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1 Introduction

Many counties use a complex system of taxes and transfers. Welfare and social insurance

payments depend on individual earnings, which creates a complex nonlinear schedule of effective

marginal labor and capital income tax rates. Figure 1 illustrates such patterns using the federal

tax programs in the U.S.1 Moreover, both the eligibility and the amount of payment often

depends on the past history of labor earnings, assets, marital status, age and the number of

children.

It is challenging to develop a theory of taxation that both allows for sufficiently rich tax

functions and provides transparent, intuitive insights about the effect of taxes. The literature

so far have mainly persued either of the following two approaches. The first approach imposes

specific parametric functional form assumptions, and characterizes the optimal taxes in terms

of intuitive measures of elasticities. This approach goes back to Ramsey (1927) and the modern

application of this technique was introduced by Diamond and Mirrlees (1971), who restrict at-

tention to linear taxes. The second approach imposes explicit informational restrictions on the

government and characterizes the constrained optimum (e.g. Mirrlees 1971, Golosov, Kocher-

lakota, and Tsyvinski 2003). Both approaches have limitations. As far as the Ramsey approach

is concerned, the vast majority of the literature restricts attention to linear taxes. A few pa-

pers that consider more general taxes typically choose specific functional forms that are easy

to parameterize (e.g. power functions) and obtain analytical results only in special cases. The

mechanism design approach is often sensitive to the assumptions on government’s information

set. The tax systems that emerge from it are often very complex, and the intuition for the

economic forces that determine the size and the shape of the optimal taxes is not transparent.

In this paper we develop an alternative approach to the analysis of the effects of taxation

that both preserves the transparency of the Ramsey approach and allows us to handle more

complicated, nonlinear tax systems. Our approach is based on studying perturbations of a given

non-linear tax system directly. We show that as long as the baseline tax system is sufficiently

well behaved, the effect of perturbing the tax system can be expressed in terms of elasticities

and hazard rates of income distributions that can be estimated in the data. Our method

is sufficiently flexible to both allow us to restrict attention a priori to a given class of tax

functions (e.g., non-linear taxes that do not depend on an individual’s age and are separable

between various incomes) and to study the sources and the magnitude of welfare gains that arise

from using more sophisticated taxes (e.g., from introducing age- or history-dependent taxation).

We study a dynamic model, in which individuals’ characteristics evolve over their lifetime.2

The tax system consists of a sequence of tax functions which can be arbitrarily non-linear and

joint in the entire history of labor and capital incomes. The generality of the tax functions

1This becomes even more complicated once state-level programs are taken into account, see Maag et al. (2012).
2In most of the paper we focus on a deterministic economy to make our approach transparent. In the last

Section and in our working paper (Golosov, Tsyvinski, and Werquin 2014) we develop an extension to stochastic
environments.
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allows us to study the age-dependence and history dependence of taxes, non-linear taxation of

capital income, and joint conditioning of taxes on labor and capital incomes. The first main

contribution of the paper is to provide a general formula for the welfare effects of tax reforms in a

compact and easily interpretable form. Our result is based on deriving the Gateaux differential

of individual demands, government tax revenue, and social welfare. The complexity of the

problem arises from the fact that an individual chooses his income as a function of the local

characteristics of the tax system; but these tax rates themselves depend on the income that he

chooses. Therefore, a local perturbation of the tax function faced by an individual leads him to

adjust his income, which in turn induces a shift in the tax rates if the baseline tax system is non-

linear, triggering further income adjustment. We provide a sufficient condition on the individual

demand (namely, local Lipschitz continuity), which allows us to solve this circularity issue, and

express the effects of general tax reforms only in terms of the local income and substitution

effects at the individual level, and of the curvature of the baseline tax function. Importantly,

these formulas are written only as a function of empirically observable and easily interpretable

sufficient statistics.

We then show several applications of these results. First, we apply it to optimal taxation

problems and show how it recovers the hallmark results on optimal linear commodity taxation

of Diamond (1975) and non-linear labor taxation of static model of Mirrlees (1971), both of

which are special cases of our general environment. Our formulas emphasize the insight that the

same general principle underlies the two models, namely that more sophisticated (in this case,

non-linear) tax instruments allow the government to better target the distortions associated

with higher tax rates toward the segments of the populations that have either relatively small

behavioral responses, or where relatively few individuals are affected. We then show that this

fundamental principle can be generalized and applies to broader classes of environments. In

particular, we derive several novel predictions such as the optimality conditions for the optimal

non-linear capital income tax, or for the optimal labor tax on joint income of couples.

We next turn to the analysis of tax reforms, and refine our discussion of the close connec-

tion that exists between the effects of the various tax instruments (age-dependent, non-linear,

joint taxes). We sequentially decompose the welfare gains of reforming existing, not necessarily

optimal, tax systems as the tax instruments become more sophisticated. We show the effects

of taking into account individuals’ intertemporal optimization decisions, of allowing for age-

and history-dependence, and of joint conditioning of labor and capital income. This sequential

decomposition of increasingly sophisticated tax systems shows that the welfare effects of general

tax reforms depend on aggregate measures of three key elements: the marginal social welfare

weights, which summarize the government’s redistributive objective; the labor and capital in-

come elasticities and income effect parameters with respect to the marginal income tax rates,

which capture the behavioral effects of taxes; and the properties of the labor and capital income

distributions, namely the hazard rates of the marginal and joint distributions.

Finally, we show how one can use available empirical moments of income distributions and
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elasticities to quantify the welfare effects of small tax reforms. Unlike the traditional approach

to measuring welfare gains, which requires solving often difficult maximization problems to find

the optimum, our method is very transparent and can be done almost “by hand”. It does not

allow, however, to compute the gains from reforms that introduce large changes in the existing

tax system.

Our approach is most closely related to and builds on the work of Piketty (1997) and Saez

(2001). They used heuristic arguments to extend the techniques of Ramsey (1927) and Diamond

and Mirrlees (1971) to non-linear taxation and obtain expressions for the optimal labor taxes

in a unidimensional static model in terms of the elasticities of labor supply and income hazard

rates. Our paper finds sufficient conditions for the more rigorous application of that approach

and extends it to more general dynamic settings. This allows us to analyze such questions as

non-linear capital taxation and joint taxation of incomes. We also show how this approach

can be used beyond optimal taxation, as we apply it to analyze tax reforms and welfare gains

from increased sophistication of tax systems. More broadly, our approach is also related to

the sufficient statistics tax literature (e.g., Chetty 2009; Piketty, Saez, and Stancheva 2013).

Similar to these papers, we express our tax formulas in terms of a small number of empirically

observable parameters, which fully characterize the effects of taxes for a large set of underlying

models, e.g., for very general utility functions, structures of heterogeneity, etc. Our application

to capital taxation also builds on several insights of Piketty and Saez (2013) and Straub and

Werning (2014).

Our analysis of the evaluating increasingly sophisticated elements of the tax functions is

most closely related to the growing literature on taxation within parametrically restricted sets

of policies.3 Conesa and Krueger (2009) and Conesa, Kitao, and Krueger (2009) quantitatively

study optimal income tax within a Gouveia and Strauss (1994) class and a linear capital in-

come tax. Kitao (2010) further incorporates the labor-dependent capital taxes in these models.

Heathcote, Storesletten, and Violante (2014) characterize optimal taxes within a class where a

government can control the degree of progressivity in dynamic models with idiosyncratic shocks

and ex-ante heterogeneity in learning ability and disutility of work. A recent paper by Heath-

cote and Tsujima (2014) analyzes an environment in which groups of individuals can insure the

shocks among themselves in addition to available private insurance, solve for the constrained

optimum and explore whether parametric tax functions can come close to achieving those al-

locations. Huggett and Parra (2010) consider an optimal reform of the social security benefit

function which is chosen in the class of piecewise-linear functions of average past earnings.

Our work is also related to the literature that studies tax reforms in dynamic settings.

Weinziel (2012) is the closest in its approach to our analysis of the partial reform that introduces

age-dependence.4Blundell and Shephard (2014) characterize numerically the optimal tax system

3For a more detailed review of the literature and of the relationship between our approach, the mechanism
design approach to optimal taxation and the restricted tax functions approach see Golosov and Tsyvinski (2014).

4See also an early paper on this topic by Kremer (2002).
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Figure 1: Effective Federal Tax Rates (source: CBO 2005)

in a complex dynamic environment. We complement their analysis of this issue by uncovering

the theoretical forces which determine the effects of partial reforms.

A large recent “New Dynamic Public Finance” literature studies environments in which taxes

are restricted only by explicit restrictions on government’s information set. 5 Our approach is

complementary. If we restrict attention to the classes of taxes considered in those paper, we

obtain an alternative characterization of optimality conditions in terms of elasticities. More

generally, it is easy to use our approach to analyze the tax systems using restricted tax instru-

ments, e.g., non-linear but separable from labor income taxes, and quantify welfare gains from

switching to more sophisticated taxes, e.g. gains from introducing joint taxation of capital and

labor. More broadly, our paper relates to the literature on multidimensional screening problems,

e.g., Kleven, Kreiner and Saez (2009) and Rothschild and Scheuer (2014). While they are able

to solve this complex problem by collapsing their model to a one-dimensional problem, we use

the variational method to analyze the environment with multiple types of shocks.

The rest of the paper is organized as follows. Section 2 describes our environment. Sections 3

and 4 derive the responses of individual income, tax revenue and social welfare to perturbations

of the baseline tax system. Section 5 considers the applications of this approach to optimal

taxation. Section 6 considers the applications to tax reforms and the decomposition of welfare

gains from increasing sophistication of the tax system. Section 7 presents a brief overview of

the extension of our analysis to the stochastic model.

5See, e.g. Albanesi and Sleet (2006), Farhi and Werning (2013), Golosov, Troshkin and Tsyvinski (2014),
Albanesi (2011) and Shourideh (2012), Stantcheva (2014).

5



2 Environment

There is a measure one of agents in the economy. An agent lives for S ≤ ∞ periods, and

time is indexed by s = 1, . . . , S. At the beginning of period s = 1, there is a draw of an

exogenous vector of n characteristics θ ∈ Θ ⊂ Rn for each individual. These idiosyncratic

shocks can be, for instance, the individual’s initial level of capital stock k0, his sequence of

productivities, tastes, interest rates (i.e., investment opportunities), etc. over his lifetime. The

environment is deterministic: individuals know at the beginning of period s = 1 their entire

vector of characteristics θ.6

Given the draw of vector θ, the individual chooses in each period s ∈ {1, . . . , S} a level

of consumption cs, labor income ys, and savings or borrowings ks which yield capital income

zs+1 in period s + 1.7 The utility function U can be a general, not necessarily time-separable,

function of the vector of choices of consumption, labor income and capital income. We assume

that the utility function is increasing and concave in each period’s consumption (and capital

income if it enters explicitly the utility function), decreasing and convex in each period’s labor

income, and twice differentiable in all of its variables. An example of the utility function which

we use in several applications is U =
∑S

s=1 β
s−1u (cs, ys/θs). In this case, θs is a shock to the

productivity of labor supply in period s.

In each period s ∈ {1, . . . , S}, the government levies a tax Ts. The tax liability Ts (·) in period

s is a non-linear function of the individual’s entire history of labor incomes {ys′}Ss′=1 and capital

incomes {zs′+1}Ss′=1.8,9 The sequence of tax functions {Ts (·)}Ss=1 is known to an individual at

the beginning of period s = 1, and the government can commit to it. The initial tax system

T thus consists of a set of tax functions Ts : RS+ × RS → R for each period s ∈ {1, . . . , S},
where each function Ts (·) maps a choice of labor and capital incomes x ∈ RS+ × RS to a

tax liability Ts (x) ∈ R. The tax function in period s, Ts

(
{ys′}Ss′=1 , {zs′+1}Ss′=1

)
, is assumed

twice continuously differentiable in all of its 2S variables, that is Ts ∈ C2
(
RS+ × RS ,R

)
for all

s ∈ {1, . . . , S}.10

6The deterministic environment allows us to show the main insights most transparently. We extend the analysis
to the stochastic environment Golosov, Tsyvinski and Werquin (2014), and present an overview in Section 7.

7The capital income in period s + 1 can be written as zs+1 = rs+1ks, where the interest rate rs+1 in each
period is exogenous. Our analysis allows the interest rate to be idiosyncratic, and thus the period-s savings ks to
yield any (deterministic) income zs+1 in the next period. The before-tax capital stock at the beginning of period
s+ 1 is then ks + zs+1.

8In a given period s, the planner can tax incomes earned in the future periods s′ > s because the model is
deterministic. We assume here that initial capital k0 is not taxed, because it is supplied inelastically and hence
does not induce any behavioral effects. Our formulas can be trivially extended to the case where it can be taxed.

9Throughout the paper we consider only capital income taxes and not wealth taxes. The same approach can
be used to analyze wealth taxation.

10In the deterministic model, we could without loss of generality write only one tax function, for instance TS (·).
Instead, we choose to define one tax function per period s, at the expense of slightly more cumbersome notation,
to make it easier to discuss age-dependent taxes and capital taxes in Sections 5 and 6. This definition of taxes
also has the advantage of extending naturally to stochastic settings; see Section 7.
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The optimization problem of an individual with the vector of types θ is:

Uθ (T ) ≡ max
{cs,ys,ks,zs+1}1≤s≤S

U
(
{cs}1≤s≤S , {ys}1≤s≤S , {zs+1}1≤s≤S ,θ

)
s.t. cs + ks = ys + (ks−1 + zs)− Ts

(
{ys′}1≤s′≤S , {zs′+1}1≤s′≤S

)
, ∀s.

(1)

We denote by xθ (T ) the argmax of this problem, i.e., the optimal choice of labor and capital

incomes of the individual θ as a function of the tax system T . That is, we define the individual

income functional as:

xθ (T ) = (yθ,1 (T ) , . . . , yθ,S (T ) , zθ,2 (T ) , . . . , zθ,S+1 (T ))′ .

The optimal choices of consumption {cθ,s}Ss=1 are then obtained from the budget constraints.

The budget constraint in period s imposes that the sum of consumption cs and savings ks is no

greater than the sum of labor income ys and capital income (ks−1 + zs), net of the tax liability

Ts.

We denote by Fθ (θ) the c.d.f. of vectors θ ∈ Θ, and fθ (θ) the corresponding density

function. We also denote by Fx (x) and fx (x) the c.d.f. and the p.d.f. of incomes x ∈ X ⊂
RS+×RS , given the tax system T . For any choice of incomes (x1, . . . , xs) ∈ Rs with s < 2S, we

also let Fx1,...,xs (·) and fx1,...,xs (·) denote the marginal c.d.f. and the marginal p.d.f. of those

variables. We assume that the sets Θ and X of vectors of types θ and incomes x are compact

in Rn and RS+ × RS , respectively, and that the densities of types and incomes at the (piecewise

smooth) boundaries ∂X and ∂Θ of the sets X and Θ are equal to zero.11 We make the following

assumption about the income vectors chosen by individuals with different types θ:

Assumption 1. The map θ 7→ xθ (T ) between the vector of types θ and the vector of income

choices xθ (given the tax system T ) is injective. That is, if two individuals have a different

vector of types θ 6= θ′, they choose a different vector of incomes xθ (T ) 6= xθ′ (T ).

This assumption mainly simplifies the exposition but is not required for most of our results.

We explain below how our main results are affected in the case where it does not hold, e.g., if

the space of degrees of heterogeneity has a higher dimension than the space of income choices.

We define the present discounted value of tax revenue as a function of the tax system T , or

tax revenue functional, as

R (T ) =

ˆ
Θ

[
S∑
s=1

βs−1Ts (xθ (T ))

]
dFθ (θ) , (2)

where β is the marginal rate of transformation of resources across periods for the government,

which we assume equal to the individual’s discount factor. Tax revenue is thus the sum over

11In some applications of Sections 6 and 5, we let incomes evolve in the whole space RS+ ×RS . Our theory can
be generalized to this case by using an increasing sequence of compact sets X ⊂ RS+ × RS .

7



time s ∈ {1, . . . , S} and over individuals θ ∈ Θ of individual tax liabilities, taking into account

the agents’ optimizing behavior given the tax system T .

We finally define the social welfare functional as a weighted average of the indirect utility

functions of individual agents and the tax revenue, as a function of the tax system T ,

W (T ) = λ−1

[
(1− α)

ˆ
Θ
G (Uθ (T )) dFθ (θ) + αV (R (T ))

]
, (3)

for some α ∈ [0, 1], where λ ≡ αV ′ (R (T )) denotes the shadow value of public funds. Here

V (R (T )) is a measure of the value of public goods that the government can provide with tax

revenues R (T ). The function G : R → R is defined over lifetime utilities of the individuals,

and is assumed continuously differentiable, increasing, and concave. The function V : R→ R is

continuously differentiable and increasing. Note that normalizing equation (3) by the marginal

value of public funds λ implies that social welfare is expressed in monetary units.

The tax system T considered so far is very general and allows for a rich set of non-linearities

and non-separabilities in taxing different incomes at different dates. In practice, we are often

interested in more restrictive classes of tax systems. For example, the classic Ramsey analy-

sis restricts the tax functions to be separable and linear in each income (e.g., Ramsey 1927,

Diamond and Mirrlees 1971, Diamond 1975). Another strand of the literature focuses on the

analysis of separable but non-linear tax functions, (e.g., Mirrlees 1971, Diamond 1998, Saez

2001, Heathcote, Storesletten, and Violante 2014). More generally, the New Dynamic Public

Finance literature (e.g., Kocherlakota 2005, Farhi and Werning 2012, Golosov, Troshkin, and

Tsyvinski 2014) emphasizes the benefits of jointly taxing different incomes, namely labor and

capital incomes within periods, or labor incomes across periods (history-dependent taxation),

so that the tax rate on income i depends not only on its own level xi, but also on the levels xj

of other incomes j 6= i. When we impose such constraints on the tax system T , we say that T

is “restricted within a class” (e.g., of linear separable, non-linear separable, etc., tax functions).

Our paper focuses on several conceptually distinct, but closely related questions. First, we

analyze the revenue or welfare gains and losses of small perturbations of any baseline tax system

T 0. We refer to such changes as tax reforms. Suppose in particular that the tax system T 0

is restricted within a certain class. By deriving the effects of reforms that keep the perturbed

tax system within this class, we can shed light on the economic parameters that determine

whether the existing tax system is (constrained) optimal, and derive the potential welfare gains

obtained by reforming it. Moreover, we can analyze reforms that induce the tax system to

leave its restricted class. For instance, we can introduce (a small amount of) non-linearity,

age-dependence, history-dependence or joint taxation within a baseline linear, age-independent,

or separable tax system. This allows us to sequentially decompose the gains arising from each

additional element of reform as the tax code becomes more sophisticated. Second, we derive

characterizations of the optimal tax system, or the optimum within a certain class. These

two questions are closely related, because the characterization of the optimum is obtained by
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imposing that the net welfare effect of any tax reform is non-positive if the baseline tax system

T 0 is optimal.

3 Behavioral Effects of Tax Reforms

In this section, we formally define the admissible perturbations of the initial tax system, i.e., our

tax reforms, and study their effect on individual behavior. We start with a baseline tax system

T 0 =
{
T 0
p

}
1≤p≤S , and consider another tax system H = {hp}1≤p≤S . The system H consists

of a set of tax functions hp : RS+ ×RS → R for each period p ∈ {1, . . . , S}, as defined in Section

2. Our goal is to analyze the revenue and welfare effects of reforming the baseline tax system

T 0 “in the direction H ”. Formally, for µ ∈ R+, we then define the perturbed tax system T̃ as

T̃ = T 0 +µH . That is, the perturbed tax function in any period p is given by T̃p = T 0
p +µhp.

We then derive the change in tax revenue or social welfare following this perturbation as µ→ 0.

