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1 Introduction

The transmission and implementation of monetary policy operates through the banking system.

In practice, central banks set a target for the interbank market rate and implement that target

via open market operations and standing facilities. The ultimate goal is to affect the amount of

credit and thus overall economic activity. It is therefore of paramount importance to understand

how monetary policy affects the interbank market and, in turn, how the interbank market affects

the real economy.

The leading macroeconomic framework used for monetary policy analysis, the New Keynesian

model, abstracts from the implementation and transmission of monetary policy through the

interbank market. In the New Monetarist framework, interactions between money and credit

are explicit, but the interbank market and its impact on credit have received little attention.1

Moreover, for the most part, the focus of analysis has been on a sole policy instrument, either

a nominal interest rate or the growth in the monetary base. During the 2008 financial crisis,

and more recently during the Covid-19 crisis, disruptions in interbank markets were met with a

broad set of policy responses designed to inject liquidity into the financial system and mitigate

contractions in credit. These events call for a model that can be used to analyze the effects of

frictions in the interbank market and the transmission of monetary policy through the banking

system.

This paper provides a tractable general equilibrium model with a banking system that ar-

ticulates a notion of the credit channel of monetary policy. At the heart of the theory lies a

liquidity management problem that emerges from frictions in the interbank market. Liquidity

management concerns the trade-off between holding high-yield illiquid loans and holding low-

yield liquid assets. It is by influencing this trade-off that monetary policy affects the supply of

credit and gives rise to a credit channel. In support of this transmission channel, we document

a strong empirical relationship between measures of disturbances in the interbank market and

liquidity premia. We put this framework to work in two quantitative applications that showcase

the importance of examining the transmission of monetary policy through the banking system.

In the theory, banks are competitive. Their portfolio is composed of deposits, loans, gov-

ernment bonds, and reserves. When a bank grants a loan and simultaneously issues deposits,

it gains intermediation profits. However, deposits circulate in an unpredictable way, and thus

banks face deposit withdrawal shocks. When a deposit is transferred out of a bank, another

bank absorbs that liability. As occurs in practice, that transfer is settled with reserves.2 If a

1For a textbook treatment of the NK model, see Woodford (2004) or Gaĺı (2015). New Monetarist models are
surveyed in Williamson and Wright (2010), and Lagos, Rocheteau, and Wright (2017).

2The Federal Reserve Wire Network (Fedwire) is the real-time gross settlement (RTGS) funds transfer system
that electronically settles funds between any of the United States banks registered in the Federal Reserve System,
totalling approximately 10,000 banks. The amount of funds transferred daily is approximately USD 3.30 trillion.
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deposit withdrawal is too large, the bank will end short of reserves. The bank can sell bonds

in exchange for reserves, but this may not be enough. At that point, the bank must incur in

expensive borrowing of reserves, either from the discount window at a penalty rate, or from the

interbank market.The interbank market is over the counter (OTC). The probability of finding a

counterpart in the interbank market depends on the scarcity of reserves: when few banks have

reserve surpluses, the interbank market rate is high—and hence a shortage is expensive. Thus,

the efficiency and tightness of the interbank market affect the degree of liquidity risk. By holding

a large buffer of liquid assets composed of bonds and reserves, a bank reduces its exposure to

liquidity risk, at the expense of intermediation profits. Tilting this trade-off, monetary policy

affects the supply of bank credit by affecting liquidity premia.

From a methodological standpoint, a contribution of the paper is to integrate an OTC inter-

bank market into a dynamic general equilibrium model of the banking system. The interbank

market here is modeled after Afonso and Lagos (2015), who study the Federal funds market in a

repeated OTC setting and deliver predictions for the intraday volume of interbank market loans

and the distribution of interbank rates. That model takes the distribution of reserve balances as

a primitive. Here, the distribution of balances is endogenous, as it results from banks’ optimally

chosen portfolios, which are in turn influenced by monetary policy. We furthermore show how to

encode the effects of the liquidity frictions into a single object: a liquidity yield function. Despite

the non-linear nature of the liquidity yield function, the bank’s problem features aggregation,

and thus the economy features a representative bank. Being analytically tractable, this makes

the analysis transparent and amenable to various applications, both theoretical and quantitative.

The analysis of the transmission of monetary policy through the banking system reveals

several insights. In contrast to models in which the demand for reserves is exogenously determined

by reserve requirements, monetary policy here affects the risk-return trade-off between holding

reserves and loans. The central bank alters this trade-off through open market operations, both

conventional and unconventional, and by setting the rate of interest on reserves and discount

window. We show that although the composition between bonds and reserves is indeterminate for

an individual bank, the composition matters at the macro level. This result has two implications.

First, it implies that the total holdings of liquid assets, and not only the holdings of reserves,

is the correct measure of the precautionary liquidity demand. Second, a policy that swaps

government bonds for reserves has aggregate effects by altering the interbank market tightness

and the liquidity premium. Moreover, by absorbing illiquid assets into the central bank’s balance

sheet, unconventional open market operations have even more potent effects. At the limit, when

the interbank bank market shuts down entirely, only unconventional open market operations

remain effective.

A central insight of the paper is to show how the implementation of monetary policy matters

for macroeconomic outcomes. We first study how the pass-through from the interest on reserves
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to credit is potentially non-monotone and depends critically on the interaction with capital

requirements. When the interest on reserves is low, deposits are in effect more costly and capital

requirements do not bind. As the interest on reserves increases, banks expand deposits, reserves,

and potentially credit. Once capital requirements bind, further increases in the interest on

reserves necessarily contract lending. The analysis reveals that reserves can be complements

to or substitutes for bank lending, depending on whether capital requirement constraints bind.

We then study how the interest on reserves and the size of the central bank’s balance sheet

are independent instruments, and we show how different configurations that achieve the same

interbank market rate target affect the level of credit and the pass-through. In particular,

configurations with a larger balance sheet induce a larger supply of credit, as well as a higher

pass-through from the interbank market rate to the loan rate.

A final contribution is to employ the framework to quantitatively examine the credit crunch

during the US financial crisis. In particular, we examine the role of aggravated liquidity condi-

tions, as evidenced by the severe collapse in the interbank market and the increase in discount

window borrowing. We devise a procedure to reverse engineer the shocks that are required to

match the data, and then feed the model with alternative shock sequences to produce coun-

terfactuals. We find that disruptions to the matching efficiency of the interbank market and

to the volatility of funding played a substantial role around the time of the Lehman Brothers

bankruptcy. By 2010, loan demand becomes the dominant factor. Turning to the role of pol-

icy, we study the contribution of conventional and unconventional open market operations to

mitigating the credit crunch. We find that conventional operations had a negligible effect, while

unconventional ones had a sizable impact. In line with the theoretical insights highlighted above,

the quantitative analysis suggests that the move toward unconventional open market operations

during the crisis was critical for the attenuation of the credit crunch.

Related Literature. Our paper relates to several branches of the literature in monetary

economics, banking, and macroeconomics. One branch studies monetary policy implementation

through banks’ reserve management in partial equilibrium. Seminal papers in this area are

Poole (1968) and Frost (1971), and many applications are found in Bindseil (2014). Building

on these works, several influential studies have analyzed recent proposed changes in monetary

policy frameworks (Ennis and Weinberg, 2007; Keister, Martin, and McAndrews, 2008; Keister

and McAndrews, 2009; Ennis and Keister, 2008; Martin et al., 2013; Bech and Keister, 2017).

There are two important differences in our approach. First, the interbank market here is OTC,

enabling us to study disruptions the interbank market that cannot be analyzed in a Walrasian

setup. Second, we embed the interbank market into a general equilibrium model. This feature

allows us to analyze credit, prices, and interest rates in a unified framework.

The paper also builds on the banking literature. Important examples include Diamond (1984);
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Diamond and Dybvig (1983); Boyd and Prescott (1986); Allen and Gale (1998); Holmstrom and

Tirole (1998); and Gu et al. (2013). With some exceptions, for the most part, these theories have

evolved separately from macroeconomics. Gertler and Karadi (2011) and Curdia and Woodford

(2009) incorporate a banking sector into quantitative monetary models. Following these models, a

growing literature now studies how shocks to bank equity or leverage constraints disrupt financial

intermediation.3 A distinct approach is taken by Corbae and D’Erasmo (2013, 2018), who provide

a model with heterogenous banks and analyze the role of bank concentration and how it interacts

with capital requirements. The present paper emphasizes interbank market frictions and the

transmission of monetary policy through the liquidity premium.

The OTC nature of the interbank market builds on monetary search theory. Seminal con-

tributions in this literature are Kiyotaki and Wright (1989) and Lagos and Wright (2005). The

interbank market here is a version of the OTC model developed by Afonso and Lagos (2015).4

Related studies also include Freeman (1996) and Smith (2002), who study environments where

inside money is used as a medium of exchange, as a result of spatial frictions. Williamson (2012)

studies an environment in which assets of different maturity have different properties as medi-

ums of exchange. Relative to this earlier work, we have little to say about the foundations that

bring about a banking architecture. Here, the focus is on the effects of trading frictions in the

interbank market and the transmission of monetary policy through the credit channel.

Finally, following the framework developed in this paper, several recent studies have analyzed

the link between liquidity management and monetary policy, focusing on the effects on asset prices

(Piazzesi and Schneider, 2018), collateral values (De Fiore, Hoerova, and Uhlig 2018), shadow

banking (Chen, Ren, and Zha 2017), nominal rigidities (Arce, Nuño, Thaler, and Thomas 2019;

Piazzesi, Rogers, and Schneider 2019), insurance and productive efficiency (Bigio and Sannikov,

2019), and exchange rates (Bianchi, Bigio, and Engel 2019).

Outline. The paper is organized as follows. Section 2 presents the model, and Section 3

provides theoretical results. Section 4 presents evidence on the correlation between interbank-

market spreads and the liquidity premium. Section 5 presents the calibration of the model and

the applications. Section 6 concludes. All proofs are in the appendix.

3Gertler and Kiyotaki (2010) and Gertler, Kiyotaki, and Prestipino (2016) present benchmark models and
references to many other papers in the literature. This literature also builds to a large extent on a broader
literature on financial frictions in firms and how they affect macroeconomic fluctuations. Notable examples include
Bernanke and Gertler (1989) and Kiyotaki and Moore (1997)—and the literature’s related microfoundations in
Townsend (1979) and Williamson (1987).

4See Weill (2020) for a survey of the recent OTC literature and Rocheteau and Nosal (2017) for a textbook
on monetary search theory.
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2 The Model

We present a dynamic general equilibrium model of the banking system featuring an OTC inter-

bank market and analyze the transmission of monetary policy. The presentation of the model

begins with the liquidity management problem of an individual bank, followed by the descrip-

tion of the interbank market. We then introduce the non-financial block of the model, describing

households and firms, and analyze the policies of the central bank, which we refer to as the Fed.

After characterizing the problems of all agents, we define the general equilibrium.

2.1 Banks: Preferences and Budgets

Preferences. There is a unit-mass continuum of heterogeneous banks indexed by j and a final

consumption good. Banks’ preferences over a stochastic stream of dividend payments {cjt} are

given by

E0

∑
t≥0

βtu(cjt), (1)

where β < 1 is the time discount factor, and u (c) ≡ c1−γ−1
1−γ is the utility function over the

consumption good with γ ≥ 0.5

Timing. Time is discrete, indexed by t, and of infinite horizon. Each period is divided into

two stages: a lending (l) and a balancing (b) stage. At the lending stage, banks make portfolio

decisions. At the balancing stage, banks experience random idiosyncratic withdrawals of deposits.

A deposit withdrawn from one bank is transferred to another bank. That transaction must be

settled with reserves. If banks lack reserves to settle that transaction, they can sell government

bonds, borrow reserves from other banks, or borrow reserves at a penalty rate from the Fed.

We describe next the two stages—a summary of the timeline of events is found in Figure 8 in

Appendix B.

Lending stage. Banks enter the lending stage with a portfolio of assets/liabilities and col-

lect/make associated interest payments. Among assets, banks hold loans, bt, and liquid assets

in the form of reserves, mt, or government bonds, gt. On the liability side, banks issue demand

deposits, dt, discount window loans, wt, and net interbank loans, ft (if the bank has borrowed

funds, ft is positive, and vice versa). All assets are nominal (denominated in units of reserves).6

Reserves are the numeraire and Pt is the price level.

5 Concave preferences generate slow-moving bank equity, as observed in practice. A rationale for endowing
banks with preferences is undiversified ownership or frictions that limit equity funding.

6Absent aggregate shocks, having assets denominated in units of reserves or denominated in units of consump-
tion are equivalent.
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During the lending stage, banks choose real dividends, ct, and a portfolio. The portfolio

is a choice {b̃jt+1, m̃
j
t+1, g̃

j
t+1, d̃

j
t+1}, which corresponds to holdings of loans, reserves, government

bonds, and deposits, respectively. We use x̃t+1 to denote a portfolio variable chosen in the

lending stage and xt+1 to denote the end-of-period portfolio variable in the balancing stage (and

the beginning-of-period portfolio variable for t+1). Aggregate holdings are denoted in uppercase

letters, for example, Bt+1 ≡
�
j
bjt+1dj. The bank’s budget constraint in the lending stage is

Ptc
j
t + b̃jt+1 + m̃j

t+1 − d̃jt+1 + g̃jt+1 =

(1 + ibt)b
j
t + (1 + imt )mj

t + (1 + igt )g
j
t − (1 + idt )d

j
t − (1 + i

f

t )f
j

t − (1 + iwt )wjt − PtT jt , (2)

where ibt , i
g
t and idt , denote the nominal returns on loans, government bonds, and deposits,

respectively. The policy rates imt and iwt are interest on reserves and discount window loans

set by the Fed. These rates must satisfy iwt ≥ imt ; otherwise, there is a pure arbitrage to the

detriment of the Fed. Outstanding interbank market loans earn i
f

t , which we label the fed funds

rate. The fed funds rate is the average rate at which banks borrow in the interbank market, a

market described below. All rates indexed with t are accrued between period t − 1 and t. The

term T jt are taxes proportional to bank equity.

Banks are subject to a capital requirement constraint

d̃jt+1 ≤ κ
(
b̃jt+1 + g̃jt+1 + m̃j

t+1 − d̃jt+1

)
. (3)

The upper bound κ on leverage can be motivated by regulation or agency frictions.

The problem of the bank in the lending stage is to choose the portfolio and dividend payments,

subject to the budget constraint (2) and the capital requirement (3).

Balancing stage. Banks enter the balancing stage with {b̃jt+1, m̃
j
t+1, g̃

j
t+1, d̃

j
t+1}. At the start of

the balancing stage, banks experience an idiosyncratic withdrawal shock ωjt . The shock induces

a random inflow/withdrawal of deposits ωjt d̃
j
t+1. Given this shock, the end-of-balancing-stage

deposits, djt+1, are

djt+1 = d̃jt+1(1 + ωjt ). (4)

When ωjt is positive, the bank receives (net) deposits from other banks. When ω is negative, the

bank loses deposits. The ω shock has a cumulative distribution Φ (·) common to all banks. The

support of Φ is [ωmin,∞), where ωmin ≥ −1 and
�∞
ωmin

ωtΦt (ω) = 0, ∀t. This distribution implies

that deposits are reshuffled but preserved within banks.

The randomness of ω captures the unpredictability and complexity of the payment system.

The circulation of deposits is a fundamental feature of the payments system, because it enables

banks to facilitate transactions between third parties: When a bank issues a loan, a borrower is
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credited with deposits. As the borrower makes payments to third parties, deposits are transferred

to other banks. The outflow of a deposit from one bank is an inflow to another. Because the

receptor bank absorbs a liability, an asset also must be transferred to settle the transaction. As

it occurs in practice, reserve balances at the Fed are the settlement instrument.7 We adopt the

convention that the bank that issues deposits pays for the interest on those deposits, and thus

a transfer of one unit of deposits is settled with
(
1 + idt+1

)
/
(
1 + imt+1

)
reserves. This guarantees

that the bank that receives the deposit is compensated for the interest on the absorbed deposits.

By the end of the balancing stage, banks must maintain a minimum reserve balance,

mj
t+1 ≥ ρdjt+1, ρ ∈ [0, 1] (5)

If a bank receives a large withdrawal, it must raise reserves to be able to satisfy (5).8 While loans

are assumed to be illiquid, banks can exchange government bonds for reserves in a Walrasian

market at the beginning of the balancing stage.9 After trade takes place in that market, if

banks are still in deficit, they borrow reserves in an OTC interbank market or from the discount

window.10 By the opening of the interbank market, the surplus (or deficit) of reserves is:

sjt ≡
(
m̃j
t+1 +

(
1 + idt+1

1 + imt+1

)
ωjt d̃

j
t+1

)
︸ ︷︷ ︸

reserve balance after ω shock

− ρd̃jt+1(1 + ωjt )︸ ︷︷ ︸
required reserves after ω shock

+ (g̃jt+1 − gjt+1)︸ ︷︷ ︸
sales of gov. bonds

(6)

The excess balance of reserves at the Fed, (6), is determined by the portfolio chosen in the lending

stage, the withdrawal shock ωjt , and the trading of government bonds . The first term is the

end-of period reserve position brought from the lending stage plus/minus the reserves transferred

after the withdrawal. The second term is the required reserves. The third term is the change in

reserves accounted for by the trade in government bonds.11 The reserves with which the bank

ends the period are given by the reserves left after the withdrawal shocks, the sales of government

7We do not explicitly model why reserves are used as the settlement instrument . For possible microfoundations,
we refer the reader to Cavalcanti, Erosa, and Temzelides (1999) or Lester, Postlewaite, and Wright (2012).

8A requirement that reserves have to be positive is non-essential. What matters is that there is a lower bound.
An alternative regulation, a liquidity coverage ratio, imposes a minimum amount of liquid assets relative to illiquid
assets.

9An earlier version of the paper considered a framework with a single liquid asset. That framework is nested
in the current one if we set the supply of government bonds to zero, or if we assume that government bonds
can also be used for settlements and pay the same return as reserves. In the latter, a conventional open market
operation would be irrelevant as in Wallace (1981).

10The lack of a liquid market for loans during the balancing stage can be explained by informational frictions.
Reserves are instead special assets issued by the central bank and are fully liquid. The market for government
bonds is assumed to be Walrasian because it is a market for a homogeneous asset and easy to enforce. The
OTC nature of the interbank market is the empirically relevant assumption, as advocated by Ashcraft and Duffie
(2007), and in line with the bilateral and unsecured nature of the transaction. We take these features as given
and do not provide explicit microfoundations.

11Implicit in the accounting is a result that shows that the price of government bonds must equal unity in the
balancing stage in equilibrium.
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bonds, and the loans obtained in the interbank market and from the discount window.

mj
t+1 = m̃j

t+1 +

(
1 + idt+1

1 + imt+1

)
ωjt d̃

j
t+1 + (g̃jt+1 − gjt+1) + f jt+1 + wjt+1. (7)

The rate at which banks trade in the interbank market will be key to determine banks’ portfolios

in the lending stage. Below, we analyze how the rate and the volume in the interbank market

are determined.

Interbank market. Withdrawal shocks generate a distribution of reserve surpluses and deficits

across banks. When the interbank market opens, banks with a surplus want to lend, and banks

with deficit want to borrow. Because of the matching frictions, banks on either side of the market

may be unable to lend/borrow all of their balances. If a bank in deficit cannot obtain enough

funds in the interbank market, it must borrow the remainder from the discount window. If a

bank in surplus is unable to lend all of its surplus, it deposits the balance at the Fed and earns

the interest on reserves.12 In equilibrium, because interbank rates lie between the interest rates

on reserves and discount loans, banks will seek to trade in the interbank market before trading

with the Fed. All loans are repaid by the next lending stage.

The interbank market is an OTC search market. We follow closely the basic formulation in

Afonso and Lagos (2015) but make some departures that render analytic solutions and allows us

to embed this friction into the dynamic model. A complete description of the interbank market

is intensive in notation, so here we provide only a brief description. Details can be found in the

companion paper (Bianchi and Bigio, 2017).

The interbank market operates sequentially. At the beginning of the trading session, each

bank gives an order to a continuum of traders. If sjt > 0 (sjt < 0), the bank gives an order to

lend (borrow). Each trader must close an infinitesimal position, as in Atkeson, Eisfeldt, and

Weill (2015). This “large family” assumption simplifies the solution of the bargaining problem

by making the marginal value of the interbank loan depend only on the sign of the balance, and

not on the scale. Absent this assumption, it becomes necessary to keep track of the identity of

matching banks in their bargaining problems. The resulting combinatorial problem of determin-

ing the distribution of matches is intractable. Our approach, which combines Afonso and Lagos

(2015) and Atkeson et al. (2015) allows us to obtain analytic expressions for all of the objects.

There are N trading rounds. The probability of a match at a given round depends on the

aggregate amount of surplus and deficit positions that remain open at each round. We consider

a Leontief matching function with efficiency parameter λ. When traders meet, they bargain over

12Notice that we assume that the interest on required reserves is equal to the interest on excess reserves. It is
possible, however, to allow for different rates. For the applications, we will set ρ = 0, and as a result, only the
interest on excess reserves will be the relevant one.
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the rate and split the surplus according to Nash bargaining. Key for the determination of the

interbank market rate at any given round, are the rates and probabilities of finding a match

in future rounds. Let us define the interbank market tightness at the opening of the interbank

market as

θt ≡ S−t /S
+
t

where S+
t ≡

� 1

0
max

{
sjt , 0

}
dj and S−t ≡ −

� 1

0
min

{
sjt , 0

}
dj denote the aggregate surplus and

deficit, respectively.13 The following proposition characterizes the split between interbank market

and discount window loans, {f j, wj}, as a function of θ as we take the limit of N rounds to infinity

(while keeping the overall number of matches at a given balancing stage constant):

Proposition 1. Given θ, the amount of interbank market loans and discount window loans for

a bank of surplus sjt is

(f jt+1, w
j
t+1) =

−s
j
t · (Ψ−t (θ), 1−Ψ−t (θ)) for sjt < 0

−sjt · (Ψ+
t (θ), 0) for sjt ≥ 0

, (8)

and the average interbank market rate is i
f

t (θ) = imt + (1− φt(θ))(iwt − imt ). Analytic expressions

for {Ψ+
t (θ),Ψ−t (θ), φt(θ)} are found in Appendix A.

A bank short of reserves (sjt < 0) patches a fraction Ψ−t of its deficit with interbank loans and

the remaining 1−Ψ−t with a discount window loan from the Fed. Similarly, a bank with surplus

lends a fraction Ψ+
t in the interbank market and keeps the remaining balance, 1 − Ψ+

t , at the

Fed. These fractions are endogenous objects that depend on market tightness. If many banks

are in deficit (surplus), the probability that a deficit bank finds a match is low (high). Market

clearing in the interbank market requires Ψ+
t (θt)S

+
t = −Ψ−t (θt)S

−
t . We say that the interbank

market is active if Ψ+
t (θt)S

+
t > 0 and inactive otherwise.

Proposition 1 also characterizes the mean interbank market, i
f

t (θ), as a function of the market

tightness. The fed funds rate is a weighted average of the corridor rates imt and iwt . The weight,

given by φt(θ), is an endogenous bargaining power, as in Afonso and Lagos (2015). If many

banks are in deficit, the fed funds rate is closer to iw, because this lowers the outside option and

the bargaining power of banks in deficit. Conversely, the fed funds rate is closer to im if more

banks are in surplus.14

13Notice that market tightness vary within the balancing stage, as trading rounds are carried out.
14The interbank market rate has actually traded below the interest on reserves for a large part of the post-

crisis period. This suggests a violation of arbitrage: a depository institution, in principle, could borrow in the
interbank market and lend to the Fed at a higher rate. An explanation for this pattern is related to the presence of
non-depositosry institutions and costs from leverage and deposit insurance premiums (Williamson, 2019; Martin
et al., 2013; Armenter and Lester, 2017). To keep the model parsimonious, we abstract from these issues for now,
but we address this in Section 5.3 when we turn to calibrate the model.

9



As shown in Appendix A, the functional forms for φ(θt) and {Ψ−(θt),Ψ
+(θt)}, which deter-

mine the volume and the fed funds rate, depend on two structural parameters: the matching

efficiency λ and the bargaining power, η. In particular, for given θ, a higher efficiency leads to

higher fractions of matches {Ψ−,Ψ+} , and a higher η increases the effective bargaining power of

banks in deficit, lowering the fed funds rate.

A single function, which we call liquidity yield function, encodes all the activity in the inter-

bank market and simplifies the recursive bank problem.

Definition 1. The liquidity yield function is

χt(s) =

{
χ+
t s if s ≥ 0,

χ−t s if s < 0,
(9)

where χ−t = Ψ−t (i
f

t − imt ) +
(
1−Ψ−t

)
(iwt − imt ) , and χ+

t = Ψ+
t

(
i
f

t − imt
)
.

Here, χt represents the yield earned on a reserve surplus (when s ≥ 0) and paid on a reserve

deficit (when s < 0). The kink on χ generates a positive wedge between the marginal cost of

reserve deficits and the marginal benefit of surpluses. Notice that a bank that borrows from the

interbank market or from the discount window can hold reserves at the Fed and earn an interest.

As a result, the net cost of borrowing will be given by the difference between the borrowing rate

and the interest on reserves, as reflected in the formula for χ−. Leveraging on Proposition 1, the

liquidity yield function admits a closed-form solution, which allows us to conveniently embed it

in the dynamic recursive problem of the bank.

It is useful to define the following real returns. We let Rx
t ≡

(
1 + ixt+1

)
/ (1 + πt+1) be the

gross returns on asset x ∈ {w,m, g, b, d} and let 1 + πt+1 ≡ Pt+1/Pt be the gross inflation

rate. We also define the liquidity cost function in real terms as a function of the portfolio as

χ̄t+1(m̃, g̃,d̃, ω) ≡ χt+1(st)/ (1 + πt+1).

2.2 Non-Financial Sector and General Equilibrium

The non-financial block is presented in detail in Appendix C. This block is composed of house-

holds that supply labor and save in deposits, currency, and government bonds. Firms produce

the final consumption good using labor and are subject to a working capital constraints. This

block delivers endogenous demand schedules for working capital loans, and households’ holdings

of deposits, government bonds, and currency. These household schedules emerge from asset-

in-advance constraints, as in Lucas and Stokey (1983). We purposefully work with quasi-linear

preferences, as in Lagos and Wright (2005), so that these schedules are not forward-looking.

The schedules asset-demand system for the non-financial block are derived in Appendix and

summarized by the proposition below:
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Proposition 2. Given the non-financial sector block presented in Appendix C, we have that:(i)

The firm loan demand is
Bft+1

Pt
= Θb

t

(
Rb
t+1

)εb
and output is yt+1 = Θy

t

(
Rb
t+1

)εy
; (ii) Households

deposits and government bond holdings are given by

Xh
t+1

Pt
=


Θ
(
Rx
t+1

)εx
if Rx

t+1 ≤ 1/βh,

¯[Xt,∞) if Rx
t+1 = 1/βh

∞ otherwise.

for x ∈ {d, g} ,

(iii) Households currency demand is

Mh
t+1

Pt
=


Θm
t

(
(1 + πt+1)−1)εx if (1 + πt+1)−1 ≤ 1/βh,

[M̄t,∞) if (1 + πt+1)−1 = 1/βh,

∞ otherwise.

The term βh is the household’s discount factor. The household demand schedules are iso-

elastic up to some the point where quantities reach scale parameters, X̄t for x ∈ {m, d, g} ,
which correspond to asset-satiation points. The parameters εx are elasticity coefficients, and Θx

t

scale coefficients, which depend on structural parameters regarding technology and households’

preferences (see Table 4 in Appendix C for the conversion from the structural to the reduced

form parameters).

A convenient property of the model is that once we solve for the equilibrium real rates,

equating the asset supply and demand scheduled derived from banks and the reduced form

schedules obtained from non-financial sector, we can obtain the equilibrium output, employment,

and consumption of different goods. It is therefore by affecting the lending rate that monetary

policy affects output and employment in the model. For the rest of the paper, we do not make

further references to non-financial block and work directly with the iso-elastic portion of these

schedules—there always exists a βh that guarantees that this is the case.

2.3 Monetary and Fiscal Authority

The Fed’s policy tools are the discount window rate, the interest on reserves and open market

operations (conventional and unconventional). M̃Fed and MFed denote the money supply issued

by the Fed during the lending and balancing stages, respectively. On the asset side, the Fed holds

discount window loans, W Fed, private loans, BFed, and government bonds, GFed. Government

bonds are issued by the fiscal authority, which we denote by GFA. The supply of Fed liabilities

can be held as currency by households or as bank reserves—MFed = M +Mh.

Here, we present the consolidated government budget constraint. Appendix D.1 presents the

11



corresponding constraints of the Fed and the fiscal authority. Consolidating the revenues/expenses

of the Fed and the fiscal authority, we have that

(1 + imt )Mt +Mh
t +BFed

t+1 −
(
GFA
t+1 −GFed

t+1

)
+W Fed

t+1 =

MFed
t+1 + (1 + ibt)B

Fed
t − (1 + igt )

(
GFA
t −GFed

t

)
+ (1 + iwt )W Fed

t + Pt(Tt + T ht ). (10)

The equation captures that the consolidated government generates operating profits/losses by

paying interest on government bonds (net of Fed holdings), reserves (but not on currency) and

collecting interest on discount window loans and private sector loans. Given these net revenues

and the evolution of its balance sheet, the government sets taxes on households and banks to

balance the budget constraint.

We adopt the following protocol for taxes on banks:

Tt = (imt − πt)
Mt

Pt
+ (igt − πt)

Gt

Pt
−
(
ibt − πt

) BFed
t

Pt
− (iwt − imt )

Wt

Pt
. (11)

That is, the Fed taxes banks to finance the real interest on their holdings of reserves and govern-

ment bonds and rebates the real interest income on its loans holdings and its operating revenues

from discount window. With this tax protocol, as we will see, the law of motion for aggregate

bank equity will depend exclusively on total loans and deposits, and their rates of return, allow-

ing us to isolate the credit channel. To balance the budget, taxes on households T ht are set as a

residual, in the spirit of passive fiscal policy.

2.4 Competitive Equilibrium

We adopt the convention of denoting aggregate bank variables by their corresponding capital

letter—e.g. the aggregate holdings of loans is denoted by Bt =
�
bjtdj. The competitive equilib-

rium is defined as follows:15

Definition 2. Given a distribution {dj0,mj
0, b

j
0, g

j
0, f

j
0 , w

j
0} and a deterministic sequence of gov-

ernment policies
{
GFed
t , GFA

t , BFed
t ,MFed

t ,W Fed
t , Tt, T

h
t , i

m
t , i

w
t , i

g
t

}
t≥0

, a competitive equilib-

rium is a deterministic path for aggregates
{
Dt+1, Bt+1,Wt+1,Mt+1, Gt+1, G

h
t+1, D

h
t+1M

h
t+1

}
, a

stochastic sequence of bank policies
{
g̃jt+1, m̃

j
t+1, d̃

j
t+1, b

j
t+1, c

j
t , f

j
t+1, w

j
t+1,m

j
t+1

}
t≥0

, a determinis-

tic sequence of interest rates
{
ibt , i

d
t , i

f

t

}
t≥0

, a deterministic sequence for the price level {Pt}, and

a deterministic sequence of matching probabilities {Ψ+
t ,Ψ

−
t }, such that

15As noted earlier, we do not make reference to the household sector only indirectly through the demand
for loans and supply of deposits. Appendix C covers the equilibrium conditions that follow from firms’ and
households’ problems, which in equilibrium give rise to the loan demand and deposit supply schedules. The
mathematical representation of the market clearing conditions is presented in full detail in Appendix B, together
with a summary of the equilibrium conditions of the model.
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(i) bank policies solve the banks’ optimization problems, and {f jt+1, w
j
t+1}t≥0 are given by

Proposition 1;

(ii) the government’s budget constraint (10) is satisfied and the tax on banks follow (11);

(iii) households and firms are on their supply/demand schedules, as given by Proposition 2;

(iv) markets for deposits, loans and government assets (M and G) clear ∀t ≥ 0;

(v) the matching probabilities
{

Ψ+
t ,Ψ

−
t

}
t≥0

and the fed funds rate i
f

t are consistent with the

surplus and deficit masses S−t and S+
t , as given by Proposition 1.

We refer to a competitive equilibrium where the value of all nominal assets and the price level

Pt grow at a constant rate as a stationary equilibrium. A steady-state equilibrium is a stationary

competitive equilibrium in which the growth rate is zero.

3 Theoretical Analysis

Next, we proceed with the analysis. We first show that the bank’s portfolio problem aggregates

and can be reduced to two choices: leverage and liquidity. We then provide an aggregation result

and study the monetary-policy transmission.

3.1 Recursive Bank Problems

Denote by V l
t and V b

t the bank value functions during the lending and balancing stages, respec-

tively. To keep track of aggregate states, which follow a deterministic path, we index the policy

and value functions by t. To ease notation, we omit the individual superscript j and suppress

the time subscripts inside the Bellman equations.

At the beginning of each lending stage, the individual states are {g, b,m, d, f, w}. Choices

in the lending stage are consumption, c, and portfolio variables {b̃, g̃, m̃, d̃}. These portfolio

variables together with the idiosyncratic shock, ω become the initial states in the balancing stage.

The continuation value is the expected value of the balancing stage V b
t under the probability

distribution of ω. We have the following bank problem in the lending stage

Problem 1 (Lending-Stage Bank Problem).

V l
t (g, b,m, d, f, w) = max

{c,b̃,d̃,m̃,g̃}≥0

u (c) + E
[
V b
t (g̃, b̃, m̃, d̃, ω)

]
(12)

subject to budget constraint (2) and capital requirement (3).
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In turn, the balancing-stage problem is

Problem 2 (Balancing Stage Bank Problem).

V b
t (g̃, b̃, m̃, d̃, ω) = max

g′≥0
βV l

t (g′, b′,m′, d′, f ′, w′) (13)

b′ = b̃ (Evolution of Loans)

d′ = d̃+ ωd̃ (Evolution of Deposits)

m′ = m̃+

(
1 + idt+1

1 + imt+1

)
ωd̃+ f ′ + w′ + g̃ − g′ (Evolution of Reserves)

s = m̃+

(
1 + idt+1

1 + imt+1

)
ωd̃− (1 + ω) ρd̃+ (g̃ − g′) (Reserve surplus)

(f ′, w′) =

−s(Ψ−t , 1−Ψ−t ) for s < 0

−s(Ψ+
t , 0) for s ≥ 0.

(Interbank Market Transactions)

In Problem 2, the bank chooses its purchase (sales) of government bonds after the withdrawal

shock, which in turn induces the balance position at the interbank market, s. In equilibrium,

we can show that as long as the supply of government bonds held by banks in deficit does not

exceed the surplus of reserves by banks in surplus, banks in deficit will sell their entire holdings

of government bonds to banks in surplus. When this is the case, an interbank market remains

active, as S+ > 0 and S− > 0. Because the government bond market is Walrasian, this implies

that in equilibrium Rg = Rm + χ+. If the return on government bonds were higher, banks in

surplus would bid up the price until the return falls. If the return on government bonds were

lower, banks would rather preserve their reserves and lend it in the interbank market rather than

purchase government bonds. For the rest of the paper, we consider only this case, but develop

results in greater generality in the appendix.16

Toward a characterization, let us define a bank’s real equity as

et ≡
(1 + imt )mt +

(
1 + ibt

)
bt −

(
1 + idt

)
dt + (1 + igt ) gt − (1 + i

f

t )ft − (1 + iwt )wt

Pt
(1− τt), (14)

where τ is a linear tax on bank equity tax rate (i.e., T j = τ · ejt). Next, we present a characteri-

zation of the bank’s problem.

