
NBER WORKING PAPER SERIES

AN EMPIRICAL MODEL OF NETWORK FORMATION:
DETECTING HOMOPHILY WHEN AGENTS ARE HETEROGENOUS

Bryan S. Graham

Working Paper 20341
http://www.nber.org/papers/w20341

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
July 2014

I thank Jinyong Hahn for sharing an unpublished appendix of Hahn and Newey (2004), Joachim De
Weerdt for generously making his Nyakatoke dataset available, Jesus Carro, Demian Pouzo and Michael
Jansson for many helpful suggestions, and participants in the New York University, UC Berkeley,
Toulouse School of Economics, Oxford, and Cambridge econometrics seminars for helpful discussion.
All the usual disclaimers apply. The views expressed herein are those of the author and do not necessarily
reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2014 by Bryan S. Graham. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given to
the source.



An Empirical Model of Network Formation: Detecting Homophily When Agents Are Heterogenous
Bryan S. Graham
NBER Working Paper No. 20341
July 2014
JEL No. C31,C35

ABSTRACT

I formalize a widely-used empirical model of network formation. The model allows for assortative
matching on observables (homophily) as well as unobserved agent level heterogeneity in link surplus
(degree heterogeneity). The joint distribution of observed and unobserved agent-level characteristics
is left unrestricted. Inferences about homophily do not depend upon untestable assumptions about
this distribution. The model is non-standard since the dimension of the heterogeneity parameter grows
with the number of agents, and hence network size. Nevertheless, under certain conditions, a joint
maximum likelihood (ML) procedure, which simultaneously estimates the common and agent-level
parameters governing link formation, is consistent. Although the asymptotic sampling distribution
of the common parameter is Normal, it (i) contains a bias term and (ii) its variance does not coincide
with the inverse of Fisher's information matrix. Standard ML asymptotic inference procedures are
invalid. Forming confidence intervals with a bias-corrected maximum likelihood estimate, and appropriate
standard error estimates, results in correct coverage. I assess the value of these results for understanding
finite sample behavior via a set of Monte Carlo experiments and through an empirical analysis of risk-
sharing links in a rural Tanzanian village (cf., De Weerdt, 2004).
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Many social and economic activities are embedded within networks: students study with, and
learn from, classmates (Graham, 2008; Epple and Romano, 2011); workers exploit personal
and professional connections when searching for employment (Montgomery, 1991; Topa,
2011); individuals learn about the consequences of risky behaviors, or new technologies,
from friends (Manski, 2004; Christakis and Fowler, 2008; Banerjee, Chandrasekhar, Dulfo
and Jackson, 2012); health insurers form partnerships with hospitals (Lee and Fong, 2013).
Consequently, our understanding of social learning, patterns of unemployment, the diffusion
of innovations, the prevalence of risky behaviors, and the structure of certain economic
markets, among other phenomena, is enhanced by models of social and economic network
formation.

Despite their ubiquity, empirical models for analyzing networks are not widely available;
in particular those with coherent random utility foundations (RUM), where agents form,
maintain or dissolve links in order to maximize utility (Jackson, 2014). The unavailability
of workable models is not coincidental. Researchers face several challenges when attempting
to model network formation. First, agents are heterogeneous. Link surplus may vary with
unobserved agent attributes, rendering inferences about the relationship between observed
agent attributes and link surplus difficult. Unobserved heterogeneity is, of course, a modeling
challenge in many areas of applied microeconometrics. This is especially so in the context
of networks for two reasons. First, each observed outcome – the presence or absence of a
link – involves a pair of (heterogeneous) agents (cf., Graham, 2011). Hence the unobserved
attributes of two different agents influences whether a given link forms. Second, inferences
regarding the presence of homophily, the tendency of agents to assortatively link, may be
erroneous unless agent-level heterogeneity is correctly modeled.

Many real world networks exhibit homophily (McPherson, Smith-Lovin and Cook, 2001).
They also tend to exhibit substantial degree heterogeneity, with many agents having few links
and a smaller number having many links (Albert and Barabási, 2002). The two phenomena,
while distinct, are interconnected. If certain agent-level attributes yields high link surplus,
then the researcher will observe what appears to be both homophily and degree heterogeneity
in the network, even though only the latter force is in operation (cf., Krivitsky, Handcock,
Raftery and Hoff, 2009). Correctly inferring the presence of homophily in link formation
requires flexible modeling of agent-level (degree) heterogeneity.