Hence, we compute the Gateaux differential of the tax revenue and social welfare functionals,

following the local perturbation of the baseline tax system T 0 in the direction H .

We can decompose this general perturbation H of the tax system into its period-p com-

ponents hp : X → R, which only affect the period-p baseline tax function Tp : RS+ × RS → R.

The total effect of the perturbation H is then equal to the sum over periods p of the effects of

the elementary perturbations hp. Without loss of generality we can thus restrict the analysis to

perturbations of a given period-p tax function Tp (·), and keep the rest of the baseline tax system

T 0 unchanged. We therefore define an admissible perturbation of the baseline tax function Tp (·)
as a twice continuously differentiable function hp ∈ C2 (X,R). For any µ > 0, we then define

a perturbed function in period p as T̃p = Tp + µhp, and study the effects of this tax reform as

µ→ 0.

We say that the perturbation hp is restricted within a class if it leaves the perturbed tax

system T̃ in the same class (e.g., of linear, separable, etc., tax systems) as the baseline tax

system T 0. As a first step towards deriving the effects on social welfare and tax revenue of the

perturbation hp, we characterize in this section its effects on the optimal individual behavior.

That is, we compute the Gateaux differential of the individual income functional xθ

(
T 0
)

in

the direction hp.

We first characterize the solution to the problem (1) of individual θ, i.e., his choice of incomes

xθ ∈ X given a tax system T . Since we define perturbations of the tax function in each given

period, we denote the vector of optimal choices of individual θ under the baseline tax system

either as xθ (Tp) or as xθ

(
T 0
)
, and under the perturbed tax system as xθ (Tp + µhp) or as

xθ

(
T̃
)

. We denote by {xθ,j}1≤j≤2S the components of the income vector xθ, that is the labor

incomes ys and capital incomes zs in each period s ∈ {1, . . . , S}.
The main result of this section is that as long as xθ is well-behaved (in a formal sense given in

Assumption 2), the directional derivatives of xθ are well-defined and can be expressed in terms

of income and price elasticities. Before we state this result, we need to define these elasticities
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in settings where the consumers’ budget constraints are non-linear.

3.1 Elasticities

We build our definitions of elasticities on the classical consumer demand theory that uses lin-

ear budget constraints. We start by defining the individual income responses to tax changes

in an economy with linear budget constraints and then extend these definitions to non-linear

constraints.

Let qj,s be the after-tax price of good xj (where xj = yj for 1 ≤ j ≤ S and xj = zj+1 for

S + 1 ≤ j ≤ 2S) in period s and Rs be the exogenous lump-sum income. Define

Hs (x) ≡ Rs −
S∑
j=1

qj,syj −
S∑
j=1

qS+j,szj+1.

Hs (x) is a hyperplane defined by a vector that consists of 2S prices qj,s and the exogenous income

Rs. We use (q,R) to denote the 2S × S-matrix of prices {qj,s}1≤j≤2S
1≤s≤S

and the 1 × S-vector of

exogenous incomes {Rs}1≤s≤S in all S periods, and we let H(q,R) denote the S hyperplanes

defined by (q,R). The budget constraint of the consumer can be written compactly as c =

H(q,R)(x), where c = {cs}1≤s≤S is the vector of consumption choices in the S periods. Let

x̂θ (q,R) be the (Marshallian) demand of the individual θ who faces a sequence of budget

constraints defined by H(q,R), and let x̂θ,i denote the ith component of x̂θ. We define the

income and uncompensated price responses in the usual way. For example, the 2S × 2S-matrix

Eu,θ
s of changes in uncompensated incomes xi with respect to the period-s prices qj,s, and the

2S × 1-vector Iθs of changes in incomes xi with respect to the period-s virtual income Rs, are

given by [
Eu,θ
s

]
i,j

=
∂x̂θ,i
∂qj,s

and
[
Iθs

]
i

=
∂x̂θ,i
∂Rs

, (4)

while the compensated (Hicksian) changes are defined through the Slutsky relationship[
Ec,θ
s

]
i,j

=
[
Eu,θ
s

]
i,j

+
[
Iθs

]
i
x̂θ,j. (5)

At this stage this is a straightforward generalization of standard consumer theory (see Mas-

Colell, Whinston and Green, 1995) when the purchase of good x ∈ {y, z} in period j requires

expenditures qj,sxj in all periods s at prices that depend on s. This general formulation is

helpful for our analysis of general tax systems and will allows us to capture the effects of, for

example, history-dependence, when taxes on choices made in a given period depend also on

other choices made in previous periods. Classical demand theory also imposes restrictions on

how the responses of demand x̂θ,i to changes in income Rs and prices qj,s in different periods s

are related to each other, but in principle we can allow those responses to be free parameters.

For our purposes it is important to note that all the parameters in the matrices Ec, Eu and I
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depend on the pair (q,R) that defines the hyperplanes H(q,R), and on the vector of types of

the consumer, θ.

From standard consumer demand theory it is easy to infer the response of demand x̂θ to any

perturbation of the hyperplane H(q,R). To fix ideas, consider a pair
(
q̃, R̃

)
with the property

that the column vectors q̃s ≡ {q̃j,s}2Sj=1 and the scalars R̃s are equal to zero for all but one s, and

consider the response of x̂θ to the perturbation
(
q + µq̃,R + µR̃

)
. This experiment corresponds

to a perturbation of the linear budget constraint only in one period s. Standard arguments imply

that response of demand x̂θ to such a perturbation around (q,R) in the direction
(
q̃, R̃

)
for

small µ, δx̂θ

(
(q,R) ;

(
q̃, R̃

))
, is given by

δx̂θ

(
(q,R) ;

(
q̃, R̃

))
≡ lim

µ→0

x̂θ

(
q + µq̃,R + µR̃

)
− x̂θ (q,R)

µ
= Eu,θ

s q̃s + Iθs R̃s, (6)

so that for all i ∈ {1, . . . , 2S}, the ith component of the vector δx̂θ writes

δx̂θ,i =

2S∑
j=1

∂x̂θ,i
∂qj,s

q̃j,s +
∂x̂θ,i
∂Rs

R̃s.

We can now extend these definitions to our environment with non-linear taxes. We define the

hyperplane Hθ that is tangent to the individual θ’s budget constraint evaluated at the optimal

income vector xθ. In particular let

qj,s (xθ) ≡∂Ts (xθ)

∂xj
if xj /∈ {ys, zs, zs+1} ,

qj,s (xθ) ≡−
(

1− ∂Ts (xθ)

∂xj

)
if xj = ys,

qj,s (xθ) ≡−
(

1

rs
+ 1− ∂Ts (xθ)

∂xj

)
if xj = zs,

qj,s (xθ) ≡ 1

rs+1
+
∂Ts (xθ)

∂xj
if xj = zs+1,

Rs (xθ) ≡〈∇Ts (xθ) ,xθ〉 − Ts (xθ) .

(7)

where rs is the (possibly idiosyncratic) interest rate, i.e. zs/ks−1.12 The hyperplane Hθ defined

by (q (xθ),R (xθ)) is tangent to the budget constraint defined by taxes T 0 at a point xθ. Since

utility is strictly concave, the optimal income choice xθ of individual θ given the baseline non-

linear tax function T 0 coincides with the income vector x̂θ that he would choose if he faced the

12Note that some of these prices are negative, because they are those of (say) labor income rather than leisure.
This allows us to express the individual’s budget constraint as c = H(q,R)(x). The price on income xj is equal
to the marginal tax rate on good xj plus a constant, so that the derivatives of income w.r.t. those prices are
the same as the derivatives w.r.t. the marginal tax rates. Below we define the elasticities that we use in our
applications, which are w.r.t. the net-of-tax rates rather than the prices when these are negative.
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linear budget constraint defined by Hθ. Assumption 1 ensures that for each x chosen under the

tax T 0 there is only one type θ for whom it is the optimal choice. We use this observation to

define for all s the behavioral responses at a vector x as

Ec
s (x) ≡ Ec,θ

s ,Eu
s (x) ≡ Eu,θ

s , Is (x) ≡ Iθ for θ such that x = x̂θ.

Responses are not defined for those x that are not chosen by any individual, but it turns out to

be irrelevant for our analysis. Note that behavioral responses generally depend on the demand

x at which they are evaluated.13

We can finally define in the usual way the compensated and uncompensated price elasticities

ζc,θi,j,s, ζ
u,θ
i,j,s and the income elasticities ηθi,s. In order to be consistent with the empirical literature

that estimates such elasticities, we define in the case of linear budget constraints the elasticities

of x̂θ,i with respect to the modified prices q̂j,s that are defined as the (constant) marginal tax

rates τxj ,s ≡
∂Ts(x̂θ)
∂xj

if xj /∈ {ys, zs} and the net-of-tax rates 1 − τxj ,s otherwise. Note that the

behavioral responses to the modified prices are given by ∂x̂θ,i/∂q̂j,s = ∂x̂θ,i/∂qj,s if xj /∈ {ys, zs},
and ∂x̂θ,i/∂q̂j,s = −∂x̂θ,i/∂qj,s otherwise. Similarly, we define the income elasticity ηθi,s as the

income response ∂x̂θ,i/∂Rs weighted by the net-of-tax rate 1 − τxi,s. Therefore, equation (6)

can be re-written as

δx̂θ,i =

2S∑
j=1

∂x̂θ,i
∂qj,s

q̃j,s +
∂x̂θ,i
∂Rs

R̃s =

2S∑
j=1

x̂θ,i
q̂j,s

[
±ζu,θi,j,s

]
q̃j,s +

1

1− τxi,s
ηθi,sR̃s,

where ± stands for + if xj /∈ {ys, zs}, and − otherwise. The definitions of the income and price

elasticities in the case of the non-linear budget constraints are extended as described above.

We derive in the Appendix analytical expressions for all these elasticities and income effect

parameters.14

3.2 The effect of non-linear perturbations

We now analyze the change in an individual’s income vector xθ in response to an admissible

perturbation hp of the period-p tax function Tp. The main difficulty in analyzing the effects of

tax reforms is that the individual’s demand xθ depends on the characteristics (normal vector

and intercept) of the tangent hyperplane Hθ that he faces, which in turn are determined by

the vector of incomes xθ that the individual optimally chooses. Therefore a perturbation of

the individual’s hyperplane has a direct effect on his demand, which in turn induces a shift

in his hyperplane if the baseline tax function is non-linear. The key intermediate step of our

analysis is to provide a sufficient condition on the individual demand which allows us to solve

13Our definitions are straightforward to generalize when Assumption 1 does not hold. In this case the definitions
above are replaced by the average response by all types θ who choose the vector x under the baseline tax schedule.

14In the general model, these expressions are of course complicated. We show in Section 6 that they significantly
simplify if the utility function has no income effects on labor supply and the baseline tax system is separable.
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this circularity issue. This condition, which states that the demand is “well behaved” in a

formal sense, allows us to derive the change in income of each individual due to a perturbation

using only the local income and substitution effects at the individual level, and the curvature

of the baseline tax system. Specifically, we make the following assumption about the income

functional xθ, which formalizes the idea that individuals’ income choices do not change by a

discrete amount in response to infinitesimal admissible perturbations of the initial tax system

T 0.15

Assumption 2. The income functional xθ (·) is locally Lipschitz continuous in every direction

hp at the initial tax system Tp. That is, for any admissible perturbation hp ∈ C2 (X,R), there

exist µ̄ > 0 and M > 0 such that µ < µ̄ implies ‖xθ (Tp + µhp)− xθ (Tp)‖ < M × µ.

Using Assumption 2, we are now able to derive formally the change in individual behavior in

response to a perturbation hp of the baseline tax system, that is, the Gateaux differential of the

individual income function in the direction hp. In response to this perturbation, all the labor

and capital incomes chosen by the individual change simultaneously. We show that despite the

apparent complexity of the problem, we can derive, using the matrix notations introduced above,

a compact and transparent formula giving the change in individual’s behavior following any such

perturbation. We express these behavioral responses in terms of: (i) the elasticities and income

effect parameters of the individual, and (ii) the local characteristics (gradient and Hessian) of

the baseline tax function. We view the derivation of the formula in the next proposition and,

most importantly, its compact and transparent representation, as one of the main contributions

of this paper.

Proposition 1. Suppose that Assumption 2 is satisfied. Then the income functional xθ (·)
is Gateaux differentiable around the initial tax system. Its Gateaux differential at Tp in the

direction hp, δxθ (Tp, hp) ∈ R2S, is given by:

δxθ (Tp, hp) =

[
i2S −

S∑
s=1

Ec
s (xθ)D2Ts (xθ)

]−1 {
Ec
p (xθ)∇hp (xθ)− Ip (xθ)hp (xθ)

}
, (8)

where i2S the 2S × 2S identity matrix, and D2Ts (x) the Hessian of the tax function Ts (·).

Proof. See Appendix.

We now sketch the main steps of the proof of Proposition 1. The individual’s behavior under

the baseline tax function Tp (resp., the perturbed tax function T̃p = Tp + µhp) is described by

15The same issue also arises in dual approach to optimal linear taxation developed by Diamond and Mirrlees
(1971). In particular, to be able to express the effect of tax changes in terms of elasticities one needs to assume that
consumer demand is differentiable in prices and lump-sum income at the optimal tax schedule. Differentiability of
demand in classical consumer demand theory generally does not follow from differentiability and strict concavity
of utility functions (Katzner 1968) and requires additional Lipschitzian assumptions on demand (Rader 1973,
1979). In our setting with non-linear taxes this assumption also rules out bunching (see, e.g., Rochet and Choné
1998).
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the following system of first-order conditions

Uxj (Hθ (xθ),xθ,θ) =

S∑
s=1

qj,s (xθ)Ucs (Hθ (xθ),xθ,θ) , (9)

where qj,s (xθ) are defined in (7). The first step is to write a Taylor expansion in the direction

hp of the perturbed set of equations, which yields the first-order (in µ) change in the income

vector, x̃θ − xθ. The local Lipschitz continuity of the income functional around the baseline

tax system, Assumption 2, is the key to address the circularity issue discussed above, as it

ensures that the change in income remains first-order in the size µ of the perturbation despite

the feedback effect on demand generated by the endogenous shift of the tangent hyperplane

along the baseline tax function. We obtain that the individual changes his income vector xθ in

response to the perturbation by an amount

dxθ =
[
Ec
p (xθ)∇hp (xθ)− Ip (xθ)hp (xθ)

]
+

[
S∑
s=1

Ec
s (xθ)D2Ts (xθ)

]
× dxθ, (10)

which leads to equation (8).

The first bracket of (10) is the direct effect of the perturbation. The perturbation increases

marginal taxes at income level xθ by ∇hp (xθ) and the individual’s response this induces is

captured by the matrix of compensated elasticities Ec
p. Moerover, the total tax liability at

income xθ is changed by hp (xθ), and the income effect of such a tax change is summarized by

Ip. The second bracket is the indirect effect due to the endogenous shift in the tax rates. Since

the baseline tax system is non-linear, the consumer, who adjusts his demand in response to the

original exogenous tax change, generally faces a different marginal tax rate after adjustment.

The shift of the taxpayer demand xθ along the non-linear tax function by dxθ produces an

additional change in the marginal rates in all periods s ∈ {1, . . . , S} equal to d (∇Ts) (xθ) =(
D2Ts (xθ)

)
dxθ, and the behavioral responses from this change are captured by Ec

s.

The important point to notice is that the consumer’s response depends only on taxes and

the perturbation evaluated at the consumer’s optimal choice in the baseline tax schedule, before

the perturbation. This allows us to express the response of any individual’s choice of labor

and capital incomes following any local perturbation of the baseline tax system, without having

to solve for the optimization problem (1), and describe this response in terms of empirically

observable and easily interpretable parameters. We can do so by substituting the values of the

specific perturbation function hp, i.e., its marginals ∇hp (xθ) and its level hp (xθ) at point xθ,

into equation (8). Importantly, this characterization is valid in very general settings and holds

regardless of the specific dimensions of heterogeneity, utility functions, tax systems, etc., as long

as the individual’s first-order conditions and Assumption 2 are satisfied.

We conclude this section by providing two examples of application of formula (8). First,

suppose that the baseline tax system is linear and separable, so that income xp is taxed at the
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constant rate τp, for all p ∈ {1, . . . , 2S}. Consider the perturbation µhp (x) = µτ̃pxp for all x.

This perturbation hp corresponds to an increase in the marginal tax rate on good xp by µτ̃p, with

no change in lump-sum income. Let h ≡
∑2S

p=1 hp denote the sum of these perturbations. Since

the baseline tax system is linear, the second bracket in (10) is equal to zero and the behavioral

response of income vector x as µ→ 0 is equal, using the Slutsky equation (5), to

δx (T , h) =

2S∑
p=1

Eu
p (x) · [0, . . . , τ̃p, . . . , 0]T .

The typical element of the vector δx (T , h) can be written in elasticity form as

δxi (T , h) = −
2S∑
p=1

τ̃p
1− τp

xiζ
u
xi,q̂p

(x) ,

where ζuxi,q̂p (x) ≡ 1−τp
xi

∂xi
∂(1−τp) is uncompensated elasticity of demand for good i with respect to

a change in the net-of-tax rate (the “modified price” q̂p) on good xp, evaluated at a vector x.16

This is just a standard expression that shows that individuals’ response to an increase in linear

tax rates is proportional to uncompensated behavioral responses.

Second, consider the static Mirrlees model (S = 1) with a non-linear labor income tax

schedule T (y), and let hτ denote the perturbation of the baseline tax schedule defined by

hτ (y) = max {y − ŷ, 0}, for some fixed income level ŷ ∈ R. For a given µ > 0, the perturbed

tax schedule is therefore given by T̃ (y) = T (y) if y < ŷ, and T̃ (y) = T (y) + µ (y − ŷ) if y ≥ ŷ.

Intuitively, this perturbation increases the marginal tax rate T ′ (y) faced by individuals above

the income threshold ŷ by the same amount µ > 0. Note that this perturbation introduces a kink

in the tax system at ŷ, and hence strictly speaking it is not admissible. We smooth out the kink

by defining instead the admissible perturbation h̃τ as h̃τ (y) = hτ (y) for all y /∈ [ŷ − u, ŷ + u] for

some small u > 0, and letting h̃τ be smooth and monotonic between ŷ− u and ŷ+ u. Applying

formula (8), we obtain that an individual with income y > ŷ+u adjusts his behavior in response

to the perturbation h̃τ by the amount:

δy (T, hτ ) = −
y

1−T ′(y)ζ
c
y,w (y)

1 + y
1−T ′(y)ζ

c
y,w (y)T ′′ (y)

−
1

1−T ′(y)ηy (y)

1 + y
1−T ′(y)ζ

c
y,w (y)T ′′ (y)

(y − ŷ) ,

16If the goods x represent the labor and capital incomes y, z, we have xp = yp for p ≤ S and xp = zp for
p ≥ S + 1. Suppose that yp and zp are taxed in period p at rate τy,p ≡ τp and τz,p ≡ τp+S−1, respectively. Using
the definitions of the elasticities ζu,θi,j,s introduced in the previous section, we obtain that ζuxi,q̂p is equal to ζu,θi,p,p

if p ∈ {1, . . . , S} (so that xp = yp, which is taxed in period p), and to ζu,θi,p,p−S+1 if p ∈ {S + 1, . . . , 2S} (so that
xp = zp−S+1, which is taxed in period p − S + 1). The net-of-tax rates q̂p are equal to q̂p,p if p ∈ {1, . . . , S},
and to q̂p−S+1,p if p ∈ {S + 1, . . . , 2S}. For ease of notation, in the sequel, whenever labor and capital incomes
earned in period p are taxed only in period p, in our expressions for the elasticities we denote by wp ≡ q̂p the
modified price (net-of-tax rate) on period-p labor income yp, and by rp ≡ q̂p the modified price (net-of-tax rate)
on period-p capital income zp.
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where ζcy,w is the compensated elasticity of y with respect to the net-of-tax rate on labor income

(see footnote 16), and ηy is income effect of y with respect to the lump-sum income.17 Next,

consider the perturbation hR defined by hR (y) = 1, so that for a given µ > 0, the perturbed

tax schedule is therefore given by T̃ (y) = T (y) + µ. Intuitively, this perturbation increases the

total tax liability faced by individual y by the amount µ > 0. Applying formula (8), we obtain

that an individual with income y adjusts his behavior in response to the perturbation hR by the

amount:

δy (T, hR) = −
1

1−T ′(y)ηy (y)

1 + y
1−T ′(y)ζ

c
y,w (y)T ′′ (y)

.

