If the value of µ is known (gt = 1 or gt = 0), signals are equally informative whether the
true value is µ̄ or 1− µ̄. In this case, the informativeness is

τ̄ ≡ 2 (µ̄− 0.5)

As gt becomes close to 0.5, informativeness is lower, and becomes zero when gt = 0.5. In
other words, the symmetric formulation (12) is a way to formalize the assumption that the
maximum possible informativeness of signals τ̄ does not depend on the true value of µ; the
only determinant of their actual informativeness is the extent to which agents known the
correct way to make use of the information.

Assumption 3. p(τ̄) > 0

Assumption 3 says that τ̄ is sufficiently informative that if agents knew the value of µ
this would result in trade at positive prices. In the absence of this assumption assets would
always be completely illiquid.

The evolution of gt is easy to characterize. gt is revised whenever an ex-post signal z
is observed from some asset and remains constant in the intervals in between. Whenever
an ex-post signal is observed, agents will compare is with the original signal s. Letting
m be the indicator of the event {s, z} ∈ {{A,H} ∪ {B,L}}, its conditional probability
is Pr [m|µ] = ω (µ) ≡ µγ + (1− µ) (1− γ). Letting ω̄ ≡ ω (µ̄), ω̄ − 0.5 measures the
informational content of ex-post signals for inferring µ. It is increasing in γ because more
accurate ex-post signals provide more feedback about the correct interpretation of the original
signals. By Bayes’ Rule, the posterior upon observing an ex-post signal is:

g′t =

[
ω̄m (1− ω̄)1−m] gt[

ω̄m (1− ω̄)1−m] gt + [ω̄1−m (1− ω̄)m] (1− gt)
(13)

I take the continuous time limit where each period is short and model the arrival of ex-
post signals as a Poisson process with intensity φt. The key driver of the model’s dynamics
is the relationship between φt and the static equilibrium objects.

Assumption 4. φ is an increasing function φ(K, x) of investment K and the fraction of
capital traded x

Assumption 4 says there is learning-by-doing. The amount of feedback that agents obtain
depends on the volume of economic activity: both investment and trade result in learning. I
shall leave unspecified the exact channels by which economic activity determines the number
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of signals; more than one mechanism is possible. For instance, it could be that a fraction
of all assets gets examined by analysts, who then report both the original signal s and an
indicator z of how the asset eventually turned out; in this example, information flow would
be proportional to investment K. Alternatively, one could imagine that the original investors
prepare an IPO prospectus (which contains s) only for assets that they sell and once the
asset is publicly traded its ex-post payoffs z are publicly available; in this case, information
flow would be proportional to xK.

A full model of these mechanisms would have to take into account incentives to collect
information, for instance through experimentation, and also specify the channels thorough
which this information diffuses. Here, because agents are short-lived, learning is a pure
externality: the experience of one cohort teaches the following ones.

Since both investment and trading volume depend on informativeness τ , it is possible to
express the arrival rate of signals simply as a function of τ :

φ (τ) ≡ φ (K (τ) , x (τ))

Since φ (K, x) is increasing in both arguments and both K (τ) and x (τ) are increasing, then
φ (τ) is increasing as well.

An illiquidity trap

Depending on parameters, the model may have the feature that when τ is sufficiently low
no learning will take place, which implies that τ will remain low. I refer to this outcome as
an illiquidity trap.

Definition 4. There is an illiquidity trap if there exists a cutoff τ IT such that φ (τ) = 0 for
all τ ≤ τ IT .

The following result characterizes the conditions on the primitives of the model for this
condition to be met.

Lemma 3.

1. If either

(a) φ (K, x) = 0 whenever x = 0 (trade is essential for learning) or

(b) φ (K, x) = 0 whenever K = 0 and c′ (0) > E (Z) (investment is essential for
learning and positive investment requires gains from trade)
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there is an illiquidity trap, with τ IT ≥ τ ∗.

2. If either

(a) φ (K, x) > 0 for all K, x or

(b) φ (K, x) > 0 whenever K > 0 and c′ (0) < E (Z)

there is no illiquidity trap.

Two conditions make an illiquidity trap possible. The first possibility is that agents are
unable to learn from experience if no trade takes place. In this scenario, if τ falls below τ ∗ and
trade breaks down, the learning process stops. The second is that investors’ own technology
is not sufficiently productive to justify positive investment unless assets are sufficiently liquid.
In this case, if τ falls below a threshold τ IT , there will be no investment and the learning
process stops; the threshold might be τ IT = τ ∗ or, if higher liquidity than τ ∗ is required
to justify investment, it might be even higher. If neither of these two conditions hold, then
learning will always take place, so there is no illiquidity trap.

Short-run dynamics

Turn now to the short-run dynamics of the model, assuming there is no illiquidity trap. The
first result says that on average informativeness increases over time.