A second challenge associated with modeling link formation is that the surplus associated
with any given link may depend on the presence or absence of other links in the network.
Dependencies, or externalities, of these type may generate multiple equilibrium network
configurations. In principle methods pioneered to analyze other settings with strategic in-
teraction apply here (e.g., Bresnahan and Reiss, 1991; Tamer, 2003; Ciliberto and Tamer,
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2009). In practice the scale of the network formation problem, with N agents and O (N2)

“actions” or links, makes the application of these methods non-trivial for even modestly-sized
networks. Serious curse of dimensionality issues arise (cf., Sheng, 2012).

In this paper I formulate and analyze a model which addresses the first challenge. The bulk
of my analysis rules out the type of interdependencies in link surplus associated with the
second challenge (but see Section 4 below). An analogy with single-agent discrete choice
panel data analysis may be helpful. Early semiparametric analyses in that setting focused
on static models that, while admitting correlated heterogeneity, ruled-out state dependence
in actions a priori (e.g., Chamberlain, 1980; Manski, 1987). Later work incorporated both
features simultaneously (e.g., Chamberlain, 1985; Honoré and Kyriazidou, 2000). Indeed
single agent dynamic discrete choice analysis remains an active research area.

In recent work, Christakis, Fowler, Imbens and Kalyanaraman (2010), Goldsmith-Pinkham
and Imbens (2013), Mele (2013), Miyauchi (2013) and Chandrasekhar and Jackson (2014)
all develop empirical models of network formation.1 Relative to the analysis undertaken
here, their work incorporates network dependences, but rules out correlated heterogeneity.
They sidestep (or ameliorate) issues of multiple equilibria by positing that links are formed
sequentially (Christakis, Fowler, Imbens and Kalyanaraman, 2010), observing the network
for more than one period (Goldsmith-Pinkham and Imbens, 2013), or restricting the structure
of preferences (Mele, 2013; Miyauchi 2013; Chandrasekhar and Jackson, 2014). The methods
of inference developed in the first three papers are Bayesian and require the observation of
only a single network. Miyauchi’s (2013) approach to inference, while frequentist, requires
the observation of many networks. Chandrasekhar and Jackson (2014) introduce a family
of statistical exponential random graph models (SERGMs) and derive frequentist sampling
theory for a single (large) network observation.

I also develop inference methods appropriate for a single network observation. My methods
are frequentist, but non-standard, since the dimension of the parameter space grows with
the size of the network; each agent has its own heterogeneity parameter. To my knowledge,
this paper is the first to analyze a network formation model with unrestricted agent-level
heterogeneity and derive its frequentist asymptotic sampling properties.

Section 1 presents the model and outlines its relationship with prior work. Section 2 states
assumptions and presents results on the asymptotic sampling properties of the joint maxi-
mum likelihood estimator (JMLE). This section also briefly discusses conditional inference.
Section 3 presents the results of some Monte Carlo experiments assessing the finite sample
relevance of the asymptotic results presented in Section 2. An empirical illustration, using

1Snijders (2011) surveys closely related work in sociology.
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the Nyakatoke network data of De Weerdt (2004), is also presented. Section 4 develops
several extensions of the basic model. An important extension is to show how network de-
pendencies (of a certain type) may be introduced when the network is observed for two or
more periods. All proofs are collected in Appendices A and B.

Notation

In what follows random variables are denoted by capital Roman letters, specific realizations
by lower case Roman letters and their support by blackboard bold Roman letters. That
is Y , y and Y respectively denote a generic random draw of, a specific value of, and the
support of, Y . If B is an N ×N matrix with (i, j)th element Bij, then ‖B‖max = supi,j |Bij|
and ‖B‖∞ = supi

∑N
j=1 |Bij|. I use ιN to denote a N × 1 vector of ones and IN the N ×N

identity matrix.

1 Model

Let i = 1, . . . , N index a random sample of N potentially connected individuals. Individuals
may be equivalently referred to as agents, players, nodes or vertices depending on the context.
Let Dij = 1 if agents i and j are connected and zero otherwise. Connections may be
equivalently referred to as links, ties, friendships, edges or arcs depending on the context.
We assume that all links are reflexive such that Dij = Dji for all pairs (i, j). Connections
are undirected. Self-ties are ruled so that Dii = 0 for all i.

