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1 Introduction

The recent financial crisis had pervasive consequences, leading the U.S. economy to its longest

and most severe recession since World War II. Arguably, the crisis started with the end of a

housing bubble that, in turn, led to the collapse of the subprime market. From there, in the

span of a fewmonths, it spread to the whole banking sector and then to the real economy. The

decline in real economic activity accelerated in the fall of 2008 as the financial crisis unfolded.

U.S. gross domestic product fell by 5% in an year, while the unemployment rate increased

from less than 5% to 10%. The large contraction in real activity came with an equally

dramatic decline in stock prices, with the S&P 500 index dropping by almost 57% from its

October 2007 peak of 1, 565 to a mere 676.5 in March 2009. The possibility of a complete

financial meltdown suddenly became a real concern and commentators and policymakers

alike feared that the economy could be heading toward a second Great Depression (Krugman,

2009).

The Great Depression began with the devastating market crash, which occurred on Oc-

tober 29, 1929. It is diffi cult to establish whether the stock market crash was a cause or a

consequence of the Great Depression. However, there is no doubt that the two events were

closely related. In fact, the Great Depression can be considered an extreme example of how

a financial crisis and a recession can negatively affect each other. Financial markets and

economic institutions have evolved significantly since then, but the fear of a return to the

Great Depression suggests that rare events might have a long lasting impact on the way

agents think about the economy. In this paper, I document a series of similarities between

these two rare events by examining the behavior of financial markets. I then show that these

similarities are important to understand the cross section of asset returns.

In order to formally assess to what extent the Great Recession mirrored the Great De-

pression, I first estimate a Markov-switching vector autoregression (MS-VAR) that allows

for both changes in the VAR coeffi cients and in the covariance matrix that characterizes the

contemporaneous relations and volatilities of the disturbances. I include four key financial

variables: the excess market return, the Term Yield spread, the Price Earnings ratio, and

the Value spread. The excess market return captures the performance of the stock market

with respect to a risk-free rate. The Term Yield spread measures the slope of the term struc-

ture of interest rates that in turn has predictive power for future real activity. The Price

Earnings ratio can be considered a measure of market imbalance as it tends to be negatively

correlated with future returns. Finally, the Value spread measures the difference between

the log book-to-market ratios of small value and small growth stocks. Given that this last

variable moves up when small growth stocks perform relatively better, it can be considered

a proxy for the behavior of the cross section of asset returns.

AGreat Depression regime emerges from the estimates. A central feature of this regime is
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that it implies a large collapse of the stock market with a contemporaneous large increase in

the Value spread, suggesting that growth stocks perform relatively better than value stocks

during financial crises. As implied by its name, this regime characterized the behavior of

the stock market during the Great Depression, when the Price Earnings ratio and the Value

spread touched the historical minimum and maximum, respectively. For the remainder of

the sample, its probability has been close to zero until the early months of 2009. Therefore,

the Great Recession shows a resurgence of this regime, even if for only two months. The

probability of the Great Depression regime crossed the threshold of 50% in February 2009 for

the first time since November 1948. However, it quickly returned to zero in March, arguably

because of government interventions that were effective in preventing a financial meltdown

and led to a reversal in the behavior of the stock market and the Value spread.

In order to reinforce this point, I use counterfactual simulations to show that since the

starting of the Great Recession in mid-2008 until February 2009, financial markets were on

a path consistent with the Great Depression regime: a persistent fall in the stock market

paired with a contemporaneous increase in the Value spread. This opposite moving relation

between the behavior of the stock market as a whole and the relative performance of growth

stocks was absent during another important market decline: The end of the Information

Technology (IT) bubble. In that case, the Value spread and the Price Earnings ratios were

moving together. This suggests that market declines that are associated with financial crises

might be inherently different and that monitoring the relative performance of growth and

value portfolios during these events might be useful in understanding where markets are

headed.

The similarities between the Great Depression and the Great Recession extend beyond

the level dynamics that are implied by the VAR coeffi cients. Even the innovations present

some interesting features. First, both periods were characterized by high volatility. More

interestingly, both during the stock market crash that opened the Great Depression and the

fall in the stock market that characterized the beginning of the Great Recession, shocks to

market returns and the Value spread were negatively correlated. This has an important

implication for asset pricing because it implies that during crises, innovations to the relative

return of growth stocks move in an opposite direction with respect to stock market returns.

Given that the estimates point toward the existence of an interesting link between major

financial crises and the cross section of asset returns, I devote the second part of the paper

to a detailed analysis of the implications of the Great Depression and the Great Recession

for the cross section of asset returns. I reconsider the Bad Beta, Good Beta Intertemporal

CAPM (ICAPM) proposed by Campbell and Vuolteenaho (2004). The model is based on

the idea that unexpected excess returns can be decomposed into news about future cash

flows and news about future discount rates. Accordingly, the usual CAPM beta can be de-

composed into two betas, one for each of the two types of news. The economically motivated
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ICAPM predicts that the price of risk for the discount-rate beta should equal the variance of

unexpected market returns, while the price of risk for the cash-flow beta should be γ times

greater, where γ is the investor’s coeffi cient of relative risk aversion.

As a first step, the VAR methodology used to derive the news is extended in order to

reflect the possibility of regime changes. The ICAPM is then tested over different subsamples

to highlight the importance of the two financial crises. Specifically, I use moving windows

of 35 years starting from the late 1920s until the recent crisis. The results provide support

for the idea that rare events play an important role in explaining the cross section of asset

returns. During the early years of the sample, consistent with the results of Campbell and

Vuolteenaho, the ICAPM performs well in explaining the 25 Fama-French portfolios sorted

with respect to size and book-to-market ratios, but so does the traditional CAPM. However,

as the data window moves away from the Great Depression, the explanatory power of ICAPM

starts to slowly decline. By the 1990s, its R2 starts moving around 30%, well below the 60%

attained during the first half of the sample. However, as the window approaches the most

recent financial crisis, the explanatory power of the ICAPM increases steeply, and the R2

touches 60%, a value that was last reached at the end of 1978.

In order to highlight why the Great Recession plays such an important role in improving

the fit of the ICAPM, I show that the return of medium size growth stocks was visibly

lower than the expected return implied by the ICAPM during the 1980s and 1990s. In

other words, the return on these stocks was too low in light of a general increase in their

risk level as captured by their discount rate and cash-flow betas. Symmetrically, returns on

value stocks were quite high with respect to what was predicted by the ICAPM. In both

cases, the anomalies were largely corrected during the Great Recession. This result suggests

that the relative performance of these two classes of stocks during regular times might be

compensated by their behavior during rare events. This is why the ICAPM is able to explain

remarkably well the cross section of asset returns when financial crises are included in the

sample. Barro (2006, 2009), following Rietz (1988), shows that rare disasters are potentially

important in explaining the equity premium puzzle. The results presented here imply that

rare events also play an important role for the cross section asset returns.

Furthermore, financial crises are also important in shaping agents’expectations. This

conclusion can be inferred by comparing the explanatory power of the ICAPM under the

benchmark case, in which fully rational agents form expectations taking into account the

possibility of regime changes, with an alternative scenario in which agents form expectations

disregarding the possibility of regime changes. This latter case corresponds to the case of

anticipated utility: at each point in time, agents assume that the probabilities of the two

regimes will not change in the future. I show that the benchmark case delivers substantially

better results with an increase in the R2 that fluctuates around 20%. Therefore, rare events

are not only important because of their effect on realized returns, but also because of the
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way they shape agents’expectations. In other words, even in a sample in which no rare

events have occurred, assets are priced to reflect the possibility of rare events.

As a methodological contribution, this paper proposes a simple algorithm to estimate

a Markov-switching VAR in reduced form with Bayesian methods.1 Practitioners that are

more familiar with frequentist econometrics can make use of the results presented here and

use a maximum likelihood approach. An MS-VAR allows for an analytical characterization

of the news along the lines of the VAR approach proposed by Campbell (1991) to implement

the present value decomposition of Campbell and Shiller (1988). The formulas presented in

the paper are specific for the model of Campbell and Vuolteenaho (2004), but they can be

easily modified to handle other models that make use of a present value decomposition to

allow for the possibility of structural breaks. This approach, which formally isolates periods

characterized by unusual dynamics, might also prove useful in explaining why the present

value decomposition methodology is often sensitive to the sample choice. Furthermore, the

Markov-switching extension can easily accommodate temporary non-stationary regimes as

long as the system as a whole is stable, a feature particularly convenient when working with

financial data.

The content of this paper can be summarized as follows. Section 2 presents a review of

the related literature. In Section 3, I present the MS-VAR used to assess the presence of

similarities between the Great Depression and the Great Recession. Section 4 reports the

results for the MS-VAR estimates. Section 5 presents the implications of the two rare events

for the cross section of asset returns. In Section 6, I conduct a robustness check exercise

using real time estimates. In Section 7, I conclude.

2 Related Literature

This paper is related to several important contributions in macroeconomic and finance liter-

ature. Cogley and Sargent (2007) posit that agents update their beliefs according to Bayes’

Law, but also that some rare events can arrest convergence to a rational expectations equi-

librium, thereby initializing a new learning process. They argue that the Great Depression

was one such event, and they use this to explain the high but declining equity premium.

In this paper, I argue that the Great Depression is also important for the cross section of

asset returns. However, I do this without relying on a deviation from rational expectations,

but by showing that the Great Recession presented important similarities with the Great

Depression.

The literature on the cross section of asset returns is very vast. Bansal, Dittmar, and

Lundblad (2005), in the spirit of Bansal and Yaron (2004), focus on the aggregate consump-

1Sims and Zha (2006) provide methods to estimate a MS-VAR casted in its structural form.
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tion risks embodied in cash flows. Using a neoclassical framework, Zhang (2005) shows that

the value anomaly arises naturally due to costly reversibility and the countercyclical price

of risk. Koijen, Lustig, and Nieuwerburgh (2014) provide evidence in favor of the idea that

the business cycle is a priced state variable in stock markets. Campbell, Giglio, and Polk

(2013) highlight that the 2007-2009 market fall was not offset by improving stock return

forecasts as in the stock market downturn of 2000-2002, while Campbell, Giglio, Polk, and

Turley (2014) extend the approximate closed-form intertemporal capital asset pricing model

of Campbell (1993) to allow for stochastic volatility. They estimate the effects of volatility

on the stock market by using a two-step procedure that allows them to include volatility of

all shocks in the VAR. With respect to their work, I do not impose the restriction that all

volatilities have to move in parallel, I allow the covariance structure of the disturbances to

vary over time, and I model the possibility of regime changes in the VAR coeffi cients and,

consequently, in the way agents map shocks into the news about future discount rates and

future cash flows. To the best of my knowledge, this feature is new in the literature. Given

that the primary interest of this paper is to assess the role of the Great Recession and the

Great Depression, I do not price volatility when studying the cross section of asset returns.

The possibility of merging the two approaches is an interesting path for future research.

This paper is related to the growing rare disasters literature. Barro (2006, 2009), following

Rietz (1988), shows that rare disasters are potentially important in explaining several asset-

pricing puzzles. In fact, Nakamura, Steinsson, Barro, and Ursua (2013), estimating an

empirical model of consumption disaster, show that under Epstein-Zin-Weil preferences,

rare disasters can rationalize a sizeable equity premium for modest values of risk aversion.

