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1 Introduction

Real-options theory following McDonald and Siegel (1986) and Dixit and Pindyck

(1994) assumes that firms operate in a Modigliani-Miller (MM) environment. This

is for a good reason. The firm’s investment decision can then be formulated as an

American option-exercise and valuation problem that can be solved by using the

classical option pricing tools of Black and Scholes (1973) and Merton (1973).

But, in reality firms operate under imperfect capital markets and face signifi-

cant external financing costs that arise from informational asymmetry, moral hazard,

transaction costs, and other frictions. In order to avoid incurring these costs too fre-

quently firms optimally retain earnings and attempt to mostly internally finance their

investments and cover their operating costs. Indeed, according to Chen, Karabarbou-

nis, and Neiman (2017), “nowadays nearly two-thirds of global investment is funded

by corporate saving.” Also the surveys of chief financial officers (CFOs) by Graham

and Harvey (2001, 2002) have revealed the great importance CFOs attach to main-

taining financial flexibility by holding internal funds.

In practice, the value of real flexibility derived from the optimal timing of real

options is intertwined with the value of financial flexibility derived from the optimal

management of retained earnings and the optimal external financing timing and

issuance decisions. Both the effective discount rate used to determine the value of a

growth opportunity and the cost of investment depend on the firm’s marginal value of

cash, which varies with both the size of the firm’s cash holdings and the firm’s earnings

fundamentals. The reason is that the firm takes account not only of its current stock of

internal funds but also the information about its future cash flow prospects contained

in persistent earnings shocks. Through the firm’s evolving marginal value of cash, the

real option problem becomes a fundamentally two-dimensional problem, which entails

a significant generalization of the classical one-dimensional problems of McDonald and

Siegel (1986) and Dixit and Pindyck (1994).

We embark on such a generalization in this paper and derive how optimal investment-

timing and abandonment-timing decisions are made, as well as how assets in place

and growth options are valued, when firms face external financing costs. By intro-

ducing external financing costs, we are, in effect, integrating two strands of literature,

the classical real options literature following McDonald and Siegel (1985, 1986) and

Dixit and Pindyck (1994) with the corporate finance literature following Miller and
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Orr (1966). Our continuous-time model allows us to not only derive optimal invest-

ment, abandonment, and equity issue size and timing policies but also to carry out a

systematic valuation analysis.

We model the firm’s life-cycle and its evolving collection of assets in place and

growth opportunities in the spirit of Myers (1977). Although we do not explicitly

model adverse selection, one interpretation of costly external financing in our model

is equity dilution cost (due to mis-pricing a la arguments in Myers and Majluf (1984).

In our model, the firm’s investment, financing, payout and abandonment policies

depend on both earnings fundamentals and the firm’s financial slack. Therefore, our

model can explain why following a recession low investment persists even though

earnings fundamentals have recovered. The reason is that following a recession firms

are generally in repair mode, seeking to rebuild their financial slack. Similarly, in our

model firms have a preference for investments with front-loaded earnings. We show

that, as a result, a start-up firm may choose to invest in a project sooner than pre-

dicted by the classical real-option theory in an effort to build future internal funding

capacity. We also show that the firm’s payout policy is fundamentally different de-

pending on whether it is in the growth phase or in the mature phase. In the mature

phase a more profitable firm pays out more, while in the growth phase it pays out

less.

Our model also predicts that the value of growth and abandonment options effec-

tively vanishes for firms with low internal financing ability. Firms with scarce internal

funds are forced into inefficiently liquidating their valuable operating assets. We also

find that the hurdle for investment in the growth phase is a non-monotonic function

of the firm’s internal funds. When the firm’s savings are sufficient to entirely cover

the investment cost, the firm’s investment hurdle decreases with its internal funds.

But when its internal funds cannot entirely cover the cost of investment, the hur-

dle is increasing with the firm’s internal funds. The reason is that when the firm

is approaching the point where it may be able to entirely fund its investment with

retained earnings it has a stronger and stronger incentive to delay investment until it

has sufficient funds to be able to avoid tapping costly external funds. An important

implication of this result is that investment is not necessarily more likely when the

firm has more cash. Investment could well be delayed further, as the firm’s priority

becomes avoiding costly external financing.

We also show that financially constrained firms prefer growth opportunities with
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front-loaded cash-flows. In the MM-based real options framework there is an equiv-

alence between an option that pays cash flows over time and an option that pays

immediately upon exercising a lump sum with the same present value. This is not

true in our model for a financially constrained firm. Not only is the value of real

options with more front-loaded cash-flows higher but also the firm may be induced to

over-invest. More generally, a financially constrained firm cares not only about the

present value of an investment project but also the project’s payback period.

Another subtle prediction is that the amount of external equity financing is also

non-monotonic in the profitability of the firm’s operating assets. The intuition is as

follows. For a firm whose investment option is sufficiently out of the money, financial

flexibility has little value. On the other hand, a firm that is so profitable that its

investment option is deep in the money can easily generate cash from operations.

Therefore, funds obtained through an equity issue are most valuable for a firm whose

profitability is in the medium range. In sum, for firms facing external financing costs

the value of real options is not just tied to the timing of the real option but also to

financial flexibility. Hugonnier, Malamud, and Morellec (2015) consider a model of

costly and uncertain external financing in which the amount of external financing

may also be non-monotonic in profitability. Décamps, Gryglewicz, Morellec, and

Villeneuve (2017) obtain a similar prediction in a model with both permanent and

transitory shocks.

A real options theory that includes external financing costs is obviously on a sub-

stantially stronger empirical footing than the classical theory that assumes perfect

capital markets. This is evident with respect to the empirical evidence in Kim and

Weisbach (2008) on global seasoned equity offerings (SEOs) and DeAngelo, DeAn-

gelo and Stulz (2010) on SEOs of U.S. industrial corporations. The former paper

finds that a large fraction of the SEO proceeds is saved inside the firm and savings

are larger for growth firms. The latter finds that SEOs are first and foremost last-

resort financing decisions for firms running out of cash, or in need of funds towards

anticipated investment outlays. Although they find evidence in support of the mar-

ket timing hypothesis of Loughran and Ritter (1995, 1997) and Baker and Wurgler

(2002) on the one hand, and the life-cycle hypothesis on the other,1 these hypothe-

1By the life-cycle hypothesis, they mean that equity issuers are primarily young firms with high
market-to-book (M/B) ratios and low operating cash flows, and mature firms with low M/B ratios
pay dividends and fund investments out of internal funds.
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ses do not explain most of the SEOs that are observed. The main conclusion that

DeAngelo, DeAngelo and Stulz (2010) draw is that “paraphrasing Sherlock Holmes,

‘many dogs don’t bark’ at times when according to theory they should be barking;...

[and] the life-cycle explanation is problematic because too many ‘old dogs’ do in fact

bark...41.4% of issuances and 52.5% of SEO proceeds come from current and former

dividend payers, firms that are clearly beyond the growth phase of their life-cycles.”

Our theory of SEOs is consistent with findings in both papers. In particular, it can

explain why so many “old and young dogs” bark, as it accounts for both offerings for

survival and offerings for growth.2

A striking new prediction of our theory (from our simulation analysis) is that

the equity stake given up to outside investors via an SEO is substantially smaller on

average for firms that use the SEO proceeds to invest than for those that do not in-

vest. Such a prediction cannot be obtained in models without persistent productivity

shocks.

From a macro perspective, our model sheds light on a major challenge for the real-

options based models that seek to explain the persistently low post-crisis investment

despite the substantial increase in corporate cash holdings and the quick recovery

of earnings and macroeconomic fundamentals. Several studies, in particular, Baker,

Bloom and Davis (2016), and Bloom, Floetotto, Jaimovich, Saporta-Eksten, and

Terry (2016), have pointed out that, although investment timing optionality as in

Bloom (2009) is highly relevant for understanding investment dynamics, the standard

real options models predict only a short-lived pause in investment caused by higher

uncertainty following the crisis.

By construction, the standard real options model also cannot explain the increase

in corporate savings. Our model with external financing costs, however, produces

both more persistent investment dynamics and cash build-ups following a crisis, con-

sistent with the findings in Alfaro, Bloom, and Lin (2016) and Chen (2017). Our

model is also consistent with Campello, Graham, and Harvey (2010) and Campello,

Giambona, Graham, and Harvey (2011) who find that the more financially con-

strained firms planned deeper cuts in investment, spending, burned more cash, drew

more credit from banks, and also engaged in more asset sales and forced liquidations

2Carlson, Fisher, and Giammarino (2006, 2010) offer a related dynamic theory of SEOs and
investment. They assume that investment is always financed through an SEO, and therefore they
cannot explain the empirical findings of DeAngelo, DeAngelo and Stulz (2010).
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in the crisis.3 In sum, our real options model with financial constraints that ties real

optionality with financial flexibility predicts significantly more plausible investment

and cash dynamics.

Related literature. Following McDonald and Siegel (1986) the basic formulation

of the classical real-options problem has been extended in many different directions.

Dixit (1989) uses the real option approach to examine entry and exit from a productive

activity. Titman (1985) and Williams (1991) analyze real estate development in a

real options framework. Abel and Eberly (1994) analyze a unified framework of

investment under uncertainty that integrates the q theory of investment with the real

options approach.

Mauer and Triantis (1994) considers a real options problem for a levered firm,

which otherwise does not face any external financing costs. Hackbarth and Mauer

(2012) and Sundaresan, Wang, and Yang (2015) study the joint investment and fi-

nancing decisions by building on the capital structure model of Leland (1994) and

integrating it into the real options framework with institutional features. Grenadier

(1996), Lambrecht and Perraudin (2003) and others extend the real options deci-

sion problem to a game-theoretic environment. Grenadier and Wang (2005) incorpo-

rate informational asymmetries and agency problems into a real options framework.

Morellec (2004) and Lambrecht and Myers (2007, 2008) consider managerial agency

problems in the context of a real options framework. Kyle, Ou-Yang, and Xiong

(2006) introduce prospect theory and Grenadier and Wang (2007) introduce hyper-

bolic discounting into the classical real options framework.

In strategic dynamic contexts, Grenadier and Malenko (2011) study games in

which the decision to exercise an option is a signal of private information to outsiders.

Grenadier, Malenko, and Malenko (2016) consider a problem where an uninformed

principal makes a timing decision interacting with an informed but biased agent.

Orlov, Skrzypacz, and Zryumov (2019) study a Bayesian persuasion game in the

context of real options. Miao and Wang (2007) analyze an incomplete-markets real-

options problem.4 Grenadier and Malenko (2010) develop a model of real options

3Ivashina and Scharfstein (2010) also document the aggressive credit-line drawdown by firms in
the crisis.

4Chen, Miao, and Wang (2010) and Wang, Wang, and Yang (2012) use the incomplete-markets-
based real-options model to study entrepreneurial firms’ capital structure, investment, and aban-
donment decisions. Miao and Wang (2011) analyze the impact of ambiguity and ambiguity aversion
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with learning about the permanence of shocks.

None of these models discussed above allow for financial flexibility through the

accumulation of corporate savings. More recently, two related articles have intro-

duced financial flexibility into a real options problem, but they only consider one-

dimensional problems by removing earnings fundamentals as a state variable. The

first is by Décamps and Villeneuve (2007) and the second is by Hugonnier, Malamud,

and Morellec (2015). Both articles consider a financially constrained firm with an

asset in place that generates cash-flows with (transitory) i.i.d shocks and that faces

a growth option that can increase the drift of the cash-flow process. Put differently,

in the MM version of these models there is no value of waiting and hence there is no

real flexibility: the firm would exercise its growth option as soon as it is available.

Thus, our main contribution is to consider a two-dimensional problem that lends

itself to a general analysis of the value of real and financial flexibility. Our paper

is not the first to consider a two-dimensional real-options problem, but it is the

first to offer a complete and rigorous analysis of this problem. The first article to

consider a two-dimensional real options problem for a financially constrained firm

is by Boyle and Guthrie (2003). They assume that the firm cannot invest at all

unless it meets an exogenous borrowing constraint. Once the investment is made

the firm is immediately liquidated at the market value of the asset. The main point

of their analysis is to highlight an over-investment incentive, which is driven by the

risk of (locally) unbounded large losses from the operating assets in place, and the

firm’s concern that it might be short of cash before it can invest. This concern is

contrived as it arises from the ad hoc assumption that the firm is not allowed to

voluntarily downsize its operating asset.5 That is, they do not account for the firm’s

abandonment option, which is an important part of our analysis. Unlike their setup,

our model fully captures both real and financial flexibility by separating financing and

investment option decisions. The firm’s financing needs reflect the joint considerations

for investment, continued operations, and survival. Moreover, the firm continues to

face operating risk after investment and therefore also faces an abandonment option.

Anderson and Carverhill (2012) study a liquidity management problem for a firm

on (real options) investment decisions.
5A related ad hoc assumption which drives the overinvestment result in their paper is that the

growth option payoff value is assumed to follow a geometric Brownian motion, while cumulative
operating cash-flows from the operating asset are assumed to follow an arithmetic Brownian motion
causing unbounded large operating losses.
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operating over an exogenously fixed time horizon and that is subject to mean-reverting

productivity shocks. Besides these different model specifications the other funda-

mental difference with our analysis is that their model has a one-time investment

opportunity at an exogenously fixed time implying no investment-timing flexibility.

Three independent studies analyze a similar problem to ours: First, Copeland and

Lyasoff (2013) consider a somewhat narrower framework to ours and do not allow for

either abandonment or sequential growth options. Second, Boot and Vladimirov

(2014) consider a financially constrained entrepreneurial firm with an asset in place

that generates random cash flows following a geometric Brownian motion and a new

investment opportunity. Third, Babenko and Tserlukevich (2013) consider the op-

timal hedging policy for a financially constrained firm with a decreasing returns to

scale technology and growth opportunities.

Our paper is also related to Décamps, Mariotti, Rochet, and Villeneuve (2011),

who consider a financially constrained firm’s optimal dynamic payout and SEO poli-

cies, and Bolton, Chen, and Wang (2011, 2013), who develop a q-theory of investment

for financially constrained firms facing i.i.d. shocks. One important difference with

the generalized q-theory of investment (with convex adjustment costs) is that the fi-

nancially constrained firm issues equity only for survival and never for investment as

it uses its internal savings to smooth investment, and hence cannot explain the above

mentioned empirical evidence on SEOs. Bolton, Wang, and Yang (2019) use the

recursive optimal contracting method to develop a dynamic liquidity and risk man-

agement model also with real investment options for a firm run by an entrepreneur

with inalienable human capital.

2 Model

Operating Revenues and Profits. We consider a young firm that has assets

in place and an investment opportunity. At any point in time t ≥ 0 the firm can

exercise this investment opportunity by paying a fixed investment cost I > 0 as

in McDonald and Siegel (1986). Upon exercising this investment option the young

(growth) firm becomes a mature firm. The investment opportunity is more or less

attractive depending on the earnings fundamentals Y for its product, which follows

the geometric Brownian motion (GBM) process

dYt = µYtdt+ σYtdBt , (1)
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where Bt is the standard Brownian motion defined on the filtered probability space

(Ω,F , {Ft}t∈R+ ,P) which satisfies the usual conditions.

The firm generates revenues at the rate of mnY , where mn denotes the firm’s

production capacity, with n ∈ {1, 2}. When n = 1 the firm is in the growth phase,

and when n = 2 the firm has expanded into its mature phase, so that m1 < m2. We

denote the firm’s deterministic operating cost (per unit time) by Zn > 0, so that the

operating profit per unit of time is (mnYt − Zn). Obviously, our model specification

allows both the revenue and cost to be stochastic and only requires that the operating

profit (mnY − Zn) is an affine function in Y . In sum, upon exercising the growth

option the firm’s operating revenue increases by ∆mYt, where ∆m = m2 − m1, and

its operating cost increases by ∆Z = Z2 − Z1, so that (∆mYt − ∆Z) is the firm’s

incremental profit from the second asset.

When profits (mnYt − Zn) are sufficiently negative it may be optimal for the

firm to abandon operations as the option value of continuing the firm is no longer

positive. As in the standard real-options literature (e.g., McDonald and Siegel, 1986),

by exercising the abandonment option, the firm shuts itself down and without loss of

generality obtains a liquidation value of zero. The firm, thus, has an American-style

perpetual liquidation option, where the timing of the option is endogenously chosen

in both the growth and mature phases. In sum, our model describes a simple life-cycle

of a firm with three phases: a growth phase, a mature phase, and a liquidation (or

scale-down) phase. We assume that investors are risk neutral, so that all cash flows

are discounted at the risk-free rate r. Equivalently, we may interpret the process (1)

as representing the risk-neutral measure.

External Financing Costs. In reality firms often face significant external financ-

ing costs due to asymmetric information and managerial incentive issues. A large

empirical literature has sought to measure these costs, in particular the costs arising

from the negative stock price reaction in response to the announcement of a new

equity issue.6

6An early study by Asquith and Mullins (1986) found that the average stock price reaction to
the announcement of a common stock issue was −3% and the loss in equity value as a percentage of
the size of the new equity issue was as high as −31%. Similar results have been obtained in several
subsequent studies (see Eckbo, Masulis and Norli, 2007 for a survey). Calomiris and Himmelberg
(1997) estimate the direct transactions costs firms face when they issue equity and find that mean
transactions costs (underwriting, management, legal, auditing and registration fees) are as high as
9% of an issue for seasoned public offerings and 15.1% for initial public offerings.
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To capture these costs, we use a standard specification for external financing

costs.7 If the firm needs to raise external funds F net of fees, it incurs an external

financing cost:

Φ(F ) = φ0IF>0 + φ1F , (2)

where φ0 ≥ 0 is the fixed cost parameter and φ1 ≥ 0 is the marginal cost of external

financing, and IF>0 is an indicator function which takes the value of one when F > 0

and zero otherwise.8 When the fixed cost φ0 is high the firm may prefer liquidation

over equity issuance.

While we could allow for different equity issuance costs in the growth and mature

phases to capture different types of financing frictions (agency costs and informa-

tional asymmetry), we keep the external financing costs the same in both phases for

simplicity. An important simplification, however, is that we do not explicitly model

informational asymmetries between the firm and outside investors. As a result our

model cannot capture how investment and abandonment policies differ across differ-

ent types of issuers and how asymmetric information about option values maps into

external financing costs.

Corporate Liquidity Management. To avoid incurring external financing costs

too often the firm will seek to accumulate funds internally, so that a key aspect of

the firm’s financial management is liquidity, or cash, management, to which we next

turn.

The growth phase. At the beginning of the growth phase (t = 0) the firm is

endowed with a stock of cash W0 ≥ 0. Over time the firm’s cash accumulates as

follows

dWt = (rWt +m1Yt − Z1)dt+ dCt − dUt , (3)

subject to the constraint that its cash holding is non-negative:

Wt ≥ 0 . (4)

The first term in (3) is the sum of the firm’s interest income rW and operating

profits m1Yt − Z1. The second term in (3), Ct, denotes the firm’s non-decreasing

7Explicitly modeling informational asymmetry would result in a substantially more involved
analysis. Lucas and McDonald (1990) provides a tractable analysis by making the simplifying
assumption that the informational asymmetry is short lived, i.e. it lasts one period.

8In other words, to raise the net amount F the firm must raise the gross amount F + Φ(F ) from
investors.
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cumulative external equity financing, and the third term Ut denotes its non-decreasing

cumulative payout, in that dCt ≥ 0 and dUt ≥ 0. Should the firm choose to abandon

its operations, it then pays out any remaining cashWt to its shareholders. We begin by

considering this simpler situation, and later extend the analysis to situations where

the firm incurs a cash-carrying cost and therefore must also determine its payout

policy.

When the firm’s liquidity W is insufficient to cover the investment cost, W < I,

the firm will obviously have to raise external funds to finance the investment cost I

or alternatively the firm can wait and continue to accumulate internal funds. This

is one way in which external financing costs will modify the firm’s exercise decision

of its growth option. Also, when the firm chooses to raise external funds to finance

its investment it may decide to raise more funds than needed to cover the investment

cost because it also needs funds (working capital) to finance potential operating losses

after it has exercised its growth option.