The (i, j) pair is called a dyad. There are n =
(
N
2

)
= 1

2
N (N − 1) dyads in the sample.

Let Zij be vector of observed dyad-specific attributes with K = dim (Zij). These attributes
may be intrinsically defined at the pair level or, alternatively, may be symmetric functions
of individual-level attributes. An example of the former is a vector of indicator variables
for different types of kinship relationships (e.g., siblings, first cousins etc.). An example of
the latter is a measure of closeness in some attribute (e.g., spatial distance, or the absolute
difference in wealth/income).

Individuals i and j form a link, for i = 1, . . . , N and j < i, according to the rule

Dij = 1
(
Z ′ijβ + Ai + Aj − Uij ≥ 0

)
, (1)

where 1 (•) denotes the indicator function, {Ai}Ni=1 are unobserved agent-specific charac-
teristics, and Uij is an idiosyncratic shock that is independently and identically distributed
across dyads. The term inside the indicator function corresponds to net link surplus. Im-
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plicit in rule (1) is the presumption that utility is transferable across directly linked agents;
all links with positive net surplus form (Bloch and Jackson, 2007). Link surplus varies with
observed dyad attributes (Zij), unobserved agent attributes (Ai, Aj), and also includes an
idiosyncratic component (Uij).

Rule (1) satisfies a no externalities condition: the net surplus associated with an (i, j) link
does not vary with the presence or absence of other links in the network. Let D be the
N ×N adjacency matrix with ijth element Dij. This matrix is binary, symmetric, with zero
diagonal. The absence of externalities means that Zij does not include any components that
are functions of D. As an example, Zij may not include the number of friends i and j have
in common,

∑N
k=1DikDjk, as an element. The study of network formation in the presence of

network externalities is a key theme of recent theoretical research on networks (e.g., Jackson
and Wolinsky, 1996; Bala and Goyal, 2000; Jackson and Watts, 2002). In Section 4 I discuss
how to extend the results presented below to incorporate externalities in link formation.

While (1) rules out externalities, it does incorporate a flexible form of agent-level unob-
served heterogeneity. This allows the model to (i) replicate many topological features of real
world networks and (ii) robustly detect homophily. The unobserved characteristic Ai cap-
tures unobserved attributes of agent i that make her a good link partner. In a risk-sharing
network, for example, trustworthy agents may have high values for Ai (e.g, De Weerdt,
2004; Fafchamps and Gubert, 2007). In a model of scientific collaboration Ai might capture
unobserved components of researcher productivity.

Let Z = (Z12, . . . , ZNN−1)′ be the n×K matrix of dyad characteristics and A = (A1, . . . , AN)′

the N × 1 vector of unobserved agent characteristics. The goal is to identify β while leaving
the joint distribution of (Z,A) unrestricted. This is a so-called “fixed effects” treatment. I
focus on the case where Uij is logistically distributed so that the conditional probability of
an (i, j) link equals

Pr (Dij = 1|Z,A) =
exp

(
Z ′ijβ + Ai + Aj

)
1 + exp

(
Z ′ijβ + Ai + Aj

) =
exp

(
Z ′ijβ +W ′

ijA
)

1 + exp
(
Z ′ijβ +W ′

ijA
) , (2)

with Wij the N × 1 vector with a one for its ith and jth elements and zeros elsewhere. De
Weerdt (2004) fits model (2) to a network of risk-sharing links in Nyakatoke, Tanzania. He
estimates β and A jointly using all n dyads by logistic regression (see Column 3 of his Table
7).

Let Xi be a vector of observed agent attributes; van Duijn, Snijders and Zijlstra (2004)
specify the conditional distribution of A given X (e.g., Ai independent across agents with
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Ai|X ∼ N (X ′iφ, σ
2
A)).2 Their estimator maximizes the resulting integrated likelihood. In

closely related empirical work, Fafchamps and Gubert (2007), Attanasio et al (2012), Apicella
et al. (2012) and others fit models of the form3

Pr (Dij = 1|Z,X) =
exp

(
Z ′ijβ + (Xi +Xj)

′ φ
)

1 + exp
(
Z ′ijβ + (Xi +Xj)

′ φ
) . (3)

This model can be derived from (2) by setting Ai = X ′iφ/2. These methods, whether
explicitly or implicitly, impose strong restrictions on the joint distribution of (Z,A). As
such, they are “correlated random effects” methods. Inference on β will be sensitive to
violations of assumptions made about the joint distribution of (Z,A).