Martin (2013a) studies a Lucas Orchard to point out that disasters can spread across assets,

generating large risk premia even for assets with stable fundamentals, while Martin (2013b)

shows how to use observable asset prices to make inferences that are robust to the details

of the underlying consumption process. Wachter (2013) shows that by allowing for a time-

varying probability of rare disasters, the model can explain at the same time the equity

premium puzzle and the high stock market volatility. Gabaix (2012) extends Barro’s results

by allowing for a time-varying intensity of rare disasters to propose a solution to a series

of finance puzzles. Bollerslev and Todorov (2011) show that the compensation for rare

events accounts for a large fraction of the average equity and variance risk premia by using

high-frequency data. Gourio (2012) embeds disasters into a production economy to jointly

explain the equity premium and business cycles. Bai, Hou, Kung, and Zhang (2015) include

disasters in an investment-based asset pricing model to argue value stocks are more exposed

to disaster risk than growth stocks.

Chen, Joslin, and Tran (2012) introduce heterogenous beliefs and argue that disagree-

ments generate strong risk-sharing motives, reducing the disaster risk premium. Julliard and

Ghosh (2012) argue that rare events cannot account for the equity premium puzzle and the
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cross section of asset returns at the same time because an increase in the probability of rare

events leads to a reduction in the cross-sectional dispersion of consumption risk compared

to the cross-sectional variation of average returns. Backus, Chernov, and Martin (2011) use

equity index options to quantify the distribution of consumption growth disasters and find

that options imply smaller probabilities of extreme outcomes than have been estimated from

macroeconomic data. The results of this paper suggest that it might be possible to reconcile

these opposing views by using an ICAPM.

The idea that rare events are important for the cross section of asset returns and to shape

agents’expectation mechanism should be distinguished from the so called peso phenomenon

that addresses agents’expectations of an economy wide disaster that has never materialized

in the sample (Sandroni, 1998, Veronesi, 2004). Instead, the argument that I propose is that

during rare events, assets might behave differently. As a result, including these rare events

in the estimates is important to correctly judge their relative performance and to adequately

model agents’expectation mechanism.

Markov-switching models are quite popular in financial econometrics. Lettau, Ludvig-

son, and Wachter (2008) estimate an univariate Markov-switching process to study the link

between consumption risk and the decline in the equity premium. Bianchi, Lettau, and

Ludvigson (2013) use a Markov-switching model to document infrequent shifts in the mean

of the consumption-wealth variable cayt (Lettau and Ludvigson, 2001). Ang and Bekaert

(2002) examine the econometric performance of regime-switching models for interest rate

data, while Pesaran, Pettenuzzo, and Timmermann (2006) use MS models in forecasting

financial series. Gulen, Xing, and Zhang (2011) use an univariate MS model of stock returns

to study the time-varying nature of the value premium. With respect to these contributions,

I use a multivariate model with two separate processes controlling the VAR coeffi cients and

the volatilities, while the literature often utilizes univariate processes in which a single chain

controls all parameters of the model. Allowing for two separate chains is important because

volatility changes would otherwise tend to dominate other regime breaks as pointed out by

Ang and Timmermann (2012) and Sims and Zha (2006).

Lewellen, Nagel, and Shanken (2010) and Daniel and Titman (2006) have highlighted

some drawbacks of the empirical methods used to test factor-model explanations of market

anomalies. The results of this paper are robust with respect to their concerns given that the

ICAPM imposes economically motivated restrictions on the premia. There are also some

caveats about the VAR methodology used to retrieve cash-flow and discount rate news.

Chen and Zhao (2005) argue that it is potentially misleading to obtain the two series with

the discount-rate news being directly modeled and the cash-flow news calculated as the

residual. Campbell, Polk, and Vuolteenaho (2010) and Engsted, Pedersen, and Tanggaard

(2010) clarify the conditions under which VAR results are robust to the decision whether to

forecast returns or cash flows.
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3 The Model

In this section, I present the MS-VAR use to study the similarities between the Great De-

pression and the Great Recession.

3.1 A Markov-switching VAR

The variables of interest are assumed to evolve according to a Markov-switching VAR with

one lag:

Zt = cξΦ
t

+ AξΦ
t
Zt−1 + Σ

1/2

ξΣ
t
ωt (1)

ΦξΦ
t

=
[
cξΦ
t
, AξΦ

t

]
, ωt ∼ N(0, I) (2)

where Zt is a (n × 1) vector of data. The unobserved states ξΣ
t and ξ

Φ
t can take on a finite

number of values, jΦ = 1, . . . ,mΦ and jΣ = 1, . . . ,mΣ, and follow two independent Markov

chains.2 This represents a convenient way to model heteroskedasticity and to allow for the

possibility of changes in the dynamics of the state variables.3 The probability of moving

from one state to another is given by P [ξΦ
t = i|ξΦ

t−1 = j] = hΦ
ij and P [ξΣ

t = i|ξΣ
t−1 = j] = hΣ

ij.

Given HΦ = [hΦ
ij] and H

Σ = [hΣ
ij] and a prior distribution for the initial state, we can

compute the likelihood of the parameters of the model, conditional on the initial obser-

vation Z0. The likelihood can then be combined with a prior probability for the para-

meters of the model to obtain their posterior probability. A by-product of the likelihood

calculation are the filtered probabilities for Markov-switching states: πΦ
t|t and πΣ

t|t, where

each element of the two vectors is defined by πΦ,i
t|t = P [ξΦ

t = i|Zt,ΦξΦ
t
,ΣξΣ

t
, HΦ, HΣ] and

πΣ,i
t|t = P [ξΣ

t = i|Zt,ΦξΦ
t
,ΣξΣ

t
, HΦ, HΣ] for all i at each t where Zt = {Zs}ts=1. Therefore, the

filtered estimates represent the probabilities assigned to the different regimes conditional on

the model parameters and the data up to time t. These can be converted by a recursive

algorithm to smoothed estimates: πΦ
t|T and π

Σ
t|T , where each element of the two vectors is

given by P [ξΦ
t = i|ZT ,ΦξΦ

t
,ΣξΣ

t
, HΦ, HΣ] and P [ξΣ

t = i|ZT ,ΦξΦ
t
,ΣξΣ

t
, HΦ, HΣ]. These are

probabilities for the different regimes conditional on the model parameters and the whole

dataset ZT = {Zs}Ts=1 .

2Note that the regime switch is modeled for a VAR in its reduced form. Sims and Zha (2006) work
with the structural form of the VAR. However, it is not clear what kind of identifying restrictions could be
imposed when dealing with four financial variables such as the ones that are included in the present model.
Therefore, it seems more reasonable to proceed with this approach than to attempt to impose restrictions
that are diffi cult to justify.

3An alternative way to model parameter instability consists of using smoothly time-varying parameters
as in Cogley and Sargent (2006) and Primiceri (2005).
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3.2 Dataset

The vector Zt contains four state variables: The excess log return on the CRSP value-

weighted index (ERt), the Term Yield spread in percentage points (TYt), measured as the

yield difference between ten-year constant-maturity taxable bonds and short-term taxable

notes, the log price earning ratio (PEt), and the small-stock value-spread (V St), the differ-

ence in the log book-to-market ratios of small-value and small-growth stocks. The sample

spans the period from December 1928 to June 2009.

The construction of the series follows Campbell and Vuolteenaho (2004). The excess

market return is computed as the difference between the log return on the Center for Research

in Securities Prices (CRSP) value-weighted stock index and the rate on three-month Treasury

bills. The Term Yield spread is computed using data available on Global Financial Data by

taking the yield difference between 10-year constant-maturity taxable bonds and short-term

taxable notes, in percentage points. The Price Earnings ratio (Shiller, 2000) is the log of

the ratio between the price of the S&P 500 index and a 10-year moving average of aggregate

earnings of companies in the S&P 500 index. In line with the literature, earnings are averaged

to avoid spikes in the Price Earnings ratio caused by cyclical fluctuations in earnings. The

moving average is lagged by one quarter in order to ensure that all components of the time-t

Price Earnings ratio are observable at time t.

The small-stock Value spread is constructed by using the six “elementary” portfolios

available on Professor French’s website. These elementary portfolios, which are constructed

at the end of each June, are the intersections of two portfolios based on size (market equity,

ME) and three portfolios formed on the ratio of book equity to market equity (BE/ME).

The size breakpoint for year t is the median NYSE market equity at the end of June of year

t. The book-to-market ratio for June of year t is the book equity for the last fiscal year end

in t− 1 divided by ME for December of t− 1. The BE/ME breakpoints are the 30th and

70th NYSE percentiles.

At the end of June of year t, the small-stock Value spread is given by the difference

between the ln(BE/ME) of the small high-book-to-market portfolio and the ln(BE/ME)

of the small low-book-to-market portfolio. For months July through May, the small-stock

Value spread is updated by adding the cumulative log return from the previous June on the

small low-book-to-market portfolio minus the cumulative log return on the small high-book-

to-market portfolio to the end-of-June small-stock Value spread. Therefore, an increase in

the Value spread reflects the fact that small-growth stocks are outperforming small-value

stocks.
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3.3 Estimation algorithm

The model is estimated with Bayesian methods. Proper priors are put on all the parameters

in the model. The priors for all parameters are very loose and identical across the different

regimes. This implies that the features of the regimes are not restricted and that differences

will arise only because of the data. Appendix A describes the priors in detail. I also impose

covariance stationarity by adopting the concept of mean square stability. An MS model is

mean square stable if both the first and second moments converge.4

The posterior is obtained combining the likelihood with the priors. Appendix B describes

how to compute the likelihood and the regime probabilities for a given set of parameters. I

first search for the posterior mode maximizing the sum of the logarithm of the priors and the

log-likelihood. This is an important step because MS models tend to have multiple peaks.

I then employ a Gibbs sampling algorithm to draw from the posterior distribution. Here I

briefly summarize the steps of the Gibbs sampling that is described in detail in Appendix C:

1. Sampling ξΦ,T and ξΣ,T : Following Kim and Nelson (1999a) I use a Multi-Move Gibbs

sampling to draw ξΦ
t from f(ξΦ

t |ZT ,ΦξΦ
t
, ΣξΣ

t
, HΦ, HΣ, ξΣ

t ) and ξΣ
t from f(ξΣ

t |ZT ,ΦξΦ
t
,

ΣξΣ
t
, HΦ, HΣ, ξΣ

t ).

2. Sampling ΣξΣ
t
given ΦξΦ

t
, ξΦ,T , ξΣ,T : Given ΦξΦ

t
and the regime sequence ξΦ,T we can

compute the residuals of the MS-VAR at each point in time. Then, given ξΣ,T , we

can group all the residuals that pertain to a particular regime. Therefore, ΣξΣ
t
can be

drawn from an inverse Wishart distribution for ξΣ
t = 1...mΣ.

3. Sampling ΦξΦ
t
given ΣξΣ

t
, ξΦ,T , ξΣ,T : When drawing the VAR coeffi cients, we need to

take into account the heteroskedasticity implied by the switches in ΣξΣ
t
. This can be

done grouping all the observations that pertain to a specific regime and then applying

the formulas for the posterior of the VAR coeffi cients recursively.

4. Sampling HΦ and HΣ: Given the draws for the state variables ξΦ,T and ξΣ,T , the

transition probabilities are independent of ZT and the other parameters of the model.

Therefore, they can be drawn using a Dirichlet distribution.

5. If the algorithm has reached the desired number of iterations, stop. Otherwise, go back

to step 1.

