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1 Introduction

Physical proximity to other creative people is often a key factor in invention. It enables inventors to

adopt the best new ideas faster in their own work. In larger cities, the costs of encountering new ideas are

lower and inventions ‘have their merits promptly discussed’ (Marshall, 1920). The debate on new ideas

is important because ideas are initially raw and poorly understood. Thus, every idea, if it is to develop

from a germ into a substantial innovation, needs to be tried out and discussed by many people including

those not responsible for originating the idea (Marshall, 1920; Usher, 1929; Kuhn, 1962).

On the other hand, modern communication technologies may have undermined or even eliminated

any advantage that physical proximity to others may once have provided in terms of adopting new ideas.

Marshall (1920) himself explored the implications of such ‘cheapening of the means of communica-

tion,’ and raised the possibility that location might play only a minor role in knowledge production as

knowledge would ‘depend chiefly on the aggregate volume of production in the whole civilized world.’

Alternatively, there are advantages to face-to-face communication even in an internet-connected world,

especially in the sharing of tacit knowledge (von Hippel, 1994).

It is also possible that agglomeration actually hinders the adoption of new ideas. For instance, sup-

pose that the presence of large incumbent firms leads to the development of large cities. In that case,

inventors in big cities will have strength in incumbent technologies and may be tilted against adopting

new ideas that might lead to radical inventions and devalue existing competencies (Brezis and Krugman,

1997).

From a theoretical perspective, agglomeration may thus have a positive, a negative, or no impact at

all on the adoption of new ideas as inputs to the inventive process. In this paper, our main purpose is

to measure how the tendency to adopt new ideas as inputs in invention varies by the size of the city of

invention.

Uncovering the sign and magnitude of the relationship between new knowledge adoption and ag-

glomeration is important for allocating private and public research and development funds efficiently.

This relationship is especially important given that the extent and share of population located in metropoli-
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tan areas continues to increase (Duranton and Puga, 2013). If we find that inventors in large cities build

on fresh ideas more often than inventors in smaller cities, the evidence would quantify a specific benefit

to locating inventive activities in large cities. On the other hand, if we find that inventors in large cities

are no more likely to try out new ideas in their work than inventors in smaller cities, the evidence would

suggest that location may be largely irrelevant for inventive performance.

Our approach to examining the agglomeration–invention link is novel. The existing approaches (Jaffe

et al., 1993; Thompson and Fox-Kean, 2005; Thompson, 2006; Murata et al., 2013) examine how adop-

tion of new ideas in invention varies by distance to the origin of the idea (“localization around the

origin”). Our approach is distinct as we instead examine how adoption of any new ideas in invention

varies by city size. We adopt this approach for several reasons.

First, a focus on localization around the origin would limit the analysis mainly to only one type of

potential benefit from agglomeration — the benefit of becoming aware of inventions developed nearby.

Our approach captures also the benefit that agglomeration may have on idea adoption through its impact

on inventors’ ability to debate the merits of new ideas. To us it seems – and the reader can readily

judge based on personal experience – that in creative work this latter channel (debating merits of a

discovery) is at least as important a benefit of human interaction as the former channel (becoming aware

of a discovery). Moreover, this benefit of agglomeration may continue to be present even if awareness

of the existence of each new idea is practically instantaneous throughout the world, as may well be the

case today.

A second advantage to our approach is that it reveals whether it is smaller or larger cities that tend

to adopt new ideas faster. This represents a more direct measure of whether agglomeration benefits

invention, the hypothesis put forth in Marshall (1920). Our approach retains this advantage even over an

approach that focuses on localization in general rather than just localization around the origin.

A third advantage of our approach is that in a localization based approach, no matter how finely re-

search areas are defined, any evidence for localization can reflect either genuine locational advantages

or mere differences in research approaches pursued (Thompson and Fox-Kean, 2005; Henderson et al.,
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2005). Our approach, by contrast, is not subject to this limitation. Even if research approaches are differ-

ent in larger and smaller cities within the same research area (no matter how finely defined), evidence on

which cities employ newer idea inputs in invention still speaks to the question of which cities are closer

to the technological frontier.

2 Approach

Our aim is to uncover the empirical relationship between agglomeration and use of new ideas in inven-

tion. We measure invention from US patents granted during 1836–2010. Below, we explain how we

identify idea inputs upon which each patent is built and how we calculate the age of those idea inputs.