The mature phase. In the mature phase cash accumulates as follows:

dWt = (rWt +m2Yt − Z2)dt+ dCt − dUt , Wt ≥ 0 . (5)

In other words, the dynamics of liquidity are almost the same as in the growth phase,

the only difference being that production capacity is now m2 and operating costs are

Z2.

The Optimization Problem. For expositional purposes, we denote by {At}t∈R+

the control process which takes the liquidity process into the positive closed region

{Wt ≥ 0}t∈R+ .

Let τnL denote the abandonment (liquidation) time in the growth phase (n = 1)

and in the mature phase (n = 2). Also let τ i denote the stochastic investment time

in the growth phase. Next, we turn to the stochastic equity issuance timing and

amount. Let τnF (t) denote the first external financing time after time t in phase n,

where n = 1 for the growth phase and n = 2 for the mature phase, and let Fn ≥ 0

denote the corresponding external financing amount at time τnF (t).

As the firm’s discount rate is equal to the risk-free rate, there is no cost for the

firm to carry cash in the firm, which means that it is weakly efficient for shareholders

to save the firm’s profits inside the firm. It is possible that the firm’s savings at time

t, Wt, is so high that the firm becomes permanently financially unconstrained at all
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its future time s ≥ t. That is, it is optimal for the firm to choose the first-best policies

at all s ≥ t with probability one. We use τ 1
U to denote the (first) time t when the

firm becomes permanently financially unconstrained in the growth phase. Similarly,

we use τ 2
U to denote the (first) time when the firm becomes permanently financially

unconstrained in the mature phase.

The control process is then given by At ≡ (τ 2
U , τ

2
L, τ

2
F (t), F2) in the mature phase

and by At ≡ (τ i, τ
1
U , τ

1
L, τ

1
F (t), F1) in the growth phase.9 The extra control in the

growth phase is due to the investment option.

Before defining the value function and providing its solution, we state the following

assumptions.

Assumption 1 There exists a nonempty compact metric space K such that At ∈ K
for all t ∈ R+.

A control process is said to be admissible if: 1) it is adapted to the filtration

{Ft}t∈R+ ; 2) it satisfies Assumption 1; and, 3) Wt following the process, defined by

equation (3) for the growth phase and the process defined by equation (5) for the

mature phase, has a unique strong solution. The set of admissible control processes

is denoted by A.

Next, we state a sufficient condition that ensures that the value function is well

defined.

Assumption 2 The risk-free interest rate is positive, r > 0, and the growth rate of

the earnings fundamentals is strictly smaller than the risk-free interest rate, r > µ.

Finally, to ensure that the investment option is valuable in the growth phase, we

impose the following assumption.

Assumption 3 The firm’s production capacity in the mature phase is strictly greater

than that in growth phase: m2 > m1.

In sum, the firm’s optimization problem involves several dynamic policies: i) an

investment timing decision; ii) an abandonment timing decisions; and iii) dynamic

SEO decisions. Importantly, the firm uses liquidity management to integrate these

interdependent decisions.

9For notational simplicity, sometimes we skip time subscripts of the control process. For example,
A refers to At and τnF (t) refers to τnF .
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3 The First-Best Solution

Under perfect capital markets (when the Modigliani-Miller theorem holds), the

firm only faces investment and abandonment timing decisions. We solve for the firm’s

value in both mature and growth phases together with its optimal abandonment and

investment policies.

First, we calculate the firm’s value (i.e. from its asset in place) in the mature

phase. We use Q∗(Y ) to denote its value in the mature phase. The only decision in

the mature phase for the fist-best (FB) setting is the abandonment timing decision.

The firm’s value is given by

Q∗(Yt) = max
τ2L

Et

[∫ τ2L

t

e−r(s−t)(m2Ys − Z2)ds

]
. (6)

This equation incorporates the value of abandonment as the integral is truncated at

the liquidation time τ 2
L.

Next, we calculate the firm’s value in the growth phase where it has one asset in

place and a growth option. We use H∗(Y ) to denote its value in the growth phase.

The decisions in the growth phase for the FB setting then involve both abandonment

and investment timing decisions. Therefore, the firm’s value is then given by

H∗(Yt) = max
τ i,τ1L

Et

[∫ min{τ1L,τ i}

t

e−r(s−t)(m1Ys − Z1)ds+ e−r(τ i−t)(Q∗(Yτ i)− I)

]
.

(7)

As the optimal timing decisions are characterized by optimal threshold policies

in our model, we next introduce various threshold policies. We use Y ∗a,2 to denote

the optimal abandonment hurdle in the mature phase: τ 2
L = inf{s|Ys ≤ Y ∗a,2, s ≥ t},

use Y ∗a,1 to denote the optimal abandonment threshold in the growth phase: τ 1
L =

inf{s|Ys ≤ Y ∗a,1, s ≥ t}, and use Y ∗i to denote the optimal investment threshold:

τ i = inf{s|Ys ≥ Y ∗i , s ≥ t}.
The following theorem states the first-best solution under perfect capital markets.

Theorem 1 Under Assumptions 1-2, the value of the operating asset Q∗(Y ) in the

mature phase is given by:

Q∗(Y ) =

(
m2Y

r − µ
− Z2

r

)
−
(
m2Y

∗
a,2

r − µ
− Z2

r

)(
Y

Y ∗a,2

)γ
for Y ≥ Y ∗a,2 , (8)
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where the abandonment hurdle Y ∗a,2 is given by (A.1) and the constant γ is given by

(A.2) in Appendix A.

Under Assumptions 1-3, the firm’s value in the growth phase, H∗(Y ), is given by:

H∗(Y ) =
m1Y

r − µ
− Z1

r
+

(Y ∗a,1)γY β − (Y ∗a,1)βY γ

(Y ∗a,1)γ(Y ∗i )β − (Y ∗a,1)β(Y ∗i )γ

(
Q∗(Y ∗i )− I −

(
m1Y

∗
i

r − µ
− Z1

r

))

− (Y ∗i )βY γ − (Y ∗i )γY β

(Y ∗a,1)γ(Y ∗i )β − (Y ∗a,1)β(Y ∗i )γ

(
m1Y

∗
a,1

r − µ
− Z1

r

)
, for Y ∗a,1 ≤ Y ≤ Y ∗i (9)

where the constant γ and β are given by (A.2) and (A.5) respectively, and the invest-

ment threshold Y ∗i and abandonment threshold Y ∗a,1 jointly solve the equations (A.3)

and (A.4) in Appendix A.

Moreover, H∗(Y ) = Q∗(Y )− I for Y > Y ∗i , and H∗(Y ) = 0 for Y < Y ∗a,1.

For the mature phase, the value of the firm’s assets in place is equal to Q∗(Y ). The

first term in (8) for Q∗(Y ) is the present discounted value of operating profits if the

firm were to remain in operation forever (which would be suboptimal for sufficiently

low Y ). The second term in (8) for Q∗(Y ) is the abandonment option value. The

firm operates its asset if and only if Y ≥ Y ∗a,2. When Y < Y ∗a,2 the asset is abandoned

and Q∗(Y ) = 0 . As is well known, Q∗(Y ) is convex in Y due to the abandonment

option.

For the growth case, the enterprise value is equal to H∗(Y ). The first term in

(9) for H∗(Y ) is the present discounted value of operating profits if the firm were

to remain in operation forever generating profits at the rate of m1Y − Z1 without

exercising either abandonment or growth option. The second term in (9) for H∗(Y )

is the investment option value (taking into account that the growth option is exercised

before the abandonment is exercised in the growth phase.) The third term givens the

value of the abandonment in the growth phase (taking into account that the firm is

optimally abandoned before it exercises its growth option.)

The optimal threshold for the abandonment option in the mature phase, Y ∗a,2,

has the standard well-known formula given by (A.1). The optimal threshold for

the abandonment option in the growth phase and that for the growth option are

determined jointly by (A.3) and (A.4).

The proof for Theorem 1 is standard and omitted. Dayanik and Karatzas (2003)

provide a general characterization of one-dimensional optimal-stopping problems.
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Finally, we note that under MM, in the mature phase, the value of a firm, denoted

by P ∗(W,Y ), is simply equal to the sum of its cash holdings W and the value of its

asset in place, Q∗(Y ), i.e.,

P ∗(W,Y ) = Q∗(Y ) +W . (10)

Similarly, in the growth phase the firm’s value, denoted by G∗(W,Y ), is given by

G∗(W,Y ) = H∗(Y ) +W . (11)

The functions, G∗(W,Y ) and P ∗(W,Y ), are the upper bounds for the firm’s value in

the growth and mature phase, respectively.

4 Solution: General Case with External Financing

Costs

When the firm faces external financing costs it will optimally hoard liquidity W in

order to reduce the frequency with which it returns to capital markets to raise external

funds. The interaction between earnings fundamentals and corporate liquidity gives

rise to highly nonlinear dynamics for firm value, investment, and financing.

4.1 The Mature Phase

We begin by defining the liquidity threshold Λ2 in the mature phase such that the

firm is permanently financially unconstrained for any liquidity beyond that threshold.

Definition 1 Let Λ2 denote the liquidity threshold for W such that:

Λ2 =
r − γµ
r2(1− γ)

Z2 , (12)

and τ 2
U denote the first time Wt hits Λ2 in mature phase: τ 2

U = inf{s|Ws ≥ Λ2, s ≥ t}.
Furthermore, let τ 2 = min{τ 2

F , τ
2
L, τ

2
U}.

Given an admissible control A, the value function in the mature phase is given

by:

P (Wt, Yt;A) = Et
[
e−r(τ2−t) [P (Wτ2− + F2, Yτ2−)− F2 − Φ(F2)] Iτ2=τ2F

+e−r(τ2−t)Wτ2 Iτ2=τ2L
+ e−r(τ2−t)P ∗(Wτ2 , Yτ2)Iτ2=τ2U

]
.(13)
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Equation (13) takes into account the three mutually exclusive scenarios. First, the

firm issues costly external equity at τ 2
F , captured by the first term when τ 2 = τ 2

F .

Second, the firm liquidates, captured by the second term when τ 2 = τ 2
L. Third, the

firm becomes permanently financially unconstrained, captured by the last term when

τ 2 = τ 2
U . As the firm is permanently financially unconstrained at τ 2

U , the firm attains

the first-best mature value P ∗(Wt, Yt) at t = τ 2
U .

Assumption 2 guarantees that the value function P (Wt, Yt;A) is well defined for

any admissible control. The value function in the mature phase, denoted P (Wt, Yt),

is then given by

P (Wt, Yt) = sup
A∈A

P (Wt, Yt;A) . (14)

An admissible control is said to be optimal if P (Wt, Yt) = P (Wt, Yt;A).

As a first step in the characterization of P (W,Y ), we state the following lemmas

that summarize the main properties of P (W,Y ).

Lemma 1 The value function P (W,Y ) must be greater than or equal to the firm’s

liquidation value at any time, that is:

P (W,Y ) ≥ W . (15)

Lemma 1 follows from the fact that the firm can always liquidate itself and collect

W . The (net) value of the perpetual American liquidation option, measured by

P (W,Y )−W is weakly positive.

Lemma 2 The firm always has an option to issue equity, so that P (W,Y ) satisfies

P (W,Y ) ≥ P F (W,Y ) (16)

where P F (W,Y ) would be the firm’s value if the firm were to immediately issue equity:

P F (W,Y ) = sup
F2≥0

P (W + F2, Y )− F2 − Φ(F2) . (17)

Similar to our argument for Lemma 1, Lemma 2 follows from the fact that the

firm can always issue equity at a cost. By revealed preferences, the fact that the firm

chooses not to issue equity must imply that the timing is not optimal and hence the

inequality given in (16) has to hold.
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Lemma 3 The firm’s value P (W,Y ) attains the first-best value when W ≥ Λ2:

P (W,Y ) = P ∗(W,Y ) = W +Q∗(Y ) , for W ≥ Λ2 . (18)

Lemma 3 establishes that the firm is permanently financially unconstrained when

its liquidity W exceeds Λ2, which is given by (12).

The reasoning for this result is as follows. As long as the firm’s savings rate,

(rW + m2Y − Z2), is non-negative, when evaluated at the firm’s first-best aban-

donment threshold Y ∗a,2, i.e., (rW + m2Y − Z2) ≥ 0, the firm is never involuntarily

liquidated, can always achieve the first-best policies, and hence is permanently finan-

cially unconstrained. The preceding inequality is equivalent to

W ≥ Λ2 , (19)

where Λ2 is obtained by substituting the explicit formula for the first-best abandon-

ment hurdle Y ∗a,2, given in (A.1), into (rW +m2Y − Z2) ≥ 0:

Λ2 =

∫ ∞
t

e−r(s−t)(Z2 −m2Y
∗
a,2)ds =

Z2 −m2Y
∗
a,2

r
=

r − γµ
r2(1− γ)

Z2 . (20)

In sum, the firm is financially unconstrained only when it faces no financial con-

straint with probability one at the current and all future times. This is the case when

W ≥ Λ2, where Λ2 denotes the lowest level of liquidity needed for a mature firm to

be permanently financially unconstrained.10

The firm’s value P (W,Y ) is then equal to the first-best value:

P (W,Y ) = P ∗(W,Y ) = W +Q∗(Y ) for W ≥ Λ2 , (21)

where the first-best value Q∗(Y ) is given by (8). For a firm to be financially un-

constrained, it cannot issue external equity with strictly positive probability at any

moment because external funding is costly and distorts corporate decisions. That is,

the condition for a firm to be financially unconstrained in a dynamic setting is much

tighter than in a static setting.

10Our notion of minimum liquidity holding W for a financially unconstrained firm is analogous
to the notion of natural borrowing limit in the macroeconomics savings literature following Aiyagari
(1994). This borrowing limit is defined as the maximum amount of risk-free debt a consumer can
accumulate without ever defaulting. A consumer can borrow at the risk-free rate up to that natural
borrowing limit, but any additional amount of borrowing will give rise to default risk. For a firm,
Λ2 is the minimum W that it needs in order to implement its first-best abandonment policy. Any
liquidity holding lower than Λ2 may induce under-investment via inefficient liquidation with positive
probability.
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Lemma 4 In the limit as Y → ∞, the firm’s value P (W,Y ) attains the first-best

value, that is

P (W,Y ) = P ∗(W,Y ) = W +Q∗(Y ) , for Y →∞ . (22)

The reason is that, as its operating revenue Y → ∞, the firm is permanently

financially unconstrained. Therefore, the firm can support all its first-best policy

with probability one and hence attains the maximal value under the first-best.

Next, we make the following assumption.

Assumption 4 The function, P (W,Y ), is smooth in the inaction region.

The function, P (W,Y ), then satisfies L2P = 0, where L2 is the infinitesimal

generator given by

L2P = (rW +m2Y − Z2)PW + µY PY +
σ2Y 2

2
PY Y − rP . (23)

The condition L2P = 0 follows from the standard principle of dynamic optimality.

The first term on the right side of (23), which is given by the product of the firm’s

marginal value of cash PW (W,Y ) and its saving rate (rW + m2Y − Z2), captures

the value of the firm’s savings. The second term, µY PY , represents the marginal

effect of an expected revenue change µY on firm value, and the third term in PY Y

encapsulates the effects of the volatility of changes in earnings fundamentals Y on

firm value. Intuitively, in the region where the firm operates normally the sum of the

first three terms, which amount to the total expected change in firm value P (W,Y ),

must equal rP (W,Y ) the normalized value of the firm.

When the firm issues equity or liquidates itself, in other words when either (15)

or (16) binds, P (W,Y ) satisfies

L2P ≤ 0 . (24)

We summarize the model solution for the mature phase in the following theorem.

Theorem 2 Under Assumptions 1, 2, and 4, the value function in the mature phase,

P (W,Y ), can be solved via the variational-inequality formulation for (W,Y ) ∈ Σ2,

where Σ2 = {(W,Y )|0 ≤ W ≤ Λ2, 0 < Y <∞} denotes the solution region:

max{L2P, max{P F (W,Y ) ,W} − P (W,Y )} = 0 , (25)
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where P F (W,Y ) is defined by (17). Additionally, the following boundary condition

holds

P (W,Y ) = P ∗(W,Y ) = W +Q∗(Y ) , for W = Λ2 or Y →∞ . (26)

The intuition for (25) is as follows. If the firm is in the inaction region, L2P = 0,

which characterizes the solution, has to hold. Otherwise, the firm must take one of

the following two actions: (1) issuing equity to replenish liquidity or (2) liquidating

itself and returning all cash to its shareholders, as one of the two inequalities, (16

or (15), must be satisfied with equality at the boundary, which implies P (W,Y ) =

max{P F (W,Y ) ,W} at the boundary. Taking the boundary behaviors together with

the inaction option, we conclude that (25) has to hold.

Next, we establish several fundamental properties of the value function P (W,Y ).

Proposition 1 Under Assumptions 1-2 and 4, the following properties for (W,Y ) ∈
Σ2 hold:

i) the solution for P (W,Y ) exists and is bounded as W ≤ P (W,Y ) ≤ P ∗(W,Y );

ii) the solution for P (W,Y ) is strictly increasing in W and strictly increasing in

Y before liquidation. Additionally, Q(W,Y ) = P (W,Y )−W is increasing in W ;

iii) the solution for P (W,Y ) is unique.

Finally, we establish the following properties for the liquidation and external fi-

nancing decisions.

Proposition 2 Under Assumptions 1-2, i) the optimal liquidation boundary, denoted

by Y 2(W ), is decreasing in W ; ii) the firm will delay costly equity issuance until it

has entirely exhausted its cash.

The proofs for the results in this subsection are provided in Appendix B.

We next turn to the analysis for the growth phase. Anticipating its potential

financial constraints in the mature phase, a rational forward-looking firm takes these

future constraints into account for its decisions in the growth phase.

4.2 The Growth Phase

In the growth phase the firm faces an optimal investment timing problem along

with abandonment timing and external equity financing decisions.
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Definition 2 Let Λ1 denote the liquidity threshold given by

Λ1 =
Z1 −m1Y

∗
a,1

r
, (27)

where Y ∗a,1 is the first-best abandonment hurdle in the growth phase. Let τ 1
U denote the

first time liquidity reaches Λ in the growth phase, i.e., τ 1
U = inf{s|Ws ≥ Λ}, where Λ

is given by

Λ = max{Λ1,Λ2 + I} . (28)

Finally, let τ 1 = min{τ i, τ 1
F , τ

1
L, τ

1
U}.

Note that τ 1
U is the first time when the firm has accumulated sufficient liquidity to

be permanently unconstrained and hence it attains the first-best firm value G∗(Wt, Yt)

with probability one under all circumstances. Because the firm is forward looking, the

amount of liquidity it is required for the firm to never compromise its investment and

liquidation decisions is to have at least the level of liquidity exceeding max{Λ1,Λ2+I}.
Given an admissible control A, the value function in the growth phase is given by

G(Wt, Yt;A) = Et
[
e−r(τ1−t) [P (Wτ1− + F1 − I, Yτ1−)− F1 − Φ(F1)] Iτ1=τ i

+e−r(τ1−t) [G(Wτ1− + F1, Yτ1−)− F1 − Φ(F1)] Iτ1=τ1F

+e−r(τ1−t)Wτ1 Iτ1=τ1L
+ e−r(τ1−t)G∗(Wτ1 , Yτ1)Iτ1=τ1U

]
. (29)

Equation (29) takes into account the four mutually exclusive scenarios in the mature

phase. First, the firm invests when τ 1 = τ i. Second, the firm issues equity and

exercises the growth option when τ 1 = τ 1
F . Third, the firm liquidates when τ 1 = τ 1

L.