Proposition 3 (Homogeneity and Portfolio Separation). The bank’s problem has the following

features:

16In Appendix E , we also examine the case in which the initial amount of reserve surplus is not enough to
purchase the bonds of banks in deficit. In that case, case banks in deficit do not sell their entire stock of bonds.
Specific conditions for either case in terms of initial asset holdings are presented in the appendix.
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(i) Problems 1 and 2 can be, combined into a single Bellman equation with equity as the

only individual state variable, and the holdings of government bonds and reserves can be

consolidated into a single liquid asset ã ≡ m̃+ g̃,

Vt(e) = max
{c,ã,b̃,d̃}≥0,d̃∈[0,κ]

u(c) + βE [Vt+1(e′)] , subject to (15)

ã

Pt
+

b̃

Pt
− d̃

Pt
+ c = e

e′ =

[
Rb
t+1

b̃

Pt
+Rm

t+1

ã

Pt
−Rd

t+1

d̃

Pt
+ χ̄t+1

(
ã

Pt
,
d̃

Pt
, ω

)]
(1− τt+1). (16)

(ii) The optimal portfolio in (15) is given by the solution to

᾿Ω ≡ (1− τt) max
{b̄,ā,d̄}≥0

{
E
[
Rb
t+1b̄+ Rm

t+1ā− Rd
t+1d̄+ χ̄t+1(ā, d̄, ω)

]1−γ} 1
1−γ

, (17)

b̄+ ā− d̄ = 1, and d̄ ≤ κ.

(iii) The optimal bank dividend–equity ratio c̄ ≡ c/e is

c̄t =
1

1 + [β(1− γ)vt+1Ωt
1−γ]1/γ

where vt =
1

1− γ
[
1 +

(
β(1− γ)1−γΩ1−γ

t vt+1

) 1
γ

]γ
, (18)

and the value of (15) is Vt(e) = vt (e)1−γ − 1/(1− β)(1− γ).

(iv) Policy functions x̃ ∈ {b̃, ã, d̃} from (15) can be recovered from the optimal portfolio weights

x̃ ∈
{
b̄, ā, d̄

}
obtained in (17) and consumption decisions {c̄} obtained in (18) via the

relationship x̃t+1(et) = x̄t(1− c̄t)Ptet. The individual holdings {m̃t+1, g̃t+1} satisfy m̃t+1 +

g̃t+1 = ãt+1.

There are four elements in Proposition 3. Item (i) shows that we can synthesize the value

functions in (12) and (13) into a single Bellman equation with real equity as a single state. The

liquidity yield function, χ, shows in this Bellman equation summarizing parsimoniously all the

trades in the interbank market. Equation (15) is, in effect, a portfolio savings problem with a

leverage constraint: the bank starts with equity, e, which is distributed between dividends or

portfolio investments. Investments can be allocated into loans, b̃, and liquid assets, ã—the sum of

reserves and government bonds is determined, but not the individual composition. The bank can

lever by issuing deposits d̃. The continuation value of the bank depends on next period equity e′,

which in turn depends on the portfolio return. The proposition establishes that although there is

a distribution of bank equity, all banks are replicas of a representative bank: item (ii) indicates

that banks choose the same portfolio weights, which solves an auxiliary problem; item (iii) shows
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that all banks feature the same dividend rate; item (iv) shows that banks’ portfolio investments

are linear in equity.

We highlight two key takeaways. First, the model aggregates. While aggregation is known

to hold under linear budget constraints and homothetic preferences, a contribution here is to

show that aggregation also holds despite a kink in the return function. This showcases how to

integrate search frictions into a standard dynamic model with a representative agent.

As shown in Appendix D.2, this aggregation result allows us to express the real aggregate

equity law of motion as

Et+1 =
(
1 +

(
Rb
t+1 − 1

) (
b̄t + b̄Fedt

)
−
(
Rd
t+1 − 1

)
d̄t
)
Et(1− c̄t), (19)

where b̄Fedt ≡ BFed
t+1 / (Pt · (1− c̄t)Et) . This equation says that next-period aggregate equity is

given by the current aggregate equity net of dividend payments times the aggregate return. The

aggregate return simply depends on the portfolio weights on loans and deposits chosen by the

representative bank and their respective returns. Implicit in this result is that (i) the returns on

interbank market loans cancel out on aggregate; (ii) operating Fed profits that originate from

the discount window or holding loans, and interest on government bonds are compensated by

taxes.

The second takeaway from Proposition 3 is that at the individual level, the composition

between reserves and government bonds is indeterminate. Key to this result is that there is a

Walrasian market between reserves and government bonds that allows banks to freely reverse

any portfolio mix between reserves and government bonds once they face a withdrawal shock.

This is different for loans, which stay with the bank, and therefore the portfolio mix matters.

Despite the fact that banks are individually indifferent regarding the composition of their

liquid assets, the composition of liquid assets matters at the aggregate level because it affects

the interbank market tightness θt. To obtain the equilibrium composition between reserves and

government bonds, we obtain ḡ as the residual of the market clearing condition,

Ptḡt(1− c̄t)Et = GFA
t+1 −GFed

t+1 −Gh
t+1. (20)

The weight on reserves m̄ is obtained via m̄ = ā− ḡ. A corollary of this result is that the cutoff

for the withdrawal shock that determines whether banks are in deficit or surplus depends on

their ratio of total liquid assets to deposits:

ω∗ ≡ −
(
ā/d̄− ρ

)
/
(
Rd
t+1/R

m
t+1 − ρ

)
. (21)

With this expression, we can solve for market tightness and all the relevant objects in the

interbank-market. As shown in Proposition E.6 given in Appendix E, the interbank market
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tightness can be expressed as

θt =

� ω∗
−1

(
ā+

(
Rdt+1

Rmt+1

)
ωd̄− ρd̄(1 + ω)

)
f (ω) dω

� 1

ω∗

(
ā+

(
Rdt+1

Rmt+1

)
ωd̄− ρd̄(1 + ω)

)
f (ω) dω − ḡ

. (22)

Hence, for fixed liquid asset holdings ā, tightness increases with a greater portion of ḡ. This

result is an important lesson. It tells us that whereas reserves and government bonds are perfect

substitutes at the individual bank level, at a macroeconomic level, the composition of liquid

assets matters.

Discussion on aggregation property. Thanks to this aggregation property, the model pro-

vides a sharp characterization of the bank liquidity management. This renders a transparent

analysis of the transmission of monetary policy. In addition, a notable advantage is that the

model is straightforward to compute, as aggregate equity is the single state, and this makes the

model amenable to different extensions. The model, however, is not designed to address three

important features that emerge in quantitative models with an endogenous size distribution, as

in notable work by Corbae and D’Erasmo (2018). First, the model is not suited to analyze

heterogeneous responses to monetary policy, a feature documented in Kashyap and Stein (2000).

Second, the model is not suitable to study the effects of size-dependent policies such as capital

requirements or changes in policies that give rise to changes in concentration. Third, the model

does not speak to market power and changes in bank concentration. While these are important

aspects, we think there is much to gain from a benchmark banking model that aggregates into

a representative bank while featuring a rich liquidity management problem, in addition to being

modular and easy to compute.

3.2 Liquidity Management and Liquidity Premia

As outlined in Proposition 3 (item ii), a bank’s portfolio problem is to choose portfolio weights

on loans b̄, total liquid assets ā, and deposits d̄ to maximize the certainty equivalent of the bank’s

return on equity:

Re ≡ Rbb̄+ Rmā−Rdd̄+ χ̄(ā, d̄, ω).

Using the first-order conditions, we obtain the following relationship between the returns of all

assets and liabilities.

Proposition 4 (Liquidity Premiums). Let
{
ā, d̄, b̄

}
> 0 be a solution to the problem in item (ii)

of Proposition 3. Then, we obtain the following equilibrium expressions for the liquidity premia
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(LP) on loans, government bonds and deposits:

Rb −Rm = χ̄+ +
(
χ̄− − χ̄+

)
· F (ω∗)︸ ︷︷ ︸

deficit prob

· Eω
[
(Re)−γ |ω < ω∗

]
Eω
[
(Re)−γ

]︸ ︷︷ ︸
risk-aversion correction

(Loan LP)

Rg −Rm = χ̄+ (Gov. Bond LP)

Rd −Rm = (1 + ρ)
(
Rb −Rm

)
+

(
Rd

Rm
− ρ
)

COVω

[
(Re)−γ · χ̄, ω

]
Eω
[
(Re)−γ

]︸ ︷︷ ︸
risk premium

− µ (Deposit LP)

where µ ·
(
κ− d̄

)
= 0. Furthermore, Rw ≥ Rb ≥ Rg ≥ Rm. The inequalities become equalities

only if either θt = 0 or Rw = Rm.

Proposition 4 displays the LP of each asset relative to reserves when the portfolio solution

is interior—when ā > 0.17 Consider the loan LP. Loans command a higher direct return than

reserves, Rb ≥ Rm, because reserves also yield an expected return in the interbank market: if the

bank ends in surplus, a marginal reserve is lent out at an average of χ̄+; in deficit, the marginal

reserve has a additional value of χ− − χ+, the additional borrowing cost. The risk-adjusted

probability of a deficit state is the physical probability F (ω∗) times an appropriate correction

for risk-aversion. The LP of loans is thus the risk-adjusted interbank market return.

The gov. bond LP is also positive but lower than the premium on loans.18 In a deficit state, a

bank that holds a government bond sells it and saves the spread χ−. The bank therefore obtains

Rm + χ− the next period, which is the same as the return in a deficit state. By arbitrage, it

follows that the return on a surplus state must be equalized. In a surplus state, the bank is

indifferent about trading government bonds: the government bond yields Rg, and reserves yield

Rm +χ+. Arbitrage requires Rg = Rm +χ+. This positive premium reflects how payments clear

with reserves but not with government bonds.19

We say that banks are satiated if the loan and bond liquidity premia are zero. The Fed can

induce satiation in two ways: by eliminating the spread in its policy rates, iwt = imt , or supplying

reserves such that all banks end in surplus after any shock, st > 0. In either case, there is no

role for the interbank market and we have īt
f

= imt .

17By convention, we use the expectation operator Eω in this condition excludes the zero-measure point where
∂χ̄
(
m̄, d̄, ω

)
/∂d̄ is not defined, the point ω = ω∗. Since ω = ω∗ has zero measure, we obtain can take first-order

condition by partitioning the bank’s objective into the regions (ω < ω∗) and (ω > ω∗). Within those regions, the
bank’s objective is smooth.

18In a generalization of Proposition 4 in Appendix E, it can occur that Rg < Rm and banks are at a corner
with g̃ = 0.

19The model can be extended to include assets with intermediate liquidity. For example, we can introduce
assets for which only a fraction of their value can be traded at the balancing stage. It is straightforward to show
that the LP of these semi-liquid asset would be a weighted average of the LP of government bonds and the LP of
loans.
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Finally, Proposition 3 displays the deposit LP, which can be of either sign. The deposit LP

has three terms: The first term captures the expected change in the surplus, considering the

reserve requirement—the effect is proportional to the LP of loans because withdrawals are mean

zero, and is therefore positive. The second term is a liquidity-risk premium, which captures that

an increase in deposits raises liquidity risk. The risk premium is present even if banks are risk

neutral because the concavity in χ̄ produces endogenous risk-aversion. The final term, µ, is a

non-negative Lagrange multiplier on the capital requirement constraint.

Role of OTC frictions. The decomposition of the LP of loans, bonds, and deposit clarifies

the fundamental role of OTC frictions for the transmission of monetary policy. As we take the

efficiency parameter λ → ∞, we recover a Walrasian interbank market along the lines of the

Poole (1968) model.20 To understand the differences, Figure 1 presents a comparison for the

coefficients of χt and the fed funds rate as a function of the log inverse of market tightness θ,

for the frictional OTC market (left panel) and the Walrasian limit (right panel). In a Walrasian

market, the costs of deficits equals the benefits of a surplus, χ+
t = χ−t , and thus i

f

t = imt +χ+
t .

Furthermore, in Walrasian market, there are only two relevant regimes: either the banking system

has excess reserves and i
f

t = imt or a deficit of reserves and i
f

t = iwt .

Role of OTC frictions. The decomposition of the LP of loans, bonds, and deposit clarifies

the fundamental role of OTC frictions for the transmission of monetary policy. As we take the

efficiency parameter λ→∞, we recover a Walrasian interbank market along the lines of the Poole

(1968) model.22 To understand the differences, Figure 1 presents a comparison for the coefficients

of χt and the fed funds rate as a function of the tightness θ, for the frictional OTC market (left

panel) and the Walrasian limit (right panel). In a Walrasian market, the costs of deficits equals

the benefits of a surplus, χ+
t = χ−t , and thus i

f

t = imt +χ+
t . Furthermore, in Walrasian market,

there are only two relevant regimes: either the banking system has excess reserves. (χ−t =χ+
t = 0)

or a deficit of reserves, (χ+ = χ−t = iw − im). These observations showcase that a Walrasian

interbank market produces counterfactual implications: First, it implies a fed funds rate that

trades either at the floor or the ceiling of the corridor—unless the aggregate reserve balance is

exactly zero, in which case the rate on reserves would be indeterminate. Second, it produces the

same LP for loans and government bonds, which would take one of two values depending on the

sign of aggregate reserves. This means that monetary operations, conventional or unconventional,

or changes in withdrawal risk, would only have a effects on the LP of assets at the point where

aggregate reserves change sign.23 In the case of zero reserve requirements, ρ = 0, in fact, monetary

operations or withdrawal risk would not have effects. In practice, it is clear that central banks

alter interbank rates with open market operations even in countries where requirements are zero.

(a) OTC Interbank Market

Abundance of Reserves (log(θ−1)

i
f
, χ̄+, χ̄−

Target Liquidity

Effective Fed Funds

idw

im

Fed Funds Rate χ̄− + im

χ̄+ + im

(b) Walrasian Interbank Market

Abundance of Reserves (log(θ−1)
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Figure 1: OTC versus Walrasian Markets

3.3 Policy Analysis

This section analyzes the effects of monetary policy. The main insight is that Fed policies can

alter the liquidity premium and induce real effects, a formalization of the credit channel. Let us

22See the companion paper Bianchi and Bigio (2017) for a derivation of the Walrasian limit (λ→∞) of the
interbank market.

23For related reasons, Burdett, Shi and Wright (2001) emphasize the importance of search frictions in smoothing
market outcomes.
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Figure 1: OTC versus Walrasian Markets

These observations showcase that a Walrasian interbank market produces counterfactual im-

plications: First, it implies a fed funds rate that trades either at the floor or the ceiling of the

corridor—unless the aggregate reserve balance is exactly zero, in which case the rate on reserves

would be indeterminate.21 Second, it produces the same liquidity premium for loans and gov-

ernment bonds, which would be either zero or iw − im depending on the sign of aggregate excess

20See the companion paper Bianchi and Bigio (2017) for a derivation of the Walrasian limit (λ→∞) of the
interbank market.

21Burdett, Shi, and Wright (2001) also emphasize the importance of search frictions in smoothing market
outcomes.
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reserves. This means that open market operations operations, or changes in withdrawal risk,

would not have any effects unless aggregate excess reserves change sign. Indeed, there would

be no effects in economies with zero reserve requirements, ρ = 0, since in fact, excess aggregate

reserves are always positive. Notwithstanding, central banks that do not impose reserve require-

ments, still alter interbank market rates by conducting open market operations. In section 4, we

present further evidence on the macroeconomic impact of an OTC interbank market.

3.3 Policy Analysis

This section analyzes the effects of monetary policy. The main insight is that Fed policies can

alter the liquidity premium and induce real effects, a formalization of the credit channel. Let us

first discuss the price level determination.

Price-Level determination. The price level is determined through a quantity-theory equa-

tion expressed in terms of liquid assets:

Pt āt · (1− c̄t) · Et︸ ︷︷ ︸
real liquidity (demand)

= M̃Fed
t+1 −Mh

t+1︸ ︷︷ ︸
nominal reserves (supply)

+GFA
t+1 −GFed

t+1 −Gh
t+1︸ ︷︷ ︸

nominal bond (supply)

. (23)

Given Et, and a set of real rates, the portfolio demand for total real liquid assets is determined.

The price level must be such that at equilibrium real rates, the real supply of liquid assets equals

the real liquidity demand. Once we substitute the clearing condition for government bonds, (20)

and use m̄ = ā− ḡ, we obtain a quantity equation but now expressed in a more familiar way, in

terms of monetary balances:

Mh
t+1 + Pt · m̄t · (1− c̄t) · Et︸ ︷︷ ︸

money demand

= M̃Fed
t+1︸ ︷︷ ︸

money supply

. (24)

Although the demand for reserves is not determined at the individual level, the aggregate amount

is. As a result, the price level can be determined from the aggregate demand for reserves, based

on equation (24).22

We note that the price level remains determined, even if banks are satiated with reserves. In

this regard, our paper relates to Ennis (2014), who analyzes the link between money and prices in

a perfect-foresight model with a static banking system. He shows that when capital requirements

are slack, a policy of paying interest on reserves equal to the market return of the risk-free asset

leads to an indeterminacy result, but when the capital requirement constraint binds, the real

22As in much of the literature, we abstract away from the possibility of speculative hyperinflations and focus
on equilibria that transition toward stationary equilibria. Cochrane (2019, ch. 17) presents a detailed discussion
on conditions that allow to rule out speculative hyperinflations.
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demand for reserves is determined, and hence the price level. One difference in our setup is that

the presence of equity constraints in our framework implies that the price level is determined

even absent binding capital requirements. In addition, the price level is determined through a

quantity theory equation involving both government bonds and reserves.

Classical monetary properties. The model features classic long-run neutrality: any increase

in the scale of
{
M,GFA, GFed, BFed

}
leads to a proportional increase in the price level without

any changes in real allocations. On the other hand, changes in the permanent growth rate of

the Fed’s the balance sheet do have real effects, unless all nominal policy rates are adjusted by

inflation to keep real rates constant—and when the demand for real currency balances is perfectly

inelastic. Both results are proven in Appendix G.

OMO. Policies that produce real effects operate through the liquidity premium. We define

conventional (unconventional) OMO as a swap between reserves for government bonds (loans).

Next, we consider OMO in which the Fed exchanges reserves for loans or government bonds at

time-zero, and reverses the operation the following period. The following proposition character-

izes the effects of such OMO.

Proposition 5 (Real Effects of OMO). Consider an original policy sequence with a Fed balance

sheet
{
MFed

o,t , G
Fed
o,t , B

Fed
o,t

}
t≥0

and an OMO at t = 0. That is, consider an alternative policy

sequence that differs from the original one only in that BFed
s,1 = BFed

o,1 + ∆BFed, GFed
s,1 = GFed

o,1 +

∆GFed, and MFed
s,1 = MFed

o,1 + ∆MFed, for ∆MFed = ∆GFed + ∆BFed ≥ 0. We have the following

two cases:

i) Functioning interbank market: If λ > 0, then the OMO has effects on prices and aggregate

asset allocations if and only if banks are not satiated with reserves at t = 0 under the original

allocation.

ii) Shut down interbank market: If λ = 0, and the operation is conventional, ∆BFed = 0,

the OMO induces the same sequence of prices and real asset allocations; If the operation is

unconventional, ∆BFed > 0, then the OMO has effects on prices and aggregate asset allocations

if and only if banks are not satiated with reserves at t = 0 under the original allocation.

The proposition establishes that when banks are satiated with reserves, open market oper-

ations are irrelevant, as in Wallace (1981). In effect, when banks are satiated, all assets are

perfect substitutes. As a result, for every unit of loans (government bonds) that the Fed pur-

chases, banks reduce holdings loans (government bonds) by one unit and increase reserves in the

same amount. In effect, there are no changes in the real returns. Moreover, there are no changes
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in the price level.23 Away from satiation, however, the operations alter the liquidity premium

and induce a change in the total amount of loans. When the Fed swaps government bonds or

loans for reserves, this increases the relative abundance of reserves and reduces the costs from

being short of reserves for an individual bank. As a result, for a given level of bank equity,

this contributes to reduce the liquidity premium. Ultimately, this increases the supply of bank

lending.

Moreover, the swap of government bonds or loans for reserves leads to an increase in the

price level, but not one for one. Notice that for a given price level, a conventional OMO keeps

constant the total amount of liquid assets. At the same time, since the composition is tilted

toward reserves, market tightness θ falls, leading to a lower demand for total liquid assets. It

then follows from (23) that the price level increases, but less than proportional to the increase

in MFed.

Finally, an important result is that standard operations are irrelevant if the interbank market

is shut down (λ = 0) . When the interbank market is shut down, the benefits of holding liquid

assets are independent of the abundance of reserves on the aggregate, because reserves cannot be

lent to other banks. In particular, we have χ+ = 0, χ− = iw − im. As a result, a swap of reserves

for government bonds for reserves simply changes the composition of liquid assets without any

real effects. This result shows that in an extreme event of an interbank market shutdown, the Fed

should conduct unconventional OMO if it aims at reducing the liquidity premium and stimulate

credit.

Bounds loans rates and the Friedman rule. This section describes the set of rates that

can be induced by the Fed in a stationary equilibrium in connection with a banking version of

the Friedman rule. We define this version of the Friedman rule as monetary policy where the Fed

lends at the discount window without penalty, that is, when the discount window rate equals the

rate on reserves:

Definition 3 (Friedman Rule). Monetary policy is consistent with a Friedman rule if Rm
t = Rw

t .

Under this rule, χ+ = χ− = 0. Hence, banks are satiated, not through large holdings of liquid

assets but through free borrowing from the discount window. As a result, there are no liquidity

premia. This rule is in the same vein as the common version of the Friedman rule, under which

the nominal interest rate on government bonds is zero and there is no opportunity cost of holding

currency. Likewise, in this banking version, there is no cost of being short of reserves. Moreover,

23In the case of a conventional OMO, the fact that the price level remains constant can be clearly seen from
(23). In this case, the OMO changes the supply of only one liquid asset without a change in the total amount of
liquid assets or the market tightness, which is already at zero. The same logic applies to unconventional OMO
because banks’ real holdings adjust in response to the operations without causing any changes in returns.
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with strictly positive liquid assets, there is also no opportunity cost of holding reserves, since

Rb
t = Rm

t .

Notice that as defined here, there are many values of Rm
t consistent with this Friedman rule,

and as we will show, there is a different loan rate associated with each value of Rm
t .24 We denote

by Rb,FR the stationary loan rate that prevails if the monetary authority follows a Friedman rule

associated with a fixed stationary interest on reservesRm. The following proposition characterizes

this stationary loan rate, focusing on the case with Gss = 0 and BFed
ss = 0.25

Proposition 6 (Stationary loan rate under Friedman Rule). Assume that Gss = 0 and BFed
ss = 0.

Consider the following parameter condition:

Θb (1/β)ε
b ≥

(
1 + κ−1

)
Θd (1/β)ε

d

. (25)

Also, let R̄d be the unique solution to

(1 + κ)

(
Θd

Θb

(
1 + κ−1

))1/εb (
R̄d
)εd/εb

=
1

β
+ κR̄d.

and

R̄b =
1

β

1 + κβR̄d

1 + κ
.

We have that the following two cases:

i) Slack Capital Requirements: If (25) holds, then capital requirements are slack and

Rb,FR =

1/β if Rm < 1/β,

Rm if Rm ≥ 1/β.
(26)

Moreover, if Rm ≤ 1/β, then ā = 0 (with a ≥ 0 binding strictly if Rm < 1/β). In all cases, the

deposit rate equals Rb,FR.

ii) Binding Capital Requirements: If (25) does not hold, capital requirements are binding and

Rb,FR =

R̄b if Rm < R̄b,

Rm if Rm ≥ R̄b,
(27)

where R̄b < 1/β. Moreover, if Rm ≤ R̄b, then ā = 0 (with ¯a ≥ 0 strictly binding if Rm < R̄b).

To characterize the stationary loans rate, Proposition 6 exploits the fact that in any stationary

equilibrium, the return on bank equity equals 1/β. There are two cases to consider depending

24This contrasts with the common version of the Friedman rule, the non-banking version under which the real
rate is pinned down by the discount factor.

25Recall that under the Friedman rule, unconventional and conventional open-market operations are neutral.
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on whether capital requirements bind, as determined by (25). Consider first the case of slack

capital requirements. In this case, we know that the deposit rate must equal the loan rate. We

also have that if Rm < 1/β, banks are at a corner of liquid assets and Rb,FR = 1/β. Instead,

if Rm > 1/β, banks hold liquid assets in equilibrium, in which case Rb,FR = Rm. Notice that

because in general equilibrium the after-tax return of liquid assets is zero, a loan rate Rb,FR > 1/β

guarantees stationarity. When the capital requirement constraint binds, the characterization is

similar except that there is a spread between the loan rate and the deposit rate. As a result, we

have that Rb,FR becomes equal to Rm for lower values of Rm compared to the case with slack

capital requirements.26

Observe that Rb,FR can be raised to any arbitrary level simply by raising Rm. Intuitively,

there is no upper bound on the loans rate because the Fed has the ability to crowd out loans by

paying a higher interest rate on reserves (financed with bank taxes). On the flip side, by lowering

the rate on reserves, the Fed lowers the loan rate, but only to the point where reserves are no

longer held in equilibrium. Once banks are at a corner with zero reserves, further declines in Rm

have no effects.

Proposition 6 applies to stationary equilibria induced by the Friedman rule. Next, we discuss

how the characterization of Rb,FR allows us to obtain bounds on the loan rate that can be induced

by policies away from the Friedman rule.

Corollary 1. Consider any stationary policy sequence such that Gss = 0 and BFed
ss = 0 and let

Rm
ss ≥ min

{
1/β, R̄b

}
. Then, the stationary loan rate satisfies Rb

ss ≥ Rb,FR = Rm.

The corollary says that if we consider any policy such that Rm
ss ≥ min

{
1/β, R̄b

}
, then the

loans rate induced by the Friedman rule constitutes a lower bound on the loans rate. The

qualification Rm
ss ≥ min

{
1/β, R̄b

}
is important, as it ensures that banks hold positive liquid

assets is in equilibrium. The idea is that considering equilibrium with strictly positive liquid

assets, a policy that raises the liquidity premium necessarily raises the loan rate above the one

that would prevail under the Friedman rule.27

The Friedman rule is not only useful for understanding the set of rates that can be induced by

policies but also for characterizing efficiency. The following proposition establishes the Friedman

26If condition (25) is violated, then capital requirements bind. If in addition, ā = 0, then Rb,FR = R̄b < 1/β.
The spread between Rb,FR and Rd,FR, is such that the total return on bank equity is 1/β, despite the return on
loans being less than 1/β.

27For a low Rm such that banks find it strictly optimal to hold zero liquid assets, an increase in Rw may induce
a greater spread between Rb

ss and Rd
ss, in which case Rb

ss must fall to guarantee stationarity. In this case, the
Fed can induce a lower rate by raising Rw.
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rule is necessary to achieve efficiency when capital requirements do not bind.28

Proposition 7. If (25) holds, and households have the same discount factor as banks βh = β,

the stationary equilibrium is efficient if the Fed follows a Friedman rule policy where Rm
ss = Rw

ss =

1/β.

Discussion on normative issues. The results here regard positive analysis. Having estab-

lished that a version of the Friedman rule achieves efficiency, it is important to discuss what

frictions outside the model could motivate a deviation from the Friedman rule. First, because

of macroprudential concerns the Fed may want to reduce the amount of bank credit and use

monetary policy for such an objective, as advocated by Stein (2012). Another concern relates to

the costs of eliminating liquidity premia. For example, eliminating the LP may require the Fed

to hold a large balance sheet, exposing it to credit risk or interest-rate risk, features outside of

this model. Finally, there is a moral hazard consideration when lending reserves freely. There

is, in fact, a tradition that sees a penalizing discount rate as a disciplining device to sustain

the circulation of deposits (see Cavalcanti, Erosa, and Temzelides, 1999; Hoerova and Monnet,

2016).We leave for future work the assessment of the tradeoffs that emerge in the face of these

considerations. However, we believe our model provides a useful setup to study these normative

aspects.

4 Empirical Evidence

Over the last decade, a large empirical literature has developed conveying evidence that liquidity

frictions play an important role in financial markets. The goal of this section is twofold. First,

we provide new evidence that specifically point toward the importance of the interbank market.

Second, we discuss other available empirical evidence that support our key mechanism.

A central prediction of the theory is that frictions in the interbank markets are translated,

at the macro level, into a premium for liquid assets. To examine whether this relationship is

present in the data, one needs measures both of the frictions in the interbank market and of

asset liquidity premia. As a measure of frictions in the interbank market, we use the dispersion

in interbank market rates. More precisely, using the daily distribution of the Fed Fund rates

provided by the NY Fed, we construct a monthly time series, labeled FF Range, as the monthly

28Appendix H defines the set of Pareto optimal allocations. The Pareto optimal allocations feature equalization
of marginal utilities across agents and across goods and a non-binding working capital constraint for firms. When
households have a value for currency, this efficiency condition requires deflation so that the efficient real rate is
consistent with zero nominal rates on reserves. Appendix J proves conditions for monotone convergence toward a
stationary equilibrium under this specific Friedman rule. As long as deviations are not large from this Friedman
rule, we expect similar properties to hold in any stationary equilibrium.
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average of the daily spread between the maximum and the minimum Fed funds range.29 In terms

of the liquidity premia, we use two measures constructed in Nagel (2016): the spreads between

the generalized collateral Repo rate (GC) and the certificate deposit (CD) with respect to the

three month T-Bill rate.30 It is worth noting that the liquidity premium is large, reaching 4%

percent around 2008. This is direct evidence of the quantitative relevance of the precautionary

demand for liquid assets. These large premia show that banks are willing to forgo large returns

to hold assets that are easy to sell in certain dates. In the theory, withdrawal risk and matching

efficiency in the interbank market produce greater dispersion in interbank rates. Equipped with

these measures, we proceed to test the relationship between the two.

Panel (c) of Figure 2 presents the monthly-series for the GC and CD spreads and the FF

Range, from June 2000 and December 2011 whereas panels (a) and (b) present the scatter points

of the GC and CD against the FF Range series, respectively. Table 1 reports results from an

ordinary least squares regression. The positive correlation between the FF Range and the two

measures of liquidity premia is striking. Columns (1) and (4) present the results for the baseline

univariate regressions. Columns (2) and (5) show that the sign of the regression coefficients are

unchanged after the average Fed funds rate is included, an indication that dispersion in rates

captures information not contained in the policy target. Similarly, the correlation remains even

when we include the VIX index, which suggests that dispersion in rates is picking up uncertainty

inherent to the interbank market. The standard deviation of FF Range series is 60bps, so the

average impact on liquidity premia are 16bps and 36bps on the GC and CD spreads, respectively.

This average impact may seem small. However, the FF Range series is highly skewed (Hamilton,

1996, as pointed out earlier in). The FF Range series is above 200bps in 5 percent of the sample,

and these events produce an impact of 50bps and 120bps on the GC and CD spreads, respectively.

Recent independent work by Altavilla et al. (2019) provide similar evidence for the European

bank market and obtains similar effects in magnitude. Appendix L presents additional robustness

checks which similar correlations results for the correlations.

These results should not come as a surprise in light of other available evidence. The scale of

the interbank market is large: banks in the US clear about 3.3 trillion USD transactions daily.

Moreover, according to Afonso and Lagos (2014), between 2005-2008, the annual dollar traded

volume of Fed funds was about twice the annual US GDP. Also, there is ample evidence of trading

29The NY Fed provides historical data on the daily distribution of the fed fund rates: the data include the max
and min, 99, 75, 50, 25 and 1st quantiles, and the standard deviation of daily Fed funds rate for the years 2000
through 2012.

30As a measure of liquidity premia, Nagel (2016) works with two time series for spreads, the spread between the
generalized collateral Repo rate and the T-Bill rate (the GC spread) and the spread between certificate deposit
and the T-Bill rate. The GC spread is an ideal counterpart for the spread between loans and government bonds
in the model because the GC has the same risk-profile as the T-Bill but according to that paper, “The GC repo
term loan is illiquid, as the money lent is locked in for three months and the bid-ask spreads between lending
and borrowing rates are relatively wide compared with government bonds.” Similarly, the CD to T-Bill rate is a
counterpart for the spread between deposits and the T-Bill in the model.
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frictions in the Fed funds market (e.g. Ashcraft and Duffie, 2007). Bindseil and Jablecki (2011)

show that an increase in 100bps in the width of the policy corridor leads to greater volatility

in interbank rates for a cross-section of countries. At a narrative level, the August 2019 Senior

Financial Officer Survey reports that the primary reason why banks currently hold reserves is

meeting deposit outflows. In fact, 72% of the respondents regard as very important holding

reserves to meet deposit outflows (compared with 10% who regard as very important to earn the

interest on reserves).31

Another prediction of the theory is that monetary policy affects the supply of loans through

the liquidity management of banks. In an early contribution, Bernanke and Blinder (1988)

provides evidence that expansionary monetary policy stimulates lending and deposits. Using

micro data, Kashyap and Stein (2000) found evidence that liquidity plays a key role in bank

lending while Jiménez et al. (2012; 2014) further corroborated this evidence using micro data on

bank-loan pairs. Longstaff, Mithal, and Neis (2005) and Krishnamurthy and Vissing-Jørgensen

(2012) furthermore show that the supply of government bonds impact liquidity premia.

To conclude, a large body of empirical evidence points to the importance of liquidity frictions.

Adding to the existing literature, we provide new evidence that point specifically toward the

importance of frictions in the interbank market to determine liquidity premia. In the next section,

we calibrate our model and show how these frictions matter for the monetary transmission.

Table 1: Liquidity Premia and Interbank Spreads

(1) (2) (3) (4) (5) (6)
GC Spread GC Spread GC Spread CD Spread CD Spread CD Spread

FF Range 0.208∗∗∗ 0.175∗∗∗ 0.159∗∗∗ 0.672∗∗∗ 0.721∗∗∗ 0.587∗∗∗

(12.57) (11.08) (9.75) (10.17) (10.32) (8.95)

FF Rate 0.0291∗∗∗ 0.0374∗∗∗ -0.0428∗ 0.0232
(5.95) (6.87) (-1.98) (1.06)

VIX 0.0857∗∗ 0.687∗∗∗

(3.10) (6.17)

Constant 0.0395∗ -0.00523 -0.272∗∗ 0.0330 0.0988 -2.038∗∗∗

(2.53) (-0.33) (-3.11) (0.53) (1.41) (-5.79)

Observations 138 138 138 138 138 138

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

31The complete ranking is as follows: meeting potential deposit outflows (73%), meeting routine intraday
payment flows (57%), satisfying internal liquidity stress metrics (63%), satisfying the bank’s reserve requirements
(50%), managing liquidity portfolio (30%) seeking to earn IOR rate (10%). See the Senior Financial Officer
Survey.
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Figure 1: Interest on Reserves and Balance Sheet as Independent Instruments

Note: the figure is constructed with the parameters obtained from the baseline calibration.
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Figure 2: Liquidity Premia and Fed Funds Range

Note this one: Panels (a) and (b) presents a scatter plot corresponding to the data points in Panel (c).

Appendix K.1 provides details of the data series.

5 Applications

We now provide two applications of our model to address key questions at the intersection of

monetary policy and banking. We use a version of the model calibrated to the US banking

system, as we explain next.

5.1 Calibration

We calibrate the steady state of the model using data from 2006 as a reference period. In Section

5.3, we then extend the calibration analysis here to the crisis and post-crisis period. Appendix

K.1 provides the details of data measurements and sources.

Model period. We define the time period to be a month and use annualized rates to describe

the calibration. The choice of a month is guided by several factors. On the one hand, the

federal funds market operates daily, and reserve requirements are computed based on a two-

week window average over end-of-day balances. On the other hand, bank portfolio decisions and

loan sales typically take longer than two weeks to materialize.32 In addition, shocks and overall

positions in the interbank market are likely to be persistent, whereas they are not in the model.

Capturing these institutional details would require a more complex model, one with multiple

balancing stages, and additional state variables to keep track of lagged reserve requirements. We

32Given that the period length of the model is one month, one can think about the structure of the model such
that the sale of a loan takes one month to materialize. Stigum and Crescenzi (2007) provides a clear account of
the securitization process.
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view a monthly model as a parsimonious compromise between the daily nature of the federal

funds market, the bi-weekly nature of regulation, and the lower frequency of bank portfolio

adjustments. The choice of a monthly model is also practical. Once we turn to the application

in Section 5.3, most data are available monthly. We do not expect that the quantitative results

of the calibrated model would change significantly with a different length of the model period.

Additional features. We extend the environment with two additional features to enrich the

quantitative applications. These features only modify the portfolio problem (17) without altering

any other condition in the model. First, we allow for Epstein-Zin preferences. We assume a unit

intertemporal elasticity of substitution (IES), which implies that the dividend rate is c̄t = 1− β,

and set the risk aversion, denoted by γ to 10. Second, we introduce credit risk. In particular, we

assume that the return of loans is given by (1 + δ)Rb, where δ follows a log-normal distribution

with standard deviation σδ and zero mean. The shock δ is distributed identically across banks

and is independent of ω. By the law of large numbers, the average return across banks is Rb—

hence the law of motion for aggregate equity remains the same. We introduce this second feature

because it allows us to devise a procedure to match key moments in the data and to provide

an exact decompositions of the decline in credit in Section 5.3. The volatility that we need to

replicate the asset portfolio is small. In scale, it is about 6% of the liquidity premium.