We also explain how we link the patent-level observations on the age of idea inputs with the size of the

city where the patent originated. We measure city size by population density. Density should capture the

scope for frequent interactions with others better than other city size measures, though we also perform

a robustness check in which city size is measured by total population.

2.1 Measuring Idea Inputs and the Use of Recent Ideas

We capture idea inputs in invention from patents’ textual content. First, we index all words and 2- and

3-word sequences in each patent. We refer to these words and word sequences as concepts. For each

concept we then determine the year it first appeared in the patent database. We refer to that year as the

cohort year of a concept. The age of concept is defined as the number of years elapsed since the cohort

year of the concept.1

This textual approach organically captures ideas that are well-known to have been important inputs

to invention (e.g. microprocessor, polymerase chain reaction), as we have shown in our prior work

(Packalen and Bhattacharya, 2012). Accordingly, we interchangeably refer to the concepts mentioned

1Because of optical character recognition (OCR) errors, some concepts appear in the data before they actually appear in
patents. To address this issue, we exclude early mentions of any concept that is mentioned less than 5 times in the 10 years
that follow the concept’s first mention. For such concepts the cohort is re-assigned as the first year such that (1) the concept
was mentioned that year and (2) the concept was mentioned at least 5 times in the subsequent 10 years.
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in each patent as idea inputs to the invention. We manually cull through the initial concept lists to

exclude concepts that likely do not represent an idea input. The lists of popular idea inputs that are

uncovered by our approach, as well as the list of manually excluded concepts, are included in Packalen

and Bhattacharya (2015b). Throughout the 20th century, these lists are dominated by ideas that any

reader can recognize as having been important building blocks in technological innovation.2

For each patent, we calculate a summary measure Age of Idea Inputs, defined as the age of the newest

idea input mentioned in it. This measure captures the vintage of idea inputs for each invention. A lower

value for the measure indicates that the invention built on newer ideas; the converse indicates a reliance

on well-established ideas.

Because the hypotheses about the agglomeration–invention link concern adoption of the newest ideas,

we employ as the dependent variable an indicator measure that captures whether idea inputs for a patent

are among the top 5% newest based on the Age of Idea Inputs measure. This dummy variable, Top 5%

by Age of Idea Inputs, is constructed based on comparisons of patents granted in the same year in the

same 3-digit technology class.3 In robustness checks, we define a similar variables using a narrower

comparison group and a different percentile cutoff.

In our main analyses, we consider only mentions of the 100 most popular idea inputs in each cohort,

with popularity defined as the total number of patents that mention the idea. These analyses reveal

whether there are differences by degree of agglomeration in terms of using the best new knowledge. In

robustness checks, we extend the analysis to the top 10,000 ideas in each cohort, revealing whether any

differences extend also to the use of new ideas more generally.

The closest related literature (Jaffe et al. 1993; Thompson and Fox-Kean, 2005; Thompson, 2006;

Murata et al., 2013) has relied on citations to capture idea inputs. Instead, we rely on the textual content

of patents. We do this for several reasons: (1) citations can give rise to spurious geographic patterns

(Thompson, 2006), (2) at least half of all citations are unrelated with any concept of information flow

2The approach, of course, does not capture idea inputs that are typically expressed as combinations of non-consecutive
words (e.g. silicon and transistor, ulcer and bacteria). Analysis of such ideas is beyond the scope of the present paper.

3We previously employed such a variable in Packalen and Bhattacharya (2015a).
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(Jaffe et al., 2000), and (3) citations capture only a very narrow set of idea inputs (Rosenberg, 1982).

Spurious geographic patterns in citations arise when knowledge about ideas and associated patents

travels by word-of-mouth. The more important part of this knowledge – the idea – tends to travel further

than the information about who thought of the idea. A geographic difference in tendency to cite a given

patent may then arise not just due to differences in the tendency to apply the idea but also because of

differences in the tendency to know to whom to attribute the idea. While people do of course sometimes

refer to the same idea by different names, it seems to us that there is much less room for similar artificial

geographic patterns to arise when idea inputs are captured from text.