4 Welfare Effects of Tax Reforms and Optimal Tax System

Having defined the perturbations and described the effects that they induce on individual be-

havior, we now derive the revenue and welfare effects of these tax reforms, and characterize

the optimal tax system. Specifically, we start from a baseline tax system, which can be sub-

optimal or optimal. We locally perturb this tax system with tax reform, as defined above.

Our first result (Proposition 2) describes the revenue and welfare effects of these local tax re-

forms. Formally, we compute these local effects as the Gateaux differentials of the revenue and

social welfare functionals. These give the sign and the magnitude of the potential gains that

arise from reforming the current, potentially suboptimal, tax code. If the perturbation yields

a strictly positive (revenue or welfare) effect, then the corresponding tax reform is (revenue

or welfare)-improving and should be implemented. The second result that our theory yields

(Proposition 3) is a characterization of the globally optimal tax function. Specifically, the base-

line tax system is optimal only if there is no local tax reform that yields a strict improvement.

Characterizations of the revenue-maximizing or welfare-maximizing tax systems are therefore

obtained by setting the Gateaux differentials of the corresponding functionals equal to zero for

any admissible perturbation. Note finally that a similar reasoning yields a characterization of

the optimum tax system within a restricted class (e.g., of linear, separable, etc., tax systems),

by restricting the analysis to the perturbations within the corresponding class.

We start by defining the social marginal welfare weights gs (x) that the planner assigns to

agents with various income choices. These weights are defined such that the government is

indifferent between having gs (x) more dollars of public funds in period s and giving one more

dollar in period s to the taxpayers with choice vector x. The smaller gs (x) is, the less the

government values marginal consumption of individuals x. We formally define the period-s

social marginal welfare weight associated with an individual with the choice vector x (and type

17Using the definition of ηθi,s above, we have ηy ≡ ηθ1,1.
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θ such that xθ = x) as18

gs (x) ≡ 1− α
λ

β−(s−1)G′ (Uθ (T ))Ucs (θ) . (11)

Intuitively, the envelope theorem implies that an additional dollar of revenue increases the indi-

vidual’s indirect utility by dU = Ucs , and social welfare increases by d [G (U )] = G′ (U ) dU =

G′ (U )Uct . We express this welfare gain in terms of the value of public funds (that is, in

monetary units) by dividing this expression by the multiplier λ.

We now characterize the revenue and welfare effects of local tax reforms. Formally, we fix a

period p and compute the Gateaux differential of the social welfare W (·) and the tax revenue

R (·) following a perturbation of the baseline tax function Tp in the direction hp ∈ C2 (X,R).

We show:

Proposition 2. Suppose that Assumptions 1 and 2 are satisfied. The Gateaux differential of

social welfare at the baseline tax system Tp in the direction hp, is equal to

δW (Tp, hp) =

ˆ
X

{[
βp−1 (1− gp (x))− T ′ (x)D−1 (x) Ip (x)

]
fx (x)hp (x)

+
[
T ′ (x)D−1 (x)Ec

p (x)
]
fx (x)∇hp (x)

}
dx,

(12)

where D (x) ≡ i2S−
∑S

s=1E
c
s (x)D2Ts (x), and T ′ (x) ≡

∑S
s=1 β

s−1 (∇Ts (x))T is the discounted

sum of the (transposed) gradients of the baseline tax functions Ts (·).19 This expression can be

equivalently written as

δW (Tp, hp) =

ˆ
X

{
βp−1 (1− gp (x)) fx (x)− T ′ (x)D−1 (x) Ip (x) fx (x)

−∇ ·
(
T ′ (x)D−1 (x)Ec

p (x) fx (x)
)}
hp (x) dx.

(13)

The perturbation increases (resp., decreases), social welfare if δW (Tp, hp) ≥ 0 (resp., ≤ 0). The

Gateaux differential of the tax revenue functional, δR (Tp, hp), is given by equations (12,13) in

which gp (x) is replaced with 0. The perturbation increases (resp., decreases), tax revenue if

δR (Tp, hp) ≥ 0 (resp., ≤ 0).

Proof. See Appendix.

Formulas (12) or (13) give the effects on social welfare of any local perturbation of the

baseline tax system in the direction hp. Equation (12) is obtained from the following formula,

18If Assumption 1 is not satisfied, then the social marginal welfare weight gs (x) should be defined as the average
of the expression (11) over all individuals θ who choose the same vector x.

19For instance the first component of the 2S-row vector T ′ (x) is the sum of the marginal tax rates on first-period
labor income y1 that the individual pays in every period of his life.
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which follows from the definition (3) of social welfare and is formally derived in the Appendix:

δW (Tp, hp) = λ−1

[ˆ
X

{
αV ′ (R)βp−1 − (1− α)G′ (Ux)Ucp (x)

}
hp (x) fx (x) dx

+αV ′ (R)

ˆ
X
T ′ (x) δx (Tp, hp) fx (x) dx

]
,

(14)

where δx (Tp, h) denotes the Gateaux differential of the individual income functional derived in

(8). The change in social welfare following the perturbation hp comes from the effect on the

individuals’ utilities (the term that is multiplied by (1− α)G′ (Ux) in (14)) and the effect on

the public goods through the change in tax revenue (the terms that are multiplied by αV ′ (R)

in (14)). Equation (13) is then obtained by integrating (13) by parts, using our assumption that

there is no mass of individuals at the boundary of the set X at the baseline tax system.

Intuitively, the first integral of equation (14) is the mechanical effect, net of the welfare loss,

of the perturbation hp, and the second integral is the behavioral effect of the tax reform. The

mechanical effect captures the increase in government revenue due to the tax reform, assuming

that individuals do not change their behavior in response to the perturbation. An individual

with income x before the perturbation pays the additional tax liability hp (x) in period p after

the perturbation. By definition of the marginal social welfare weights (11), this induces a loss

in social welfare, expressed in units of tax revenue, equal to gp (x)hp (x). Summing over all

individuals x ∈ X using the density of incomes fx (x) yields the first integral in (14). Next,

the behavioral effect of the perturbation captures the change in government revenue due to

the behavioral response of individuals whose vector of labor and capital incomes x is affected

by changes in the marginal tax rates or the virtual incomes. We derived in Proposition 1 the

change dx = δx (Tp, hp) in each individual’s income vector x induced by the perturbation hp.

This induces in turn a change in government’s revenue in every period s, given by d [Ts (x)] =

(∇Ts (x))T dx. The overall behavioral effect of the perturbation is thus equal to the second

integral in (14). Finally, the effect on government revenue is identical to the effect on social

welfare, except that we do not take into account the welfare loss of the perturbation described

above. We call the perturbation hp budget-neutral if δR (Tp, hp) = 0.

Formula (13) (or equivalently (14)) allows to compute in a wide variety of settings the effects

on social welfare of any local taxreform hp of the baseline tax system, by simply substituting

the values hp (x) of the corresponding perturbation in the integral of (13). We analyze several

examples of application of this result in Sections 5 and 6.

We can also use formula (13) to characterize the optimal tax system, or the optimum within a

restricted class. Specifically, if the baseline tax system is optimal (possibly within a class) then

there is no tax reform (within the corresponding class) that yields a positive effect on social

welfare. Thus, by equating the Gateaux differential of social welfare for any such perturbation

to zero, we obtain the optimum tax system. We obtain the following proposition:

Proposition 3. Suppose that Assumptions 1 and 2 are satisfied. Then:
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- A necessary condition for the baseline tax function Tp to be optimal (resp., optimal within

a class) is that, for any perturbation hp ∈ C2 (X,R) (resp., for any perturbation restricted within

this class), we have

δW (Tp, hp) = 0. (15)

- In particular, applying (15) to the class of separable linear perturbations,we obtain that the

optimum separable linear tax system is characterized by, for all p ∈ {1, . . . , 2S}:

0 =

ˆ
X

{
βp−1 (1− gp (x))xp + T ′ (x)

[
Ec
p (x)

]
p
− xpT ′ (x) Ip (x)

}
fx (x) dx

=

ˆ
X

{
βp−1 (1− gp (x))xp + T ′ (x)

[
Eu
p (x)

]
p

}
fx (x) dx,

(16)

where
[
Ec
p

]
p

is the pth column of the matrix Ec
p.

- In particular, applying (15) to the class of all admissible perturbations, we obtain that

the baseline tax system is the full optimum if, for any compact volume V ⊂ X with closed and

piecewise smooth boundary S = ∂V, we have, for all p ∈ {1, . . . , 2S}:

0 =

ˆ
V
βp−1 (1− gp (x)) fx (x) dx−

ˆ
V

(
T ′ (x)D−1 (x) Ip (x)

)
fx (x) dx

+

ˆ
∂V

(
T ′ (x)D−1 (x)Ec

p (x) · −→n (x)
)
fx (x) dS (x) ,

(17)

where −→n (x) is the inward-pointing unit normal vector of the closed surface S at point x.

Proof. See Appendix.

Proposition 3 has three parts. First, equation (15) formalizes the intuition that the baseline

tax system is optimal (resp., optimal within a class) if no tax reform (resp., no tax reform that

leaves the tax system within the corresponding class) induces a non-zero welfare gain. It is a

standard first-order condition which should be satisfied by any perturbation (possibly within a

restricted class), and thus provides a general characterization of the optimality of any tax system.

The second and third parts of Proposition 3 show two examples of application. Equation (16)

characterizes the optimal separable linear tax system, that is the set {τxs}1≤s≤2S of constant

marginal tax rates on each income xs. Note that the optimal linear tax system is such that

the total mechanical (net of the welfare loss) and behavioral (elasticitiy and income) effects,

averaged over the whole population of individuals x ∈ X, must sum to zero. This is because

in a linear tax system, all the individuals face the same marginal tax rate, so that the feasible

tax reforms increase the tax rates by the same amount for every individual in order to leave

the perturbed tax system within this class. Moreover, the sum of the individual compensated

elasticity effect and income effect in the first line of (16) yields the uncompensated elasticity

term in the second line, from the Slutsky equation.

Equation (17) characterizes the fully optimal (in particular, non-linear and non-separable)
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tax system. We obtain this expression by imposing that every perturbation hp yields a zero

welfare effect, so that the integrand in equation (13) must be equal to zero pointwise. Integrating

the resulting equation over any volume V ⊂ X with closed boundary S = ∂V must therefore have

a zero effect. We then obtain formula (17) as a consequence of the divergence theorem, which

separates the total behavioral effect of the tax reform into its components in the interior and

on the surface of the volume V. To understand the intuition underlying this formula, suppose

that the government wants to raise revenue by increasing uniformly and in a lump-sum way the

tax liability of individuals with income in the region x ∈ V. This mechanically increases the

government’s revenue, since all the individuals in the region V now pay higher taxes; summing

the individual mechanical effects (net of the welfare losses) over the region V yields the first

integral in equation (17). Moreover, these individuals respond to the lump-sum increase in their

tax liability by adjusting their incomes, as captured by the vector of income effect parameters

Ip; summing these behavioral effects over all the individuals in the region V yields the second

integral in (17). Finally, the government can only raise the lump-sum tax liability in the region

V by increasing the marginal tax rates of the individuals located on the boundary of V, that is

those with income x on the surface S = ∂V. These individuals respond to this higher distortion

by adjusting their incomes, as captured by the matrix of compensated elasticities Ec
p; summing

these behavioral effects over all the individuals on the boundary S = ∂V yields the third integral

in (17). Formula (17) thus shows that the optimal tax system is such that, for any region V

of the space X ⊂ RS+ × RS , the elasticity effect induced by the additional distortion on the

boundary ∂V exactly compensates the mechanical and the income effects due to the lump-sum

tax increase inside the region V.

To show an example of application, consider the static Mirrlees model with a single income

dimension y ≥ 0, and apply formula (17) to the volume V = [ŷ,∞), for some income level ŷ.20

The boundary of V is the singleton ∂V = {ŷ}; its inward pointing unit normal −→n (x) is the real

number 1. We obtain

0 =

ˆ ∞
ŷ

(1− g (y)) fy (y) dy −
ˆ ∞
ŷ

T ′ (y)
1

1 + y
1−T ′(y)ζ

c
y,w (y)T ′′ (y)

ηy (y)

1− T ′ (y)
fy (y) dy

−

[
T ′ (ŷ)

1

1 + ŷ
1−T ′(ŷ)ζ

c
y,w (ŷ)T ′′ (ŷ)

ŷζcy,w (ŷ)

1− T ′ (ŷ)
fy (ŷ)

]
.

(18)

This equation is the analogue of (17) for the static model, derived in Saez (2001). In particular,

the third term of (18) (in the square brackets) is the analogue of the third term in (17), i.e.,

the integral over the boundary ∂V. Intuitively, in order to raise the lump-sum tax liability of

individuals with income y ∈ [ŷ,∞) (the region V, which generates a mechanical effect and an

20Rigorously, to apply formula (17), we need to work with a compact volume [ŷ, ŷ′], with an additional boundary
{y = ŷ′}, on which the inward pointing normal is the real number −1, and let ŷ′ →∞, using limy→∞ fy (y) = 0.
The matrix D (x) is equal to the real number 1 + y

1−T ′(y)ζ
c
y,w (ŷ)T ′′ (y) in the static setting, the vector T ′ (x) is

T ′ (y), the matrix Ec
p is − y

1−T ′(y)ζ
c
y,w (y) and the vector Ip is 1

1−T ′(y)ηy (y).
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income effect given by the first two terms of (18)), the government must increase the marginal

tax rate at the income level y = ŷ (the surface ∂V, which generates an elasticity effect given

by the third term of formula (18)). We discuss the economic intuition further in more detail in

Section 5.3.

Equations (16) and (17) highlight the source of the gains that arise from using more sophis-

ticated tax systems. In the case of the optimal separable linear tax system (16), the mechanical

and behavioral effects of any feasible perturbation must cancel out on average over the whole

population x ∈ X. On the other hand, in the case of the fully optimal tax system, these oppos-

ing forces must cancel out pointwise, that is over every region x ∈ V. Using more sophisticated

tax instruments allows the government to “fine-tune” optimally the distribution of distortions

within the population, whereas a linear tax system is constrained to imposing the same tax rate

on every individual, and hence to balance the increase in tax revenue against a measure of the

average distortion in the economy. The unrestricted government can thus choose appropriately

the volume V so that the distortions induced by the higher marginal tax rates on the boundary

∂V are small relative to the benefits of higher lump-sum taxes in the interior of V, because

either the fraction of individuals fxdS or the behavioral responses to distortions D−1Ec
p on the

boundary ∂V are relatively small. Therefore, non-linear tax instruments allow the government

to disentangle the compensated elasticity from the income effect, and target these two compet-

ing forces to different segments of the population. On the other hand, we saw in the case of

the linear tax system that every individual must face both the elasticity and the income effect,

leading to the uncompensated elasticity term in the second line of equation (16). We discuss

this general principle in greater detail in Sections 5 and 6 below.

Equating the integrand of (13) to zero at each point x yields a partial differential equation

system which, along with the individual’s first-order conditions (9) characterizes the optimal tax

system in terms of the endogenous distribution fx of incomes x ∈ X. We can change variables

to rewrite this PDE using the exogenous density fθ of types θ ∈ Θ instead.21 Assume that

individuals have 2S dimensions of characteristics, so that their vectors of types and incomes

have the same dimension. We show in the Appendix that the optimal tax system is the solution

to the partial differential equation:

0 = (1− gp (x (θ)))
fθ (θ)

det (Jx (θ))
+ T ′ (x (θ))

Jx (θ)

det (Jx (θ))

[
J−1
F (θ) JF (Tp)

]
fθ (θ)

−
2S∑
j=1

2S∑
i=1

[(
J ′x (θ)

)−1
]
i,j

∂

∂θi

{
T ′ (x (θ))

Jx (θ)

det (Jx (θ))

[
J−1
F (θ) JF (τ p)

]
fθ (θ)

}
j

,

(19)

where Jx (θ) = [∂xθ,i/∂θj ]1≤i,j≤2S is the Jacobian matrix of the income function x (θ), det (Jx (θ))

21Changing variables from x to θ to characterize the fully optimal tax system is useful because the resulting
partial differential equation does not feature the deformation matrix D (x), so that we can solve directly for the
marginal tax rates T ′ (x (θ)). On the other hand, it is more useful to work with the distribution of incomes when
deriving the welfare effects of local tax reforms of suboptimal tax systems, because it is observed given the current
tax code.
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is its determinant, and JF (τ p) , JF (Tp) , JF (θ) are defined by JF (τ p) =
[
∂Fi/∂τxj ,p

]
i,j

, JF (Tp) =

[∂Fi/∂Tp]i, and JF (θ) = [∂Fi/∂θj ]i,j , for the function F that represents the individual’s first-

order conditions as a non-linear system of 2S equations

F
(
xθ, {∇Ts (xθ)}Ss=1 , {Ts (xθ)}Ss=1 ,θ

)
= 0. (20)

In order to calculate these latter three matrices, we need to work with a specific model of

heterogeneity, and write explicitly the system of first-order conditions in the form of (20). In

the Appendix, we do so for a dynamic model in which the 2S sources of heterogeneity (i.e., the

idiosyncratic vector θ) are the productivity of labor supply and the interest rate on the capital

stock in each period. In particular, in the static Mirrlees model, we can easily compute the

matrices J−1
F (θ), JF (τ p), JF (Tp) by differentiating the individual’s first order conditions, so

that we obtain the following formula:

0 = (1− g (θ)) fθ (θ)− T ′ (yθ)

1− T ′ (yθ)
ẏθ
yθ

ηy (yθ)

1 + ζuy,w (yθ)
θfθ (θ)

+
d

dθ

{
T ′ (yθ)

1− T ′ (yθ)
ζcy,w (yθ)

1 + ζuy,w (yθ)
θfθ (θ)

}
.

(21)

Integrating this differential equation yields the characterization of the optimal marginal income

tax rates T ′ (yθ) / (1− T ′ (yθ)) derived by Mirrlees (1971). An advantage of writing the formula

for the optimal tax schedule in the form (21) rather than in the original form of Mirrlees (1971)

is that the explicit notation for the income and the substitution effects makes transparent the

underlying economic effects that determine the optimal marginal taxes.

5 Applications to Optimal Taxation

In this section we discuss applications of our general analysis to optimal taxation. We first show

how our results reproduce two canonical benchmarks in public finance: the optimal Ramsey

tax formula of Diamond (1975), and the optimal non-linear income tax formula in a static

economy due to Mirrlees (1971). We then apply our analysis to several environments to obtain

novel insights about non-linear labor income taxation and capital income taxation in dynamic

economies.

In Sections 5.1 to 5.4, we focus on separable tax systems. The tax function in period s

depends on labor income ys and capital income zs as Ty,s (ys) + Tz,s (zs). To simplify the

notations, we let x̄s ≡ E [xs] denote the average income xs ∈ {ys, zs} in period s in the economy.