Proposition 2. Suppose there is no illiquidity trap. Then for any t′ > t , E (τt′|τt) > τt

Proposition 2 provides a characterization of how the learning dynamics evolve in the
short run. The law of iterated expectations implies that gt must be a martingale; since τ is
a convex function of gt then in expectation it increases. On average, new observations push
beliefs towards either gt = 0 or gt = 1, increasing agents’ confidence in their estimates of
µ and increasing liquidity. This provides an account of how markets become more mature.
As market participants’ experience increases, they become better able to use the available
information, which makes valuations more accurate, alleviates information asymmetry and
increases liquidity.

Other things being equal, the upward trend in liquidity will be stronger in more produc-
tive economies.

Proposition 3. Suppose there are two otherwise identical economies without an illiquidity
trap that differ in the cost of investment function c (·) such that c′ (K) is lower in one of
them for all K. Then E (τt) is higher in the economy with lower c′ (·), for all t.
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Proposition 3 says that more productive economies will be more active and therefore
more liquid. A lower cost of investment results in higher levels of investment, which speeds
up the process of learning-by-doing, resulting in more precise estimates of µ, less information
asymmetry and more liquidity.

The relationship between measures of market volume and liquidity has been the subject
of a large empirical literature (Easley et al. 1996, Chordia et al. 2001, Amihud 2002). The
positive association is often attributed to some form of thick market effect through easier
search or increased competition. Here the effects are through information asymmetry and
are both static and dynamic. The static effect is standard: information asymmetry interferes
with trade, lowering volume and liquidity. Glosten and Milgrom (1985), Kyle (1985) and
indeed Akerlof (1970) examine aspects of this effect. The dynamic effect is specific to this
model. Higher volume leads to more learning, which leads to lower informational asymmetry
and higher liquidity in future periods.

Unlikely events

Whenever g 6= 0.5, one of the two possible values of µ̄ is considered more likely; hence some
realizations of {s, z} are more likely than others.

Definition 5. An observation {s, z} is unlikely if either (i) g > 0.5 and {s, z} ∈ {{A,H} ∪ {B,L}}
or (ii) g < 0.5 and {s, z} ∈ {{A,L} ∪ {B,H}}

Liquidity will react differently to likely and unlikely events, especially if the level of
informativeness required for trade is large.

Definition 6. τ ∗ is large if

τ ∗ > τ̄

(
ω̄

1−ω̄

)0.5 − 1(
ω̄

1−ω̄

)0.5
+ 1

(14)

Condition (14) relates the cutoff level of informativeness required for positive liquidity τ ∗

to the informational content of any given observation ω̄. If it holds, then no single observation
carries sufficient information to overturn agents’ beliefs to the point that markets remain
liquid while reversing which of the two signals is considered good. The model is very stark
in that there are only two possible models of the world, one where µ = µ̄ and one where
µ = 1−µ̄. Condition (14) guarantees that questioning one model cannot lead to immediately
adopting the other with a sufficiently high degree of confidence that markets remain liquid.
In a limit where each single piece of information is small (with ω̄ close to 0.5) then condition
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(14) always holds: evidence against the preferred model leads to uncertainty before it leads
to adoption of the alternative model, which implies that τ ∗ is large. τ ∗ can fail to be large
only if information comes in sufficiently discrete pieces.

Proposition 4. If τ ∗ is large, then

1. If liquidity is positive, an unlikely observation leads to lower liquidity.

2. Starting from any beliefs, there is a finite n such that a sequence of n unlikely obser-
vations will make assets completely illiquid.

3. The number of unlikely observations needed to make assets completely illiquid is in-
creasing in τt.

Assets are more liquid the more agents understand (or think they understand) the in-
formation structure of the economy. When unlikely events take place, they cast doubt on
whether the agents are using the right valuation model to guide their actions. The increased
uncertainty lowers liquidity by worsening the information asymmetry between investors and
managers.7 Proposition 4 shows that this effect makes asset liquidity fragile: a sufficiently
unlikely sequence of observations will push beliefs from levels that support positive liquidity
to levels where assets are completely illiquid. The more confidence that agents have to begin
with, the less their beliefs will be swayed by contradictory information and therefore the
more unlikely events are necessary to render markets illiquid. Given that, by Proposition 2,
τt tends to increase over time, this predicts that market liquidity tends to become less fragile
when markets are more mature.

The result relies on τ ∗ being large, but only in a technical sense. If τ ∗ is not large, then
there are values of τ such that any observation, even an unlikely one, increases liquidity, but
only if liquidity was very low to begin with.

Proposition 4 establishes that, fixing the values of parameters, if assets are more liquid,
this liquidity will be less fragile in response to unlikely events. Comparing across different
parameter values, the same level of liquidity can be more or less fragile depending on the
exact circumstances that give rise to it.

Proposition 5. Suppose there are two otherwise identical economies that differ in µ̄ and gt
so that informativeness τt = 4 |gt − 0.5| (µ̄− 0.5) is the same in both. An unlikely observation
will make liquidity fall more in the economy with higher µ̄ and lower |gt − 0.5|.