The other limitations of using citations to capture idea inputs arise because citations have no require-

ment to list even all patented technologies that the invention built upon. Rather, the purpose of citations

is to delineate the boundaries of the patent (Jaffe et al., 1993). As a result, many research inputs (e.g.

database, microprocessor) either cannot be identified from citations at all or can be identified from text

much more reliably. That the majority of patent citations do not reflect any form of knowledge flow

(Jaffe et al., 2000) is another consequence of the delineation aspect of patent citations. Unfortunately,

it is unknown which citations reflect inputs and which do not. When even researchers who have relied

on citations extensively consider the cup only ‘half-full’ when it comes to using citations as measures

of knowledge inputs (Jaffe et al., 2000), it seems worthwhile to pursue alternative approaches that might

turn out to be either better than citations or at least capture some of what is missing from the metaphorical

cup.

2.2 Estimation of the Link between Agglomeration and Use of New Ideas

We estimate the empirical relationship between the degree of agglomeration and the tendency to use

new ideas in invention. As discussed above, our preferred measure of the recency of idea inputs is the

constructed patent-level dummy variable Top 5% by Age of Idea Inputs, and our preferred measure of

city size is population density. We use the linear probability model and the corresponding conditional

logit model to estimate the relationship between these variables. In the appendix, we provide also a
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non-parametric analysis. The linear probability model that we estimate is

Top 5% by Age of Idea Inputscity,year,i = β×log(Population Densitycity,year)+αyear,tech class+εcity,year,i. (1)

The subscript i differentiates patents granted in the same city in the same year. The triplet city,year,i

thus uniquely identifies each patent and links each patent to the city and year in which the patent was

granted. We estimate this specification separately for each decade. A separate fixed effect αyear,tech class is

included for each year and technology class pair. Each patent is thus compared only to patents granted

in the same technology class in the same year.

An upward-sloping relationship is the predicted empirical link when agglomeration increases use of

new ideas. A flat relationship is the predicted empirical link when advances in communication technolo-

gies have rendered distance irrelevant. A downward-sloping relationship is the predicted empirical link

when incumbents shy away from experimenting with new ideas. Because we estimate specification (1)

separately for each decade, we uncover how the agglomeration–use of new ideas link has evolved over

time. We estimate specification (1) also using an instrumental variables approach in which we instrument

current population density with measures of population density from 50 years prior.4

An increasing number of patents list multiple inventors (e.g. Jones, 2010). In our baseline approach

we assign invention location based on the first inventor, but we also examine the agglomeration–use of

new ideas link in specifications that control for lone vs. team inventor status.

3 Data

We analyze US patents granted during 1836–2010. For 1976–2010, patent documents are available

as ASCII data, whereas for 1836–1975 patents are available as scanned images. To obtain the older

patents’ textual content, we applied optical character recognition (“OCR”) algorithms to the images of
4In our specifications, we do not include city dummies on the basis that most of the cross-sectional variation in city size

is driven by events that occurred long time ago and are exogenous to incentives to adopt new ideas by inventors. Thus adding
city dummies would remove a source of “good variation” that is the historical differences in city size, and would leave only
“bad variation” that is current changes in population density which could be due to success of recent inventions.
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the 4+ million patents granted between 1836 and 1975.5 The patent texts reveal the ideas that each patent

built upon as well as the age of those ideas (please see section 2.1 above and Packalen and Bhattacharya

(2015b) for further details). For 1836–1974, we extract the number of inventors in each patent and the

location of each inventor. For inventors located in the U.S. we extract information on either the city or

county in order to match each patent to a Primary Metropolitan Statistical Area (“PMSA”). For inventors

located in other countries we extract only the country information. For 1975–2010 we use the location

data of Lai et al. (2013).

The time series on the extent of patenting shows the familiar steady increase in patenting over the

past century (please see the top panel of Figure A1 in the appendix). Due to OCR errors the location

extraction analysis does not yield any location information for some patents. However, for the vast

majority of years we match over 85% of patents to a location (please see the bottom panel of Figure A1

in the appendix).6

During the early years of the sample the measured idea input ages start low and increase quickly

(please see Figure A2 in the appendix). This is unsurprising given how we determine whether an idea

is new – we measure how recently the concept first appeared in patents – and given the small number

of patents granted during the early years of the sample. We address this issue by ignoring mentions of

concepts that belong to pre–1870 cohorts and by limiting the analysis of the agglomeration–use of new

ideas link to cover the period from the decade that Marshall started writing his economics textbook to

the present era (that is, years 1880 through 2005). We exclude years 2006–2010 from the regression

analyses because for the most recent idea cohorts it is not yet known which ideas will stand the test of

time and represent the cohorts’ “best ideas”.