Distribution of withdrawal shocks. For the distribution of withdrawal shocks, Φ, we as-

sume it is a log normal distribution with standard deviation σω and zero mean. A log-normal

distribution approximates well the empirical distribution of excess reserves.

External calibration We set
{
ρ, β, γ, εb, εd, εg, im, iw, π, BFED, GFED, GFA

}
externally. We

list their values in Table 2. Regarding preferences, we set the IES equal to one, as mentioned

above, and the risk aversion to 10, both common values in macroeconomics. With a unit IES,

stationarity of aggregate bank equity implies Re
ss = 1/β. As a target for the return on equity,

Re
ss, based on Atkeson et al. (2018, Table 2,), reports a return on equity for banks with the

highest asset quality ratings of 8 percent. Accordingly, we set β equal to (1/1.08)1/12 = 0.993.33

Regarding regulatory policies, we set ρ = 0. While regulatory reserve requirements were about

10 in the reference period, the use of sweep accounts has implied that the most relevant constraint

is that reserves cannot go negative. For that reason, we calibrate the effective requirement to

33 Notice that while the return on equity in the data has implicitly risk premia, our model does not. With risk
premia, however, we would have the same stationarity condition, except that the steady state return on equity
would be replaced by the mean of return on equity over time.
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zero.34

In line with the pre-crisis landscape, im and BFed are set to zero as baseline values, but we

then vary these variables as we analyze policies. The relevant value for the discount window

rate incorporates the well-documented stigma associated with discount loans. We deduce the

stigma by considering the difference between the highest interbank market rate observed and

the statutory discount window rate. This approach is reasonable because the fact that many

banks borrow at interbank rates above the discount rate implies there are non-pecuniary costs

associated with the discount window. Accordingly, we construct a time series for the maximum

observed interbank market rate and average out the differences with respect to the statutory

discount window rates. The procedure yields a stigma of 5% amounting to a de facto discount

window rate of 11%.

We set the consolidated government bonds to be consistent with the holdings of government

bonds by banks and households. In particular, based on Call Report data, we have that holdings

of government bonds represent about 10 percent of banks’ assets, whereas households hold about

56 percent of total holdings (Krishnamurthy and Vissing-Jørgensen, 2012). The growth rate of

money balances is set to be consistent with a steady state annual inflation of 2 percent per year.

Finally, we set loan demand elasticity with respect to the annualized loan rate to 2.5, which

is in the range of empirical studies (see, e.g., Gilchrist et al., 2009), and use the same value for

the elasticity of the supply of deposits and the household’s government bonds demand.35 Neither

elasticities matter for the stationary equilibrium, they only matter for transitional dynamics.

Deduced parameter. The remaining set of parameters is
{
λ, σω, η, σδ, κ,Θd,Θb,Θg

}
. This set

is obtained by targeting a set of moments from the data. The data that we employ are the size of

interbank loans relative to deposits, F/D; an average Federal Funds rate; the discount window

loans relative to deposits, W/D; a measure of the loans liquidity premium, LP ; and banks’

loan, bond, and reserve portfolio holdings,
{
b̄, ḡ, m̄

}
. Our procedure allows us to sequentially

determine each of these parameters.

A summary of the procedure to obtain these parameters is as follows; details are relegated

to Appendix K.3. We use x̂ to refer to parameter or variable x deduced from the equilibrium

equations in the model. If a variable enters without that symbol, it is measured directly from

34For banks with net transactions over USD 48.3 million as of 2006, the reserve requirement is 10 percent (see
Federal Reserve Bulletin, Table 1.15). No corresponding sources in references. However, since the introduction
of sweep accounts in the US, banks are able to circumvent reserve requirements by transferring funds overnight
to accounts not subject to requirements. All the results are quantitatively similar for small levels of reserve
requirements, for example, 2.5%.

35The parameter ε is a semi-elasticity: in terms of the monthly calibration, this implies εb = 35. Notice that we
do not need to specify the elasticity of currency to solve for all the allocations and loan returns. This is because
of quasi-linearity; namely, households preferences are linear in the good that does not require cash or deposits to
be consumed.
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Table 2: Calibration

External Parameters Value Reference

Discount factor β = 0.993 Return on Equity
Risk aversion γ = 10 Standard
Interest on reserves im = 0 Observed
Discount window rate iw = 11% Measured Stigma
Steady state inflation π = 2% Inflation Target
Fed holdings of loans BFED = 0 Observed
Government bonds GFA −GFed = (1 + d̄)0.1× (1 +Gh/G) Observed
Reserve requirement ρ = 0 Observed
Elasticities εb = −εd = −εg = 35 Literature

Deduced Parameters Value Target

Matching friction λ̂ = 7.9 W/(W + F ) = 0.035%
Volatility of withdrawals σ̂ω = 0.12 W/(D + E) = 0.0011%
Bargaining powers η̂ = 0.15 īf = 4.4%
Credit Risk σ̂δ = 6%× LP b̄/(b̄+ ā) = 97.5%
Capital requirement κ = 8.8 Bank Leverage

Deposit supply intercept Θ̂d = 9.4 Rd = 2%

Loan demand intercept Θ̂b = 10.9 Loan LP= 50bps

Bond demand intercept Θ̂g = 0.275 Gh/G = 0.56

the data.

The first step is to obtain a matching efficiency, λ̂, deduced from observed activity in the

interbank market relative to discount window loans. We first infer the probability that a reserve

deficit position is matched in the interbank market, using Ψ̂− = F/ (W + F ). When the model’s

implied market tightness is θ̂ < 1, we obtain:

λ̂ = log
(

1− Ψ̂−
)−1

.

This relationship follows from by inverting (A.1) under the assumption that θ < 1.36 The

condition θ < 1 is verified in a later step.

The second step is to obtain the volatility of withdrawals, inferred from observed banks’s

liquidity holdings and activity in the discount window. To do so, we first deduce the cutoff ω̂∗

from the definition (21). Then, we use that W = (1 − Ψ̂−)S− to deduce σ̂ω as the implicit

solution to
W

A
=
(

1− Ψ̂−
)

Φ (ω̂∗; σ̂ω)

(
m̄+ ḡ

κ+ 1
+
Rd

Rm
E [ω|ω < ω̂∗; σ̂]

κ

κ+ 1

)
.

36Under a Leontief matching technology, if deficit positions are less than surplus positions, i.e. when θ < 1,
thenΨ̂− = 1− exp (−λ).
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The third step is to obtain the bargaining power. We infer η from the interbank market rate,

taking into consideration the matching efficiency and aggregate liquidity holdings . That is, we

obtain η̂ using

if = im + (iw − im)φ
(
θ̂; λ̂, η̂

)
.

This step uses the effective bargaining power φ(θ̂; λ̂, η̂) defined in Appendix A and a measurement

of the market tightness consistent with the previous steps θ̂.37

The fourth step is to obtain a value for credit risk, σ̂δ, which we infer by rationalizing the

banks portfolios given the returns of assets and liabilities, and the liquidity yield function χ.

Given all the objects we have so far, we can compute directly χ̄+and χ̄−.38 The return on loans

is deduced using the equilibrium condition Rb = Rm + ˆ̄χ+ + LP , where LP is observed in the

data as constructed by Del Negro et al. (2017).

We can then deduce the parameter controlling credit risk, σδ, and a leverage requirement κ,

such that the bank optimization problem delivers the observed portfolios in the data

(
b̄, d̄
)

= argmax
b̄,d̄≤κ,ā+b̄−d̄=1

{
E
[
(1− δ)Rbb̄+ Rmā− Rdd̄+ χ̄(ā, d̄, ω)|σ̂δ, σ̂ω

]1−γ} 1
1−γ

.

where the expectation E is over δ and ω.39

Finally, given total credit supply in the model, the value for Θb is chosen to guarantee that

Rb is the equilibrium return using
Bft+1

Pt
= Θb

t

(
Rb
t+1

)εb
. We proceed analogously for

{
Θd, Rd

}
and for {Θg, Rg} using the targets for deposits and the fraction of government bonds owned by

households.

5.2 Implementation of Monetary Policy and Pass-Through

In the first application, we examine the implementation of monetary policy and the pass-through

from policy rates to lending rates. We address the following questions: What are the effects of

varying the interest on reserves (IOR) on bank credit? What are the different policy configura-

tions that can implement a target for the Federal funds rate? What are the implications of these

different configurations for the lending rate and pass-through of interest rates?

37By definition,

θ̂ =

[
Φ (ω̂∗; σ̂ω)

(
m̄+ ḡ +

Rd

Rm
E [ω|ω < ω̂∗; σ̂ω] d̄

)]
/

[
(1− Φ (ω̂∗; σ̂ω))

(
m̄+ ḡ +

Rd

Rm
E [ω|ω > ω̂∗; σ̂ω] d̄

)
− ḡ
]
.

38We use Ψ̂+ = Ψ̂− · θ̂, and deduce ˆ̄χ+ = Ψ̂+ · (Rf −Rm) and ˆ̄χ− = Ψ̂− · (Rf −Rm) +
(

1− Ψ̂−
)
· (Rw −Rm).

39The procedure leverages upon the feature the capital requirement binds in the model for any κ lower or equal
than the observed leverage.
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IOR and capital requirements. We first examine the effects of changes in the IOR. In the

US, interest on reserves was introduced in October 2008. Since then, it has generated many

policy discussions along different fronts, specifically on whether it contracts or expands bank

lending.40 The following analysis shows that the effects on bank lending may be non-monotonic.

In particular, whether credit increases or decreases with the IOR depends on whether capital

requirements bind.

We study how the stationary equilibrium changes as we vary the steady state IOR, while

keeping all other policies and model parameters constant. Figure 3 presents the results.41 In

panel (a), we display the steady state lending rate as a function of the IOR. The figure shows a

non-monotone pass-through. For low IOR, increases in the IOR lead to a slight decline in the

lending rate and stimulate credit. For high IOR, increases in the IOR lead to a sharp increase

in the lending rate and depress credit. In panel (b), we also display the portfolio weights as

we change the IOR. As the figure shows, the change in the sign of the pass-through from the

IOR to the lending rate occurs at exactly the point in which the deposit portfolio share becomes

constant and the capital requirements begins to bind.

To understand the intuition behind this non-monotonicity consider the Loan LP. If we let Ẽ
be the bank’s risk-adjusted expectation, this premium can be written as

Rb = Rm + Ẽ
[
χ̄
(
ā, d̄
)]
. (28)

One can see from equation (28) that an increase in Rm has a direct one-for-one change in Rb, given

portfolio weights (ā, d̄). Notice also that capital requirements bind when the IOR is high. This

is because in effect, a high IOR makes it less costly to issue deposits. When capital requirements

bind, d̄ = κ and is therefore invariant to the IOR, but ā increases with Rm. The increase in

the liquidity ratio lowers the liquidity premium, but only partially offsets the direct effect of

the increase in Rm. This means that when capital requirements bind, reserves and loans are

substitutes and an increase in the IOR is necessarily contractionary.

When the IOR is low, by contrast, the capital requirements are non binding. Capital require-

ments do not bind for low IOR because a low IOR increases the costs of insuring against deposit

withdrawals, hence making deposits in effect more costly. Starting from a point where capital

requirements do not bind, an increase in the IOR increases the incentives to issue deposits. The

40See a fascinating discussion between George Selgin and John Taylor, one one side and Robert Eisenbeis, and
Todd Keister on the opposite side in a testimony on the House Financial Services Hearing on the Fed‘s Balance
Sheet and Interest on Reserves, May 17, 2016, https://www.sifma.org/resources/general/house-financial-services-
hearing-on-the-fed-s-balance-sheet-and-interest-on-reserves/.

41We follow the baseline calibration with two modifications to better illustrate the results. First, we set κ so
that the capital requirement constraint holds with equality but does not bind in the stationary equilibrium with
the baseline values. This allows us to better highlight the importance of the capital requirement for the sign of
the pass-through. Second, we mute the response of the interest rate on deposits by considering a perfectly elastic
supply of deposits.
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Figure 3: Stationary equilibrium lending rate and portfolios as a function of IOR

Note: We use the the benchmark calibration, except that we set κ = 31, implying that the

capital requirement holds with equality but it does not bind for im = 0. We also use a perfectly

elastic supply of deposits to mute the effects on the interest rate on deposits.

increase in the IOR also stimulates banks to hold more liquidity, but if the deposit increase is

greater, the increase in the IOR will stimulate lending, as occurs in Figure 3. This showcases

that when capital requirements do not bind, reserves are potentially complements to lending.

Proposition 8 below formalizes the non-monotonicity that appears in Figure 3. Namely, the

proposition shows that when capital requirements bind, the effect of an increase in the IOR is

necessarily contractionary, under any parameter configuration. When capital requirements do

not bind, the effect of the lending rate is generically ambiguous.

Proposition 8. Consider the set of stationary equilibria. If capital requirements bind, then
drb

drm
∈ [0, 1] and drb

drm
= 1 when banks are satiated with reserves. If capital requirements do not

bind and the deposit supply is perfectly elastic at rd, the pass-through is ambiguous.

These results highlight how the interaction between capital requirements and liquidity fric-

tions plays a key role for the transmission of monetary policy. We next explore how the corridor

rates and the balance sheet can be jointly managed to achieve monetary policy objectives.42

Fed balance sheet and policy pass-through. A central feature of the model is that, away

from satiation, the interest on reserves and the size of the balance sheet of the monetary authority

are independent instruments. Namely, the monetary authority can target a given interbank rate

(FFR) via different configurations of the IOR and a size of its balance sheet. We argue next

42For recent interesting related analysis with a focus on negative interest rates, see Brunnermeier and Koby
(2019), Wang (2019), and Eggertsson et al. (2019).
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that how the FFR is actually implemented matters for the level of the lending rate and for the

pass-through.

We consider stationary equilibrium, in which we fix a corridor spread, ∆ ≡ im − iw, and

then construct menus of
{
im, BFed

}
that implement a given target for the FFR.43 We label this

menu the “iso-Fed Funds curve.” Panel (a) of Figure 4 displays the iso-Fed Funds rate curve for

two different Fed funds targets; each point in the straight-red curve is consistent with a target

of 2.5%, whereas the dashed-blue is consistent with a target of 2.75%. We display Bfed in the

x-axis and im is in the y-axis. Since bank equity is normalized to 1, at steady state, BFed should

be interpreted as Fed holdings of loans relative to bank equity.

Panel (a) shows that the iso-Fed funds curve is upward sloping. This positive relationship

emerges because the FFR is increasing in the IOR and decreasing in the balance sheet. To see

why, recall from Proposition 1 that the Fed funds can be expressed as

i
f

= im + ∆ · φ (θ) , (29)

where φ is an endogenous weight that increases with θ. From this expression, we observe that

an increase im has a direct one-for-one effect on i
f
. This effect is coupled with an indirect effect

that partly mitigates the direct effect: the increase in the IOR generates more abundant reserves,

leading to a lower θ and hence a lower φ. In other words, as reserves become more abundant, the

FFR moves to the floor of the corridor, but because the floor increases, the FFR also increases.

In terms of the iso-Fed Funds curve, an increase in BFed is warranted to keep the FFR at a

target. Indeed, a higher BFed generates a decline in θ, as the monetary authority absorbs a

larger fraction of the illiquid assets. It also interesting to note that as BFed increases, the iso-Fed

funds curve eventually becomes horizontal. This reflects that in a satiation regime, the size of

the Fed’s balance sheet has no effect on the liquidity premium, and the iso-Fed funds is flat at

i
f
.

What are the implications for credit of these different configurations? Panel (b) shows that

as we move along the iso-Fed funds—by increasing BFed and im to keep the FFR constant—the

lending rate falls (and credit expands). The logic can be explained through a reformulation of

the Loan LP:

ib = im + χ+ +
(
χ− − χ+

)
· F (ω∗) · Eω

[
(Re)−γ |ω < ω∗

]
Eω
[
(Re)−γ

] . (30)

Notice that because we are moving across stationary equilibria with the same inflation, the real

lending rate moves one-to-one with ib. Equation (30) highlights that the reduction in liquidity

premia can offset the increase in the IOR, and hence configurations with higher IOR and balance

sheet may stimulate lending.

43We keep the rest of the parameters at the baseline values, listed in Table 2. Notice the difference with the
exercise above in which we changed only the IOR.
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Figure 4: Interest on Reserves and Balance Sheet as Independent Instruments

Note: the figure is constructed with the parameters obtained from the baseline calibration.

In Panels (c) and (d), we turn to analyze pass-through. Specifically, we change the IOR to

achieve a 25bps increase in the FFR and show how the lending rate and the FFR vary depending

on the level of the Fed balance sheet. In the figure, we measure the pass-through as the changes

in the lending rate and the FFR relative to the increase in the IOR. As the figure shows, both

the pass-through for the FFR and the lending rate are increasing in the size of the balance sheet.

Moreover, as the balance sheet reaches a level close to satiation, the pass-through becomes close

to one, as anticipated in Proposition 8.

Discussion. This section’s analysis is useful for framing ongoing policy discussions on the

reform of the monetary policy frameworks in the US and Europe.44 Following the large-scale

asset purchases that started in 2008, policy circles (see e.g. Potter, 2017; Logan, 2019) have

been discussing whether to operate in a system where the Fed Funds rate trades slightly above

the interest on reserves or to return to the pre-2008 corridor system, where it traded closer

44See the Fed’s Review of Monetary Policy Strategy Tools and Communication.
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to the discount window. These central banks are also re-evaluating whether to maintain their

large balance sheets, or to unwind their large asset holdings. Importantly, these discussions have

taken place in the context of a change in the regulatory landscape, including increases in capital

requirements and the liquidity ratios. As important disruptions occurred first in October 2019,

with the repo market freeze, and more recently, a renovation of large-scale asset purchases by

these central banks in the context of the Covid-19 crisis the design of their operating frameworks

will likely continue to be a macroeconomic priority in the coming years.

These discussions cannot be framed in the context of the New Keynesian model, where

once a policy target is set, there is a unique balance sheet consistent with that target and the

pass-through from policy to credit rates is always one. By contrast, the model here provides

a unified framework to assess these issues. A key takeaway from this section is that the same

interbank target can result from multiple configurations of balance sheet size and interest on

reserves. For example, we can obtain the same interbank rate with a lower interest on reserves

and a lean balance sheet (in a corridor system) or with a higher interest on reserves and a large

balance sheet (nearer to satiation in a floor system). We highlight that these configurations have

different implications for bank credit. A floor system produces lower lending rates, increases bank

credit, and results in a higher policy pass-through than a corridor system that implements the

same interbank target. Furthermore, both systems interact differently with capital requirements:

higher interest on reserves can actually expand credit in a corridor system with lax capital

requirements—although it always contracts credit near satiation.

In practice, central banks have to deal with many policy objectives, including price, macroe-

conomic, and financial stability. Our model suggests that perhaps a monetary policy should

not tie its hands to either a floor or a corridor system. Doing so inhibits the ability to balance

multiple objectives.

5.3 Inspecting the Decline in Lending during the Great Recession

We now examine the sources of the credit crunch that occurred during the 2008 financial crisis.

Motivated by the severe collapse of the interbank market and the rise in discount window facilities,

we ask: What was the contribution of liquidity factors to the lending decline? What was the

contribution of unconventional open market operations in helping to mitigate the credit crunch?

Additional institutional features. In order to map the model to the data in the period of

study, it is important to take into account two additional institutional features of the interbank

market. First, many participants in the Fed funds market (i.e., “non-depository institutions”)

did not have access to interest on reserves at the Federal Reserve. As has been well observed,

this feature has a created a “leak” in the corridor system (i.e., the Fed funds rate was below

37



the IOR) once the Fed started paying interest on reserves in October 2008.45 Considering that

the Fed funds rate is actually an average of all interbank market rates, what this data pattern

reveals is that trades have been dominated by non-depository institutions lending below the

IOR. Basic arbitrage, however, indicates that the remaining trades that are performed between

banks still trade above the IOR. In order to have a data analogue to the FFR in the model,

we therefore need to reconstruct a FFR series that excludes transactions with non-banks. A

second related feature is that government bonds provide collateral for many trades within the

repo market where depositary and non-depositary institutions participate. As a result, the rate

on government bonds has often traded below the interest on reserves. While we abstract from

these practical features in our baseline model, mapping the model to the data for some of the

post-crisis period requires taking these features into account. In Appendix K.3, we present an

extension of the model with non-depository institutions and a collateral value for government

bonds and show how the calibration can be adjusted to incorporate these features.

Measurement procedure. We present an estimation procedure to infer the sequence of the

underlying structural parameters. The estimation procedure is in the spirit of the business cycle

accounting methodology in Chari, Kehoe, and McGrattan (2007), but here we seek to account

for the source of the credit decline. We take 2006.1-2014.12 as a sample period. The procedure

follows the basic approach we used for the calibration of the steady state in Section 5.1, which

we now repeat by feeding in the data inputs for each point in time. In addition, we need to

incorporate three factors concerning dynamics. First, we account for the fact that equity may

be away from steady state and that equity growth is not necessarily zero. To capture these

dynamics, we feed in the path of real bank equity growth obtained from the data, then compute

a residual between the observed equity growth and the one predicted by the model, which we

denote by ξt.
46 Second, we feed the path for the nominal quantity of reserves, as well as the other

changes in the Fed balance sheet resulting from conventional and unconventional open market

operations.47 Third, inflation may also be away from the steady state value. To determine the

real demand for assets, one-period ahead inflation expectations are needed. (Notice that thanks

to a unitary IES, the dividend rate is a constant fraction of equity, and future bank values do not

affect the real demand for assets). In the data, we observe only the nominal rates and the ex-post

real rates. Since inflation expectations were anchored around a target, we assume a constant

45This so-called leak held for most of the post-crisis period, and after March 2019, the FFR again started
trading strictly above the IOR.

46At each point in time, the procedure generates a bank equity return, given banks’ portfolios and returns. The

residual equity growth equation is ξ̂t ≡ β
(

1 +
(
R̂b

t − 1
) (

1 + d̄t + b̄Fed
t − āt

)
−
(
R̂d

t − 1
)
κt

)
− Et+1/Et.

47Notice that to compute the steady state we do not have to specify the level of nominal balances to determine
allocations since the model has a long-neutrality property; (i.e., the nominal balances only matter for the price
level).
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(a) Volatility Shock σω (b) Matching Shock λ (c) Credit Demand Shock Θb

(f) Equity Losses ξ (g) Credit Risk σz (h) Bargaining Power η

Figure 5: Deduced shocks

Note: This figure presents the shocks that generate the simulations in the model that replicate the data

counterparts as described in the text.

expectation of inflation equal to 2 percent in the simulations.48 Importantly, this does not mean

that the model mechanically produces a constant inflation. The price level in the model is still

determined endogenously based on (23).

Deduced shocks. In Figure 5, we report the key deduced shocks that fit the data. The

series for these shocks are stable until the financial crisis: Around Lehman, we see both a sharp

decline in the matching efficiency and an abnormally high volatility of withdrawals. These shocks

gradually return to their pre-crisis levels, with matching technology coming back at a slower pace

compared to volatility. On the other hand, credit demand rises in the run-up to the crisis, and

begins to fall in mid 2009, experiencing a substantial decline that continues for years. Credit

risk also begins at a low level, and experiences an upward trend, with spikes around Lehman.

The evolution of η points to a rise in the bargaining power of borrowers: this possibly captures

changes in the outside options which the simple bargaining problem does not capture explicitly

(see Afonso and Lagos, 2015). Likewise, the accounting produces moderate equity losses at the

pre-Lehman phase, which also spike around that period.

48Results would be similar if we consider expectations of inflation equal to the realized inflation.
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Price level. It is important to highlight that we are matching exactly the path of the price

level. In fact, we are matching the banks’ portfolios in the data for real reserves while we also

feed the nominal amount of reserves to the model. Considering that the amount of nominal

reserves increased by more 50 times in the data and that the price level was fairly constant, this

implies an increase in the nominal holdings of reserves of around 50 times.49 Overall, holdings of

liquid assets had a much more modest increase. Thus, the model rationalizes the fairly constant

price level partly through an increase in the real demand for liquid assets and partly through an

increase in the share of liquid assets held as reserves.50

Lending Decline Decomposition. Equipped with the estimated shocks, we can feed in dif-

ferent combinations of shocks and recompute the model. In particular, we proceed to shut down

a subset of shocks at a time. Because our baseline parameters exactly match the data by con-

struction, the difference in a given simulation relative to the baseline is a measure of the partial

contribution of each shock to the observed time-series. The counterfactuals are generated as

follows. We take the estimated parameters for 2006.1 as the starting point.51 For each date,

we input the bank equity and the deduced parameter values. We then ask, What would be

the equilibrium outcome if a particular subset of shocks did not occur (i.e., if the value of the

parameter for that subset were the same as the 2006.1 value)?52 Figure 6 reports the results.

We present four variables: credit (panel a), the liquidity premium (panel b), discount window

loans (panel c) and interbank market (panel d). We consider three counterfactual scenarios: (i)

no liquidity shocks (i.e., no shocks to σ or λ), (ii) no credit demand shocks (no change to Θb),

and (iii) no equity losses and no credit risk (ξ = 0 and no change in σδ).

The importance of allowing for interbank market shocks can be seen from panels (c) and (d).

Absent the matching shock, one would have observed an increase in trade in interbank market

loans around the Lehman episode. Similarly, the model would predict very little activity in the

discount window absent the volatility shock. Panel (a) shows that these interbank markets shocks

indeed played a role in reducing credit. In the peak of the crisis, credit would have been about

5 percent higher without liquidity shocks. After 2011, the effects of interbank market frictions

become very small, consistent with the reduction in liquidity premia and in response to the Fed

49The 50-fold increase is measured using Total Reserves of Depository Institutions (Totressns), which includes
vault cash. Excluding vault cash, the jump increases by more than 100 times, reflecting that the Fed remuneration
of reserves does not apply to vault cash.

50Recall also that the model predicts that conventional open market operations have no effects on quantities
or prices either when the interbank market shuts down or when banks are satiated. The period around Lehman
and the period post 2010, respectively, come close to those two scenarios.

51Alternatively, we could take an average of pre-crisis values and obtain very similar effects.
52To solve for the counterfactual equilibrium outcome, we can obtain, for given structural parameters, the

beginning of period equity and policies
{
Rm, Rw, Bfed, Gfed

}
, the values for (Rb

t , θt) consistent with the market
clearing for loans and market tightness in the interbank market. We do this fall for every period in the simulating
sample. Notice that if we use the original parameters estimated, we recover the observed data series.

40



(a) Credit

 B
e

a
r
 S

te
a

r
n

s

 L
e

h
m

a
n

(b) Liquidity Premium

 B
e

a
r
 S

te
a

r
n

s

 L
e

h
m

a
n

(c) Discount Window

 B
e

a
r
 S

te
a

r
n

s

 L
e

h
m

a
n

(d) Interbank Market Volume

 B
e

a
r
 S

te
a

r
n

s

 L
e

h
m

a
n

Figure 6: Counterfactuals

Note: This figure presents the simulations of the model for the following four scenarios: (i) baseline sim-

ulations with all shocks that replicate the data; (ii) simulations without interbank market shocks; (iii)

simulations without credit demand shocks; (iv) simulations without equity losses and credit risk.

policies which alleviated liquidity risk.

Loan demand plays a modest role in explaining the decline in credit in the early stages of the

crisis. However, after 2010, it becomes the dominant factor in explaining a persistent reduction in

the level of bank credit. Finally, the combination of credit risk and equity losses has a relatively

moderate impact around the crisis, and its importance is reduced gradually through 2011-2012.

From conventional to unconventional OMO. Next, we investigate the quantitative role

of unconventional open market operations. We ask two questions: First, what would have been

the decline in total credit absent loan/MBS purchases by the Fed?53 Second, we ask what would

have been the decline had the Fed conducted purchases of government bonds instead of MBS?

53Technically, the Fed purchased MBS among other assets, which take to be analogous to loans in the model.
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(a) OMO Counterfactuals (b) Bfedt in the data

Figure 7: Role of unconventional open market operations

Note: Panel (a) presents the declines in credit for the benchmark simulations if the Fed had not carried

unconventional open market operations (i) and if the Fed had used conventional open market operations

instead of unconventional ones. Panel (b) presents the data counterpart for Bfed.

Figure 7 shows that around mid-2010 the drop in lending would have been 1.8 percent larger

should the Fed have not engaged in unconventional OMO. This result showcases that open market

operations were important to mitigate the collapse in total credit, notwithstanding the crowding

out effect—notice that the amount of loans purchased by the Fed reaches about 10 percent of

the stock. It is also interesting to note that while the size of the operations continues to increase

after 2010, the overall effect is smaller. In fact, the interventions contribute to expand credit by

reducing the liquidity risk of banks. Once, the interbank market shocks return to more normal

conditions, these operations have a modest impact.54

Figure 7 also shows that if the Fed had purchased government bonds instead of loans, the

decline in total credit would have been about the same as if the Fed had not conducted open

market operations at all. In other words, it was key that the Fed engaged in unconventional open

market operations to mitigate the decline in credit. Essentially, through unconventional open

market operations, the Fed absorbs more illiquid assets in its balance sheet, which is especially

stimulating when interbank market frictions are severe. On the other hand, conventional open

market operations exchange assets of similar degrees of liquidity and have more modest effects.

Taking stock. An important quantitative lesson from the analysis is that liquidity shocks can

indeed be important determinants of credit supply. In our model, these shocks manifest as a

more severe matching friction between banks and by a larger volatility in deposit withdrawals.

These shocks do not have to be interpreted literally: in practice, they can be associated with

54The importance of interbank market frictions resonated again in the recent “repo” crisis of October of 2019
and amid the COVID-19 crisis. Even in a regime with large excess reserves, increases in liquidity demand triggered
interbank rates to hit the ceiling of the corridor rate, until the Fed activated a program of large-scale OMO.
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an increase in counterparty risk, resulting from, for example, from imperfect information on

risk exposure. It is also important to note that while we treat these shocks as independent, they

could have a common source. For example, the liquidity shocks that we uncover in the estimation

could have been triggered by equity losses. Our analysis reveals that that while equity losses

per se may have had modest impact on lending during the crisis, there were potentially major

indirect effects through the amplification of liquidity frictions. Similarly, the large decline in

credit demand is suggestive of a deeper phenomenon by which an initial contraction in the the

level of credit eventually translates into a decline in the loan demand. More research is needed to

shed light on these interactions. A key takeaway for policy is the importance of unconventional

open market operations for tackling instability in the interbank market. Failure to address such

instability may lead liquidity frictions to spread to the rest of the financial system and ultimately

to the real economy.

6 Conclusion

Historically, the topics of money and banking have been studied and taught together. Despite

this historical connection, modern monetary models developed, to a large extent, independently

from banking. The financial crises of the last decades in the United States, Europe, and Japan,

however, have revealed the need for a unified framework.

This paper presents a new tractable framework for studying money and banking within a

unified setup. Frictions in the interbank market give rise to a bank liquidity management problem

and a credit channel of monetary policy. In the model, banks engage in maturity transformation,

which exposes them to liquidity risk. To insure against unexpected deposit withdrawals, banks

hold reserves as a precautionary buffer. Banks that face large withdrawals deplete their reserves

and resort to a frictional OTC interbank market and discount window borrowing. Monetary

policy has the power to alter the liquidity premium and, in that way, to affect real economic

activity.

We consider two applications of the model. In one application, we use the model to study

aspects related to monetary policy pass-through and the implementation of monetary policy. In

the second one, we study the contribution of liquidity factors to the decline in credit in the 2008

financial crises. There are other possible applications, ranging from historical episodes like the

Friedman and Schwartz (2008)’s hypothesis of the liquidity contraction of the Great Depression to

modern policy questions regarding interactions between monetary policy and financial regulation.
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Table 3: Model Variable List
Interest rates
īf average interbank market rate
ib nominal interest rate on loans
id nominal interest rate on deposits
ig nominal interest rate on bonds
Individual bank variables
Portfolios

b̃ bank loans in lending stage
m̃ reserves held by banks at end of lending stage

d̃ bank deposits at end of lending stage
g̃ government bonds at end of lending stage
b loans at beginning of lending stage
m reserves held at beginning of lending stage
d deposits owed at beginning of lending stage
g government bonds at beginning of lending stage
b̄ portfolio share in loans
m̄ portfolio share in reserves
d̄ portfolio share in deposits
ḡ portfolio share in bonds
Others
c bank consumption
Ω risk-adjusted value of bank equity
Re return on equity
e real equity
µ Lagrange multiplier on capital requirement constraint
V l .V b value of the bank at lending/balancing stage
V value of the bank as a function of bank equity
Interbank market
ω withdrawal shock
s surplus at beginning of balancing stage after shock ω
θ market tightness in interbank market
f interbank market loans
w discount window loans
Ψ+ probability that a bank with surplus finds a match
Ψ− probability that a bank with deficit finds a match
Aggregates
E aggregate reak bank equity
Θx

t intercept demand x ∈ {g, b, d,m}
εx elasticity of demand x ∈ {g, b, d,m}
B,Bf bank loan supply / firm demand
D,Dh bank / household deposits
M,Mh reserve / currency holdings
G,Gh bank / household gov. bond holdings
P price level
π inflation
Government and Fed Policies
im nominal interest rate on reserves
iw nominal interest rate on discount window loans
GFA Total Supply of government bonds
GFed Fed holding of government bonds
MFed supply of reserves
BFed Fed holdings of private loans
WFed discount window loans

1



A Expressions for {Ψ+,Ψ−, φ, i
f
, χ+, χ−} in Proposition 1

Here we reproduce formulas derived from Proposition 1 in the companion paper, Bianchi and
Bigio (2017). The companion paper includes the market structure that delivers these functional
forms. This proposition gives us the formulas for the liquidity yield function and the matching
probabilities as functions of the tightness of the interbank market. The formulas are the following.

Given θ, the market tightness after the federal funds trading session is

θ̄ =

{
1 + (θ − 1) exp (λ) if θ > 1

1 if θ = 1
(1 + (θ−1 − 1) exp (λ))

−1
if θ < 1

.

Trading probabilities are given by

Ψ+ =

{
1− e−λ if θ ≥ 1

θ
(
1− e−λ

)
if θ < 1

, Ψ− =

{(
1− e−λ

)
θ−1 if θ > 1

1− e−λ if θ ≤ 1
. (A.1)

The reduced-form bargaining parameter is

φ ≡


θ
θ−1

((
θ̄
θ

)η
− 1
)

(exp (λ)− 1)−1 if θ > 1

η if θ = 1
θ(1−θ̄)−θ̄
θ̄(1−θ)

((
θ̄
θ

)η
− 1
)

(exp (λ)− 1)−1 if θ < 1

,

and i
f

= (1− φ)iw + φim. The slopes of the liquidity yield function are given by

χ+ = (iw − im)

(
θ̄

θ

)η (
θηθ̄1−η − θ
θ̄ − 1

)
and χ− = (iw − im)

(
θ̄

θ

)η (
θηθ̄1−η − 1

θ̄ − 1

)
. (A.2)
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B Compendium: Equilibrium Conditions

B.1 Transitional Dynamics

Here we present the set of equilibrium conditions of the model. Given a sequence of government
policy

{
imt , i

w
t , i

g
t , B

Fed
t ,MFed

t , GFA
t , GFed

t , T ht , Tt
}

that satisfies the Fed’s and fiscal authorities
budget constraint, the system that characterizes equilibrium yields a solution for individual
bank variables,

{
b̄t, āt, d̄t, c̄t,Ωt, vt

}
, aggregate variables, {Bt,Mt, Dt, Gt, Et}, and a system of

prices and real returns {Pt, Rb
t , R

m
t , R

g
t , R

d
t , χ̄t

+, χ̄t
−}. The system features 18 unknowns to be

determined for all t. There is only one endogenous aggregate state variable, Et from which the
entire equilibrium is solved for.

Individual Bank Variables. The portfolio solution to
{
b̄t, āt, d̄t

}
and the values of {Ωt, vt}

are the solutions and value of the following problem:

Ωt ≡ max
{b̄,ā,d̄}≥0

{
Eω
[
Rb
t b̄+ Rm

t ā−Rd
t d̄+ χ̄t(ā, d̄, ω)

]1−γ} 1
1−γ

, (B.1.1)

b̄+ ā− d̄ = 1,

d̄ ≤ κt.