7Routledge and Zin (2009) propose a complementary mechanism based on uncertainty aversion rather
than asymmetric information.
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Informativeness results from the combination of how informative signals would be if
agents knew the information structure (as measured by τ̄ = 2 (µ̄− 0.5)) and how confident
agents are that they know the true value of µ (as measured by |gt − 0.5|). Proposition 5
shows that liquidity is more resilient to unlikely events when it results from a high degree of
certainty about the information structure, even if the signals themselves are less informative.
In contrast, a market where the signals, properly interpreted, carry a lot of information but
where the right value of µ is uncertain is more subject to illiquidity-inducing surprises. This
implies that, even controlling for how liquid they are at a given point in time, liquidity in
more mature markets will be less fragile.

The link between surprising events in relatively new markets and the onset of financial
crisis has been emphasized by Caballero and Krishnamurthy (2008) and Caballero and Kurlat
(2009). One historical example of this dynamic at play is the bankruptcy of Penn Central
in 1970. Penn Central was a large issuer of commercial paper, which was a relatively new
asset class, total outstanding issues having risen from about $10 billion to about $40 billion
in four years (Schadrack and Breimyer 1970). According to Schadrack and Breimyer (1970),
investors mistakenly believed that paper issued by large corporations was safe, so when
Penn Central filed for bankruptcy in June 1970 this came as a large surprise. According
to the account by Calomiris (1993), it then became “necessary for the market to reevaluate
its methods for pricing paper generally in light of this surprising event”. The resulting
uncertainty led to a freeze in new issues of commercial paper, so that the outstanding stock
fell by about 10% in the first month after Penn Central’s bankruptcy.

A more recent example is the reaction of the asset backed securities market to the down-
turn in the housing market. Foote et al. (2012) cite financial industry reports around 2005
that discuss different scenarios for the performance of the various tranches of mortgage-
backed securities. The most pessimistic scenarios in these reports (labeled “meltdown” in
one of them) far underestimate the losses that materialized in the following years. In other
words, the housing crisis was considered an unlikely event. As documented by Adrian and
Shin (2009) and Brunnermeier (2008), issuance of all kinds of asset-backed securities fell
almost to zero when this unlikely event materialized in 2008.8

Through the lens of the model, these episodes can be intrepreted as follows. Before the
onset of each crisis, investors believed they had reliable (high µ̄) indicators of asset quality
(the size of the corporation issuing the commercial paper, credit ratings for mortgage-backed

8Caballero and Krishnamurthy (2008) describe similar pattern following the stock market crash of 1987,
the LTCM crisis in 1998 and the terrorist attacks of September 11, 2001.
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securities). Therefore asset buyers were confident that they were not at a large informational
disadvantage and markets were liquid, i.e. most of the potential gains from trade were
realized. Then the unexpected events took place. Since the markets were relatively new (in
model terms, gt had not had time to converge all the way to 0 or 1 yet), the unexpected
events could not be dismissed as outliers and led investors to question their valuation models.
Without confidence in a valuation model, the logic of asymmetric information took over and
markets became illiquid, at least until confidence in a revised valuation model was built up.

Long-run outcomes

The long-run properties of the model depend on whether there is a illiquidity trap and, if
so, on initial conditions and how large the trap is.

Proposition 6.

1. If there is no illiquidity trap, then τt →a.s. τ̄ and Kt →a.s. K̄ ≡ (c′)−1 (V (τ̄)) for any
initial beliefs g0.

2. If there is an illiquidity trap and τ0 ≤ τ IT , then Kt = K (τ0) and τt = τ0 for all t.

3. If there is a large illiquidity trap (i.e. τ IT satisfies condition (14)) and τ0 > τ IT , then
for any ε > 0,

lim
t→∞

Pr [τt ≥ τ̄ − ε] ∈
[
τ0 − τ ∗

τ̄ − τ ∗
,
τ0 + τ ∗

τ̄ − ε+ τ ∗

]
(15)

and limt→∞ Pr
[
τt ≤ τ IT

]
= 1− limt→∞ Pr [τt ≥ (1− 2ε) τ̄ ].

4. If there is an illiquidity trap but it is not large, then there are values of τ0 > τ IT such
that limt→∞ Pr

[
τt ≤ τ IT

]
> 0 and values of τ0 > τ IT such that Pr

[
τt ≤ τ IT

]
= 0 ∀t.