Population density is measured by individuals per square mile (please see Figure A3 in the appendix

for summary statistics). We perform the analysis at the PMSA level for two reasons. First, by design

5For 1920–1975 there does exist an alternate OCR transfer of patent texts, which we used in Packalen and Bhattacharya
(2012). Here and in Packalen and Bhattacharya (2015b), we rely only on data from the new OCR transfer.

6For 1926–1933 the match rate is considerably lower due to changes in the reporting of location in the patent text and
subsequent difficulty for deciphering the inventor information using OCR. Importantly, these lower match rates only affect
our estimates for 1920s and 1930s and do not affect the estimates for the other decades.
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PMSAs form somewhat more meaningful borders for opportunities to interact than city or county limits.

Second, conducting either a county- or city-level analyses would introduce additional barriers that stem

from the fact that whereas for patents granted before 1920s county information can be extracted more

reliably than city information, the reverse is true for patents granted after 1920s. By conducting the

analysis at the PMSA-level we can map patents to PMSAs based on information on either the county or

the city of invention.7

4 Results

Figure 1 shows decade-specific estimates obtained using the conditional logit equivalent of specification

(1). The corresponding numerical values are reported in Table A1 in the appendix. The dependent

variable is the dummy variable Top 5% by Age of Newest Idea Input. The main regressor is the logarithm

of population density. For ease of interpretation, the estimates shown in Figure 1 depict how much more

often inventions in large cities built on new ideas relative to inventions in average sized cities. Formally,

each estimate of β is expressed as the percentage change in the dependent variable that is implied by the

estimate and a two standard deviation increase in the regressor. This, of course, roughly corresponds to

a comparison of cities in the 95th and 50th percentiles of the city size distribution.

The results in Figure 1 indicate that agglomeration did indeed have a considerable positive impact

on the adoption of new ideas as inputs to the inventive process throughout most of the 20th century. Our

results confirm that Marshall both accurately described the importance of agglomeration in the innovative

process and that he was prescient in predicting the importance of this link in the decades following his

writings.

The results in Figure 1 also indicate that the advantage of larger cities may now be declining. This is

7In defining which counties, cities, and towns form each PMSA we follow the 1999 definitions of the Federal Office of
Management and Budget (“OMB”), with the exception of PMSAs that include areas in Massachusetts. The OMB definitions
of PMSAs for Massachusetts map different towns within a county to different PMSAs. Because county information is more
reliably extracted for patents granted before 1920s, we redefine PMSAs that include areas in Massachusetts so that also every
county in Massachusetts is mapped to just one PMSA. For each PMSA we construct an annual population density time series
based on US Census data on county-level population and area size (see Minnesota Population Center, 2011).
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Figure 1: Estimates of the agglomeration–age of idea inputs relationship by decade. The outcome
variable is the patent-level top 5% status by the age of the newest idea input in a patent (Top 5% by
Age of Idea Inputs). The main regressor is logarithm of the population density of the city of the first
inventor in the patent. Estimates reflect a comparison of cities in the 95th and 50th percentiles of the city
size distribution. A positive estimate implies that inventors in larger cities use newer idea inputs than
inventors in smaller cities. Capped lines indicate 95% confidence intervals.
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suggested by a comparison of the estimates for the most recent decades (1980s through 2000s) against

the results for decades following Marshall’s writing. Results from a formal test of the hypothesis that the

agglomeration–use of new ideas link has eroded in recent decades are shown in Table 1.

For the analysis in Table 1, we first divided the data into four time periods: 1880s-1910s (the time of

Marshall’s writing), 1920s-1960s, 1970s-1980s, and 1990s-2000s. We then interacted the main regressor

in specification (1) with dummy variables representing each time period (as opposed to estimating the

model separately for each decade or time period). In this table, column 1 shows the results for the

conditional logit specification, column 2 shows the result for the linear probability model, column 3

shows the result for the linear probability model when city size is instrumented with values from 50 years

prior, and column 4 shows the result for the alternative measure of city size (total population). Across

the columns the estimates in Table 1 show a decline in the agglomeration-use of new ideas relationship

from the period following Marshall’s writing to the most recent decades. This finding is also supported

by the formal tests, which are shown on the last two rows of the table.