In some applications we take expectations conditional on vector x lying in a set V, in which

case we denote x̄V
s ≡ E [xs|x ∈ V]. With the exception of the last part of Section 6, in all our

applications taxes on income earned in period s are assumed to be paid in period s. Hence we

use ζcxs,q̂p , ζ
u
xs,q̂p

to denote compensated and uncompensated elasticitities of income xs to the
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net-of-tax rate on income xp.
22 Similarly, ηxs,p denotes the effect of an increase in lump-sum

income in period p on income xs. Let ζ̄cxs,q̂p , ζ̄
u
xs,q̂p

, η̄xs,p be the following weighted averages of

the compensated price elasticity, uncompensated price elasticity and income effect parameter

among all individuals, with additional superscript V notation if the elasticities are averages over

x ∈ V:

ζ̄
(V)
xi,q̂p

≡
ˆ
x∈V

xi
x̄V
p

ζxi,q̂p (x) fx (x |x ∈ V) dx,

η̄(V)
xs,p ≡

ˆ
x∈V

q̂s
1− τxs,p

ηxs,p (x) fx (x |x ∈ V) dx.

(22)

As explained in footnote 16, in the notations for the elasticities we use the subscript wp (resp,

rp) for the net-of-tax rate q̂p on labor income yp (resp., capital income zp−S+1).

5.1 Optimal Commodity Taxation

As a first application of our theory, consider the analysis of Ramsey (1927) and Diamond (1975),

who restrict the tax system to be separable and linear in each income, so that in each period s

a consumer pays a proportional tax Ts (x) = τsxs+ τS+sxS+s on the s-th and S+s-th argument

of vector x = [y1, .., yS , z2, ..., zS+1]. Applying formula (16), we obtain

2S∑
s=1

βs−p
τs

1− τp
ζ̄us,p =1− E

[
xp
x̄p
gp

]
for p = {1, ..., 2S}. (23)

Define the net social marginal utility of income for individual x as

bp (x) ≡ gp (x)−
2S∑
s=1

βs−p
τs

1− τs
ηs,p (x) ,

and let b̄p ≡ E [bp (x)]. Using the Slutsky equations and rearranging the previous equation, we

obtain, for all p,

2S∑
s=1

τs
1− τp

ζ̄cs,p = 1− b̄p − b̄p · cov

(
bp

b̄p
,
xp
x̄p

)
for p = {1, ..., 2S}.

This is Ramsey’s formula with several consumers, first obtained by Diamond (1975).

5.2 Optimal Age-Independent Capital Income Tax Rates

In this section we study capital income taxes that are restricted to be linear and constant over

many periods. Such taxes arise naturally in several cases. First, many applications impose an a

22As explained in footnote 16, using the notations of Section 3.1 q̂p denotes the modified price q̂p,p ≡ 1− τyp,p
if p ≤ S, and q̂p,p−S+1 ≡ 1 − τzp−S+1,p−S+1 if p ≥ S + 1. In equation (22), note that τxs,p is equal to 0 unless
xs ∈ {yp, zp}.
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priori assumption that capital taxes do not depend on the time period, e.g., Conesa, Kitao and

Krueger (2009). Second, the optimal asymptotic capital tax rate in infinite horizon economies,

analyzed by Chamley (1986) and Judd (1985), is equivalent to a tax that is constant across time

after the economy reaches the steady-state.

For our analysis we abstract from income effects on labor supply and assume that preferences

are of the form

U =

S∑
s=1

βs−1u

(
cs − v

(
ys
θs

))
. (24)

When labor supply has no income effects, the form of labor income taxes (linear, separable

non-linear, or even history-dependent) is irrelevant for our main result.

First, note that when capital taxes can be chosen freely in each period, the optimal tax rate

in period p satisfies Ramsey’s formula (23), where the cross-partial elasticities ζ̄uys,rp between

labor income and the capital income tax rates are equal to zero. If instead we exogenously

restrict the tax rates to be constant across time, we can apply the general formulas (12) and

(15) to obtain the following characterization of the optimal age-independent capital income tax

rate τz:

Proposition 4. Suppose that the utility function has no income effects on labor supply as defined

in (24). The optimal age-independent capital income tax rate τz is then given by:

τz
1− τz

=

1−
S∑
p=2

γpE
[
zp
zp
gp

] 1∑S
p=2 γpζ̊

u
p

, (25)

where the weights γp and the compounded uncompensated elasticity ζ̊up are equal to

γp =
βp−1zp∑S
s=2 β

s−1zs
, and ζ̊up =

S∑
s=2

βs−pζ̄uzs,rp .

Proof. See Appendix.

The weight γp is the ratio between the mechanical effect of a linear perturbation of the capital

income tax rate in period p only (the tax revenue generated in period p is proportional to the

average capital income zp in the economy in period p), and the total mechanical effect of the

age-independent perturbation (which raises revenue in every period s ≥ 2). The compounded

elasticity ζ̊up measures the behavioral effect of the period-p capital income tax change on capital

income in all periods. This is a shorthand for all the cross-partial elasticities that appear on

the left hand side of (23). Since tax rates do not depend on age in this application, the relevant

behavioral elasticity is the sum of all ζ̊up weighted by the fraction of the capital stock affected

by the perturbation in period p, γp.

To illustrate the compounding effect arising from age-independent taxation, assume for sim-
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plicity that the capital income distribution is age-independent, so that γp = βp−1/
∑S

s=2 β
s−1

is simply equal to a (normalized) discount factor. We now compare this compounded elasticity

with the behavioral response of capital income to a one-period change in the tax rate, that is, a

perturbation of the capital income tax rate in only one period. We show that compounding the

elasticities over a longer horizon can either increase or lower the elasticity that is relevant for

the optimal tax rate, depending on the relative strenghts of the income and substitution effects.

First, observe that the compounded uncompensated elasticity can be written, using the Slutsky

equation, as the sum of the compounded compensated elasticity and the compounded income

effect parameter:

S∑
p=2

S∑
s=2

γpβ
s−pζ̄uzs,rp =

S∑
p=2

S∑
s=2

γpβ
s−p
[
ζ̄czs,rp + η̄zs,p

]
.

The compensated elasticies of capital income are always positive, while the income effect pa-

rameter η̄zs,p is negative for s ≤ p and positive otherwise. The size of the compounded uncom-

pensated elasticity thus depends on whether the substitution effect dominates the net income

effect of a tax change. The analysis is the most stark if we follow Judd (1985) and assume that

capital is being held only by the agents who have no labor income, and whose utility is then

u(c) = c1−σ/(1− σ). To simplify calculations, assume further that S =∞. Computing directly

the compensated elasticities ζ̄czs,rp and the income effect parameters η̄zs,p when after-tax interest

rates are equal to β−1, we can compare the compounded elasticity to the elasticity of one-time

tax change in period two. For concreteness, we state the following proposition comparing the

effect of an age-independent tax change to a tax change in period two.

Proposition 5. Assume that all the assumptions of this section are satisfied. Then the elasticity

of capital income with respect to a change in the capital income tax rate in period two only,

satisfies

∞∑
p=2

∞∑
s=2

βs−1ζ̄uzs,rp ≥
∞∑
s=2

βs−1ζ̄uzs,r2 , if σ ≤ 1,

∞∑
p=2

∞∑
s=2

βs−1ζ̄uzs,rp <
∞∑
s=2

βs−1ζ̄uzs,r2 , if σ is sufficiently large. (26)

Proof. See Appendix.

Proposition 5 shows that compounding the elasticities may either increase or decrease the

effective behavioral effect of capital income depending on the value of the intertemporal elasticity

of substitution σ. Note that with our preferences, we have η̄zs,p = −σζ̄czs,rp if s ≤ p. This result

builds on the insights developed by Straub and Werning (2014). One way to see the connection

with their work is to consider a perturbation in capital taxes after some period P and take the
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limit as P → ∞. In this case the positive income effects become negligible and we obtain the

result of Proposition 6 in Straub and Werning (2014):

lim
P→∞

β−(P−1)
∞∑
p=P

∞∑
s=2

βs−1ζ̄uzs,rp =

∞, if σ < 1,

−∞, if σ > 1.
(27)

Straub and Werning (2014) then use this insight to provide an intuition for their results that

the optimal capital tax rate converges to zero in the long run steady state only if σ < 1 and

that they remain positive and may even converge to infinity for σ ≥ 1. Proposition 5 shows that

the mechanisms they emphasize continue to operate for age-independent taxes even in the short

run.

5.3 Optimal Non-Linear Labor Income Taxation

As a third application of our theory, consider the static model of optimal income taxation

analyzed by Mirrlees (1971). Suppose that S = 1, there is no capital income and the individual

utility is given by u(c, y/θ). We derived in equation (18) the optimal non-linear labor income

tax schedule T (y). We can rewrite this formula as:

0 =Ey≥ŷ [1− g]− Ey≥ŷ
[

T ′ (y)

1− T ′ (y) + yζcy,w (y)T ′′ (y)
ηy (y)

]
− T ′ (ŷ)

1− T ′ (ŷ) + ŷζcy,w (ŷ)T ′′ (ŷ)
ζcy,w (ŷ)

ŷf (ŷ)

1− F (ŷ)
,

(28)

Equation (28) is the formula obtained by Saez (2001). It formalizes his heuristic arguments that

the optimal marginal tax rate on labor income ŷ is driven by three forces: (i) the compensated

elasticity of labor income ζcy,w and the hazard rate Hy (ŷ) ≡ ŷf(ŷ)
1−F (ŷ) of the labor income distri-

bution, which measure the distortions induced by the marginal tax rate at the income level ŷ;

(ii) the average income effect parameter ηy for incomes above ŷ, which measure the behavioral

effects of increased average taxes on those incomes; and (iii) the value of redistributing income

away from individuals above ŷ, captured by Ey≥ŷ (1− g).

We now discuss the connection between the formula obtained by Diamond (1975) in the

Ramsey setting and that obtained by Saez (2001) in the Mirrlees setting. Formula (16) implies

that the optimal linear tax schedule in the static model satisfies

0 =Ey≥0

[
1− y

ȳ
g

]
− τy

1− τy
ζ̄uy,w

=Ey≥0

[
1− y

ȳ
g

]
− τy

1− τy
η̄y −

τy
1− τy

ζ̄cy,w,

(29)

where τy ≡ T ′ (y), and where the second line follows from the Slutsky equations ζuy,w (y) =

ζcy,w (y) + ηy (y) for all y ≥ 0. (Recall that ζcy,w (y) > 0 and ηy (y) < 0, so that the substitution
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effect of taxes tends to decrease tax revenue, while the income effects tend to increase it.)

Formula (29) closely resembles the full optimum (28), with one key difference. The linear

optimum cannot do better than balancing the mechanical effect of the perturbation with an

average measure ζ̄uy,w of uncompensated elasticities ζuy,w (y) over the entire population y ≥ 0,

while the non-linear optimum (28) is able to disentangle the competing income and substitution

components ζcy,w (y) , ηy (y) of the individual elasticity, and to allocate both effects to different

segments of the population (cf. the discussion in Section 4 following Proposition 3). Specifically,

a planner that can use non-linear tax instruments is able to better fine-tune the distortions in

the population, by imposing a higher marginal tax rate to the incomes y = ŷ where there is

either a small fraction of individuals relative to those who pay the additional lump-sum tax

(the hazard rate Hy (ŷ) is small), or where the behavioral response ζcy,w (ŷ) (resp., ηy (ŷ)) to the

increase in the marginal tax rate (resp., the total liability) is small (resp., large). We make this

general principle of taxation more precise in the context of tax reforms in Section 6, where we

show the tight connection between the linear and non-linear tax reforms when the baseline tax

system is linear.

Equation (28) finally allows us to obtain asymptotic tax rates. Suppose that Ey≥ŷg, ζcy,w (ŷ),

ηy (ŷ), and Hy (ŷ) converge to the respective limits g(∞), ζ
c,(∞)
y,w , η

(∞)
y , and H

(∞)
y as ŷ →∞, and

suppose moreover that ŷT ′′(ŷ)→ 0 as ŷ →∞. We then obtain the top marginal tax rates as:

lim
ŷ→∞

T ′ (ŷ)

1− T ′ (ŷ)
=

1− g(∞)

ζ
c,(∞)
y,w H

(∞)
y + η

(∞)
y

. (30)

This expression is derived formally by Saez (2001b).

5.4 Optimal Non-linear Labor and Capital Income Taxation

The previous sections showed that the benefit of increasing the sophistication of the tax instru-

ments in a static model come from the ability to spread the distortions within the population.

In this section we extend this insight to dynamic settings. Moreover, we use this example to

illustrate how our techniques can be applied to problems for which it is hard to obtain analytical

results using standard techniques.

We consider a simplified version of the economy considered by Conesa, Kitao and Krueger

(2009). These authors study a tax system that is separable and non-linear in capital and labor

income. Analyzing such taxes is difficult with either the traditional Ramsey approach (due to

the non-linearity in labor taxes) or with the mechanism design techniques (due to the lack of

explicit informational microfoundations for this tax schedule). For this reason Conesa, Kitao

and Krueger (2009) additionally impose parametric restrictions on tax functions and numerically

optimize over those parameters in a sophisticated computational model. We show how this

problem can be handled using our approach.

Suppose that S = 2 and the utility function has no income effects, as defined in (24). We

27



are interested in deriving properties of the optimal taxes that are separable, age-dependent, and

non-linear, so that the tax system consists of a non-linear labor income tax schedule Ty,1 (y1)

in period one, and of separable non-linear labor and capital tax schedules Ty,2 (y2) + Tz,2 (z2) in

period two.

We start by applying our general formulas (12) and (15) to the tax schedule on labor income

in period s ∈ {1, 2}, restricting the tax system to be separable between the various incomes. We

obtain that the optimal labor income tax rate in period s at the income level ŷs is given by

0 =Eys≥ŷs [1− gs]−
T ′y,s (ŷs)

1− T ′y,s (ŷs)− ŷsζcys,ws (ŷs)T ′′y,s (ŷs)
ζ̄c,(ys=ŷs)ys,ws

ŷsf (ŷs)

1− F (ŷs)

− β2−sEys≥ŷs

[
T ′z,2 (z)

1− T ′z,2 (z)− zζcz2,r2T
′′
z,2 (z)

η̂z2,s

]
,

(31)

where η̂z2,s = ηz2,2 if s = 2, and η̂z2,s =
(
1− T ′z,2 (z)

)
ηz2,1 if s = 1. Since we assume that there

are no income effects on labor supply, the first line of this expression is simply a dynamic version

of (28). Note that only the own-price elasticities of labor income play a role: the cross-price

elasticities of labor income and the compensated elasticities of capital income with respect to the

labor income tax rate are equal to zero because there are no income effects and the baseline tax

system is separable. However, the second line of (31) shows that in the dynamic environment,

additional considerations play a role in the determination of the optimal labor income tax rates

in either period. Higher labor taxes in period two increase incentives to save, captured by ηz2,2,

and hence affect revenue from capital income taxes. If the optimal marginal tax rate on capital

income is positive, this increases government revenue and creates a force to increase the labor

income taxes in period two, relative to the static model. The opposite effect holds for labor

income taxes in period one.

Next, we apply formulas (12) and (15) to the tax schedule on capital income in period two.

We obtain that the optimal capital income tax rate at the income level ẑ is characterized by

0 =Ez≥ẑ [1− g2]− Ez=ẑ

[
T ′z,2 (ẑ)

1− T ′z,2 (ẑ)− ẑζcz2,r2T
′′
z,2 (ẑ)

ζcz2,r2 (y1, y2, ẑ)
ẑfx (y1, y2, ẑ)

1− Fz2 (ẑ)

]

− Ez≥ẑ

[
T ′z,2 (z)

1− T ′z,2 (z)− zζcz2,r2T
′′
z,2 (z)

ηz2,2

]
.

(32)

The expectation operator in the second term of equation (32) appears because the elasticity

ζcz2,r2 may be different for agents with a given value of capital income z2 = ẑ, if they have

different labor incomes y1 and y2. If the utility function is CARA, then the elasticities in the

integrals do not depend on labor income and (32) is then conceptually identical to (28), since

Ez=ẑ
[
ẑfx(y1,y2,ẑ)

1−Fz2 (ẑ)

]
is equal to the hazard rate Hz2 (ẑ2) =

ẑfz2 (ẑ)

1−Fz2 (ẑ) ; the only differences are that

the relevant elasticity and income distribution are those of capital income (there are no effects

on labor income because of the functional form of the utility function and the separability of
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the tax system). Therefore, formula (32) illustrates that the same general mechanisms that

determine optimal labor income taxation also determine optimal capital income taxation. As

in the case of labor income taxes, the size and the shape of the capital income tax schedule

are determined by the hazard rates of the capital income distribution, and by the income and

substitution effects of capital income in response to changes in the capital income tax rates.

The asymptotic marginal tax rate on capital income is given by the analogue of (30),

lim
ẑ→∞

T
′
2,z(ẑ)

1− T ′2,z(ẑ)
=

1− g(∞)
2

ζ
c,(∞)
z2,r2 H

(∞)
z2 − η(∞)

z2,2

.

It can be futher shown (see Appendix) that if mobility at the top of the capital income distri-

bution converges to zero, the same formula continues to apply for the top marginal tax rates in

arbitrary S period economies. If, in addition, the capital income tax schedule Tz is restricted

to be age-independent, all the parameters are replaced with their compounded analogues along

the lines of the analysis in Section 5.2.

5.5 Optimal Joint Taxation

We now apply our theory to the analysis of the optimal non-separable, non-linear tax system.

We illustrate this approach in a simple static framework of optimal taxation of couples. We

assume that the household maximizes the total surplus, i.e., the total consumption minus the

sum of disutilities of labor. Both individuals choose their labor supply on the intensive margin.23

The couple’s preferences over consumption and labor income are given by

max
c1,c2,y1,y2

u

(
c1 + c2 −

1

1 + 1/ζ

(
y1

θ1

)1+1/ζ

− 1

1 + 1/ζ

(
y2

θ2

)1+1/ζ
)
,

and its budget constraint is

c1 + c2 = y1 + y2 − T (y1, y2) .

In the Appendix, we show by applying formula (19) to this environment that the optimal tax

system is characterized by the following partial differential equation: for all θ = (θ1, θ2) ∈ R2
+,

0 = (1− g (θ)) fθ (θ) +
ζ

1 + ζ

2∑
i=1

2∑
j=1

∂y−i
∂θ−j

∂

∂θj

{
τ1

1−τi
∂yθ,1
∂θi

+ τ2
1−τi

∂yθ,2
∂θi

∂yθ,1
∂θ1

∂yθ,2
∂θ2
− ∂yθ,1

∂θ2

∂yθ,2
∂θ1

θifθ (θ)

}
, (33)

where the components of the Jacobian matrix
∂yθ,i
∂θj

evaluated at the type θ can be easily ex-

pressed explicitly as a function of the tax rates (see Appendix for details), so that (33) gives

a complete characterization of the optimal tax rates given the exogenous distribution of types

23Saez, Kleven, and Kreiner (2009) characterize the optimal joint tax system in the case where the secondary
earner chooses labor supply on the participation margin only.
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(θ1, θ2). Formula (33) is useful because it allows us to reduce the problem of finding the optimal

joint tax system in the economy as the solution to a PDE which can be computed numerically,

without the need to solve for a complicated individual optimization problem. Note finally that

this PDE generalizes to the two-dimensional environment the differential equation obtained in

the static model of individual-based taxation of Mirrlees (1971), that is

0 = (1− g (θ)) fθ (θ) +
d

dθ

{
τ

1− τ
ζ

1 + ζ
θfθ (θ)

}
which can be easily solved analytically to obtain the optimal tax rates of Diamond (1998).