Proposition 6 establishes under what conditions assets will eventually either become as
liquid as possible or fall into the illiquidity trap. Part 1 says that if parameters are such
that there is no illiquidity trap, then learning always takes place. Eventually large samples
will accumulate and agents will learn the value of µ perfectly. Informativeness will converge
to τ̄ and liquidity and investment will converge to their maximum possible levels. Part 2
says that if there is an illiquidity trap and the economy begins in it, then there will never
be learning and assets will remain illiquid. The economy will repeat the initial period static
equilibrium forever.
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If there is an illiquidity trap but the economy begins outside it, some learning will take
place at first. Since the sequence of realizations that agents learn from is random, there is
a positive probability that it leads gt towards 0.5. Parts 3 and 4 distingush between two
possibilities. Part 3 says that if the illiquidity trap is large, then as gt approaches 0.5 it will
fall into the trap, so the probability of falling into it is positive no matter what the initial
beliefs were. Part 4 says that if the trap is not large, a single observation may lead beliefs
to jump across the illiquidity trap; in this case there are initial beliefs such that no sequence
of observations leads into the trap. Conversely, if initial observations lead gt away from 0.5,
liquidity increases, and there is a positive probability that it converges to τ̄ . The probabilities
that τt falls into the trap or converges to τ̄ respectively can be bounded. Condition (15)
says that the closer the economy begins to the edge of the illiquidity trap, the higher the
probability that it falls in it; the further away, it begins, the more likely it is to avoid it.9

The reason for the possibility of two long-run outcomes is that the model features a form of
dynamic strategic complementarities in investment and trading decisions. Higher investment
and trading at date t results in a higher rate of learning which, on average, leads over time
to more precise estimates of µ and therefore more informativeness. This informativeness
in turn sustains higher levels of learning and investment. Due to this complementarity,
there is path dependence: randomness in the early stages of the learning process may have
long-term consequences for how financial markets develop, a feature of many models with
complementarities. This suggests a possible role for government intervention to get the
learning cycle started (or re-started if it starts but then enters the illiquidity trap), for
instance by subsidizing the early stages of the financial industry. This is not unlike other “big-
push” policies based on a learning-by-doing-arguments (see Easterly (2006) for a sceptical
look at this type of argument).

Figure 1 shows an example where the economy may or may not fall into the illiquidity
trap depending on the initial observations. For this example, investment is always positive
and the frequency of observations is proportional to the total volume of trade, so that if trade
breaks down then learning breaks down too. Hence τ IT = τ ∗. Initial beliefs imply τ0 > τ ∗ so
the economy begins outside the illiquidity trap. The figure shows two possible realizations. In
both of them, beliefs oscillate in response to the first few observations, which include instances
of both {s, z} ∈ {{A,H} ∪ {B,L}} (which raises g) and {s, z} ∈ {{A,L} ∪ {B,H}} (which
lowers g). Since the true value of µ is µ̄, the first type of observation is more common so

9This probability can also be computed exactly, but the answer depends on ω̄. The bounds in (15) hold
for any ω̄.
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over time g drifts upwards towards g = 1, which leads to the maximum possible level of
informativeness, asset prices and investment. However, in one of the realizations the early
observations include many instances of {s, z} ∈ {{A,L} ∪ {B,H}}, upon which which g

falls and τ falls below τ ∗. After that, the economy is in the illiquidity trap: there is no trade
and therefore no learning. Note that even before actually entering the trap, whenever τ is
low then the frequency of observations φ is low so the learning process slows down before
stopping entirely.
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Figure 1: Two possible long run outcomes. The example uses µ = µ̄ = 0.9, g0 = 0.7, λ = 1.5,
c (K) = K2, Z ∼ U [0, 1], θ = 1, γ = 0.54 and φ = 10Kx

Changing µ

Suppose that instead of being fixed forever, µ swtiches randomly between its two possible
values at a Poisson rate δ. This is meant to capture the idea that the structure of the economy,
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which determines the correct way to use information, may change over time. Agents do not
observe the changes in µ directly, so they face a filtering problem: keeping track of the
changing value of µ on the basis of their observations. The solution of this problem is as
follows. During any interval where no ex-post signals are observed, gt evolves according to:

dgt
dt

= δ (1− 2gt) (16)

and any time there is a new observation, gt jumps according to (13). Equation (16) says
that during periods with no new observations, gt mean-reverts towards 0.5. This implies that
experience depreciates: unless new observations are added, agents are rationally aware that
the true model may have changed so their beliefs are based on possibly outdated data, and
they become less confident in them. This lowers the informativeness of signals and therefore
liquidity falls.

Lemma 4. If δ > 0 and there is an illiquidity trap then τt →a.s. 0.

Lemma 4 says that if there is an illiquidity trap, the economy will eventually fall into it
and never emerge. This is in constrast with Proposition 6, which says that with a constant
µ the economy can, with positive probability, avoid the illiquidity trap in the long run.
The difference is that with constant µ experience does not depreciate, so as beliefs converge
to either g = 0 or g = 1 the sequence of unlikely events that is needed for the economy
to fall back into the illiquidity trap gets longer and less probable. Instead, when µ can
change, unlikely events are not the only way to drive the economy into the illiquidity trap:
a prolonged period of no new observations will suffice, and this is always possible.

If there is no illiquidity trap, standard arguments imply that informativeness will converge
to an invariant distribution. In the long run, informativeness will fluctuate. Sometimes there
will be many recent observations that all point in the same direction, giving agents high
confidence in their estimates of µ, leading to high informativeness and liquidity; at other
times there will be few or contradictory observations, pushing g towards 0.5 and lowering
liquidity. Prices, the level of investment and learning rates will therefore also fluctuate.