Finally, the firm becomes permanently financially unconstrained when τ 1 = τ 1
U . As

the firm is permanently financially unconstrained at τ 1
U , the firm attains the first-

best value G∗(Wt, Yt) at t = τ 1
U in the growth phase, which means that the firm can

support its growth-option exercising and liquidation decisions at its first-best levels

in the future.

Assumptions 2-3 guarantee that the value function is well defined for any admis-

sible control. Similarly, the value function in the growth phase, denoted G(Wt, Yt), is

defined by

G(Wt, Yt) = sup
A∈A

G(Wt, Yt;A) . (30)

An admissible control is said to be optimal if G(Wt, Yt) = G(Wt, Yt;A).

As for the mature phase, we spell out a number of lemmas that summarize the

main properties of G(W,Y ).

20



Lemma 5 The value function in the growth phase G(W,Y ) must be greater than or

equal to the firm’s liquidation value at any time, that is:

G(W,Y ) ≥ W . (31)

The reasoning for Lemma 5 for the growth phase is the same as that for Lemma

1 for the mature phase: The firm can always liquidate itself and collect W and the

(net) value of the perpetual American liquidation option, measured by G(W,Y )−W
is always weakly positive.

Lemma 6 The firm always has an option to issue equity in the growth phase, so that

G(W,Y ) must satisfy

G(W,Y ) ≥ GF (W,Y ) , (32)

where GF (W,Y ) would be the firm’s value if the firm were to immediately issue equity:

GF (W,Y ) = sup
F1≥0

G(W + F1, Y )− F1 − Φ(F1) . (33)

Similarly, the reasoning for Lemma 6 for the growth phase is the same as that for

Lemma 2 for the mature phase: The timing flexibility in issuing equity is valuable in

the growth phase and G(W,Y ) ≥ GF (W,Y ).

Lemma 7 The firm always has an option to invest in the growth phase, G(W,Y )

must satisfy

G(W,Y ) ≥ GI(W,Y ) , (34)

where GI(W,Y ) would be the firm’s value if the firm were to immediately issue equity

to partially finance its growth option exercising:

GI(W,Y ) = sup
F1≥0

P (W + F1 − I, Y )− F1 − Φ(F1) . (35)

Similarly, Lemma 7 implies the firm’s flexibility in choosing the timing of its

investment option is always valuable in the growth phase.

Lemma 8 The firm’s value in the growth phase G(W,Y ) attains the first-best value

when W ≥ max{Λ1,Λ2 + I}:

G(W,Y ) = G∗(W,Y ) = W +H∗(Y ) , for W ≥ max{Λ1,Λ2 + I} . (36)
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Lemma 8 establishes that for the firm to be permanently financially unconstrained

in the growth phase it must be able to pursue all its real decisions including investment

timing and liquidation (which could occur in either phase) with probability one. This

occurs when W ≥ max{Λ1,Λ2 + I}. The intuition is as follows. First, to avoid

inefficient liquidation in the growth phase, the firm requires at least Λ1 in its savings

account. To avoid inefficient investment and suboptimal liquidation in the mature

phase, the firm at least has to have Λ2 + I, out of which the amount of Λ2 ensures

that the firm is willing to choose its liquidation policy at the first-best level and the

amount of I ensures that the firm has plenty liquidity to exercise its growth option

at the first-best level.

Lemma 9 As Y →∞, the firm’s value G(W,Y ) attains the first-best value, that is

G(W,Y ) = G∗(W,Y ) = W +H∗(Y ) , for Y →∞ . (37)

The reasoning for this result is the same as that for Lemma 4. As its operating

revenue Y → ∞, the firm is permanently financially unconstrained. Therefore, the

firm can support its first-best investment and liquidation policies with probability

one and hence its value attains the first-best level.

Next, we make the following assumption.

Assumption 5 The function, G(W,Y ), is smooth in the inaction region.

The function, G(W,Y ), then satisfies L1G = 0, where L1 is the infinitesimal

generator in the growth phase:

L1G = (rW +m1Y − Z1)GW + µY GY +
σ2Y 2GY Y

2
− rG . (38)

When the firm issues equity or liquidates itself, i.e., when either (31), (32), or (34)

binds, G(W,Y ) satisfies

L1G ≤ 0 . (39)

The following theorem summarizes the model solution for the growth phase.

Theorem 3 Under Assumptions 1-5, the value function in the growth phase, G(W,Y ),

can be solved via the variational-inequality formulation for (W,Y ) ∈ Σ1, where Σ1 =

{(W,Y )|0 ≤ W ≤ max{Λ1,Λ2 + I}, 0 < Y <∞} denotes the solution region:

0 = max
{
L1G , max {GF (W,Y ), GI(W,Y ) , W} −G(W,Y )

}
, (40)
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where GF (W,Y ) and GI(W,Y ) are defined by (33) and (35), respectively. Addition-

ally, the following boundary condition holds:

G(W,Y ) = G∗(W,Y ) = W +H∗(Y ) , for W ≥ max{Λ1,Λ2 + I} or Y →∞ .

(41)

The intuition for (40) is as follows. If the firm is in the inaction region, L1G = 0,

which characterizes the solution, has to hold. Otherwise, the firm must take one of

the following three actions: (1) issuing equity to replenish liquidity, (2) issuing equity

to partially finance the cost of exercising the growth option, or (3) liquidating itself

and returning all cash to its shareholders, as one of the three inequalities (32), (34),

or (31) must be satisfied with equality at the boundary, which implies G(W,Y ) =

max {GF (W,Y ), GI(W,Y ) , W} at the boundary. Taking the boundary behaviors

together with the inaction option, we conclude that (40) has to hold.

Depending on its liquidity holding W , the firm finds itself in the following three

different regions: .

1. Financially Unconstrained Region: W ≥ max{Λ1,Λ2 + I}. If W ≥ Λ1 the

firm’s liquidity can cover operating costs in the growth phase with probability one,

and if W ≥ Λ2 + I the firm’s liquidity can cover the investment cost and operat-

ing costs in the mature phase with probability one. Naturally, for the firm to be

permanently unconstrained in the growth phase it must be able to pursue both first-

best investment and liquidation strategies with probability one, so that the firm is

financially unconstrained and attains the first-best value when W ≥ max{Λ1,Λ2 +I}.

2. Medium Cash-holding Region: I ≤ W < max{Λ1,Λ2+I}. Consider next the

situation where the firm has moderate financial slack. That is, when it has sufficient

internal funds W to cover the investment cost I if it chooses to invest immediately, but

not quite enough cash to ensure that it will never involuntarily liquidate its operating

asset. The firm may not choose to exercise the growth option even when Y reaches

the first-best threshold Y ∗i , and even if it has sufficient internal funds W to cover

the investment cost I. The reason is that exercising the investment option would

drain the firm of its cash to such an extent that the firm may be pushed to raise

external funds prematurely to cover operating losses in the mature phase. The firm

is therefore still financially constrained, even if it can entirely pay for the investment
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I using internal funds, as liquidity concerns distort its investment and abandonment

decisions.

At the endogenously chosen investment threshold, denoted by Y (W ), firm value

G(W,Y ) is continuous, so that Y (W ) is an implicit function defined by the following

value-matching condition:

G(W,Y (W )) = P (W − I, Y (W )) . (42)

In the medium cash-holding region the investment cost I is entirely financed out of

internal funds, so that post-investment liquidity W decreases by I, as seen on the

right side of (42).

3. Low Cash-holding Region: 0 ≤ W < I. The firm is even more severely

constrained in this region as internal funds are insufficient to cover the investment

cost I. The firm then has to raise external funds should it decide to invest. No

matter how large the realization of its current Y is, the firm has to access costly

external capital markets if it chooses to invest immediately, as the investment cost I

is lumpy, W < I, while Y is a flow variable. The post-financing/investment liquidity

is then given by W + F1 − I. Again, at the moment of investing, the firm’s value

is continuous, so that the investment boundary Y (W ) is implicitly defined by the

following value-matching condition:

G(W,Y (W )) = P (W + F1 − I, Y (W ))− F1 − Φ(F1) . (43)

The right-hand side of condition (43) gives the firm’s value in the mature phase after

it has incurred investment cost I and issued gross external funds F1 + Φ(F1). The

left-hand side of (43) is the firm’s value before investing.

A firm without any cash (W = 0) can be in one of four possible situations:

a. When Y ≥ Y (0), the firm raises external financing and exercises its growth

option.

b. When Z1/m1 ≤ Y < Y (0), the firm is able to generate enough cash from

operations to cover its operating cost, so that it needs no external financing.

c. When Y 1(0) < Y < Z1/m1, the firm’s internally generated cash-flow cannot

fully cover its operating cost, and it is optimal to raise external funds so as
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to continue operations. We will characterize the liquidation threshold for a

cash-less firm, Y 1(0), later on.

d. When Y ≤ Y 1(0) it is best for the firm to liquidate its operating asset.

When the firm is indifferent between abandoning or continuing, the abandonment

hurdle denoted by Y 1(W ) is given by:

G(W,Y 1(W )) = W . (44)

Next, we establish several key properties of the value function G(W,Y ).

Proposition 3 Under Assumptions 1-3 and 5, the following properties for (W,Y ) ∈
Σ1 hold:

i) The solution for G(W,Y ) exists and is bounded as W ≤ G(W,Y ) ≤ G∗(W,Y ).

ii) The solution for G(W,Y ) is strictly increasing in W and strictly increasing in

Y before liquidation. Additionally, H(W,Y ) = G(W,Y )−W is strictly increasing in

W .

iii) The solution for G(W,Y ) is unique.

Finally, we establish the following properties for the liquidation, external financ-

ing, and investment decisions.

Proposition 4 Under Assumptions 1-3, the following properties hold:

i) the optimal liquidation boundary is decreasing in W ;

ii) the firm delays costly equity issuance until it has entirely exhausted its cash;

iii) if PW (0, Y (I)) ≥ φ1 the investment threshold approaches infinity, i.e., Y (W )→
∞, as W → I from the left.

The proofs for the technical results in this subsection are provided in Appendix

C.

5 Main Results

We begin by motivating our choice of parameter values. We then proceed to

numerically solve the model and provide economic intuition for the firm’s optimal

liquidation, external financing, and investment policies. Our numerical solution is

25



based on the variational inequality method in the preceding section. To ease our

exposition, we also use the more familiar real-options formulation that relies on value-

matching and smooth-pasting conditions to characterize liquidation and investment

decisions, but note that the equity-issuance decision for the survival purpose does not

satisfy the smooth-pasting condition.11

5.1 Parameter Values

Investors are risk neutral as is standard in the real options and dynamic corporate

finance literatures. However, for calibration purposes, we recognize that investors

are risk averse. Using the standard asset pricing methodology, we can interpret our

preceding analysis on the risk-adjusted basis by treating all our analysis as being

done under the risk-neutral measure. Next, we explicitly incorporate the firm’s risk

premium and beta.12

Let µP denote the drift of the process Y under the physical measure, ρ the corre-

lation coefficient between the shocks to the firm’s fundamentals Y and the economy-

wide systematic shock, and η the price of risk for the aggregate stock market. The

drift of Y under the risk-neutral measure is then given by µ = µP − ρησ. The model

described thus far can then be understood as one in which the firm’s risk premium is

fully incorporated through the change from the physical measure to the risk-neutral

measure.

Following Leland (1994) and others papers in the literature, we set the annual

risk-free interest rate at r = 0.05 and the annual revenue growth volatility at σ = 0.1.

Hence, if we take an expected growth rate of µP = 0.014 under the physical measure,

a correlation coefficient of ρ = 0.8, and a market price of risk of η = 0.3, we obtain

an expected growth rate of µ = µP − ρησ = 0.014 − 0.8 × 0.3 × 0.1 = −0.01 under

the risk-neutral measure.

For the growth phase, we normalize the annual operating cost and the revenue

multiple to Z1 = 1 and m1 = 1, respectively. Furthermore, to simplify the interpre-

tation of our results we assume that the firm’s growth option delivers an identical

additional operating asset, so that earnings are doubled from m1Y − Z1 = Y − 1 to

11In our model, these two approaches yield the same solution. Appendix D provides a sketch of
the solution algorithm.

12See Duffie (2001) for details on the equivalent martingale measure (risk-neutral) measure and
how to connect the physical measure and the risk-neutral measure via Girsanov’s Theorem.
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m2Y − Z2 = 2(Y − 1) when the firm exercises its growth option. We also normalize

the investment cost to I = 1.

For the external financing costs, we choose a low and a high level for the fixed

cost φ0 for illustrative purposes: φ1 = 0.01 and φ0 = 0.5. For brevity, we focus on

the case with φ1. Finally, we take the marginal financing cost to be φ1 = 0.01.

First-Best. The first-best liquidation hurdle in the growth phase is Y ∗a,1 = 0.767.

This implies that an unconstrained firm will continue as a going concern even when

it incurs a loss as high as Z1−m1Y
∗
a,1 = 0.333, or 33.3% of the operating cost Z1 = 1.

The first-best liquidation hurdle in the mature phase is slightly higher, Y ∗a,2 = 0.8.

This means that the firm is less willing to absorb losses in the mature phase, as it is

ready to abandon operations as soon as it incurs a loss larger than Z2−m2Y
∗
a,2 = 0.4,

or 20% of operating costs Z2 = 2.

The firm exercises its growth option when Y reaches the investment hurdle Y ∗i =

1.3. At that level, the project value (including the value of the abandonment option)

is Q∗(Y ∗i ) = 8.39, and the NPV is H∗(Y ∗i ) = Q∗(Y ∗i ) − I = 7.39. The minimum W

needed for a firm to be permanently financially unconstrained in the mature phase is

Λ2 =
r − γµ
r2(1− γ)

Z2 = 8 , (45)

which is four times the operating cost Z2 = 2. In the growth phase this lower

bound is Λ1 = 4.66, so that the firm is permanently financially unconstrained if

W ≥ max{Λ1, I + Λ2} = 9.

5.2 Inefficient Liquidation or External Financing for Sur-
vival?

Financial constraints both distort investment and impose external financing costs

on the firm. As a result, a firm is prone to abandon operations sooner than the

first-best timing.

5.2.1 Liquidation Policy

Liquidation in the growth phase involves the additional opportunity cost of losing

any future growth options. Therefore, the firm is less willing to liquidate operations

in the growth phase than in the mature phase, ceteris paribus.
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Figure 1: Abandonment hurdle, W 1(Y ) and W 2(Y ), and equity issuance for
survival, F1(Y ) and F2(Y ). Panels A and B plot the abandonment hurdles in the
growth and mature phases, respectively. Panels C and D plot the equity issuance in
the growth and mature phases, respectively.

The Growth Phase. Panel A of Figure 1 plots the optimal liquidation hurdle

W 1(Y ) in the growth phase. The first-best abandonment threshold Y ∗a,1 = 0.767 is

indicated by the dotted line labeled MM. When the firm faces an external financing

cost of φ0 = 0.5, it abandons operations sooner than the first-best, i.e., whenever

Y ≤ 0.89. Note also that the firm may abandon operations even before it runs

out of cash. That is, W 1(Y ) > 0 for Y < 0.89. For example, when Y = 0.8, the

abandonment threshold for cash holdings is W 1(0.8) = 0.12. Finally, the lower the

earnings, the higher the firm’s W when it abandons operations.

Moreover, as Panel A shows, W 1(Y ) is a strictly decreasing function, indicating

that the firm is increasingly eager to abandon as Y approaches Y ∗a,1. In other words,

the higher are the firm’s cash holdings W the less inefficient is the firm’s liquidation
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decision. The impact of external financing costs on the firm’s liquidation policy

essentially disappears when the firm’s liquidity holding W reaches 1.2. Note finally

that when the firm faces almost no fixed external financing cost, φ0 = 0.01, its

abandonment policy closely approximates the first-best policy.

The Mature Phase. Panel B of Figure 1 plots the liquidation hurdle W 2(Y ) for

the mature phase. The shape of W 2(Y ) is similar to the liquidation frontier in the

growth phase. The main difference with the liquidation policy in the growth phase is

that the firm is strictly more conservative in its continuation decisions in the mature

phase. Compared with the first-best liquidation hurdle, Y ∗a,2 = 0.8, a firm facing

external financing costs φ0 = 0.5, liquidates sooner, i.e., when Y reaches the level of

0.898. The reason is that the firm has no growth option in the mature phase and

therefore has a lower continuation value than in the growth phase, other things equal

(by construction we have constant returns to scale, m1/Z1 = m2/Z2 = 1).

5.2.2 Equity Issuance: F1(Y ) and F2(Y )

In an environment with time-invariant external financing costs, as in our model,

the firm is always better off delaying costly equity issuance as long as it can, as it is

then able to save the time value of money on these financing costs. With a strictly

positive liquidity buffer W the firm can always cover any flow operating losses, so

that it never issues equity before it entirely exhausts its cash.

In sum, the firm will only decide to raise costly external equity if it runs out of

cash, or if it wants to invest and has insufficient internal funds to cover the fixed

investment cost I. In the growth phase the firm chooses to issue equity at W = 0,

therefore,

G(0, Y ) = GF (0, Y ) , (46)

in the region where Y 1(0) < Y < Z1/m1 . Otherwise, when Y ≤ Y 1(0) , the firm is

liquidated and hence G(0, Y ) = 0.

By revealed preferences, the dividing boundary Y 1(0) is higher than the first-

best abandonment hurdle Y ∗a,1. Should the firm seek to raise new funds, its optimal

external financing amount F1 is given by the FOC:13

GW (F1, Y ) = 1 + Φ′(F1) = 1 + φ1 , Y 1(0) < Y < Z1/m1 . (47)

13We verify the second-order condition (SOC) to ensure that the FOC solution yields the maximal
value.
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That is, the marginal value of cashGW (F1, Y ) must equal the marginal cost of external

financing 1 + Φ′(F1). Note that the firm’s marginal value of cash GW (W,Y ) depends

on its earnings fundamentals Y , and GW (W,Y ) is greater than 1 at the moment of

financing.

Similarly, in the mature phase, the firm only considers issuing equity at W = 0.

Conditional on issuing equity, the firm’s value is

P (0, Y ) = P F (0, Y ) , (48)

in the region where Y 2(0) < Y < Z2/m2 . Otherwise, when Y ≤ Y 2(0) , the firm is

liquidated and hence P (0, Y ) = 0. Should the firm issue equity, the optimal external

financing amount F2 satisfies the following FOC:

PW (F2, Y ) = 1 + Φ′(F2) = 1 + φ1 . (49)

Panels C and D of Figure 1 plot the amount raised in the growth and mature

phases, F1(Y ) and F2(Y ), when the firm has exhausted all internal funds and prefers

to continue rather than abandon operations. When external financing is costly (φ0 =

0.5) the firm prefers to continue if Y ≥ 0.89 in the growth phase and Y ≥ 0.898 in

the mature phase. When funding is cheap (φ0 = 0.01) the firm prefers to continue as

long as Y ≥ 0.78 in the growth phase and Y ≥ 0.81 in the mature phase.

The two plots for Fn(Y ) can be understood as follows: the lower is Y , the more

funds are needed to cover operating losses Zn−mnY ; at the same time, when Y is lower

the value of continuation is also lower. The tension between these two considerations

generally translates into a non-monotonic function Fn(Y ). For low values of Y , Fn(Y )

is increasing in Y , and for higher values of Y , Fn(Y ) is decreasing in Y . This can

clearly be seen for the (dotted) plots of Fn(Y ) when φ0 = 0.01.14 Finally, note that

when mnY > Zn the firm is able to accumulate cash from retained earnings and does

not need any external funds.

In sum, the firm’s expectation about its future profitability influences its current

financing policy. This is an important difference with Bolton, Chen, and Wang (2011),

where the firm’s expected profitability is constant over time.

In addition, the firm raises more if the fixed costs of external funding φ0 are higher.