Chatterjee, Diaconis and Sly (2011), Rinaldo, Petrovic and Fienberg (2013) and Yan and
Xu (2013) study model (1) when no dyad-level covariates are present, so that links form
according to

Pr (Dij = 1|A) =
exp (Ai + Aj)

1 + exp (Ai + Aj)
. (4)

See also Blitzstein and Diaconis (2011) and Newman (2003). Model (4) corresponds to an
undirected version of the p1 model for random graphs introduced by Holland and Leinhardt
(1981) over 30 years ago. The properties of maximum likelihood estimation (MLE) applied
to (4) were only recently derived (Chatterjee, Diaconis and Sly, 2011; Yan and Xu, 2013);
corresponding results for the p1 model remain unknown (Haberman, 1981; Goldenberg et al.
2009).

To my knowledge model (2), the focus of this paper, has never been formally studied, al-
though it, or close variants of it, are routinely used in the empirical social network literature.
Indeed, with the exception of the results mentioned above, I am aware of no formal analyses
of the frequentist sampling properties of an empirical model of network formation. Inference
in empirical social network analyses tends to be informal (e.g., Bearman, Moody, Stovel
2004), heuristically motivated (e.g., Holland and Leinhardt, 1981; Apicella et al., 2012) or
Bayesian (e.g., Hoff, Raftery and Handcock, 2002; van Duijn, Snijders and Zijlstra, 2004;
Christakis, Fowler, Imbens and Kalyanaramman, 2010). In their multidisciplinary survey of
statistical research on network modeling, Goldenberg et al. (2009) conclude that the main
limitation of extant research “is the lack of...asymptotic analysis.” (p. 208 - 209).

The lack of formal asymptotic analysis is not coincidental. Model (2), although relatively
2van Duijn, Snijders and Zijlstra (2004) actually work with variant of (2) designed to accommodate

networks with directed links (i.e., where Dij need not equal Dji). In directed networks each dyad has a
natural ‘ego’ and ‘alter’ ordering. This allows for non-symmetric link probability functions.

3Apicella et al. (2012) also work with a variant of (3) designed to accommodate directed links.
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“simple” by the standards of the empirical networks literature, is non-standard. Conditional
on (Z,A) links are independent; the likelihood factors into n =

(
N
2

)
conditionally inde-

pendent components. However the dimension of the nuisance parameter A grows with the
sample size (whether measured in terms of agents (N) or dyads (n)). Textbook large sample
results on the properties of MLE do not apply.

Despite the growing parameter space, I show that joint MLE applied to (2), with both β

and A treated as parameters to be estimated, and certain regularity conditions holding, is
nevertheless consistent. However, the asymptotic sampling distribution of β̂ has a bias term
as well as a variance which is inflated relative to Fisher’s inverse information. This renders
standard asymptotic confidence intervals incorrect. Such intervals are incorrectly centered
and of the wrong length. Asymptotic bias is also a feature of the MLE of the common
parameter in large-N, large-T nonlinear panel data models (e.g., Hahn and Newey, 2004;
Arellano and Hahn, 2007). However, variance inflation is not. This difference appears to
be a consequence of more complex patterns of dependence in the sampling error associated
with the incidental parameters, {Ai}Ni=1, appearing in (2).

2 Estimation and inference

Unless stated otherwise, I maintain Assumptions 1 to 3 throughout what follows. These
assumptions are sufficient for all the results presented below, but can be weakened in some
cases.

Assumption 1. (Link Model). The probability of a link between i and j is given by

Pr (Dij = 1|Z,A0) =
exp

(
Z ′ijβ0 + Ai0 + Aj0

)
1 + exp

(
Z ′ijβ0 + Ai0 + Aj0

)
with (i) Pr (Dij = d,Dkl = d|Z,A0) = Pr (Dij = d|Z,A0) Pr (Dkl = d|Z,A0) for all i 6= k

and/or j 6= l, (ii) β0 ∈ B, a compact subset of RK .

The second assumption restricts the support of Zij and Ai.

Assumption 2. (Compact Support).
(i) the support of Zij is Z, a compact subset of RK .
(ii) the support of Ai0 is A, a compact subset of R.

Let

pij (β,Ai, Aj)
def
=

exp
(
Z ′ijβ + Ai + Aj

)
1 + exp

(
Z ′ijβ + Ai + Aj

) .
6



An immediate implication of Assumptions 1 and 2 is that

pij (β,Ai, Aj) ∈ (κ, 1− κ) (5)

for some 0 < κ < 1 and for all (Ai, Aj) ∈ A×A and β ∈ B. That the probability two agents
link is bounded away from both zero and one simplifies the analysis. This assumption has
the practical implication of making the network dense. In a village, neighborhood or school
setting it seems reasonable, a priori, to assume that the probability that any two agents are
connected is bounded away from zero. If the “network” consists of, for example, all members
of an online social media platform, where links between certain components of the network
are negligible or non-existent, then this assumption is less attractive.