One of the sources of these fluctuations will be actual changes in the true value of µ. In
expectation, these changes lower informativeness.

Proposition 7. Starting from any beliefs gt 6= 0.5, let t + T be the first time an ex-post
signal is observed after t. E

(
τ ′t+T |µt+T = µt

)
> E

(
τ ′t+T |µt+T 6= µt

)
Proposition 7 establishes that informativeness, and therefore liquidity, is higher when the

economy remains stable that when it suffers shocks. If the true value of µ has changed since
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the last observation, it is more likely that the next observation will conflict with the agents’
beliefs, which will make them uncertain about the true value of µ, lowering liquidity. In
periods of stability, it is more likely that new observations will reaffirm agent’s prior, which
shifts beliefs away from gt = 0.5, increasing the informativeness of signals and increasing
liquidity.

Figure 2 shows a simulated path for the same economy as in Figure 1 with two minor
differences. First, the arrival rate of ex-post signals is φ = [10x+ 0.15 (1− x)]K, which
means it’s positive even when x = 0 (i.e. when trade breaks down). This implies there is
no illiquidity trap. Second, the value of µ changes with a Poisson intensity δ = 0.0001, so
experise depreciates at a small positive rate.
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Figure 2: Simulated path. The example uses µ = µ̄ = 0.9, g0 = 0.7, λ = 1.5, c (K) = K2,
Z ∼ U [0, 1], θ = 1, γ = 0.54 and φ = [10x+ 0.15 (1− x)]K and δ = 0.0001. The grey area
in the first panel shows the region of µ̂ where trade breaks down.

In the example, the signals at first move the economy towards the region of beliefs where
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assets are completely illiquid; this slows down the learning process so the economy remains
there for a long time. Eventually, a string of signals that all indicate that µ = 1− µ̄ arrive
close to each other and the economy escapes the illiquid region. The learning rate accelerates,
so agents receive a lot of signals that on average confirm that µ has not changed and liquidity
remains high for many periods. Eventually, a string of signals arrives that points (correctly,
as it turns out) to µ having changed sign and the economy becomes illiquid again, and the
cycle repeats itself, with relatively long periods of sustained liquidity and sustained illiquidity.
Liquidity, investment and the arrival rate of signals all co-move with beliefs.

Figure 3 shows the long-term distribution of informativeness. Since both the learning
rate when there is no trade and the depreciation rate of expertise are very low, the economy
spends most of the time in states where informativeness is either close to its maximum τ̄ or
at levels that are insufficient to sustain trade. This shows that the model’s predictions are
continuous with respect to whether or not there is an illiquidity trap. If lack of trade leads
to a large slowdown in the learning rate but not quite a complete shutdown, then liquidity
will eventually recover, but will spend a large fraction of time in an illiquid state.

Figure 4 shows an impulse response of the economy if, starting from the median level
of liquidity, it receives a series of signals that push beliefs into the region where assets are
illiquid. In the example, illiquidity makes the learning process very slow. Therefore it takes
(on average) a long time for liquidity to recover after the shock. The example of course
is meant as an illustration and not as a quantitative statement. The point is that if φ (τ)

is very low when τ < τ ∗, then recovery after assets become illiquid may take a long time.
This mechanism could be part of the explanation of why recoveries after financial crises
tend to be slow (Cerra and Saxena 2008, Reinhart and Rogoff 2009): unexpected shocks
makes financial expertise outdated, liquidity falls and drags investment with it, and recovery
requires rebuilding the stock of expertise.

In this example, shocks affect information directly, but the learning dynamics could also
be a transimission mechanism for shocks that originate elsewhere. For instance, shocks to
productivity can lower the level of investment, which lowers the rate of learning and leads to
lower liquidity and investment in the future. Kurlat (2010) shows how this effect can create
persistence in a business cycle model.
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Figure 3: Long-term distribution of informativeness. This is computed by sampling 10,000
equally-spaced observations over a simulation of 400,000 periods in calendar time and ap-
proximating the density with a Gaussian kernel. The grey area shows the region of τ where
trade breaks down.

5 Conclusion

Introducing social learning dynamics in a standard model of trade under asymmetric infor-
mation yields a rich set of implications. It provides a dynamic link between liquidity and
trading volume; a theory of why liquidity increases over time, why it can be volatile, why it
falls after unexpected events and why illiquidity can become long-lasting.
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shift the economy into the illiquid region. The quantiles are computed over 5,000 simulations,
each 10,000 periods long in calendar time.

Appendix

Proof of Lemma 1

1. From equations (6) and (7) and the definition of τ , the two prices must be the highest
solutions to (8) and

p =
(1− τ)F (p)

(1− τ)F (p) + λ (1 + τ)
θ (17)

respectively. The result then follows because

(1 + τ)F (p)

(1 + τ)F (p) + λ (1− τ)
≥ (1− τ)F (p)

(1− τ)F (p) + λ (1 + τ)
∀p
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so the solution to (8) defines max {pA, pB} and the solution to (17) defines min {pA, pB}.