Analyses reported in Table A2 in the appendix explore the robustness of this pattern to alternative

specifications. Columns 1 and 2 explore the robustness to using narrower comparison groups.8 Column

3 explores the robustness to constructing the dependent variable based on the top 20% status by recency

of idea inputs rather than the top 5% status. Column 4 extends the analysis from the mentions of the

top 100 concepts to mentions of the top 10,000 concepts in each cohort. Columns 5 and 6 limit the

analysis to lone- and team-authored patents, respectively. In each case the results reported in Table A2

continue to follow the qualitative pattern found above, though the flattening of the agglomeration–use of

new ideas relationship is not statistically significant when the sample is limited to team-authored patents

(column 6 of Table A2). Non-parametric estimates reported in Figure A4 in the appendix provide further

8In column (1) the comparison group for each patent is patents granted in the same patent subclass in the same year. This
departure from the specification used in Table 1 decreases sample size considerably because many comparison groups then
have only one patent. It also changes the interpretation of the estimates because many of the remaining comparison groups
have very few observations, which implies that being in the top 5% by the recency of idea inputs is no longer as selective a
characteristic (even in comparison groups with very few patents, the patent with the most recent idea input is assigned the top
5% status by the recency of the age of idea inputs). To provide a comparison to results obtained using broader vs. narrower
comparison groups, in column 2 we use the same dependent variable as in column 1 but include a fixed effect for each patent
class and year pair rather than each patent subclass and year pair.
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Table 1: Estimates of agglomeration–use of new ideas relationship by time period. A separate estimate
of β for each time period is obtained by interacting the logarithm of the city size variable (population
density or total population) with time period dummies. Each city size variable is normalized so that the
estimates of the β coefficients represent changes associated with a 2 standard deviation increase in city
size.

Dependent variable: Top 5% by Age of Idea Inputs.

(1) (2) (3) (4)
Specification: Conditional Logit Linear Linear Conditional Logit
Estimation: ML LS IV LS

Measure of City Size: Population Population Population Total
Density Density Density Population

Odds ratios: Coefficients: Coefficients: Odds ratios:

β for 1880s-1910s 1.20∗∗∗ .008∗∗∗ .008∗∗∗ 1.20∗∗∗

(.013) (.001) (.001) (.012)

β for 1920s-1960s 1.15∗∗∗ .007∗∗∗ .006∗∗∗ 1.09∗∗∗

(.009) (.000) (.000) (.008)

β for 1970s-1980s 1.08∗∗∗ .003∗∗∗ -.001 1.00
(.014) (.001) (.001) (.011)

β for 1990s-2000s 1.04∗∗∗ .002∗∗∗ -.005∗∗∗ 1.02
(.013) (.001) (.001) (.012)

Fixed Effects Year-Tech- Year-Tech- Year-Tech- Year-Tech-
Class Pairs Class Pairs Class Pairs Class Pairs

Observations 3752553 3752553 3570511 3752553
Number of Fixed Effects 46264 46264 43144 46264

Mean of Dep. Var. .044 .046
(.000) (.000)

Test of β1970s−1980s = β1920s−1960s p= .000 p=.000 p=.000 p=.000
Test of β1990s−2000s = β1920s−1960s p= .000 p=.000 p=.000 p=.000
A separate fixed effect is included for each technology class and year pair.
Standard errors in parentheses; clustered by year and technology class pair. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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corroborating evidence.

To gauge the importance of agglomeration in the use of new ideas relative to other factors, we conduct

two additional sets of analyses. In one set of analyses we examine the effect of collaboration on new idea

adoption: we regress the outcome variable Top 5% by Age of Newest Idea Input on a dummy variable

measuring whether a patent lists multiple inventors or a lone inventor. For this analysis we focus on

patents with a US first inventor. In the other set of analyses we examine the effect of being located in the

US on new idea adoption: we regress the preferred outcome variable on a dummy variable measuring

whether the first inventor was located in the US or in a foreign country. In both sets of additional analyses,

we again include also a separate fixed effect for each technology class and year pair.