I use 1,000,000 Gibbs sampling iterations of which one every 100 are retained. Con-

vergence is checked using the methods suggested by Geweke (1992) and Raftery and Lewis

4Mean square stability holds if and only if all the eigenvalues of the matrix Ξ ≡ bdiag(A1 ⊗A1,..., Am ⊗
Am)(HΦ ⊗ In2) are inside the unit circle where bdiag is a matrix operator that takes a sequence of matrices
and construct a block diagonal matrix. Please refer to Costa, Fragoso, and Marques (2004) and Bianchi
(2014) for more details.
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(1992).5

4 The Great Depression and The Great Recession

In what follows I highlight the similarities and differences between the Great Depression and

the Great Recession.

4.1 Parameter estimates and regime probabilities

This subsection reports parameter estimates and regime probabilities for the MS-VAR de-

scribed above. The number of regimes for the VAR coeffi cients is equal to two, mΦ = 2, while

the number of regimes for the covariance matrix is equal to three, mΣ = 3. Therefore, we

have a total of six possible regime combinations. Figure 1 shows the smoothed and filtered

probabilities of Regime 1 for the VAR coeffi cients (ξΦ
t = 1) at the posterior mode, while

Figure 2 reports the smoothed and filtered probabilities for Regime 1 and Regime 3 for the

covariance matrices (ξΣ
t = 1 and ξΣ

t = 3). Table 1 reports posterior mode and 68% error

bands for the parameters of the Markov-switching VAR.

I shall start by analyzing the results for the VAR coeffi cients. The upper panel of Figure

1 contains the filtered and smoothed probabilities of Regime 1 for the VAR coeffi cients

(ξΦ
t = 1) together with the evolution of the Price Earnings ratio and the Value spread,

where the variables have been normalized to fit in the graph. I report both the filtered and

smoothed probabilities because they convey different information. We can think about the

filtered probability as the probability that would be attached to a particular regime by an

agent that was aware of all parameters of the model except for the regime in place at time

t. In other words, this is the probability that an agent would attach to Regime 1 at time t if

she knew the VAR coeffi cients, the covariance matrices, the transition matrices, and only the

data up to time t. Instead, the smoothed probabilities reflect all the information contained

in the dataset. This is the probability that an agent would attach to Regime 1 at time t

if she knew the VAR coeffi cients, the covariance matrices, the transition matrices, and the

whole dataset up to time T .

In order to facilitate the interpretation of the results, the second row of the figure focuses

on three key events: The Great Depression, the IT bubble, and the Great Recession. Regime

1 clearly dominates the first decade, a period characterized by large market crashes and an

unusually high level for the Value spread. The behavior of the Value spread and the price

earning ratio in the early 1930s is worth noting. The largest stock market crash of U.S.

5For Raftery and Lewis (1992) I target 90% credible sets, with a 1% accuracy to be achieved with a
95% minimum probability. The required number of draws never exceeds 2, 000. This value is well below the
number of draws retained to analyze the model (10, 000).
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Figure 1: Regime probabilities for VAR coeffi cients. The first panel reports the filtered (red/dark
gray area) and smoothed (blue/light gray area) probabilities of the Great Depression regime together with
the evolution of the price-earnings ratio and the value spread. The lower three panels zoom on three key
events: The Great Depression, the end of the Information Technology bubble, and the Great Recession.

history came with a substantial increase in the Value spread that reached historic heights.

In other words, during the most severe recession that the U.S. has ever experienced, growth

stocks were outperforming value stocks, and this situation of disequilibrium lasted for more

than a decade. The probability of this regime went down only around 1942, when the U.S.

started winning WWII. A rational agent who is trying to hedge against risk is likely to find

this pattern extremely informative. From here forward I will refer to Regime 1 as the Great

Depression regime, while I will name Regime 2 the Regular times regime.

After the 1930s, the probability of the Great Depression regime has generally been close

to zero. However, a visible increase in the probability occurred in correspondence with the

recent financial crisis. The increase is much larger for the filtered probability than for the

smoothed probability. This implies that an agent that had been observing the market in

real time would have attached a much larger probability to entering a depression-like regime,

while ex-post, with the benefit of the hindsight, the same agent would have concluded that

the probability of having observed a manifestation of the Great Depression regime was in

fact much smaller. However, even in this latter case, in which the entire dataset is used to

infer the smoothed probabilities, we cannot rule out the possibility that during the first two

months of 2009, financial markets’behavior was in line with what occurred during the dawn

of the Great Depression.

While there are other periods of time during which we observe an increase in the filtered

probability of the Great Depression regime, the second month of 2009 was the first time that

such a probability crossed 50% since November 1948, a period marked by the rise of the

Cold War, the first Israeli-Arab war, and the unexpected presidential election victory of the

incumbent President Truman over the Republican candidate, Thomas E. Dewey. Similarly,
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in the first two months of 2009, the smoothed probability crossed the 5% value for the first

time since September 1942, i.e., since World War II. Finally, it is worth emphasizing that

these results are even stronger if we were to recursively estimate the model. In this case, the

probability assigned to the Great Depression regime would be larger than 80% in February

2009. Section 6 reports results for this alternative approach.6

Later, I will investigate more in depth what could explain the increase in the probability

of the Great Depression regime at the beginning of 2009. For now, it is enough to point

out that the spike in the probability of the Great Depression regime at the beginning of

2009 coincides with a deep decline in the Price Earnings ratio combined with a substantial

increase in the Value spread. In other words, the price earning ratio and the Value spread are

moving in opposite directions in a way that is very similar to what occurred during the early

years of the Great Depression. In this respect, it is quite instructive to compare the Great

Recession stock market decline with the end of the IT bubble. In this second case, the Value

spread and the Price Earnings ratio were moving in parallel. Recall that the Value spread

tends to rise when growth stocks perform relatively better than value stocks. Given that the

rise and burst of the IT bubble were mostly driven by IT stocks, it is not surprising that the

two variables were moving together. Nevertheless, this evidence suggests that stock market

crashes that are associated with financial crises might have very different implications for the

relative performance of growth and value stocks. This is why the probability of the Great

Depression regime does not increase every time that the Price Earnings ratio falls, but it is

more likely to do so if such a fall is associated with a contemporaneous increase in the Value

spread.

The two regimes are strongly identified and the parameter estimates present some distinc-

tive features.7 First of all, the autoregressive component for excess returns is substantially

larger under the Great Depression regime (ξΦ
t = 1), while the autoregressive components

for the Term Yield spread, the Price Earnings ratio, and the Value spread are substantially

smaller. A high price earning ratio predicts low stock market returns in both regimes, but the

effect is significantly stronger under the Great Depression regime. The Value spread enters

the excess return and Price Earnings ratio equations with a positive sign in both regimes,

but the coeffi cients are substantially larger under the Great Depression regime. Finally, the

coeffi cients of the Term Yield spread and of the Price Earnings ratio in the Value spread

equation are positive under the Great Depression regime, while they are smaller and negative

in the Regular times regime (ξΦ
t = 2). Before proceedings, it is worth emphasizing that the

6I focus on the estimates obtained using the entire sample to reflect the idea that agents in the economy
have in fact more information than the econometrician. Therefore, the econometrician uses all the available
information to learn the parameters that are known to investors. This approach is common in the asset
pricing literature.

7Appendix D contains results for a formal pairwise comparison of the VAR coeffi cients across the two
regimes.
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ξΦ
t = 1 ERt TYt PEt V St constant

ERt+1 0.1650
(0.0509,0.1822)

−0.0184
(−0.0255,−0.003)

−0.1225
(−0.1232,−0.0937)

0.1275
(0.0894,0.1341)

0.0423
(0.0065,0.0608)

TYt+1 −0.1492
(−0.4170,0.1408)

0.8874
(0.8468,0.9644)

−0.0332
(−0.1030,0.0761)

0.0804
(−0.0958,0.1800)

0.1460
(−0.0512,0.3517)

PEt+1 0.1657
(0.0480,0.1832)

−0.0175
(−0.0247,−0.0007)

0.8732
(0.8720,0.9029)

0.1444
(0.1022,0.1498)

0.0050
(−0.0266,0.0288)

V St+1 0.0062
(−0.0438,0.0587)

0.0450
(0.0307,0.0490)

0.0563
(0.0365,0.0617)

0.9000
(0.8905,0.9299)

0.0020
(−0.0228,0.0373)

ξΦ
t = 2 ERt TYt PEt V St constant

ERt+1 0.0563
(0.0251,0.0939)

0.0010
(0.0001,0.0029)

−0.0134
(−0.0176,−0.0093)

0.0157
(0.0088,0.0216)

0.0234
(0.0094,0.0380)

TYt+1 0.2591
(0.0351,0.4762)

0.9638
(0.9580,0.9756)

−0.0171
(−0.0416,0.0118)

0.0729
(0.0349,0.1130)

−0.0176
(−0.1263,0.0669)

PEt+1 0.0187
(−0.0125,0.0575)

0.0016
(0.0006,0.0034)

0.9913
(0.9869,0.9952)

0.0193
(0.0121,0.0250)

−0.0019
(−0.0150,0.0138)

V St+1 −0.0024
(−0.0286,0.0263)

−0.0027
(−0.0033,−0.0010)

−0.0037
(−0.0067,0.0002)

0.9765
(0.9698,0.9812)

0.0465
(0.0331,0.0582)

ξΣ
t = 1 uER uTY uPE uV S

uER 0.0653
(0.0679,0.0840)

0.0033
(−0.0046,0.0125)

0.0036
(0.0039,0.0061)

0.0015
(0.001,0.0021)

uTY 0.0617
(−0.0657,0.1723)

0.8067
(0.8449,1.0257)

0.0026
(−0.0051,0.0109)

−0.005
(−0.0140,−0.0022)

uPE 0.9189
(0.8864,0.9343)

0.0520
(−0.0795,0.1621)

0.0608
(0.0633,0.0788)

0.0014
(0.0009,0.0020)

uV S 0.4559
(0.256,0.4975)

−0.1212
(−0.2739,−0.0463)

0.457
(0.2596,0.5016)

0.0506
(0.0482,0.0585)

ξΣ
t = 2 uER uTY uPE uV S

uER 0.0363
(0.0367,0.0389)

−0.0005
(−0.0009,−0.0002)

0.0013
(0.0013,0.0015)

0.0001
(0.0001,0.0002)

uTY −0.0688
(−0.1056,−0.0259)

0.2133
(0.2233,0.2470)

−0.0005
(−0.0009,−0.0002)

0.0002
(−0.0001,0.0004)

uPE 0.9474
(0.9473,0.955)

−0.0592
(−0.0955,−0.0169)

0.0369
(0.0371,0.0394)

0.0001
(0.0001,0.0002)

uV S 0.1194
(0.1152,0.2006)

0.0285
(−0.0181,0.0604)

0.1001
(0.0944,0.1785)

0.0279
(0.0284,0.0305)

ξΣ
t = 3 uER uTY uPE uV S

uER 0.1040
(0.1068,0.1270)

−0.0078
(−0.0132,−0.0026)

0.0110
(0.0116,0.0165)

−0.0026
(−0.0051,−0.0016)

uTY −0.2353
(−0.3151,−0.0651)

0.3183
(0.3083,0.3922)

−0.0085
(−0.0143,−0.0033)

−0.0025
(−0.0076,0.0022)

uPE 0.9611
(0.9521,0.9694)