2. When τ = 0, (8) reduces to

p =
F (p)

F (p) + λ
θ

By Assumption 1, there is no positive solution, so the only solution is p = 0. Since
Assumption 1 is a strict inequality, by continuity there is a neighborhood around τ = 0

where (8) has no positive solution. The fact that p (τ) is strictly increasing whenever
it is positive results from the fact that the right hand side of equation (8) is increasing
in τ . This in turn implies that the cutoff τ ∗ is unique.

3. The right hand side of equation (17) is decreasing in τ and lies below the 45 degree
line for τ = 0. Therefore it must lie below the 45 degree line for any τ , so the only
solution of equation (17) is p = 0.

Proof of Lemma 2

Using (8), rewrite (9) as

V (τ) =
1

2

((1 + τ)F (p (τ)) + λ (1− τ)) p (τ) + (1− τ)E (Z) + (1 + τ)

ˆ

Z≥p(τ)

ZdF (Z)


=

1

2

(1 + τ)F (p (τ)) θ + (1− τ)E (Z) + (1 + τ)

ˆ

Z≥p(τ)

ZdF (Z)


so

dV

dτ
=

1

2

F (p (τ)) θ − E (Z) +

ˆ

Z≥p(τ)

ZdF (Z) + (1 + τ) (θ − p (τ)) f (p (τ))
dp (τ)

dτ


=

1

2

 ˆ
Z≤p(τ)

(θ − Z) dF (Z) + (1 + τ) (θ − p (τ)) f (p (τ))
dp (τ)

dτ

 ≥ 0

where the last inequality follows from the fact that p (τ) < θ and dp(τ)
dτ
≥ 0 by Lemma 1.
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Proof of Proposition 1

For K (τ), the result follows from Lemma 2 and condition (10) because c is convex. For
x (τ), the result follows because by Lemma 1 p (τ) is increasing in τ .

Proof of Lemma 3

1. Suppose first that φ (K, x) = 0 whenever x = 0. Then if τ ≤ τ ∗ then p (τ) = 0 which
by (11) implies x = 0 and therefore φ = 0. Now suppose φ (K, x) = 0 whenever K = 0

and c′ (0) > E (Z). Then (9) and (10) imply that for τ ≤ τ ∗ the equilibrium will have
K = 0, which implies φ = 0, which means τ will remain constant. The threshold of
the illiquidity trap could be τ IT = τ ∗ or, in case c′ (0) > V (τ ∗), τ IT > τ ∗.

2. If φ (K, x) > 0 for all K, x, then by assumption φ > 0. If c′ (0) < E (Z), then equation
(10) implies that K (τ) > 0 for any τ and then if φ (K, x) > 0 whenever K > 0 , this
also implies φ > 0. Therefore ex-post signals will always arrive at a positive rate.

Proof of Proposition 2

Assume w.l.o.g. that gt > 0.5 so τt = 4 (gt − 0.5) (µ̄− 0.5). Let n be the number of ex-
post signals that agents observe between t and t′. n is a random variable with a Poisson
distribution with parameter φ̄ =

´ t′
t
φsds and let r be the fraction of these observations that

are either {s = A, z = H} or {s = B, z = L}. Then by (13):

gt′ =

(
ω̄r (1− ω̄)1−r)n gt(

ω̄r (1− ω̄)1−r)n gt + ((1− ω̄)r ω̄1−r)
n

(1− gt)
(18)

Now compute E (τt′)

E (τt′) = 4 (µ̄− 0.5)E (|gt′ − 0.5|)

> 4 (µ̄− 0.5)E (gt′ − 0.5)

= 4 (µ̄− 0.5) (gt − 0.5)

= τt

This first line is true by definition. The second line follows from the fact that if there is no
illiquidity trap then φ̄ > 0. Since the Poisson distribution is unbounded, there is a strictly

27



positive probability of n large enough and r low enough that, using (18), gt′ < 0.5. The
third line follows from the law of iterated expectations and the last is again by definition.

Proof of Proposition 3

LetM = {mj}∞j=1 be a sequence wheremj = 1 if the jth observation {s, z} ∈ {{A,H} ∪ (BL)}
and mj = 0 otherwise. Given that µ is the same in both economies, the probabilities over M
are the same in both economies and therefore so are probabilities over the paths of beliefs.
Furthermore, let F = {fj}∞j=1 where fj ∼iid U [0, 1] and for eachM construct the arrival time
tj of the jth observation as tj = tj−1 − 1

φj−1
log (1− fj) where φj−1 = φ (K (τj−1) , x (τj−1))

and τj−1 is the informativeness that results from the j − 1th observation. Since φ is increas-
ing in K and for given beliefs K will be higher in the economy with lower c′ (·), tj will be
lower in the economy with lower c′ (·) . Therefore the result follows because by Proposition
2 informativeness increases over time.