This can be seen for example, at Y = 0.9: when the fixed issuance cost φ0 increases

14It is not apparent for the plot of Fn(Y ) when φ0 = 0.5, as the fixed cost is then so large that
the firm prefers to abandon rather than continue with unprofitable operations and limited funds.
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from 0.01 to 0.5, the firm’s external financing, F1(0.89), then increases from 0.534 to

0.99. A firm that faces a larger fixed issuance cost wants to raise more funds to avoid

going back to the capital markets. This prediction differs from those based on static

models such as Froot, Scharfstein, and Stein (1993) and Kaplan and Zingales (1997),

where the higher the fixed financing cost is the more financially constrained the firm

is, and consequently the lower is the amount of equity financing it demands (the firm

has no future financing considerations by assumption).

Next, we turn to the firm’s investment decisions.

5.3 The Growth Option: Internal versus External Financing

Static models, Froot, Scharfstein, and Stein (1993) and Kaplan and Zingales

(1997), also predict that firms with more internal funds invest more, as their overall

funding costs are lower. Again, this prediction does not extend to a dynamic model

in which firms can optimally time their investment. The main result of this section is

that firms can become increasingly conservative in exercising their growth option as

they accumulate internal funds. The reason is that by delaying investment they may

be able to avoid having to turn to costly external funds altogether. The closer firms

are to entirely funding their investment outlays I with internal funds W , the higher

the marginal expected return to delaying investment until they have entirely closed

the funding gap I −W .

The Investment Timing Decision. Panels A and B of Figure 2 plot the invest-

ment hurdle Y (W ) for two values of the fixed external financing cost, φ0 = 0.01

and φ0 = 0.5 in the regions 0 ≤ W < I = 1 and W ≥ 1 respectively. Recall that

a firm is financially unconstrained in the growth phase if its liquidity W is greater

than I + Λ2 = 9. We plot Y (W ) for W only up to W = 2.4 in Panel B because

the investment threshold effectively converges to the first-best hurdle Y ∗i = 1.30 as

W → 2.4. Consider first the region where the firm’s internal funds W are sufficient

to cover its investment cost I = 1 (Panel B). In this region the firm finances its

investment outlays entirely out of internal funds. As the plot of Y (W ) shows, the

higher is W the less distorted is the firm’s investment timing decision. With a higher

W , the firm’s mature value is higher, as it is less likely to run out of cash. As a result,

the firm is eager to invest sooner.

Consider next the low cash-holding region W ∈ [0, I). Panel A of Figure 2 plots
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Figure 2: Investment hurdle Y (W ) and the post-investment liquidity level
W +F1(Y (W ))−I. Panels A and B plot the investment hurdle Y (W ) in the growth
phase. Panels C and D plot the post-investment liquidity W + F1(Y (W ))− I at the
transition into the mature phase.

the investment hurdle Y (W ) as a function of W in the region [0, 1). When φ0 = 0.5,

Y (W ) is strictly increasing and convex in W , going from 1.409 at W = 0 to +∞ as

W tends I = 1. When φ0 = 0.01, Y (W ) is weakly increasing and convex in W .

This remarkable result is exactly the opposite from the prediction of a static model.

Far from behaving like a less constrained firm as W → I, it behaves like a much more

constrained firm. What is the logic behind this behavior? In essence, as W → I the

firm increasingly wants to avoid the fixed external financing cost by waiting until it has

accumulated sufficient internal funds rather than taps costly external funds to finance

its investment as the firm is very close to accumulate enough funds to cover investment

costs. Therefore, it therefore takes a larger and larger expected earnings fundamentals

Y to motivate the firm to invest immediately via costly external financing.
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Another way of understanding this result is that the firm’s investment-timing

decision trades off the value of the option to delay against the present cost of financing

the investment. When the firm is financially constrained both the valuations of the

timing option and the cost of investment vary with the marginal value of cash. In

other words, for a firm the valuation of the timing option and the investment cost

are fundamentally interconnected through the marginal value of cash, unlike in the

standard textbook real options analysis.

The financing decision upon investment. Panels C and D of Figure 2 plot the

firm’s post-investment liquidity at time τ i+, Wτ i+ = Wτ i +F1(Wτ i)−I, where F1(Wτ i)

denotes the net amount of external funds raised when the firm decides to invest at

time τ i. The following conditions hold under optimal external financing: either

PW (W + F1(W )− I, Y (W )) = 1 + φ1 , and F1(W ) ≥ I −W , (50)

or

PW (W + F1(W )− I, Y (W )) ≤ 1 + φ1 , and F1(W ) = I −W . (51)

Condition (50) states that the marginal value of cash at investment equals the marginal

cost of financing. In this case, the firm issues at least I −W . Condition (51) is when

the optimum is at the corner. In this case, the firm’s net equity issue is I −W and

together with internal funds W , the firm’s total funds is just sufficient to cover its

investment cost I.15

When W < I, the firm is less willing to invest as W increases. In other words, the

firm’s investment hurdle Y (W ) increases with W , so that post investment the firm is

better able to generate internal cash flows from operations when pre-investment liq-

uidity W is higher. Therefore, the amount of post-investment liquidity Wτ i+ needed

decreases with the firm’s current liquidity W , as shown in Panel C. When the firm

faces low external financing costs (φ0 = 0.01) the post-investment liquidity is essen-

tially zero at all levels of W , since the firm only needs to obtain liquidity to cover

the financing gap I −W . Panel D also illustrates that F1(Wτ i), the optimal amount

of external funds raised when the firm decides to invest, is equal to 0 when W ≥ I,

15In this case, the firm’s marginal value of liquidity at investment must be weakly lower than the
marginal cost of issuance. If this were not true, the firm would have chosen to issue equity in excess
of I −W , which in turn equates the marginal value of cash with the marginal cost of equity issue.
But this is the first case that we have already discussed.
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so that Wτ i+ = Wτ i − I. This result is simply a consequence of the dynamic pecking

order of financing principle.

5.4 Value Loss due to Costly External Financing

Our next set of results establishes how large the loss in firm value due to external

financing costs can be. This loss stems directly from the financing costs per se and

indirectly from the distortions in investment and abandonment policies. A key con-

clusion from our quantitative analysis is that low operating earnings fundamentals Y

and low cash buffers W compound in making the loss particularly large, as Figure 3

illustrates.

This result at the individual firm’s level for a stand-alone firm contributes to

the downward-spiral adverse-feedback mechanism in the financial intermediation and

crisis literature. For example, Brunnermeier and Sannikov (2014) show how an ad-

verse shock to the fundamentals (capital shock in their model) weakens a financially

constrained productive sector’s balance sheet, which further causes underinvestment

generating an adverse feedback loop from the fundamentals shock to the equilibrium

price of capital.

Panels A and C plot the firm’s enterprise value H(W,Y ) = G(W,Y )−W in the

growth phase for two values of Y , a low value Y = 0.82 for which the firm incurs

operating losses, and a high value, Y = 1.18, for which the firm makes a profit.

Enterprise value H(W,Y ) is, of course, lower the higher are external financing

costs φ0. As the plots for H(W,Y ) illustrate, the loss is particularly large when

φ0 = 0.5, Y = 0.82, and the firm runs out of cash. When W approaches 0 the entire

first-best enterprise value is then essentially wiped out. In contrast, when φ0 = 0.01

the firm loses only around 10% of the first best value when W approaches 0. And

when Y = 1.18 the loss in value is small even when financing costs are high.

A simple yet robust insight from these results is that the significance of external

financing costs varies considerably with the firm’s operating revenues. One should

therefore not expect to see a stable relation between firm value and external financing

costs in the data.

Panels B and D of Figure 3 plot the firm’s enterprise value in the mature phase:

Q(W,Y ) = P (W,Y )−W . (52)

The same qualitative results on value loss obtain in the mature phase as in the growth
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Figure 3: Enterprise values in the growth and mature phases, H(W,Y ) and
Q(W,Y ). Panels A and B plot H(W,Y ) and Q(W,Y ) for Y = 0.82. Panels C and D
plot H(W,Y ) and Q(W,Y ) for Y = 1.18.

phase, although the size of the losses is somewhat smaller.

In sum, these results illustrate how operating earnings fundamentals Y and inter-

nal funds W are substitutes in terms of mitigating financial constraints. Moreover,

abstracting from financial flexibility considerations when determining the firm’s real

option decisions–as most of the real options literature has done–could generate highly

misleading predictions and vastly overstate the value of real options. Equally, an ex-

clusive focus on financial frictions that ignores the firm’s real flexibility–as is the case

for most of the corporate financial constraints literature–risks understating the value

of precautionary savings.
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time firm’s net equity gross equity % of equity issue original investors’

t earning Yt issue Ft issue Ft + Φ(Ft) ωt+ ownership αt+ (%)

Panel A: W0 = 0.1

0 1 0 0 0 100%
1.16 0.913 0.98 1.49 30.1% 69.9%
2.04 1.314 0 0 0 69.9%
10.4 0.931 1.17 1.68 82.6% 12.2%
23.8 0.890 0 0 0 liquidation

Panel B: W0 = 0.2

0 1 0 0 0 100%
2.23 1.443 1.11 1.62 12.8% 87.2%
12.9 0.921 1.18 1.69 88.3% 10.2%
24.4 0.926 1.17 1.68 85.1% 1.5%
37.6 0.839 0 0 0 liquidation

Table 1: Equity ownership dynamics and (investment, equity issue, and
abandonment) timing decisions for a simulated path. The parameter values
are r = 0.05, µ = −0.01, σ = 0.1, I = 1 m1 = Z1 = 1, m2 = Z2 = 2, φ1 = 0.01
and φ0 = 0.5. For the given simulated path with Y0 = 1, we consider two cases with
W0 = 0.1 and W0 = 0.2. Under the first-best case, the investment time is t = 2.03
and the abandonment time is t = 39.5.

6 Simulating the Firm’s Life-Cycle

To provide further insight into the dynamics of investment, SEOs, cash manage-

ment, and abandonment decisions, we simulate one sample path of earnings funda-

mentals Y with two initial cash holding values, W0 = 0.1 and W0 = 0.2, with baseline

parameter values and φ0 = 0.5. The evolution of corporate decisions are illustrated in

Figures 4 and 5, respectively. Table 1 reports the decisions and calculates the implied

equity ownership dynamics that follow from the firm’s decisions over the simulated

path used in Figures 4 and 5.

In the MM world, the optimal investment time for this sample path is t = 2.03,

just when the firm’s earnings Yt reach 1.3, and the abandonment time is t = 39.5,

just as the firm’s earnings Yt hit the low level of 0.8. Thus, the firm is willing to fund

losses of up to 20% of operating costs Z2 = 2 under this scenario to maximize the

value of its abandonment option.

Recall that when the firm incurs an external financing cost Φ(Ft) as it raises
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equity Ft at time t, the firm’s post-issuance value is P (Wt+, Yt+). Let ωt+ denote

the equilibrium fraction of the newly issued equity held by outside investors. By

competitive market pricing, we have:

ωt+ =
Ft + Φ(Ft)

P (Wt+, Yt+)
= 1− P (Wt, Yt)

P (Wt+, Yt+)
, (53)

as the new investors just break even under perfectly competitive capital markets.

Under the simulated sample-path we can highlight the dynamics of equity dilution

by keeping track of the equity ownership of the original investors who have stayed

with the firm since its inception. We denote by αt the ownership share of the original

equity holders at time t, with α0 = 1 by construction. As the firm issues equity to

finance investment and/or replenish liquidity over time, the original equity investors’

ownership then evolves as follows:

αt+ = αt (1− ωt+) . (54)

In other words, with no issuance ωt+ = 0 and αt+ = αt, so that α does not change.

But when new equity is issued at time t, with a strictly positive ownership stake for

new investors of ωt+ > 0, the original equity investors’ equity is diluted to αt+ from

αt according to (54).

Figure 4 plots the scenario where the firm starts with a low cash stock of W0 = 0.1.

Panel A plots the path of earnings fundamentals Yt starting with Y0 = 1. Note first

that when the firm faces external financing costs at t = 1.16 where it exhausts its

liquidity as W1.16 = 0 and Y1.16 = 0.913, and the firm issues net equity of F1(0.913) =

0.98 to replenish its liquidity from W1.16 = 0 to W1.16+ = 0.98, by selling ω1.16+ =

30.1% of its equity, and the equity share is α1.16 = 69.9%.

And then it exercises its investment option at time t = 2.04 when Yt reaches 1.314.

It then pays the investment cost I = 1 solely out of internal funds, thus depleting its

stock of cash W2.04+ down to 0.057, as illustrated in Panel B. In this case, obviously

there is no equity dilution and α2.04 = 69.9%.

Next, at t = 10.4, when the firm’s fundamentals Y10.4 falls to 0.931 and it has

exhausted its savings, the firm issues net equity of F2(0.931) = 1.17 to replenish its

liquidity from W10.4 = 0 to W10.4+ = 1.17, by selling ω10.4+ = 82.6% of its equity. At

that point the firm’s original owners are nearly wiped out and only retain a stake of

α10.4+ = 12.2%.
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Figure 4: Investment, liquidity accumulation, external equity issue, owner-
ship dynamics, and liquidation for a simulated path. The firm’s initial cash
holding is W0 = 0.1.

Finally, at t = 23.8, when the firm runs out cash for the second time and Yt

reaches 0.890, it simply abandons its asset. At this low point the cost of new external

financing simply outweighs the benefit of keeping the firm as a going concern.

Figure 5 plots the scenario where the firm starts with a higher cash stock of

W0 = 0.2. Panel A again plots the identical simulated path of earnings fundamentals
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Figure 5: Investment, liquidity accumulation, external equity issue, owner-
ship dynamics, and liquidation for a simulated path. The firm’s initial cash
holding is W0 = 0.2.

Yt starting with Y0 = 1. As the firm’s Yt reaches 1.443 at t = 2.23, the firm finances

its investment cost I = 1 via a combination of external equity (F (1.443) = 1.11) by

issuing a fraction of ω2.23+ = 12.8% firm’s equity and internal funds (0.22), leaving the

firm with a stock of post-investment cash of W2.23+ = 0.33 (as shown in Panel B). As

a result, the original owners are diluted down to an ownership stake of α2.23+ = 87.2%
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(as shown in Panel D).

At t = 12.9, when earning Yt has collapsed to 0.921 and the firm’s liquidity has

been drained, the firm returns to the capital markets and raises a net amount of

F2(0.921) = 1.18 by selling ω12.9+ = 88.3% of the firm’s equity, thus further diluting

the firm’s original owners’ down to α12.9+ = 10.2% (see Panel D). Next, at t = 24.4,

as the firm’s liquidity Wt is again drained out, the firm yet again issues equity by

selling ω18.6+ = 85.1% of the firm’s equity, raising a total net amount of F = 1.17

and diluting the original owners down to a small stake of α24.4+ = 1.5%. Finally, at

t = 37.6 the firm almost runs out of cash again and abandons its asset given that

expected operating earnings hit the low level of Yt = 0.839; it then distributes the

remaining cash 0.08 to its shareholders.

Comparing the two scenarios, we make the following observations: First, in all

cases where the firm issues equity for purposes of replenishing its liquidity it chooses

different financing levels because each time it faces different expected operating earn-

ings when it exhausts its liquidity. Second, the firm with W0 = 0.1 turns out to

abandon its asset sooner (at t = 23.8) than the firm with W0 = 0.2 (at t = 37.6),

which runs counter to the conventional wisdom that a firm with more initial liquidity

abandons its operations later.

7 Cash-carry Costs and Payout Policy

A helpful simplification in our analysis so far has been that there is no opportunity

cost for the firm in holding cash. In reality, however, firms do face an opportunity

cost in holding cash and therefore do decide to pay out some of their accumulated

profits when retained earnings are high. Accordingly, in this section we extend the

model by introducing cash-carry costs. We now assume that instead of earning the

market interest rate r on its cash savings the firm only earns (r−λ), where 0 < λ < r

represents the firm’s unit cash-carry cost.

In this case, it is sometimes optimal for the firm to pay out before it closes op-

erations. Specifically, there is an endogenous upper boundary W (Y ) such that it is

strictly optimal for the firm to pay out any excess cash W−W (Y ) to its shareholders.

With cash-carry cost λ, the cash accumulation process is as follows, in the growth

phase

dWt = ((r − λ)Wt +m1Yt − Z1)dt+ dCt − dUt , Wt ≥ 0, (55)
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and in the mature phase

dWt = ((r − λ)Wt +m2Yt − Z2)dt+ dCt − dUt , Wt ≥ 0 . (56)

When Y < ∞, there exists a payout boundary 0 < W (Y ) < ∞ such that the

value of an additional retained dollar is exactly equal to the value of paying out that

dollar to shareholders. And if the firm starts out with W > W (Y ), it distributes

the difference W −W (Y ) as a lump sum and thereby brings down the cash stock to

W (Y ). Since firm value must be continuous before and after cash distribution, the

value P (W,Y ) for W > W (Y ) is given by

P (W,Y ) = P (W (Y ), Y ) + (W −W (Y )), W > W (Y ) . (57)

All other optimality conditions remain the same as in the baseline model.

The firm’s payout decision is jointly determined with its investment and liquidity

management policies. In the growth phase, the firm has no reason to make any payout

if its earnings fundamentals Y are relatively high but still lower than the endogenous

investment boundary, because it then expects to invest and expand its operating

capacity in the future.16

As Fama and French (2001) have noted, growth firms tend to delay dividend

payments as they expect to spend their retained earnings on investment outlays.

However, when operating earnings fundamentals Y are so low that expansion is un-

likely, the firm may prefer to make a payout to shareholders rather than inefficiently

burn through its cash holdings. Thus, in the growth phase one would expect the firm

to make payouts when Y is low and not when Y is high. In contrast, in the mature

phase, one would expect the firm to be more eager to pay out retained earnings the

higher are its operating revenues.

The results shown in Figures 6 and 7 confirm these insights. These two figures

display the firm’s optimal decisions–the payout, inaction, investment and liquidation

regions–for any pair (W,Y ). The parameter values are the same as for the baseline

model, with the addition of the cash carry cost λ = 0.02.

There are three regions in the mature phase, each with a single optimal action.

When (W,Y ) are to the right of the dashed red payout boundary and when Y exceeds

16If its earnings fundamentals Y is even higher than the firm’s optimal investment boundary,
the firm optimally immediately invests, becoming a mature firm. Our analysis for the mature firm
applies accordingly.
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the dotted black line, the firm optimally pays out some of its earnings, as shown in

the payout region of Figure 6. When (W,Y ) take intermediate values in the “inaction

region” bordered by the (dashed red) payout boundary, the (solid blue) liquidation

boundary, and the y-axis, it is optimal for the firm to continue operations while

retaining all of its earnings. When Y is below the solid blue line, which extends into

the dotted black liquidation-line, the firm is in the “liquidation region”. It is then

best for the firm to abandon operations.

The dashed, red payout-frontier is downward sloping over most of the region 0.9 <

Y < 1.35, illustrating the basic tradeoff the firm faces: when the internal cash-flow

generating machine is less productive it is worth building a larger retained earnings

buffer.

Note, however, that there is a small non-monotonic segment of the payout bound-

ary. This segment is explained by the fact that when Y is less than Z2/m2 = 1, the

firm is making operating losses so that there are two competing forces at play: 1)

building a larger liquidity buffer to be able to absorb these loses and ride them out,

which causes a downward sloping liquidation boundary, and 2) avoiding throwing

good money after bad, which encourages earlier liquidation to minimize operating

losses. The latter force dominates when the firm’s operating performance is close to

the solid, blue liquidation-boundary, and the former dominates when operating losses

are relatively low.

Optimal policies in the growth phase are more intricate, as Figure 7 illustrates.

The firm faces more decisions in this phase, so that there are five policy regions in

total in this phase.