−0.2411
(−0.3240,−0.0800)

0.1102
(0.1134,0.1348)

−0.0029
(−0.0057,−0.0019)

uV S −0.2206
(−0.3286,−0.1158)

−0.0684
(−0.1714,0.0509)

−0.2346
(−0.3425,−0.1305)

0.1139
(0.1161,0.1387)

HΦ ξΦ
t = 1 ξΦ

t = 2

ξΦ
t+1 = 1 0.9778

(0.9561,0.9831)
0.0050

(0.0038,0.0099)

ξΦ
t+1 = 2 0.0222

(0.0169,0.0439)
0.9950

(0.9901,0.9962)

HΣ ξΣ
t = 1 ξΣ

t = 2 ξΣ
t = 3

ξΣ
t+1 = 1 0.7959

(0.7343,0.8532)
0.0224

(0.0075,0.0232)
0.0526

(0.0353,0.1037)

ξΣ
t+1 = 2 0.1685

(0.0865,0.2030)
0.9243

(0.9182,0.9419)
0.3666

(0.3667,0.5150)

ξΣ
t+1 = 3 0.0356

(0.0288,0.0940)
0.0533

(0.0443,0.0652)
0.5807

(0.4152,0.5636)

Table 1: Parameter estimates. The three sets of tables contain modes and 68% error bands for the posterior
distribution of the parameters of the Markov-switching VAR. The first two panels report the estimates
for the VAR coeffi cients. The second set of panels contains the standard deviations of the shocks on the
main diagonal, the correlations of the shocks below the main diagonal, and the covariances above the main
diagonal. The last tables contain the estimates of the transition matrices.
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Figure 2: Probabilities of the volatility regimes. The figure reports the filtered and smoothed proba-
bilities of Term Yield volatility regime (top panel) and the High volatility regime (lower panel). These two
regimes correspond to Regime 1 and Regime 3 for the covariance matrix. The first panel also reports the
evolution of the Term Yield Spread, while the second panel contains the Price-earnings ratio and the Value
Spread. All variables are rescaled to fit in the 0-1 scale.

dynamic properties of the model do not only depend on the VAR coeffi cients: Regime changes

can also induce strong commovements between the variables of interest. These aspects will

be analyzed in the next subsection.

Some interesting patterns emerge from the analysis of the covariance matrix estimates

and their corresponding probabilities. Regime 2 (ξΣ
t = 2) can be regarded as the Low

volatility regime, showing the lowest values for the standard deviations of all innovations.

Regime 1 (ξΣ
t = 1) presents an increase of the magnitude for all shocks, but especially for the

innovations to Term Yield spread. Looking at Figure 2, we can see that this regime mostly

prevails during the early years of the Volcker chairmanship when the Federal Reserve was

targeting reserves with the result of generating high volatility in the FFR and, consequently,

the yield spread. I will refer to this regime as the Term Yield volatility regime. Regime 3

(ξΣ
t = 3) is instead characterized by a more modest increase in the volatility of the Term

Yield spread innovations, but a much larger increase in the volatility of the other shocks.

Interestingly, Regime 3 prevails for extended periods of time during the 1930s, the 2001 IT

bubble burst, and the 2008/9 financial crisis. So it can be considered an High Uncertainty

regime across several dimensions. The correlation structure of the innovations is also worth

noting. Under the High Uncertainty regime, innovations to the Value spread are strongly

negatively correlated with innovations to the excess return and Price Earnings equations.

This is in sharp contrast with the positive sign that prevails under the other two regimes

and implies that small growth stocks tend, in relative terms, to move against the market.

Similarly, the correlation of Term Yield innovations with Price Earnings ratio and excess
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return innovations is strongly negative under the High Uncertainty regime, while under the

other two regimes the correlation is slightly negative (Low volatility regime) or centered on

zero (Term Yield volatility regime).

Finally, the regime persistences reported at the bottom of Table 1 show that for the

VAR coeffi cients, the Great Depression regime is significantly less persistent and frequent

than the Regular times regime, consistent with the idea that the Great Depression was a

rare event. As for the transition matrix of the innovation covariance matrix, Regime 2, the

Low volatility regime, is the most persistent, followed by the Term Yield volatility regime

and the High volatility regime. Their unconditional probabilities are 77.8%, 11.3%, and

10.9%. These estimates imply that the low volatility regime prevails most of the time with

relatively frequent but short lasting deviations to the Term Yield volatility regime and the

High volatility regime.

4.2 Entering the Great Depression

As mentioned above, regime changes also play a key role in shaping the dynamic properties

of the model. In fact, regime changes can be regarded as shocks themselves and can have

fairly long lasting consequences. In order to understand the role played by regime changes

and at the same time capture the salient features of the Great Depression, Figure 3 reports a

simulation in which all Gaussian shocks are set to zero, and regimes follow their most likely

path based on the smoothed probabilities at the posterior mode. The initial values coincide

with the actual data. The simulated series are reported with a solid blue line, while the red

dashed line corresponds to the actual data. The two horizontal lines mark the regime-specific

conditional steady states. These are the values to which the variables would converge if a

regime were in place forever.

The first aspect that emerges from this simulation is that a change from the Regular times

regime to the Great Depression regime determines a sharp drop in the stock market and a

contemporaneous increase in the Value spread and the Term Yield spread. The drop in the

stock market tends to be very large, and it overshoots with respect to the conditional steady

state of the Great Depression regime. Therefore, after a dramatic fall, the stock market

partially recovers, while the Value spread and Term Yield spread keep moving toward their

corresponding conditional steady states. Notice that the short break in the realization of the

Great Depression regime that is identified in the estimates coincides with a partial recovery

in the stock market and a contemporaneous fall in the Value spread. However, once the

model returns to the Great Depression regime the variables tend to follow a path similar to

the one that was prevailing before the break. Overall, during the 1930s the regime sequence

plays an important role in tracking the behavior of the three variables, implying that the

Great Depression regime captures some salient features of the Great Depression.
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Figure 3: The Great Depression. The figure reports a simulation in which all the Gaussian shocks are
set to zero, and regimes follow their most likely path based on the smoothed probabilities at the posterior
mode. The initial values coincide with the actual data. The simulated series are reported with a solid blue
line, while the red dashed line corresponds to the data. The two horizontal lines mark the regime-specific
conditional steady states. These are the values to which the variables would converge if a regime were in
place forever.

Once the economy returns to the Regular times regime, the model predicts a quick fall

in the Value spread and the Term Yield spread. The stock market moves in the opposite

direction, showing a steady increase and converging to the higher Regular times conditional

steady state. It is also important to emphasize that the conditional steady state for the

Great Depression regime is never really reached by the Value spread and the Price Earnings

ratio. This is because both in the estimation and in the simulation, the Great Depression

regime is not in place long enough to allow for convergence to the conditional steady state.8

Figure 4 focuses on the last months of the sample to better understand the similarities and

the differences between the Great Depression and the Great Recession. The figure reports

two simulations in which all Gaussian shocks have been set to zero starting from February

2009, the month in which the filtered probability of the Great Recession regime spiked. In

the first simulation (solid blue line), a counterfactual regime sequence is assumed: starting

from February 2009, the Great Depression regime prevails until the end of the sample. In

the second simulation, the actual regime sequence is assumed to be in place. The red dotted

line corresponds to the data. Notice that until February 2009, the three series coincide.

Therefore, the two simulations can be used to understand why the probability of the Great

Depression regime increased in the very beginning of 2009, but then quickly fell in March

2009. Furthermore, the simulations shed light on what agents were likely to expect in the

moment that the probability of the Great Depression regime spiked.

As already noted above, since the end of 2008 and until February 2009, the stock mar-

ket experienced a prolonged fall associated with a contemporaneous increase in the Value

8In Markov-switching models this is a fairly common finding. If the variables converge or not to their
conditional steady states depends on the interaction between the persistence of the regime and the persistence
of the variables under such a regime.
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Figure 4: The Great Recession. The figure reports two simulations in which all Gaussian shocks have
been set to zero starting from March 2009. In the first simulation (solid blue line) a counterfactual regime
sequence is assumed: Starting from March 2009 the Great Depression regime prevails until the end of the
sample. In the second simulation the actual regime sequence is assumed to be in place. The red dotted line
corresponds to the data.

spread. This behavior is remarkably similar to what is observed in the beginning of the Great

Depression. The solid blue line shows what would have happened if starting February 2009

the economy had in fact entered the Great Depression regime: The Price Earnings ratio and

the Value spread would have kept moving in exactly the same fashion, while excess returns

would have stayed negative. In other words, the counterfactual simulation highlights that

until February 2009 financial markets were in fact on a path very similar to what implied

by the Great Depression regime. However, in March 2009, these dynamics reverted. Excess

stock market returns increased and became positive, the Price Earnings ratio recovered, and

the Value spread started declining. The black dashed line shows that the return to the Reg-

ular times regime captures these changes, even if in the data the movements were somehow

more pronounced. Recall that this is a period of high volatility, so the discrepancy between

the "regime only" simulation and the actual data should not be surprising.

In light of these findings, it is then interesting to review the main events that characterized

the beginning of the Great Recession. An early flag emerged in June 2007, with the collapse of

two hedge funds owned by Bear Stearns. Less than one year later, in March 2008, the Federal

Reserve had to intervene in order to prevent the Bear Stearns bankruptcy by assuming $30

billion in liabilities and engineering a sale to JPMorgan Chase. From that moment on, the

crisis accelerated with the Treasury Department taking over Fannie Mae and Freddie Mac

on September 7, Lehman brothers filing for the largest bankruptcy case in U.S. history one

week later (September 15), and the Federal Reserve bailing out AIG. In December 2008,

unemployment reached its highest value in 15 years and the Federal Reserve cut the FFR to

zero. Over the same period of time, the Price Earnings ratio kept moving down while the

Value spread increased.

President Obama took offi ce in January 2009, and Wall Street experienced the worst

Inauguration Day drop ever (I am not claiming a causal relation between the two events). At
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this point, fears that the U.S. might be heading toward a second Great Depression became

widespread (Krugman, 2009). On February 10, the secretary of the Treasury Geithner

outlined the plan for the expansion of the government bank rescue effort. The plan was

received with some skepticism by financial markets, arguably because it was lacking many

important details (Solomon, 2009). As a result, the market experienced a fall of almost

5%. A few days later, President Obama signed into law a $787 billion stimulus package

that included tax cuts and money for infrastructure, schools, health care, and green energy.

Even in this case, some commentators worried that the government intervention might not

be enough. In the meantime, the stock market experienced two weeks of declines, reaching

its lowest level in 12 years. Notice that it is in February that the probability of the Great

Depression regime crossed 50%. However, in March 2009, more encouraging economic data

were released and details of the rescue plan were disclosed. Arguably, this had a positive

effect of the stock market that turned around. At the same time, the Value spread started

moving down and the probability of the Great Depression regime went back to values close

to zero.

In summary, the estimates and the counterfactual simulations suggest that during the

second half of 2008 and until February 2009, financial markets were on a path consistent with

a switch to the Great Depression regime: a falling Price Earnings ratio and an increasing

Value spread. This explains the increase in the probability of the Great Depression regime.

These patterns came to a stop in March 2009 when the government increased its effort to

prevent a financial meltdown and to facilitate an economic recovery. This explains why

in the estimates the filtered probability assigned to the Great Depression regime increased

significantly at the beginning of 2009, but it quickly went back to zero: The economy did

not enter a Great Depression, at least in terms of the behavior of financial markets.