Proof of Proposition 4

1. Assume w.l.o.g. gt > 0.5. Equation (13) implies that after an unlikely observation,
beliefs are:

g′t =
(1− ω̄) gt

(1− ω̄) gt + ω̄ (1− gt)
< gt (19)

If gt′ ≥ 0.5, this immediately implies τt′ < τt. If gt′ < 0.5, τt′ < τt holds unless

0.5− gt′ ≥ gt − 0.5 (20)

Assume (20) holds. Then:

1 ≥ gt +
gt

gt + ω̄
1−ω̄ (1− gt)

≥ τ ∗

4 (µ̄− 0.5)
+ 0.5 +

0.5 + τ∗

4(µ̄−0.5)

0.5 + τ∗

4(µ̄−0.5)
+ ω̄

1−ω̄

(
0.5− τ∗

4(µ̄−0.5)

)
⇒ τ ∗ ≤ τ̄

(
ω̄

1−ω̄

)0.5 − 1(
ω̄

1−ω̄

)0.5
+ 1
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which contradicts (14). The second inequality follows from the assumption that τt ≥ τ ∗

and the last is just rearranging and using τ̄ ≡ 2 (µ̄− 0.5). Hence (20) cannot hold and
τ ′t < τt after an unlikely observation. Since by Lemma 2 liquidity is increasing in τ ,
the result follows.

2. Assume w.l.o.g that gt > 0.5. After n unlikely observations,

g′t =
gt

gt +
(

ω̄
1−ω̄

)n
(1− gt)

so for

n >
log
(

2(µ̄−0.5)−τ∗
2(µ̄−0.5)+τ∗

)
+ log

(
2(µ̄−0.5)+τt
2(µ̄−0.5)−τt

)
log
[

ω̄
1−ω̄

] (21)

then g′t <
τ∗

4(µ̄−0.5)
+ 0.5. If g′t > 0.5, this implies τ ′t < τ ∗. Furthermore, the argument

from part 1 shows that if gt > 0.5 and after the next observation g′t < 0.5 then τ ′t < τ ∗,
so the inequality holds in this case as well.

3. This follows directly from the fact that the right hand side of (21) is increasing in τt.

Proof of Proposition 5

Using, (19), informativness after an unlikely observation is:

τ ′t = 4

 τt
4(µ̄−0.5)

+ 0.5

τt
4(µ̄−0.5)

+ 0.5 + ω̄
1−ω̄

(
0.5− τt

4(µ̄−0.5)

) − 0.5

 (µ̄− 0.5)

=

(
τt − (2ω̄ − 1) τ̄

1− (2ω̄ − 1) τt
τ̄

)
This expression is decreasing in τ̄ = 2 (µ̄− 0.5) and in ω̄ = µ̄γ+(1− µ̄) (1− γ) and therefore
is decreasing in µ̄.

Proof of Proposition 6

1. Equation (13) implies that, letting Nt be the cumulative number of observations up to
and including time t andMt be the number of those that are {s, z} ∈ {{A,H} ∪ {B,L}},

29



beliefs at t are

gt =
ω̄Mt (1− ω̄)Nt−Mt g0

ω̄Mt (1− ω̄)Nt−Mt g0 + (1− ω̄)Mt ω̄Nt−Mt (1− g0)
(22)

If there is no illiquidity trap then limt→∞Nt =∞ and the law of large numbers implies
that Mt

Nt
converges almost surely to either ω̄ or 1− ω̄. Equation (22) implies that gt+1

converges almost surely to either 1 or 0, which implies τt → τ̄ . The first order condition
(10) implies Kt → K̄.

2. Immediate from the definition of an illiquidity trap.

3. Suppose τ > τ IT and assume that w.l.o.g g > 0.5. Suppose it were the case that an
observation of {s, z} ∈ {{A,L} ∪ {B,H}} led to g′ < 0.5. Using (13) we have

g′ =
(1− ω̄) g

(1− ω̄) g + ω̄ (1− g)

and replacing τ = 4 (g − 0.5) (µ̄− 0.5) and τ ′ = 4 (0.5− g′) (µ̄− 0.5), this implies

τ ′ =
2τ̄ ω̄ − (τ + τ̄)

2ω̄ − (2ω̄ − 1)
(
τ
τ̄

+ 1
) (23)

If τ ≥ τTI and τ ′ ≥ τTI , this implies

τ IT ≤ τ̄

(
ω̄

1−ω̄

)0.5 − 1(
ω̄

1−ω̄

)0.5
+ 1

which contradicts (14). Therefore if the illiquidity trap is large it cannot be the case
that beliefs g cross 0.5 while remaining outside the illiquidity trap. Assume w.l.o.g.
that g0 > 0.5, and let gIT = τIT

4(µ̄−0.5)
+ 0.5 be the beliefs at the edge of the illiquidity

trap. Since gt cannot cross the illiquidity trap, then

Pr
(
gt < 1− gIT

)
= 0 ∀t (24)