The value of the bank’s problem is

vt =
1

1− γ
[
1 +

(
β(1− γ)Ω1−γ

t vt+1

) 1
γ

]γ
. (B.1.2)

Dividends depend on {Ωt, vt} via

c̄t =
1

1 + [β(1− γ)vt+1Ωt+1
1−γ]1/γ

. (B.1.3)

This block of equations yields the equations needed to obtain {b̄t, āt, d̄t, c̄t,Ωt, vt} for a given path
for real rates

{
Rb
t , R

m
t , R

d
t , χ̄t

}
.

Aggregate Banking Variables. Next, homogeneity in policy functions gives us the aggre-
gate bank portfolio:

Bt+1 = Ptb̄t(1− c̄t)Et (B.1.4)

Dt+1 = Ptd̄t(1− c̄t)Et (B.1.5)

At+1 = Ptāt(1− c̄t)Et. (B.1.6)

Real aggregate equity evolves according to

Et+1 =
Pt
(
(1 + ibt+1)b̄t + (1 + imt+1)m̄t + (1 + igt+1)ḡt − (1 + idt+1)d̄t

)
(1− c̄t)Et − (1 + iwt+1)Wt+1 − PtTt

Pt+1

.

(B.1.7)
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This block of equations determines {Bt, Gt, Dt, Et} given a path for inflation and nominal rates—
which together determine real rates—and transfers.

Market Clearing Conditions. The real rates and the path for prices follow from the market
clearing conditions in all the asset markets:

Bt+1 +BFED
t+1

Pt
=Θb

t

(
Rb
t

)εb , (B.1.8)

Dt+1

Pt
=Θd

t

(
Rd
t

)εd , (B.1.9)

MFed
t+1 =Mt+1 + PtΘ

m
t (Rm

t )εm , (B.1.10)

Gt+1 =GFA
t+1 −

(
GFed
t+1 + PtΘ

g
t (Rg

t )
εg
)

(B.1.11)

Rm
t =

1 + imt
Pt+1/Pt

. (B.1.12)

Using these market clearing conditions, we can determine {m̄, ā}

Ptāt · (1− c̄t) · Et = M̃Fed
t+1 −Mh

t+1 +Gt+1 −GFed
t+1 −Gh

t+1. (B.1.13)

Mh
t+1 + Pt · m̄t(1− c̄t)Et = M̃Fed

t+1 . (B.1.14)

The last term is the definition of Rm
t . This block determines {Pt, Rb

t , R
m
t , R

d
t } given aggregate

bank variables. The return for the government bond comes from the clearing of government
bonds at the balancing stage. This condition is:

Rg
t =

R
m
t + χ+

t if PtΘ
g
t

(
Rm
t + χ+

t

)εg ≤ Gs
t −GFed

t[
Gst−GFedt

PtΘ
g
t

]1/εg
otherwise

To close the system, we need the equations that determine χt.

Interbank Market Block. We need to determine χ̄t.This follows from the conditions ob-
tained from Proposition 1:

S̃−t = (1− c̄t)Et ·
� ω∗t

1

s̃(ω)dΦ and S̃+
t = (1− c̄t)Et ·

� ∞
ω∗t

s̃(ω)dΦ

complete set of where we employ the definition of reserve balances prior to the exchange of
government bonds:

s̃(ω) = āt +

(
1 + idt+1

1 + imt+1

)
ωd̄t − ρd̄t(1 + ω).

The market tightness is defined as

θt =
S̃−t

S̃+
t − ḡt

,

and the deposit threshold:
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ω∗t ≡ −
āt
d̄t
− ρ

Rdt+1

Rmt+1
− ρ

.

From here, discount-window loans are

Wt = (1−Ψ−(θt))
(
S̃−t − ḡ−t

)
, (B.1.15)

and the average interbank market rate,
¯
ift , is

i
f

t = φ(θt)i
m
t + (1− φ(θt))i

w
t .

This system of equations gives us

χ−t = Ψ−t

(
i
f

t − imt
)

+
(
1−Ψ−t

)
(iwt − imt ) and χ+

t = Ψ+
t

(
i
f

t − imt
)
. (B.1.16)

Note that here we take the probabilities Ψ−t and Ψ+
t as given functions of market tightness, as in

the main text. This block determines χ̄t and the amount of discount window loans, Wt. Note that
so far, we have provided enough equations to solve for

{
b̄t, āt, d̄t, c̄t,Ωt, vt

}
, {Bt,Mt, Dt, Gt, Et},

and {Pt, Rb
t , R

m
t , R

d
t , R

g
t , χ̄t}. The value of Wt enters in the Fed’s budget constraint.

Law of Motion for Aggregate Equity. A useful expression is obtained combining the indi-
vidual laws of motion with the Fed’s budget constraint:

Et+1 =
(
1 +

(
Rb
t+1 − 1

) (
b̄t + b̄Fedt

)
−
(
Rd
t+1 − 1

)
d̄t
)

(1− c̄t)Et (B.1.17)

where b̄Fedt ≡ BFed
t+1 / (Pt · (1− c̄t)Et) . Equation (B.1.17) shows that portfolio choices, market

returns, and next-period Fed policies and price level determine next-period aggregate real equity.

Consolidated Government Budget Constraint. The government’s budget policy se-
quence

{
im, iwt ,Wt, B

Fed
t ,MFed

t , T, T h
}

satisfies the following constraint:

(1 + imt )Mt +Mh
t +BFed

t+1 −
(
GFA
t+1 −GFed

t+1

)
+W Fed

t+1 =

MFed
t+1 + (1 + ibt)B

Fed
t − (1 + igt )

(
GFA
t −GFed

t

)
+ (1 + iwt )W Fed

t + Pt(Tt + T ht ). (B.1.18)

and the tax on banks satisfy

Tt = (im − π) β
Mt

Pt
+ (igt − πt)

Gt

Pt
−
(
ibt − πt

) BFed
t

Pt
− (iwt − imt )

Wt

Pt
. (B.1.19)

B.2 Stationary Equilibrium

Consider now the equilibrium conditions for a stationary equilibrium. Inflation is constant.
These are summarized by replacing time subscripts for steady state subscripts ss . Individual
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Bank Variables. For the individual bank variables, we have

css = 1− β 1
γ Ω1/γ−1

ss (B.2.1)

vss =
1

1− γ

 1

1−
(
βΩ1−γ

ss

) 1
γ

γ

(B.2.2)

Ωss ≡ (1− τ ss) max
{b̄,ā,d̄}≥0

{
Eω
[
Rb
ssb̄+Rm

ssā−Rd
ssd̄+ χ̄(ā, d̄)

]1−γ} 1
1−γ

(B.2.3)

b̄+ ā− d̄ = 1 (B.2.4)

d̄ ≤ κ (B.2.5)

where {b̄ss, āss, d̄ss} are the optimal choices of {b̄, ā, d̄} in the problem above.

Market Clearing Conditions. The real rates and the path for prices follow from the market
clearing conditions in all the asset markets:

Bt+1 +BFED
t+1

Pt
=Θb

t

(
Rb
t

)εb , (B.2.6)

Dt+1

Pt
=Θd

t

(
Rd
t

)εd , (B.2.7)

MFed
t+1 =Mt+1 + PtΘ

m
t (Rm

t )εm , (B.2.8)

Gt+1 =GFA
t+1 −

(
GFed
t+1 + PtΘ

g
t (Rg

t )
εg
)

(B.2.9)

Rm
t =

1 + imt
Pt+1/Pt

. (B.2.10)

The last term is the definition of Rm
ss. This block determines {Pt, Rb

t , R
m
t , R

d
t } given aggregate

bank variables. The return for the government bond comes from the clearing of government
bonds at the balancing stage. This condition is:

Rg
ss =

R
m
ss + χ+

ss if Θg
ss (Rm

ss + χ+
ss)

εg ≤ Pt
(
GFA
ss −GFed

ss

)[
GFAss −GFedss

PtΘ
g
ss

]1/εg
otherwise

Notice that in a stationary equilibrium, the price level is pinned down by MFed
t+1 , using the

demand for reserves and currency. This is because, reserves are obtained as a residual, given the
indifference. To close the system, we need the equations that determine χt.

Interbank Market Block. We need to determine χ̄ss.This follows from the conditions
obtained from Proposition 1:

S̃−ss = (1− css)Ess ·
� ω∗ss

1

s̃(ω)dΦ and S+
ss = (1− css)Ess ·

� ∞
ω∗ss

s̃(ω)dΦ
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where we employ the definition:

s(ω) = āss +

(
1 + idss
1 + imss

)
ωd̄ss − ρd̄ss(1 + ω). (B.2.11)

The market tightness is defined as

θss =
S̃−ss

S̃+
ss − ḡss

. (B.2.12)

and the deposit threshold:

ω∗ss ≡ −
āss
d̄ss
− ρ(

Rdss
Rmss
− ρ
) . (B.2.13)

From here, discount window loans are

Wss = (1−Ψ−(θss))S̃
−
ss, (B.2.14)

and the average interbank market rate

i
f

ss = φ(θss)i
m
ss + (1− φ(θss))i

w
ss.

This system of equations gives us

χ−ss = Ψ−ss

(
i
f

ss − imss
)

+
(
1−Ψ−ss

)
(iwss − imss) and χ+

ss = Ψ+
ss

(
i
f

ss − imss
)
. (B.2.15)

Note that here we take the probabilities Ψ−ss and Ψ+
ss as given functions of market tightness, as

in the main text. This block determines χ̄ss and the amount of discount window loans, Wss.

Law of Motion for Aggregate Equity. The steady state condition for the law of motion
of bank equity is:

1/β =
(
1 +

(
Rb
ss − 1

) (
b̄ss + b̄Fedss

)
−
(
Rd
ss − 1

)
d̄ss
)

(B.2.16)

where b̄Fedss ≡ BFed
t+1 / (Pt · (1− c̄ss)Ess) .

Consolidated government budget constraint. The policy sequence satisfies the following
consolidated budget constraint:

Tss+T
h
ss =

[
(imss − πss)

Mt+1

Pt
+ (igss − πss)

GFA
t+1 −GFed

t+1

Pt
−
(
ibss − πss

) BFed

Pt
− (iwss − imss)

Wt+1

Pt

]
(B.2.17)

and the tax on banks, replacing market clearing, satisfies

Tss = Ess(1− c̄ss)
[
(imss − πss) m̄ss + (igss − πss) ḡss −

(
ibss − πss

)
bFedss − (iwss − imss)w̄ss

]
. (B.2.18)
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Portfolio
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Shock

ω
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s (ω)

Interbank
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Figure 8: Timeline diagram and banks’ balance sheet. For illustration purposes, it is assumed that banks do not accumulate
tovernment bonds g′ = 0 and that (m̃ = ρd̃)
.
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C Non-Financial Sector (Proof of Proposition 2)

This Appendix describes the non-financial sector of the model, which closes the general equi-
librium. The non-financial sector is composed of a representative household that supplies labor
and stores wealth in deposits, government bonds, currency, and owns shares a representative
firm. The firm uses labor for production and is subject to a working capital constraint. This
block delivers an endogenous demand schedule for loans, a supply for deposits, and a demand
for government bonds. Preference and technology assumptions are such that the equilibrium has
no feedback from future state variables to the asset demands at period t. The assumptions make
all the schedules static and autonomous. This formulation has two virtues: First, we can solve
the equilibrium allocations by solving the equilibrium in the deposit market and loan markets,
by solving the bank’s problem that takes these schedules as given. From then, since quantities
are consistent with an equilibrium demand equation from the non-financial sector, we know it
is satisfying market clearing in the labor market. If all asset markets clear, the goods market
also clear. The formulation is convenient because it allows us to focus on the banking system,
as we can effectively treat these schedules as exogenous functions with exogenous shocks to their
intercepts. We exploit this feature in the application.

The non–financial sector is populated by a representative household that saves in deposits,
currency, government bonds, and own shares of a productive firm. Assets are special, because dif-
ferent goods are bought with different assets. Similar assumptions are common in new-monetarist
models (Lagos et al., 2017). We see this formulation as a convenient way to obtain asset de-
mands. The firm is subject to a working capital constraint, that delivers a demand for loans.
The household’s Bellman equation is:

V h
t (G,M,D,Υ) = max

{cx,X′,Υ′,h}

∑
x∈{d,g,m}

Ux (cx) + ch − h1+ν

1 + ν
+ βhV h

t+1 (G′,M ′, D′,Υ′)

subject to the budget constraint:

Pt

 ∑
x∈{d,g,m}

cx + ch

+
∑

X∈{G,M,D}
X ′+qtΥ

′ =
∑

X∈{G,M,D}

(
1 + iXt

)
X+

(
qt + Ptr

h
t

)
Υ+zth−PtT ht ,

(C.1)
and the following payment constraints:

Ptc
d ≤

(
1 + idt

)
Dh, Ptc

g ≤ (1 + igt )G
h, Ptc

m ≤M. (C.2)

In the problem, the household supplies h hours and consumes four types of goods: cd are goods
subject to a deposits in advance constraints, (C.2): cg goods subject to a bond-in-advance
constraint, cm goods subject to a currency-in-advance constraint. The ch goods that are not
subject to any constraint and yield linear utility. The quasi-linearity in ch is key to produce
the static nature of demand schedules, because it allows to fix marginal utility to one in any
Euler equation. Labor supply is h and has an inverse Frisch elasticity of ν, the key parameter
for the effect of the loans rate on output. Also, note that βh is the household’s discount factor,
that can differ from the bankers discount factor. Equation (C.1) is the household’s nominal
budget constraint. The right hand side includes the value of the households portfolio of assets,
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G,M, and D. These assets earn nominal interest rates paid by banks, the government—currency
has no interest. The term Υ are firm shares, which can be normalized to 1.The nominal price
of the firm is qt, firm profits (in real terms) are rht . The wage is zt is earned on hours worked.
Finally, households pay a lump-sum tax T ht .

The portfolio G,M, and D matters because each asset is a store of wealth in the budget
constraint (C.1), but also, because each asset is a special medium of exchange in the corresponding
deposit, bond and currency goods markets. The preference specification (quasi-linear preferences)
is identical to the one in Lagos and Wright (2005). Furthermore, the fact that some goods must
be bought with specific assets, the transaction technology, is akin to the transaction technology
in new monetarist models (Lagos et al., 2017), but the trading protocol stemming from random
search is replaced by a Walrasian market. We employ the following utility specification for each
good:

Ud ≡
(
D̄t

)γd (cd)1−γd

1− γd , U
m ≡

(
M̄t

)γm (cm)1−γm

1− γm , and U g ≡
(
Ḡt

)γg (cg)1−γg

1− γg ,

where
{
γd, γg, γm

}
> 0. This specification delivers an iso-elastic asset demand with

{
D̄t, M̄t, Ḡt

}
as demand shifters. Notice that if cd = D̄t,we have ∂Ud/∂cd = 1 . The presence of the linear
term ch in the utility function implies that at the household optimum, we must have cd ≤ D̄t.
This bound will be achieved, in effect, when the household is satiated in deposits. The same
holds for cm and cg.

Next, we present the firm’s problem. The firm has access to a production technology that uses
hdt units of labor that are transformed into t+ 1 output via a production function yt+1 = At+1h

α
t .

Production is scaled by At+1, a productivity shock that works as a loan demand shifter. The
term At+1 is known at t. The firms uses bank loans to pay workers in the first period to maximize
shareholder value:

Problem 3 (Firm’s problem).

Pt+1r
h
t = max

{Bdt+1,ht}≥0
Pt+1yt+1 −

(
1 + ibt+1

)
Bd
t+1 +

(
1 + idt+1

) (
Bd
t+1 − ztht

)
subject to the working capital constraint, ztht ≤ Bd

t+1.

In the firm’s problem, the firm maximize, profits the sum of sales minus financial expenses.
The firm borrows Bd

t+1 from banks and uses these funds to finance payroll, ztht. What the firm
does not spend, is saved as deposits. Notice that in equilibrium, the firm does not save. The next
proposition is a generalized version of Proposition 2.55 It is more general because it describes
the equilibrium solution to the asset demands when asset markets for the household are not
necessarily satiated:

Proposition C.1 The household demand for loans, deposits, and government bonds are given
by,

Xh
t+1

Pt


= Θx

t

(
Rx
t+1

)εx
Rx
t+1 ≤ 1/βh

≥ X̄t Rx
t+1 = 1/βh

=∞ otherwise.

for x ∈ {m, d, g} .

55We use the superscript h to indicate the aggregate household holdings of a specific asset.
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Reduced Θx εx Θb εb

Structural X̄t

(
βh
)1/γx 1

γx
− 1 (αAt+1)−( ν+1

α−(ν+1))
(

ν+1
α−(ν+1)

)
Table 4: Structural to Reduced form Parameters

The firm’s loan demand is:
Bd
t+1

Pt
= Θb

t

(
Rb
t+1

)εb
Output and hours are given by:

yt+1 =

(
1

α

) α
α−(ν+1)

A
(ν+1)
ν+1−α
t+1

(
Rb
t+1

) α
α−(ν+1) and ht =

(
1

αAt+1

) 1
α−(ν+1) (

Rb
t+1

) 1
α−(ν+1) ,

and profits and the value of the firm are given by:

rht+1 = A
(ν+1)
ν+1−α
t+1

(
α−

α
α−(ν+1) − α−

ν+1
α−(ν+1)

)
·
(
Rb
t+1

) α
α−(ν+1) and qt =

∑
s≥0

(
βh
)s
rhs .

One important note is that Rx
t+1 for x ∈ {m, d, g} refers to the real return of each asset

correspondingly. In the context of the household, Rm
t+1 is the inverse inflation, not the real rate

on reserves. Table 4 is the conversion table from structural parameters to the reduced form
parameters of the non-financial sector demand functions.

The rest of the appendix proceeds with the proof.

Proof of Proposition 2.

Derivation of household deposit, bond and currency demands To ease the notation, we
remove the h superscripts from Problem C. Define the household’s net worth eh =

(
1 + idt

)
D +

(1 + imt )M+(1 + igt )G+(qt + rt) Υ−T ht , as the right-hand side of its budget constraint, excluding
labor income. Then, substitute ch from the budget constraint and employ the definition eh. We
obtain the following value function:

V h
t (G,M,D,Υ) = max

{cd,cg ,h,G′,D′,Υ′}
Ud
(
cd
)

+ U g (cg) + Um (cm)− h1+ν

1 + ν
+ eh (C.3)

+
zth−

(
Ptc

g + Ptc
d +D′ +G′ +M ′ + qtΥ

′)
Pt

+ βhV h
t+1 (G′,M ′, D′,Υ′)

subject to the payment in advance constraints in (C.2).

Step 1 - derivation of the deposit, currency, and bond-goods demand. The step is
to take the first-order conditions for

{
cd, cg, cm

}
. Since {G,D,M} enter symmetrically into the

problem, we express the formulas in terms of x ∈ {d, g,m}, an index that corresponds to each
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asset. From the first-order conditions in the objective of (C.3) with respect to D
Pt

, G
Pt

and M
Pt

, we
obtain that:

(Ux
cx) = 1 + µxt

where µxt ≥ 0 are associated multipliers payment in advance constraints in (C.2). The mul-
tiplier is activated when Ux

cx ≤ 1, and thus, cx ≤ Rx
t · X

Pt−1
. Solving for the multiplier to

µxt =max
{
Ux
cx

(
Rx
t · X

Pt−1

)
− 1, 0

}
. Combining this multiplier yields:

cx (X, t) = min

{
(Ux

cx)
−1 (1) , Rx

t ·
X

Pt−1

}
for x ∈ {d, g,m} . (C.4)

The expression shows that the deposit- and bond-in-advance constraints bind if the marginal
utility associated with their consumption is less than one. Note that

Ux
cx

(
X̄
)

=
(
X̄
)γx

x−γ
x

for x ∈ {d, g,m} , (C.5)

marginal utility is above 1, for X/Pt < X̄. Then, the marginal consumption as a function of real
balances is:

∂cx

∂ (X ′/Pt)
=

{
Rx
t X/Pt < X̄

0 otherwise
for x ∈ {d, g,m} .

We return to this conditions below to derive the demand for deposits and bonds by the non-
financial sector.

Step 2 - labor supply. The first-order condition with respect to labor supply yields a labor
supply that only depends on the real wage:

hνt = zt/Pt. (C.6)

Step 3 - deposit and bond demand. Next, we the derive household demand for deposits,
government bond and currency. By taking first-order conditions with respect to D′/Pt, G′/Pt,
and M ′/Pt the real balances of deposits, bonds and currency:

1 = βh
∂V h

t+1

∂ (X ′/Pt)
= βh

[
∂Ux

∂cx
· ∂cx

∂ (X ′/Pt)
+
∂Uh

∂ch
· ∂ch

∂ (X ′/Pt)

]
for x ∈ {d, g,m} .

The first equality follows directly from the first-order condition and the second uses the envelope
Theorem and the solution for the optimal consumption rule. If we shift the period in (C.4), by
one period, the first-order condition then becomes:

1

βh
=

{
∂Ux

∂cx
Rx
t X/Pt < X̄

Rx
t otherwise

for for x ∈ {d, g,m} .

Finally, once we employ the definition of marginal utility, we obtain:

1

βh
=

{(
X̄
)γx

(Rx
tX/Pt)

−γx Rx
t X/Pt < X̄

Rx
t otherwise

for for x ∈ {d, g,m} .
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Inverting the condition yields:

X/Pt =


X̄
(
βh
)1/γx

(Rx
t )

1
γx
−1 Rx

t < 1/βh

[X̄,∞) Rx
t = 1/βh

∞ Rx
t > 1/βh

for x ∈ {d, g,m} .

Thus, we have that

Θx
t = X̄t

(
βh
)1/γx

and εx =
1

γx
− 1 for x ∈ {d, g} .

This verifies the functional form for the household demand schedules. Next, we move to the
firm’s problem to obtain the demand for loans.

Firm Problem. In this appendix, we allow the firm to save in deposits whatever it doesn’t
spend in wages. From firm’s problem, if we substitute the production function into the objective
we obtain:

Pt+1r
h
t+1 = max

Bdt+1≥0,xt+1,ht≥0
Pt+1At+1h

α
t −

(
1 + ibt+1

)
Bd
t+1 +

(
1 + idt+1

) (
Bd
t+1 − ztht

)
subject to ztht ≤ Bd

t+1. Observe that

Pt+1At+1h
α
t −

(
1 + ibt+1

)
Bd
t+1 +

(
1 + idt+1

) (
Bd
t+1 − ztht

)
= Pt+1At+1h

α
t − ztht −

(
ibt+1 − idt+1

) (
Bd
t+1 + ztht

)
.

Step 4 - loans demand. Since ibt+1 ≥ idt+1, then it is without without loss of generality, that
the working capital constraint is binding, ztht = Bd

t+1. Thus, the objective is

Pt+1At+1h
α
t −

(
1 + ibt+1

)
ztht.

The first-order condition in ht yields

Pt+1αAt+1h
α
t =

(
1 + ibt+1

)
ztht.

Dividing both sides by Pt, we obtain

Pt+1

Pt
αAt+1h

α
t =

(
1 + ibt+1

) zt
Pt
ht.

Next, we use the labor supply function (C.6), to obtain the labor demand as a function of the
loans rate:

Pt+1

Pt
αAt+1h

α
t =

(
1 + ibt+1

)
hν+1
t → Rb

t =
αAt+1h

α
t

hν+1
t

. (C.7)

13



Once we have the wage bill, and the fact that the working capital constraint is biding,

Bd
t+1

Pt
= ht

ztht
Pt

= hν+1
t → ht =

(
Bd
t+1

Pt

) 1
ν+1

. (C.8)

We combine (C.7) and (C.8) to obtain the demand for loans:

Rb
t = αAt+1

(
Bd
t+1

Pt

)−1(
Bd
t+1

Pt

) α
ν+1

→ Bd
t+1

Pt
= Θt

(
Rb
t+1

)εb
(C.9)

Thus, the coefficients of the loans demand are

Θb
t = (αAt+1)−ε

b

and εb =

(
ν + 1

α− (ν + 1)

)
.

This concludes the elements of the proposition. Next, we present the formulas for hours, output
and the market price of shares.

Step 5 - Equilibrium Output and Hours. We replace the loans demand (C.9) into (C.8),
to obtain the labor market equilibrium:

ht =

(
1

αAt+1

) 1
α−(ν+1) (

Rb
t+1

) 1
α−(ν+1) .

We replace (C.8) into the production function to obtain:

yt+1 = At+1

(
1

αAt+1

) α
α−(ν+1) (

Rb
t+1

) α
α−(ν+1) → yt+1 =

(
1

α

) α
α−(ν+1)

A
(ν+1)
ν+1−α
t+1

(
Rb
t+1

) α
α−(ν+1) ·

The profit of the firm is given by:

rht+1 = yt+1 −Rb
t+1Bt+1 → rht+1 = A

(ν+1)
ν+1−α
t+1

(
α−

α
α−(ν+1) − α−

ν+1
α−(ν+1)

)
·
(
Rb
t+1

) α
α−(ν+1) .

Step 6 - Market Price. The asset price qt then is determine as:

qt =
∑
s≥1

(
βh
)s
rhs .

With this, we conclude that output, hours and the firm price are decreasing in current (and
future) loans rate. Throughout the proof we use the labor market clearing condition, so this
market clears independently of other markets. Thus, once we compute equilibria taking the
schedules as exogenous in the bank’s problem, it is possible to obtain output, hours, and house-
hold consumption from the equilibrium rates. By Walras’s law, if asset markets clear, so does
the goods market.

14



D Law of Motion for Aggregate Equity and Transfers

D.1 Disaggregate and Consolidate Government Budget Constraints

We present here the budget constraint of the monetary and fiscal authority separately and show
how the consolidation leads to (10).

The Fed’s budget constraint during the lending stage of period t is given by:(
M̃Fed

t −Mh
t

)
(1 + imt ) +BFed

t+1 +GFed
t+1 =

M̃Fed
t+1 +W Fed

t (iwt − imt ) +BFed
t (1 + ibt) +GFed

t (1 + igt ) + PtTt − INTt. (D.1)

The left-hand side are the uses of funds. The Fed used funds to pay for the interest on the
holdings of reserves, which equals the money supply M̃Fed

t minus the currency holdings Mh
t by

households, to buy new loans BFed
t+1 , and to buy government bonds GFed

t+1 . The Fed obtains funds

by issue reserves M̃Fed
t+1 ,through the income flow generated by the discount window, W Fed

t (iwt −imt ),
the value of the current portfolio of loans and government bonds, BFed

t and GFed
t , plus taxes on

banks PtTt and internal transfers from the Fed to the fiscal authority, INTt.

During the balancing stage of period t, the budget constraint is:

MFed
t+1 = M̃Fed

t+1 +W Fed
t+1 . (D.2)

This budget constraint simply tracks the increase in reserves that results from discount loans.

We can combining these two constraints, (D.1) and (D.2), and also use t − 1 period version
of (D.2), to obtain the balance sheet of the Fed from one lending stage to the other:

(1 + imt )
(
MFed

t −Mh
t

)
+BFed

t+1 +GFed
t+1 +W Fed

t+1 =

MFed
t+1 + (1 + iwt )W Fed

t + (1 + ibt)B
Fed
t + (1 + igt )G

Fed
t + PtTt − INTt. (D.3)

The fiscal authority’s budget constraint at t is given by,

(1 + igt )G
FA
t = GFA

t+1 + PtTt + INTt. (D.4)

In this expression, the left-hand side is the value of government bonds inclusive of the interest
rate. For the right hand side, GFA

t+1 are new issuances of government bonds, T ht are transfers to
households, which we derive in Section D.3 of this appendix.

We can substitute INTt from the this budget constraint into (D.3) to obtain a consolidated
version of the budget constraint:

(1 + imt )
(
MFed

t −Mh
t

)
+ (1 + igt )G

Gov
t +BFed

t+1 +W Fed
t+1 =

MFed
t+1 +GGov

t+1 + (1 + ibt)B
Fed
t + (1 + iwt )W Fed

t + Pt
(
Tt + T ht

)
. (D.5)

where GGov
t ≡ GFA

t −GFed
t ,is the issuances of government bonds, net of Fed holdings.
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D.2 Law of Motion for Bank Equity

Law of Motion of Real Aggregate Bank Equity. The law of motion of real aggregate bank
equity depends on assumptions made on the amount of transfers to banks. We choose transfers
to keep to isolate the effects.

On the bank’s side, replace m = m̃+ f + w, on the individual equity (14) to obtain:

ejt =

(
m̃j
t(1 + imt ) + g̃jt (1 + igt ) + b̃jt(1 + ibt)− d̃jt(1 + idt )− wjt (iwt − imt )− f jt (i

f

t − imt )− PtT jt
Pt

)
.

(D.1)

We iterate this law of motion forward one period, and integrate across banks, using the market
clearing conditions to obtain:

Et+1 =

(
M̃t+1 −Mh

t+1

)
(1 + iiort+1) + G̃t+1(1 + igt+1) + B̃t+1(1 + ibt+1)

Pt+1

−D̃t+1(1 + idt+1)−Wt+1(iwt+1 − iiort+1)− Pt+1

�
T jt+1dj

Pt+1

.

Multiplying and dividing by Pt on each term on the right hand side, we obtain:

Et+1 = Rm
t+1

(
M̃t+1 −Mh

t+1

)
+Rg

t+1G̃t+1 +Rb
t+1B̃t+1−Rd

t+1D̃t+1− (Rw
t+1−Rm

t+1)
Wt+1

Pt
−
�
T jt+1dj.

Now substitute the definition of portfolio shares from Proposition 3, to obtain

Et+1 = (Rb
t+1b̄t +Rm

t+1m̄t +Rg
t+1ḡt −Rd

t+1d̄t)Et(1− c̄t)− (Rw
t+1 −Rm

t+1)
Wt+1

Pt
−
�
T jt+1dj

= (āt +Rb
t+1b̄t −Rd

t+1d̄t)Et(1− c̄t) +
(
Rm
t+1 − 1

)
m̄t +

(
Rg
t+1 − 1

)
ḡt

−(Rw
t+1 −Rm

t+1)
Wt+1

Pt
−
�
T jt+1dj. (D.2)

Next, we demonstrate how two different tax rates for banks, lead to different laws of motions for
aggregate bank equity.

Tax Protocol. Consider a tax scheme that returns the nominal interest minus and the arbi-
trage income earned on banks, equation (11) shifted one period forward. We have that:
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Tt =

�
T jt+1dj =

(
iiort+1 − πt+1

) M̃t+1

Pt+1

+
(
igt+1 − πt+1

) G̃t+1

Pt+1

. . .

−
(
ibt+1 − πt+1

) BFed
t+1

Pt+1

− (iwt+1 − iiort+1)
Wt+1

Pt+1

.

Observe the equality,

ixt+1 − πt+1 = 1 + ixt+1 − 1− πt+1 =
(
Rx
t+1 − 1

) Pt+1

Pt
.

The tax is rearranged to the following expression:

�
T jt+1dj =

(
Rm
t+1 − 1

)
· Pt+1

Pt

M̃t+1

Pt+1

+
(
Rg
t+1 − 1

) Pt+1

Pt

G̃t+1

Pt+1

. . .

−
(
Rb
t+1 − 1

) Pt+1

Pt

BFed
t+1

Pt+1

− (Rw
t+1 −Rm

t+1)
Wt+1

Pt
. (D.3)

Equilibrium law of motion. Then, substitute the tax (D.3) inside the law of motion (D.2)
to obtain:

Et+1 = (m̄t + ḡt +Rb
t+1b̄t −Rd

t+1d̄t)Et(1− c̄t) +
(
Rb
t+1 − 1

)
b̄Fedt Et(1− c̄t)

=
(
1 +

(
Rb
t+1 − 1

)
b̄t −

(
Rd
t+1 − 1

)
d̄t
)
Et(1− c̄t) +

(
Rb
t+1 − 1

)
b̄Fedt Et(1− c̄t)

=
(
1 +

(
Rb
t+1 − 1

) (
b̄t + b̄Fedt

)
−
(
Rd
t+1 − 1

)
d̄t
)
Et(1− c̄t), (D.4)

where in the second line we use b̄t + m̄t = 1 + d̄t. We also use the definition where b̄Fedt ≡
BFed
t+1 / (Pt(1− c̄t)Et) . This is the law of motion for aggregate equity that appears in the body of

the text, equation (19).

D.3 Household Transfers

Next, recall that clearing in the market for money is given by:

M̃Fed
t = M̃t +Mh

t .

and similarly for government bonds:

GFA
t = GFed

t +Gt +Gh
t .

Recall that: �
T jt dj = imt

M̃t

Pt
+ igt

G̃t

Pt
+ ibt

B̃Fed
t

Pt
− W Fed

t (iwt − imt )

Pt
.

To derive the law of motion for aggregate equity, we combine the consolidate the Fed’s budget
constraint with the budget constraint of the fiscal authority. Then, we net out the holdings of
household bonds. From the resulting budget, we combine this with the bank’s budget constraint
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and use the market clearing conditions. Next, take the budget constraint of the consolidated
government. Similarly, we can add the fiscal authority’s budget constraint into (10) to obtain:

Pt
(
T ht + Tt

)
= M̃Fed

t (1+imt )+GGov
t (1+igt )+BFed

t+1 −M̃Fed
t+1 −GGov

t+1 −W Fed
t (iwt − imt )−BFed

t (1+ibt),

and using the clearing conditions and expressions for government debt we obtain:

T ht =
Gh
t (1 + igt )−Gh

t+1 + ∆BFed
t −∆M̃Fed

t −∆G̃t

P
.

E Proof of Proposition 3

E.1 Proof of Item (i)

E.1.1 Steps in the Proof of Item (i) of Proposition 3

The proof of item (i) is carried out in four steps. Along the proof, we prove results in greater
generality, for the case where the supply of government bonds is enough to satisfy all payment
needs by banks, as assumed in the body of the text. We specialize the results to the case
considered in the paper. The sequence of steps are the following:

Step 1. We first show that there exists a function Vt (e) with a single state variable, e, such
that Vt (e) = V l

t (g, b,m, d, f, w) where e is defined in terms of end-of-balancing stage variables:

e ≡ (1 + imt )m+
(
1 + ibt

)
b−

(
1 + idt

)
d+ (1 + igt ) g − (1 + i

f

t )f − (1 + iwt )w

Pt
(1− τt).

Step 2. The second step is to , we show that V b
t (g̃, b̃, m̃, d̃, ω) = βVt (e′) is given by:

e′ =

(
Rb
t+1

b̃

Pt
+Rm

t+1

(m̃+ g̃)

Pt
−Rd

t+1

d̃

Pt
+ Z (s̃)

)
(1− τt+1)

where
Z (s̃) = max

g′≥0

(
Rg
t+1 −Rm

t+1

)
g′ + χ̄t+1(s̃− g′)).

In tandem with Step 1, this shows that there’s a recursive representation for the bank’s problem,
with a Bellman equation that depends exclusively on equity Vt (e).

Step 3. The third step is to characterize the equilibrium in the government bonds market during
the balancing stage. Two special cases of that characterization are considered in the paper. If
banks hold government bonds at the lending stage, and there is a surplus of reserves after the
government bond market opens at the balancing stage, then we can show that Rg

t+1 = Rm
t+1+χ̄+

t+1.
The other case occurs when Rg

t < Rm
t + χt, and in that case, we show that banks cannot hold

government bonds during the lending stage—only households hold them.
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Step 4. Then final step is to show that if Rg
t+1 ≤ Rm

t+1 + χ̄+
t+1, future equity can be written in

terms of end-of-lending stage variables:

e′ =

[
Rb
t+1

b̃

Pt
+Rm

t+1

(
m̃

Pt
+

g̃

Pt

)
−Rd

t+1

d̃

Pt
+ χ̄t+1

(
g̃

Pt
+
m̃

Pt
,
d̃

Pt
, ω

)]
(1− τt+1).

This last step is key to show that banks are indifferent between the composition of their liquid
assets. We conclude the proof with a set of sufficient conditions that guarantee that Rg

t+1 ≤
Rm
t+1 + χ̄+

t+1 in equilibrium. If the condition is not satisfied, equity can be written recursively,
but the function χ̄t+1 is slightly modified. We proceed with the formal steps of the proof by
establishing the following propositions:

Proposition E.1 For any t, there exists a function Vt (e) that yields the value of the bank’s
problem at the lending stage. In particular, Vt (e) = V l

t (g, b,m, d, f, w) for

e ≡ (1 + imt )m+
(
1 + ibt

)
b−

(
1 + idt

)
d+ (1 + igt ) g − (1 + i

f

t )f − (1 + iwt )w

Pt
(1− τt).