5 The Cross Section of Asset Returns

The results shown so far have highlighted a series of properties that are quite informative

regarding the similarities between the Great Depression and the Great Recession. Two

aspects seem particularly relevant. First, during the Great Depression and at the beginning

of the Great Recession, the Price Earnings ratio and the Value spread were moving in

opposite directions. Second, innovations to the Price Earnings ratio and the Value spread

were often negatively correlated during these events. Both results suggest that financial

crises imply important changes in the behavior of the cross section of asset returns, with

small growth stocks performing relatively better. In order to further explore this idea, I make

use of Campbell and Vuolteenaho’s ICAPM. Consistent with the Markov-switching model

described above, it is important to model the possibility of regime changes when describing
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agents’expectations formation mechanism. In order to keep the paper self-contained, I will

briefly present the ICAPM proposed by Campbell and Vuolteenaho (2004), and then I will

explain how to extend their approach to allow for regime changes.

5.1 ICAPM

Fama and French (1992, 1993) show that the CAPM fails to describe average realized stock

returns since the early 1960s, when a value-weighted equity index is used as a proxy for

the market portfolio. This failure is most apparent for the price of small stocks and value

stocks. Those stocks have experienced average returns that cannot be explained through

their market betas. Ang and Chen (2007) argue that this failure is specific to the post-1963

sample.

In order to solve the small-value puzzle, Campbell and Vuolteenaho (2004) start from

the premise that the returns on the market portfolio can be split into two components. An

unexpected change in excess returns can be determined by news about future cash flows or

by a change in the discount rate that investors apply to these cash flows. While a fall in

expected cash flows is simply bad news, an increase in discount rates implies at least an

improvement in future investment opportunities. Therefore, the single CAPM beta can be

decomposed into two sub-betas: one reflecting the covariance with news about future cash

flows (bad beta), the other linked to news about discount rates (good beta). The previous

argument suggests that given two assets with the same CAPM beta, the one with the highest

cash-flow beta should have a larger return.

Using the loglinear approximation for returns introduced by Campbell and Shiller (1988),

unexpected excess returns can be approximated by:

rt+1−Etrt+1 = NCF,t+1−NDR,t+1 = (Et+1 − Et)
∑∞

j=0 ρ
j∆dt+1+j− (Et+1 − Et)

∑∞
j=1 ρ

jrt+1+j

(3)

where rt+1 is a log stock market return, dt+1 is the log dividend paid by the stock, ∆ denotes a

one period change, Et denotes a rational expectation formed at time t, and ρ is the discount
coeffi cient that is set to 0.95 per annum. NCF,t+1 and NDR,t+1 represent news about the

future market cash flows and news about the future market discount returns, respectively.

The VARmethodology introduced by Campbell (1991) provides an estimate for the terms

Etrt+1 and NDR,t+1. Then NCF,t+1 is derived from (3) as a residual. Specifically, consider a

VAR in companion form:

Zt+1 = c+ AZt + ut+1 (4)

where Zt is a vector of state variables with the excess return ordered first. Assuming that

agents form expectations using the above VAR, the two types of news can be obtained
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according to the following transformation of the residuals:

rt+1 − Etrt+1 = e′1ut+1 (5)

NCF,t+1 = (e′1 + e′1λ)ut+1 (6)

NDR,t+1 = e′1λut+1 (7)

where λ = ρA (I − ρA)−1 and e′1 = [1, 0, ..., 0]′. The residuals of the different equations

are given weights reflecting their persistence and their contribution in explaining the excess

return. The first effect is captured by (I − ρA)−1, and the second by ρA.

Once the two series for the news have been obtained, the betas can be computed for a

set of portfolios according to the following formulas:9

β̂i,CF =
ĉov(ri,t, NCF,t)

v̂ar(NCF,t −NDR,t)
(8)

β̂i,DR =
ĉov(ri,t,−NDR,t)

v̂ar(NCF,t −NDR,t)
(9)

where ri,t is the return of the i-th portfolio. Notice that the denominator is simply the sample

variance of the unexpected excess returns, i.e., of the residuals of the VAR rt+1 − Etrt+1.

The market beta is obtained by summing the two betas.

Campbell (1993) derives an approximate discrete-time version of Merton’s (1973) ICAPM.

The pricing implications of the model are based on the first-order condition of an investor

with Epstein and Zin (1989) preferences who holds a portfolio of tradable assets that con-

tains all of her wealth. Campbell assumes that this portfolio is observable in order to derive

testable asset-pricing implications from the first-order condition. Under appropriate as-

sumptions about the parameters of the model, it can be shown that the price of risk for the

discount-rate beta should equal the variance of the market return, while the price of risk for

the cash-flow beta should be γ times greater, where γ is the investor’s coeffi cient of relative

risk aversion. Therefore, the model provides economically motivated restrictions and can be

tested against the standard CAPM.

Three models can be examined: the static CAPM, the ICAPM, and an unrestricted

factor model based on the two betas. Consider the cross-sectional regression

Ri = g0 + g1β̂i,CF + g2β̂i,DR

9Campbell and Vuolteenaho (2004) also allow for a lag in the formulas used to compute the betas to control
for the possibility that not all stocks in the test-asset portfolios were traded frequently and synchronously.
See page 1258 of their paper. In that case, the formulas for the betas become: β̂i,CF =

ĉov(ri,t,NCF,t)
v̂ar(NCF,t−NDR,t)

+
ĉov(ri,t,NCF,t−1)
v̂ar(NCF,t−NDR,t)

and β̂i,DR =
ĉov(ri,t,−NDR,t)
v̂ar(NCF,t−NDR,t)

+
ĉov(ri,t,−NDR,t−1)
v̂ar(NCF,t−NDR,t)

. The results presented in this paper are
very similar across the two specifications. I decided to present results based on a beta without a lag because
these formulas are more common. The results for the alternative specification are available upon request.
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where Ri is the time-series mean for the excess return of asset i. The CAPM model imposes

the coeffi cient restriction g1 = g2, given that the single market beta is obtained summing the

two betas: β̂i,M = β̂i,CF + β̂i,DR. According to the ICAPM, the premia should be: g1 = γσ2
M

and g2 = σ2
M , where σ

2
M is the variance of the unexpected excess returns. Therefore, the

ICAPM restricts the coeffi cient of the discount-rate beta, and it returns an estimate of the

coeffi cient of relative risk aversion γ.10 In the factor model the coeffi cients are not restricted.

The model can be interpreted as a generalization of the ICAPM that allows the rational

investor’s portfolio to include Treasury bills as well as equities.

5.2 News in a Markov-switching framework

In this subsection, I report the formulas for the news when the state variables follow a

MS-VAR as described by (1) and (2):

Zt+1 = cξΦ
t

+ AξΦ
t
Zt + ut+1 (10)

ΦξΦ
t

=
[
cξΦ
t
, AξΦ

t

]
(11)

where ut+1 = Σ
1/2

ξΣ
t+1
ωt+1 and ωt ∼ N(0, I). Suppose that agents know the parameters of the

model and use them to decompose unexpected returns into news. In order to derive the

news in this context, we need to be able to model the revision in expectations implied by

the MS-VAR residuals taking into account the possibility of regime changes.

Define the conditional expectation E0 (Zt) = E (Zt|I0) with I0 being the information set
available at time 0. Notice that the expected value only depends on the realization of the

Markov chain controlling the VAR coeffi cients up to time t, ξΦ
1 ...ξ

Φ
t .
11 Define the nmΦ × 1

column vector qt ≡
[
q1′
t , ..., q

mΦ′
t

]′
where qit = E0

(
Zt1ξΦ

t =i

)
= E

(
Zt1ξΦ

t =i|I0
)
and 1ξΦ

t =i is an

indicator variable that is one when regime i is in place. Note that:

qit = E0

(
Zt1ξt=i

)
= E0 (Zt|ξt = i) πit

where πΦ,i
t = P0

(
ξΦ
t = i

)
= P

(
ξΦ
t = i|I0

)
. Therefore we can obtain the conditional expecta-

10The asset pricing formulas of Campbell (1993) that represent the basis for Campbell and Vuolteenaho
(2004) are derived assuming homoskedasticity. However, when modeling parameter instability it is important
to allow for heteroskedasticity to avoid spurious changes in the VAR coeffi cients. This is why the MS-VAR
was estimated allowing for heteroskedasticity. Given that the focus here is on the changes in dynamics
implied by the Great Depression regime, I regard the idea of extending the analysis to price volatility in the
spirit of Campbell, Giglio, Polk, and Turley (2014) as an interesting direction for future research, but beyond
the scope of this paper. Furthermore, even in Campbell and Vuolteenaho (2004) there is not an immediate
mapping between the volatility of the VAR innovations (based on estimates obtained over the entire sample)
and the variance of the market returns used to price the assets (computed over two distinct subsamples).
11If we were interested in the evolution of the volatilities, we would also have to take into account the

Markov chain controlling the evolution of the covariance matrix ξΣ
t . More details can be found in Bianchi

(2014).
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tion E0 (Zt) as:

E0 (Zt) =
∑m

i=1 q
i
t = wqt

where the matrix w = [In, ..., In] is obtained placing side by side mΦ n-dimensional identity

matrices. This is a convenient result because while the law of motion of Zt is not Markov,

the law of motion of qt is. Following Costa, Fragoso, and Marques (2004),12 Bianchi (2014)

shows that the law of motion of qt is given by:

qt = CπΦ
t + Ωqt−1 (12)

πΦ
t = HΦπΦ

t−1 (13)

with Ω = bdiag (A1, ..., AmΦ)
(
HΦ ⊗ In

)
and C = bdiag (c1, ..., cmΦ) , where ⊗ represents the

Kronecker product and bdiag is a matrix operator that takes a sequence of matrices and uses

them to construct a block diagonal matrix. For the model considered in this paper, Ω and

C are:

Ω =

[
A1h

Φ
11 A1h

Φ
12

A2h
Φ
21 A2h

Φ
22

]
, C =

[
c1 0

0 c2

]
.

Under the assumption of mean square stability, the process for qt converges to finite

values. Then, given a sequence of probabilities πΦ,T or a posterior draw for the regime

sequence ξT , it is straightforward and computationally effi cient to compute the sequences of

discount-rate news and cash-flow news in one step (see Appendix E for a proof):

NT
DR = e′1w

[
λqvq,T + λπvπ,T

]
(14)

NT
CF = e′1w

[
(Ir + λq) vq,T + λπvπ,T

]
(15)

uT = e′1wv
q,T (16)

where λq = (InmΦ − ρΩ)−1 ρΩ, λπ = (InmΦ − ρΩ)−1 ρCH (Ir − ρH)−1 , vqt = qt+1|t+1 − qt+1|t,

and vπt+1 = πΦ
t+1|t+1 − πΦ

t+1|t, where π
Φ
t|t is a column vector whose i-th element coincides with

πΦ,i
t|t = Pt

(
ξΦ
t = i

)
, the probability of being in regime i at time t conditional on the informa-

tion set available at time t. It is worth emphasizing that news now has two components. The

first one is represented by the standard Gaussian innovation, while the second component

derives from the revision in beliefs about the regime that is in place: vπt+1 = πΦ
t+1|t+1−πΦ

t+1|t.