Furthermore, as long as gt remains outside the illiquidty trap, the number of observa-
tions converges to infinity, so by the law of large numbers gt must converge to either 0

or 1. Since it cannot converge to 0 because that would involve crossing the trap, then
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for any ε:
lim
t→∞

Pr
(
gt > 1− ε|gt > gIT

)
= 1 (25)

By the law of iterated expectations, E (gt) = g0, which implies that

g0 = E (gt|gt ≥ 1− ε) Pr (gt ≥ 1− ε) + E
(
gt|gt ∈

(
gIT , 1− ε

))
Pr
(
gt ≥∈

(
gIT , 1− ε

))
+

+ E
(
gt|gt ∈

[
1− gIT , gIT

])
Pr
(
gt ∈

[
1− gIT , gIT

])
+ E

(
gt|gt < 1− gIT

)
Pr
(
gtgt < 1− gIT

)
Taking limits and using (24) and (25):

g0 = lim
t→∞

[
E (gt|gt ≥ 1− ε) Pr (gt ≥ 1− ε) + E

(
gt|gt ∈

[
1− gIT , gIT

])
Pr
(
gt ∈

[
1− gIT , gIT

])]
and therefore

g0 ≤ lim
t→∞

Pr (gt ≥ 1− ε) + gIT
(

1− lim
t→∞

Pr (gt ≥ 1− ε)
)

g0 ≥ (1− ε) lim
t→∞

Pr (gt ≥ 1− ε) +
(
1− gIT

) (
1− lim

t→∞
Pr (gt ≥ 1− ε)

)
Rearranging:

τ0 − τ ∗

τ̄ − τ ∗
≤ lim

t→∞
Pr [τt ≥ (1− 2ε) τ̄ ] ≤ τ0 + τ ∗

(1− 2ε) τ̄ + τ ∗

4. Formula (22) can be rewritten as

gt =
ω̄Dtg0

ω̄Dtg0 + (1− ω̄)Dt (1− g0)

where Dt = 2Mt − Nt takes integer values. Suppose g0 = gIT + ε for ε > 0. Then for
any positive Dt, gt > gIT so beliefs are outside the illiquidty trap. For Dt = −1, then
equation (23) applies. If the illiquidity trap is not large and ε is small enough, this
implies that gt < 0.5 and beliefs are also outside the illiquidity trap. For Dt < −1,
then gt is even lower so it’s also outside the illiquidity trap. Therefore no sequence of
observations can lead the economy into the trap. Conversely, if g0 = ω̄, then for Dt = 1

gt = 0.5, which must be inside the trap and hence the trap is reached with positive
probability.
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Proof of Lemma 4

By (16) after an interval of length T with no observations staring at time t,

gt+T = 0.5 +
gt − 0.5

e2δT

This implies that for any gt if T > 1
2δ

log
(
τ̄
τ∗

)
, then τt+T < τ ∗. Since in a Poisson process an

interval of length T with no observations happens with positive probability, then by the law
of large numbers it happens almost surely. After it does, since there is an illiquidity trap no
more ex-post signal are observed and τt → 0.

Proof of Proposition 7

Assume w.l.o.g. gt > 0.5. By (16)

gt+T = 0.5 +
gt − 0.5

e2δT
> 0.5

Equation (13) implies that beliefs are

g′t+T (m = 1) =
ω̄gt+T

ω̄mgt+T + (1− ω̄)m (1− gt+T )

if {s = A, z = L or s = B, z = H} is observed and

g′t+T (m = 0) =
(1− ω̄) gt+T

(1− ω̄) gt+T + ω̄1−m (1− gt+T )

otherwise. The fact that gt+T > 0.5 therefore implies that

τ ′t+T (m = 1) > τ ′t+T (m = 0)
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Taking expectations:

E
(
τ ′t+T |µt+T = µt

)
= τ ′t+T (m = 1) Pr (m = 1|µt+T = µ̄) Pr (µt = µ̄)

+ τ ′t+T (m = 1) Pr (m = 1|µt+T = 1− µ̄) Pr (µt = 1− µ̄)

= τ ′t+T (m = 0) Pr (m = 0|µt+T = µ̄) Pr (µt = µ̄)

+ τ ′t+T (m = 0) Pr (m = 0|µt+T = 1− µ̄) Pr (µt = 1− µ̄)

= τ ′t+T (m = 1) [ω̄gt + (1− ω̄) (1− gt)] + τ ′t+T (m = 0) [(1− ω̄) gt + ω̄ (1− gt)]
(26)

Similarly

E
(
τ ′t+T |µt+T 6= µt

)
= τ ′t+T (m = 1) [ω̄ (1− gt) + (1− ω̄) gt] + τ ′t+T (m = 0) [(1− ω̄) (1− gt) + ω̄gt]

(27)

Subtracting (27) from (26):

E
(
τ ′t+T |µt+T = µt

)
− E

(
τ ′t+T |µt+T 6= µt

)
=
(
τ ′t+T (m = 1)− τ ′t+T (m = 0)

)
(2ω̄ − 1) (2gt − 1) > 0
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