6 Applications to Tax Reforms

In this section we use the tools developed in Section 4 to analyze the welfare gains of (small)

reforms of the existing tax system. Computing such welfare gains is considerably simpler than

solving for the optimal taxes as in Section 5. Finding the optimum requires either solving a

partial differential equation (19) using explicit assumptions on the form of the utility function or

applying equations derived in Proposition 3 with some assumptions on the values of the relevant

elasticities at the optimal system.24 On the other hand, the welfare effects of reforming the

existing system depend on the labor and capital income elasticties that can be readily estimated

empirically under the current tax system. Once these elasticities are known, the welfare gains

can be computed directly using Proposition 2 without solving differential equations.

In this section we illustrate an application of this approach by considering a simple version of

a lifecycle model. We assume that individuals live for S periods and have Greenwood, Hercowitz

and Huffman (1988) preferences

1

1− σ

S∑
s=1

βs−1

(
cs −

1

1 + 1/ζs
l1+1/ζs
s

)
1−σ.

Note that we allow the elasticity of labor supply ζs to depend on age. We assume that the

baseline tax system does not depend on the age of the individual and is separable between labor

and capital incomes within and across time periods. We assume that capital income is taxed at

a constant rate τz, while labor income y is taxed non-lineary with a tax function T (·):

Ts (x) = T (ys) + τzzs, for all s = 1, ..., S. (34)

Individuals are heterogeneous in their initial capital stock k0 and face the same after-tax in-

terest rate equal to β−1. The individuals are also heterogeneous in labor productivity θs (so

24For example, the “sufficient statistics” literature (see, e.g. Chetty 2009) takes the latter approach and often
assumes that elasticities evaluated at the current tax system provide a good approximation to the elasticities at
the optimal tax schedule.
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that labor income is ys = θsls) and this productivity may change over time. We choose this

specification both because it allows us to illustrate the main effects transparently, and because

these assumptions on preferences and taxes are often used in applied work on optimal taxation.

It is straightforward to extend our methods to other specifications of taxes and preferences.

6.1 Separable Income Taxation

Our baseline system is separable between capital and labor taxes and in this section we consider

only tax reforms that preserve this separability. We start with capital taxation. Recall from our

discussion in Section 5.1 that the Gateaux differential of social welfare δW (T , hL) with respect

an age-independent linear perturbation of the capital tax rate, hL(z) ≡ z, can be written as

δW (T , hL) =
S∑
p=1

γp

{
E
zp
z̄p

[1− gp]−
τz

1− τz
ζ̊cp −

τz
1− τz

η̊p

}
.

This derivative represents the monetary value of the welfare gain (or loss, if it is negative) of

a small increase in the tax rate on capital. This formula can be used directly with empirical

estimates of the population-average elasticities ζ̊cp and η̊p to compute the gains from changes in

the tax rates.

We can extend this analysis to quantify the gains of introducing non-linear capital taxes.25

Specifically we design perturbations that isolate the effect of increasing the capital income tax

rate only at the income level ẑ. We choose the numbers ẑ > 0, ẑ′ > ẑ and define the period-

p perturbation hp as hp (z) = (z − ẑ) on [ẑ, ẑ′], and hp (z) = (ẑ′ − ẑ) on [ẑ′,∞) for all p ∈
{1, . . . , S}. As described in Section 2 (details in the Appendix), we appropriately smooth out

the kinks that this perturbation generates at the points ẑ and ẑ′. We finally define a sequence{
hnp
}
n∈N of such perturbations, with (ẑ′ − ẑ) → 0. At each point in the sequence, we compute

the Gateaux differential of social welfare in that direction and focus on the limit as n→∞ and

hence
∥∥hnp∥∥→ 0.

This pertubation increases the marginal taxes on capital income in a small neighborhood of ẑ

and the average taxes on all capital incomes above ẑ. We evaluate the welfare gains normalized

by the fraction of agents affected by perturbation, which we define as:

Γ (ẑ) =
limn→∞

∑S
p=1

∥∥hnp∥∥−1
δW

(
T , hnp

)∑S
p=1 β

p−1 (1− Fz,p (ẑ))
.

Applying our general formula (12) yields the following welfare effect:

Γ (ẑ) =

S∑
p=1

γp,ẑ

{
Ezp≥ẑ [1− gp]−

τz
1− τz

ζ̊cp
ẑfzp (ẑ)

1− Fzp (ẑ)
− τz

1− τz
η̊p

}
, (35)

25A number of authors proposed non-linear, often progressive taxation of capital, e.g., Farhi and Werning
(2010).
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where the weights, compounded compensated elasticity and compounded income effect are re-

spectively defined by:

γp,ẑ =
βp−1 (1− Fp,z (ẑ))∑S
s=1 β

s−1 (1− Fz,s (ẑ))
, ζ̊cp =

S∑
s=2

βs−pζ̄
c,(zp=ẑ)
zs,rp , and η̊p =

S∑
s=2

βs−pη̄
(zp≥ẑ)
zs,p .

We make several observations about this expression. First, we show in the Appendix that

δW (T , hL) =

ˆ ∞
0

Γ (ẑ) dẑ. (36)

This equation states that the sum of the welfare gains from increases in the marginal tax rates

at every given level of capital income ẑ is equal to the welfare gain from a linear increase in

marginal taxes on all incomes. As long as the function Γ is not constant with income, i.e.,

increasing tax rates at ẑ yields different gains than doing so at ẑ′, non-linear capital taxes lead

to higher welfare. Welfare gains are achieved by lowering tax rates at those levels of capital

income for which Γ (ẑ) is negative and increasing them at levels of capital incomme for which

Γ (ẑ) is positive. Bigger changes in tax rates are typically desirable for those ẑ that have the

largest values of |Γ (ẑ)|.
We now explore which factors affect the variablility of Γ (·) in ẑ. There are three terms in the

expression for Γ that capture (i) the welfare gains and losses from redistribution, Ezp≥ẑ [1− gp];
(ii) the behavioral effects due to higher marginal tax rates, ζ̊cp

ẑfzp (ẑ)

1−Fzp (ẑ) ; and (iii) the behavioral

effects due to higher average tax rates, η̊p. The behavioral effects can be measured empirically

or deduced theoretically from the assumed functional form of the utility function. In general,

if the government is redistributive, Ezp≥ẑ [1− gp] is increasing in ẑ. If at the top of the wealth

distribution individuals do not earn any labor income, then the elasticity ζ̊cp is constant and

equal to σ−1,26 and the functional form for the utility function implies that η̊p is independent

of ẑ. The last component in equation (35) that depends on ẑ is the hazard rate of the capital

income (or wealth) distribution Hz,p (ẑ) ≡ ẑfzp (ẑ)

1−Fzp (ẑ) . If this hazard rate has a weakly decreasing

tail for all high enough ẑ, then we obtain that Γ is increasing in ẑ. In this case the same increase

in the marginal tax rate generates larger welfare benefits if applied to higher levels of income.

This suggests that progressive capital taxation is desirable for high levels of capital income.

The conclusion about the desirability of progressive capital tax reform is sensitive to as-

sumptions about the hazard rate of the distribution of capital income Fz and the behavior of

26More generally, with labor income we can show that the elasticity of capital depends on ẑ through:

ζ̄
c,(zp=ẑ)
zs,rp ∝ 1

ẑ
σ−1E

[
cp −

l
1+1/ζ
p

1 + 1/ζ
|zp = ẑ

]
.

If labor income is equal to zero, then assuming that the average capital income in period (p+ 1) among individuals
with period-p capital income ẑ is exactly ẑ, i.e., E [zp+1 |zp = ẑ ] = ẑ, it is easy to show (writing cp = Rkp−1− kp)
that ζ̄

c,(zp=ẑ)
zs,rp is a constant independent of ẑ and ζ̊cp = σ−1.

32



the elasticity of capital income ζ̊cp as a function of ẑ. For example, if we assume that Fz is

Pareto-log-normal rather than Pareto after a given finite threshold, then the hazard rate Hp,z

is increasing at the tail and for a wide range of parameters it is possible to show that ζ̊cpHz,p (ẑ)

is increasing. In this case whether Γ increases or decreases in the right tail depends on the rela-

tive strenths of the redistributive versus behavioral effects. The behavioral effect, which favors

regressive reforms in this case, dominates if the government is very redistributive and assigns

low weights to individuals with a lot of wealth. For example, if the government is Rawlsian or,

more generally, assigns Pareto weights 0 to all agents above a certain wealth threshold, then

Ezp≥ẑ [1− gp] = 1 for all ẑ sufficiently high. In this case Γ is a decreasing function in the right

tail.27 To illustrate the quantitative gains from higher marginal taxes for high income, assume

that initial capital distribution has a Pareto tail with coefficient 1.5 and that capital income

tax rates in the baseline system are 50%.28 Then in the limit as ẑ →∞ the welfare gains from

increasing marginal rates are equal to 1− 1.5σ−1. Therefore they are positive if the elasticity of

the intertemporal substitution is less than 2/3.

Analogous arguments apply to reforms of labor income taxation. Welfare gains from increas-

ing marginal taxes at income level ŷ are given by

Γ (ŷ) =

S∑
p=1

Γp (ŷ) ≡
S∑
p=1

γp,ŷ

{
Eyp≥ŷ [1− gp]−

T ′ (ŷ) ζp
1− T ′ (ŷ) + ŷζpT ′′ (ŷ)

ŷfyp (ŷ)

1− Fyp (ŷ)
− τz

1− τz
η̊p

}
,

(37)

which shows the same three forces that we discussed in capital income taxation. As in the case

of capital taxation, variability of Γ in ŷ determines the welfare gains from non-linear tax reform.

A useful benchark to consider is the one in which the baseline labor income taxes are linear,

individual productivity is constant, and the government is highly redistributive, e.g. Ralwsian.

In this case, the terms
T ′(ŷ)ζp

1−T ′(ŷ)+ŷζpT ′′(ŷ) and η̊p are constant and Eyp≥ŷ [1− gp] is equal to 1 for

almost all ŷ. In this case the shape of the gains Γ is determined by the shape of Hy (ŷ) ≡ ŷfy(ŷ)
1−Fy(ŷ) .

If the hazard rate of labor income is inversely U-shaped, as documented for example by Saez

(2001) for the U.S., then the benefits from increasing marginal tax rates are U-shaped.

We can use equation (37) to illustrate the sources of gains from switching from age-independent

to age-dependent taxation. In particular, Γp (ŷ) measures the welfare gains from changing tax

rates only for individuals of age p who earn income ŷ. The total gain Γ (ŷ) is equal to the sum

of the age-dependent gains, Γp (ŷ). The more Γp varies in p, the larger the gain are from age-

dependent labor taxation. We can thus use expressioon (37) to illustrate some recent arguments

in favor of age-dependent taxation. Kremer (1999) argued for age-dependent labor taxation on

27We are not aware of any empirical work that systematically documents empirical properties of the hazard rate
Hz,p (ẑ) of capital income. Saez (2001) used the IRS tax return data to study the hazard rate for wage income
and showed that that it exhibits an inverse U-shaped pattern.

28The numbers are chosen to capture some stylized facts about distribution of income and tax rates in the U.S.
Nirei and Souma (2007) estimate the Pareto tail of wealth distribution in the U.S. to be 1.5, while Saez estimates
the Pareto tail of labor income (wages) to be 2 around 2. Prante and John (2013) argue that top effective marginal
tax rates in the U.S. for both labor and interest income are about 50%.
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the ground that the labor supply elasticity ζp varies systematically with age p, while Weinzierl

(2011) explored variation in the age-dependent distribution of income, that can be summarized

by Hy,p (ŷ) ≡ ŷfyp (ŷ)

1−Fyp (ŷ) . The quantitative magnitude of this variation can be calculated directly

using (37). This formula also shows that, as long as the capital income tax rate is not zero,

the age-dependent income effect of savings η̊p introduces an additional source of variability in

welfare gains, as discussed in Section 5.4. In our economy it is easy to show that

1

1− τz
η̊p = βr

(
1

1− β
− βS

1− βS
S − p

)
.

To give a sense of the magnitude of these numbers, we suppose that S = 40, β = 0.97, and

τz = 50% and calculate that the behavioral effects on savings from higher labor income taxes at

age p increase revenue by:

− τz
1− τz

η̊p =


−0.47 if p = 1 (age 21),

0.10 if p = 20 (age 40),

0.70 if p = 40 (age 60).

This indicates that, all else being equal, positive taxation of savings favors higher labor taxes

later in life. Note that these numbers are substantial, reaching an additional benefit of ¢73 per

dollar increase in the statutory tax liability.

6.2 Joint Income Taxation

The baseline tax system (34) is initially separable between incomes, both across periods (there is

no history-dependence) and within periods (labor and capital incomes are not jointly taxed). In

this section, we characterize the welfare gains from introducing joint taxation. That is, we allow

taxes on income xi to depend not only on the level of xi, but also on the levels of other incomes

xj . Such taxes arise in several different contexts. In the U.S., many social insurance programs

and the Social Security system condition their payments both on current labor earnings and

on the history of past earnings. Some programs are also often asset-tested, i.e., individuals are

eligible to participate if their labor earnings are low and their assets are below a certain treshold.

Finally, the individual tax bill depends jointly on income from labor and capital.

The non-separable tax reforms that we consider consist of increasing the marginal tax rate

on income xi at the level x̂i (hence the average tax rates increase on xi ≥ x̂i) conditional on

earning more than the threshold x̂j of income xj , i.e., xj ≥ x̂j . Since we consider perturbations

that leave the tax function continuous, this reform also raises marginal tax rates on income xj

at level x̂j , conditional on xi ≥ x̂i. This joint pertubation is shown in Figure 2, where the dark

(resp., light) surface represents the baseline (resp., perturbed) tax function.

We showed in the previous sections that the welfare effects of separable perturbations are
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Figure 2: Joint Perturbations

determined by the fraction of individuals above the base of the perturbation relative to the

fraction at the base, summarized by the hazard rate Hxi of the distribution of income xi. The

generalization of the hazard rate to two dimensions of income (xi, xj) is captured by

Hxi,xj (x̂i |x̂j ) ≡
x̂i
´∞
x̂j
fxi,xj (x̂i, xj) dxj´∞

x̂i

´∞
x̂j
fxi,xj (xi, xj) dxidxj

.

The denominator is the fraction of agents who face an increase in their average tax liability. The

numerator is the fraction of agents who face an increase in their marginal tax rate on income

xi, scaled by the income threshold x̂i.

We first consider introducing joint taxation of labor income across periods, i.e., history-

dependence. That is, we increase the marginal tax rate on labor income ŷp in period p conditional

on yp−1 ≥ ŷp−1. The welfare gain of this tax reform is given by

Γŷp,ŷp−1 =Eyp−1≥ŷp−1

yp≥ŷp
[1− gp]−

τz
1− τz

η̊p

− T ′ (ŷp) ζp
1− T ′ (ŷp) + ŷpζT ′′ (ŷp)

Hyp−1,yp (ŷp |ŷp−1 )

− T ′ (ŷp−1) ζp−1

1− T ′ (ŷp−1) + ŷp−1βζp−1T ′′ (ŷp−1)
Hyp−1,yp (ŷp−1 |ŷp ) .

(38)

The first three terms of expression (38) are the analogue of the period-p age-dependent pertur-

bation of the labor income tax rates discussed in Section 6.1, the main difference being that now

the region over which the individual effects of the perturbation are summed is further restricted

to the households earning more than ŷp−1 in period (p− 1). The last term is a novel term that

appears because this perturbation distorts the labor supply decisions around the ŷp−1 treshold
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in period (p− 1).

The benefits of the joint pertubation come from two sources. First, by conditioning redistri-

bution on past income, the government can better target its redistributive effort, as summarized

in the term Eyp−1≥ŷp−1,yp≥ŷp [1− gp]. Conditional on a given level of earnings yp in period p,

society generally values differently the welfare of households who have a different history of

labor earnings in the previous periods. History-dependence in taxation allows the government

to tailor taxes to those social preferences. Second, conditioning taxes on past earnings allows

the government to raise more tax revenue with less distortions.

To illustrate the latter effect, suppose that for all p, the marginal distribution of income yp

has a Pareto tail with coefficient ap, so that for high ŷp we have

P (yp ≥ ŷp) = cp · (ŷp)−ap .

Furthermore, assume that joint distribution of yp−1 and yp at the tails can be summarized by

the (survival) Clayton copula29

P (yp−1 ≥ ŷp−1, yp ≥ ŷp) =
(
[P (yp−1 ≥ ŷp−1)]−ρ + [P (yp ≥ ŷp)]−ρ − 1

)−ρ
(39)

for ρ > 0. The limit as ρ → 0 represents the case where yp and yp−1 are comonotone (in

particular, perfectly correlated), that is, all the agents with a given income in period p− 1 also

earn the same income in period p. The limit as ρ→∞ represents the case where labor earnings

in the two periods are drawn independently from each other. In this case the conditional hazard

rates are given by

Hyp−1,yp (ŷp|ŷp−1) =
ap [P (yp ≥ ŷp)]−1/ρ

[P (yp ≥ ŷp)]−1/ρ + [P (yp−1 ≥ ŷp−1)]−1/ρ − 1
.

Suppose that the Pareto coefficient ap and the elasticity of labor supply ζp are independent

of age p, that there are no savings (or that τ = 0), and that the baseline labor income taxes

are chosen to maximize tax revenue collected from the agents with sufficiently high earnings.

Under these assumptions, using the analysis of Section 5, the marginal tax rates on high incomes

are constant and satisfy T ′ (y) / (1− T ′ (y)) = (aζ)−1. In this case the joint perturbation for

sufficiently high labor incomes in both periods yields a revenue effect equal to

Γŷp,ŷp−1 = 1− (aζ)−1 [P (yp−1 ≥ ŷp−1)]−1/ρ + [P (yp ≥ ŷp)]−1/ρ

[P (yp−1 ≥ ŷp−1)]−1/ρ + [P (yp ≥ ŷp)]−1/ρ − 1
.

This expression implies that Γŷp,ŷp−1 < 0 for all ρ, which implies that the separable tax system is

not optimal. Specifically, a joint perturbation that decreases the marginal tax rates on incomes

ŷp−1 and ŷp, and hence reduces the average tax rates for individuals with incomes yp−1 ≥ ŷp−1

29This joint distribution is a generalization of the bivariate Pareto distribution, obtained for ap = ap−1 = ρ.
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in period p− 1 and yp ≥ ŷp in period p, jointly allows to raise additional revenue, starting from

the optimal separable tax schedule. Note also that Γŷp,ŷp−1 → 0 and as ρ→ 0, so that the gains

from history-dependence disappear if each agent’s income is the same in both periods.

The arguments above can be generalized to other forms of joint taxation. For example, the

welfare effects of jointly taxing labor and capital incomes within period p at the joint income

threshold (ŷp, ẑp) are given by

Γŷp,ẑp =Eyp≥ŷp
zp≥ẑp

[1− gp]−
τ

1− τ
η̊p

− T ′ (ŷp) ζ

1− T ′ (ŷp) + ŷpζT ′′ (ŷp)
Hyp−1,yp (ŷp |ẑp )

− τz
1− τz

{
S∑
s=2

βs−pζ̄
c,(zp=ẑp,yp≥ŷp)
zs,rp

}
Hyp−1,yp (ẑp |ŷp ) ,

(40)

where ζczs,rp is the elasticity of period-s capital income with respect to the period-p net-of-

tax rateon capital income. Formula (40) is formally similar to equation (38), the relevant

conditional hazard rates in this case being those of the joint distribution of labor and capital

incomes, and the relevant elasticities being those of capital income with the usual compounding

effect discussed in Sections 5.2 and 6.1. Note that these elasticities are in general different for

individuals with different labor and capital incomes, and are therefore averaged over the region

where the capital income tax rate is perturbed. More generally, for different preferences or a

non-separable baseline income tax system, the elasticity parameters ζ̄cys,wp , ζ̄
c
zs,rp , ηzs,p would all

depend on the individuals’ earnings histories, implying an additional source of benefits from

using a non-separable tax system: the government can impose higher distortions in the regions

where these elasticities are smaller, with an additional degree of “fine-tuning” relative to the

separable case.