The results from these additional analyses are depicted in Figures 2 and 3. The corresponding nu-

merical values are reported in Tables A2 and A3 in the appendix. For ease of interpretation, in Figures 2

and 3 each estimate of the coefficient of interest is expressed as the percentage change in the dependent

variable that is implied by the estimate and a unit increase in the regressor.

In Figure 2, a positive estimate implies that patents by a team of inventors employ newer ideas than

patents by a lone inventor. We find that teams of inventors are much more likely to apply fresh knowledge

than lone inventors. An intriguing avenue for future work is examining to which extent this result arises

because each inventor in a team brings in their own knowledge of existing ideas to the team and to which

extent the result arises because inventors working in teams can solve the mysteries of new ideas faster

than lone inventors through a vigorous debate on the new ideas’ merits.

In Figure 3, a positive estimate implies that patents which first inventor lives in the U.S. employ

newer ideas than patents which first inventor lives elsewhere. The results show that patents developed by

inventors living in the U.S. are more likely to use newer ideas than patents developed by inventors living

elsewhere. This result provides direct evidence on the extent and evolution of US leadership in tech-

nological invention. Taken together our results suggest that in the late 20th century agglomeration has

become less important to invention in both absolute terms and relative to other factors – like collaboration

– that predict the use of newer ideas.
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5 Conclusion

Our empirical findings indicate that during the 20th century inventions in large US cities built on recent

advances much more often than comparable inventions in smaller US cities. The findings also indicate

that during the most recent decades this advantage of large cities has waned. The advantage of locating

R&D resources in large cities over locating the same resources in smaller cities thus seems to be much

smaller now than it has been in the past.

It is interesting to speculate why the convergence occurred. One possibility is that the spread of

the internet and other communication technologies has made new ideas available more cheaply to all,

regardless of where they were developed. Another possibility is that these new technologies have ex-

panded the sizes of the communities that examine and debate the merits of each a new idea from a local

to a wider scale. At the same time, our results on US leadership relative to other countries suggest that

the communities have not yet become truly global as Marshall (1920) speculated might one day happen.

A particularly intriguing direction for future work is distinguishing between skill driven differences

and physical proximity driven differences. Neither our application nor applications of the localization

based approaches (Jaffe et al., 1993; Thompson and Fox-Kean, 2005; Thompson, 2006; Murata et al.,

2013) have distinguished between benefits of agglomeration that may arise from knowledge differences

due to physical proximity to others and benefits of agglomeration that may arise from knowledge differ-

ences due to skill-differences. In particular, more able inventors may prefer to live in larger cities and be

better equipped to solve the mysteries of new ideas and thus adopt them quicker as inputs in their own

work. While the reduced-form application provided here is an important first step, and while efficient

allocation of R&D resources does not necessarily require knowing the mechanism by which larger cities

may have an advantage, distinguishing between the skill and physical proximity mechanisms seems a

valuable direction for future work.
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Appendix: Additional Figures and Tables
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Figure A1: Number of US patents granted (top panel) and match rate of OCR’d patents to a PMSA or
rural US location or to a foreign country (bottom panel). In the top panel, the vertical axis depicts the
logarithm of the number of patents.
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Figure A2: The 5th percentile of the age of the newest idea input in patents, calculated based on the top 100 idea
inputs in each idea cohort.
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Variation and Persistence in Population Density

Figure A3: Population density in 1880 vs. 2010, 1950 vs. 2010, and 1880 vs. 2010. This figure provides a summary
of how the distribution of population density has evolved over the last 130 years. Population density is measured
by individuals per square mile. The figure depicts observations on the logarithm of population density for 1880 vs.
1950 (left panel), for 1950 vs. 2010 (center panel), and for 1880 and 2010 (right panel). It is striking that the most
population dense cities remain near or at the top of the distribution. For instance, the two densest PMSAs remain
New York and New Jersey throughout these periods. The persistence and the considerable within-year variation in
population density enable us to identify the link between population density and use of new knowledge in invention.
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Non-Parametric Analysis
Agglomeration-Use of New Ideas Relationship by Time Period