1. When (W,Y ) are high, with W ≥ I = 1, the firm invests by entirely funding the

fixed investment cost out of internal funds, as is indicated by the Investment

Only region.17

2. When Y takes intermediate values and W is high the firm does not invest but

pays out some of its earnings, as indicated by the Payout region. In this region

17Note that when Y ≥ 1.29, the firm immediately exercises its growth option provided that W ≥ 1.
This is in contrast to the investment policy displayed in Panel B of Figure 2, when the firm has
no cash carry costs. In that case the firm somewhat delays its investment as W approaches 1 from
above. The reason is that the firm prefers to continue building up its cash buffer before investing, so
as to continue with a higher cash (working capital) buffer after incurring the investment cost I = 1.
When the firm faces cash carry costs this motive is essentially undone by its desire to save on these
costs.
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Figure 6: Liquidation and payout in the mature phase.
Parameters used: r = 0.05, µ = −0.01, σ = 0.1, m2 = Z2 = 2, φ1 = 0.01, φ0 = 0.5,
λ = 0.02. In the payout region, the firm optimally pays out a lump-sum dividend in
order to reach the payout boundary. For example, a firm with (W,Y ) = (0.78, 1.14)
chooses to pay out a one-time dividend in the amount of 0.18 to reach (0.6, 1.14) on
the boundary.

the operating asset is not sufficiently profitable to exercise the growth option.

Given that the firm is not planning to immediately spend its internal funds on

capital outlays, it prefers to pay out some of its liquidity buffer rather than pay

the full cash carry cost λW .

Note that the payout boundary W (Y ) has a somewhat complex shape. This is

again explained by the fact that when the firm is making losses (Y < 1) the two

competing forces described above are at play. In addition, when Y approaches

the investment threshold Y = 1.29 from below and when W ≥ 1 the firm prefers

to delay payout in anticipation of the future investment outlays and its greater

need for internal funds.

3. For low values of Y it is optimal for the firm to abandon operations and disburse

any accumulated internal funds W , as is indicated by the Liquidation region.

4. For intermediate values of (Y,W ) the firm is optimally in a business as usual

mode and does not take any significant decisions, whether it is investment,
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Figure 7: Investment, liquidation and payout in the growth phase.
Parameters used: r = 0.05, µ = −0.01, σ = 0.1, m1 = Z1 = 1, m2 = Z2 = 2,
φ1 = 0.01, φ0 = 0.5, I = 1, λ = 0.02.

abandonment, or external financing, as indicated by the Inaction region.

5. Finally, for values of (Y,W ) such that Y is high but W < 1, it is optimal for

the firm to invest even if it requires external financing to cover the investment

outlays, as is shown by the Investment and Equity Issue region. In this situation

the firm uses a combination of funds from internal sources and from a (costly)

external equity issue.

The effects of cash-carry costs on investment. Figure 8 illustrates the effects

of cash-carry costs λ on investment. Panel A exhibits the shift in the investment

threshold induced by a change in λ in the low-cash holding region (W < I) where

the firm has to raise some external equity to finance the investment cost I. Panel B

plots the same relation in the medium-cash holding region (W > I) where the firm

has sufficient internal funds to finance its investment cost. In both panels, we find

that the investment threshold is monotonically decreasing with the cash-carry cost λ.

This is intuitive: the higher the cash-carry cost λ, the sooner the firm invests, as the

opportunity cost of holding cash is higher.
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Figure 8: The effects of cash-carry cost λ on the investment hurdle Y (W ).

With internal financing of the investment (Panel B), the investment threshold also

decreases with W for a given λ, as there is a diminishing marginal value of holding

cash when the cash buffer is larger. However, when external financing is needed (Panel

A), the investment threshold for a given λ is increasing in W , as the firm increasingly

prefers to wait until it has accumulated sufficient internal funds to entirely cover the

investment cost and thereby avoid costly external financing.

Overall, these results point to a simple and robust payout policy pattern: growth

firms should only pay out retained earnings if their growth opportunities are un-

appealing; in contrast, mature firms should pay out retained earnings when their

operating earnings are high, and should not when their earnings are low.

8 Sequential Investment Opportunities

To capture how future investment opportunities may influence a firm’s current

investment and financing decisions, we next generalize our model to allow for two

rounds of investment options. We refer to stage 0, when the firm has not yet exercised

any investment option, as the start-up phase; stage 1, after the firm has made its first

investment, as the growth phase; and, stage 2, after the firm has completed both

investment rounds, as the mature phase.

This extension brings out one striking new effect: an acceleration of the first

investment with the objective of building internal cash-flow generation capacity to
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relax financial constraints for the second round of investment. That is, we show that

a firm may invest sooner than an otherwise unconstrained firm, in an effort to increase

its capacity to generate cash.

The main change to the baseline model is the addition of a start-up phase in which

the firm has no operating asset. In this phase the firm has two growth options. We

denote the fixed cost of the nth growth option by In, with n ∈ {1, 2}. As before, the

revenue process generated by the operating assets is given by mnYt and the operating

cost by Zn. Once the firm has exercised its first growth option the model is identical

to the baseline model. The mature and growth phases therefore inherit the same firm

value, the same dynamics for liquidity, and the same abandonment decisions as in the

baseline model.

In stage 0, the start-up phase, the firm’s liquidity Wt accumulates as follows:

dWt = rWtdt+ dCt , Wt ≥ 0, (58)

where {Ct; t ≥ 0} denotes as before the firm’s cumulative equity issues, and dC is the

net equity raised. We denote by S(W,Y ) the value of the firm in this start-up phase.

As in the growth and mature phases, S(W,Y ) satisfies the following conditions:

1. S(W,Y ) ≥ W ,

2. S(W,Y ) ≥ SF (W,Y ) = supF0≥0 S(W + F0, Y )− F0 − Φ(F0) ,

3. S(W,Y ) ≥ SI(W,Y ) = supF0≥0G(W + F0 − I1, Y )− F0 − Φ(F0) .

In the interior operating region S(W,Y ) satisfies L0S = 0, where L0 is the in-

finitesimal generator in the start-up phase:

L0S = rWSW + µY SY +
σ2Y 2SY Y

2
− rS . (59)

Given that the analysis of the start-up phase proceeds along similar lines as the

analysis of the baseline model, we only report the most striking novel result on the

investment threshold policy Y 1(W ) in the start-up phase (phase 0) when the firm has

no asset in place at all.18

18In this generalized model, we have two rounds of investment decisions. Therefore, we use Y 1(W )
and Y 2(W ) to denote the first and second growth-option exercise-thresholds, respectively. Similarly,
we use Y ∗i,1 and Y ∗i,2 to denote the first-best exercise-thresholds for the first and second growth-option.
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Figure 9: The optimal investment threshold Y 1(W ) in the startup phase:
The case with sequential growth options. Parameters used: r = 0.05, µ =
−0.01, σ = 0.1, m1 = Z1 = 1, m2 = Z2 = 2, φ0 = 0.5, φ1 = 0.01, I1 = 0.5, I2 = 1.

We set I1 = 0.5, at half the fixed investment cost for exercising of the second

growth option. All the other parameter values are the same as for the solution in our

baseline model. With these parameter values, the first-best investment threshold in

the start-up phase is given by Y ∗i,1 = 1.27.

Figure 9 plots the optimal investment threshold Y 1(W ) for the first investment

option over the interval W ∈ [0, 2.5]. It shows that Y 1(W ) is monotonically increasing

in W in the region W < I1 = 0.5, consistent with our earlier findings for the baseline

model.

The striking new result is for W ≥ 0.5, when the firm invests more aggressively

than under the first best: Y 1(W ) < Y ∗i,1 = 1.27. The firm accelerates the timing of its

first growth option in order to access the internal funds generated by the operating

asset. By over-investing in the first growth option, the firm gains overall because the

benefit of relaxing the financial constraint for the second growth option outweighs the

cost of accelerating the first growth option.

This result reflects a more general principle: other things equal, financially con-

strained firms prefer growth opportunities with front-loaded cash-flows. In the classi-

cal MM-based real options framework there is a basic equivalence between an option
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that pays the present discounted value as a lump sum and an option that pays a cash

flow of equivalent present value over time. This is not the case in our real-options

model for a financially constrained firm as the over-investment result above illustrates.

Our more general model can thus explain why in reality firms tend to prefer projects

with front-loaded cash flows.

9 Conclusion

Our generalization of the classic real options framework of McDonald and Siegel

(1986) to include financing considerations reveals the risks for corporations of overly

relying on textbook real-options tools (that assume away financing costs) to guide

their investment policies and to determine the value of their real options. Although

the classical real option framework can provide a satisfactory approximation for firms

with adequate internal funds and with highly profitable operating assets, we have

shown that it is highly misleading for moderately profitable firms, with low or even

medium levels of internal funds. For the latter firms the value of growth options is

not only substantially lower than the estimates produced by classical option pricing

tools, but also the lack of internal funds to finance capital expenditures results in

significant deviations in the optimal investment policy from that prescribed by the

classical real options model.

Our general real options framework with financial constraints is particularly rele-

vant for entrepreneurial firms, for which growth options represent the most significant

part of their value, and for which external financing costs are highest and internal

funds tightest. The reason why these firms face high external financing costs is that

they have little collateral to offer and therefore have to rely mostly on external equity

financing, for which information dilution costs à la Myers and Majluf (1984) are very

high. As our analysis of sequential investment options indicates, a strategy to relax

financial constraints that some start-ups have adopted is to invest in an operating

asset before the long-term viability of that asset could be ascertained, in an attempt

to generate internal cash flows that could be useful towards financing future growth

options.

Our analysis of payout policy also reveals how dividend and stock repurchase

policies are tied to growth opportunities. In the presence of such opportunities it is

optimal for the firm not to pay out retained earnings, as internal funds are better
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deployed towards funding the firm’s future capital expenditures. But once these

opportunities have been seized, optimal payout policy flips: more profitable firms

pay out more, exactly the opposite of the policy in the growth phase. The empirical

literature on dividend policy (e.g. Fama and French, 2001) finds that growth firms

do delay dividend payments and our analysis offers a simple explanation for this

behavior.

Although the introduction of financial constraints in a real options model is a

significant generalization, our model falls short of accurately representing several as-

pects of financial constraints that firms face in reality. For example, we have assumed

for simplicity that external financing costs are the same whether the firm is in the

start-up, growth, or mature phase. In reality, chances are that external financing

costs are lower for firms with a proven track record or for firms who have assets in

place that can serve as collateral. We have also suppressed any possibility of debt

financing, including allowing the firm access to a line of credit it could draw down

when it faces a liquidity squeeze. Accordingly, extending our model to allow for a

richer and more realistic description of external financing options is an obvious next

step in developing this framework further.
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Appendices

Appendix A provides some details for the First-Best solution. Appendix B and

C provide proofs for the results for the general case with financial constraints in the

mature phase and the growth phase, respectively. Finally, Appendix D provides a

sketch of our numerical solution procedure.

A Technical details for the First-Best solution

Below we report the explicit solutions for the first-best abandonment hurdle in

the mature phase Y ∗a,2, the first-best investment threshold Y ∗i , and the first-best aban-

donment threshold Y ∗a,1 in the growth phase. Sundaresan, Wang, and Yang (2015)

provide derivational details for essentially the same first-best real-option problem.

For brevity, we skip the derivations here.

The abandonment hurdle Y ∗a,2 in the mature phase is given by :

Y ∗a,2 =
γ

γ − 1

r − µ
r

Z2

m2

, (A.1)

where the constant γ is given by:

γ =
1

σ2

−(µ− σ2

2

)
−

√(
µ− σ2

2

)2

+ 2rσ2

 < 0 . (A.2)

The investment threshold Y ∗i and abandonment threshold Y ∗a,1 in the growth phase

jointly solve the following equations:

0 =
m1 −m2

r − µ
+
β(Y ∗a,1)γ(Y ∗i )β−1 − γ(Y ∗a,1)β(Y ∗i )γ−1

(Y ∗a,1)γ(Y ∗i )β − (Y ∗a,1)β(Y ∗i )γ

(
Q∗(Y ∗i )− I −

(
m1Y

∗
i

r − µ
− Z1

r

))

− (γ − β)(Y ∗i )β+γ−1

(Y ∗a,1)γ(Y ∗i )β − (Y ∗a,1)β(Y ∗i )γ

(
m1Y

∗
a,1

r − µ
− Z1

r

)
− γ

(
Y ∗i
Y ∗a,2

)γ−1(
Z2

r
−
m2Y

∗
a,2

r − µ

)
,

(A.3)

and

0 =
m1

r − µ
+

(β − γ)(Y ∗a,1)γ+β−1

(Y ∗a,1)γ(Y ∗i )β − (Y ∗a,1)β(Y ∗i )γ

(
Q∗(Y ∗a,1)− I −

(
m1Y

∗
i

r − µ
− Z1

r

))

−
γ(Y ∗i )β(Y ∗a,1)γ−1 − β(Y ∗i )γ(Y ∗a,1)β−1

(Y ∗a,1)γ(Y ∗i )β − (Y ∗a,1)β(Y ∗i )γ

(
m1Y

∗
a,1

r − µ
− Z1

r

)
, (A.4)
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where the constant γ is given by (A.2) and the constant β is given by:

β =
1

σ2

−(µ− σ2

2

)
+

√(
µ− σ2

2

)2

+ 2rσ2

 > 1 . (A.5)

B Proofs for the general case in the mature phase

B.1 Proof for Lemma 1

For any given time t, we can construct a control policy Â ∈ A with Â = {(τ 2
L =

t, τ 2
F > t, F2)} such that the firm is liquidated immediately at time t. Under this

policy, we have

P (Wt, Yt; Â) = Wt .

Since P (Wt, Yt) = supA∈A P (Wt, Yt;A) ≥ P (Wt, Yt; Â), it immediately follows that

P (W,Y ) ≥ W .

B.2 Proof for Lemma 2

For any given time t, we can construct a control policy Â ∈ A with Â = {(τ 2
L >

t, τ 2
F = t, F2 ≥ 0)} such that the firm issues equity at time t and for any s ≥ t we

assume that the firm takes the optimal liquidation and financing decisions, including

financing timing and the choice of the optimal amount F2. Under the above policy,

the (optimal) value function at time t is P (Wt− + F2, Yt−)− F2 − Φ(F2) where t− is

the left limit of t. By the continuity of value function upon the equity issue, we have

P (Wt−, Yt−; Â) = P (Wt− + F2, Yt−)− F2 − Φ(F2) .

Since the time of the equity issue for τ 2
F = t may not be optimal, we have

sup
A∈A

P (Wt−, Yt−;A) ≥ sup
F2≥0

P (Wt−, Yt−; Â) = sup
F2≥0

P (Wt− + F2, Yt−)− F2 − Φ(F2) .

Recall that P (Wt−, Yt−) = supA∈A P (Wt−, Yt−;A), so that

P (Wt−, Yt−) ≥ sup
F2≥0

P (Wt− + F2, Yt−)− F2 − Φ(F2) .

B.3 Proof for Lemma 3

See details in the main text following Lemma 3.
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B.4 Proof for Lemma 4

First, for sufficiently high W , i.e. W ≥ Λ2, the firm is permanently financially

unconstrained and hence Lemma 4 directly follows from Lemma 3.

Next, we consider the case when the firm is financially constrained, i.e., when

Wt < Λ2. By applying Lemma 1 and Lemma 2 to (13), we obtain

P (Wt, Yt) ≥ Et
[
e−(τ2U−t)P ∗(Wτ2U

, Yτ2U )
]
≥ Et

[
e−(τ2U−t)P (Wt, Yτ2U )

]
. (B.1)

Here, the first inequality follows from the fact that the first two terms in (13) are

positive and the second inequality follows from Wτ2U
= Λ2 > Wt and the result that

the value function is monotonic in W , as stated in Proposition 1.

Consider a small time interval (t, t+∆t) where ∆t > 0. As Yt →∞, the firm aban-

dons its operations or issues equity with zero probability. This is because Wt+∆t > Λ2,

as Yt → ∞. One can check this result by using the dynamics of Wt, given in (5) to

this case. That is, as Yt → ∞, τ 2
U → t with probability one. When τ 2

U → t, (B.1)

boils down to

P (Wt, Yt) ≥ P ∗(Wt, Yt) ≥ P (Wt, Yt) . (B.2)

That is, P (Wt, Yt) = P ∗(Wt, Yt) if τ 2
U → t. Put differently, the firm achieves the

first-best outcome and hence P (W,Y ) = P ∗(W,Y ) = W +Q∗(Y ) when Y →∞.

B.5 Proof for Theorem 2

Verification. We establish that any piecewise C2 function which is a solution to

equation (25) associated to problem (13) is a majorant of the value function P .

Proposition 5 (Verification) Suppose we can find a positive function P̃ which is

piecewise C2 on the region Σ2 with bounded first derivatives19 and such that for all

(W,Y ) ∈ Σ2,

L2P̃ ≤ 0, (B.3)

P̃ (W,Y ) ≥ W, (B.4)

P̃ (W,Y ) ≥ sup
F2≥0

P̃ (W + F2, Y )− F2 − Φ(F2) , (B.5)

with boundary conditions P̃ (W,Y ) = P ∗(W,Y ) for W = Λ2 or Y → ∞, then

P̃ (W,Y ) = P (W,Y ) for all (W,Y ) ∈ Σ2.

19In the sense of Definition 4.8, p. 271 in Karatzas and Shreve (1988).
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Proof. We first show that P̃ (W,Y ) ≥ P (W,Y ). Notice that A is a control policy in

problem (13), where A ∈ A and A is the set of all policies. Then, by definition, we

have (14). If we can show that P̃ (W,Y ) ≥ P (W,Y ;A) for any control policy A ∈ A,

then it follows that P̃ (W,Y ) ≥ P (W,Y ).

Using the generalized Ito’s formula (Dellacherie and Meyer (1980), Theorem VIII-

25 and Remark c, p. 349), we can write:

e−r(τ2−t)P̃ (Wτ−, Yτ2−) = P̃ (Wt, Yt) +

∫ τ2−

t

e−r(s−t)L2P̃ (Ws, Ys)ds

+

∫ τ2−

t

e−r(s−t)P̃Y (Ws, Ys)σYsdBs .

Since P̃ satisfies (B.3), the second term of the right hand side is non-positive. More-

over, since the first derivative of P̃ is bounded, the third term is a square integrable

martingale. Taking expectations, we then get:

Et
[
e−r(τ2−t)P̃ (Wτ2−, Yτ2−)

]
≤ P̃ (Wt, Yt) .

Suppose that the firm issues equity N times from time 0 to time τ 2
L ∧ τ 2

U , and

divide the time interval (0, τ 2
L∧ τ 2

U) into N + 1 subperiods. We define τ 2
Fn

as the time

of the n-th round of external financing, where 1 ≤ n ≤ N . During the last period

(τ 2
FN
, τ 2

L ∧ τ 2
U) we then have:

P̃ (Wt, Yt) ≥ Et
[
e−r(τ2−t)P̃ (Wτ2−, Yτ2−)

]
= Et

[
e−r(τ2−t)P̃ (Wτ2 , Yτ2)Iτ2=τ2L

+ e−r(τ2−t)P ∗(Wτ2 , Yτ2)Iτ2=τ2U

]
≥ Et

[
e−r(τ2−t)Wτ2 Iτ2=τ2L

+ e−r(τ2−t)P ∗(Wτ2 , Yτ2)Iτ2=τ2U

]
= P (Wt, Yt;A) , (B.6)

where we have used the condition (B.4) for the second inequality.

During the N -th external financing subperiod (τ 2
FN−1

, τ 2) we have in turn:

P̃ (Wt, Yt) ≥ Et
[
e−r(τ2−t)P̃ (Wτ2−, Yτ2−)

]
= Et

[
e−r(τ2−t)P̃ (Wτ2−, Yτ2−)Iτ2=τ2FN

]
≥ Et

[
e−r(τ2−t) sup

F2≥0

[
P̃ (Wτ2− + F2, Yτ2−)− F2 − Φ(F2)

]
Iτ2=τ2FN

]
= Et

[
e−r(τ2−t) sup

F2≥0

[
Eτ2FN

[
P̃ (Wτ2− + F2, Yτ2−)

]
− F2 − Φ(F2)

]
Iτ2=τ2FN

]
≥ Et

[
e−r(τ2−t)

[
Eτ2FN

[P (Wτ2− + F2, Yτ2−)]− F2 − Φ(F2)
]
Iτ2=τ2FN

]
= P (Wt, Yt;A) , (B.7)
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where again we have used the condition (B.5) for the second inequality, and the third

inequality is obtained from (B.6).