7 Overview of the Stochastic Model

In this section we briefly discuss the derivation of some of the results in the stochastic model.

We only give an outline of the derivation here, the details are collected in our companion paper

(Golosov, Tsyvinski, and Werquin 2014). For the clarity of the exposition, we consider the case

where the horizon is T = 2 periods, but our results generalize to the case T ≤ ∞. In period one,

an individual knows his first-period type, or productivity, θ1 ∈ [0,∞), and his initial capital

stock k0 ∈ R. He then chooses his first-period consumption c1 ≥ 0, labor income y1 ≥ 0, and

savings or borrowings k1 ∈ R to carry over to period two (yielding capital income z2 ∈ R in

period two). For simplicity assume that the interest rate is the same for all individuals, so that

capital income z2 is known with certainty in period one given savings k1. In period two, he draws

his second-period productivity θ2 ∈ [0,∞). For all θ1 ∈ R+, the second-period type θ2 is drawn

from an exogenous distribution Fθ2|θ1 (·) whose density fθ2|θ1 (·) is strictly positive on R+. The
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individual then chooses his second-period consumption c2 ≥ 0 and labor income y2 ≥ 0. Given

his initial draw (k0, θ1), he thus chooses his first-period labor income and savings y1 (k0, θ1),

k1 (k0, θ1), and a set of second-period incomes contingent on the second-period productivity

{y2 (k0, θ1, θ2) : θ2 ∈ R+} in order to maximize the expected discounted value of his utility. The

income vector x of an individual with initial capital and productivity (k0, θ1) thus has a two

plus a continuum of rows, corresponding to the continuum of possible draws of θ2 in period two.

In each period s = 1, 2, the government levies a tax Ts. The first-period tax function T1 is

a function of the individual’s first-period labor income y1 and capital k1 only. (The government

cannot tax second-period labor income y2 in period one, as y2 depends on the value of θ2 that the

individual will draw in period two, and hence is not known in period one.) The second-period

tax function T2 is a function of the individual’s entire history of labor incomes {y1, y2} and

capital income z2. The assumptions about the tax functions are identical to those we made in

the deterministic model. Social welfare is then a weighted sum of individuals’ expected indirect

utilities U (k0, θ1).

It is important to note that there are many more marginal tax rates and virtual incomes

that are relevant for the individual than in the deterministic model. Since θ2, and hence y2 and

T2 (·, ·, ·), are unknown when y1 and k1 are chosen, the two decision variables (y1, k1) depend

on the set of all possible marginal tax rates and virtual incomes that the individual may end

up facing in period two, depending on his type θ2. Thus, y1 and k1 depend on the whole set{(
τ2

(
y1,x

2
2, z2

)
, R2

(
y1,x

2
2, z2

))
: x2

2 ∈ R+

}
, parametrized by the possible values x2

2 of second-

period incomes that the individual may end up choosing in period two. Moreover, even though

y2 is chosen after a value of θ2 has been drawn (say θ∗2), y2 (θ∗2) does not depend only on the

marginal tax rate and virtual income that he ends up actually facing (i.e., τ2 (y1, y2 (θ∗2) , z2)),

unless the utility function has no income effects. This is because y1 and k1, which have been

chosen before the draw (taking into account the probabilities of all possible draws of θ2), are not

in general the optimal values given this particular draw θ∗2, and this in turn affects the choice

of y2 (θ∗2). We thus obtain that for all θ∗2 ∈ R+, y2 (θ∗2) depends on the entire set of marginal

tax rates and virtual incomes
{(
τ2

(
y1,x

2
2, z2

)
, R2

(
y1,x

2
2, z2

))
: x2

2 ∈ R+

}
. In particular, when

we perturb the tax function in the second period, T2 (·, ·, ·), at a given point x2 =
(
y1,x

2
2, z2

)
,

all the choice variables, (y1, {y2 (θ2) : θ2 ∈ R+} , z2), adjust, even if the individual turns out not

to be affected at all by the perturbation (i.e., even if y2 (θ∗2) 6= x2
2). This is the main conceptual

difficulty that needs to be addressed in the stochastic model.

We first define the elasticities of labor incomes y1, {y2 (θ2) : θ2 ∈ R+} and savings k1 with

respect to the marginal tax rates on y1 and k1 that the individual actually faces in period one:

τ1,y1 , τ1,k1 . We then define the elasticities of y1, {y2 (θ2) : θ2 ∈ R+} and k1 with respect to all

the marginal tax rates
{
τ2,y1

(
x2
)
, τ2,y2

(
x2
)
, τ2,z2

(
x2
)

: x2 =
(
y1,x

2
2, z2

)
∈ R2

+ × R
}

that the

individual can possibly face in period two, depending on the possible values x2
2 of second-period

incomes that the individual may end up choosing in period two. Similarly we first define the

income effect parameters of y1, {y2 (θ2) : θ2 ∈ R+} and k1 with respect to the individual’s virtual
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income in period one, R1. We then define the income effect parameters of y1, {y2 (θ2) : θ2 ∈ R+}
and k1 with respect to all the virtual incomes that the individual can possibly face in period

two,
{
R2

(
x2
)

: x2 =
(
y1,x

2
2, z2

)
∈ R2

+ × R
}

. We thus need to consider many more elasticities

and income effect parameters than in the deterministic setting. These elasticities (e.g., of labor

income y2 with respect to the marginal tax rate at level y′2 6= y2) are new to the literature

on taxation. We derive explicit analytical expressions for all these elasticities, as we did in

the deterministic setting. They resemble those in the deterministic setting, except that they

are weighted by the probabilities of earning the second-period income where the tax rate is

perturbed.

We then go on to derive the behavioral responses to perturbations. The results are proved

in the same way as in the deterministic setting, but the added degree of complexity we just

described makes the derivations more involved both theoretically and conceptually. The formulas

we obtain are accordingly more complex. Remarkably, however, we show that we can define the

elasticity matrices, as well as the gradients and Hessians of the tax functions, in a way that

allows to write the formula in a similar compact way as (8) in the deterministic model (details

are in the Appendix). The proof and intuition of this formula follows the same steps as those

of (8). We show that the change dx in the income vector x following a general perturbation(
dτ1, dR1, dτ2

(
x2
)
dR2

(
x2
))

of the baseline tax system is given by:

dx =

{
i−Ec

τ1 (x)
(
D2T1 (x1)

)
−
ˆ ∞

0
Ec
τ2(x2′) (x)

(
D2T2

(
x2′)) dx2′

2

}−1

×
[(
Ec
τ1 (x) dτ1 + IR1 (x) dR1

)
+
(
Ec
τ2(x2) (x) dτ2

(
x2
)

+ IR2(x2) (x) dR2

(
x2
))]

.

(41)

As an illustration of these results, we show how the revenue effects of reforming the baseline

tax system of Section 6 write in the stochastic model, when the utility function has no income

effects and is CRRA. A non-linear separable perturbation of the first-period labor income tax

schedule at point ŷ1 yields the following change in government revenue:

Γ1,y (ŷ1) =1− T ′1 (ŷ1)

1− T ′1 (ŷ1) + ŷ1ζT ′′1 (ŷ1)
ζ
ŷ1fy1 (ŷ1)

1− Fy1 (ŷ1)
− β τz

1− τz
η̄

(y1≥ŷ1)
z2,R1

. (42)

Formula (42) shows that the revenue effect of perturbing the first-period labor income tax rate

in the stochastic model is formally similar to the effect in the deterministic model. However, we

show that uncertainty about second-period productivity implies that the income effect parameter

on savings in the stochastic model is equal to ∂k1
∂R1

∣∣∣
S

=
(
u′′1 + βR2E [u′′2 |θ1 ]

)−1
u′′1, and hence is

smaller than in the deterministic model, ∂k1
∂R1

∣∣∣
D

=
(
1 + β−1/σR1−1/σ

)−1
. This implies that

the gain from decreasing the labor income tax rate in period one is smaller in the stochastic

model than in the deterministic model; the latter thus provides an upper bound for the gains of

age-dependence.

A non-linear separable perturbation of the second-period labor income tax schedule at point
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ŷ2 yields the following change in government revenue:

Γ2,y (ŷ2) =1−
T ′y,2 (ŷ2)

1− T ′y,2 (ŷ2) + ŷ2ζT ′′y,2 (ŷ2)
ζ
ŷ2fy2 (ŷ2)

1− Fy2 (ŷ2)
− τz

1− τz
η̄z2,R2(y2≥ŷ2), (43)

where η̄z2,R2(y2≥ŷ2) is the aggregate change in capital income in the economy when an additional

dollar is distributed lump-sum in period two, uniformly among all the individuals whose labor

income in period two is above ŷ2, that is

η̄z2,R2(y2≥ŷ2) ≡
ˆ
R+

ˆ ∞
ŷ2

ˆ
R
η

(x1)

z2,R2(x2
2)
fx1 (y1, k1)

1− Fy2 (ŷ2)
dy1dx

2
2dk1.

Note that every individual (with choice vector x1 = (y1, k1) in period one) reacts to this change

by adjusting their savings, i.e. η
(x1)

z2,R2(x1,x2
2)
6= 0, because they have positive probability of

earning more that ŷ2 in the second period. However, only those with second-period income ŷ2

under the baseline tax system change their second-period income. Formula (43) shows that the

revenue effect of perturbing the second-period labor income tax rate in the stochastic model is

formally similar to the effect in the deterministic model. However, we show that the savings

effect in the stochastic setting, η̄z2,R2(y2≥ŷ2), is strictly larger than in the deterministic setting,

η̄
(y2≥ŷ2)
z2,R2

. Hence the revenue gains from increasing the labor income tax rates in period two are

smaller in the stochastic model than in the deterministic model.

A non-linear separable perturbation of the capital income tax schedule at point ẑ2 yields the

following change in government revenue:

Γ2,z (ẑ2) =1− τz
1− τz

ζ̄c,(ẑ2)
z2,r2

ẑ2fz2 (ẑ2)

1− Fz2 (ẑ2)
− τz

1− τz
η̄

(z2≥ẑ2)
z2,R2

, (44)

where η̄
(z2≥ẑ2)
z2,R2

is the average income effect parameter of capital income with respect to a certain

increase in period-two virtual income, among individuals with capital income z2 ≥ ẑ2, that is,

η̄
(z2≥ẑ2)
z2,R2

≡
ˆ
R+

ˆ ∞
ẑ2

η
(x1)
z2,R2

fx1 (y1, k1)

1− Fz2 (ẑ2)
dy1dk1.

Formula (43) shows that the revenue effect of perturbing the second-period labor income tax

rate in the stochastic model is formally similar to the effect in the deterministic model. However,

we show that the savings effect in the stochastic setting, η̄z2,R2(y2≥ŷ2), is strictly larger than in

the deterministic setting, η̄
(y2≥ŷ2)
z2,R2

. Hence the revenue gains from increasing the labor income

tax rates in period two are smaller in the stochastic model than in the deterministic model.

However, we show that the average compensated capital income elasticity in the stochastic

model, ζ̄
c,(ẑ2)
z2,r2 , is positive but smaller than its counterpart in the deterministic model. Similarly,

the average income effect parameters in the stochastic model, η̄
(z2)
z2,R2

, are negative and smaller

than their counterparts in the deterministic model. Thus, on the one hand, the increase in the
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tax rate induces a smaller decrease in capital income (in the stochastic model) for individuals

with z2 = ẑ2; on the other hand, the increase in the lump-sum tax liability induces a larger

increase in capital income (in the stochastic model) for individuals with z2 ≥ ẑ2. Therefore the

revenue gains from increasing the capital income tax rates in period two in the stochastic model

are larger than in the deterministic model.

8 Conclusion

We identify a condition on individual demand under which the effects of taxation on individual

behavior, tax revenue, and social welfare of can be expressed in terms of empirically observ-

able and easily interpretable parameters, namely the labor and capital income elasticities, the

multivariate hazard rates of the income distributions, and the marginal social welfare weights.

Applying these formulas to various settings, we show that optimal taxes and the effects of tax

reforms obey common general principles, and that the benefits of using sophisticated tax instru-

ments come from the ability to fine-tune the distortions to the segments of the population who

respond relatively little to taxes.

We leave two important extensions for future research. First, our numerical applications were

meant to provide rough orders of magnitude of the forces at play in a few examples. It would

be valuable to do more extensive numerical welfare calculations, estimating the fundamental

parameters that enter our tax formulas using micro data. Second, we believe our approach

is useful to analyze problems which may be difficult to tackle directly, e.g., multidimensional

mechanism design models. However, an open question is to find a condition on the primitives

of the model such that our assumption on individual demand is satisfied.
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A Proofs of Sections 3 and 4

In this section, we provide the proofs of the results of Sections 3 and 4 from the main text.

We first derive analytical expressions for all the elasticities and income effect parameters in the

general model, as well as under the assumptions of Section 6. We then prove the results of

Propositions 1, 2 and 3, and provide details for the derivation of various results in the text.

A.1 Elasticities and Income Effect Parameters

We start by providing analytical expressions for the elasticities and income effect parameters in

the general model of Sections 4 to 2. To derive these expressions, we differentiate the system of

first-order conditions (9) of the individual’s problem with respect to the marginal or net-of tax

rates
{
q̂xj ,s

}
1≤s,j≤S and the virtual incomes {Rs}1≤s≤S . For a given individual, define rs+1 as

the exogenous interest rate that he faces on his capital ks, so that his capital income in period

s+ 1 is equal to zs+1 = rs+1ks. We can write the individual’s first-order conditions as

Uxj

{− 2S∑
i=1

qxi,txθ,i +Rt

}
1≤t≤S

, {yθ,t}1≤t≤S , {zθ,t+1}1≤t≤S ,θ


=

S∑
s=1

qxj ,sUcs

{− 2S∑
i=1

qxi,txθ,i +Rt

}
1≤t≤S

, {yθ,t}1≤t≤S , {zθ,t+1}1≤t≤S ,θ

 ,

(45)

We then use the Slutsky equations to obtain the compensated elasticities from the uncompen-

sated elasticities and the income effect parameters. Define the 2S × 2S matrix A by:

[A]s,j ≡ −Uxs,xj −
S∑
t=1

S∑
q=1

qxs,tqxj ,qUct,cq +

S∑
t=1

qxs,tUct,xj +

S∑
q=1

qxj ,qUxs,cq .

Define also the 2S-vectors Bτp,xi , BRp , and Bc
τp,xi

, for any 1 ≤ p ≤ S and 1 ≤ i ≤ 2S, by

[
Bu
τp,xi

]
s
≡

S∑
t=1

qxs,tUct,cpxi − Uxs,cpxi − Ucp1{i=s}, ∀s ∈ {1, . . . , 2S} ,

[
BRp

]
s

= −
S∑
t=1

qxs,tUct,cp + Uxs,cp , ∀s ∈ {1, . . . , 2S} ,[
Bc
τp,xi

]
s
≡ −Ucp1{i=s}, ∀s ∈ {1, . . . , 2S} .

We can then write the the uncompensated and compensated income elasticities and the income

effect parameters as

ζu,cxj ,q̂xt,s
= ± q̂xt,s

xj

[
A−1Bu,c

τs,xt

]
j
, and ηxj ,Rs = q̂xj ,s

[
A−1 ×BRs

]
j
, (46)
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where ± = + if xt ∈ {zs, rsks−1}, and ± = − otherwise. Note that the components of the elas-

ticity matrices and the income effect vectors (4) are the partial derivatives of the (compensated

or uncompensated) demands, and not directly the elasticities and income effect parameters we

just derived.

For concreteness we show how to apply these formulas to the static model (S = 1). Differ-

entiating the first-order conditions

Uy ((1− τ) y +R, y, θ) = − (1− τ)Uc ((1− τ) y +R, y, θ)

implies the following expressions for the elasticities (46):

ζuy,1−τ =
Uy/y − (Uy/Uc)

2 Ucc + (Uy/Uc)Ucy

Uyy + (Uy/Uc)
2 Ucc − 2 (Uy/Uc)Ucy

, ηy,R =
− (Uy/Uc)

2 Ucc + (Uy/Uc)Ucy

Uyy + (Uy/Uc)
2 Ucc − 2 (Uy/Uc)Ucy

.

In this case, the matrix A defined above is minus the denominator of these two expressions, and

the vectors Bu
τ , BR are respectively (1− τ) y and − (1− τ)−1 times the numerators of these two

expressions.

We now show how these expressions simplify under the assumptions of Section 6. That is,

we assume that the utility function is time-separable, has no income effects on labor supply,

and that the baseline tax system is separable and linear in capital income. In this case, the

S×S upper-left submatrix of E
c,(xθ)
s is diagonal, and its upper-right and lower-left submatrices

are zero. Moreover, the first S components of the income effect vector I
(xθ)
s are equal to zero.

Thus, for every period p ∈ {1, . . . , S} where the tax system is perturbed, the only non-zero

compensated elasticities and income effect parameters are: (i) the compensated elasticities of

labor incomes ys with respect to the labor income tax rates in the current period τys,s, i.e., the

S parameters ζcys,1−τys,s ; (ii) the compensated elasticities of capital incomes zs with respect to

all of the capital income tax rates τzt,p, i.e., the S2 parameters ζczs,1−τzt,p
; (iii) the income effect

parameters on capital incomes zs, i.e., the S parameters ηzs,Rp . The formulas above show that

the labor income elasticities are given by:

ζcys,1−τys,s =
v′ (ys/θs)

(ys/θs) v′′ (ys/θs)
.

Suppose either that the utility function is CRRA, i.e. u (x) = x1−σ/ (1− σ), and let α ≡
β−1/σR1−1/σ, or that the utility function is CARA, i.e. u (x) = −γ−1 exp (−γx), and let α = R.

We obtain that the only non-zero compensated capital income elasticities are given by

∂zcs
∂
(
1− τzp,p

) =

(−u′p
u′′p

)
r2Rs−p−2∑S−1

i=0 α
i


(∑S−p

i=0 α
i
)(∑p−1

i=p−s+1 α
i
)
, if s ≤ p,(∑S−s

i=0 α
i
)(∑p−1

i=1 α
i
)
, if s ≥ p+ 1,

(47)
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and the only non-zero income effect parameters are given by

∂zs
∂Rp

=
rRs−p−1∑S−1
i=0 α

i

−
(∑S−1

i=S−s+1 α
i
)
, if s ≤ p,(∑S−s

i=0 α
i
)
, if s ≥ p+ 1.

(48)

Note that in the CARA case,
−u′p
u′′p

is simply equal to γ−1.

A.2 Proofs of Propositions 1 to 3

We first prove the existence of the Gateaux differential of the income functional and show

Proposition 1.

Proof of Proposition 1. We first show that the income functional xθ (·) is Gateaux differentiable

around the initial tax system Tp. Denote by xθ ≡ xθ (Tp), resp. x̃θ ≡ xθ (Tp + µh), the income

vector chosen by an individual θ given the baseline tax system Tp, resp. the perturbed tax system

in the direction h, Tp + µh. The vectors xθ and x̃θ are the solution to the respective systems

of the first-order conditions (9), where the map F : R2S × R2S × R → R2S is continuously

differentiable. For any j ∈ {1, . . . , 2S}, let Fj denote the jth component of F . Writing the

first-oder conditions both at the baseline and the perturbed tax system yields, for all j,

0 = Fj

(
x̃θ,

{
τxt,p (x̃θ) + µ

∂h

∂xt
(x̃θ)

}
1≤t≤2S

, Tp (x̃θ) + µh (x̃θ)

)
− Fj

(
xθ, {τxt,p (xθ)}1≤t≤2S , Tp (xθ)

)
, ∀j = 1, . . . , 2S.