Figure A4: Non-parametric estimates of the agglomeration–age of idea inputs relationship by time
period. The outcome variable is the patent-level top 5% status by the age of the newest idea input
in a patent (Top 5% by Age of Idea Inputs). Observations on the explanatory variable, Logarithm of
Population Density, are normalized for each year so that for cities this measure has mean of zero and
standard deviation of one (the normalization is at the city-level). We calculate the weighted mean of
the outcome variable at different values of the explanatory variable using the Epanechnikov kernel and a
bandwidth of 0.5. Analysis is limited to those values of the explanatory variable that are between -1 and
2 because the sparsity of observations outside of this region renders the associated estimates much less
informative. Shaded area indicates 95% confidence interval.
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Table A1: Estimates of agglomeration–use of new ideas relationship by decade. The city size variable is normalized so the
reported odds ratios represent changes associated with a 2 standard deviation increase in city size.

Dependent variable: Top 5% by Age of Idea Inputs.

Panel A. Model: Conditional Logit.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
1880s 1890s 1900s 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s

Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio:

Log Population Density 1.246∗∗∗ 1.198∗∗∗ 1.210∗∗∗ 1.168∗∗∗ 1.197∗∗∗ 1.151∗∗∗ 1.157∗∗∗ 1.162∗∗∗ 1.102∗∗∗ 1.063∗∗∗ 1.090∗∗∗ 1.059∗∗∗ 1.020
(.033) (.029) (.025) (.020) (.021) (.022) (.023) (.019) (.018) (.019) (.020) (.016) (.021)

Fixed Effects Year- Year- Year- Year- Year- Year- Year- Year- Year- Year- Year- Year- Year-
Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class-

Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs

Observations 140956 155975 202302 248598 239627 249381 203993 290532 372017 324904 350282 535103 438883
Number of Fixed Effects 3112 3215 3365 3493 3634 3727 3719 3869 3992 3632 4028 4067 2411
Standard errors in parentheses; clustered by year and technology class pair. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel B. Model: Linear Probability.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
1880s 1890s 1900s 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s

Coefficient: Coefficient: Coefficient: Coefficient: Coefficient: Coefficient: Coefficient: Coefficient: Coefficient: Coefficient: Coefficient: Coefficient: Coefficient:

Log Population Density .011∗∗∗ .009∗∗∗ .009∗∗∗ .008∗∗∗ .008∗∗∗ .007∗∗∗ .007∗∗∗ .007∗∗∗ .005∗∗∗ .003∗∗∗ .004∗∗∗ .003∗∗∗ .001
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)

Fixed Effects Year- Year- Year- Year- Year- Year- Year- Year- Year- Year- Year- Year- Year-
Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class-

Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs

Observations 140956 155975 202302 248598 239627 249381 203993 290532 372017 324904 350282 535103 438883
Number of Fixed Effects 3112 3215 3365 3493 3634 3727 3719 3869 3992 3632 4028 4067 2411

Mean of Dep. Var. .052 .048 .049 .048 .048 .048 .047 .047 .047 .047 .047 .048 .048
Standard errors in parentheses; clustered by year and technology class pair. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001



Table A2: Estimates of agglomeration–use of new ideas relationship by time period: robustness checks A separate estimate of β for
each time period is obtained by interacting the logarithm of the city size variable with time period dummies. Each city size variable is
normalized so that the estimates of the β coefficients represent changes associated with a 2 standard deviation increase in city size.

Dependent variable: Top 5% by Age of Idea Inputs, except column 4.

Model: Conditional Logit.

Measure of City Size: Log Population Density.

Explanations for columns:
(1) Comparison group for each patent is other patents granted in the same technology subclass in the same year, and a separate fixed effect
is included for each technology subclass and year pair.
(2) Same dependent variable and sample as in column 1 but now a separate fixed effect is included for each technology class and year
pair.
(3) Age of idea inputs is calculated based on mentions of the top 10,000 idea inputs in each cohort.
(4) Dependent variable is top 20% status by recency of newest idea input.
(5) Only lone-authored patents are included in the sample.
(6) Only team-authored patents are included in the sample.