Following similar steps for earlier subperiods we obtain that P̃ (Wt, Yt) ≥ P (Wt, Yt;A).

Since the policy A is arbitrarily chosen, we have

P̃ (W,Y ) ≥ max
A∈ A

P (W,Y ;A) = P (W,Y ) .

Finally, since the optimal strategies are attained, all the inequalities become equali-

ties, so that:

P̃ (W,Y ) = P (W,Y ;A) = P (W,Y ) ,

when A = A∗, where

A∗ ∈ A∗ = {arg max
A∈A

P (W,Y ;A)} .

B.6 Proof for Proposition 1

Proof for the Existence and Boundedness Property. It is immediate to ob-

serve that the closed-form solution for P ∗(W,Y ) with (W,Y ) ∈ Σ2 is bounded under

Assumptions 1-2. It follows that P (W,Y ) is also bounded under Assumptions 1-2.
Lemma 1 shows that W ≤ P (W,Y ). To see why P (W,Y ) ≤ P ∗(W,Y ), let

P(1)(W,Y ) be the value function if the firm is allowed to issue equity freely without
paying any external financing cost in the first round of financing. We then have:

P (Wt, Yt) = Et
[
e−r(τ2−t) [P (Wτ2− + F2, Yτ2−)− F2 − Φ(F2)] Iτ2=τ2F

+ e−r(τ2−t)Wτ2 Iτ2=τ2L

+e−r(τ2−t)P ∗(Wτ2 , Yτ2)Iτ2=τ2U

]
≤ Et

[
e−r(τ2−t) [P (Wτ2− + F2, Yτ2−)− F2] Iτ2=τ2F

+ e−r(τ2−t)Wτ2 Iτ2=τ2L

+e−r(τ2−t)P ∗(Wτ2 , Yτ2)Iτ2=τ2U

]
= P(1)(Wt, Yt) . (B.8)

Now, let P(2)(W,Y ) be the value function if the firm has the opportunity to issue

equity without any cost for the next two rounds. Then:

P(1)(Wt, Yt) = Et
[
e−r(τ2−t) [P (Wτ2− + F2, Yτ2−)− F2] Iτ2=τ2F

+ e−r(τ2−t)Wτ2 Iτ2=τ2L

+e−r(τ2−t)P ∗(Wτ2 , Yτ2)Iτ2=τ2U

]
≤ Et

[
e−r(τ2−t)

[
P(1)(Wτ2− + F2, Yτ2−)− F

]
Iτ2=τ2F

+ e−r(τ2−t)Wτ2 Iτ2=τ2L

+e−r(τ2−t)P ∗(Wτ2 , Yτ2)Iτ2=τ2U

]
= P(2)(Wt, Yt) . (B.9)
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Repeating the same argument, we have

P (W,Y ) ≤ P(1)(W,Y ) ≤ P(2)(W,Y ) ≤ . . . P(∞)(W,Y ) ,

where P(∞)(W,Y ) represents the value function for an infinite number of costless

issues for given timing τ . In other words, P(∞)(W,Y ) is the firm value when it is

forever financial unconstrained for given timing τ , so that P(∞)(W,Y ) ≤ P ∗(W,Y ).

It then follows that:

P (W,Y ) ≤ P ∗(W,Y ) .

Finally, we establish that P (W,Y ) exists under Assumption 2. Note first that

the set of policies A is non-empty. Indeed, one policy A ∈ A is to immediately

liquidate the firm at time t, A = {(τ 2
F > t, τ 2

L = t, F2 = 0)}. The firm’s payoff

under this policy is P (Wt, Yt;A) = Wt. Therefore, there exists at least one policy

A∗ ∈ A such that P (Wt, Yt;A
∗) = maxA∈A P (Wt, Yt;A). Note that P (Wt, Yt) =

maxA∈A P (Wt, Yt;A), so that it exists and is given by P (Wt, Yt) = P (Wt, Yt;A
∗). �

Proof for the Monotonicity Property. First we show that P (W,Y ) is strictly

increasing in W . For simplicity, define Q(Wt, Yt;A) = P (Wt, Yt;A) −W , and notice

(13)we have the

Q(Wt, Yt;A) = Et
[
e−r(τ2−t) [−Φ(F2)] Iτ2=τ2F

+ e−r(τ2−t)Q∗(Yτ2)Iτ2=τ2U

]
, (B.10)

and

Q(Wt, Yt) = sup
A∈A

Q(Wt, Yt;A) . (B.11)

Obviously, P (W,Y ) is strictly increasing in W if Q(W,Y ) is increasing in W . Next,

we prove Q(W,Y ) is increasing in W .

Let W (1) > W (2), and A∗1, A∗2 be the optimal policies for the firm with initial wealth

W (1) and W (2). Define A∗2 = {τ 2,∗
L , τ 2,∗

F , F 2,∗
2 }, and define τ 2,∗

U as the time when the

firm has accumulated sufficient liquidity to be permanently financially unconstrained.

For the firm with initial wealth W (1), a policy A1 can be constructed with the

same external financing decisions, including the financing time and amount, and the

same liquidation time as policy A∗2. Observe next that the dynamics of liquidity are

then such that W
(1)
s ≥ W

(2)
s for s > t, path by path, if W

(1)
t > W

(2)
t , which implies

W
(1)
τ2 ≥ W

(2)
τ2 = Λ2 if τ 2 = τ 2,∗

U .

Under this policy A1 = A∗2 we then have:

Q(W
(1)
t , Yt;A

∗
2) = Et

[
e−r(τ2−t)

[
−Φ(F 2,∗

2 )
]
Iτ2=τ2,∗F

+ e−r(τ2−t)Q(W (1)
τ2
, Yτ2)Iτ2=τ2,∗U

]
= Et

[
e−r(τ2−t)

[
−Φ(F 2,∗

2 )
]
Iτ2=τ2,∗F

+ e−r(τ2−t)Q∗(Yτ2)Iτ2=τ2,∗U

]
= Q(W

(2)
t , Yt;A

∗
2) = Q(W

(2)
t , Yt) . (B.12)
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Hence, we have

Q(W
(1)
t , Yt) = Q(W

(1)
t , Yt;A

∗
1) ≥ Q(W

(1)
t , Yt;A1) = Q(W

(1)
t , Yt;A

∗
2)

= Q(W
(2)
t , Yt;A

∗
2) = Q(W

(2)
t , Yt) .

That is Q(W,Y ) is increasing in W and P (W,Y ) = Q(W,Y )+W is strictly increasing

in W .

Second, we show that P (W,Y ) is strictly increasing in Y for Y ≥ Y (W ), where

Y (W ) denotes the liquidation boundary. That is P (W,Y (1)) > P (W,Y (2)) if Y (1) >

Y (2) ≥ Y (W ). We can use the same argument as for the monotonicity in W . Again,

defining A∗1 and A∗2 as above, we can take A1 = A∗2. Furthermore, let W (1) and

W (2) denote the liquidity of the firm with initial earnings fundamentals Y (1) and

Y (2) respectively. Observe next that the dynamics of liquidity are then such that

W
(1)
s > W

(2)
s for s > t, path by path, if W

(1)
t = W

(2)
t . Also, Y

(1)
t > Y

(2)
t ≥ Y (Wt)

implies that W
(1)
τ2 ≥ W

(2)
τ2 if τ 2 = min{τ 2,∗

L , τ 2,∗
U }.

Since P ∗(W,Y ) is always strictly increasing in W and Y , the terminal payoff

with initial earnings fundamentals Y (1) is always higher than with initial earnings

fundamentals Y (2), path by path, under the same policy A∗2, so that:

P (W,Y (1);A1) = P (W,Y (1);A∗2) > P (W,Y (2);A∗2) = P (W,Y (2)) .

Furthermore, P (W,Y (1)) = P (W,Y (1);A∗1) ≥ P (W,Y (1);A1), so that:

P (W,Y (1)) > P (W,Y (2)) for Y (1) > Y (2) ≥ Y (W ) .

�

Proof for the Uniqueness Property. Let ΣP denote the interior region where

L2P = 0:

ΣP = {(W,Y )|0 < W < Λ2, Y (W ) < Y <∞} . (B.13)

Let Σ′P denote the boundary of ΣP :

Σ′P = {(W,Y )|W = {0,Λ2}, Y (W ) ≤ Y <∞} ∪ {(W,Y )|0 ≤ W ≤ Λ2, Y = Y (W )} .
(B.14)

We first show that the solution is unique for a given region ΣP and then show that

ΣP is unique. Finally, we show the the solution is unique on the whole region Σ̂2 =

ΣP ∪ Σ′P .
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Suppose by contradiction that for a given region ΣP where L2P = 0, there are
two solutions P (1)(W,Y ) and P (2)(W,Y ) which satisfy:

0 = (rW +m2Y − Z2)P
(1)
W (W,Y ) + µY P

(1)
Y (W,Y ) +

σ2Y 2P
(1)
Y Y (W,Y )

2
− rP (1)(W,Y ) ,

and

0 = (rW +m2Y − Z2)P
(2)
W (W,Y ) + µY P

(2)
Y (W,Y ) +

σ2Y 2P
(2)
Y Y (W,Y )

2
− rP (2)(W,Y ),

in the region ΣP . Let P̂ (W,Y ) = P (1)(W,Y ) − P (2)(W,Y ). Then P̂ (W,Y ) also

satisfies

0 = (rW +m2Y − Z2)P̂W (W,Y ) + µY P̂Y (W,Y ) +
σ2Y 2P̂Y Y (W,Y )

2
− rP̂ (W,Y ) ,

in region ΣP . Let

(Ŵ , Ŷ ) ∈ arg max
(W,Y )∈ΣP∪Σ′P

P̂ (W,Y ) .

If (Ŵ , Ŷ ) ∈ ΣP , we have P̂W (Ŵ , Ŷ ) = 0, P̂Y (Ŵ , Ŷ ) = 0 and P̂Y Y (Ŵ , Ŷ ) ≤ 0.

Under Assumption 2, we also have:

rP̂ (Ŵ , Ŷ ) =
σ2Ŷ 2P̂Y Y (Ŵ , Ŷ )

2
≤ 0 .

Therefore, we have

P̂ (Ŵ , Ŷ ) ≤ 0 , if (Ŵ , Ŷ ) ∈ ΣP . (B.15)

Note that (W,Y (W )) ∈ Σ′P , we have

max
(W,Y )∈ΣP∪Σ′P

P̂ (W,Y ) ≥ max
(W,Y )∈Σ′P

P̂ (W,Y ) ≥ P (1)(W,Y (W ))− P (2)(W,Y (W ))

= W −W = 0 .

That is

P̂ (Ŵ , Ŷ ) ≥ 0 , for (Ŵ , Ŷ ) ∈ ΣP ∪ Σ′P . (B.16)

Combining (B.15) and (B.16), we have

P̂ (Ŵ , Ŷ ) ≡ 0 , if (Ŵ , Ŷ ) ∈ ΣP . (B.17)

Next, we prove that P̂ (Ŵ , Ŷ ) ≡ 0 if (Ŵ , Ŷ ) ∈ Σ′P . By using closed-form value

functions on the boundaries: Y = Y (W ) and W = Λ2, we have

P̂ (Ŵ , Ŷ ) = 0, if (Ŵ , Ŷ ) ∈ {(W,Y )|W = Λ2, Y (W ) ≤ Y <∞}
∪{(W,Y )|0 ≤ W ≤ Λ2, Y = Y (W )} . (B.18)
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Next we show P̂ (Ŵ , Ŷ ) = 0, if (Ŵ , Ŷ ) ∈ {(W,Y )|W = 0, Y (W ) ≤ Y < ∞}.
First, note that P̂W (Ŵ , Ŷ ) ≤ 0, P̂Y (Ŵ , Ŷ ) = 0 and P̂Y Y (Ŵ , Ŷ ) ≤ 0 if Ŵ = 0, and
Z2

m2
≤ Ŷ <∞. Therefore, we have rP̂ (0, Ŷ ) = (m2Ŷ −Z2)P̂W (W,Y )+ σ2Ŷ 2P̂Y Y (0,Ŷ )

2
≤ 0

if Z2

m2
≤ Ŷ <∞ . Then using (B.16), we have

P̂ (0, Ŷ ) = 0 , if
Z2

m2

≤ Ŷ <∞ . (B.19)

Finally, let F
(1)
2 and F

(2)
2 denote the optimal equity issues in that P (1)(0, Ŷ ) =

supF2>0 P
(1)(F2, Ŷ )−F2−Φ(F2) and P (2)(0, Ŷ ) = supF2>0 P

(2)(F2, Ŷ )−F2−Φ(F2).
We thus have

P̂ (0, Ŷ ) = P (1)(0, Ŷ )− P (2)(0, Ŷ )

= (P (1)(F
(1)
2 , Ŷ )− F (1)

2 − Φ(F
(1)
2 ))− (P (2)(F

(2)
2 , Ŷ )− F (2)

2 − Φ(F
(2)
2 ))

≤ (P (1)(F
(1)
2 , Ŷ )− F (1)

2 − Φ(F
(1)
2 ))− (P (2)(F

(1)
2 , Ŷ )− F (1)

2 − Φ(F
(1)
2 ))

= P̂ (F
(1)
2 , Ŷ ) . (B.20)

This is obviously a contradiction unless P̂ (W,Y ) ≡ 0. That is P̂ (0, Ŷ ) = 0 if

Y (0) ≤ Ŷ < Z2

m2
. Together with (B.19) and (B.18), we conclude that

P̂ (Ŵ , Ŷ ) ≡ 0 , if (Ŵ , Ŷ ) ∈ Σ′P . (B.21)

Further by combining (B.17) and (B.21), we conclude

P̂ (Ŵ , Ŷ ) ≡ 0 for (W,Y ) ∈ ΣP ∪ Σ′P . (B.22)

This implies that

P (1)(W,Y ) ≤ P (2)(W,Y ) for (W,Y ) ∈ ΣP ∪ Σ′P . (B.23)

Since the entire analysis also holds if we switch P (1)(W,Y ) with P (2)(W,Y ), in

that

P (2)(W,Y ) ≤ P (1)(W,Y ) for (W,Y ) ∈ ΣP ∪ Σ′P , (B.24)

we thus conclude that

P (2)(W,Y ) ≡ P (1)(W,Y ) for (W,Y ) ∈ ΣP ∪ Σ′P .

We next show that the region ΣP is unique, which is equivalent to showing that

the boundary Σ′P is unique. From the definition of Σ′P , we only need to show that

Y (W ) is unique for 0 ≤ W ≤ Λ2. Suppose that there are two liquidation boundaries
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Y (1)(W ) and Y (2)(W ), with Y (1)(W ) ≥ Y (2)(W ) for some W , and let P (1)(W,Y ) and

P (2)(W,Y ) be the corresponding solutions. We then have:

W = P (1)(W,Y (1)(W )) ≥ P (2)(W,Y (1)(W )) ≥ W = P (2)(W,Y (2)(W )) ,

where the first inequality follows from the optimality of the liquidation decision and

the second inequality is obtained from (15). It follows that P (2)(W,Y (1)(W )) =

P (2)(W,Y (2)(W )). Moreover, the value function is increasing in both W and Y so

that: Y (1)(W ) = Y (2)(W ). Finally, we show that the solution is unique on the

remaining liquidation region Σ′2 = Σ2− (ΣP ∪Σ′P ). From the definition of the regions

ΣP and Σ′P , and total region Σ2, we have that

Σ′2 = {(W,Y )|0 ≤ W ≤ Λ2, 0 ≤ Y < Y (W )} .

Since Y (W ) is unique it follows that Σ′2 is also unique. And in the liquidation region

Σ′2 the value function is P (W,Y ) ≡ W . In sum, the solution of P (W,Y ) in the region

Σ2 is unique. �

B.7 Proof for Proposition 2

Proof for Monotonicity Property of Liquidation Boundary. Here, we want

to show that the optimal liquidation boundary, Y (W ), is decreasing in W in the

mature phase. Let Y (W (1)) and Y (W (2)) denote the optimal liquidation boundary

with liquidity W (1) and W (2), where W (1) < W (2). Recall that Q(W,Y ) = P (W,Y )−
W is increasing in W as shown in Proposition 1, we have 0 = Q(W (1), Y (W (1))) ≤
Q(W (2), Y (W (1))). In addition, P (W,Y ) is strictly increasing in Y before liquidation,

as shown in Proposition 1, which implies that Q(W,Y ) = P (W,Y )−W is also strictly

increasing in Y for Y ≥ Y (W ). Hence, we have Y (W (1)) ≥ Y (W (2)), otherwise

0 = Q(W (1), Y (W (1))) ≤ Q(W (2), Y (W (1))) < Q(W (2), Y (W (2))) = 0, which is a

contradiction. That is, Y (W (1)) ≥ Y (W (2)) if W (1) < W (2), which establishes that

the optimal liquidation boundary is decreasing in W in the mature phase. �

Proof for Delaying Costly Equity Issuance. First, we need to show that the

firm has to issue equity if W = 0, for Y such that Y (0) < Y < Z2

m2
, to be able to

continue operations. We assume that F ∗(0) is the optimal amount of equity issuance,

which implies that P (0, Y ) = P (F ∗(0), Y ) − F ∗(0) − Φ(F ∗(0)). This also implies

that PW (0, Y ) > 1 + Φ∗′(0)) = 1 + φ1, otherwise F ∗(0) = 0 and the firm defaults

immediately, which is a contradiction for Y (0) < Y < Z2

m2
. Denote M = F ∗(0), we

have that PW (W,Y ) > 1 + φ1 for 0 < W < M and PW (M,Y ) = 1 + φ1, otherwise

F ∗(0) is not the optimal amount of equity issuance.
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To show that the firm will delay costly equity issuance until entirely exhausting

its cash, we only need to show that P (W,Y ) > supF2≥0 P (W +F2, Y )−F2−Φ(F2) for

W > 0. First, since PW (W,Y ) ≤ 1+φ1 for W ≥M , the firm has no incentive to issue

equity because P (W,Y ) ≥ P (W + F2, Y )− F2 − φ1F2 > P (W + F2, Y )− F2 −Φ(F2)

for W ≥ M . Next, we show that P (W,Y ) > supF2≥0 P (W + F2, Y ) − F2 − Φ(F2)

for 0 < W < M . We define F ∗(W ) as the optimal amount of equity issuance if the

firm chooses equity issuance at W with 0 < W < M for given Y , which implies that

supF2≥0 P (W + F2, Y )− F −Φ(F2) = P (W + F ∗2 (W ), Y )− F ∗2 (W )−Φ(F ∗2 (W )) and

M = W + F ∗2 (W ). We then have

P (W,Y )− (P (W + F ∗2 (W ), Y )− F ∗2 (W )− Φ(F ∗2 (W )))

= P (W,Y )− (P (M,Y )− F ∗(W )− Φ(F ∗2 (W )))

= P (W,Y )−W − (P (M,Y )−M − Φ(F ∗2 (W )))

= Q(W,Y )−Q(M,Y ) + Φ(M −W ) .