For a given Gaussian innovation, the change in beliefs determines a change in the way the

shocks are mapped into the future. When the two regimes coincide, formulas (14)-(16) col-

lapse to (5)-(7). Therefore, the above formulas can be treated as a generalization of the ones

used in Campbell and Vuolteenaho (2004).

12The results of Costa, Fragoso, and Marques (2004) are derived in the context of the engineering literature
and cannot be directly applied to the MS-VARs generally used in economics because based on models in
which regime changes are known one period in advance.
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For the practical implementation of the formulas presented above, the vector of regime

probabilities and parameters need to be replaced by their corresponding estimates. In the

benchmark results presented below, I use the parameter estimates obtained using the en-

tire sample and the corresponding filtered probabilities. Therefore, following Campbell and

Vuolteenaho (2004) and many other contributions in the literature, I make the implicit as-

sumption that agents in the model have more information than the econometrician. The

econometrician tries to use the entire dataset to learn the parameters governing the econ-

omy and then uses the parameter estimates obtained over the entire sample to infer which

regime agents thought was in place at each point in time. An alternative approach would

be to assume that agents in the economy acts as econometricians and estimate the model

recursively. In this second case, the agents’information set and the econometrician’s infor-

mation set are aligned (up to revision in the data). Results for this second approach are

very similar and are described in Section 6.

It is worth pointing out that the approach described above can model situations in which

not all m regimes are stable. This is because in order to be able to compute the news,

we only need the discounted expectations to be stable. Mean square stability guarantees

stability for first and second moments, i.e., covariance stationarity. Notice that this is in

fact more than what is necessary for two reasons. First, the VAR implementation does

not require the variance to be stable, but only that agents’expectations converge. Second,

even if first moments are not stable, discounted first moments might be. However, it might

be argued that imposing covariance stationarity is still desirable, given that it implies that

agents’uncertainty converges to a finite value no matter the regime that is in place today.

For the estimates considered in this paper, both regimes were determined to be stable.

In conclusion, MS models allow for temporary deviations from the stationarity assump-

tion and are therefore useful when modeling agents’ expectations formation mechanism.

Instead, the assumption of stationarity is assumed to hold at each point in time when com-

puting the news in a fixed coeffi cient framework. At the same time, the series for the news

can still be conveniently derived using analytical expressions for the news. In other words,

numerical integration is not necessary.

5.3 Evolution of the explanatory power of the models

Figure 5 reports the evolution of R2 for the three models over rolling windows of 35 years.13

For example, 1965 corresponds to the sample February 1930-January 1965. The size of

the window is chosen in a way that the initial subsample roughly coincides with the first

subsample used by Campbell and Vuolteenaho (2004). For each subsample, the betas are

13The R2 is computed as 1 − RSS/RSM where RSS is the residual sum of squares and RSM is the
residual sum of squares when only the constant is used as a regressor.
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Figure 5: Explanatory power of the ICAPM over moving windows. The figure reports the explana-
tory power as measured by the R2 of three models: The unrestricted two-factor model, the Intertemporal
CAPM, and the traditional CAPM. The betas and average returns are computed over moving windows of
35 years. The horizontal axis reports the ending date of the rolling window. For example 1965 corresponds
to the sample February 1930-January 1965. The dependent variables are the average returns of the 25
Fama-French portfolios.

computed according to the formulas (8) and (9). The dependent variables are the average

returns of the 25 Fama-French portfolios over the same time period. I drop the extreme

small-growth portfolio that is often found to be an outlier in asset-pricing models.

The explanatory power of all models is very high at the beginning of the sample, and

initially it tends to increase as the window moves to the right. However, past the 1970s the

performance of the CAPM starts to quickly deteriorate, with a very visible drop around 1975.

On the contrary, the performance of the unrestricted two-factor model remains substantially

high, with values often above 80%. However, this model does not impose economically

motivated restrictions on the premia, so it is not surprising that it delivers a higher R2.

The ICAPM does very well until the mid-1980s, even if its performance starts following a

downward trend. By the mid-1990s, the R2 starts fluctuating around 30%, very far from the

60% attained during the first half of the sample. However, as the window approaches the

most recent financial crisis, the explanatory power of the ICAPM increases steeply and the

R2 touches 60%. This is a remarkable improvement in fit given that the last time that the

ICAPM explanatory power crossed the 60% threshold was toward the end of 1978, and it

has not been larger than 50% since the first half of 1985. Finally, it is worth pointing out

that the performance of the CAPM does not show any significant recovery.

These results have some suggestive implications. First of all, they highlight the role

played by the Great Depression and the Great Recession. Once these events are included

in the analysis, the ICAPM performance substantially improves. Furthermore, the fact that

the performance of the ICAPM improves, while the explanatory power of the CAPM remains

unsatisfactory, implies that distinguishing between the two sources of risk is crucial and that

this distinction becomes particularly meaningful in the aftermath of exceptional events.
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Figure 6: Betas and predicted returns. The first and second columns report cash flow betas and
discount rate betas for the 25 Fama-French portfolios. The third column reports the composition of the
market beta, and it is computed as the ratio between the cash-flow beta and the sum of cash-flow and
discount-rate betas. Finally, the fourth column contains the deviations of portfolio returns from the values
predicted by the Intertemporal CAPM. In each row, the solid blue lines refer to the portfolios indicated on
the vertical axis of the first column.

To understand what drives the improvement in fit of the ICAPM, Figure 6 reports betas

and deviations of portfolio returns from their predicted values for the 25 Fama-French port-

folios. The first and second columns report cash-flow betas and discount-rate betas. The

third column reports the composition of the market beta. This is computed as the ratio

between the cash-flow beta and the sum of cash-flow and discount-rate betas. Recall that

the market beta is obtained summing the two betas. Finally, the fourth column contains the

deviations of portfolio returns with respect to the values predicted by the ICAPM. In each

row, the solid blue lines refer to the portfolios indicated on the vertical axis of the figure.

A series of interesting patterns emerge. First, as in Campbell and Vuolteenaho (2004),

over time, the value and small stocks experience a pronounced decline in the market beta

with respect to the other portfolios. However, this decline is mostly driven by a fall in their

discount rate betas, while their cash-flow betas remain on the upper side of the spectrum.

This pattern implies a change in the composition of the market beta that in turn explains the

success of the ICAPM over the CAPM. The ICAPM separates the different sources of risk

associated with the two betas. Second, the most notable deviations of stock market returns

from what is predicted by the ICAPM are caused by two medium/growth portfolios.14 When

analyzing the period antecedent the current crisis and excluding the Great Depression, these

portfolios have stock market returns that are too low with respect to what is predicted by

the ICAPM. While these stocks show a relatively large increase in their discount rate beta

14These two portfolios correspond to the ones with the second and third smallest market value among the
five growth portfolios.
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Sample R2 MPE Risk Aversion
Pre-1964 50.54% 0.7454 4.8965
Post-1964 54.73% 0.5147 30.8862

Whole sample 60.58% 0.4593 11.3846

Table 2: Explanatory power of the ICAPM over different subsamples. The explanatory power of the ICAPM
is assessed over three different samples: Pre-1964, post-1964, and the whole sample. The table reports R2,
mean pricing error, and the estimate for the coeffi cient of relative risk aversion.

and a stable composition for the beta, their average returns do not adequately reflect such

an increase in risk. Finally, this anomaly is largely reduced toward the end of the sample,

and at the same time, the returns of the small and value portfolios also move closer to their

predicted returns.

From these results, we can infer that in order to adequately price the cross section of asset

returns it is important to be able to observe the behavior of the assets during exceptional

events such as the Great Recession. The relative performance of the different portfolios

change substantially during these events. It is also important to emphasize that this is

not the result of drastic changes in the betas. Even if we observe a partial increase in the

cash-flow betas during the late years, the relative ranking of the portfolios with respect to

the betas appears quite stable. It is therefore the change in the relative performance of the

different portfolios during a time of distress that is largely responsible for the improvement

in fit. In order to formalize this point, I regressed the average returns over the last window

of time (June 1974-May 2009) on the betas computed using the window of time right before

Bear Stearns received a loan from the Federal Reserve Bank of New York (April 1975-March

2008). The resulting R2 is still high, 53.28%, even if lower than the value obtained aligning

betas and average returns.

Summarizing, the analysis of the cross section of asset returns confirms the presence of

similarities between the Great Depression and the Great Recession. The latter turned out to

be, at least to date, a much less dramatic event. Nevertheless, it seems that both events are

key to understanding the cross section of asset returns. To further corroborate this result,

Table 2 breaks the sample into two parts, pre and post 1964. Notice that the R2 is similar

across the two subsamples and is quite high. Similarly, the R2 computed over the whole

sample is also very high. Therefore, the results suggest that as long as exceptional events

are properly taken into account the ICAPM is able to correctly price the cross section of

asset returns. Over the first subsample, the Great Depression plays a key role. Over the

second subsample the Great Recession is enough to account for the behavior of the assets

during rare events.

There are several possible explanations for why value stocks might perform worse during

financial crises. Zhang (2005) argues that the value premium arises naturally in a neoclassi-

cal model because of costly reversibility and countercyclical price of risk. During bad times

27



firms would find it optimal to disinvest, implying that assets in place are riskier than growth

options. It seems reasonable that this distinction becomes particularly relevant during finan-

cial crises. Furthermore, almost by definition, value stocks include firms that markets believe

might have less prospects of growth in the future. While this is not necessarily a problem

during regular times, it can become a serious issue when credit availability is limited, real

activity is low, and the price of risk is high. Similarly, Campbell and Vuolteenaho (2004)

suggest that during the Great Depression and in its aftermath, value stocks might include a

significant fraction of fallen angels that accumulated large amounts of debt during the crisis

and were therefore inherently riskier.

5.4 Rare events and agents’expectations

In the previous subsection, I have analyzed in depth the role played by the Great Depression

and the Great Recession in explaining the cross section of asset returns. A central result

was that during the Great Recession, the fit of the ICAPM improved dramatically and went

back to levels in line with the first half of the sample, suggesting that the presence of a rare

event in the dataset is key to correctly pricing assets.

However, in the benchmark model, rare events also play another key role: they shape

agents’expectations. This is because agents are assumed to be fully rational, and to take

into account the possibility of regime changes when forming expectations. It is therefore in-

teresting to ask what role this channel plays. In order to address this question, I reconsider

the evolution of the explanatory power of the ICAPM under two different assumptions about

the way agents form expectations. Under the benchmark model, agents take into account

the possibility of regime changes. This corresponds to the case analyzed in the previous

subsection. In the second case, agents form expectations according to the anticipated utility

assumption. This implies that the probability assigned to the two regimes are not moving

over time. Under this assumption, the series for the news are computed by replacing the

estimated transition matrix HΦ with the identity matrix in the formulas presented in Sub-

section 5.2. In other words, agents’beliefs are not evolving over time, but they are fixed to

the filtered probabilities. Notice that a solution for the news still exists because the system

turns to be mean square stable even under the anticipated utility assumption.