(49)

Define the matrix M = (mj,s)1≤j,s≤2S as

mj,s =
∂Fj
∂xθ,s

+

2S∑
t=1

∂Fj
∂τxt,p

∂τxt,p (xθ)

∂xθ,s
+
∂Fj
∂Tp

∂Tp (xθ)

∂xθ,s
,

the vectors Nxt = (nj,xt)1≤j≤2S for all t ∈ {1, . . . , 2S} as nj,xt =
∂Fj
∂τxt,p

, and the vector NT =

(nj,T )1≤j≤2S as nj,T =
∂Fj
∂Tp

. Assumption 2 implies that ‖x̃θ − xθ‖ = O (µ) as µ→ 0. Moreover,

we have ‖µh (x̃θ)− µh (xθ)‖ = o (µ) as µ→ 0. A first-order Taylor expansion of (49) as µ→ 0,

i.e., of the perturbed system of first-order conditions around the initial system, thus writes:

1

µ
(x̃θ − xθ) = −

2S∑
t=1

{
M−1Nxt

} ∂h (xθ)

∂xt
−
{
M−1NT

}
h (xθ) + oµ→0 (1) .

This shows the existence of the Gateaux differential δxθ (Tp, h) ∈ R2S of the income functional

xθ (·) at Tp with increment h. We then express the Gateaux differential of the income functional

as a function of the elasticity matrices and vectors of income effect parameters. To do so, we
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derive the change x̃θ − xθ in the individual’s choice vector by writing the first-order Taylor

approximation of the post-perturbation system of first order conditions (45) around the solution

xθ to the initial system. Using the explicit expressions for the elasticities and income effect

parameters derived in (46), we obtain

(x̃θ − xθ) =

[
i2S −

S∑
s=1

Ec,(xθ)
s

(
D2Ts (xθ)

)]−1 {
Ec,(xθ)
p ∇h (xθ) + I

(xθ)
x,Rp

h (xθ)
}
.

This concludes the proof of Proposition 1.

We then show Proposition 2, which gives expressions for the Gateaux differentials of the tax

revenue and social welfare functionals.

Proof of Proposition 2. Consider an admissible perturbation hp of the baseline tax function

Tp, so that the perturbed tax function is Tp + µhp. For any θ, letting xθ ≡ xθ (Tp) and

x̃θ ≡ xθ (Tp + µhp), a Taylor approximation yields

[Tp + µhp] (x̃θ)− Tp (xθ)

=µ 〈∇Tp (xθ) , δxθ (Tp, hp)〉+ µhp (xθ (Tp)) + o (µ) .

Similarly, using the envelope theorem and the local Lipschitz continuity of the income function

(Assumption 2), we get

G (Uθ (Tp + µhp))− G (Uθ (Tp)) =

(
− λ

1− α
βp−1gp (xθ)hp (xθ)

)
µ+ o (µ) .

Using the compactness of the set X and assuming that the integrand is twice continuously

differentiable, we thus obtain that the change in social welfare is equal to

W (Tp + µhp)−W (Tp)

=µλ

ˆ
X

{
βp−1 (1− gp (x))hp (x) +

〈
S∑
s=1

βs−1∇Ts (xθ) , δx (Tp, hp)

〉}
fx (x) dx + o (µ) .

This proves formula (12). Letting T̃
′
(x) ≡ T ′ (x)D−1 (x) and using the fact that the density of

incomes is equal to zero on the boundary ∂X of the set X, we can integrate by parts the integral

involving ∇hp (x) in this expression to get

ˆ
X

[
T̃
′
(x)Ec,(x)

p fx (x)
]
∇hp (x) dx = −

ˆ
X
∇ ·
[
T̃
′
(x)Ec,(x)

p fx (x)
]
hp (x) dx.

This proves formula (13).

Next we prove Proposition 3.
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Proof of Proposition 3. A necessary condition for the social welfare functional W (·) to have an

extremum at Tp is δW (Tp, h) = 0, for all h (see, e.g., Luenberger 1969). From equation (13),

this implies that the integrand must be equal to zero pointwise, that is for all x ∈ X,(
βp−1 (1− gp (x))− T ′ (x)D−1 (x) I(x)

p

)
fx (x)−∇ ·

(
T ′ (x)D−1 (x)Ec,(x)

p fx (x)
)

= 0.

Integrating this equation on the volume V with closed boundary S = ∂V and using the divergence

theorem, we obtain formula (17). Finally, we obtain formula (16) by using the separable linear

perturbations hp (x) = xp and equation (12).

We finally prove the formulas which express the optimal tax system as a function of the

distribution of types θ.

Proof of formula (19). Differentiating the ith first-order condition (9) with respect to θj for

j ∈ {1, . . . , 2S} yields

2S∑
s=1

mi,s
∂xθ,s
∂θj

= −∂Fi
∂θj
⇒ Jx (θ) = −M−1JF (θ) ,

where the matrix M is the same as in the proof of Proposition 1, and Jx (θ) , JF (θ) are the

matrices [∂xθ,i/∂θj ]1≤i,j≤2S and [∂Fi/∂θj ]1≤i,j≤2S respectively. Similarly, differentiating the

first-order conditions (9) with respect to the variables
{
τxj ,p

}
1≤j≤2S

and Tp yields:

Jx (τ p) = −M−1JF (τ p) , and Jx (Tp) = −M−1JF (Tp) ,

where Jx (τ p) , JF (τ p) are the matrices
[
∂xθ,i/∂τxj ,p

]
1≤i,j≤2S

and
[
∂Fi/∂τxj ,p

]
1≤i,j≤2S

respec-

tively, and JF (Tp) is the vector [∂Fi/∂Tp]1≤i≤2S . But we have Jx (τ p) = D−1 (x)E
c,(x)
p and

Jx (Tp) = D−1 (x) I
(x)
p . We use these expressions to write the deformation matrix D (x) as

a function of the Jacobian matrix Jx (θ), and JF (θ) , JF (τ p) , JF (Tp). Using the change of

variables formula fθ (θ) = det (Jx (θ)) fx (x (θ)) in the equation

0 =βp−1 (1− gp (x)) fx (x)− T ′ (x)D−1 (x) I(x)
p fx (x)

−∇x ·
(
T ′ (x)D−1 (x)Ec,(x)

p fx (x)
) (50)

and the chain rule, we obtain (19).

Now, consider the model with idiosyncratic productivities {θ1, . . . , θS} and interest rates

{θS+1, . . . , θ2S−1}. Let lθ denote the vector of labor supplies yθ,s/θs and capital stocks kθ,s. We

can write the first-order conditions of the individual problem as

xθ = θ ◦ lθ
({

θj τ̂yj ,s
}

1≤j≤2S
1≤s≤S

,
{
θS+j−1τ̂zj ,s

}
2≤j≤S
1≤s≤S

, {Rs}1≤s≤S
)
,
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where τ̂xj ,s is the marginal tax rate on income xj (if xj ∈ {ys, zs}) or the next-of-tax rate

otherwise, and ◦ is the element-wise multiplication. Differentiating this system of equations

with respect to θj for 1 ≤ j ≤ 2S yields the Jacobian matrix

Jx (θ) =D−1 (x)

[
x

θ
◦

(
i2S +

S∑
s=1

ζ
u,(x)
x,q̂s

)]
,

where (x/θ) denotes the matrix [xθ,i/θj ]1≤i,j≤2S , ζ
u,(x)
x,q̂s

is the matrix of uncompensated elastic-

ities with respect to the marginal and net-of-tax rates, and ◦ is the element-wise multiplication

of matrices. Changing variables as before yields

J−1
F (θ) JF (Tp) =−

[
x

θ
◦

(
i2S +

S∑
s=1

ζ
u,(x)
x,q̂s

)]−1

I(θ)
p ,

J−1
F (θ) JF (τ p) =

[
x

θ
◦

(
i2S +

S∑
s=1

ζ
u,(x)
x,q̂s

)]−1

Ec,(θ)
p .

In particular, in the static Mirrlees model, the first-order condition (9) writes F
[
xθ
θ , θ (1− T ′ (xθ)) , R (xθ)

]
≡

F [l, τ, R] = 0 with F [l, τ, R] = τuc (τ l +R, l) +ul (τ l +R, l). It is then straightforward to com-

pute ∂F
∂l , ∂F

∂τ , and ∂F
∂R . Note moreover that Jx (θ) = det (Jx (θ)) = ẋ (θ). Differentiating the

first-order-condition with respect to θ then yields

ẋθ
xθ

=

1
θ2
∂F
∂l −

1
xθ

(1− T ′ (xθ)) ∂F∂τ
1
θ
∂F
∂l +

(
−θ ∂F∂τ + ∂F

∂Rxθ
)
T ′′ (xθ)

⇒ ẋ−1
θ

1

1 +
xθζ

c
x,1−τ

1−T ′(xθ)T
′′ (xθ)

=
1

xθ
θ

(
1 + ζux,1−τ

) .
This expression is identical to that in Lemma 1 in Saez (2001).

B Proofs of Sections 5 and 6

B.1 Proofs of Section 5

We start by deriving the formulas for the known results in the literature: optimal commodity

taxes and non-linear labor income taxes.

Proofs of Sections 5.3 and 5.1. Formula (23) follows from using the Slutsky equation and re-

arranging the terms in equation (23). Formula (28) follows from (17) applied to the region

[ŷ,∞), or directly from rearranging equation (18). Formula (30) follows from (28) under the

assumptions made in the text.

We now characterize the optimum linear capital income tax schedule.

Proof of Propositions 4 and 5. Consider a separable linear perturbation hp (x) = zp of the
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capital income tax rate in every period p ≥ 2. The welfare effect of these perturbations,

δW
(
τz, {hp}p≥2

)
, is given by the sum (for p = 2, . . . , S) of the effects of each of the period-p

perturbations hp, δW (τz, hp). Applying Proposition 2, we obtain that the welfare effect of this

perturbation is given by

δW
(
τz, {hp}p≥2

)
=

S∑
p=2

{ˆ
RS+×RS

βp−1 (1− gp (x)) zpfx (x) dx +

ˆ
RS+×RS

S∑
s=2

βs−1τz [δx (τz, hp)]S+s−1 fx (x) dx

}

=
S∑
p=2

{
βp−1z̄p

(
1− E

[
gp (x)

zp
z̄p

])
−
ˆ
RS+×RS

S∑
s=2

βs−1 τz
1− τz

zsζ
u,(x)
zs,rp fx (x) dx

}

=

(
S∑
s=2

βs−1z̄s

)
×

S∑
p=2

βp−1z̄p∑S
s=2 β

s−1z̄s

{
1− E

[
gp
zp
z̄p

]
− τz

1− τz

S∑
s=2

βs−pζ̄uzs,rp

}
.

Equating this expression to zero leads the optimal capital income tax rate (25). (Note that it

would be straightforward to characterize the optimal affine tax schedule, by considering revenue-

neutral perturbations of the capital income tax rate τz and the virtual income R (uniform lump-

sum rebate of the tax revenue generated by the increase in the tax rate), and equating their

effect to zero.)

Now consider the case where the perturbation is implemented in every period p = p1, . . . , p2.

Under the assumptions of Proposition 5, the expressions (47) and (48) imply:

ζ̄czs,rp =σ−1 (R− 1)

Rs−p−1 −R−p, if s ≤ p,

R−1 −R−p, if s ≥ p+ 1,

η̄zs,Rp = (R− 1)

R−p −Rs−p−1, if s ≤ p,

R−p, if s ≥ p+ 1.

Hence, the compounded uncompensated elasticities are equal to:

∞∑
s=2

βs−1ζ̄uzs,r2 =σ−1 (1− β)β + (2β − 1)β,

∞∑
p=2

∞∑
s=2

βs−1∑∞
p=2 β

p−1
ζ̄uzs,rp =σ−1 + β − 1.

Result (26) follows. Moreover, we obtain

β−(P−1)
∞∑
p=P

∞∑
s=2

βs−1ζ̄uzs,rp =
β

1− β
σ−1 +

(
σ−1 − 1

)
(P − 1) ,
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from which (27) follows. Finally, for S <∞ (still assuming βR = 1), we have

∂zs
∂Rp

=
r

1−RS

RS+s−p−1 −RS−p, if s ≤ p,

Rs−p−1 −RS−p, if s ≥ p+ 1,

which implies
∑S

p=1

∑S
s=1 β

s−1 ∂zs
∂Rp

= 0.

We now prove the results of Section 5.4, i.e., the optimal non-linear, age-dependent, separable

tax system in a two-period economy.

Proofs of formulas (31) and (32). Under the assumptions of this section, we have

T ′ (x)D−1 (x)Ec,(x)
p =



T ′1 (y1)
− y1

1−τy1,1
ζ
c,(xθ)
y1,w1

I{p=1}

1+
y1

1−τy1,1
ζ
c,(xθ)
y1,w1

T ′′1 (y1)

βT ′y,2 (y2)
− y2

1−τy2,2
ζ
c,(xθ)
y2,w2

I{p=2}

1+
y2

1−τy2,2
ζ
c,(xθ)
y2,w2

T ′′y,2(y2)

βT ′z,2 (z2)
− z2

1−τz2,2
ζ
c,(xθ)
z2,r2

I{p=2}

1+
z2

1−τz2,2
ζ
c,(xθ)
z2,r2

T ′′z,2(z2)


,

T ′ (x)D−1 (x) I(x)
p =βT ′z,2 (z2)

1

1 + z2
1−τz2,2

ζ
c,(xθ)
z2,r2 T

′′
z,2 (z2)

η
(xθ)
z2,Rp

1− τz2,p
,

and −→n (x) is the 3-vector whose only non-zero component is equal to 1 and is in the first

(resp., second, third) row if x̂ = ŷ1 (resp., ŷ2, ẑ). Application of formula (17) to the region

V = [x̂,∞) × R2, for x̂ ∈ {ŷ1, ŷ2, ẑ2} and p = 1, 2, 2 respectively, and dividing by 1 − Fxp (x̂),

yields formulas (31) and (32).

Next, we derive the optimal asymptotic capital income tax rate in a non-linear tax system.

Optimal Asymptotic Capital Income Tax Rate. Assume that the baseline tax system is separa-

ble and age-independent, but non-linear in capital income. For simplicity, we also assume that

the distribution of capital income is stationary, and that it is Pareto distributed at the tail with

coefficient az. Here we let the utility function have income effects on labor supply, and assume

that the labor income tax rate τy is constant and age-independent. Next, we assume the conver-

gence toward constants of the (average) marginal social welfare weights, Ezp≥ẑ
[
gp

zp
ẑ

]
−−−→
ẑ→∞

ḡ
(∞)
p ,

of the elasticities, ζ̄
u,(zp≥ẑ)
zs,rp −−−→

ẑ→∞
ζ̄
u,(∞)
zs,rp and η̄

(zp≥ẑ)
zs,Rp

−−−→
ẑ→∞

η̄
(∞)
zs,Rp

, and of the marginal tax rates

at the top of the capital income distribution, T ′z (z) −−−→
z→∞

τ∞z . Moreover, we assume that T ′′z (·)
converges to zero fast enough, i.e., for all p ≥ 2,

sup
{x:zp≥ẑ}

∣∣∣zsζc,(x)
zs,rpT

′′
z (zp)

∣∣∣ −−−→
ẑ→∞

0.
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Finally, we assume that there is “no mobility at the top”: as the threshold capital income level

ẑ → ∞, individuals with capital income zs ≥ ẑ in a given period s have capital income zp ≥ ẑ

in all periods p ≥ 2. Intuitively, individuals at the top of the capital income distribution in a

given period stay there forever. This ensures that as zp → ∞ for any p, all the components of

the matrix F z (x) (defined below) converge to zero, and that all the marginal tax rates T ′z (zs)

converge to τ∞z .

Consider a sequence, indexed by ẑ > 0, of separable perturbations of the capital income tax

rate in every period p ≥ 2, that are linear above the threshold ẑ. That is, for all p we define

hp (x) = max {zp − ẑ, 0}. The Gateaux differential of social welfare writes:

δW
(
T , {hp}p≥2

)
=

S∑
p=2

βp−1

{ˆ ∞
ẑ

(1− gp (x)) (zp − ẑ) fx (x) dx

}

+
S∑
p=2

{ˆ ∞
ẑ

ˆ
RS+×RS−2

[
T ′z (x)

]
[iS−1 + F z (x)]−1

[
Ec,(x)
p,zp − (zp − ẑ) I(x)

p

]
fx (x) dx

}

+
S∑
p=2


ˆ ∞
ẑ

ˆ
RS+×RS−2

τy S∑
s=2

βs−1

− ysζ
c,(x)
ys,rp

1− τzp,p
−

η
(x)
ys,Rp

1− τys,p
(zp − ẑ)

 fx (x) dx

 ,

where [T ′z (x)] is the (S − 1)-row vector with components βs−1T ′z (zs) and [F z (x)] is the (S − 1)×
(S − 1)-matrix with components T ′′z (zj)

∂zci
∂τj,zj

for i, j ≥ 2. Thus, letting ẑ → ∞ and imposing

lim
δW (T,{hp}p≥2)

(1−F (ẑ))ẑ = 0, we obtain the following characterization of the optimal asymptotic capital

income tax rate:

τ∞z
1− τ∞z

=

(
az
az−1 − 1

)(
1−

∑S
p=2 γp,z ḡ

(∞)
p,NL

)
ark
ark−1

∑S
p,s=2 γp,z ζ̄

u,(∞)
zs,rp −

∑S
p,s=2 γp,z η̄

(∞)
zs,Rp

− τy
1− τ∞z

az
az−1

∑S
p,s=2 γp,z ζ̄

u,(∞)
ys,rp −

∑S
p,s=2 γp,z η̄

(∞)
ys,Rp

az
az−1

∑S
p,s=2 γp,z ζ̄

u,(∞)
zs,rp −

∑S
p,s=2 γp,z η̄

(∞)
zs,Rp

,

where γp,z = βp−1/
∑S

s=2 β
s−1. Note that in the case where the utility function has no income

effects on labor supply, the second line of this expression is equal to zero.

We now prove the result of Section 5.5, i.e., the joint taxation of couples.

Proof of formula (33). We follow the same steps as in the derivation of formula (19). Let-

ting τi ≡ ∂T
∂yi

and τij ≡ ∂2T
∂yi∂yj

, the Gateaux differential of individual income in a direction h,
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δyθ (T, h), writes

δyθ (T, h) =
1

(1− τ1 + y1ζτ11) (1− τ2 + y2ζτ22)− y1y2ζ2τ2
12

×

(
− (1− τ2 + y2ζτ22) y1ζ (y1ζτ12) y2ζ

(y2ζτ12) y1ζ − (1− τ1 + y1ζτ11) y2ζ

)(
∂h(yθ)
∂y1

∂h(yθ)
∂y2

)
.

Applying formula (50), we obtain that the revenue-maximizing tax function satisfies the following

PDE:

fy (y1, y2) =
∂

∂y1

{
− (τ1y1ζ) (1− τ2 + y2ζτ22) + (τ12y1ζ) (τ2y2ζ)

(1− τ1 + y1ζτ11) (1− τ2 + y2ζτ22)− (τ12y1ζ) (τ12y2ζ)
fy (y1, y2)

}
+

∂

∂y2

{
− (1− τ1 + y1ζτ11) (τ2y2ζ) + (τ1y1ζ) (τ12y2ζ)

(1− τ1 + y1ζτ11) (1− τ2 + y2ζτ22)− (τ12y1ζ) (τ12y2ζ)
fy (y1, y2)

}
.

To rewrite the PDE in terms of the distribution of types, first notice that in this model, the

incomes as functions of types are given by:

y1 =θ1+ζ
1 (1− τ1)ζ ,

y2 =θ1+ζ
2 (1− τ2)ζ .