.
(1) (2) (3) (4) (5) (6)

Odds ratios: Odds ratios: Odds ratios: Odds ratios: Odds ratios: Odds ratios:

β for 1880s-1910s 1.031∗∗∗ 1.006 1.166∗∗∗ 1.141∗∗∗ 1.196∗∗∗ 1.165∗∗∗

(.008) (.006) (.012) (.007) (.013) (.030)

β for 1920s-1960s 1.061∗∗∗ 1.046∗∗∗ 1.125∗∗∗ 1.125∗∗∗ 1.173∗∗∗ 1.093∗∗∗

(.006) (.005) (.009) (.005) (.010) (.017)

β for 1970s-1980s 1.030∗∗∗ 1.027∗∗∗ 1.055∗∗∗ 1.075∗∗∗ 1.087∗∗∗ 1.069∗∗∗

(.008) (.007) (.013) (.008) (.016) (.021)

β for 1990s-2000s .998 .987∗ 1.062∗∗∗ 1.072∗∗∗ 1.027 1.063∗∗∗

(.007) (.006) (.012) (.009) (.016) (.019)

Fixed Effects Year-Tech- Year-Tech- Year-Tech- Year-Tech- Year-Tech- Year-Tech-
Subclass Pairs Class Pairs Class Pairs Class Pairs Class Pairs Class Pairs

Observations 2059486 2059486 3752553 3383627 2655184 1112879
Number of Fixed Effects 687900 42150 46264 45773 45701 35043

Test of β1970s−1980s = β1920s−1960s p=.002 p=.038 p=.000 p=.000 p=.000 p=.364
Test of β1990s−2000s = β1920s−1960s p=.000 p=.000 p=.000 p=.000 p=.000 p=.226
Standard errors in parentheses; clustered by year and technology class pair. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001



Table A3: Estimates of collaboration–use of new ideas relationship by decade.

Dependent variable: Top 5% by Age of Idea Inputs.

The main regressor, I(Team-authored), is a dummy variable that is 1 for team-authored patents and 0 for lone-authored patents.

Model: Conditional Logit.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
1880s 1890s 1900s 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s

Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio:

I(Team-authored) 1.114 1.027 1.031 1.060 1.323∗∗∗ 1.338∗∗∗ 1.305∗∗∗ 1.415∗∗∗ 1.259∗∗∗ 1.326∗∗∗ 1.351∗∗∗ 1.430∗∗∗ 1.283∗∗∗

(.065) (.056) (.070) (.048) (.050) (.046) (.063) (.064) (.026) (.036) (.035) (.037) (.034)

Fixed Effects Year- Year- Year- Year- Year- Year- Year- Year- Year- Year- Year- Year- Year-
Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class-

PMSA- PMSA- PMSA- PMSA- PMSA- PMSA- PMSA- PMSA- PMSA- PMSA- PMSA- PMSA- PMSA-
Triples Triples Triples Triples Triples Triples Triples Triples Triples Triples Triples Triples Triples

Observations 31214 32604 46693 62974 61117 68504 47406 68503 91856 72115 73288 157437 290718
Number of Fixed Effects 4287 4493 5751 7202 6960 7333 5948 8492 11001 9383 9828 14507 17002
Standard errors in parentheses; clustered by PMSA. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001



Table A4: Estimates of domestic/foreign invention status–use of new ideas relationship by decade.

Dependent variable: Top 5% by Age of Idea Inputs.

The main regressor, I(Domestic), is a dummy variable that is 1 for patents which first inventor is in the U.S. and 0 for patents which first inventor is in a foreign country.

Model: Conditional Logit.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
1880s 1890s 1900s 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s

Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio: Odds Ratio:

I(Domestic) .669∗∗∗ .664∗∗∗ .739∗∗∗ .919∗∗ 1.080∗ 1.144∗∗∗ 1.398∗∗∗ 1.928∗∗∗ 2.095∗∗∗ 1.749∗∗∗ 1.941∗∗∗ 2.144∗∗∗ 2.081∗∗∗

(.027) (.021) (.021) (.028) (.034) (.033) (.055) (.068) (.054) (.033) (.036) (.034) (.035)

Fixed Effects Year- Year- Year- Year- Year- Year- Year- Year- Year- Year- Year- Year- Year-
Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class- Tech Class-

Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs Pairs

Observations 194873 221073 304594 381084 414831 442771 307536 425901 567802 690372 705904 1037028 1285516
Number of Fixed Effects 3244 3385 3566 3653 3736 3820 3795 3919 4047 4106 4108 4103 4004
Standard errors in parentheses; clustered by year and technology class pair. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001