Figure 7 presents the results. The blue solid line corresponds to the benchmark case, while

the black dashed line reports the results for the case of anticipated utility. It is interesting

to note that the two lines align very closely over the early subsamples, but around the mid-

1970s, they depart, and since then, the benchmark model always outperforms the alternative

specification. It is worth recalling that over the very same months the CAPM also had a

drastic decline in the fit (see Figure 5). In other words, exactly when the distinction between

the CAPM and the ICAPM becomes more meaningful, we observe a discrete drop in the fit
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Figure 7: The role of agents’beliefs. The figure reports the explanatory power as measured by the R2

for the ICAPM under two different assumptions about the way agents form expectations. The blue solid line
corresponds to the benchmark case in which agents take into account the possibility of regime changes, while
the black dashed line corresponds to the case in which agents form expectations according to the anticipated
utility assumption. In this second case, the probability assigned to the two regimes are not moving over time.
The betas and average returns are computed over moving windows of 35 years. The horizontal axis reports
the ending date of the rolling window. For example, 1965 corresponds to the sample February 1930-January
1965. The dependent variables are the average returns of the 25 Fama-French portfolios.

of the ICAPM under the assumption of anticipated utility.15 Finally, it is worth pointing

out that the anticipated utility assumption becomes relatively more innocuous toward the

end of the sample. This seems sensible given that this is the period of time during which

the dynamics resembling the Great Depression present themselves. However, the gap in the

explanatory power is still approximately 15%.

In summary, the Great Depression regime also plays a key role in accounting for the

cross section of asset returns during regular times because it shapes the way agents form

expectations. In fact, during regular times, it becomes particularly important to take into

account the possibility of regime changes because no exceptional events are present over the

sample. This is not enough to completely compensate for the lack of information, but it still

determines an improvement in the fit of the ICAPM. In other words, it seems that the Great

Depression played a key role in shaping agents’expectations about the behavior of financial

variables during rare events.

6 Recursive Estimates

In the benchmark results presented above, I have used filtered probabilities to pin down

agents’beliefs about entering the Great Depression regime and to compute the news. These

15Recall that the R2 is computed as 1−RSS/RSM where RSS is the residual sum of squares and RSM
is the residual sum of squares when only the constant is used as a regressor. The ICAPM restricts the price
of risk for the discount-rate beta to be equal to the variance of the market return. Therefore the R2 can
become negative. This is what happens over certain windows of time for the ICAPM when imposing the
anticipated utility assumption.
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Figure 8: Real time probabilities. The figure reports the probabilities for the 1930 regime, the High
volatility regime, and the Term yield volatility regime computed in real time starting with an initial sample
spanning the period from December 1928 to January 1965. Then a month is added, the model is re-estimated,
and the regime probabilities for that month are stored.

probabilities would represent the real time probabilities for an agent that has knowledge of

all parameters of the model, but not of the regime in place. The choice of endowing the agent

with the best possible estimates for the model parameters is consistent with the idea that

in reality, agents have more information than the econometrician. Therefore, in using the

whole sample, the econometrician is trying to obtain the most accurate estimates of what

agents in fact know. It goes without saying that using the whole sample also improves the

precision of the estimates.

An alternative approach would consist of assuming that the agents act as econometricians

themselves, recursively estimating the MS-VAR as more data become available. I then

conduct the following exercise. First, the MS-VAR is estimated over the sample December

1928-January 1965. The corresponding filtered probabilities and parameter estimates are

used to compute the news over this initial subsample. Then a month at a time is added,

with the result that the subsample keeps expanding until the whole sample is covered. For

each of the expanded subsamples, the model is re-estimated, the last value for the regime

probabilities and the corresponding parameter estimates are saved, and the news for this

additional observation are computed and stored to reflect the updated estimates.16

Figure 8 reports the regime probabilities computed in real time for the Great Depression

regime, the High volatility regime, and the Term Yield volatility regime. Even in this case, to

facilitate the interpretation of the results, the periods corresponding to the Great Depression,

the IT bubble, and the Great Recession are enlarged. Note that the results are similar to

16Accordingly, the priors are always set by only using the data available at each point in time.
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Sample R2 MPE Risk Aversion
Pre-1964 49.67% 0.7585 3.7665
Post-1964 45.24% 0.6226 14.1706

Whole sample 69.13% 0.3598 9.1992

Table 3: Explanatory power of the ICAPM over different subsamples based on news computed in real time.
The explanatory power of the ICAPM is assessed over three different samples: Pre-1964, post-1964, and the
whole sample. The table reports R2, mean pricing error, and the estimate for the coeffi cient of relative risk
aversion. The news are computed by using recursive estimates of the MS-VAR.

what is obtained when using the whole sample. In fact, the spike in the probability of the

Great Depression regime at the beginning of 2009 is now even larger. In February 2009, the

probability of the Great Depression regime computed in real time was 81.03%. This result

reinforces the case in favor of the idea that agents might have feared a return to the Great

Depression.

With respect to the filtered probabilities obtained using the whole sample, the only

noticeable difference consists of an increase in the probability of the Great Depression regime

in September 1974. When using the whole sample, the probability of the Great Depression

regime during this month is 17.91%, while when using the recursive estimates this probability

increases to reach 46.73%. Even in this case, the results can be rationalized in light of

historical events. This is a period of time characterized by substantial uncertainty, induced

by the end of the first oil shock, the resignation of President Nixon in August 1974 following

the Watergate scandal, and the terrorist attack on the TWA Flight 841 from Tel Aviv to

New York City after an intermediate stop in Athens.

Table 3 reports the results for the explanatory power of the ICAPM using the news

computed in real time. Notice that the R2 is still very large on both subsamples, even if

somewhat lower than when computing the news using all the available information. However,

the performance of the model over the whole sample is improved, with an R2 close to 70%.

7 Conclusions

Using an MS-VAR, I have uncovered some key features that connect the behavior of the stock

market during the Great Recession to the events that led to the Great Depression. I have

identified a Great Depression regime and shown that its probability has been close to zero

until the most recent recession. In February 2009, the probability of the Great Depression

regime spiked to cross 50%, and it was larger than 80% when using real time estimates. Dur-

ing the early months of both the Great Depression and the Great Recession, the Value spread

was increasing while the stock market was falling. However, during the Great Recession, this

pattern eventually reverted, and the probability of the Great Depression regime experienced

a sharp drop, arguably in response to robust government interventions, signaling that the
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U.S. was in fact able to avoid a financial meltdown. Furthermore, a High volatility regime

featuring a negative correlation between stock market returns and Value-spread innovations

characterized both events.

Given that the Value spread measures the relative performance of small-growth stocks

with respect to small-value stocks, the behavior of this variable during the Great Depression

and the Great Recession suggest the idea that financial crises might have asymmetric effects

on growth and value stocks. I formalized this idea by showing that the explanatory power of

the Bad Beta, Good Beta ICAPM proposed by Campbell and Vuolteenaho (2004) improves

significantly when the Great Recession is included in the analysis. This is because, condi-

tional on the model, growth stocks performed relatively better during the Great Recession,

justifying their lower returns before the Great Recession.

Finally, the explanatory power of the ICAPM is largely improved if agents form expec-

tations taking into account the possibility of these events, even when the Great Recession

and the Great Depression are not included in the cross-sectional regressions. Therefore, rare

events also play a key role in shaping the expectations of fully rational agents. In light of

their unusual statistical properties, rare events are indeed exceptional. Variables that tend

to move in an apparently disconnected way suddenly reveal features that cannot be identified

during regular times, when noise often dominates other sources of variation. This implies

that while it is certainly important to study rare-event betas, regular-time betas can still

be informative if rare events also have an impact on the way agents think about financial

markets.
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A Priors

Table 4 describes the priors used for the estimation of the MS-VAR. The priors are very

loose and symmetric across regimes. Below, I describe more in detail how they have been

obtained. The assumption of covariance stationarity implies a truncation of the priors as

described in the table. The truncated prior is implemented by dropping the draws that imply

non-stationarity. However, in the estimates the constraint implied by the truncation of the

priors is rarely binding.

The priors for the VAR coeffi cients and the covariance matrix are symmetric across

regimes and are obtained running univariate autoregressions for each endogenous variable:

yi,t = aiyi,t−1 + vtσi

The prior for the VAR coeffi cients is:

B = vec
(

ΦξΦ
t

)
∼ norm

(
B0, S0 ⊗N−1

0 )
)

The autoregressive elements of B0 are equal to the AR(1) coeffi cients, while all the other

elements are set to zero. As in Sims and Zha (1998), the variance of the prior distribution is

specified by a number of hyperparameters that pin down N0. The choice of hyperparameters

implies a fairly loose prior for the VAR coeffi cients. Let λ be a (5× 1) vector containing the

hyperparameters. The diagonal elements of N−1
0 corresponding to autoregressive coeffi cients

are given as
(
λ0λ1

σilλ3

)2

where σj denotes the variance of the error from the AR regression

for the jth variable and l = 1...L denotes the lags in the VAR (L = 1 in the models

considered in this paper). The intercept terms in N−1
0 are controlled by the term (λ0λ4)2.

The choice for the hyperparameters are λ0 = 1, λ1 = 1, λ2 = 1, λ3 = 0.5 and λ4 = 1

and S0 = V0diag ({σ2
i }i=1...n) , with V0 = 9. The priors for the covariance matrices are

symmetric across regimes and described by an inverse Wishart distribution with mean S0 =

V0diag ({σ2
i }i=1...n) , with V0 = 9: ΣξΣ

t
∼ IW (S0, V0).

Each column of HΦ and HΣ is modeled according to a Dirichlet distribution whose

properties are described in Table 4: Hs(·, i) ∼ D(asii, a
s
ij), s = Φ,Σ. I choose aΣ

ii = 10,

aΣ
ij = 2, aΦ

ii = 80, aΦ
ij = 2. Note that the priors for the transition matrices are symmetric

across regimes. I also estimated looser priors for the transition matrices and obtained very

similar results.

36



ξΦ
t = 1, 2 ERt TYt PEt V St const

ERt+1 0.1236
(−0.0857,0.3316)

0
(−0.0216,0.0216)

0
(−0.1357,0.1357)

0
(−0.1552,0.1552)

0.0049
(−0.0331,0.0429)

TYt+1 0
(−1.3427,1.3427)

0.9472
(0.8084,1.0866)

0
(−0.8765,0.8765)

0
(−1.0012,1.0012)

0.0823
(−0.1620,0.3265)

PEt+1 0
(−0.2140,0.2140)

0
(−0.0221,0.0221)

0.9888
(0.8497,1.1282)

0
(−0.1593,0.1593)

0.0324
(−0.0066,0.0712)

V St+1 0
(−0.1868,0.1868)

0
(−0.0195,0.0195)

0
(−0.1218,0.1218)

0.9909
(0.8514,1.1303)

0.0147
(−0.0193,0.0488)

ξΣ
t = 1, 2, 3 uER uTY uPE uV S

uER 0.0546
(0.0797,0.1981)

0
(−0.0610,0.0610)

0
(−0.0097,0.0097)

0
(−0.0085,0.0085)

uTY 0
(−0.5660,0.5660)

0.3515
(0.5124,1.2733)

0
(−0.0624,0.0624)

0
(−0.0545,0.0545)

uPE 0
(−0.5660,0.5660)

0
(−0.5660,0.5600)

0.0559
(0.0814,0.2024)

0
(−0.0086,0.0086)

uV S 0
(−0.5660,0.5660)

0
(−0.5660,0.5660)

0
(−0.5660,0.5660)

0.0489
(0.0714,0.1773)

HΦ ξΦ
t = 1 ξΦ

t = 2

ξΦ
t+1 = 1 0.9875

(0.9599,0.9912)
0.0125

(0.0088,0.0401)

ξΦ
t+1 = 2 0.0125

(0.0088,0.0401)
0.9875

(0.9599,0.9912)

HΣ ξΣ
t = 1 ξΣ

t = 2 ξΣ
t = 3

ξΣ
t+1 = 1 0.8182

(0.5954,0.8327)
0.0909

(0.0553,0.2315)
0.0909

(0.0553,0.2315)

ξΣ
t+1 = 2 0.0909

(0.0553,0.2315)
0.8182

(0.5952,0.8324)
0.0909

(0.0553,0.2315)

ξΣ
t+1 = 3 0.0909

(0.0553,0.2315)
0.0909

(0.0553,0.2315)
0.8182

(0.5955,0.8324)

Table 4: Priors for the parameters. The three sets of tables contain modes and 68% error bands for the priors
of the parameters of the Markov-switching VAR. The priors are obtained running univariate autoregressions
for each of the variables in the model, and they are symmetric across regimes.