(51)

and the Jacobian matrix Jy (θ) writes:(
∂y1
∂θ1

∂y1
∂θ2

∂y2
∂θ1

∂y2
∂θ2

)
=

1

(1− τ1 + ζy1τ11) (1− τ2 + ζy2τ22)− (ζy1τ12) (ζy2τ12)

×

 (1− τ1)
(

1− τ2 +
(

1+ζ
θ1
y1

)
(ζy2τ22)

)
− (1− τ2) (ζy1τ12)

(
1+ζ
θ2
y2

)
− (1− τ1) (ζy2τ12)

(
1+ζ
θ1
y1

)
(1− τ2)

(
1− τ1 + (ζy1τ11)

(
1+ζ
θ2
y2

))  ,

(52)

Therefore, we have

δyθ (T, h) =

(
− θ1

1−τ1
ζ

1+ζ
∂y1
∂θ1

− θ2
1−τ2

ζ
1+ζ

∂y1
∂θ2

−∂y2
∂θ1

θ1
1−τ1

ζ
1+ζ − θ2

1−τ2
ζ

1+ζ
∂y2
∂θ2

)(
∂h(yθ)
∂y1

∂h(yθ)
∂y2

)
.

The optimal tax system is thus characterized by:

0 = (1− g (y)) fy (y)−∇y ·

 {
− τ1

1−τ1
ζ

1+ζ θ1
∂y1
∂θ1
− τ2

1−τ1
ζ

1+ζ θ1
∂y2
∂θ1

}
fy (y){

− τ1
1−τ2

ζ
1+ζ θ2

∂y1
∂θ2
− τ2

1−τ2
ζ

1+ζ θ2
∂y2
∂θ2

}
fy (y)

′

= (1− g (θ)) fθ (θ) +
ζ

1 + ζ

2∑
i=1

2∑
j=1

∂y−i
∂θ−j

∂

∂θj

{
τ1

1−τi
∂y1
∂θi

+ τ2
1−τi

∂y2
∂θi

∂y1
∂θ1

∂y2
∂θ2
− ∂y1

∂θ2
∂y2
∂θ1

θifθ (θ)

}
,

(53)

where the second equality follows from the change of variables from y to θ. Equations (51),

(52), and (53) form a PDE system whose solution is the optimal tax system.
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B.2 Proofs of Section 6

We now provide the proofs of the results of Sections 6.1 and 6.2. We first characterize the welfare

effects of reforming the labor income tax system.

Proofs of formulas (37) and (36). Consider first the effects of reforming the marginal labor in-

come tax rate at point ŷ in period p. The perturbation we consider is as follows. We choose the

numbers ŷ > 0, , and define for every p a perturbation h̃p ∈ C2 (R+), with h̃p (y) = 0 on [0, ŷ],

h̃p (y) = (y − ŷ) on [ŷ, ŷ′], and h̃p (y) = (ŷ′ − ŷ) on [ŷ′,∞). We obtain a smooth perturbation

hp from h̃p by letting hp = h̃p except on the intervals
[
ŷ − u

2 , ŷ + u
2

]
and

[
ŷ′ − u

2 , ŷ
′ + u

2

]
, for

some small u > 0, where we take hp monotonic. We then consider a sequence
{
hnp
}
n∈N of such

perturbations, with (ŷ′ − ŷ) → 0, u → 0, and u = o (ŷ′ − ŷ). Applying formula (8), we obtain

that the effect of this perturbation hp on the individual income choices is given by

δy
(x)
θ,p

(
Tp, h

n
p

)
=−

ypζ
c,(x)
yp,wp

1− T ′y (yp) + ypζ
c,(x)
yp,wpT

′′
y (yp)

, for all yp ∈
[
ŷ +

u

2
, ŷ′ − u

2

]
,

δz
(x)
θ,s

(
Tp, h

n
p

)
=−

(
ŷ′ − ŷ

) η
(x)
zs,Rp

1− τzs,p
, for all s, for all yp ≥ ŷ′ +

u

2
.

Applying formula (12) and taking the limit of the Gateaux differentials of social welfare as

(ŷ′ − ŷ) ,∆τ → 0, we get

1

1− Fyp (ŷ)

δW
(
Tp, h

n
p

)
(ŷ′ − ŷ)

−−−→
n→∞

βp−1

ˆ ∞
ŷ

(1− gp (y))
fy,p (y)

1− Fyp (ŷ)
dy

− βp−1

ˆ
RS−1
+ ×RS−1

T ′y (ŷ)
ŷζ

c,(ŷ,x−p)
yp,wp

1− T ′y (ŷ) + ŷζ
c,(ŷ,x−p)
yp,wp T ′′y (ŷ)

fx (ŷ,x−p)

1− Fyp (ŷ)
dx−p

−
S∑
s=2

βs−1

ˆ ∞
ŷ

ˆ
RS−1
+ ×RS−1

τz
η

(x)
zs,Rp

1− τzs,p
fx (x)

1− Fyp (ŷ)
dx.

Noting that ζ
c,(ŷ,x−p)
yp,wp = ζ, that η

(x)
zs,Rp

is independent of x since the utility function is CRRA

and the baseline tax system is separable, and using the definition of η̄zs,Rp , we obtain

1

1− Fyp (ŷ)

δW
(
Tp, h

n
p

)
(ŷ′ − ŷ)

−−−→
n→∞

βp−1 (1− Ey≥ŷ [gp])−
τz

1− τz

S∑
s=2

βs−1η̄zs,Rp

− βp−1
T ′y (ŷ) ζ

1− T ′y (ŷ) + ŷζT ′′y (ŷ)

ŷfyp (ŷ)

1− Fyp (ŷ)
.

Summing over periods p and normalizing by
∑

p≥1 β
p−1

(
1− Fyp (ŷ)

)
yields (37). Finally, to
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obtain the gains of age-dependence assuming that the income distribution is stationary, define

the “savings effect” as Sp ≡ − τz
1−τz

∑S
s=2 β

s−1η̄zs,Rp . Since ∂zs/∂Rp < 0 for all s ≤ p and

∂zs/∂Rp > 0 for all s ≥ p + 1, we obtain that the sequence
{
β−(p−1)Sp : p = 1, . . . , S

}
is

increasing, with S1 < 0 and SS > 0. Hence there exists p∗ such that the revenue gains of the

period-p separable perturbation are strictly smaller (resp., larger) in the dynamic model than

in the static model for p ≤ p∗ (resp., p > p∗). Moreover, the revenue gains of the separable

perturbation that increases lump-sum the tax liability above ŷ by $1 in period p are smaller

than the gains from the perturbation that increases the tax liability above β by $β−(p′−p) in

period p′ > p, yielding gains from age-dependent taxes.)

Suppose that the baseline marginal labor income tax rate is constant, i.e., T ′y (ŷ) = τy for all

ŷ. Then we obtain the following relationship between the linear and the non-linear tax reforms:

ˆ ∞
0

δW (T , hŷ) dŷ

=

ˆ ∞
0

{
S∑
p=1

βp−1

((
1− Fyp (ŷ)

)
−
ˆ ∞
ŷ

gp (y) fyp (y) dy

− τy
1− τy

ζŷfyp (ŷ)− τz
1− τp,zs

S∑
s=2

βs−1ηzs,Rp
(
1− Fyp (ŷ)

))}
dŷ

=
S∑
p=1

βp−1

(ˆ ∞
0

ŷfyp (ŷ) dŷ

)(
1−
´∞

0 ŷgp (ŷ) fyp (ŷ) dŷ´∞
0 ŷfyp (ŷ) dŷ

− τy
1− τy

ζ − τz
1− τzs,p

S∑
s=2

βs−1ηzs,Rp

)
=δW (T , hL) ,

which proves (36).

We next characterize the welfare effects of reforming the capital income tax schedule.

Proof of formula (35). A reasoning identical to that leading to formula (37), noting that the

elasticities ζ
c,(x)
ys,rp are all equal to zero, shows that the welfare effect of a non-linear perturbation

hp,ẑ implemented at point ẑ in period p is equal to

1

1− Fzp (ẑ)
δW (T , hp,ẑ) = βp−1

ˆ ∞
ẑ

(1− gp (z))
fzp (z)

1− Fzp (ẑ)
dz

−
S∑
s=2

βs−1

ˆ
RS+×RS−2

τz
1− τz

zsζ
c,(ẑ,x−(S+p−1))
zs,rp

fx
(
ẑ,x−(S+p−1)

)
1− Fzp (ẑ)

dx−(S+p−1)

−
S∑
s=2

βs−1

ˆ ∞
ẑ

ˆ
RS+×RS−2

τz
1− τzs,p

η
(x)
zs,Rp

fx (x)

1− Fzp (ẑ)
dx.

Formula (35) follows.

We now characterize the welfare effects of joint tax reforms.
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Proof of formulas (40) and (38). Fix d ≥ 2 directions (x1, . . . , xd) of the space RS+ × RS and

the income threshold x̄d = (x̂1, . . . , x̂d). We define the d-multilinear perturbation hp of the

baseline tax function Tp as hp (x) = 0 if xj ≤ x̂j for all j ∈ {1, . . . , d}, hp (x) = (xi − x̂i) dτ
if xi ∈ [x̂i, x̂i + dx̂] for some i ∈ {1, . . . , d} and xj ≥ x̂j + dx̂ for all j ∈ {1, . . . , d} \ {i}, and

hp (x) = dτdx̂ if xj ≥ x̂j+dx̂ for all j ∈ {1, . . . , d}. We complete this definition on the remaining

regions of the space (hypercubes of size dx̂) by making hp continuous and multilinear on each of

these regions, e.g., for d = 2, hp (x1, x2) is of the form c12 (x1 − x̂1) (x2 − x̂2). (More precisely,

we consider a smooth approximation of these perturbations, as in Section 6.1.) For simplicity,

we let d = 2 and consider a joint perturbation in period two in the directions (y1, y2), at point

(ŷ1, ŷ2). Note that

ζy1,τ21 |τ21=0 = − ζ

1 + (1− τz) r
= −βζ.

Let F̄y1,y2 (ŷ1, ŷ2) denote the measure of individuals above (ŷ1, ŷ2). Applying our general formula

yields:

δW
(
T , h2,(ŷ1,ŷ2)

)
βF̄y1,y2 (ŷ1, ŷ2)

=1−
ˆ ∞
ŷ1

ˆ ∞
ŷ2

g2 (y1, y2)
fy1,y2 (y1, y2)

F̄y1,y2 (ŷ1, ŷ2)
dy1dy2

−
S∑
s=2

βs−2

ˆ ∞
ŷ1

ˆ ∞
ŷ2

τz
ηzs,R2

1− τ2,zs

fy1,y2 (y1, y2)

F̄y1,y2 (ŷ1, ŷ2)
dy1dy2

−
ˆ ∞
ŷ2

β−1T ′1 (ŷ1)
ŷ1βζ

1− T ′1 (ŷ1) + ŷ1βζT ′′1 (ŷ1)

fy1,y2 (ŷ1, y2)

F̄y1,y2 (ŷ1, ŷ2)
dy2

−
ˆ ∞
ŷ1

T ′2 (ŷ2)
ŷ2ζ

1− T ′2 (ŷ2) + ŷ2ζT ′′2 (ŷ2)

fy1,y2 (y1, ŷ2)

F̄y1,y2 (ŷ1, ŷ2)
dy1.

Using the definitions of the conditional hazard rates, we obtain formula (38). We similarly obtain

the expression for
δW (T ,h2,(ŷ2,ẑ2))
βF̄y2,z2 (ŷ2,ẑ2)

, i.e., formula (38), the only difference being the compounding

of the capital income elasticities.

We finally show some results about the Clayton copula, used in equation (39).

Generalized Clayton copula. The generalized Clayton copula with correlation parameters (d, ρ),

with d ≥ 1 and ρ ∈ (0,∞), is defined as

C (u, v) =

{[(
u−1/ρ − 1

)d
+
(
v−1/ρ − 1

)d]1/d

+ 1

}−ρ
.
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Kendall’s tau30 and the coefficients of lower and upper tail dependence are given by:

ρτ = 1− 2(
2 + 1

ρ

)
d
, λl = lim

q→0

C (q, q)

q
= 2−ρ/d, λu = 2 + lim

q→0

C (1− q, 1− q)− 1

q
= 2− 21/d.

If the marginal distributions are Pareto distributed, F̄xj (xj) = αj

(
xj
cj

)−aj
, the log-survival

c.d.f. obtained from the generalized Clayton copula writes

ln F̄x1,x2 (x1, x2) = −ρ ln

1 +

(α−1/ρ
1

(
x1

c1

)a1/ρ
− 1

)d
+

(
α
−1/ρ
2

(
x2

c2

)a2/ρ
− 1

)d1/d
 .

In the case where d = 1, the ith component of multivariate hazard ratio vector (for i = 1, 2) is

equal to:

−ŷi
∂ ln F̄y1,y2 (ŷ1, ŷ2)

∂yi
=
ŷi
´∞
ŷ−i

fy1,y2 (ŷi, y−i) dy−i

F̄y1,y2 (ŷ1, ŷ2)
=

ai
[
F̄yi (ŷi)

]−1/ρ[
F̄y1 (ŷ1)

]−1/ρ
+
[
F̄y2 (ŷ2)

]−1/ρ − 1
.

C Notations for the Stochastic Model

In the stochastic model outlined in Section 7 (see Golosov, Tsyvinski, and Werquin 2014), we

define the marginal tax rates and virtual incomes in period one as

τ1,xj ≡
∂T1 (y1, k1)

∂xj
, ∀xj ∈ {y1, k1} ,

R1 ≡τ1,y1y1 + τ1,k1k1 + k0 − T1 (y1, k1) ,

and in period two as

τ2,xj

(
y1,x

2
2, z2

)
≡
∂T2

(
y1,x

2
2, z2

)
∂xj

, ∀xj ∈ {y1, y2, z2} ,

R2

(
y1,x

2
2, z2

)
≡τ2,y1y1 + τ2,y2x

2
2 + τ2,z2z2 − T2

(
y1,x

2
2, z2

)
.

30Kendall’s tau is defined as follows. Consider two random variables x̃1, x̃2, independent of x1, x2, but with the
same joint distribution. Then ρτ (x1, x2) ≡ E [sign ((x1 − x̃1) · (x2 − x̃2))].
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We define the choice vector x of an individual with type (k0, θ1) in period one as:

x(k0,θ1) =



y1 (k0, θ1)

y2 (k0, θ1, θ2)
...

y2 (k0, θ1, θ2)
...

y2

(
k0, θ1, θ̄2

)
k1 (k0, θ1)


.

Note that this vector has a continuum of interior rows, corresponding to all the possible values

for θ2 ∈
[
θ2, θ̄2

]
. It will also be the case for the matrices that we define below. However, we

show that all the usual operations on vectors and matrices generalize naturally to this case.

We define the vector of income effect parameters as

I
(x)
R1

=



∂y1/∂R1

∂y2 (θ2) /∂R1

...

∂y2

(
θ̄2

)
/∂R1

∂z2/∂R1


, I

(x)
R2(x2)

=



∂y1/∂R2

(
x2
)

∂y2 (θ2) /∂R2

(
x2
)

...

∂y2

(
θ̄2

)
/∂R2

(
x2
)

∂z2/∂R2

(
x2
)


.

We define the matrix of compensated elasticities with respect to the first-period marginal tax

rates τ1,y1 , τ1,k1 as

Ec,(x)
τ1 =



∂y1/∂τ1,y1 0 · · · 0 ∂y1/∂τ1,k1

∂y2 (θ2) /∂τ1,y1 0 · · · 0 ∂y2 (θ2) /∂τ1,k1
...

...
. . .

...
...

∂y2

(
θ̄2

)
/∂τ1,y1 0 · · · 0 ∂y2

(
θ̄2

)
/∂τ1,k1

∂z2/∂τ1,y1 0 · · · 0 ∂z2/∂τ1,k1


,

and the matrix of compensated elasticities with respect to the second-period marginal tax rates

τ2,y1

(
x2
)
, τ2,y2

(
x2
)
, τ2,z2

(
x2
)
, at point x2 =

(
x2

1,x
2
2,x

2
3

)
=
(
y1,x

2
2, z2

)
, as

E
c,(x)
τ2(x2)

=



∂y1
∂τ2,y1 (x2)

0 · · · 0 ∂y1
∂τ2,y2 (x2)

0 · · · 0 ∂y1
∂τ2,z2 (x2)

∂y2(θ2)
∂τ2,y1 (x2)

0 · · · 0
∂y2(θ2)
∂τ2,y2 (x2)

0 · · · 0
∂y2(θ2)
∂τ2,z2 (x2)

...
...

. . .
...

...
...

. . .
...

...
∂y2(θ̄2)
∂τ2,y1 (x2)

0 · · · 0
∂y2(θ̄2)
∂τ2,y2 (x2)

0 · · · 0
∂y2(θ̄2)
∂τ2,z2 (x2)

∂z2
∂τ2,y1 (x2)

0 · · · 0 ∂z2
∂τ2,y2 (x2)

0 · · · 0 ∂z2
∂τ2,z2 (x2)


,
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where the only non-zero interior column of E
c,(x)
x,τ2(x2)

is the one indexed by θ∗2, where θ∗2 is such

that y2 (k0, θ1, θ
∗
2) = x2

2.

Next, we define the gradient vectors of the tax functions as

DT1 (y1, k1) =



∂T1
∂y1

(y1, k1)

0
...

0
∂T1
∂k1

(y1, k1)


, DT2

(
y1,x

2
2, z2

)
=



∂T2
∂y1

(
y1,x

2
2, z2

)
0
...

0
∂T2
∂y2

(
y1,x

2
2, z2

)
0
...

0
∂T2
∂z2

(
y1,x

2
2, z2

)



,

where the only non-zero element in the (continuum of) interior rows of DT2

(
y1,x

2
2, z2

)
is in the

row indexed by θ∗2, where θ∗2 is such that y2 (k0, θ1, θ
∗
2) = x2

2.

We finally define the Hessian matrices as

D2T1 (y1, k1) =



∂2T1
∂y21

(y1, k1) 0 · · · 0 ∂2T1
∂y1∂k1

(y1, k1)

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
∂2T1
∂y1∂k1

(y1, k1) 0 · · · 0 ∂2T1
∂k21

(y1, k1)


,

and

D2T2

(
x2
)

=



∂2T2
∂y21

(
x2
)

0 · · · 0 ∂2T2
∂y1∂y2

(
x2
)

0 · · · 0 ∂2T2
∂y1∂z2

(
x2
)

0 0 · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 0 0
∂2T2
∂y1∂y2

(
x2
)

0 · · · 0 ∂2T2
∂y22

(
x2
)

0 · · · 0 ∂2T2
∂y2∂z2

(
x2
)

0 0 · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 0 0
∂2T2
∂y1∂z2

(
x2
)

0 · · · 0 ∂2T2
∂y2∂z2

(
x2
)

0 · · · 0 ∂2T2
∂z22

(
x2
)



,

where the only non-zero elements in the (continuum of) interior rows (resp., columns) of

D2T2

(
x2
)

are in the row (resp., column) indexed by θ∗2, where θ∗2 is such that y2 (k0, θ1, θ
∗
2) = x2

2.

The perturbations
(
dτ1, dτ2

(
x2
))

of the marginal tax rates faced by an individual
(
y1,x

2, k1

)
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that we condider in formula (41) are defined as the changes in the gradient vectors defined above,

that is

dτ1 =
(
dτ1,y1 0 . . . 0 dτ1,k1

)′
,

dτ2

(
x2
)

=
(
dτ2,y1 0 . . . 0 dτ2,y2 0 . . . 0 dτ2,z2

)′
,

where the only non-zero element of dτ2

(
x2
)

is indexed by θ∗2, that is the second period type

such that z2 (k0, θ1, θ
∗
2) = x2

2.
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