This proposition shows that we can define the value at the lending stage through a value
function Vt that depends on a notion of bank equity, regardless of the composition of the banks’
balance sheet. Once we obtain this result, we solve the problem at the balancing stage, and
obtain a recursive expression for Vt. We need to define the balance of reserves that each bank
starts with during the balancing stage, considering the value of treasury bills at the lending stage,
prior to the trade of government bonds at the balancing stage.56 This is balance is defined as

s̃(g̃, m̃,̃ d, ω) ≡ g̃ + m̃+

(
Rd
t+1

Rm
t+1

)
ωd̃− ρd̃(1 + ω).

The following proposition is an intermediate step toward characterizing the value during the
balancing stage, exclusively in terms of variables chosen at the lending stage. The goal is to
find a single Bellman equation for Vt without reference to the transactions that occur during the
balancing stage.

Proposition E.2 For any t, the value at the balancing stage satisfies V b
t (g̃, b̃, m̃, d̃, ω) = βVt (e′)

where

e′ =

(
Rb
t+1

b̃

Pt
+Rm

t+1

(m̃+ g̃)

Pt
−Rd

t+1

d̃

Pt
+ Z

(
s̃(g̃, m̃,̃ d, ω)

))
(1− τt+1)

and

Z (s̃) = maxg′≥0

(
Rg
t+1 −Rm

t+1

)
g′ + χ̄t+1(s̃− g′)). (E.1)

Furthermore, the solution to g′ in Z (s̃) is the solution to g′ in V b
t . As a result, we can express

56Notice that this balance is not the balance with which they end the lending stage, nor the balance with with
they end the balancing stage. Rather, its the balance computed as if all banks would sell all their government
bonds. The policy functions during the lending stage are characterized by s̃.
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Vt recursively,

Vt(e) = max
{c,ã,b̃,d̃}≥0,d̃∈[0,κ]

u(c) + βE [Vt+1(e′)] , subject to (E.2)

ã
Pt

+
b̃

Pt
− d̃

Pt
+ c = e

e′ =

[
Rb
t+1

b̃

Pt
+Rm

t+1

(m̃+ g̃)

Pt
−Rd

t+1

d̃

Pt
+ Z (s̃)

]
(1− τt+1). (E.3)

Proposition E.2 uses that the value function during the balancing stage equals βVt (e′) and

shows that e′ can be written in terms of the state
(
g̃, b̃, m̃, d̃, ω

)
and the value of the auxiliary

problem in Z (s̃). The auxiliary problem is the optimal choice of g′ in the balancing stage that
maximizes future equity. Since the objective at the balancing stage is to maximize the value at
the lending stage, but we showed that the value at the lending stage can be written only in terms
of equity, the solution to the auxiliary problem is the solution to the problem at the balancing
stage. Next, Proposition E.3 characterizes the solution Z (s̃). The optimal choice of g′ depends
on the liquidity premium of the government bond:

Proposition E.3 The solution to Z (s̃) in Proposition E.2 is given by:

Region 1. If Rg
t > Rm

t + χ̄−t , then

g′ =∞ for any s̃.

Region 2. If Rg
t < Rm

t + χ̄+
t then,

g′ = 0 for any s̃.

Region 3. If Rg
t = Rm

t + χ̄−t

g′ =

{
s̃ s̃ ≥ 0

[0,∞] s̃ < 0,
and Z (s̃) =

{
χ̄−t s̃ s̃ ≥ 0

χ̄−t s̃ s̃ < 0.

Region 4. If Rg
t = Rm

t + χ̄∗t ∈
(
Rm
t + χ̄+

t , R
m
t + χ̄−t

)
g′ =

{
s̃ s̃ ≥ 0

0 s̃ < 0,
and Z (s̃) =

{
χ̄∗t s̃ s̃ ≥ 0

χ̄−t s̃ s̃ < 0.

Region 5. If Rg
t = Rm

t + χ̄+
t

g′ =

{
[0, s̃] s̃ ≥ 0

0 s̃ < 0,
and Z (s̃) =

{
χ̄+
t s̃ s̃ ≥ 0

χ̄−t s̃ s̃ < 0.

Proposition E.3 characterizes the solution and value of the individual bank’s problem of choos-
ing g′. Next, we use the policy functions obtained in E.3 to find the possible range of equilibrium
government bond rates. It is useful to define the threshold shock that produces a deficit consider-
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ing the sales of government bonds, ω∗, as ω∗ = −
(

(m̃+ g̃) /d̃− ρ
)
/
(
Rd
t+1/R

m
t+1 − ρ

)
. Clearing

in the government bond market during the balancing stage requires the following equation to
hold:

G̃t =

� ∞
−1

g′(g̃j, m̃j, d̃j, ωj)dF
(
ωj
)

(E.4)

=

� ∞
ω∗

g′(g̃j, m̃j, d̃j, ωj)dF
(
ωj
)

+

� ω∗

−1

g′(g̃j, m̃j, d̃j, ωj)dF (ω) . (E.5)

We make the following remarks:

Corollary E.1 In any equilibrium, Rg
t ≤ Rm

t + χ̄−t . Furthermore, if Rg
t < Rm

t + χ̄+
t then, g̃ = 0.

The proof follows directly from Proposition E.3: If Rg
t > Rm

t + χ̄−t we are in Region 1 in
Proposition E.3, but since the supply of government bonds is finite, this case cannot occur in
equilibrium and satisfy E.4. If if Rg

t < Rm
t , we are in Region 2 in Proposition E.3. Thus, it

must be that g̃ = 0 during the lending stage. We are left with the characterization of the market
equilibrium when Rg

t ∈
[
Rm
t + χ̄+

t , R
m
t + χ̄−t

]
.

The next Proposition characterizes the equilibrium market equilibrium as function of the

aggregate portfolio holdings during the lending stage
{
G̃, M̃ , D̃

}
for the cases where Rg

t ∈[
Rm
t + χ̄+

t , R
m
t + χ̄−t

]
. The prevailing equilibrium return of government bonds depends on whether

there is a large enough surplus of government bonds relative aggregate reserve-balance deficit
in the interbank market. To simplify the calculations in the characterization, without loss of
generality, we use the portfolio of the representative bank. Item (iv) of Proposition 3 indeed
verifies that the model has a representative bank. We summarize this condition excess function
of government bonds is captured by:

Γ
(
G̃, M̃ , D̃

)
≡

� ∞
max{ω∗,−1}

(
s̃(G̃, M̃ , D̃, ω)− G̃

)
︸ ︷︷ ︸

Surplus of Reserves

dF (ω)− G̃F (max {ω∗,−1})︸ ︷︷ ︸
Gov. bonds held by Banks in Deficit

(E.6)

=

� ∞
max{ω∗,−1}

s̃(G̃, M̃ , D̃, ω)dF (ω)− G̃. (E.7)

The following Lemma is used to show that the equilibrium prices must be unique given aggregate
portfolio holdings.

Lemma E.1 Γ is decreasing and convex in G̃, and has the following limits: Γ (0) > 0 and
limg̃→∞ Γ (g̃) = m̃− ρd̃.

We obtain the following characterization.

Proposition E.4 The equilibrium rates are given by:

Case 1: If Γ
(
G̃, M̃ , D̃

)
< 0 then S+

t = 0, S−t > 0 and,

Rg
t = Rm

t + χ̄−t , χ̄
+
t = (Rw

t −Rm
t )
(

1− e−λ̄(1−η)
)
, χ̄−t = (Rw

t −Rm
t ) .
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Case 2: If Γ
(
G̃, M̃ , D̃

)
= 0 then S+

t = 0, S−t > 0 and,

Rg
t ∈

[
Rm
t + χ̄+

t , R
m
t + χ̄−t

]
, χ̄+

t = (Rw
t −Rm

t )
(

1− e−λ̄(1−η)
)
, χ̄−t = (Rw

t −Rm
t ) .

Case 3: If 0 < Γ
(
G̃, M̃ , D̃

)
and ω∗ > −1, then S+

t > 0, S−t > 0 and,

Rg
t = Rm

t + χ̄+
t , χ̄

+
t < (Rw

t −Rm
t )
(

1− e−λ̄(1−η)
)
, χ̄−t < (Rw

t −Rm
t ) .

Case 4: If 0 < Γ
(
G̃, M̃ , D̃

)
and ω∗ ≤ −1, then S+

t > 0, S−t = 0 and

Rg
t = Rm

t , χ̄
+
t = 0, χ̄−t < (Rw

t −Rm
t ) e−λ̄η.

Proposition E.4 establishes four possible scenarios for the equilibrium spread between bonds
and reserves, depending on the aggregate holdings of bonds, money, and deposits. The first
two scenarios (Cases 1 and 2) are characterized by a large supply of government bonds. In
fact, the holding of government bonds is so that all the trade in the interbank market occurs
in the government bond market, prior to the trade in the interbank market. By contrast, in
cases 3 and 4 the government bond supply is not that large enough to absorb all of the excess
of government bonds. Case 4 corresponds to a regime with reserve satiation, in which no bank
ends in deficits—a case we also study in detail.

The next proposition establishes two key results in the paper: that banks are indifferent
between their holdings of government bonds and reserves and that the value function has a
single state variable.

Proposition E.5 If Rg
t ≤ Rm

t + χ̄+
t , the law of motion of bank net worth can be written as:

e′ =

[
Rb
t+1

b̃

Pt
+Rm

t+1

ã

Pt
−Rd

t+1

d̃

Pt
+ χ̄t+1

(
ã

Pt
,
d̃

Pt
, ω

)]
(1− τt+1).

where ã ≡ m̃+ g̃. As a result, we can express Vt recursively,

Vt(e) = max
{c,ã,b̃,d̃}≥0,d̃∈[0,κ]

u(c) + βE [Vt+1(e′)] , subject to (E.8)

ã
Pt

+
b̃

Pt
− d̃

Pt
+ c = e

e′ =

[
Rb
t+1

b̃

Pt
+Rm

t+1

ã

Pt
−Rd

t+1

d̃

Pt
+ χ̄t+1

(
ã

Pt
,
d̃

Pt
, ω

)]
(1− τt+1). (E.9)

Else, if Rg
t ∈ (Rm

t + χ̄+
t , R

m
t + χ̄−t ), then χ̄+

t in the definition of the function χ̄t+1 is replaced by
some χ̄∗t ∈

(
χ̄+
t , χ̄

−
t

)
. If Rg

t = Rm
t + χ̄−t , then χ̄+

t is replaced by χ̄−t .
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The proof to this proposition is immediate after we replace Z̃ (s) in Proposition E.3 into
Proposition E.2, for the case in which Rg

t ≤ Rm
t + χ̄+

t . When Rg
t = Rm

t + χ̄−t , then χ̄t+1 in the
proposition is replaced by a linear function with slope χ̄−t .

Problems 1 and 2 can be combined into a single Bellman equation as presented in (E.4).
This concludes the proof of Item (i) in Proposition 3. As stated in the body of the paper, we
focus on the cases (3 and 4) where there the supply of government bonds is not that large,
andRg

t ≤ Rm
t + χ̄+

t . This concludes the proof of Item (i) in the proposition.

Naturally, given an aggregate portfolio during the lending stage,
{
G̃, M̃ , D̃

}
, we must fall in

one of the 4 possible cases. Naturally, if G̃ = 0, we are in case 2. If at limG̃→0+ Γ < 0, then by
Lemma Γ < 0 for any combination of parameters, and thus Rg

t = Rm
t + χ̄+

t . If at limG̃→0+ Γ ≥ 0,
then, Rg

t = Rm
t + χ̄−t for any value of G̃ such that Γ > 0, and after that point Rg

t falls to Rm
t + χ̄+

t .
This suggests that as long as the supply of government bonds is not too large, government bonds
will not deplete a surplus of reserves.

Next, we present two sufficient conditions that guarantee that Rg
t ≤ Rm

t + χ̄+
t , the case

presented in the paper.

Corollary E.2 If m̃ ≥ ρd̃, then the bond premium falls in cases (3) or (4) of Proposition E.4.

As special case which we consider in the paper is when ρ = 0.

Corollary E.3 Assume that ρ = 0, then Rg
t = Rm

t + χ̄+
t without loss of generality.

Finally, notice that when Rg
t ≤ Rm

t + χ̄+
t the value function depends on the sign of s̃. Banks

with deficit of s̃ sell all their government bonds. Their reserve deficit after selling government
bonds is given by:

S−t = −
� ω∗

−1

s̃(g̃, m̃, d̃, ω)F (ω).

Bank above the threshold ω∗ end with a surplus of:

S+
t =

� ∞
ω∗

(
s̃(g̃, m̃, d̃, ω)− g̃

)
dF (ω)︸ ︷︷ ︸

Initial Reserve Surplus

− g̃F (ω∗)︸ ︷︷ ︸
Purchases of governmentbonds

.

We then have that,

S+
t =

� ∞
ω∗

(
s̃(g̃, m̃, d̃, ω)− g̃

)
dF (ω) + g̃ (1− F (ω∗))− (1− F (ω∗))− g̃F (ω∗)

=

� ∞
ω∗

s̃(g̃, m̃, d̃, ω)dF (ω)− g̃F (ω∗).

If we combine these features, we establish the following proposition.

Proposition E.6 Let Rg
t = Rm

t + χ̄+
t , then market tightness of the interbank market can be

expressed in terms of lending stage variables as follows:

θt ≡
S−t
S+
t

= −
� ω∗
−1
s̃(g̃, m̃, d̃, ω)F (ω)�∞

ω∗
s̃(g̃, m̃, d̃, ω)dF (ω)− g̃

.
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E.2 Proofs of Lemma E.1 and Propositions E.1-E.5

Proof of Lemma E.1. Observe that

ΓG̃

(
G̃, M̃ , D̃

)
= −F (ω∗) ≤ 0

where we used Leibniz’s rule and the fact that s̃(g̃, m̃, d̃, ω∗) = 0. This shows that as we increase
the number of government bonds, relative to reserves, moves the condition closer to cases 1 and
2. Then,

ΓG̃G̃

(
G̃
)

= −f(ω∗)
∂ω∗

∂g̃
≥ 0.

Hence, we know that the surplus function is decreasing and convex. Furthermore,

Γ
(

0, M̃ , D̃
)

=

� ∞
ω∗

s̃(0, m̃, d̃, ω)dF (ω) =

(
m̃− ρd̃+

(
Rd
t+1

Rm
t+1

− ρ
)
E [ω|ω > ω∗] d̃

)
F (ω∗) > 0

and
lim
G̃→∞

Γ
(

0, M̃ , D̃
)

= m̃− ρd̃.

This property shows that there will be a surplus in the government bond market if there is a
surplus of reserves, and furthermore, that even if there are infinite government bonds, there will
be banks in deficit if there is an aggregate deficit of reserves. QED.

Proof of Proposition E.1. We have to show that the recursive problem of banks during the
lending stage, V l

t (g, b,m, d, f, w), has a value that can be summarized by Vt (e) where e is a
single state variable. To show this result, we define the after-tax real value of equity at the start
of a lending stage:

et ≡
(1 + ibt)bt + (1 + imt )mt − (1 + idt )dt + (1 + igt ) gt −

(
1 + ift

)
ft − (1 + iwt )wt − PtT jt

Pt
.

This term is the right-hand side of equation (12) in Problem 1 over the price level. If we use this
definition, the budget constraint of a given bank satisfies,

ct +
b̃t + m̃t − d̃t

Pt
= et. (E.1)

The choice of
{
g̃t, b̃t, m̃t, d̃t

}
is constrained by the capital requirement and the budget constraint

is independent of the composition of real equity. Hence, the value V l
t (b,m, d, f, w) must depend

on e, but not its composition. Therefore, we can define Vt (e) ≡ V l
t (b,m, d, f, w). QED.

Proof of Proposition E.2. Define e as in the body of the paper. Consider the value at the
lending stage, V l. The value function is increasing in e, since it increases the budget constraint.
Since U is strictly increasing, the policy functions that solve the problem at the balancing stage,
must also maximize e′. Thus, the choice at the balancing stage must be given by:
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e′ = (1− τt+1)

[
max
g′≥0

Rb
t+1b̃+Rm

t+1 (m̃− (g′ − g̃)) +Rg
t+1g

′ −Rd
t+1d̃+ χ̄t+1(s̃− g′)

]
= (1− τt+1)

[
Rb
t+1b̃+Rm

t+1 (m̃+ g̃)−Rd
t+1d̃+ max

g′≥0

(
Rg
t+1 −Rm

t+1)
)
g′ + χ̄t+1(s̃− g′)

]
.

The second line factors out predetermined variables from the objective. Therefore, we write:

e′ =
(
Rb
t+1b̃+Rm

t+1 (m̃+ g̃)−Rd
t+1d̃+ Z (s̃)

)
(1− τt+1).

where

Z (s̃) = maxg′≥0

(
Rg
t+1 −Rm

t+1)
)
g′ + χ̄t+1(s̃− g′) (E.2)

s.t.

g′ ≥ 0. (E.3)

This concludes the proof of Proposition E.2. QED.

Proof of Proposition E.3. The objective is piece-wise linear and concave. The constraint
set is linear. Standard textbooks in linear programming show that piece wise linear programs
can be written as linear programs. Hence we have the following conditions for the choice of g′.
The derivative of the objective function with respect to g′ is given by:

Rg
t+1 −Rm

t+1 − χ+
t+1 if s̃ > g′ (E.4)

and
Rg
t+1 −Rm

t+1 − χ−t+1 if s̃ < g′. (E.5)

By Proposition 2 in Bianchi and Bigio (2017), we have that χ+ < χ−, for any market tightness.
Hence, we obtain

Rg
t+1 −Rm

t+1 − χ+
t+1 ≤ 0 ⇒ Rg

t+1 −Rm
t+1 − χ−t+1 < 0

and also the converse:

Rg
t+1 −Rm

t+1 − χ−t+1 ≥ 0 ⇒ Rg
t+1 −Rm

t+1 − χ−t+1 > 0.

Next, we characterize, g′(s̃), the optimal policy of an agent with surplus s̃. The solution depends
on the value Rg

t as follows:

Case 1. Assume Rg
t > Rm

t + χ̄−t . Then, the objective in Z (s̃) is increasing everywhere in
g′. Thus, the maximizer of Z (s̃) is g′ =∞ for any s̃.

Case 2. Assume Rg
t < Rm

t + χ̄+
t . Then, the objective in Z (s̃) is decreasing everywhere in

g′. Thus, the maximizer of Z (s̃) is g′ = 0 for any s̃. In this case, Z (s̃) = χ̄t (s̃).
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value

g′
(0, 0) s̃s

s̃d

Z(s̃s)

Z(s̃d)

Figure 9: Values of Objective in Z as functions of g′ (Case 3: Rg
t = Rm

t + χ̄−t ). Note: The figure
considers two values for the reserve balance −s̃d = s̃s > 0. The red and blue lines correspond to
the objective of banks that starts with s̃d (deficit) and s̃s (surplus), respectively. Dashed lines
represent values outside the constraint set (g′ < 0). The figure shows how banks must get rid of
their excess reserves. Banks in deficit are indifferent between increasing their deficits or not.

Case 3. Assume Rg
t = Rm

t + χ̄−t . If a bank starts with s̃ > 0, the objective in Z (s̃) is
increasing in g′ ∈ [0, s̃]. Because Rg

t+1 > Rm
t+1 + χ+

t+1, as long as the bank remains in surplus, it
is better of selling government bonds in exchange for reserves. At then point where g′ ≥ s̃, the
objective is flat, because the bank becomes a deficit bank after that point. Thus, after entering a
deficit, the bank in indifferent between buying government bonds and widening its deficit. Thus,
a bank, banks with an initial surplus, end with g′ ≥ s̃ ≥ 0. Since one particular solution is g′ = s̃,
the value of the objective for a bank with an initial surplus is Z (s̃) =

(
Rg
t+1 −Rm

t+1

)
s̃ = χ̄−t+1s̃.

Now consider a bank in deficit. If the bank buys government bonds, it widens the deficit. The
marginal return of a government bond is Rg

t and the cost of a unit deficit of reserves is Rm+ χ̄−t+1,
hence the bank is indifferent. Thus, for any bank that starts in deficit, s̃ ≤ 0 any choice of g′ ≥ 0
is a solution—the bank necessarily ends in deficit. One particular feasible solution is g′ = 0, and
thus the value for banks in deficit is, Z (s̃) = χ̄−t+1s̃. Combining these observations

g′ =

{
[s̃,∞] s̃ ≥ 0

[0,∞] s̃ < 0,
and Z (s̃) = χ̄−t+1s̃.

Figure 9 presents a graphical representation of the objective function in Z, for two banks, one
that starts in deficit and another with surplus. It shows how a bank in surplus must get rid of
any excess balance whereas a bank in deficit is indifferent.

Case 4. Consider now the region where Rg
t = Rm

t + χ̄∗t for some χ̄∗t ∈
(
χ̄+
t , χ̄

−
t

)
. This means

that the objective in Z (s̃) is decreasing in g′ as long a s bank has a deficit, but increasing as
long as a bank has a surplus. Since a bank with s̃ < 0 cannot cover its deficit, it will set g′ = 0
in order not to increase its deficit, i.e. g′ = 0. Conversely, a bank in surplus will sell all of its
surplus g′ = s̃, but will not purchase government bonds beyond that point. If we replace this
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(0, 0) s̃s

s̃d

Z(s̃s)

Z(s̃s)

value

g′

Figure 10: Values of Objective in Z as functions of g′ (Case 4: Rg
t ∈

(
Rm
t + χ̄+

t , R
m
t + χ̄−t

)
for

some χ̄∗t ). Values of Objective in Z as functions of g′ (Case 3: Rg
t = Rm

t + χ̄−t ). Note: The figure
considers two values for the reserve balance −s̃d = s̃s > 0. The red and blue lines correspond to
the objective of banks that starts with s̃d (deficit) and s̃s (surplus), respectively. Dashed lines
represent values outside the constraint set (g′ < 0). The figure shows how banks with an initial
surplus get rid of their excess balances. Banks in deficit do not increase their deficits.

conditions into objective in Z (s̃) we obtain:

g′ =

{
s̃ s̃ ≥ 0

0 s̃ < 0,
and Z (s̃) =

{
χ̄∗t s̃ s̃ ≥ 0

χ̄−t s̃ s̃ < 0.

Figure 10 presents a graphical representation of the objective function in Z, for two banks, one
that starts in deficit and another with surplus; in the context of Case 4 now. It shows how a
bank in surplus must get rid of any excess balance, but not end in deficit. A bank in deficit will
not increase its deficit.

Case 5. Assume Rg
t = Rm

t + χ̄+
t . In this case, the objective in Z is decreasing in g′ as long

as the bank in is deficit. Consider a bank that starts in deficit. Then, any choice of g′ > 0
increases its deficit and thus, reduces future equity. Thus, banks that start in deficit always
remain in deficit and must set g′ = 0. Thus, Z (s̃) = χ̄−t s̃. By contrasts, the objective is constant
as long as 0 ≤ g′ ≤ s̃. Hence, banks that begin with a surplus are indifferent between selling any
amount in [0, s̃]. One particular solution is g′ = 0 which yields a value Z (s̃) = χ̄+

t s̃. Summing
up, we have:

g′ =

{
[0, s̃] s̃ ≥ 0

0 s̃ < 0,
and W (s̃) =

{
χ̄+
t s̃ s̃ ≥ 0

χ̄−t s̃ s̃ < 0.
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(0, 0) s̃s

s̃d

Z(s̃s)

Z(s̃s)

value

g′

Figure 11: Values of Objective in Z as functions of g′ (Case 5: Rg
t = Rm

t +χ̄+
t ). Note: The figure

considers two values for the reserve balance −s̃d = s̃s > 0. The red and blue lines correspond
to the objective of banks that starts with s̃d (deficit) and s̃s (surplus), respectively. Dashed
lines represent values outside the constraint set (g′ < 0). The figure shows how in deficit set
g′ = 0, implying that they sell all their initial holdings of government bonds. Banks in surplus
are indifferent between reducing their surpluses, as long as they don’t enter into deficit.

Figure 11 presents a graphical representation of the objective function in Z, for two banks, one
that starts in deficit and another with surplus, but now for Case 5. It shows how a bank in
surplus is indifferent between buying any amount of government bonds as long as it doesn’t
become a deficit bank. A bank in deficit sets g′ = 0, and thus sells all of its initial balance g̃.
This concludes the proof of Proposition E.3. QED.

Proof of Corollary E.2. We now consider the market clearing conditions in the market of
government bonds. The goal is to find conditions on the quantities of reserves and government
bonds determined at the lending stage, such that given the returns on government bonds, reserves
and the interbank market, deliver market clearing conditions in the government bond market.
We break the analysis into the cases studied in Proposition E.3.

Case 1. Assume that Rg
t > Rm

t + χ̄−t . By Proposition E.3 we have that g′ = ∞ for all
banks. However, since the stock of government bonds is finite, clearing in the government bond
market, (E.4), cannot hold.

Case 2. Assume that Rg
t < Rm

t + χ̄+
t . By Proposition E.3 we have that g′ = 0 for all banks.

In this case, this price can only clear the government bond market, (E.4), if g̃ = 0.
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Case 3. Assume that Rg
t = Rm

t + χ̄−t . We can rewrite (E.4) as:

g̃F (ω∗) =

� ∞
ω∗

(
g′(g̃, m̃,̃ d, ω)− g̃

)
dF (ω) +

� ω∗

−1

g′(g̃, m̃,̃ d, ω)dF (ω) .

By Proposition E.3, we also know that g′ ≥ s̃ for s̃ ≥ 0 or, equivalently for ω ≥ ω∗. Thus, we
can replace the optimal policy into (E.4)

g̃F (ω∗) =

� ∞
ω∗

(
s̃(g̃, m̃,̃ d, ω)− g̃

)
dF (ω) +

� ω∗

−1

g′(g̃, m̃,̃ d, ω)dF (ω) .

Since we know also by Proposition E.3 that g′ ≥ 0 for ω < ω∗,

g̃F (ω∗) ≥
� ∞
ω∗

(
s̃(g̃, m̃,̃ d, ω)− g̃

)
dF (ω) ,

or simply Γ (g̃) ≤ 0. Thus, if Rg
t = Rm

t + χ̄−t then, Γ (g̃) ≥ 0. Furthermore, since we know that
g′ = s̃ for banks with ω > ω∗, but that banks in deficit end in deficit, there is no surplus left in
the interbank market.

Case 4. Assume that Rg
t = Rm

t + χ̄∗t for some χ̄∗t ∈
(
χ̄+
t , χ̄

−
t

)
. Then, following the same

steps, as in the previous region, but now setting g′(g̃, m̃,̃ d, ω) = 0 for banks with ω < ω∗, we
obtain:

g̃F (ω∗) =

� ∞
ω∗

(
s̃(g̃, m̃,̃ d, ω)− g̃

)
dF (ω)

or simply put, Γ (g̃) = 0. Furthermore, since we know that g′ = s̃ for banks with ω > ω∗, then
there is no surplus available in the Fed funds market.

Case 5. Assume that Rg
t = Rm

t + χ̄+
t . We now have that g′ = 0 for ω < ω∗. Thus, if we

substitute this result in (E.4), we obtain,

g̃F (ω∗) =

� ∞
ω∗

(
g′(g̃, m̃,̃ d, ω)− g̃

)
dF (ω).

Now, since by Proposition E.3 we have that g′ ≥ s̃ for banks in surplus, we have that :

g̃F (ω∗) ≤
� ∞
ω∗

(
s̃(g̃, m̃,̃ d, ω)− g̃

)
dF (ω),

or namely 0 ≥ Γ (g̃). Furthermore, if the condition holds with equality, it must be that g′ = s̃ for
banks with ω > ω∗, and hence, there is no surplus available in the Fed funds market. However,
if the condition is strict, then, there must be a positive mass of banks with surplus (the supply
of government bonds by deficit banks g̃F (ω∗) does not exceed the holdings of reserves of banks

in surplus
�∞
ω∗

(
s̃(g̃, m̃,̃ d, ω)− g̃

)
. Consider the special cases where ω∗ ≤ −1, no bank has an

initial deficit. Thus, all banks must end with a surplus, and this means we are in case 5, since
this is the only case where this is possible. QED.
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E.3 Proof of Corollaries E.2 and E.3

Proof of Corollary E.2. Assume that there is an aggregate deficit of reserves. Then, assume
by contradiction that

g̃F (ω∗) >

� ∞
ω∗

(
s̃(g̃, m̃,̃ d, ω)− g̃

)
dF (ω)

⇒ g̃F (ω∗) +
� ω∗
−1

(
s̃(g̃, m̃,̃ d, ω)− g̃

)
dF (ω) >

� ∞
−1

(
s̃(g̃, m̃,̃ d, ω)− g̃

)
dF (ω)

⇒
� ω∗
−1
s̃(g̃, m̃,̃ d, ω)dF (ω) > m̃− ρd̃. (E.1)

Now observe by definition, s̃(g̃, m̃,̃ d, ω) ≤ 0, hence a contradiction. This rules out case 1. Now
assume that the condition holds with equality. The only possibility is that ω∗ < −1 and m̃ = ρd̃.
This case rules out 2 since F (−1) = 0 and F is not degenerate. Hence, the only two scenarios
are cases (3) or (4). QED.

Proof of Corollary E.3. The result is immediate after we set ρ = 0 in the statement of
Corollary E.2. QED.

E.4 Proof of Items (ii)-(iv)

Auxiliary Lemmas The proofs of items (ii)-(iv) of proposition 3 make use of the following
two lemmas.

Lemma E.2 The function χ̄t is homogeneous of degree 1 in (m, d).

Proof. We need to show χ̄t (km, kd, ω) = kχ̄t (m, d, ω) for any k > 0. By definition:

χ̄t(km, kd, ω) =

{
χ+
t s if s ≥ 0
χ−t s if s < 0

,

s = km+ kωd
1 + idt+1

1 + iiort+1

− ρkd (1 + ω) , (E.1)

where χ−t and χ+
t are functions of

{
Ψ−t ,Ψ

+
t , ı̄

f
t , θt

}
and independent of m and d. We can factor

the constant k from the right-hand side of (E.1) and obtain

s = k

(
m+ ωd

1 + idt+1

1 + iiort+1

− ρd (1 + ω)

)
.

Define the position without the scaling factor k as s̃ given by

s̃ =

(
m+ ωd

1 + idt+1

1 + iiort+1

− ρd (1 + ω)

)
.
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Observe that (s > 0)←→ (s̃ > 0) , (s < 0)←→ (s̃ < 0) and (s = 0)←→ (s̃ = 0) . Thus,

χ̄t(am, ad, ω) =

{
χ+
t s if s ≥ 0
χ−t s if s < 0

=

{
χ+
t ks̃ if s ≥ 0
χ−t ks̃ if s < 0

= k

{
χ+
t s̃ if s̃ ≥ 0
χ−t s̃ if s̃ < 0

= kχ̄t(m, d, ω).

The last line verifies that χ is homogeneous of first degree. QED.

The next lemma establishes that an increase in the (gross) nominal policy rates by a constant
scales χt by that constant. We use this lemma in the policy analysis results when we discuss the
neutrality of inflation.

Lemma E.3 Let χt be given by two policy rates, {imt , iwt }, given θt. Consider alternative rates{
ima,t, i

w
a,t

}
such that they satisfy

(
1 + ima,t

)
≡ k (1 + imt ) and

(
1 + iwa,t

)
≡ k (1 + iwt ) for some k.

Then, the χ̄a,t associated with
{
ima,t, i

w
a,t

}
for the same θt satisfy χ̄a,t = kχ̄t.

Proof. Observe that χt in Definition 1 (which follows from Proposition 1) is a function scaled
by the width of the corridor system (iwt − imt ). Then,

iwa,t − iiora,t = (1 + iwa,t)− (1 + iiora,t ) = k((1 + iwt )− (1 + imt )) = k(iwt − imt ).

Then the result follows immediately from the functional form of χt in Proposition 1. QED.

Proofs of items (ii)-(iv) of Proposition 3 This section presents a proof of items (ii)-(iv)
in Proposition 3. Item (ii) establishes that the single state representation satisfies homogeneity.
We follow the guess-and-verify approach, common to dynamic programming. Our guess is that
the value function satisfies Vt (e) = vt

e1−γ

1−γ − 1/((1 − β) (1− γ)), where vt is a time-varying

scaling factor in the value function, common to all banks. From item (i), the bank’s problem is
summarized by

Vt(e) = max
c,ã,b̃,d̃

u(c) + βEt [Vt+1(e′)] ,

subject to

c+
b̃+ ã− d̃

Pt
= e,

d̃ ≤ κ
(
b̃+ ã− d̃

)
e′ =

(
(1 + ibt+1)b̃+ (1 + iiort+1)ã− (1 + idt+1)d̃+ χ̄t+1

(
ã, d̃, ω

)) (1− τt+1)

Pt+1

.

Note that multiplying and dividing by Pt, we have that e′ can also be written as

e′ =

(
b̃(1 + ibt+1) + ã(1 + iiort+1)− d̃(1 + idt+1) + χ̄t+1

(
ã, d̃, ω

))
Pt

(1− τt+1)

(1 + πt+1)
, (E.2)

where (1 + πt+1) = Pt+1/Pt.
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If the conjecture for the value function is correct, then this condition satisfies

vte
1−γ − 1

(1− β) (1− γ)
= max

c,ã,b̃,d̃

c1−γ − 1

1− γ + βEt

[
vt+1 (e′)

1−γ − 1

(1− γ) (1− β)

]
,

subject to

c+
b̃+ ã− d̃

Pt
= e,

d̃ ≤ κ
(
b̃+ ã− d̃

)
e′ =

(
b̃(1 + ibt+1) + ã(1 + iiort+1)− d̃(1 + idt+1) + χ̄t+1

(
ã, d̃, ω

))
Pt

(1− τt+1)

(1 + πt+1)
.

Observe that we can factor out constants from the objective:

c1−γ − 1

1− γ + βEt

[
vt+1 (e′)

1−γ − 1

(1− γ) (1− β)

]
...

=
c1−γ

1− γ + βEt

[
vt+1 (e′)

1−γ
]
− 1

(1− β) (1− γ)
.

Then, if we substitute the evolution of e′ in (E.2), we obtain

vte
1−γ = max

c,ã,b̃,d̃

c1−γ

1− γ + (E.3)

βEω

vt+1


(
b̃(1 + ibt+1) + ã(1 + iiort+1)− d̃(1 + idt+1) + χ̄t+1

(
ã, d̃, ω

))
Pt

(1− τt+1)

(1 + πt+1)

1−γ
subject to

e =
b̃+ ã− d̃

Pt
+ c

d̃ ≤ κ
(
b̃+ ã− d̃

)
.

Let us define variables in terms of equity, c̄ = c/e. Also, define b̄ = b̃/ ((1− c̄ )ePt) , ā =
ã/ ((1− c̄ )ePt) , and d̄ = d̃/ ((1− c̄ )ePt), as in the statement of Proposition 3. By Lemma E.2,
we can factor constants (1− c̄ )ePt from χ̄t and express it as

(1− c̄ )ePtχ̄t

(
ã

Pt(1− c̄ )e
,

d̃

Pt(1− c̄ )e
, ω

)
= Pt(1− c̄)eχ̄t

(
ā, d̄, ω

)
.
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Using this observation, we can replace c̄ in the value function to obtain

vte
1−γ = max

c,ã,b̃,d̃
e1−γ c̄1−γ

(1− γ)
+ βvt+1 ((1− c̄) e)1−γ Eω... (E.4)([

b̃(1 + ibt+1)/Pt
(1− c̄) e +

ã(1 + iiort+1)/Pt
(1− c̄) e − d̃(1 + idt+1)/Pt

(1− c̄) e + χ̄t+1

(
ā, d̄, ω

)] (1− τt+1)

(1 + πt)

)1−γ

subject to:

b̃+ ã− d̃
(1− c̄) ePt

= 1

d̃/Pt
(1− c̄) e ≤ κ

(
b̃/Pt

(1− c̄) e +
ã/Pt

(1− c̄) e −
d̃/Pt

(1− c̄) e

)

From this expression, we can cancel out e1−γ from both sides of (E.4), which verifies that the
objective is scaled by e1−γ. Thus, we verify the guess that Vt (e) = vte

1−γ − ((1− β) (1− γ))−1.