B Likelihood and regime probabilities

Define the combined regime ξt ≡
(
ξΦ
t , ξ

Σ
t

)
, the associated transition matrix H ≡ HΦ ⊗HΣ,

and vector θξt ≡
(

ΦξΦ
t
,ΣξΣ

t

)
with the corresponding set of parameters. For each draw of the

parameters θξt and H, we can then compute the filtered probabilities πt|t, or smoothed prob-

abilities πt|T , of the regimes conditional on the model parameters. The filtered probabilities

reflect the probability of a regime conditional on the data up to time t, πt|t = p(ξt|Y t;H, θξt),

for t = 1, ..., T , and are part of the output obtained computing the likelihood function asso-

ciated with the parameter draw H, θξt . The filtered probabilities can be obtained using the

following recursive algorithm:

πt|t =
πt|t−1 � ηt

1′
(
πt|t−1 � ηt

) (17)

πt+1|t = Hπt|t (18)

p(Zt|Zt−1) = 1′
(
πt|t−1 � ηt

)
(19)

where ηt is a vector whose jth element contains the conditional density p(Zt|ξt = i, Zt−1;H, θξt),

the symbol � denotes element by element multiplication, and 1 is a vector with all elements
equal to 1. To initialize the recursive calculation, we need an assumption on the distribution

of ξ0. We assume that the six regimes have equal probabilities p(ξ0 = i) = 1/6 for i = 1...m.
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The likelihood for the entire data sequence ZT is obtained multiplying the one-step-ahead

conditional likelihoods p(Zt|Zt−1):

p
(
ZT |θ

)
=
∏T

t=1 p
(
Zt|Zt−1

)
The smoothed probabilities reflect all the information that can be extracted from the

whole data sample, πt|T = p(ξt|ZT ;H, θξt). The final term πT |T is returned with the final

step of the filtering algorithm. Then a recursive algorithm can be implemented to derive the

other probabilities:

πt|T = πt|t �
[
H ′
(
πt+1|T (÷)πt+1|t

)]
where (÷) denotes element by element division.

Finally, it is possible to obtain the filtered and smoothed probabilities for each of the two

independent chains by integrating out the other chain. For example, if we are interested in

πΦ
t|t = p(ξΦ

t |Y t;H, θξt) we have:

πΦ,i
t|t = p(ξΦ

t = i|Y t;H, θξt) =
∑m

j=1 p(ξt = {i, j}|Y t;H, θξt)

Similarly, the smoothed probabilities are obtained as:

πΦ,i
t|T = p(ξΦ

t = i|Y T ;H, θξt) =
∑m

j=1 p(ξt = {i, j}|Y T ;H, θξt).

C Gibbs sampling algorithm

Both the VAR coeffi cients and the covariance matrix can switch and the regimes are assumed

to be independent. Draws for the parameters of the model can be made following the

following Gibbs sampling algorithm:

1. Sampling ξΦ
t and ξ

Σ
t given ΦξΦ

t
,ΣξΣ

t
, HΦ, HΣ: Following Kim and Nelson (1999b) I use

a Multi-Move Gibbs sampling to draw ξΦ
t from f(ξΦ

t |ZT ,ΦξΦ
t
,ΣξΣ

t
, HΦ, HΣ, ξΣ

t ) and ξΣ
t

from f(ξΣ
t |ZT ,ΦξΦ

t
,ΣξΣ

t
, HΦ, HΣ, ξΦ

t ).

2. Sampling ΣξΣ
t
given ΦξΦ

t
, ξΦ
t , ξ

Σ
t : Given ΦξΦ

t
and ξΦ,T , we can compute the residuals of

the MS-VAR at each point in time. Then, given ξΣ
t , we can group all the residuals that

pertain to a particular regime. Therefore, ΣξΣ
t
can be drawn from an inverse Wishart

distribution for ξΣ
t = 1...mΣ.

3. Sampling ΦξΦ
t
given ΣξΣ

t
, ξΦ
t , ξ

Σ
t : When drawing the VAR coeffi cients, we need to take

into account the heteroskedasticity implied by the switches in ΣξΣ
t
. This can be done

following the following steps for each i = 1...mΦ:
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(a) Based on ξΦ,T , collect all the observation such that ξΦ
t = i.

(b) Divide the data that refer to ξΦ
t = i based on ξΣ,T .We now have a series of subsam-

ples for which VAR coeffi cients are covariance matrices are fixed:
(
ξΦ
t = i, ξΣ

t = 1
)
,

...,
(
ξΦ
t = i, ξΣ

t = mΣ
)
. Denote these subsamples with

(
yi,ξΣ

t
, xi,ξΣ

t

)
where the

yi,ξΣ
t
and xi,ξΣ

t
denote left-hand-side and right-hand-side variables in the MS-VAR.

Notice that some of these subsamples might be empty.

(c) Apply recursively the formulas for the posterior of VAR coeffi cients conditional

on a known covariance matrix. Therefore, for j = 1...mΣ the following formulas

need to be applied recursively:

P−1
T = P−1

L + Σ−1
ξΣ
t
⊗ (x′

i,ξΣ
t
xi,ξΣ

t
)

BT = BL + (Σ−1
ξΣ
t
⊗ x′

i,ξΣ
t
)vec(yi,ξΣ

t
)

P−1
L = P−1

T , BL = BT

where the algorithm is initialized using the priors for the VAR coeffi cientsBL = B0

and P−1
L = P−1

0 =
(
S0 ⊗N−1

0

)−1
. Notice that this implies that if there are not

any observations for a particular regime, then the posterior will coincide with the

priors. With proper priors, this is not a problem.

(d) Make a draw for the VAR coeffi cients vec
(

ΦξΦ
t

)
∼ N (PTBT , PT ) with ξΦ

t = i.

4. Sampling HΦ and HΣ: Given the draws for the state variables ξΦ,T and ξΣ,T , the

transition probabilities are independent of Yt and the other parameters of the model

and have a Dirichlet distribution. For each column of HΦ and HΣ, the posterior

distribution is given by:

Hs(:, i) ∼ D(asii + ηsii, a
s
ij + ηsij), s = Φ,Σ

where ηΦ
ij and η

Σ
ij denote respectively the numbers of transitions from state iΦ to state

jΦ and from state iΣ to state jΣ.

D Properties of the regimes

Figure 9 reports the distribution for the difference between the parameter of the VAR co-

effi cients. Figure 10 reports the distribution for the difference between the elements of the

covariance matrix under the Term Yield volatility regime and the Low volatility regime. Fi-

nally, Figure 11 reports the difference between the elements of the covariance matrix under

the Term Yield volatility regime and the High volatility regime. These are computed taking
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Figure 9: The figure contains histograms and 68% error bands for the pairwise differences of the VAR
coeffi cients across the two regimes. This can be regarded as a "test" for the null hypothesis that the two
parameters are the same across the two regimes.
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Figure 10: The figure contains histograms and 68% error bands for the pairwise differences of the covariance
matrix under the Term Yield Volatility regime and the Low volatility regime. This can be regarded as a
"test" for the null hypothesis that the two parameters are the same across the two regimes.
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Figure 11: The figure contains histograms and 68% error bands for the pairwise differences of the covariance
matrix under the Term Yield Volatility regime and the High volatility regime. This can be regarded as a
"test" for the null hypothesis that the two parameters are the same across the two regimes.
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the difference between the corresponding parameters for each draw from the Gibbs sampling

algorithm.

E Cash-flow and discount rate news with regime changes

Consider an MS-VAR:

Zt = cξt + AξtZt−1 +RξtΣξtεt

where Zt is a column vector containing n variables observable at time t and ξt = 1, ...,m,

with m the number of regimes, evolves following the transition matrix H.

Define the column vectors qt and πt:

qt =
[
q1′

t , ..., q
m′
t

]′
, qit = E0

(
Zt1ξt=i

)
, πt =

[
π1
t , ..., π

m
t

]′
,

where πit = P0 (ξt = i) and 1ξt=i is an indicator variable that is equal to 1 when regime i is

in place and zero otherwise. The law of motion for q̃t = [q′t, π
′
t]
′ is then given by[

qt

πt

]
︸ ︷︷ ︸

q̃t

=

[
Ω CH

H

]
︸ ︷︷ ︸

Ω̃

[
qt−1

πt−1

]
(20)

where πt = [π1,t, ..., πm,t]
′ , Ω = bdiag (A1, ..., Am)H, and C = bdiag (c1, ..., cm). Recall that:

E0 (Zt) =
m∑
i=1

qit = wqt, w =

In, ..., In︸ ︷︷ ︸
m


To compute the news, define:

qit+s|t = Et
(
Zt+s1ξt+s=i

)
= E

(
Zt+s1ξt+s=i|It

)
e′1 = [1, 0, 0, 0]′, mn = m ∗ n

where It contains all the information that agents have at time t, including the probability of
being in one of the m regimes. Note that qit|t = Ztπ

i
t.

Now consider the formula for the discount rate news:

NDR,t+1 = (Et+1 − Et)
∑∞

j=1 ρ
jrt+1+j
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The first term is:

Et+1

∑∞
j=1 ρ

jrt+1+j =
∑∞

j=1 ρ
je′1wqt+1+j|t+1

= e′1w
[
ρqt+2|t+1 + ρ2qt+3|t+1 + ρ3qt+4|t+1 + ....

]
= e′1w (Ir − ρΩ)−1 [ρΩqt+1|t+1 + ρCH (Ir − ρH)−1 πt+1|t+1

]
The second term is:

Et
∑∞

j=1 ρ
jrt+1+j =

∑∞
j=1 ρ

je′1wqt+1+j|t

= e′1w (Ir − ρΩ)−1 [ρΩqt+1|t + ρCH (Ir − ρH)−1 πt+1|t
]

Therefore:

NDR,t+1 = e′1w
[
λqvqt+1 + λπvπt+1

]
λq = (Ir − ρΩ)−1 ρΩ

λπ = (Ir − ρΩ)−1 ρCH (Ir − ρH)−1

Then, we can easily compute the residuals:

ut+1 = Zt+1 − EtZt+1

e′1ut+1 = rt+1 − Et (rt+1)

and the news about future cash flows can be obtained as:

NCF,t+1 = e′1ut+1 +NDR,t+1

Note that given a sequence of probabilities or a draw for the MS states and a set of parame-

ters, it is easy and computationally effi cient to compute the entire sequences vq,T , vπ,T , and

uT :

NT
DR = e′1w

[
λqvq,T + λπvπ,T

]
NT
CF = e′1w

[
(Ir + λq) vq,T + λπvπ,T

]
uT = e′1wv

q,T
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