Recall that P (0, Y ) = P (F ∗2 (0), Y )−F ∗2 (0)−Φ(F ∗2 (0)) and M = F ∗2 (0), and Q(0, Y ) =

Q(F ∗2 (0), Y )− Φ(F ∗2 (0)) = Q(M,Y )− Φ(M), so that

P (W,Y )− (P (W + F ∗2 (W ), Y )− F ∗2 (W )− Φ(F ∗2 (W )))

= Q(W,Y )−Q(0, Y ) + Φ(M −W )− Φ(M)

= Q(W,Y )−Q(0, Y )− φ1W

> φ1W − φ1W = 0 ,

where the above inequality follows from PW (W,Y ) > 1 + φ1 for 0 < W < M , which

implies thatQW (W,Y ) > φ1 for 0 < W < M . Finally, P (W,Y )−(P (W+F ∗2 (W ), Y )−
F ∗2 (W ) − Φ(F ∗2 (W ))) > 0 implies that the firm has no incentive to issue equity for

0 < W < M . In sum, we have shown that the firm has no incentive to issue equity

for W > 0, which implies that the firm will delay costly equity issuance until entirely

exhausting its cash. �

C Proofs for the general case in the growth phase

C.1 Proof for Lemma 5

For any given time t, we can construct a control policy Â ∈ A with Â = {(τ i >
t, τ 1

L = t, τ 1
F > t, F1)} such that the firm is liquidated immediately at time t in the

growth phase. Under this policy, we have

G(Wt, Yt; Â) = Wt .
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Since G(Wt, Yt) = supA∈A G(Wt, Yt;A) ≥ G(Wt, Yt; Â), it immediately follows that

G(W,Y ) ≥ W . �

C.2 Proof for Lemma 6

For any given time t, we can construct a control policy Â ∈ A with Â =

{(τ i > t, τ 1
L > t, τ 1

F = t, F1 ≥ 0)} such that the firm issues equity at time t, and

for any s ≥ t we assume that the firm takes the optimal investment, liquidation

and financing decisions, including financing timing and the choice of the optimal

amount F1. Following the above policy, the (optimal) value function at time t is

G(Wt− + F1, Yt−)− F1 − Φ(F1). By the continuity of value function upon the equity

issue, we have

G(Wt−, Yt−; Â) = G(Wt− + F1, Yt−)− F1 − Φ(F1) .

Since the time of equity issue for τ 1
F = t may be not optimal, we have

sup
A∈A

G(Wt−, Yt−;A) ≥ sup
F1≥0

G(Wt−, Yt−; Â) = sup
F1≥0

G(Wt− + F1, Yt−)− F1 − Φ(F1) .

Recall that G(Wt−, Yt−) = supA∈A G(Wt−, Yt−;A), so that we have G(Wt−, Yt−) ≥
supF1≥0 G(Wt− + F1, Yt−)− F1 − Φ(F1). �

C.3 Proof for Lemma 7

For any given time t, we can construct a control policy Â ∈ A with Â = {(τ i =

t, τ 1
L > t, τ 1

F = t, F1 ≥ 0)} such that the firm exercises its growth option and/or issues

equity at time t, and for any s ≥ t it is in the mature phase. Following the above

policy, the (optimal) value function at time t is P (Wt− + F1 − I, Yt−)− F1 − Φ(F1).

By continuity of value function upon the equity issue, we have

G(Wt−, Yt−; Â) = P (Wt− + F1 − I, Yt−)− F1 − Φ(F1) .

Since the time of the equity issue τ i = t may be not optimal, we have

sup
A∈A

G(Wt−, Yt−;A) ≥ sup
F1≥0

G(Wt−, Yt−; Â) = sup
F1≥0

P (Wt−+F1−I, Yt−)−F1−Φ(F1) .

Recall that G(Wt−, Yt−) = supA∈A G(Wt−, Yt−;A), so that we have G(Wt−, Yt−) ≥
supF1≥0 P (Wt− + F1 − I, Yt−)− F1 − Φ(F1). �
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C.4 Proof for Lemma 8

We assume that the current time is t, and that Y ∗a,1 < Yt ≤ Y ∗i , and denote

τ ∗L = inf{s|Ys ≤ Y ∗a,1} and τ ∗i = inf{s|Ys ≥ Y ∗i }. Obviously, τ ∗L is the optimal

first-best liquidation time and τ ∗i is the first-best optimal investment time. Note

that Λ1 = Z1−m1Ya,1
r

and Wt ≥ Λ1 imply that the drift of W in the growth phase

(rWs+m1Ys−Z1) is always positive for t ≤ s < τ , where τ = (τ ∗L
∧
τ ∗i ), which means

that Ws ≥ Wt > 0 for t ≤ s < τ , and the firm will never use external financing by

issuing equity before liquidation or exercising its growth option. In addition, we have

that Ws ≥ Wt > I + Λ2 since (rWs + m1Ys − Z1) ≥ 0 for t ≤ s < τ . Hence, we can

construct a control policy Â ∈ A such that Â = {(τ i = τ ∗i , τ
1
L = τ ∗L, τ

1
F =∞, F1 = 0)}.

From (29) we have

G(Wt, Yt;A) = Et
[
e−r(τ

∗
i−t)P (Wτ∗i− − I, Yτ∗i−)Iτ∗L>τ∗i + e−r(τ

∗
L−t)Wτ∗L

Iτ∗L<τ∗i
]
.

(C.1)

Note that Wτ∗i− > I + Λ2, therefore by Lemma (3) and Theorem 1 we have

P (Wτ∗i− − I, Yτ∗i−) = Wτ∗i− − I +Q(Yτ∗i−) = Wτ∗i− +H∗(Yτ∗i−) = G∗(Wτ∗i−, Yτ∗i−) .

Note also that Yτ∗L = Y ∗a,1, so that by Theorem 1 we have

Wτ∗L
= Wτ∗L

+ 0 = Wτ∗L
+H∗(Yτ∗L) = G∗(Wτ∗L

, Yτ∗L) .

Hence, we could rewrite (C.1) as

G(Wt, Yt;A) = Et
[
e−r(τ

∗
i−t)G∗(Wτ∗i−, Yτ∗i−)Iτ∗L>τ∗i + e−r(τ

∗
L−t)G∗(Wτ∗L

, Yτ∗L) Iτ∗L<τ∗i
]

= Et
[
e−r(τ−t)G∗(Wτ−, Yτ−)

]
= G∗(Wt, Yt) . (C.2)

Finally, since G(W,Y ) = supA∈A G(W,Y ;A), we have G(W,Y ) ≥ G∗(W,Y ) for

W ≥ max{Λ1,Λ2 + I}. And, following the boundedness property of G(W,Y ) as

shown in Proposition 3, we have G(W,Y ) = G∗(W,Y ) for W ≥ max{Λ1,Λ2 + I}. �

C.5 Proof for Lemma 9

Assume that for any given time t, Wt ≥ 0, Yt → ∞, and that the firm always

takes optimal decisions. Consider a tiny time period (t, t+ ∆t) with ∆t > 0. During

this period the firm abandons or issues equity with zero probability, since Yt → ∞.

Hence, we have Wt+∆t > max{Λ1,Λ2 + I} with probability one when Yt →∞, which

implies that G(Wt+∆t, Yt+∆t) = G∗(Wt+∆t, Yt+∆t) with probability one, by Lemma 8.

From (29) under optimal decisions we have

G(Wt, Yt) = Et
[
e−r(t+∆t−t)G(Wt+∆t, Yt+∆t)

]
= Et

[
e−r∆tG∗(Wt+∆t, Yt+∆t)

]
.
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Since Yt → ∞, the above equation holds for any ∆ > 0, and by taking ∆ → 0, we

have

G(Wt, Yt) = lim
∆→0

Et
[
e−r∆tG∗(Wt+∆t, Yt+∆t)

]
= Et [G∗(Wt, Yt)] = G∗(Wt, Yt) .

C.6 Proof for Theorem 3

Verification. We establish that any piecewise-C2 function, which is a solution to

the equation (40), associated to problem (29), is a majorant of the value function G.

Proposition 6 (Verification 2) Suppose that a positive function G̃ exists which is

piecewise-C2 on the region Σ1 with bounded first derivatives and such that for all

(W,Y ) ∈ Σ1,

L1G̃ ≤ 0, (C.3)

G̃(W,Y ) ≥ W, (C.4)

G̃(W,Y ) ≥ sup
F1≥0

P (W + F1 − I, Y )− F1 − Φ(F1) , (C.5)

G̃(W,Y ) ≥ sup
F1≥0

G̃(W + F1, Y )− F1 − Φ(F1) , (C.6)

with boundary conditions G̃(W,Y ) = G∗(W,Y ) for W = max{Λ1,Λ2 +I} or Y →∞.

Then G̃(W,Y ) = G(W,Y ) for all (W,Y ) ∈ Σ1.

Proof. We first show that G̃(W,Y ) ≥ G(W,Y ). Notice that A is a control policy

in problem (29), where A ∈ A the set of all policies. Then, by definition, we have

(30). If we can show that G̃(W,Y ) ≥ G(W,Y ;A) for any control policy A ∈ A, then

it follows that G̃(W,Y ) ≥ G(W,Y ).

Using the generalized Ito’s formula (Dellacherie and Meyer (1980), Theorem VIII-

25 and Remark c, p. 349), we can write:

e−r(τ1−t)G̃(Wτ1−, Yτ−) = G̃(Wt, Yt) +

∫ τ1−

t

e−r(s−t)L2G̃(Ws, Ys)ds

+

∫ τ1−

t

e−r(s−t)G̃Y (Ws, Ys)σYsdBs .

Since G̃ satisfies (C.3), the second term of the right hand side is non-positive. More-

over, since the first derivative of G̃ is bounded, the third term is a square integrable

martingale. Taking expectations, we then get:

Et
[
e−r(τ1−t)G̃(Wτ1−, Yτ1−)

]
≤ G̃(Wt, Yt) .
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Suppose that the firm issues equity N times from time 0 to time τ 1
L ∧ τ 1

U , and

divide the time interval (0, τ 1
L∧ τ 1

U) into N + 1 subperiods. We define τ 1
Fn

as the time

of the n-th round of external financing, where 1 ≤ n ≤ N . During the last period

(τ 1
FN
, τ 1

L ∧ τ 1
U) we then have:

G̃(Wt, Yt) ≥ Et
[
e−r(τ1−t)G̃(Wτ1−, Yτ1−)

]
= Et

[
e−r(τ1−t)G̃(Wτ1 , Yτ1)Iτ1=τ1L

+ e−r(τ1−t)G∗(Wτ1 , Yτ1)Iτ1=τ1U

]
≥ Et

[
e−r(τ1−t)Wτ1 Iτ1=τ1L

+ e−r(τ1−t)G∗(Wτ1 , Yτ1)Iτ1=τ1U

]
= G(Wt, Yt;A) , (C.7)

where we have used the condition (C.4) for the second inequality.
During the N -th external financing subperiod (τ 1

FN−1
, τ 1) we have in turn:

G̃(Wt, Yt) ≥ Et
[
e−r(τ1−t)G̃(Wτ1−, Yτ1−)

]
= Et

[
e−r(τ1−t)G̃(Wτ1−, Yτ1−)Iτ1=τ1FN

]
≥ Et

[
e−r(τ1−t) sup

F1≥0

[
G̃(Wτ1− + F1, Yτ1−)− F1 − Φ(F1)

]
Iτ1=τ1FN

<τ i

+e−r(τ1−t) sup
F1≥0

[P (Wτ1− + F1 − I, Yτ1−)− F1 − Φ(F1)] Iτ1=τ1FN
=τ i

]

= Et

[
e−r(τ1−t) sup

F1≥0

[
Eτ1FN

[
G̃(Wτ1− + F1, Yτ1−)

]
− F1 − Φ(F1)

]
Iτ1=τ1FN

<τ i

+e−r(τ1−t) sup
F1≥0

[
Eτ1FN

[P (Wτ1− + F1 − I, Yτ1−)]− F1 − Φ(F1)
]
Iτ1=τ1FN

=τ i

]
≥ Et

[
e−r(τ1−t)

[
Eτ1FN

[G(Wτ1− + F1, Yτ1−)]− F1 − Φ(F1)
]
Iτ1=τ1FN

<τ i

+ e−r(τ1−t)
[
Eτ1FN

[P (Wτ1− + F1 − I, Yτ1−)]− F1 − Φ(F1)
]
Iτ1=τ1FN

=τ i

]
= G(Wt, Yt;A) , (C.8)

where again we have used the condition (C.5) for the first term of the second in-

equality and the condition (C.6) for the second term of the second inequality, and the

third inequality is obtained from (C.7).

Following similar steps as for earlier subperiods we obtain that G̃(Wt, Yt) ≥
G(Wt, Yt;A). Since the policy A is arbitrarily chosen, we have

G̃(W,Y ) ≥ max
A∈ A

G(W,Y ;A) = G(W,Y ) .
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Finally, since the optimal strategies are attained, all the inequalities become equali-

ties, so that:

G̃(W,Y ) = G(W,Y ;A) = G(W,Y ) ,

when A = A∗, where

A∗ ∈ A∗ = {arg max
A∈A

G(W,Y ;A)} .

�

C.7 Proof for Proposition 3

Proof for the Existence and Boundedness Property. It is immediate to ob-

serve that the closed-form solution for G∗(W,Y ) with (W,Y ) ∈ Σ1 is bounded under

Assumptions 1-3. It follows that G(W,Y ) is also bounded under Assumptions 1-3.
Lemma 5 shows that W ≤ G(W,Y ). To see why G(W,Y ) ≤ G∗(W,Y ), let

G(1)(W,Y ) be the value function if the firm is allowed to issue equity freely, without
paying any external financing cost in the first round of financing. We then have:

G(Wt, Yt) = Et
[
e−r(τ1−t) [G(Wτ1− + F1, Yτ1−)− F1 − Φ(F1)] Iτ1=τ1F<τ i

+e−r(τ1−t) [P (Wτ1− + F1 − I, Yτ1−)− F1 − Φ(F1)] Iτ1=τ1F =τ i

+e−r(τ1−t)Wτ1 Iτ1=τ1L
+ e−r(τ1−t)G∗(Wτ1 , Yτ1)Iτ1=τ1U

]
≤ Et

[
e−r(τ1−t) [G(Wτ1− + F1, Yτ1−)− F1] Iτ1=τ1F<τ i

+ e−r(τ1−t)Wτ1 Iτ1=τ1L

+e−r(τ1−t) [P (Wτ1− + F1 − I, Yτ1−)− F1] Iτ1=τ1F =τ i

+e−r(τ1−t)G∗(Wτ1 , Yτ1)Iτ1=τ1U

]
= G(1)(Wt, Yt) . (C.9)

Now, let G(2)(W,Y ) be the value function if the firm has the opportunity to issue

equity without any cost for the next two rounds. Then:

G(1)(Wt, Yt) = Et
[
e−r(τ1−t) [G(Wτ1− + F1, Yτ1−)− F1] Iτ1=τ1F<τ i

+e−r(τ1−t) [P (Wτ1− + F1 − I, Yτ1−)− F1] Iτ1=τ1F =τ i

+e−r(τ1−t)Wτ1 Iτ1=τ1L
+ e−r(τ1−t)G∗(Wτ1 , Yτ1)Iτ1=τ1U

]
≤ Et

[
e−r(τ1−t)

[
G(1)(Wτ1− + F1, Yτ1−)− F

]
Iτ1=τ1F<τ i

+e−r(τ1−t) [P (Wτ1− + F1 − I, Yτ1−)− F ] Iτ1=τ1F =τ i

+e−r(τ1−t)Wτ1 Iτ1=τ1L
+ e−r(τ1−t)G∗(Wτ1 , Yτ1)Iτ1=τ1U

]
= G(2)(Wt, Yt) . (C.10)
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Repeating the same argument, we have

G(W,Y ) ≤ G(1)(W,Y ) ≤ G(2)(W,Y ) ≤ · · · ≤ G(∞)(W,Y ) ,

where G(∞)(W,Y ) represents the value function for an infinite number of costless

issues. In other words, G(∞)(W,Y ) is the firm’s value when it is forever financially

unconstrained, so that G(∞)(W,Y ) ≤ G∗(W,Y ). It then follows that:

G(W,Y ) ≤ G∗(W,Y ) .

Finally, we establish that G(W,Y ) exists under Assumption 2 and Assumption

3. Note first that the set of policies A is non-empty. Indeed, one policy A ∈ A is

to immediately liquidate the firm at time t, A = {(τ i > t, τ 1
F > t, τ 1

L = t, F1 = 0)}.
The firm’s payoff under this policy is G(Wt, Yt;A) = Wt. Therefore, there exists

at least one policy A∗ ∈ A such that G(Wt, Yt;A
∗) = maxA∈A G(Wt, Yt;A). Note

that G(Wt, Yt) = maxA∈A G(Wt, Yt;A), so that it exists and is given by G(Wt, Yt) =

G(Wt, Yt;A
∗). �

Proof for the Monotonicity Property. First we show that G(W,Y ) is strictly
increasing in W . For simplicity, define H(Wt, Yt;A) = G(Wt, Yt;A) −W , and from
(29) we have

H(Wt, Yt;A) = Et
[
e−r(τ1−t) [Q(Wτ1− + F1 − I, Yτ1−)− Φ(F1)] Iτ1=τ i

+e−r(τ1−t)H∗(Yτ1)Iτ1=τ1U
+ e−r(τ1−t) [H(Wτ1− + F1, Yτ1−)− Φ(F1)] Iτ1=τ1F

]
,

and

H(Wt, Yt) = sup
A∈A

H(Wt, Yt;A) .

Obviously, G(W,Y ) is strictly increasing in W if H(W,Y ) is increasing in W . Next,

we prove that H(W,Y ) is increasing in W .

For the firm with initial wealth W (1), a policy A1 can be constructed with the

same investment, the same financing time, and the same liquidation time as policy

A∗2, where the financing amount is given by F 1
1 = F 2,∗

1 + W
(2)
s− −W

(1)
s− at the time of

financing. Observe next that the dynamics of liquidity are then such that W
(1)
s ≥

W
(2)
s for s > t, path by path, if W

(1)
t > W

(2)
t , which implies that W

(1)
τ1 ≥ W

(2)
τ1 =

max{Λ1,Λ2 + I} if τ 1 = τ 2,∗
U . In addition, we have W

(1)
s = W

(2)
s and F 1

1 = F 2,∗
1 for

s > τ 1 = min{τ 2,∗
i , τ 1,∗

F }, and F 1
1 ≤ F 2,∗

1 for t < s ≤ τ 1 = min{τ 2,∗
i , τ 2,∗

F }.
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Under this policy A1 we then have:

H(W
(1)
t , Yt;A1) = Et

[
e−r(τ1−t)

[
Q(W

(1)
τ1− + F 1

1 − I, Yτ1−)− Φ(F 1
1 )
]
I
τ1=τ2,∗i

+e−r(τ1−t)H∗(Yτ1)I
τ1=τ2,∗U

+e−r(τ1−t)
[
H(W

(1)
τ1− + F 1

1 , Yτ1−)− Φ(F 1
1 )
]
I
τ1=τ2,∗F

]
≥ Et

[
e−r(τ1−t)

[
Q(W

(2)
τ1− + F 2,∗

1 − I, Yτ1−)− Φ(F 2,∗
1 )
]
I
τ1=τ2,∗i

+e−r(τ1−t)H∗(Yτ1)I
τ1=τ2,∗U

+e−r(τ1−t)
[
H(W

(2)
τ1− + F 2,∗

1 , Yτ1−)− Φ(F 2,∗
1 )
]
I
τ1=τ2,∗F

]
= H(W

(2)
t , Yt;A

∗
2) = H(W

(2)
t , Yt) . (C.11)

Hence, we have

H(W
(1)
t , Yt) = H(W

(1)
t , Yt;A

∗
1) ≥ H(W

(1)
t , Yt;A1) ≥ H(W

(2)
t , Yt;A

∗
2) = H(W

(2)
t , Yt) .

That is, H(W,Y ) is increasing inW andG(W,Y ) = H(W,Y )+W is strictly increasing

in W .