Next, we derive the policies that attain Vt (e) and the value of vt. If the conjecture is correct,
using the definition of b̄, ā, and d̄, we obtain

vt = max
{c̄,b̄,ā,d̄}≥0

c̄1−γ

(1− γ)
+ βvt+1 (1− c̄)1−γ ... (E.5)

Eω
([

(1 + ibt+1)b̄+ (1 + iiort+1)ā− (1 + idt+1)d̄+ χ̄t+1

(
ā, d̄, ω

)] (1− τt+1)

(1 + πt+1)

)1−γ

subject to

b̄+ ā− d̄ = 1

d̄ ≤ κ

Thus, any solution to Vt (e) must be consistent with the solution of vt if the conjecture is correct.
Define real return on equity as follows:

RE
t+1(b̄, ā, d̄, ω) ≡

(
Rb
t+1b̄+Rm

t+1ā−Rd
t+1d̄+ ¯χt+1(d̄, ā, ω)

)
(1− τt+1).

Then, the value function can be written as

vt = max
{c̃,b̄,ā,d̄}

c̄1−γ

(1− γ)
+ βvt+1 (1− c̄)1−γ Eω

[(
RE
t+1(b̄, ā, d̄, ω)

)
1−γ] .

We now use the principle of optimality. Let Ωt be the certainty equivalent of the bank’s optimal
portfolio problem, that is,

Ωt ≡ max
{b̄,ā,d̄}

[
Eω
[(
RE
t+1(b̄, ā, d̄, ω)

)
1−γ]] 1

1−γ

subject to b̄+ā−d̄ = 1 and d̄ ≤ κ. Assume c̄ is optimal. If γ < 1, the solution that attains vt must
maximize Eω

[
RE
t+1(b̄, ā, d̄, ω)1−γ] if vt+1 is positive. If γ > 1, the solution that attains vt must

minimize Eω
[
RE
t+1(b̄, ā, d̄, ω)1−γ] if vt+1 is negative. We guess and verify that when γ < 1, the
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term vt+1 is positive and vt+1 is negative when γ > 1. Under this assumption, if γ < 1, we have
that vt+1 > 0, so 1−γ > 0. Thus, by maximizing Ωt, we are effectively maximizing the right-hand
side of vt. Instead, when γ > 1, we have that vt+1 < 0, so 1−γ < 0. Thus, by maximizing Ωt, we
are minimizing Ω1−γ

t , which multiplied by a negative number—vt+1—maximizes the right-hand
side of vt.

Hence, the Bellman equation becomes

vt = max
{c̄,b̄,ā,d̄}≥0

c̄1−γ

(1− γ)
+ βvt+1 (1− c̄)1−γ Ω1−γ

t .

This yields the statements in items (i) and (ii), provided that vt inherits the sign of (1− γ).

To prove item (iii), we take the first-order conditions with respect to c̄, and raising both sides
to the − 1

γ
power, we obtain

c̄ = (βvt+1)−1/γΩ
−(1−γ)/γ
t (1− c̄) (1− γ)−

1
γ .

We can rearrange terms to obtain

c̄ =
1

1 +
[
βvt+1(1− γ)Ω1−γ

t

]1/γ .
Define ξt = (1− γ)βvt+1Ω1−γ

t . Under the conjectured sign of vt, the term ξt is always positive.
Substituting this expression for dividends, we obtain a functional equation for the value function

vt =

(
1 + ξ

1/γ
t

)−(1−γ)

(1− γ)
+βvt+1Ω1−γ

t

[
ξ

1/γ
t

1 + ξ
1/γ
t

](1−γ)

=

(
1 + ξ

1/γ
t

)−(1−γ)

(1− γ)
+

ξt
(1− γ)

[
ξ

1/γ
t

1 + ξ
1/γ
t

](1−γ)

and finally,

=
1

(1− γ)

(1 + ξ
1/γ
t

)−(1−γ)

+ ξt

[
ξ

1/γ
t

1 + ξ
1/γ
t

](1−γ)
 .

Thus, we obtain

vt =
1

(1− γ)

 1(
1 + ξ

1/γ
t

)(1−γ)
+

ξ
1/γ
t(

1 + ξ
1/γ
t

)(1−γ)


=

1

(1− γ)

1 + ξ
1/γ
t(

1 + ξ
1/γ
t

)(1−γ)
=

1

(1− γ)

(
1 + ξ

1/γ
t

)γ
.

This verifies that vt inherits the sign of (1 − γ). Thus, we can use Ω∗ directly in the value
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function. Furthermore, vt satisfies the following difference equation:

vt =
1

1− γ
[
1 +

(
β(1− γ)Ω1−γ

t vt+1

) 1
γ

]γ
. (E.6)

We can treat the right-hand side of this functional equation, solved independently of consumption.
If we solve for this equation independently of the banker’s consumption, we can obtain a solution
to the banker’s consumption policy via

c̄ =
1

1 +
[
βvt+1(1− γ)Ω1−γ

t

]1/γ .
This concludes the proof of items (i)-(iv), for all cases except γ → 1. We work out that case
next.

Log-Case. Observe that as γ → 1, then vt in (E.6) explodes. However, we can guess and verify
that

lim
γ→1

vt(1− γ) =
1

1− β .

This assumption can be verified in equation (E.6). In this case,

lim
γ→1

(1− γ) vt = lim
γ→1

[
1 +

(
β(1− γ)Ω∗1−γt vt

) 1
γ

]γ
= 1 + β/ (1− β) = 1/ (1− β) .

Thus, as γ → 1 , we have that c = (1− β). Thus,

Ωt ≡ max
{b̄,ā,d̄}

exp
(
Eω
[
log
(
RE
t (b̄, ā, d̄, ω)

)])
.

This final step completes the proof of aggregation. QED.
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F Derivation of Liquidity Premia (Proof of Proposition

4)

In this section, we suppress time subscripts and study the liquidity premia that emerge from
portfolio problem (17). The calculations here proof Proposition 4. We derive the premia in the
case where government bonds are not large enough to eliminate the surplus of reserves, as in
the paper. A more general statement follows simply by substituting {χ̄−, χ̄+} for the coefficients
given in Proposition E.5. Everything else remains the same. The starting point is to replace the
budget constraint b̄+ ā = 1 + d̄, into the objective in (17), we obtain:

Ωt ≡ (1− τ) max
{b̄,ā}≥0,d̄∈[0,κ]

{
Eω
[ (
Rm −Rb

)
ā−

(
Rb −Rd

)
d̄+ χ̄

(
ā, d̄, ω

)]1−γ} 1
1−γ

.

Let ω∗ be the threshold shock that makes s̃ < 0. Partition the expectation inside the objective
into two terms:

� ω∗(ā,d̄,ω)

−1

[
Rb +

(
Rm −Rb

)
ā+

(
Rb −Rd

)
d̄+ χ̄−(ā, d̄, ω)

]1−γ
f (ω) dω +

� ∞
ω∗(ā,d̄,ω)

[
Rb +

(
Rm −Rb

)
ā+

(
Rb −Rd

)
d̄+ χ̄+(ā, d̄, ω)

]1−γ
f (ω) dω.

Derivatives of the Liquidity Cost Function. For the rest of the proof we use the following
calculations:

s = ā− ρd̄+ d̄

(
Rd

Rm
− ρ
)
ω.

Hence, we have that

∂χ̄
(
ā, d̄, ω

)
∂ā

=
1

1 + π

{
χ+ if ω > ω∗

χ− if ω < ω∗

and

∂χ̄
(
ā, d̄, ω

)
∂d̄

=
1

1 + π

χ
+
(
−ρ+

(
Rd

Rm
− ρ
)
ω
)

if ω > ω∗

χ−
(
−ρ+

(
Rd

Rm
− ρ
)
ω
)

if ω < ω∗
.

Derivation of the Loan Liquidity Premium. Assuming the solution is interior in m̄, we
can take the derivative with respect to m̄ to obtain:

Eω
[
(Re

ω)−γ
] (
Rm −Rb

)
+

� ω∗

−1

(Re
ω)−γ χ̄−

∂s̃

∂ā
f (ω) dω +

� ∞
ω∗

(Re
ω)−γ χ̄+ ∂s̃

∂ā
f (ω) dω+ . . .

+ (Re
ω)−γ χ̄−s̃f (ω)

∣∣
ω=ω∗(ḡ,m̄,d̄) ·

∂ω∗

∂m̄
− (Re

ω)−γ χ̄+s̃f (ω) f (ω)
∣∣
ω=ω∗(ḡ,m̄,d̄) ·

∂ω∗

∂m̄
= 0

Since s̃
(
ā, d̄, ω∗

)
= 0, the second line in the expression vanishes. Importantly, the expectation

operator in Eω
[
(Re

ω)−γ
]

excludes the point ω = ω∗—since this is a zero probability event, we
simply exclude the point where the derivative is not included in the notation. We rearrange
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terms to express the condition as::

Rb −Rm = χ̄+Eω
[
(Re

ω)−γ
∣∣ω > ω∗

]
Eω
[
(Re

ω)−γ
] (1− F (ω∗)) + χ̄−

Eω
[
(Re

ω)−γ
∣∣ω < ω∗

]
Eω
[
(Re

ω)−γ
] F (ω∗) .

This expression uses the definition of conditional expectation. Furthermore, we use the decom-
position of an unconditional into two conditional expectations to obtain:

Eω
[
(Re

ω)−γ
∣∣ω > ω∗

]
(1− F (ω∗)) = Eω

[
(Re

ω)−γ
]
− Eω

[
(Re

ω)−γ
∣∣ω < ω∗

]
F (ω∗) .

We thus express the loans premium as:

Rb −Rm = χ̄+ +
(
χ̄− − χ̄+

) Eω [(Re
ω)−γ

∣∣ω < ω∗
]

Eω
[
(Re

ω)−γ
] F (ω∗) .

Clearly, since χ̄− > χ̄+ > 0 and marginal utility is positive, the loan premium is positive. Finally,
since we know that (Re

ω)−γ > 0, we have that 0 < Eω
[
(Re

ω)−γ
∣∣ω < ω∗

]
F (ω∗) < Eω

[
(Re

ω)−γ
]
.

This condition implies that Rw ≥ Rb ≥ Rm.

Derivation of the Bond Liquidity Premium. Earlier, in the proof of of Proposition 3,
item (i), where Proposition E.4 shows in the cases where S+>0, we have that Rg ≤ Rm +
χ+. If the equality is strict, we also showed that g̃ = 0. Observe again that since 0 <
Eω
[
(Re

ω)−γ
∣∣ω < ω∗

]
F (ω∗) < Eω

[
(Re

ω)−γ
]
, we have that Rw > Rb ≥ Rg ≥ Rm. The inequalities

are strict if and only if, the Fed eliminates the spread in its corridor rates, Rw = Rm, or if banks
are satiated with reserves F (ω∗) = 0.

Derivation of the External Financing Premium and the Deposit Liquidity Premium.
The derivation of the external financing premium follows the same steps as the loans premium.
However, the presence of the capital requirement constraint implies that

Rb −Rd =
Eω
[
(Re

ω)−γ ∂χ̄(ā,d̄,ω)

∂d̄

]
Eω
[
(Re

ω)−γ
] + µ, (F.1)

where µ is a Kuhn-Tucker multiplier associated with the capital requirement condition. We can
subtract the loans liquidity premium to obtain:

Rm −Rd = −
Eω
[
(Re

ω)−γ
[
∂χ̄(ā,d̄,ω)

∂ā
− ∂χ̄(ā,d̄,ω)

∂d̄

]]
Eω
[
(Re

ω)−γ
] + µ.

Thus, the liquidity premium on deposits is the difference between the marginal benefit of addi-
tional reserves minus the benefit

The expression inside the the right-hand side is given by:[
∂χ̄
(
ā, d̄, ω

)
∂ā

− ∂χ̄
(
ā, d̄, ω

)
∂d̄

]
=

χ̄
+
(

1 + ρ−
(
Rd

Rm
− ρ
)
ω
)

if ω > ω∗

χ̄−
(

1 + ρ−
(
Rd

Rm
− ρ
)
ω
)

if ω < ω∗
.
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Then, it is convenient to partition the expectation:

Eω
[
(Re

ω)−γ
[
∂χ̄(m̄,d̄,ω)

∂m̄
− ∂χ̄(m̄,d̄,ω)

∂d̄

]]
Eω
[
(Re)−γ

] = χ̄+
Eω
[

(Re
ω)−γ

(
(1 + ρ)−

(
Rd

Rm
− ρ
)
ω
)∣∣∣ω > ω∗

]
Eω
[
(Re)−γ

] (1− F (ω∗))

+ χ̄−
Eω
[

(Re
ω)−γ

(
(1 + ρ)−

(
Rd

Rm
− ρ
)
ω
)∣∣∣ω < ω∗

]
Eω
[
(Re)−γ

] F (ω∗) .

Thus, liquidity premium of deposits as:

Eω
[
(Re

ω)−γ
[
∂χ̄(m̄,d̄,ω)

∂m̄
− ∂χ̄(m̄,d̄,ω)

∂d̄

]]
Eω
[
(Re)−γ

] = (1 + ρ)

[
χ̄+ +

(
χ̄− − χ̄+

) Eω [(Re
ω)−γ

∣∣ω < ω∗
]

Eω
[
(Re

ω)−γ
] F (ω∗)

]
...

−
(
Rd

Rm
− ρ
)
χ̄+Eω

[
(Re

ω)−γ ω
∣∣ω > ω∗

]
Eω
[
(Re)−γ

] (1− F (ω∗)) ....

−
(
Rd

Rm
− ρ
)
χ̄−

Eω
[
(Re

ω)−γ ω
∣∣ω < ω∗

]
Eω
[
(Re)−γ

] F (ω∗)

Using the the same decomposition, we have:

Eω
[
(Re

ω)−γ
[
∂χ̄(m̄,d̄,ω)

∂m̄
− ∂χ̄(m̄,d̄,ω)

∂d̄

]]
Eω
[
(Re)−γ

] = (1 + ρ)

[
χ̄+ +

(
χ̄− − χ̄+

) Eω [(Re
ω)−γ

∣∣ω < ω∗
]

Eω
[
(Re

ω)−γ
] F (ω∗)

]
...

−
(
Rd

Rm
− ρ
)[

χ̄+ +
(
χ̄− − χ̄+

) Eω [(Re
ω)−γ ω

∣∣ω < ω∗
]

Eω
[
(Re)−γ

] F (ω∗)

]
.

We combine these expressions to obtain:

Rm −Rd = − (1 + ρ)
(
Rb −Rm

)
+

(
ρ− Rd

Rm

)
DRP + µ,

where DRPt stands for a deposit risk premium:

DRP ≡
[
χ̄+ +

(
χ̄− − χ̄+

) Eω [(Re
ω)−γ ω

∣∣ω < ω∗
]

Eω
[
(Re)−γ

] F (ω∗)

]
.

We re-arrange the expression, to obtain:

Rd −Rm = (1 + ρ)
(
Rb −Rm

)
+

(
Rd

Rm
− ρ
)
DRP − µ.

Next, we show that the deposit risk premium, the second term, is also positive.

Next, we demonstrate the sign of DRP. Since, Eω [ω] = 0 marginal utility is decreasing, the
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risk-weighted expectations operator carries a premium over a fair bet:

Eω
[
(Re

ω)−γ ω
∣∣ω < ω∗

]
Eω
[
(Re)−γ

] ≤ Eω

[
(Re

ω)−γ

Eω
[
(Re)−γ

]ω] ≤ 0.

Therefore:

DRPt = χ̄+Eω
[
(Re

ω)−γ ω
∣∣ω > ω∗

]
Eω
[
(Re)−γ

] (1− F (ω∗)) + χ̄−
Eω
[
(Re

ω)−γ ω
∣∣ω < ω∗

]
Eω
[
(Re)−γ

] F (ω∗)

≤ χ̄+Eω
[
(Re

ω)−γ ω
∣∣ω > ω∗

]
Eω
[
(Re)−γ

] (1− F (ω∗)) + χ̄+Eω
[
(Re

ω)−γ ω
∣∣ω < ω∗

]
Eω
[
(Re)−γ

] F (ω∗)

= χ̄+Eω
[
(Re

ω)−γ ω
]

Eω
[
(Re)−γ

] ≤ 0.

A necessary condition for the deposit liquidity premium to be negative, ρ > Rd

Rm
. However, if

the premium is negative, Rd > Rm, but since ρ <1, the necessary condition is violated. Thus,
the DRP is negative. This concludes the proof of Proposition 4 and the claims about their sign.
QED.
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G Proofs of Policy Analysis (Section 3)

To present formal proofs, we define two important concepts: reserve satiation and neutrality.

Definition 4 (Satiation). Banks are satiated with reserves at period t if the liquidity premium
is zero, that is, if Rb

t = Rm
t .

The following Lemma states that banks are satiated with reserves under two conditions.

Lemma G.1 Banks are satiated with reserves if and only if either (case 1) iwt = imt or (case
2) a bank is in surplus for ω = ωmin.

To discuss policy effects, we compare an original policy sequence—with sub-index o—with
an alternative (shocked) policy—sub-index s in all of the exercises. We mean that a policy is
neutral relative to the other in the following sense.

Definition 5 (Neutrality). Consider original and alternative policy sequences:{
ρo,t, B

Fed
o,t , G

Fed
o,t , G

FA
o,t ,Mo,t,Wo,t, To,t, κo,t, i

ior
o,t , i

w
o,t

}
and{

ρs,t, B
Fed
s,t , G

Fed
s,t , G

FA
s,t ,Ms,t,Ws,t, Ts,t, κs,t, i

ior
s,t , i

w
s,t

}
.

Policy s is neutral—relative to o—if the induced equilibria satisfies{
Eo,t, co,t, b̄o,t, d̄o,t, m̄o,t, ḡo,t

}
=
{
Es,t, cs,t, b̄s,t, d̄s,t, m̄s,t, ḡs,t

}
for all t ≥ 0.

When the condition holds, real aggregate loans and deposits are also determined, and identical
to those of the original allocation—and also for currency and holdings of government bonds and
currency. The rest of this appendix shows the proofs for the classic exercises in monetary policy
analysis that we studied in the main text. We begin by establishing to classic results:

Proposition G.1 Consider an equilibrium sequence induced policy {Mt+1,Wt+1, B
Fed
t+1 , G

Fed
t+1 , }

that grows at rate kt and a sequence of nominal policy rates {iwt , imt }. Then,

i) Consider a policy sequence that induces a stationary equilibrium and another policy sequence
where Fed balance sheet is scaled by a constant K > 0. Then, the alternative policy induces
another stationary equilibrium where the price level is scaled by K, but all real variables are the
same as in the original stationary equilibrium.

ii) Consider an increase the balance sheet of the Fed by kt for some t, has no real effects if
and only if the demand for currency is inelastic (or zero) and the Fed alters its nominal policy

rates to keep
{

1+imt
1+kt

,
1+iwt
1+kt

}
constant.

Part i) establishes long-run money neutrality. This result applies only to the stationary
equilibrium because assets are nominal. Thus, changes at any point in time, by changing the
price level have redistributive consequences. Even if the policy is anticipated, if policy rates
are not adjusted, the policy change induces a different equilibrium. In the long run, however, a
change in the scale of the Fed’s balance sheet leads to a scaled stationary equilibrium. Part ii) is
a condition for super-neutrality; the condition that changes in the inflation rate of the economy
is neutral. The result says that if the Fed increases the growth rate of its nominal balance sheet,
by a scalar, and adjusts its nominal policy rates to keep real rates constant, variations in the
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growth rate of its nominal balance sheet only translates into changes in the unit of account,
and inflation generates no changes. It is important to note that a qualification for this result
is that the demand for real balances of currency are inelastic. Otherwise, changes in inflation
produce a change in the money demand by households, and inflation adjusts differently in that
context. Part ii) can be also interpreted as an approximation, for mild inflation rates, as long as
the currency demand is close to inelastic, changes in inflation will be neutral.

G.1 Proof of Lemma G.1 (Conditions for Satiation)

By definition of satiation, the right-hand side of (Loan LP-Deposit LP) must equal zero under
satiation, and thus:

0 = χ̄+ +
(
χ̄− − χ̄+

)
· F (ω∗) · Eω

[
(Re)−γ ω < ω∗

]
Eω
[
(Re)−γ

] ,

and
0 = χ̄+.

This expression equals zero in two cases:

Case 1. If iwt = imt , then the condition holds immediately since χ− = χ+ = 0. This case is
condition (i) in the proposition.

Case 2. If iwt > imt , then since χ− > χ+ for any θ,we must have that: F (ω∗) = 0 and
χ̄+ = 0. This occurs only if ω∗ ≤ ωmin.

Under condition (ii) of the proposition, no bank is in deficit even for the worst shock. QED.

G.2 Proof of Proposition G.1 Item (i)

Consider a policy sequence {o} and an alternative policy {s} such that

1. Xs,t = kXo,t for some k > 0 for the balance sheet variables X ∈
{
BFed, GFed, GFA,M,W

}
,

2. policies are identical for non-balance-sheet variables
{
ρo,t, κo,t, i

m
o,t, i

w
o,t

}
=
{
ρs,t, κs,t, i

m
s,t, i

w
s,t

}
.

The proposition states that the stationary equilibrium induced by either policy features identical
real asset positions and price levels that satisfy Ps,t = kPo,t .

The proof is by construction and requires us to verify that the equilibrium conditions that
determine {b̄ss, āss, d̄ss, c̄ss, Ess} in Section B.2 are satisfied by any pair of policy sequences{

BFed
o,t , G

Fed
o,t , G

FA
o,t ,Mo,t,Wo,t

}
t≥0

and {
BFed
s,t , G

Fed
s,t , G

FA
s,t ,Ms,t,Ws,t

}
t≥0

that satisfies the relationship above. We proceed to check that
{
b̄ss, āss, d̄ss, c̄ss, Ess

}
solves the

set of equilibrium equations in Section B.2 in both cases.
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Consider the original and alternative policies. We are considering stationary equilibria, so by
hypothesis these satisfy

Xa,t = Xa,t−1(1 + πss), for some πss and a ∈ {o, s} and
{
BFed, GFed, GFA,M,W

}
.

By hypothesis also, inflation and nominal rates are equal under both policies. Thus, the real
interest rate on reserves is equal under both policies. We check the equilibrium conditions in the
order in which they appear in Section B.

First, we guess and verify that the real returns on loans and deposits are also equal under
both policies. If both policies yield the same real rates, the solution for bank portfolios (the
solution for Ωt) must also be equal in both equilibria:{

b̄o,ss, āo,ss, d̄o,ss, c̄o,ss
}

=
{
b̄s,ss, ās,ss, d̄s,ss, c̄s,ss

}
.

Consider now the aggregate supply of loans and reserves under either policy:

(1− css)b̄ssEss = Θb
(
Rb
ss

)ε −BFed
t+1 /Pt.

That equation can be satisfied under both policies because BFed
o,t+1/Po,t = (1 + g)BFed

o,t+1/(1 +
g)Po,t =BFed

s,t+1/Ps,t. This verifies that the real rate on loans is equal under both policies.

The same steps verify that Rd
ss is the same under both policies. Similarly, the demand for

reserves and currency can be satisfied in both equations because

(1− css)m̄ssEss = Mo,t/Po,t = Ma,t/Pa,t.

A similar argument holds for the holdings of government bonds. This verifies market clearing
for reserves.

Now, the ratio of surpluses to deficits is also equal under both policies:

θss ≡ S−a,t/S
+
a,t for a ∈ {o, s}.

Because θ and policy rates are equal, the liquidity cost function χ is also equal under both
policies. Observe that χ is a function of θ only. With equal inflation under both policies, the
liquidity return Rχ must also be equal. This verifies that all the real rates in both equilibria
are the same under both policies. Since rates are the same, both policies satisfy the same law
of motion for equity (19). It is immediate to verify that the consolidated government budget
constraint is satisfied under both policies, once all portfolios from the private sector are identical
in real terms. QED.

G.3 Proof of Proposition G.1 Item (ii)

This statement of the proposition regards superneutrality and non-superneutrality. The proof
closely follows the proof of Proposition G.1, item (i). The main difference is that we prove
neutrality along an equilibrium sequence, not only in stationary equilibrium. The proof is again
by construction and only requires that we verify that the equilibrium conditions that determine
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{b̄t, āt, d̄t, c̄t, Et} in Section B lead to the same values under both policies. Let{
Mo,t, G

Fed
a,t , G

FA
a,t , B

Fed
o,t ,Wo,t

}
t≥0

and {
Ma,t, G

Fed
a,t , G

FA
a,t , B

Fed
a,t ,Wa,t

}
t≥0

be two policy sequences. Again, to ease notation, we follow the order of the equations in Section
B.

Consider the original and alternative policies. By the hypothesis of stationary equilibrium,
both equilibria satisfy

Xa,t = XFed
a,t−1(1+ka), B

Fed
a,t = for some ka and for a ∈ {o, s} and X ∈

{
M,GFed, GFA, BFed,W

}
.

Also, let the initial conditions be the same, Xs,0 = Xo,0.

Then, the condition for the consolidated government implies that

Xs,t+1 = (1 + ks)
tXs,0 = (1 + ks)

tXo,0,

Xo,t+1 = (1 + ko)
tXo,0,

for X ∈
{
M,GFed, GFA, BFed,W

}
. Thus, we can relate both government policy paths via:

Xs,t+1 =

(
1 +

ks − ko
1 + ko

)t
Xo,t+1.

Through the proof, we guess and verify the following:

A.1
{
Rb
o,t, R

d
o,t, R

m
o,t, R

g
o,t, R

χ̄
o,t

}
=
{
Rb
s,t, R

d
s,t, R

m
s,t, R

g
o,t, R

χ̄
s,t

}
.

A.2 Po,0 = Ps,0 = P0.

A.3 (1 + πs,t) = (1 + πo,t)
(

1 + ks−ko
1+ko

)
.

First, we verify (A.1). Under the conjecture that real returns are the same along a sequence, we
have that {

b̄o,t, āo,t, d̄o,t, c̄o,t
}

=
{
b̄s,t, ās,t, d̄s,t, c̄s,t

}
,

so the optimality conditions are satisfied in both cases.

Next, consider the aggregate supply of loans and reserve demand. Equilibrium in the loans
market requires

(1− ct)b̄tEt = Θb
(
Rb
t

)ε −BFed
t+1 /Pt.

If the equation is satisfied under both policies, then we must verify that BFed
o,t+1/Po,t =BFed

s,t+1/Ps,t.
To see that this condition holds, recall that

BFed
s,t+1 =

(
1 +

ks − ko
1 + ko

)t
BFed
s,0 .

Now, if πs,t − πo,t = (ks − ko) / (1 + ko), by (A.2) we have that
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Pa,t =
t∏

τ=1

(1 + πa,τ )P0 for a ∈ {o, s} .

Combined with the guess (A.3) above, we obtain

Ps,t =
t∏

τ=1

(1 + πo,t)

(
1 +

ks − ko
1 + ko

)
P0 = Po,t

(
1 +

ks − ko
1 + ko

)t
.

Therefore,

BFed
s,t+1/Ps,t =

(
1 +

ks − ko
1 + ko

)t
BFed
s,0 /Ps,t = BFed

0,t+1/Po,t,

which shows that the real holdings of loans under both policies are equal. The arguments are
identical for the equilibrium in the deposit and government bond market are identical, but the
market for Fed assets works differently.

We needed to verify that under our guess,
{
Rb
t , R

g
t , R

d
t

}
is the same under both policies. Note

that Rm
t is the same under both policies:

Rm
o,t =

(
1 + iioro,t+1

)
/ (1 + πo,t+1) =

(
1 + iiors,t+1

)(
1 +

ks − ko
1 + go

)
/ (1 + πo,t+1) ,

and by assumption (A.3), the condition is also equal:

(
1 + iiors,t+1

) (1 + πo,t+1)

(1 + πs,t+1)
/ (1 + πo,t+1) = Rm

s,t.

Next, consider the condition for an equilibrium for Fed liabilities:

(1− ct)m̄tEt = Mo,t/Po,t −Mh
o,t/Po,t = Ms,t/Ps,t −Mh

s,t/Ps,t.

It is important that the demand for real balances of currency is inelastic—possibly zero. Oth-
erwise, since currency earns no interest rate, its rate of return does change with the rate of
inflation. Consider it is, then bank reserve demand must be the same: the condition is used to
verify our guess (A.3). The condition above requires

Ps,t+1

Po,t+1

=
Ms,t+1

Mo,t+1

=

(
1 +

ks − ko
1 + ko

)t
Mo,t+1

Mo,t+1

=

(
1 +

ks − ko
1 + ko

)t
.

Then, since by Assumption (A.2), initial prices are the same, we have that

Ps,t+1

Po,t+1

=

t∏
τ=1

(1 + πs,t)P0

t∏
τ=1

(1 + πo,t)P0

=

(
1 +

ks − ko
1 + ko

)t
⇒

t∏
τ=1

(1 + πs,t) =
t∏

τ=1

(1 + πo,t)

(
1 + ks
1 + ko

)
.

Since the condition holds for all t, then A.3 is deduced from the quantity equation of reserves.
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The next step is to verify that Rχ̄
t is constant under both policies. For that, observe that the

interbank market tightness is the same under both economies. To see that, simply note that the
ratio of reserves to deposits is the same under both policies, and that this is enough to guarantee
that θt is equal under both policies. By Lemma E.3 and the condition for policy rates in the

proposition—
(
1 + ixo,t

)
=
(
1 + ixs,t

) (
1+ks
1+ko

)
for x ∈ {w,m}—in states away from satiation,

χ
(
.; iws,t, i

ior
s,t

)
=

(
1 + ks
1 + ko

)
χ
(
.; iwo,t, i

ior
o,t

)
.

Therefore, we have that

Rχ
o,t =

χ
(
.; iwo,t, i

ior
o,t

)
1 + πo,t

=

(
1+ks
1+ko

)
χ
(
.; iwo,t, i

ior
o,t

)(
1+ks
1+ko

)
(1 + πo,t)

=
χ
(
.; iws,t, i

ior
s,t

)
(1 + πs,t)

= Rχ
s,t.

This step verifies that Rχ̄
o,t = Rχ̄

s,t. So far, we have checked the consistency of assumptions (A.1)
and (A.3), and that the policy rules for

{
b̄t, āt, d̄t, c̄t

}
and the real rates are the same under both

equilibria. We still need to show that the sequences for Et are the same under both policies, that
the initial price level is the same, and that the Fed’s budget constraint is satisfied under both
policies. This follows immediately from the law of motion of bank equity:

Et+1 =
(
1 +

(
Rb
t+1 − 1

)
b̄t − (Rd

t+1 − 1)d̄t
)

(1− c̄t)Et,

which as noted, must be the same. We have already verified that BFed
s,t+1/Ps,t = BFed

s,0 /Po,t.
Following the same steps, we can show that real reserves MFed

t /Pt, government bonds GFed
t /Pt

and GFA
t /Pt and discount loans W Fed

t /Pt are identical under both policies. Away from satiation,

Rχ
o,t = Rχ

s,t, so that means that real income from the discount window,
WFed
t

Pt

(
1+iwt
1+πt

)
, is constant

under both policies—τt is identical under both policies. Consider now (B0, D0,M0, G0,W0) , the
initial condition under both policies. If P0 is same initial price under both policies, Eo,0 = Es,0.
This is precisely the initial conditions that we need to confirm our guess Eo,0 = Es,0 and Po,0 =
Ps,0. QED.

G.4 Proof of Proposition 5

Consider two policies, o and s, and let the alternative policy feature a mix of conventional and
unconventional open-market operations performed at t = 0 and reverted at t = 1 in the sense
that

1. BFed
s,1 = BFed

o,1 + ∆BFed , GFed
s,1 = GFed

o,0 + ∆GFed , and MFed
s,1 = MFed

o,1 + ∆MFed, such that,
∆MFed = ∆GFed + ∆BFed and ∆MFed,∆GFed,∆BFed ≥ 0.

2. For all t ≥ 0, we have {
imo,t, i

w
o,t, G

FA
o,t ,Wo,t

}
=
{
ims,t, i

w
s,t, G

FA
s,t ,Ws,t

}
.
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3. For all t 6= 1, we have{
imo,t, i

w
o,t,M

Fed
o,t , G

Fed
o,t , G

FA
o,t , B

Fed
o,t ,Wo,t

}
=
{
ims,t, i

w
s,t,M

Fed
s,t , G

Fed
s,t , G

FA
s,t , B

Fed
s,t ,Ws,t

}
.

The statement of the proposition is that for λ > 0, the operation is neutral if and only if banks
are satiated with reserves at time zero under both policies. If λ → 0 and the economy is away
from satiation, then a conventional policy, i.e. ∆B = 0, is neutral but an unconventional policy
∆B > 0 is not. We refer to neutrality as a situation where, as we compare across both policy
sequences, the total outstanding amount of loans, deposits, and bonds remains unchanged in real
terms.

The proof requires an intermediate step: First, we show that if two policies induce identical
real aggregate loans deposits and bond holdings, the equilibrium prices Po,0 = Ps,0 must be equal.
Then, we show for positive λ that if the price is constant, the open-market operation must have
real effects away from satiation. Then, we show that if banks are satiated, the policy has no
effects. Finally, we show that if λ = 0, the stated results holds.

Auxiliary Lemma. First, we prove the following auxiliary lemma corresponding to the first
step of the proof.

Lemma G.2 Consider two arbitrary policy sequences o and s, as described above. If total real
loans, deposits, dividends, reserves, government bonds, and bank equity are equal across equilibria
for all t ≥ 0, then Po,0 = Ps,0.

Proof. Without loss of generality, normalize the price in the original equilibrium to Po,0 = 1,
but not the price of the alternative sequence—we can always re-scale the original sequence to
obtain a price of one. The idea of the proof is to start from the quantity equation in one equilib-
rium, and use real market clearing conditions to express obtain a relationship using quantities of
the second equilibrium. Using the quantity equation of the second equilibrium, the result must
follow.

Consider now a given bank. By hypothesis, real equity is equal in both equilibria, Es,0 = Eo,0
and c̄o,0 = c̄s,0. Also, recall that{

BFed
o,1 , Bo,1, G

Fed
o,1 , Go,1,M

Fed
o,1 ,Mo,1

}
and {

BFed
s,1 , Bs,1, G

Fed
s,1 , Gs,1,M

Fed
s,1 ,Ms,1

}
are the nominal loans, government bonds, and reserves of the Fed and the representative bank,
respectively—under the original and alternative policies.

We use the following relationships: Since equity, dividends, and real deposits are constant,
from the bank’s budget constraints, we obtain

Bo,1 −Bs,1/Ps,1 = As/Ps,1 − Ao. (G.1)

Also, we know that since market clearing must hold in the loans market under both equilib-
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rium sequences,

Θb
(
Rb
o,1

)εb ≡ BFed
o,1 +Bo,1 (G.2)

=
(
BFed
s,1 +Bs,1

)
/Ps,1,

—recall that Po,0 = 1.

We now exploit the quantity equations of both equilibria, through the following relationship:

MFed
o,t +GFA

o,t −GFed
o,t −Gh

o,t + ∆M −∆G = MFed
1,t +GFA

1,t −GFed
1,t −Gh

1,t

= Ps,0ās,0 (1− c̄s,0)Es,0

= Ps,0
(
b̄o,0 + āo,0 − b̄s,0

)
(1− c̄s,0)Es,0

= Ps,0
(
b̄o,0 + āo,0

)
(1− c̄s,0)Es,0 . . .

−
(

Θb
(
Rb
o,1

)εb −BFed
s,1

)
. (G.3)

The first equality just uses the relationship between both policies, the second equality follows
from the quantity equation (23) which holds under the alternative equilibrium, the third equality
uses (G.1) expressed in terms of the banks portfolio, and fourth follows from (G.2). Substituting
out BFed

s,1 from the last term into (G.3), we obtain

MFed
o,t +GFA

o,t −GFed
o,t −Gh

o,t + ∆M −∆G = . . .

Ps,0
(
b̄o,0 + āo,0

)
(1− c̄s,0)Es,0 −

(
Θb
(
Rb
o,1

)εb − (BFed
o,1 + ∆B

))
.