Second, we show that G(W,Y ) is strictly increasing in Y for Y ≥ Y (W ). Note that

G(W,Y ) is strictly increasing in Y for Y ≥ Y (W ) since the firm exercises its growth

option immediately and P (W,Y ) is strictly increasing in Y as shown in Proposition

1. Therefore, we need to show that G(W,Y (1)) > G(W,Y (2)) if Y (W ) > Y (1) >

Y (2) ≥ Y (W ). We can use the same argument as for the monotonicity in W . Again,

we define the policies A1, A∗1 and A∗2 as above, and let A1 = A∗2. Furthermore, we

let W (1) and W (2) denote the liquidity of the firm with initial earnings fundamentals

Y (1) and Y (2) respectively. Observe next that the dynamics of liquidity are then such

that W
(1)
s > W

(2)
s for t < s, path by path, if W

(1)
t = W

(2)
t . This further implies that

W
(1)
s > W

(2)
s for s = τ 1 = min{τ 2,∗

i , τ 2,∗
L , τ 2,∗

U }.
Since G∗(W,Y ) is always strictly increasing in W and Y , the terminal payoff

with initial earnings fundamentals Y (1) is always higher than with initial earnings

fundamentals Y (2), path by path, under the same policy A∗2, so that:

G(W,Y (1);A1) = G(W,Y (1);A∗2) > G(W,Y (2);A∗2) = G(W,Y (2)) .

Furthermore, G(W,Y (1)) = G(W,Y (1);A∗1) ≥ G(W,Y (1);A1), so that:

G(W,Y (1)) > G(W,Y (2)) for Y (W ) > Y (1) > Y (2) ≥ Y (W ) .

Finally, since G(W,Y ) is strictly increasing in Y for Y ≥ Y (W ), we have that

G(W,Y ) is strictly increasing in Y for Y ≥ Y (W ). �
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Proof for the Uniqueness Property. Let ΣG denote the interior region where

L1G = 0:

ΣG = {(W,Y )|0 < W < max{Λ1,Λ2 + I}, Y (W ) < Y < Y } . (C.12)

Let Σ′G denote the boundary of ΣG:

Σ′G = {(W,Y )|W = {0,max{Λ1,Λ2 + I}}, Y (W ) ≤ Y < Y (W )}
∪{(W,Y )|0 ≤ W ≤ max{Λ1,Λ2 + I}, Y = {Y (W ), Y (W )}} .

We first show that the solution is unique for a given region ΣG and then show that

ΣG is unique. Finally, we show that the solution is unique on the whole region

Σ̂1 = ΣG ∪ Σ′G.

Suppose by contradiction that for a given region ΣG where L1G = 0, there are

two solutions G(1)(W,Y ) and G(2)(W,Y ) which satisfy:

0 = (rW +m1Y − Z1)G
(1)
W (W,Y ) + µY G

(1)
Y (W,Y ) +

σ2Y 2G
(1)
Y Y (W,Y )

2
− rG(1)(W,Y ) ,

and

0 = (rW +m1Y − Z1)G
(2)
W (W,Y ) + µY G

(2)
Y (W,Y ) +

σ2Y 2G
(2)
Y Y (W,Y )

2
− rG(2)(W,Y ),

in the region ΣG. Let Ĝ(W,Y ) = G(1)(W,Y ) − G(2)(W,Y ). Then Ĝ(W,Y ) also

satisfies

0 = (rW +m1Y − Z1)ĜW (W,Y ) + µY ĜY (W,Y ) +
σ2Y 2ĜY Y (W,Y )

2
− rĜ(W,Y ) ,

in region ΣG. Let

(Ŵ , Ŷ ) ∈ arg max
(W,Y )∈ΣG∪Σ′G

Ĝ(W,Y ) .

If (Ŵ , Ŷ ) ∈ ΣG, we have that ĜW (Ŵ , Ŷ ) = 0, ĜY (Ŵ , Ŷ ) = 0, and ĜY Y (Ŵ , Ŷ ) ≤ 0.

Under Assumption 2, we also have:

rĜ(Ŵ , Ŷ ) =
σ2Ŷ 2ĜY Y (Ŵ , Ŷ )

2
≤ 0 .

Therefore,

Ĝ(Ŵ , Ŷ ) ≤ 0 , if (Ŵ , Ŷ ) ∈ ΣG . (C.13)

Note that (W,Y (W )) ∈ Σ′G, so that

max
(W,Y )∈ΣG∪Σ′G

Ĝ(W,Y ) ≥ max
(W,Y )∈Σ′G

Ĝ(W,Y ) ≥ G(1)(W,Y (W ))−G(2)(W,Y (W )) = W−W = 0.

(C.14)
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That is

Ĝ(Ŵ , Ŷ ) ≥ 0 , for (Ŵ , Ŷ ) ∈ ΣG ∪ Σ′G . (C.15)

Combining (C.13) and (C.15), we have

Ĝ(Ŵ , Ŷ ) ≡ 0 , if (Ŵ , Ŷ ) ∈ ΣG . (C.16)

Next, we prove that Ĝ(Ŵ , Ŷ ) ≡ 0 if (Ŵ , Ŷ ) ∈ Σ′G . By using the value functions

at the boundaries: Y = {Y (W ), Y (W )} and W = max{Λ1,Λ2 + I}, we have

Ĝ(Ŵ , Ŷ ) = 0 , (C.17)

if (Ŵ , Ŷ ) ∈ {(W,Y )|W = max{Λ1,Λ2 +I}, Y (W ) ≤ Y < Y (W )}∪{(W,Y )|0 ≤ W ≤
max{Λ1,Λ2 + I}, Y = {Y (W ), Y (W )}}.

Next we show that Ĝ(Ŵ , Ŷ ) = 0, if (Ŵ , Ŷ ) ∈ {(W,Y )|W = 0, Y (W ) ≤ Y <

Y (W )}. First, note that ĜW (Ŵ , Ŷ ) ≤ 0, ĜY (Ŵ , Ŷ ) = 0 and ĜY Y (Ŵ , Ŷ ) ≤ 0 if

Ŵ = 0, and Z1

m1
≤ Ŷ < Y (W ). Therefore, we have rP̂ (0, Ŷ ) = (m1Ŷ−Z1)ĜW (W,Y )+

σ2Ŷ 2ĜY Y (0,Ŷ )
2

≤ 0 if Z1

m1
≤ Ŷ < Y (W ) . Then from (C.15), we obtain that

Ĝ(0, Ŷ ) = 0 , if
Z1

m1

≤ Ŷ < Y (W ) . (C.18)

Finally, let F
(1)
1 and F

(2)
1 denote the optimal equity issues in that G(1)(0, Ŷ ) =

supF1>0 G
(1)(F1, Ŷ )−F1−Φ(F1) and G(2)(0, Ŷ ) = supF1>0 G

(2)(F1, Ŷ )−F1−Φ(F1).
We then have

Ĝ(0, Ŷ ) = G(1)(0, Ŷ )−G(2)(0, Ŷ )

= (G(1)(F
(1)
1 , Ŷ )− F (1)

1 − Φ(F
(1)
1 ))− (G(2)(F

(2)
1 , Ŷ )− F (2)

1 − Φ(F
(2)
1 ))

≤ (G(1)(F
(1)
1 , Ŷ )− F (1)

1 − Φ(F
(1)
1 ))− (G(2)(F

(1)
1 , Ŷ )− F (1)

1 − Φ(F
(1)
1 ))

= Ĝ(F
(1)
1 , Ŷ ) . (C.19)

This is obviously a contradiction unless Ĝ(W,Y ) ≡ 0. That is Ĝ(0, Ŷ ) = 0 if

Y (0) ≤ Ŷ < Z1

m1
. Together with (C.18) and (C.17), we therefore conclude that

Ĝ(Ŵ , Ŷ ) ≡ 0 , if (Ŵ , Ŷ ) ∈ Σ′G . (C.20)

Further, by combining (C.16) and (C.20), we conclude that

Ĝ(Ŵ , Ŷ ) ≡ 0 for (W,Y ) ∈ ΣG ∪ Σ′G . (C.21)

This, in turn, implies that

G(1)(W,Y ) ≤ G(2)(W,Y ) for (W,Y ) ∈ ΣG ∪ Σ′G . (C.22)
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Since the entire argument also holds if we switch G(1)(W,Y ) with G(2)(W,Y ), in

that

G(2)(W,Y ) ≤ G(1)(W,Y ) for (W,Y ) ∈ ΣG ∪ Σ′G , (C.23)

we conclude that

G(2)(W,Y ) ≡ G(1)(W,Y ) for (W,Y ) ∈ ΣG ∪ Σ′G .

We next show that the region ΣG is unique, which is equivalent to showing that

the boundary Σ′G is unique. From the definition of Σ′G, we only need to show that

Y (W ) is unique and Y (W ) is unique, for 0 ≤ W ≤ Λ2. First, suppose that there are

two liquidation boundaries Y (1)(W ) and Y (2)(W ), with Y (1)(W ) ≥ Y (2)(W ) for some

W , and let G(1)(W,Y ) and G(2)(W,Y ) be the corresponding solutions. We then have:

W = G(1)(W,Y (1)(W )) ≥ G(2)(W,Y (1)(W )) ≥ W = G(2)(W,Y (2)(W )) ,

where the first inequality follows from the optimality of the liquidation decision,

and the second inequality is obtained from (31). It follows that G(2)(W,Y (1)(W )) =

G(2)(W,Y (2)(W )). Moreover, the value function is increasing in both W and Y so

that: Y (1)(W ) = Y (2)(W ).

Suppose next that there are two investment boundaries Y
(1)

(W ) and Y
(2)

(W ),

with Y
(1)

(W ) > Y
(2)

(W ) for some W , and let G(1)(W,Y ) and G(2)(W,Y ) be the

corresponding solutions. It follows that G(1)(W,Y
(2)

(W )) > supF1
P (W + F1 −

I, Y
(2)

(W )) since Y
(2)

(W ) is not the optimal investment boundary for G(1)(W,Y ).
We then have:

G(1)(W,Y
(1)

(W )) > G(1)(W,Y
(2)

(W )) > sup
F1

P (W+F1−I, Y
(2)

(W )) = G(2)(W,Y
(2)

(W )) ,

(C.24)

where the first inequality follows from the monotonicity property shown in Propo-

sition 3. Since Y
(2)

(W ) is the optimal investment boundary for G(2)(W,Y ), we have

G(2)(W,Y
(2)

(W )) > G(1)(W,Y
(2)

(W )), which is conflicting with (C.24). Hence, we

have that Y
(1)

(W ) = Y
(2)

(W ) for all W .
Finally, we show that the solution is unique on the remaining liquidation/investment

region Σ′1 = Σ1− (ΣG∪Σ′G). From the definition of the regions ΣG and Σ′G, and total
region Σ1, we have that

Σ′1 = {(W,Y )|0 ≤W ≤ max{Λ1,Λ2 + I}, 0 ≤ Y < Y (W )}
∪{(W,Y )|0 ≤W ≤ max{Λ1,Λ2 + I}, Y (W ) < Y } . (C.25)

Since both of Y (W ) and Y (W ) are unique it follows that Σ′1 is also unique. In the

liquidation region the value function is G(W,Y ) ≡ W , and in the investment region
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the the value function is G(W,Y ) ≡ supF1≥0 P (W + F1 − I, Y ), so that the solution

for P (W + F1 − I, Y ) is unique as shown in Proposition 1. Hence, the solution for

G(W,Y ) is unique in Σ′1. In sum, the solution for G(W,Y ) in the region Σ1 is unique.

�

C.8 Proof for Proposition 4

Proof for the Monotonicity Property of the Liquidation Boundary. Here,

we want to show the optimal liquidation boundary, Y (W ), is decreasing in W in

the growth phase. Let Y (W (1)) and Y (W (2)) denote the optimal liquidation bound-

ary with respectively liquidity W (1) and W (2), where W (1) < W (2). Recall that

H(W,Y ) = G(W,Y )−W is increasing in W as shown in Proposition 3. We therefore

have 0 = H(W (1), Y (W (1))) ≤ H(W (2), Y (W (1))). In addition, G(W,Y ) is strictly

increasing in Y before liquidation as shown in Proposition 3. This implies that

H(W,Y ) = G(W,Y ) −W is also strictly increasing in Y for Y ≥ Y (W ). Hence, we

have Y (W (1)) ≥ Y (W (2)), otherwise 0 = H(W (1), Y (W (1))) ≤ H(W (2), Y (W (1))) <

H(W (2), Y (W (2))) = 0, a contradiction. That is, we have established that Y (W (1)) ≥
Y (W (2)) if W (1) < W (2), which shows that the optimal liquidation boundary is de-

creasing in W in the growth phase. �

Proof for Delaying Costly Equity Issuance. First, we need to show that the

firm has to issue equity if W = 0 for given Y , where Y (0) < Y < Z1

m1
, to continue

operations. We assume that F ∗1 (0) is the optimal amount of equity issuance, so

that G(0, Y ) = G(F ∗1 (0), Y ) − F ∗1 (0) − Φ(F ∗1 (0)). This implies that GW (0, Y ) >

1 + Φ∗′(0)) = 1 + φ1, for otherwise F ∗1 (0) = 0 and the firm defaults immediately,

which is a contradiction with Y (0) < Y < Z1

m1
. Next, denoting M = F ∗1 (0), we have

that GW (W,Y ) > 1 + φ1 for 0 < W < M and GW (M,Y ) = 1 + φ1. Otherwise, F ∗1 (0)

is not the optimal amount of equity issuance.

To show that the firm will delay costly equity issuance until entirely exhausting

its cash, we only need to show that G(W,Y ) > supF1≥0G(W +F1, Y )−F1−Φ(F1) for

W > 0. First, since GW (W,Y ) ≤ 1+φ1 for W ≥M , the firm has no incentive to issue

equity because G(W,Y ) ≥ G(W + F1, Y )− F1 − φ1F1 > G(W + F1, Y )− F1 −Φ(F1)

for W ≥ M . Second, we show that G(W,Y ) > supF1≥0G(W + F1, Y ) − F1 − Φ(F1)

for 0 < W < M . Let F ∗1 (W ) be the optimal amount of equity issuance if the firm

chooses equity issuance at some W such that 0 < W < M for given Y . This means

that supF1≥0G(W +F1, Y )−F1−Φ(F1) = G(W +F ∗1 (W ), Y )−F ∗1 (W )−Φ(F ∗1 (W ))
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and M = W + F ∗1 (W ). We then have

G(W,Y )− (G(W + F ∗1 (W ), Y )− F ∗1 (W )− Φ(F ∗1 (W )))

= G(W,Y )− (G(M,Y )− F ∗1 (W )− Φ(F ∗1 (W )))

= G(W,Y )−W − (G(M,Y )−M − Φ(F ∗1 (W )))

= H(W,Y )−H(M,Y ) + Φ(M −W ) . (C.26)

Recall that G(0, Y ) = G(F ∗1 (0), Y ) − F ∗1 (0) − Φ(F ∗1 (0)) and M = F ∗1 (0), so that

H(0, Y ) = H(F ∗1 (0), Y )− Φ(F ∗1 (0)) = H(M,Y )− Φ(M), and

G(W,Y )− (G(W + F ∗1 (W ), Y )− F ∗1 (W )− Φ(F ∗1 (W )))

= H(W,Y )−H(0, Y ) + Φ(M −W )− Φ(M)

= H(W,Y )−H(0, Y )− φ1W

> φ1W − φ1W = 0 ,

where the above inequality follows from GW (W,Y ) > 1 + φ1 for 0 < W < M ,

which implies that HW (W,Y ) > φ1 for 0 < W < M . Finally, G(W,Y ) − (G(W +

F ∗(W ), Y )−F ∗(W )−Φ(F ∗(W ))) > 0 implies that the firm has no incentive to issue

equity for 0 < W < M and that the firm will delay costly equity issuance until

entirely exhausting its cash. �

Proof for the behavior of the investment threshold when W → I. If

PW (0, Y (I)) ≤ φ1, the firm delays costly equity issuance as shown in Proposition

2, so that P (0, Y (I)) > P (F1, Y (I)) − F1 − φ1F1 > P (F1, Y (I)) − F1 − Φ(F1)

for any 0 < F1 ≤ M where PW (M,Y (I)) = φ1. Hence, we have G(I, Y (I)) =

supF1≥0 P (F1, Y (I)) − F1 − Φ(F1) = P (0, Y (I)) if PW (0, Y (I)) ≤ φ1. That is, the

firm directly uses its internal liquidity to finance the investment cost I if the marginal

value of internal liquidity is lower than the external financing cost.

Denote Y (I−) = limW→IY (W ). Now we show that Y (I−) = ∞. First, we have

Y (I−) ≥ Y (I), otherwise if Y (I−) < Y (I) for given Y (I−) we have

lim
W→I

G(W,Y (I−)) = lim
W→I

sup
F1>0

P (W + F1 − I, Y (I−))− F1 − Φ(F1)

= sup
F1>0

P (I + F1 − I, Y (I−))− F1 − Φ(F1) < G(I, Y (I−)) ,

where the second equality follows from the continuity of G(W,Y ), and the inequality

from Y (I−) < Y (I) and the fact that supF P (W + F1 − I, Y (I−))− F1 − Φ(F1) <

G(W,Y ) if Y < Y (W ). Hence, we have that Y (I−) ≥ Y (I).

72



Now, assume that Y (I) ≤ Y (I−) <∞, then we have

lim
W→I

G(W,Y (I−)) = lim
W→I

sup
F1>0

P (W + F1 − I, Y (I−))− F1 − Φ(F1)

= sup
F1>0

P (I + F1 − I, Y (I−))− F1 − Φ(F1)

= lim
F1→0

P (F1, Y (I−))− F1 − Φ(F1)

= P (0, Y (I−))− φ0 = G(I, Y (I−))− φ0 .

The above result violates the continuity of G(W,Y ) in W if Y (I) ≤ Y (I−) < ∞.

In sum, we have Y (I−)→∞ if PW (0, Y (I)) ≤ φ1, so that the investment threshold

tends to infinity when W → I if PW (0, Y (I)) ≤ φ1. �

D Solution Algorithm

First, we note that solving the following problem

max{L2P, max{sup
F2≥0

P (W + F2, Y )− F2 − Φ(F2),W} − P (W,Y )} = 0 , (D.1)

in the region (W ≥ 0, Y ≥ 0) is equivalent to solving the following penalty equation:

L2P + qmax{W − P, 0} = 0 , (D.2)

in the region [0,Λ2]× [0, Ymax] where the approximate boundary Ymax and the penalty

factor q are sufficiently high. The following boundary conditions are associated with

(D.2):

1. When the firm has no savings, i.e., W = 0 :

P (0, Y ) = max{sup P (F2, Y )− φ0 − (1 + φ1)F2, 0}, if Y <
Z2

m2

,

L2P + qmax{W − P, 0} = 0 if Y ≥ Z2

m2

.

2. When the firm’s liquidity is sufficiently high, i.e., W = Λ2:

P (W,Y ) = W, if Y < Y ∗2,a ,

P (W,Y ) = Q∗(Y ) +W, if Y ≥ Y ∗2,a.

3. When the firm’s earnings is at the origin, Y = 0, a permanently absorbing state,

it is immediate to see that P = W .
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4. When the firm’s earnings is sufficiently high, i.e., Y = Ymax, the firm’s can

finance its operations in an unconstrained way with probability one. Therefore,

P (W,Ymax) = P ∗(W,Ymax) = Q∗(Ymax) +W .

We use the finite-difference method to solve the penalty equation (D.2). That

is, we divide the interval [0,Λ2] via Nw equally spaced points {(i− 1)∆w}Nw
i=1, where

∆w = Λ2/(Nw − 1), and divide the interval [0, Ymax] via Ny equally spaced points

{(j − 1)∆y}Ny

j=1, where ∆y = Ymax/(Ny − 1). We then solve the penalty equation

L2Pi,j + qmax{Wi − Pi,j, 0} = 0 by using Newton-SOR iterative method, by setting

Wi = (i − 1)∆w, Yj = (j − 1)∆y, and Pi,j = P (Wi, Yj). Under Assumption 2

and Assumption (3), the value function is well defined and the numerical procedure

converges.
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