Then, using that ∆M = ∆B + ∆G, the equation simplifies to

MFed
o,t + GFA

o,t − GFed
o,t − Gh

o,t = Ps,0
(
b̄o,0 + āo,0

)
(1− c̄s,0)Es,0 −

(
Θb
(
Rb
o,1

)εb −BFed
o,1

)
.

Using the loans clearing condition Θb
(
Rb
o,1

)εb −BFed
o,1 =b̄o,0 (1− c̄s,0)Es,0, we obtain:

MFed
o,t +GFA

o,t −GFed
o,t −Gh

o,t = Ps,0
(
b̄o,0 + āo,0

)
(1− c̄s,0)Es,0 − b̄o,0 (1− c̄s,0)Es,0

= (Ps,0 − 1) b̄o,0 (1− c̄s,0)Es,0 + Ps,0āo,0 (1− c̄s,0)Es,0

Finally, using the quantity equation (23) applied to the first equilibrium, MFed
o,t +GFA

o,t −GFed
o,t −

Gh
o,t = āo,0 (1− c̄s,0)Es,0 we obtain:

0 = (Ps,0 − 1) b̄o,0 (1− c̄o,0)Eo,0 + (Po,0 − 1) āo,0 (1− c̄o,0)Eo,0.

Since this equation is independent of ∆M, and b̄o,0, c̄o,0, Eo,0, āo,0 are all positive numbers, and
any price is positive, it must be that Po = Ps = 1. QED.

Next, we establish the main results.

Item 1: Non-neutrality away from satiation and λ > 0. First, we argue that if the policy
change is neutral away from satiation, we reach a contradiction. Assume that the policy is indeed
neutral. If policy s is neutral with respect to policy o, real assets, real asset returns, dividends,
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and bank equity must be equal across both equilibria. Consider Loan LP. Since real loans are
the same, Rb must be the same in both equilibria. Also Rm must be the same. This is the case
because by t = 1, the policy is reverses and thus the equilibrium and the price must be the same.
Since by assumption, the policy is neutral, also, the t = 0 price must be equal, as shown in
Lemma G.2. Hence, since im is constant across both policies, then, Rm must the same. However,
since under one equilibrium liquid assets are lower, but deposits are the by assumption same,
the liquidity premium cannot be the same. A contradiction.

Item 2: Neutrality under satiation. Next, we verify that under satiation, the policy change
has no effects. The key to verify the result is to show that if the economy is under satiation
under both policies, if the bank’s portfolio changes exactly in the opposite direction as the Fed’s
portfolio, the policy is neutral—that is, we guess that there is no crowding in or crowding out
effects. Thus, we guess that:

Bo,1 −∆B = Bs,1, Go,1 −∆G = Gs,1, and Mo,1 + ∆M = Ms,1.

If the allocation is the same in real terms, then by Lemma G.2, t = 0 and t = 1 prices are the
same, and Po,1 = Ps,1. Under satiation, we also know that Rb = Rm = Rg. Hence, the aggregate
quantity of loans and bonds be equal under both policies. Hence, clearing in the loans market
implies:

Θb
(
Rb
o,1

)εb
= Θb

(
Rm
o,1

)εb
=
Bo,1 +BFed

o,1

Po,1
=
Bo,1 −∆B +BFed

o,1 + ∆B

Po,1
. . .

=
Bs,1 +BFed

s,1

Ps,1
= Θb

(
Rb
s,1

)εb
.

and in the bond market,

Θg
(
Rg
o,1

)εg
= Θg

(
Rm
o,1

)εg
=
GFA

1 −Go,1 +GFed
o,1

Po,1
=
GFA

1 −Go,1 −∆G+GFed
o,1 + ∆G

Po,1
. . .

=
GFA

1 −Gs,1 +GFed
s,1

Ps,1
= Θg

(
Rg
s,1

)εg
.

and in the deposit market,

Do,1

Po,1
=
Bo,1 +Go,1 +Mo,1

Po,1
+ Eo,1 =

Bo,1 +Go,1 +Mo,1 −∆B −∆G+ ∆M

Po,1
+ Eo,1 . . .

=
Bs,1 +Gs,1 +Ms,1

Po,1
+ Es,1 =

Ds,1

Ps,1
.

Thus, all market clearing conditions are satisfied. Since, if banks start under satiation, and the
increase in total liquid assets is positive, then banks are satiated under both policies. Thus,
under both policies, banks are indifferent between loan, bond, and reserve holdings, the guess is
consistent with bank equilibrium choices. Since the law of motion of equity is unchanged across
both equilibria, the path of dividends is also the same, which verifies the guess that the price
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level is the same in both cases.

Item 3: Limit case as λ → 0. Finally, we verify that if λ → 0, conventional policies are
neutral, but unconventional policies are not. Recall, a conventional policy is one where ∆B =
0,∆G > 0 and an unconventional is one where ∆B > 0. Also, recall that if λ→ 0, then χ̄+

o,1 = 0

and
(
χ̄−o,1 − χ̄+

o,1

)
= Rw

o,1, for any interbank market tightness. Thus, we have that the Loan LP
becomes:

Rb −Rm = Rw
o,1 · F (ω∗) · Eω

[
(Re)−γ |ω < ω∗

]
Eω
[
(Re)−γ

] ,

where ω∗ ≡ −
(
ā/d̄− ρ

)
/
(
Rd
t+1/R

m
t+1 − ρ

)
. In turn, the bond return satisfies:

Rg = Rm.

First, we verify that the conventional policy is neutral: Suppose it is. By Lemma G.2, t = 0 and
t = 1 prices are the same, Po,1 = Ps,1. Thus, Rm

o,1 = Rm
s,1. Since the price level is the same, and

the policy is exclusively a conventional policy, ∆M = ∆G. Under this guess, if the policy does
not crowd out household bonds, Go,1 + Mo,1 = Go,1 + Mo,1 + ∆M −∆G = Gs,1 + Ms,1. This in
turn, implies that āo,0 = ās,0, and thus, ω∗o,0 = ω∗s,0. Since the threshold remains unchanged, and
tightness does not affect the loans nor the bond premium. The guess is therefore verified.

To close the proposition, we verify that the unconventional policy has an effect. Suppose not.
Then, prices do not change, again by Lemma G.2. We know that:

Go,1 +Mo,1 = Go,1 +Mo,1 + ∆M −∆G−∆B = Gs,1 +Ms,1 −∆B.

Thus, since ∆B 6= 0, the real value of liquid assets under the original and alternative policies
differ. Hence, we have a contradiction: either the threshold ω∗differs across both policies or the
deposits adjust, or both. In either case, the liquidity premium must be different across both
policies. The result follows. QED.

G.5 Proof of Proposition 6 and Corollary 1

We first demonstrate Proposition 6 and then proof the bound in Corollary 1. For the rest of this
proof, we avoid time subscripts under the understanding that the condition applies to stationary
equilibria. A stationary equilibrium satisfies four equilibrium conditions under any Friedman
rule. We have that:

1. A stationarity condition:

1/β =
(
ā+Rb

(
1 + d̄− ā

)
−Rdd̄

)
. (G.1)

2. Two stationary clearing conditions:

B = Θb
(
R̄
)εb

and D = Θd
(
R̄
)εd

.

3. An aggregate budget balance:
B = D + (1− ā) Ẽ. (G.2)
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Here Ẽ is the steady-state equity after dividends. These conditions hold regardless of the sta-
tionary dividend.

Proof of Proposition 6 There are four possible outcomes: either capital requirements bind
or not and either ā > 0 or a = 0. We develop observations for each case. We first observe that
under the Friedman rule, Rb ≥ Rm, with equality if a > 0. We first investigate the cases where
a = 0.

Case I: ā = 0 and capital requirements do not bind. If the capital requirement does
not bind and ā = 0, then we know that Rb ≥ Rm and Rb = Rd. Because the Friedman rule
eliminates the liquidity premium, the stationary condition (G.1) requires:

1

β
=
(
ā+Rb

(
1− ā+ d̄

)
−Rdd̄

)
= Rb,

where the first equality is the definition of equity returns and the second equality uses Rb = Rd

and a = 0. Thus, we have that Rb = Rd = 1/β and Rm ≤ 1/β.

In this case, the stationary equilibrium loans and deposits are given by

B = Θb (1/β)ε
b

and D =Θd (1/β)ε
d

.

Thus, (G.2), becomes

Ẽ = Θb (1/β)ε
b −Θd (1/β)ε

d

. (G.3)

If capital requirements are indeed satisfied, it must be that:

Ẽ ≥ 1

κ
Θd (1/β)ε

d

. (G.4)

Combining, (G.3-G.4) yields:

Θb (1/β)ε
b ≥ κ+ 1

κ
Θd (1/β)ε

d

. (G.5)

If the condition is not satisfied, then, it is not possible to have a stationary equilibrium under
the Friedman rule with a = 0 and where capital requirements do not bind. We summarize this
case with the following observation:

Remark 1. If ā = 0 and capital requirements do not bind, then Rb = Rd = 1/β and Rm ≤ 1/β
and condition (25) must hold.

Case II: capital requirements binds and ā = 0. If the capital requirement binds and
ā = 0, we know that Rb > Rd and Rb > Rm. Since capital requirements bind, after dividend

equity must equal, Ẽ = 1
κ
Θd
(
Rd
)εd

. Again, because the Friedman rule eliminates the liquidity
premium, the stationary condition (G.1) to bank equity is 1/β:

1/β = Rb +
(
Rb −Rd

)
κ.

Rewriting this expression yields a relationship between Rd and Rb,
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Rb =

1
β

+ κRd

(1 + κ)
. (G.6)

We have the following observation, which we proof consequently:

Remark 2. If the capital requirement binds and ā = 0, we have that Rd < 1/β.

Suppose the contrary, then

Rb =

1
β

+ κRd

(1 + κ)
>

1
β

+ κ 1
β

(1 + κ)
=

1

β
.

But if then, Rb > 1/β, and Rb > Rd, implies that the return on equity is above 1/β. Clearly a
contradiction. Hence, Remark 2 must hold.

Substituting the equilibrium conditions into the aggregate budget constraint yields:

Θb
(
Rb
)εb

= Θd
(
Rd
)εd

+
1

κ
Θd
(
Rd
)εd

= Θd
(
Rd
)εd (κ+ 1

κ

)
.

Substituting (G.6) and re-arranging produces:

(1 + κ)

(
Θd

Θb

1 + κ

κ

)1/εb (
Rd
)εd/εb

=
1

β
+ κRd. (G.7)

This is the same expression for R̄d in Proposition 6. We have the following property:

Remark 3. Equation (G.7) has a unique solution.

To see this, note that the left-hand side is decreasing in Rd and the right increasing in Rd.
For Rd = 0, the left hand side is above 1/β, so the solution must be unique. With this, and
using (G.6) we obtain R̄b as in the Proposition.

Next, we must verify that indeed the unique solution holds for Rd < 1/β, as needed—see
Remark 2. Since the right hand side of (G.7) is increasing and the left decreasing, R̄d < 1/β if
and only if:

(1 + κ)

(
Θd

Θb

1 + κ

κ

)1/εb

(1/β)ε
d/εb <

1

β
+ κ1/β.

Rearranging the terms, leads to:

Θb (1/β)ε
b

<
κ+ 1

κ
Θd (1/β)ε

d

.

This is enough to conclude that:

Remark 4. If ā = 0 and capital requirements bind, then Rm ≤ R̄b ≤ 1/β and condition (25)
must be violated.

We can combine this result and remark 1, to obtain the following:

Remark 5. Whether condition (25) holds or not, if ā = 0, then Rm ≤ min

{
1/β,

1
β

+κR̄d

(1+κ)

}
for

(1 + κ)
(

Θd

Θb
1+κ
κ

)1/εb (
R̄d
)εd/εb

= 1
β

+ κR̄d.
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Next, we move to the cases where ā > 0.

Case III: capital requirements do not bind and ā > 0. In this case, we know that
Rb = Rm = Rd. The (G.1) becomes:

1/β =
(
ā+Rm

(
1 + d̄− ā

)
−Rmd̄

)
= (Rm − ā (Rm − 1)) .

Hence, we have that:

ā =
Rm − 1/β

Rm − 1
.

This implies that that Rm > 1/β. We have the following remark:

Remark 6. If capital requirements do no bind and ā > 0, then Rm>1/β.

Case IV: capital requirements bind and ā > 0. So far we have shown conditions
for stationary equilibria in which a = 0,which specify hold only if Rm ≤ 1/β—with an exact
threshold given in Remark 5. Remark 6 shows that if capital requirements do not bind and
if Rm > 1/β, then ā > 0. To complete the statement of the proposition, we need to show if

condition (25) is not satisfied and Rm ≤ R̄b = 1
β

1+κβR̄d

1+κ
where R̄d solves:

(1 + κ)

(
Θd

Θb

(
1 + κ−1

))1/εb (
R̄d
)εd/εb

=
1

β
+ κR̄d,

then ā = 0 and the capital requirement binds. Hence, any Rm > R̄b must feature ā > 0
establishing that Rb = Rm.

To prove this, we assume by contradiction that ā > 0. By assumption,

Rb = Rm ≤ R̄b =
1

β

1 + κβR̄d

1 + κ
.

and a > 0. Under the stated assumptions, (G.1) becomes:

1/β =
(
Rm − (Rm − 1) ā+

(
Rm −Rd

)
κ
)
. (G.8)

However, we also know that:
1/β =

(
R̄b +

(
R̄b − R̄d

)
κ
)
. (G.9)

Hence, we have the following condition:

Remark 7. If condition (25) is not satisfied, capital requirements bind, ā > 0, and Rm ≤ R̄b,
then it would be the case that Rd < R̄d.

The remark can be shown to hold simply by noticing that Rm < R̄b and ā > 0, in then it
must be that Rd < R̄d, by comparing (G.8) and (G.9).

Next, solving for ā from (G.8) yields:

ā =
Rm − 1/β +

(
Rm −Rd

)
κ

Rm − 1
.
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Observe that by monotonicity:

Θb (Rm)ε
b

> Θb
(
R̄b
)εb

and also

Θd
(
Rd
)εd (

1 + κ−1 (1− ā)
)
< Θd

(
R̄d
)εd (

1 + κ−1 (1− ā)
)
< Θd

(
R̄d
)εd

.

Then, if we substitute real rates into (G.2), we obtain:

Θb (Rm)ε
b

= Θd
(
Rd
)εd

+
1− ā
κ
·Θd

(
Rd
)εd

= Θd
(
Rd
)εd (κ+ (1− ā)

κ

)
.

Substituting the inequalities above:

Θb
(
R̄b
)εb

< Θb (Rm)ε
b

= Θd
(
Rd
)εd (κ+ (1− ā)

κ

)
< Θd

(
R̄d
)εd (κ+ 1

κ

)
.

However, this contradicts the definition of
{
R̄b, R̄d

}
. Hence, we conclude that:

Remark 8. If condition (25) is not satisfied and Rm ≤ R̄b, then we have that ā = 0 and capital
requirements binds.

Collecting the results. Consider the cases where condition (25) holds. Combining re-
marks (1) and (6) we have that:

Remark 9. If (25) holds, then the loans rate associated with the Friedman rule is:

Rb,FR =

{
1/β if Rm < 1/β,

Rm if Rm ≥ 1/β.
(G.10)

Moreover, ā = 0 and the capital requirement does not bind if and only if Rm ≤ 1/β. If Rm ≤ 1/β,
the stationary deposit rate is also 1/β .

Now consider the cases where condition (25) does not hold. Combining remarks (5) and (8)
we have that:

Remark 10. If (25) does not hold

Rb,FR =

{
R̄b if Rm < R̄b,

Rm if Rm ≥ R̄b,
(G.11)

where

R̄b =
1

β

1 + κβR̄d

1 + κ
≤ 1

β
,

where R̄d the stationary deposit rate which is the unique solution to

(1 + κ)

(
Θd

Θb

(
1 + κ−1

))1/εb (
R̄d
)εd/εb

=
1

β
+ κR̄d.

Moreover, ā = 0 if and only if Rm ≤ R̄b. In this case, the capital requirement binds.
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Combining remarks (9) and (10) we obtain the statement of Proposition 6. QED.

Proof of Corollary 1 The proof is immediate. First, observe that if (25) holds, then we had
showed that the R̄d that solves

(1 + κ)

(
Θd

Θb

(
1 + κ−1

))1/εb (
R̄d
)εd/εb

=
1

β
+ κR̄d,

is above 1
β
. Thus, R̄b > 1/β. Otherwise, if (25) does not hold, the solution is less than 1/β and

R̄b < 1/β. This implies that a compact way to write Rb,FR is:

Rb,FR =

{
min

{
R̄b, 1/β

}
if Rm

ss < min
{
R̄b, 1/β

}
,

Rm if Rm
ss ≥ min

{
R̄b, 1/β

}
Then, since by assumption of the corollary Rm ≥ min

{
R̄b, 1/β

}
= Rb,FR and Rb ≥ Rm in any

equilibrium, the bound follows. QED.
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H Efficient Allocations and Proof of Proposition 7

In this Appendix, we derive the efficient allocations under the assumption that βh = β. We also
show that a version of the Friedman rule, with the appropriate choice of Rm, can implement the
first-best allocation, provided that capital requirements are sufficiently ample. We let a planner
maximize a weighted average of households and bankers’ utility subject to the resource constraint
for goods and labor. The planner’s problem is:

Problem 4 (Planner’s Problem). The unconstrained planner’s problem is given by:

max
{ct,cdt ,cgt ,cmt ,ht}∞t=0

∑
t=0,1..

βt

(1−$)

 ∑
x∈{d,g,m}

Ux (cxt ) + cht −
h1+ν
t

1 + ν

+$ · u(ct)


subject to the resource constraint: ∑

x∈{d,g,m}
cxt + cht + ct = yt, (H.1)

and the technological constraint:
yt = Ath

α
t−1. (H.2)

The initial labor input h−1 is given.

Here, we use $ for the Pareto weight on the banker’s consumption. The next Proposition
characterizes an optimal allocation.

Proposition H.1 The optimality conditions of the unconstrained planner problem are:

Ux
cx

(
X̄
)

= 1 =
$

(1−$)
φu′(ct) for x ∈ {d, g,m} (H.3)

and
βαAt+1h

α−1
t = hνt . (H.4)

The proposition states that in the first best allocation, the planner equalizes the labor wedge
to zero and equalizes all the marginal utility across goods to one. The latter is optimal because
the marginal rate of transformation is one across all goods. Notice also that the planner’s
solution is characterized by a sequence of static problems, so there are no dynamic trade-offs
in the allocation. We say an allocation is efficient if it coincides with the planner’s solution for
some $.

Next, we state a detailed version of Proposition 7.

Proposition H.2 Consider a competitive equilibrium and a version of the Friedman rule where
the Fed sets Rm

t = Rw
t = 1/β, (and πt = β−1) and adjusts MFed

t , and GFed
t such that Rg = 1/β.

A necessary condition for this Friedman rule to induce an efficient allocation in its stationary
equilibrium is that:

Θb (1/β)ε
b ≥

(
1 + κ

κ

)
Θd (1/β)1/εd .

If the condition is violated, the first-best is not attainable.

We proceed with a proof.
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H.1 Decentralization and the Friedman Rule (Proof of Propositions
H.1 and H.2)

We begin with the proof of Proposition H.1.

Proof. Substituting out ch from the resource constraint into the objective, replacing yt from
the technological constraint yields a modified objective function:

max
{ct,cdt ,cgt ,cmt ,ht}

∑
t=0,1..

βt

(1−$)

 ∑
x∈{d,g,m}

Ux (cxt ) + Ath
α
t−1 −

∑
x∈{d,g,m}

cx + ct −
h1+ν
t

1 + ν

+$ · u(ct)

 .
The conditions are verified by taking first-order conditions with respect to

{
ct, c

d
t , c

g
t , c

m
t , ht

}
.

QED.

We now move to proof Proposition H.2.

Proof. Note that a necessary condition for efficiency is that Rd = Rg = 1/β and 1
1+π

= 1/β.
This follows directly from the household’s optimality condition in (C.4)—for the case where
each asset-in-advance constraint is slack. In that case, the household’s allocation across goods
coincides with the planner problem’s unconstrained condition, (H.3). Similarly, for the firm’s
problem, the optimality condition (C.7) coincides (H.4) for Rb = 1/β. Also, notice that it is only
possible to Rb = Rd = Rg = Rm = 1/β if there is no liquidity premium.

Assume that the efficiency condition holds at every period. Then loans and deposits are given
by:

Bt = Θb (1/β)ε
b

and Dt = Θd (1/β)1/εd .

From the bank’s budget constraint, and portfolio constraints, using these quantities, we have
that:

At + Θb (1/β)ε
b

= Θd (1/β)1/εd + Et (H.1)

Et ≥
1

κ
Θd (1/β)1/εd (H.2)

At ≥ 0. (H.3)

A condition for stationarity is:

1/β =
(
āss +Rb

ss

(
1 + d̄− ā

)
−Rd

ssd̄
)
, (H.4)

and replacing the efficiency condition, Rb = Rd = 1/β, yields:

1/β = (1/β − 1/β (1− ā)) .

This condition implies that At ≥ 0.

Combining (H.1) and (H.3) we obtain:

Ess = Θb (1/β)ε
b −Θd (1/β)1/εd .
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Substituting this result into the capital requirement condition yields:

Θb (1/β)ε
b ≥

(
1 + κ

κ

)
Θd (1/β)1/εd .

Hence, the necessary conditions for efficiency in Proposition 7. QED.
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I Proof of Proposition 8

Here we present the proof of Proposition 8 in Section 5.2 regarding the pass-through of monetary
policy. In this appendix we present a more general version of the Proposition in the text. In
particular, we derive the comparative statics with respect to changes in the the interest on
reserves under two scenarios: (i) keeping the discount window rate constant, and (ii) keeping
the spread in both policy rates constant. For ease of exposition we restrict to the cases where,
b̄fed = 0, but the result can be extended along that dimension without difficulty. Let LPxy denote
the derivative of the liquidity premium of asset x with respect to portfolio holdings of asset y.
The general version of of Proposition 8 is as follows.

Proposition I.1 Consider stationary equilibria. Consider an increase from a stationary level of
rm that leaves the stationary level of rw constant or leaves the corridor spread, ∆ = rw − rm,
constant. If capital requirements are binding, then the increase in rm unambiguously increases
rb. Then, if capital requirements bind, in the region where capital requirements bind:

drb

drm
=

1 + εd · (b̄+b̄Fed)
κ

rb

Rd

1 + εd · (b̄+b̄Fed)
κ

rb

Rd
− LPba

(b̄+b̄Fed)
Rb

(
εd · b̄

κ
− εb

) (1− Eω [χ (θ)]

∆
· I [drw = 0]

)
∈ [0, 1] ,

and drb

drm
= 1, when banks are satiated with reserves. If capital requirements do not bind and the

deposit supply is perfectly elastic at rd, the pass-through is ambiguous and given by:

drb

drm
=

((
LPbd + LPdd

))
rb +

(
LPbb + LPdb

)
rd

LPbbrd + LPddrb +
(
LPbb

(
LPdb + LPdd

)
− LPdb

(
LPbb + LPbd

))
b̄

(
1− Eω [χ (θ)]

∆
· I [drw = 0]

)
.

Proof. We first prove the result for the case with a perfectly elastic deposit supply schedule
and binding capital requirements. We then relax one assumption at a time for the general result.
First, recall that the the slopes of the liquidity yield function are given by

χ+ = (iw − im)

(
θ̄

θ

)η (
θηθ̄1−η − θ
θ̄ − 1

)
and χ− = (iw − im)

(
θ̄

θ

)η (
θηθ̄1−η − 1

θ̄ − 1

)
. (I.1)

Thus, we can write them as be written as:

χ+ = ∆q+ (θ) and χ− = ∆q− (θ) .

Clearly, {q+, q−} ∈ [0, 1]2. We proof the results for the case where drw > 0, but the steps are the
same to obtain the general result above. QED.

Case #1: Infinitely Elastic Deposit Supply and Binding Capital Requirements.
The gist of the proof is to perform a comparative statics analysis with respect to rm on the
following sub-system of equilibrium equations:

1 = β
(
1 + rb

(
b̄+ b̄Fed

)
− rdd̄

)
, (I.2)
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and
rb = rm + Eω [χ̄] , (I.3)

where

Eω [χ̄] =

� ω∗

−1

χ̄−f (ω) dω +

� ∞
ω∗

χ̄+f (ω) dω.

This subsystem is the loans premium and the stationarity condition for equity.

Then, taking total differentials with respect to rm on (I.2) and (I.3) we respectively obtain:

(
b̄+ b̄Fed

) drb
drm

+ rb
db̄

drm
= 0. (I.4)

and
drb

drm
= 1 +

d [E [χ̄]]

drm
. (I.5)

Then, we have that
d [E [χ̄]]

drm
= −Eω [q (θ)] + ∆

db̄

drm
(I.6)

where

LPbb ≡
[
E
[(
χ̄− − χ̄+

)
f (ω∗)

dω∗

db̄
+ Eω [χ̄θf (ω) dω]

dθ∗

db̄

]]
> 0.

We employed Leibnitz’s rule. Thus, substituting the expressions we obtain:

drb

drm
− LPbb

db̄

drm
= 1− Eω [q (θ)] > 0.

The system (I.4) and (I.5) in matrix form is represented as:[
b̄+ b̄Fed rb

1 −LPbb

]
·
[

drb

drm
db̄
drm

]
=
[

0
1− Eω [q (θ)]

]
. (I.7)

Inverting the matrix in the left yields the solution to the local comparative statics of (I.2) and
(I.3): [

drb

drm
db̄
drm

]
=

[
b̄+ b̄Fed rb

1 −LPbb

]−1 [
0

1− Eω [q (θ)]

]
.

To compute the solution, we need only the upper right element of the inverse matrix. That term
is by construction:

drb

drm
=

rb

LPbb
(
b̄+ b̄Fed

)
+ rb

(1− Eω [q (θ)]) > 0.

Similarly, we can also sign the portfolio share:

db̄

drm
= −

(
b̄+ b̄Fed

)
LPbb

(
b̄+ b̄Fed

)
+ rb

((1− Eω [q (θ)])) < 0.

59



Observation 1. Notice that under satiation q (θ) = LPbb = 0. Thus, the passthrough is one
for one. Away from satiation the pass-through is less than one because LPbbb̄ > 0.

Observation 2. Notice that for fixed ∆, the result goes through since (1− Eω [q (θ)]) is replaced
by 1.

Case #2: Finetely Elastic Deposit Supply and Binding Capital Requirements.
We now move to a more general result, with an elastic deposit supply schedule. Equilibrium in
the loan supply and deposit

(
b̄+ b̄fed

)
· β · Ess =

(
Θb
) −1 ·

(
rb + 1

)εb
,

κ · β · Ess =
(
Θd
) −1

(
rd + 1

)εd
Combining both conditions yields a single equilibruum condition that we append to the equilib-
rium system (I.2) and (I.3). (

b̄+ b̄fed
)

κ
=

Θd

Θb
·
(
rb + 1

)εb
(rd + 1)ε

d . (I.8)

We write (I.8) in differential form:

1

κ

db̄

drm
− εbΘb

Θd
·
(
rb + 1

)εb−1

(rd + 1)ε
d

drb

drm
+ εd

Θd

Θd
·
(
rb + 1

)εb
(rd + 1)ε

d+1

drd

drm
= 0.

Substituting I.8, this expression is written as:

1

κ

db̄

drm
− εb

(
b̄+ b̄fed

)
κ

1

Rb

drb

drm
+ εd ·

(
b̄+ b̄fed

)
κ

1

Rd

drd

drm
= 0.

In addition the differential form of (I.2) is now

(
b̄+ b̄Fed

) drb
drm

+ rb
db̄

drm
− κ dr

d

drm
= 0, (I.9)

which replaces (I.4).

Hence, in matrix form, the local comparative statics is given by: drb

drm
db̄
drm
drd

drm

 =


(
b̄+ b̄Fed

)
rb −κ

1 −LPbb 0

−εb (b̄+b̄
fed)
κ

1
Rb

1
κ

εd · (b̄+b̄fed)
κ

1
Rd


−1 [

0
(1− Eω [q (θ)])

0

]
.

We can use standard linear algebra tools to obtain the solution to the pass-through to the credit
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rate. In this case:

drb

drm
= −

∣∣∣∣∣
[
rb −κ
1
κ

εd · (b̄+b̄Fed)
κ

1
Rd

]∣∣∣∣∣∣∣∣∣∣∣∣


(
b̄+ b̄Fed

)
rb −κ

1 −LPbb 0

−εb (b̄+b̄
fed)
κ

1
Rb

1
κ

εd · (b̄+b̄fed)
κ

1
Rd


∣∣∣∣∣∣∣

(1− Eω [q (θ)]) (I.10)

= − εd · (b̄+b̄fed)
κ

rb

Rd
+ 1

−LPbbεd ·
(b̄+b̄fed)

κ
b̄
Rd
− 1 + εb

¯(b̄+b̄fed)
κ

1
Rb
κLPbb − εd ·

(b̄+b̄fed)
κ

rb

Rd

(1− Eω [q (θ)]) (I.11)

=
1 + εd · (b̄+b̄Fed)

κ
1
Rd
rb

1 + εd · (b̄+b̄fed)
κ

rb

Rd
+ LPbbεd ·

(b̄+b̄fed)
κ

(b̄+b̄Fed)
Rd

− εb (b̄+b̄
fed)
κ

1
Rb
κLPbb

(1− Eω [q (θ)]) .(I.12)

and since all terms are positive, the solution holds (εb < 0), this step proves the first statement
of the Proposition. Note simply that LPba = −LPbb.

Observation 3. Notice that under satiation q (θ) = ϑ = LPbb. Thus, the pass-through is

one for one. Away from satiation, the pass-through is less than one because LPbbεd·
(b̄+b̄Fed)

κ

(b̄+b̄Fed)
Rd

−
εb

(b̄+b̄Fed)
κ

1
Rb
κLPbb > 0.

Case #3: Infinitely Elastic Deposit Supply and Non-Binding Capital Require-
ments. In this case, the equilibrium system is given by (I.2) and (I.3), but now we also include
the deposit liquidity premium. In this case:

rd = rm + Eω [χ̄]− Eω [χ̄ · ω] . (I.13)

Once the deposit share is free to move, the differential form of (I.2) is

(
b̄+ b̄Fed

) drb
drm

+ rb
db̄

drm
− rd dd̄

drm
= 0, (I.14)

which replaces (I.4).

From the loan LP
drb

drm
= 1 +

d [E [χ̄]]

drm
,

where
d [E [χ̄]]

drm
= LPbb

db̄

drm
+ LPbd

dd̄

drm
.

Following the same notation as before:

LPbb ≡
[[(

χ̄− − χ̄+
)
f (ω∗)

dω∗

db̄
+ E [χ̄θf (ω) dω]

dθ∗

db̄

]]
> 0
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and

LPbd ≡
[[(

χ̄− − χ̄+
)
f (ω∗)

dω∗

dd̄
+ E [χ̄θf (ω) dω]

dθ∗

dd̄

]]
< 0

The differential form of (I.13):

0 = 1 +
d [Eω [χ̄]]

drm
+
d [Eω [χ̄ · ω]]

drm

where
d [Eω [χ̄ · ω]]

drm
= ∆d

b

db̄

drm
+ ∆d

d

dd̄

drm
.

LPdb ≡ −
[[(

χ̄− − χ̄+
)
ω∗f (ω∗)

dω∗

db̄
+ E [ωχ̄θf (ω) dω]

dθ∗

db̄

]]
and

LPdd ≡ −
[[(

χ̄− − χ̄+
)
ω∗f (ω∗)

dω∗

dd̄
+ E [ωχ̄θf (ω) dω]

dθ∗

dd̄

]]
.

Where we also have that LPdb > 0,LPdd > 0.

As in the previous two examples, we construct the matrix representation of the comparative
statics. drb

drm
db̄
drm
dd̄
drm

 =

 (b̄+ b̄Fed
)

rb −rd
1 −LPbb −LPdb
1 −

(
LPbb + LPdb

)
−
(
LPbd + LPdd

)
−1 [

0
(1− Eω [q (θ)])

0

]
.

To obtain the solution to the pass-through, we do the same calculation as in the earlier step.

drb

drm
= −

∣∣∣∣[ rb −rd
−
(
LPbb + LPdb

)
−
((
LPbd + LPdd

)) ]∣∣∣∣∣∣∣∣∣∣
(
b̄+ b̄Fed

)
rb −rd

1 −LPbb −LPdb
1 −

(
LPbb + LPbd

)
−
(
LPdb + LPdd

)
∣∣∣∣∣∣

(I.15)

=

((
LPbd + LPdd

))
rb +

(
LPbb + LPdb

)
rd

LPbbrd + LPddrb +
(
LPbb

(
LPdb + LPdd

)
− LPdb

(
LPbb + LPbd

))
b̄
. (I.16)

Using that LPbb = −LPba,LPdb = −LPda we obtain:((
LPbd + LPdd

))
rb −

(
LPba + LPda

)
rd

−LPbard + LPddrb −
(
LPba

(
LPdb + LPdd

)
+ LPda

(
LPbd − LPba

))
b̄
.

Observation 4. In this case, the sign is ambiguous and depends on the sign of:

LPbbrd + LPddrb + LPbb
(
LPdb + LPdd

)
b̄ ≥ LPdb

(
LPbb + LPbd

)
b̄.

This concludes the proof of Proposition 8 . QED.
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J Existence, Uniqueness, and Convergence under Fried-

man Rule

This Appendix characterizes the existence and uniqueness of a stationary equilibria when the
bank has log preferences (γ = 1), the Fed eliminates all distortions Rm = Rw and sets Rm low
enough so that banks do not hold liquid assets. We can treat these results as holding for an
approximation where bank dividends are close to constant and interbank market distortions are
not too large.

J.1 Dynamical Properties

In this section, we study the dynamical properties of the model. We fully characterize these
dynamics when banks have log utility and the Fed carries out a policy of no distortions in the
interbank market. Both assumptions simplify the analysis. Although the results are not general,
for small deviations around that policy, the dynamic properties should be similar.

Stationary Equilibrium and Policy Effects with Satiation. We begin describing the
transitional dynamics of the model when the Fed carries out a policy that satiates the market
with reserves via iwt = imt by setting a sufficiently low value for imt . For simplicity, we set the
supply of government bonds to zero and assume the Fed does not purchase loans. . By inducing
satiation, and maintaining an equal amount of reserves as Fed loans, the Fed eliminates the
liquidity premium of loans. Thus, a spread between loans and deposits only results from capital
requirements. This characterization is useful because it describes the dynamics of the model in
absence of any distortions.

For this section, it is useful to define the inverse demand elasticity of loans and supply elasticity
of deposits, ε̄x ≡ (εx)−1 for x ∈ {d, b}, respectively. Also, intercept of the inverse demand

for loans and supply of deposits are Θ̄x ≡ (Θx)−1/εx for x ∈ {d, b}. We obtain the following
characterization:

Proposition J.1 [Transitions under Friedman Rule] Consider a policy sequence such that iwt =
imt , BFed

t = GFed
t = 0, and Mt = Gt= 0. Then:

a) Real aggregate bank equity follows:

Et+1 =
(
Rb
t + κmin

{(
Rb
t −Rd

t

)
, 0
})
βEt, with E0 > 0 given.

The dynamics are given by a critical threshold

Eκ ≡
1

β

[
Θ̄b/Θ̄d

(1 + κ)−ε̄
b

κε̄d

] 1

ε̄d−ε̄b

,

If Et > Eκ, then
{
Rb
t , R

d
t , d̄t

}
solve:

Rb
t = Θ̄b

(
βEt

(
1 + d̄t

))ε̄b
= Θ̄d

(
βEtd̄t

)ε̄d
= Rd

t .
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Otherwise, d̄t = κ and

Rb
t = Θ̄b (βEt (1 + κ))ε̄

b

, Θ̄d (βEtκ)ε̄
d

= Rd
t

b) There ∃! steady state level of Ess > 0. The steady state features binding capital requirements
if and only if

Θb (1/β)ε
b

< Θd (1/β)ε
d (

1 + κ−1
)
. (J.1)

If capital requirements do not-bind at steady state, then Ess solves:

Ess =
Θb (1/β)ε

b −Θd (1/β)ε
d

β
.

Otherwise, Ess solves:

1/β = Θ̄b (βEss (1 + κ))ε̄
b

(κ+ 1)− κΘ̄d (βEssκ)ε̄
d

.

c) If
(1−1/εb)
(1+1/εd)

≥ κ
(1+κ)

, and capital requirements bind at steady state, then Et converges to Ess

monotonically.

In the paper, the calibration satisfies these parameter restrictions.

J.2 Proof of Proposition J.1

The proof of the proposition is presented in three steps. First, we derive a threshold equity
level where capital requirements are binding. Second, we prove that there can be at most one
steady state. Third, we provide conditions such that the equilibrium features binding reserve
requirements. Finally, we derive the sufficient condition for monotone convergence. We then
establish the result for the rate of inflation and the determination of the price level.

Part 1 - Law of Motion of Bank Equity. As shown in the Proof of Proposition 3, under log
utility c̄t = (1− β). Then, the law of motion in (19) becomes

Et+1 =
(
Rb
t + κmin

{(
Rb
t −Rd

t

)
, 0
})
βEt. (J.1)

This follow directly by substituting b̄ = 1 + d̄ and noticing that the equity constraint binds if(
Rb
t −Rd

t

)
and if not, deposits don’t affect equity. This is enough to show that the law of motion

of bank equity satisfies the difference equation in the proposition. Thus, we have obtained a law
of motion for bank equity in real terms. We use this to establish convergence. Consider now
the condition such that capital requirements are binding for a given Et = E. For that we need
that Rb

t > Rd
t . Using the inverse of the loan demand function, Rb

t can be written in terms of the
supply of loans using the market clearing condition:

Rb
t = Θ̄b

(
b̄βEt

)ε̄b
.
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If the capital requirement constraint binds,

Rb
t = Θ̄b (βEt (1 + κ))ε̄

b

.

Using the result that capital requirements are binding when Rb
t > Rd

t , we obtain

Θ̄b (βEt (1 + κ))ε̄
b ≥ Θ̄d (βEtκ)ε̄

d

.

Clearing E at equality delivers a threshold,

Eκ ≡
1

β

[
Θ̄b/Θ̄d

(1 + κ)−ε̄
b

κε̄d

] 1

ε̄d−ε̄b

,

such that for any E < Eκ, capital requirements are binding in a transition. Thus, the law
of motion of capital is broken into a law of motion for the binding and non-binding capital
requirements regions.

We obtain
Et+1 = Θ̄b (βEt (1 + κ))1+ε̄b − Θ̄d (βEtκ)1+ε̄d for Et ≤ Eκ

and
Et+1 = Θ̄b ((1 + dt)βEt)

ε̄b βEt for Et > Eκ.

Here, we substituted d̄ = κ in (J.1) for the law of motion in the constrained region and
d̄t
(
Rb
t −Rd

t

)
= 0 in the second region.

Part 2 - Uniqueness of Steady State. Here we show that there cannot be more than one
steady state level of real bank equity. We prove this in a couple of steps. First, we ask whether
there can be more than one steady state in each region—in the binding and non-binding regions.
We show that there can be only one steady state in each region. Then, we ask if two steady
states can co-exists, given that they must lie in separate regions. The answer is no.

To see this, define

Γ (E) ≡ Θ̄b (β (1 + κ))1+ε̄b E ε̄b − Θ̄d (β (1 + κ))1+ε̄d E ε̄d .

If a steady state exists in the binding region, it must satisfy the following condition:

1 = Γ (Ess) and Ess ≤ Eκ.

It is straightforward to verify that

Γ′ (E) < 0, lim
E→0

Γ (E)→∞, and lim
E→∞

Γ (E)→ −∞.
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Since the function is decreasing and starts at infinity, and the function ends at minus infinity,
there can be at most one steady state—with positive E—in the constrained region, Ess < Eκ.

In the unconstrained region, Ess ≥ Eκ a steady state is occurs only when

1 = Rb
tβ.

We need to find the level of equity that satisfies that condition. Also, we know that Rd = Rb in
the unconstrained region. Thus, the supply of loans in the unconstrained region is given by

βEt + Θ̄d
(
Rb
)ε̄d

,

the sum of real bank equity plus real deposits. Thus, we can define the equilibrium rate on loans
through the implicit map, R̃b (E) , that solves

R̃b (E) ≡
{
R̃|R̃ = Θ̄b

(
βEt + Θ̄d

(
R̃
)ε̄d)ε̄b}

.

If we can show that R̃b (E) is a function and R̃b (E) = β−1 for only one E, then we know that
there can be at most one steady state in the unconstrained region. To show that R̃b (E) is a
function, we must show that there is a unique value of R̃b for any E. Note that R̃b (E) = R̃ for
R̃ that solves

Θ̄b
(
R̃
)ε̄b
− Θ̄d

(
R̃
)ε̄d

= βE.

Since the first term on the left is decreasing and the second increasing, this function is monotone,
and thus, its inverse is a function, i.e., R̃b (E) is a function. Observe that

lim
R̃→0

Θ̄b
(
R̃
)ε̄b
− Θ̄d

(
R̃
)ε̄d

=∞, and lim
R̃→∞

Θ̄b
(
R̃
)ε̄b
− Θ̄d

(
R̃
)ε̄d

= −∞,

so R̃b (E) exists for any positive E. Since R̃b is decreasing in E and defined everywhere, there
exists at most one value for E such that R̃b (E) = (β)−1. This shows that there exists at most
one steady state in the unconstrained region.

Next, we need to show that if there exists a steady state where Ess ≤ Eκ, there cannot exist
another steady state where Ess ≥ Eκ. To see this, suppose that there ∃ a steady state in the
unconstrained region. Thus, there exists some value Eu > Eκ such that

R̃b (Eu) = 1/β.

Since R̃b is decreasing and Eu > Eκ, by assumption we obtain that

1/β < R̃b (Eκ) = Rb (βEκ (1 + κ)) , (J.2)

where the equality follows from the definition of Eκ.
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As a false hypothesis, suppose that there is another steady state where Ec < Eκ. Then, using
the law of motion for equity in the constrained region,

Rb (βEc (1 + κ)) = 1/β − κ
(
Rb (βEc (1 + κ))−Rd (βEcκ)

)
Rb (βEc (1 + κ)) < 1/β, (J.3)

where the second line follows from Rb > Rd for any Ec < Eκ. Thus,

Rb (βEκ (1 + κ)) < Rb (βEc (1 + κ)) < β−1

because Rb is decreasing. However, (J.3) and (J.2) cannot hold at the same time. Thus, there
∃! steady state with positive real equity.

Part 3 - Conditions for Capital Requirements Binding at steady state. We have shown
in Appendix G.5 that a condition for a steady state with slack capital requirements is:

Θb (1/β)ε
b ≥ Θd (1/β)ε

d (
1 + κ−1

)
.

Then, the steady state level of equity is:

Ess =
Θb (1/β)ε

b −Θd (1/β)ε
d

β
.

If the condition is violated, we use the stationarity condtion:

1/β = Rb (βE (1 + κ)) +
(
Rb (βE (1 + κ))−Rd (βEκ)

)
κ.

This allows equity to grow at the point where the constraint begins to bind.

Part 4 - Conditions for monotone convergence. Assume that parameters satisfy the
conditions for a steady state with binding capital requirements. Observe that if Et > Eκ, then
Et+1 < Et since Rb

t < (β)−1 for all E > Eκ. Thus, any sequence that starts from E0 > Eκ
eventually abandons the region. Thus, without loss of generality, we only need to establish
monotone convergence within the E < Eκ region.

Now consider Et < Ess. We must show that Et+1 also satisfies Et+1 < Ess if that is the case.
Employing the law of motion of equity in the constrained region, notice that

Et+1 − Ess = Θ̄b (βEt (1 + κ))1+ε̄b − Θ̄d (βEtκ)1+ε̄d − Ess.

Define g (E) ≡ Γ (E)E. Thus,

Et+1 − Ess = Γ (Et)Et − Ess

= −
� Ess

Et

g′ (e) de.
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It is enough to show that g′ (e) > 0 for any e. We verify that under the parameter assumptions,
this is indeed the case. Note that

g′ (e) =
(
1 + ε̄b

)
Θ̄b (β (1 + κ))1+ε̄b eε̄

b −
(
1 + ε̄d

)
Θ̄d (βκ)1+ε̄d eε̄

d

=
(
1 + ε̄b

)
Rb (β (1 + κ) e) β (1 + κ)−

(
1 + ε̄d

)
Rd (βκe) βκ,

where the second line follows from the definition of Rb and Rd and the result that capital
requirements are binding in E < Ess. Furthermore, since in this region, Rb > Rd for all E < Eκ,
then a sufficient condition for g′ (E) > 0 is to have:(

1 + ε̄b
)
β (1 + κ) ≥

(
1 + ε̄d

)
βκ.

Thus, a sufficient condition for monotone convergence is

1 + 1/εb

1 + 1/εd
≥ κ

1 + κ
.
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K Calibration

K.1 Data Sources

Most data series are obtained from the Federal Reserve Bank of St. Louis Economic Research
Database (FRED©) and are available at the FRED©website. The original data sources for
each series are collected by the Board of Governors of the Federal Reserve System (US). We use
the following series corresponding to:

Aggregate Variables. For aggregate variables we use the following:

� total reserves

– Total Reserves of Depository Institutions, Billions of Dollars, Monthly, Not Seasonally
Adjusted

https://fred.stlouisfed.org/series/TOTRESNS

� bank equity

– Total Equity Capital for Commercial Banks in United States, Thousands of Dollars,
Not Seasonally Adjusted (USTEQC)

https://fred.stlouisfed.org/series/USTEQC

– This data is available only at a quarterly frequency. We interpolate the series linearly
from quarter to quarter to obtain the monthly series

� the volume of interbank market loans:

– Board of Governors of the Federal Reserve System (US), Interbank Loans, All Com-
mercial Banks [IBLACBW027NBOG], H.8 Assets and Liabilities of Commercial Banks
in the United States,

https://fred.stlouisfed.org/series/IBLACBW027NBOG

� the volume of discount window loans:

– Discount Window Borrowings of Depository Institutions from the Federal Reserve
[DISCBORR], H.3 Aggregate Reserves of Depository Institutions and the Monetary
Base,

https://fred.stlouisfed.org/series/DISCBORR

� bank deposits:

– Board of Governors of the Federal Reserve System (US), Deposits, All Commercial
Banks [DPSACBM027NBOG],
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� bank credit:

– Board of Governors of the Federal Reserve System (US), Commercial and Industrial
Loans, All Commercial Banks [BUSLOANS],

https://fred.stlouisfed.org/series/BUSLOANS

Series for interest rates. For series on interest rates we use the following:

� the interest on discount window loans:

– Board of Governors of the Federal Reserve System (US), Primary Credit Rate [DP-
CREDIT],

https://fred.stlouisfed.org/series/DPCREDIT

� the interest on reserves:

– Board of Governors of the Federal Reserve System (US), Interest Rate on Excess
Reserves [IOER],

https://fred.stlouisfed.org/series/IOER

� Interest rate on deposits:

– We use the series used in Drechsler et al. (2017),

academic.oup.com/qje/article-abstract/132/4/1819/3857743.

� the government bond rate is:

– Board of Governors of the Federal Reserve System (US), 3-Month Treasury bill: Sec-
ondary Market Rate [TB3MS],

https://fred.stlouisfed.org/series/TB3MS

Open Market Operations. The series that corresponds to open-market operations is the ratio
of a measure of the Fed’s assets, normalized by total bank credit. During the crisis, the Fed’s
balance sheet grows for multiple factors: some of these factors include Swaps to foreign govern-
ments and direct loans to institutions such as American International Group (AIG). We consider
the purchase of government bonds as the equivalent of conventional OMO. For unconventional
OMO we consider the sum of mortgage-backed securities and Federal agency securities. These
series are weekly and aggregated to the monthly level. The references for these series are:

� total bank credit
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– Board of Governors of the Federal Reserve System (US), Bank Credit of All Commer-
cial Banks [TOTBKCR],

https://fred.stlouisfed.org/series/TOTBKCR

� Treasury bills

– Board of Governors of the Federal Reserve System (US), Assets: Securities Held
Outright: U.S. Treasury Securities [WSHOTS],

https://fred.stlouisfed.org/series/WSHOTS

� Federal agency paper

– Board of Governors of the Federal Reserve System (US), Assets: Securities Held
Outright: Federal Agency Debt Securities [WSHOFDSL]

https://fred.stlouisfed.org/series/WSHOFDSL

� Mortgage-Backed Securities

– Board of Governors of the Federal Reserve System (US), Assets: Securities Held
Outright: Mortgage-Backed Securities: Wednesday Level [WSHOMCB]

https://fred.stlouisfed.org/series/WSHOMCB

Ratio Series. The series for ratios are derived as follows.

� Portfolio shares ḡ, d̄

– The series for the data analogues of
{
ḡ, d̄
}

are constructed using the micro data from
commercial banks from Phillip Schnabl. We take the series for Treasury securities that
mature in less than three months, and between three months and one year—typically
government bonds are thought of as Treasury securities with maturity below a year.
The series for the data analogue of d̄ is obtained as the sum of total liablities and
divide by equity. Then we aggregate across banks and divide by the equity series.
The raw data is available in Philip Schnabl’s website:

http://pages.stern.nyu.edu/∼pschnabl/data.html

� Portfolio shares m̄:

– We take the series for cash assets for all commercial banks. The series includes vault
cash and reserves held by banks. The series is available at the Board of Governors of
the Federal Reserve System (US), (Cash Assets, All Commercial Banks/Total Assets,
All Commercial Banks)*100,
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– We divide the series by difference between all commercial bank assets minus liabilities.

� Liquidity Premium

– The liquidity premium that is used to construct the return on loans is obtained from
Del Negro et al. (2017),

https://www.aeaweb.org/articles?id=10.1257/aer.20121660

Federal Funds Interest Rate Distribution.

� The series for the dispersion in the Fed funds rates are obtained from the New York
Federal Reserve Bank. The NY Fed provides two data sets, one for the daily min and
max and another where it includes quantiles. We use both data sets. In section 4 we use
the max-min spread because the length of the data is longer.

– To construct the series FF Range, we construct the monthly average of the daily
distance between the max and the min of the Fed funds distribution, and average
over the month. The original series are found
here:https://apps.newyorkfed.org/markets/autorates/fed-funds-search-page

� When we perform the financial crisis counterfactuals in Section 5.3, we reconstruct the
Fed funds rate among banks. We also use that data in the robustness checks to section 4
in Appendix L, w. For that, we use the quantiles of the Fed Funds.

– The data available from the NY Fed also includes the max and min, 99, 75, 50, 25
and 1st quantiles, and the standard deviation of daily Fed funds rate. The data is
available here:

https://www.newyorkfed.org/medialibrary/media/markets/ff-volumes-oct2006-feb2016.xlsx

K.2 Construction of Bank and Non-bank Fed Funds

Mapping the model to the data after October 2008 requires to account for two additional features:
First, in this period, the average Fed Funds rate fell below the the interest on reserves, the
analogue of Rm in the model. Second, the 1-month T-Bill rate, the analogue of Rg in the model,
also traded below the interest on reserves. One important consideration in accounting for both
features in the model is that many in trades in the Fed funds market are transactions between
banks, which were eligible to receive interest on reserves and other institutions that were not
eligible. Thus, after 2008, the average Fed funds rate reflects in part transactions that occur due
to that regulatory arbitrage, with an interest rate below the rate on reserves. We argue that
to execute the with non-banks, banks need to use government bonds as collateral. Thus, these
trades generate an additional value of holding government bonds. Next, we explain we describe
how we add these features into the model, to address these issues and reconstruct series of Fed
Funds rate corresponding to trades only among banks.
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Non-Bank Fed Funds Participants. We introduce a set of non-banks (nb) that hold of re-
serves, participate in the Fed funds market, but do not receive interest on reserves. In particular,
we assume that by the end of the balancing stage, banks with a surplus of government bonds
will match (in one round) with non-banks—banks in deficit, by that stage, have already sold
all of their government bonds. We assume that all banks are matched, with a non-bank, on a
per-bond basis. Once a match occurs, banks and non-banks trade 1 unit of government bonds
for one unit of reserves—the position is reversed by the end of the period, but the interest is
paid to the agent that holds the asset overnight. We call this transaction a Repo.

When a bank meets a non-bank, they solve the following Nash bargaining problem:

Rf,nb = arg max
R

(R− 1/ (1 + π))1−ηb (Rm −R)η
b

.

The first term in parenthesis is the surplus minus the outside option for the non-bank: the non-
bank earns R instead of storing the reserve at no interest. The second parenthesis, is the surplus
for the bank: the bank earns Rm, but pays R. The bank’s bargaining power is ηb. Solution to
the rate in a Repo transaction is:

Rf,nb = 1 +
(
1− ηb

)
(Rm − 1) . (K.1)

Now, a bank that ends in surplus, not only earns Rm, but also the gains from the regulatory
arbitrage, Rm −Rf,nb. Therefore, (Gov. Bond LP) is now modified to obtain:

Rg +
(
Rm −Rf,nb

)
= Rm + χ+. (K.2)

Equations (K.1) and (K.2) account for government bond and Fed funds rates that trade below
Rm.

Construction of Fed Funds analogue. Next, we explain how we approximate R̂f,nb and,
R̂f,ib, the average Fed funds rate among bank trades using data on the distribution of Fed funds
rates. Conceptually, the average Fed funds rate is the average Fed funds rates between interbank
and non-interbank transactions:

Rf =
(
1− νnb

)
·Rf,ib + νnb ·Rf,nb, (K.3)

where νnb is the fraction of Fed fund trades that occur among banks and non-banks. From the
data, we observe Rf at a given point in time. Thus with a data counterpart for ν̂nb and R̂f,nb we
could reconstruct R̂f,ib. We observe data on 1-st, 25-th, 75-th and 99-th percentiles of the Federal

Funds distribution, respectively
{
Rf
t,1, R

f
t,25, R

f
t,75, R

f
t,99

}
, at a given date t. To reconstruct the

data analogue ν̂nbt , for each t, we find the pair of contiguous percentiles
{
Rf
t,x, R

f
t,y

}
such that the

interest rate on reserves fell within that interval, i.e., Rm
t ∈

[
Rf
t,x, R

f
t,y

]
. Naturally, we attribute

all trades executed below R̂m
t to trades among bank and non banks. Thus, the mass of trades

with non-bank trades will be F
(
Rf
t,x

)
plus a fraction of trades that fell within the

[
Rf
t,x, R

m
]

interval. We approximate the date using assuming a uniform distribution among the trades
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within that interval. Hence, the data analogue of νnb is:

ν̂nbt = F
(
Rf
t,x

)
+
Rm −Rf

t,x

Rf
t,y −Rf

t,x

·
[
F
(
Rf
t,y

)
− F

(
Rf
t,x

)]
. (K.4)

For the analogue of R̂f,nb, we reconstruct it using the same approximation to the distribution of
rates, that is:

R̂f,nb =
1

2

 ∑
{x, y} ∈[...]

(
Rf
t,y −Rf

t,x

)
·
[
F
(
Rf
t,y

)
− F

(
Rf
t,x

)]
+

1

2

((
Rm −Rf

t,x

) Rm −Rf
t,x

Rf
t,y −Rf

t,x

·
[
F
(
Rf
t,y

)
− F

(
Rf
t,x

)])
.

We use this construction to backout R̂f,ib and R̂g using (K.3) and (K.2) respectively. We use the
month moving average series for R̂f,ib and R̂g in the procedure that follows.

K.3 Calibration Procedure

In the procedure, we infer steady state parameters using data analogues to for the volume of
interbank loans, discount window loans, {W,F}, interest rates

{
Rd
ss, R

m
ss, R

f
ss, R

m
ss, R

w
ss

}
, an ana-

logue for the loan liquidity premium {LPss} and bank portfolio shares on reserve and government
bond holdings, am well as the capital requirement, {m̄ss, ḡss, κ}.

Here we explain how we deduce
{
σ̂ss, λ̂ss, η̂ss, σ̂

δ
ss, Θ̂

b
ss, Θ̂

d
ss

}
in section 5.1:

1. Obtain Ψ̂−ss from

Ψ̂−ss =
Ψ̂−ssS

−
ss

S−ss
=

Fss
Wss + Fss

.

2. Obtai

λ̂ss = log

(
1

1− Ψ̂−ss

)
,

by inverting (A.1) under the assumption that θss < 1.

3. Deduce ω̂∗ss from the definition (B.2.13) substituting ρ = 0 and
{
ā, d̄
}

= {m̄ss, ḡss} and
obtain:

ω̂∗ss = −m̄ss + ḡss
κ

/
Rd
ss

Rm
ss

.

4. Deduce σ̂ss as the solution σ̂ that solves:

W

A
=
(

1− Ψ̂−ss

)
Φ (ω̂∗ss; σ̂)

(
m̄ss + ḡss
κ+ 1

+
Rd
ss

Rm
ss

E [ω|ω < ω̂∗ss; σ̂]
κ

κ+ 1

)
. (K.1)

This step uses (B.2.14), where S−ss is obtained by integrating (B.2.11) among all ω < ω̂∗ss,
dividing by all assets
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5. We deduce a value for θ̂ss from:

θ̂ss =
Φ (ω̂∗ss; σ̂)

(
m̄ss + ḡss + Rdss

Rmss
E [ω|ω < ω̂∗ss; σ̂]κ

)
(1− Φ (ω̂∗ss; σ̂))

(
m̄ss + ḡss + Rdss

Rmss
E [ω|ω > ω̂∗ss; σ̂]κ

)
− ḡss

. (K.2)

This step uses S−ss obtained by integrating (B.2.11) among all {ω < ω̂∗ss}, and S+
ss obtained

by integrating (B.2.11) among all ω > ω̂∗ss, and applying the formula (B.2.12).

6. We deduce Ψ̂+
ss from the clearing condition in the Fed funds market Ψ̂+

ss = Ψ̂−ss · θ̂ss

7. We deduce ˆ̄χ+
ss using (B.2.15) and thus, ˆ̄χ+

ss = Ψ̂+
ss · (Rf −Rm).

8. We deduce η̂ss that solves:

ˆ̄χ+
ss = (Rw −Rm)

(
ˆ̄θss

θ̂ss

)η̂ss (
θ̂ηss

ˆ̄θ1−η̂ss
ss − θ̂ss
ˆ̄θss − 1

)
(K.3)

where

ˆ̄θss =


1 + (θ̂ss − 1) exp(λ̂ss) if θ̂ss ≤ 1

1 + ((θ̂ss)
−1 − 1) exp(λ̂ss))

−1 ifθ̂ss> 1.

which direct from (A.2).

9. We also deduce ˆ̄χ−ss using

ˆ̄χ−ss = (Rw
ss −Rm

ss)

(
ˆ̄θss

θ̂ss

)η̂ss

 θ̂η̂ssss
(

ˆ̄θss

)1−η̂ss
− 1

ˆ̄θss − 1


which is also obtained from (A.2).

10. We deduce a volatility of defaults, σ̂δss, and κ from the solution to

(̄bss, 1 + κ− ¯(bss, κ) ≡ argmax
b̄≤κ,ā+b̄−κ=1

{
E
[
(1− δ)Rb

ssb̄+ Rm
ssā− Rd

ssd̄+ χ̄ss(ā, d̄, ω)
]1−γ} 1

1−γ

where the expectation E is over δ and ω.

11. We obtain Θ̂b
ss by inverting (??)

Θ̂b
ss =

(
b̄ss + b̄Fedss

)
· β̂ss · Ess · (Rss)

εb .

12. We obtain Θ̂d
ss by inverting (??)

Θ̂d
ss = d̄ · β̂ss · Ess ·

(
Rd
ss

)εd
.
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L Appendix to Section 4: Robustness Analysis

The next sections present additional corroborating evidence as the one presented in Section 4.

Estimates with other Liquidity Measures. A first robustness check runs the same regres-
sions as in Table 1, but where using two other measures of liquidity premia. The first measure is
a classic measure advocated by Stock and Watson (1989) and Friedman and Kuttner (1993), the
three month spread between the AAA commercial paper and the 3 month T-Bill. The second
measure is the TED spread, the difference between the three-month Treasury bill and the three-
month US dollar LIBOR. In this case, the data availability is longer, from July 2000 to February
2016, when the NY Fed stops reporting the daily max and min values of the Fed Funds market.
Table 5 reports the results. The pattern is consistent with the earlier estimation in Table 1, in
significance in magnitude.

The next robustness check compares the results with two popular measures introduced by
Gilchrist and Zakraǰsek (2012), the GZ Spread and the GZ excess-bond premium (EBP). The
authors construct these measures by taking individual fixed-income securities and discount their
promised cash-flows according to zero-coupon US Treasury yields. This delivers a spread for each
security. The “GZ excess bond premium” of each security is constructed as the portion of the
overall credit spread that cannot be accounted for by individual predictors of default, nor bond-
specific characteristics. Specifically, the authors regress their credits spreads on a firm-specific
measure of expected default and a vector of bond-specific characteristics; the residual of this
regression is the GZ excess bond premium.

Table 1 reports the results. The pattern is resembles the earlier estimation in Table 1, but
the regressions lose power once we control for the VIX, a measure of dispersion, that remains
significant. This feature indicated that bonds can have premia liqudity premia that correlate
with the cycle, but are independent of the liquidity premia among near-money assets.

Other Spreads and Placebos. Table 7 reports two addition sets of robustness checks. Re-
gressions (1-3) in Table 7 are the same regressions as regression (3) in Table 1, except that the
measure FF Range is replaced by three alternative measures of interbank market dispersion. The
first two measures are FF 99-1 which corresponds to the monthly average of the daily spread be-
tween the 99th and 1st quantiles of the Fed Funds distribution and FF 75-25 which corresponds
to the 75th and 25th quantiles. Finally, FF std is the monthly average daily standard deviation
of the Fed funds rates. The time series for quantiles are shorter than FF range, ranging only
from January 2006 through December 2018. The overall fit is similar, and in particular, the
magnitude of the coefficient of FF 99-1 series is very similar to FF Range, not surprisingly. The
coefficient for the FF 75-25 series is larger, which is unsurprising since the standard deviation of
this series is larger. The FF std series, is also significantly correlated, and the coefficient is even
larger.

Regressions (4-6) in Table 7 employ other measures of liquidity premia in Nagel (2016), which
are interpreted as placebo tests. These are the series for the 10y AAA to T-Bill corporate bond
spread, the Note T-Bill spread and the spread between on the run and off the run bonds. In
neither case, is the FF Range variable significant.

76



Subsamples. As final robustness check, we re-run the regressions in Table 8, but this time,
we limit the sample to the pre-crisis period, from July 2000 through December 2007. Again,
the pattern is the same. The FF Range variable remains a significantly correlated variable with
other measures of spreads. By contrast, the VIX index is no longer significantly correlated with
measures of spreads.

Table 5: Liquidity Premia and Interbank Spreads - Robustness Checks

(1) (2) (3) (4) (5) (6)
CP Spread CP Spread CP Spread TD Spread TD Spread TD Spread

FF Range 0.352∗∗∗ 0.320∗∗∗ 0.293∗∗∗ 0.587∗∗∗ 0.609∗∗∗ 0.534∗∗∗

(17.72) (14.71) (13.05) (16.86) (15.63) (13.92)

FFR 0.0206∗∗ 0.0267∗∗∗ -0.0137 0.00430
(3.26) (4.20) (-1.23) (0.40)

VIX 0.115∗∗∗ 0.315∗∗∗

(3.53) (5.70)

Constant 0.00714 -0.00882 -0.345∗∗∗ 0.0893∗∗ 0.101∗∗∗ -0.816∗∗∗

(0.44) (-0.53) (-3.57) (3.13) (3.36) (-5.00)

Observations 184 184 184 188 188 188
Adjusted R2 0.631 0.649 0.670 0.602 0.603 0.661

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 6: Liquidity Premia and Interbank Spreads - Robustness Checks

(1) (2) (3) (4) (5) (6)
GZ Spread GZ Spread GZ Spread GZ ebp GZ ebp GZ ebp

FF Range 0.536∗∗∗ 0.769∗∗∗ 0.150 0.463∗∗∗ 0.526∗∗∗ 0.112
(4.01) (5.29) (1.87) (4.91) (4.98) (1.62)

FFR -0.147∗∗∗ 0.00114 -0.0395 0.0598∗∗

(-3.55) (0.05) (-1.31) (3.07)

VIX 2.598∗∗∗ 1.738∗∗∗

(22.50) (17.39)

Constant 2.302∗∗∗ 2.422∗∗∗ -5.139∗∗∗ -0.127 -0.0947 -5.152∗∗∗

(21.00) (21.70) (-15.07) (-1.64) (-1.17) (-17.46)

Observations 188 188 188 188 188 188
Adjusted R2 0.075 0.129 0.767 0.110 0.113 0.663

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 7: Liquidity Premia and Interbank Spreads - Robustness Checks

(1) (2) (3) (4) (5) (6)
GC Spread GC Spread GC Spread 10y AAA Spr Note Spr OF Spr

FF 99-1 0.207∗∗∗

(7.26)

FFR 0.0555∗∗∗ 0.0774∗∗∗ 0.0429∗∗∗ -0.0912∗∗∗ -0.00383 0.00384∗∗∗

(6.14) (9.66) (8.36) (-8.33) (-1.84) (4.28)

VIX 0.138∗∗ 0.200∗∗∗ 0.0584∗ 0.851∗∗∗ 0.0943∗∗∗ 0.00462
(3.05) (4.57) (2.07) (15.12) (8.95) (1.01)

FF 75-25 0.658∗∗∗

(6.48)

FF std 1.051∗∗∗

(10.08)

FF Range -0.0383 0.00375 -0.00146
(-0.98) (0.60) (-0.54)

Constant -0.411∗∗ -0.585∗∗∗ -0.184∗ -0.696∗∗∗ -0.239∗∗∗ -0.0165
(-2.84) (-4.11) (-2.08) (-4.19) (-7.17) (-1.14)

Observations 63 63 138 188 138 138
Adjusted R2 0.791 0.768 0.660 0.685 0.486 0.121

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 8: Liquidity Premia and Interbank Spreads - Robustness Checks

(1) (2) (3) (4) (5) (6)
GC Spread GC Spread GC Spread CD Spread CD Spread CD Spread

FF Range 0.238∗∗∗ 0.162∗∗∗ 0.157∗∗∗ 0.581∗∗∗ 0.529∗∗∗ 0.513∗∗∗

(8.92) (6.60) (6.19) (13.09) (10.83) (10.23)

FFR 0.0465∗∗∗ 0.0482∗∗∗ 0.0322∗ 0.0377∗

(6.72) (6.63) (2.34) (2.62)

VIX 0.0281 0.0886
(0.80) (1.28)

Constant 0.0308 -0.0691∗∗ -0.153 -0.0110 -0.0802 -0.345
(1.35) (-2.90) (-1.42) (-0.29) (-1.70) (-1.62)

Observations 90 90 90 90 90 90
Adjusted R2 0.469 0.646 0.645 0.657 0.674 0.676

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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M Algorithms

This appendix presents the numerical algorithms that we use to solve the model. We first present
the algorithm to solve the stationary equilibrium. We then present the algorithm to solve for
transitional dynamics.

M.1 Stationary Equilibrium

The stationary equilibrium of the model can be conveniently reduced to solving a system of
two-non linear equations in two unknowns (Rb

ss, θss). In a stationary equilibrium, all nominal
variables grow at a constant rate (in this case, zero) and real variables are constant. To simplify
the presentation, we assume that the intertemporal elasticity of substitution equals one, which
gives rise to a constant dividend-to-equity ratio, a zero nominal growth of the nominal balance
sheet of the monetary authority, and BFed = 0. We also set a value for Rd

ss based on the
calibration target and infer the intercept term Θd that is consistent with that value.

1. Guess a stationary value for (Rb
ss, θss), the real return on loans and market tightness.

2. Given market tightness, nominal policy rates, the given long-run inflation, andRd
ss, compute

the liquidity yield function χ̄ using (9).

3. Solve banks’ optimization problem for the portfolio weights {b̄, d̄, ā}:

max
{b̄,ā,d̄}≥0

{
E
[
Rbb̄+ Rmā− Rdd̄+ χ̄(ā, d̄, ω)

]1−γ} 1
1−γ

, (M.1)

b̄+ ā− d̄ = 1, and d̄ ≤ κ.

4. Check whether banks’ policies are consistent with steady state:

5. Compute aggregate gross equity growth as

E ′/E =
(
1 +

(
Rb − 1

)
b̄−

(
Rd − 1

)
d̄
)

(1− c̄),

6. Compute implied market tightness:

S− =

� ā/d̄−ρ
(1−ρ)

1

s(ω)dΦ and S+ =

� ∞
ā/d̄−ρ
(1−ρ)

s(ω)dΦ.

where we used that market tightness is defined as

θ̃ = S−/S+.

7. If E ′/E = 1 and θ̃ = θss, move to step 7. Otherwise, adjust the guess for Rb
ss and θss and

go to step 3.
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8. Compute household demand for government bonds, using Rg = Rm + χ+

Gh

P
= Θg (Rg)ε

g

9. and banks portfolio weights on government bonds by using market clearing condition

G

P
− Gh

P
= Eḡ(1− c̄)

10. Compute the nominal amount of reserves and the intercepts of the loan demand and deposit
supply functions using that real equity and the initial price level are normalized to one
(i.e., P = 1, E = 1) and

M̃Fed = (1− c̄)(ā− ḡ)EP,

Θb

(
1

Rb

)ε
= Eb̄(1− c̄),

Θd

(
1

Rd

)−ς
= Ed̄(1− c̄).

11. Compute nominal returns using definitions of real returns and transfers T Fed from the Fed
budget constraint:

τ = (1− c̄) [(im − π) m̄+ (ig − π) ḡ − (iw − im)w̄] .

where
w̄ = (1−Ψ−(θ))S−.

Let us comment on some details from the computations. To solve for the pair (Rb
ss, θss), we

use the fsolve command in Matlab. To solve for the portfolio problem, we use the first-order
conditions, which we solve, again using fsolve. Notice that if the capital requirement binds, there
is only one portfolio variable to solve for.

To compute expectations, we use a Newton-Cotes quadrature method. Specifically, we apply
the trapezoid rule with a grid of 2,000 equidistant points. To specify the lower and upper
boundaries of the grid, we take the shock values that guarantee 10−5 mass in the tails of the
distribution.

M.2 Transitional Dynamics

The basic procedure to solve for transitional dynamics is to start by conjecturing an initial price
level P0, solve for all sequences of prices and quantities using market clearing conditions and bank
problems, and finally that the price converges to the path of the price level in the stationary
equilibrium. Essentially, the solution can be reduced to one-equation and one-unknown.

To simplify the presentation, we assume that the intertemporal elasticity of substitution
equals one, which gives rise to a constant dividend-to-equity ratio, a zero nominal growth of
the nominal balance sheet of the monetary authority, BFed

t = 0, and an inelastic demand for
government bonds by households.
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1. Establish a finite period T ∈ N for convergence to steady state, a convergence criterion ε,
and an initial value for aggregate real equity E0

2. Guess an initial price level P0.

3. Set t = 0.

4. Given E0, P0, and level of nominal reserves set by the monetary authority M̃Fed, we can
obtain an implied level of real reserve holdings:

m̃0 ≡
M̃Fed

βP0E0

.

5. Compute

g̃0 =
G
P
− Gh

P

E0(1− c̄)

6. Denote ã0 = m̃+ g̃

7. Find (Rm
1 ,Rb

1) that solves

ā0 − ã0 = 0

βE0(1 + d̄0 − (m̃0 + g̃0)) = Θb
0

(
1

1 + rbt+1

)ε
,

where ā0, d̄0, satisfy

(
ā0, d̄0

)
= arg max

b̄,ā,d̄≤κ

{
E
[
Rb

1(1 + d̄0 − ā) + Rm
1 ā− Rd

1d̄+ χ̄(ā, d̄, ω)
]1−γ} 1

1−γ

and χ̄ follows (9).

Given imand Rm
1 , compute inflation between period 0 and 1 as

π1 =

(
1 + im

Rm
1

)
− 1.

8. Given π1 and P0., compute next-period price P1 = (1 + π1)P0.

9. Compute next-period equity using the law of motion

E1 =
(
1 +

(
Rb − 1

)
b̄−

(
Rd − 1

)
d̄
)

(1− c̄)E0,

10. Repeat steps 4-9 for t = 1......T

11. Compute criteria for convergence of z = PT+1 − P0. Notice that if there is steady state
inflation, this condition for convergence is replaced by z = PT+1 − P0(1 + πss)

T .

12. If |z| < ε, exit algorithm. Otherwise, adjust P0 and go to step 4.
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