Assumption 3. (Random Sampling) Let i = 1, . . . , N index a random sample of agents
from a population satisfying Assumptions 1 and 2. The econometrician observes (Dij, Zij)

for i = 1, . . . , N , j < i (i.e., for all n =
(
N
2

)
sampled dyads).

I seek to conduct inference on β0, while leave the joint distribution of (A,Z) unrestricted.
Inferences about the relationship between Zij and link formation will be more credible when
minimal assumptions about unobserved agent-level attributes are made. In this paper I
further focus on methods which treat both β and A as parameters to be estimated. In
particular I focus on the properties of the joint maximum likelihood estimator (JMLE). An
alternative approach would be derive a conditional maximum likelihood estimator (CMLE);
one which conditions on a sufficient statistic for A (Andersen, 1973; Chamberlain, 1980).
It turns out that such an approach is also feasible in the present setting, and developing it
provides some insight into the model and the type of network topologies is can generate.

My focus on the JMLE, however, is driven by researchers’ desire to predict the form of the
network under counterfactual policies. Consider a decision-maker who has the ability to
manipulate some components of Zij. For example, a high school principle who can assign
students to different “homerooms”; let Zij include a binary indicator for whether i and
j are in the same homeroom.4 Let Zcf be a counterfactual value for Z which reflects a
manipulation of students’ homeroom assignments. The expected value of the network under
the counterfactual homeroom assignments is

E
[
Dij|Zcf ,A0

]
=

exp
((
Zcf
ij

)′
β0 + Ai0 + Aj0

)
1 + exp

((
Zcf
ij

)′
β0 + Ai0 + Aj0

)
4Christakis, Fowler, Imbens and Kalyanaraman (2010) develop this example empirically.
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for i = 1, . . . , N and j < i. This quantity depends on A, evaluating its empirical analog
therefore requires an estimate of A as well as β. The JMLE provides the required estimates.

2.1 Conditional maximum likelihood estimation (CMLE)

I begin with a short exploration of conditional inference. Under Assumptions 1 to 3 the
conditional likelihood of the event D = d given (Z,A) equals

Pr (D = d|Z,A) =
N∏
i=1

∏
j<i

[
exp

(
Z ′ijβ0 +W ′

ijA
)

1 + exp
(
Z ′ijβ0 +W ′

ijA
)]dij [ 1

1 + exp
(
Z ′ijβ0 +W ′

ijA
)]1−dij

.

After some manipulation this likelihood can be shown to coincide with

Pr (D = d|Z,A) = c (Z; β0,A) exp
(
T1 (d,Z)′ β0

)
exp

(
T2 (d)′A

)
(6)

where

T1 (d,Z) =
N∑
i=1

∑
j<i

dijZij, T2 (d) =
(
d1+ · · · dN+

)′
,

and a “+” denotes “leave-own-out” summation over the replaced index (i.e,. Di+ =
∑

j 6=iDij).
Inspection of (6) indicates that it is of the exponential family form. Consequently the N × 1

vector D+ = (D1+, . . . , DN+)′, or the network’s degree sequence, is a sufficient statistic for
A.

An important strand of network research takes the degree sequence as its primary object
of interest, since many other topological features of networks are fundamentally constrained
by it (e.g., Albert and Barabási, 2002). Graham (forthcoming) shows that the mean and
variance of a network’s degree sequence can be expressed as a function of its triad census
(i.e., the number of triads with no links, one link, two links and three links). Changes in
the first two moments of its degree sequence, necessarily influence other topological features
of a network. Jackson and Rogers (2007) show how inducing a mean-preserving spread in a
network’s degree sequence affects the diffusion of information on the network.

The model defined by 1 to 3 allows for arbitrary degree sequences.5 Due to algebraic depen-
dencies between the degree sequence and other aspects of network architecture, the model
is therefore able to replicate many other features of real-world networks.

Let Ds denote the set of all feasible network adjacency matrices with degree sequence D+ =

5Assumption 2 does rule out the existence of fully connected and/or completely isolated agents in large
networks.
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d+ :

Ds = {v : v ∈ D, T2 (v) = T2 (d)} .

Solving for the conditional probability of the observed network given its degree sequence
yields

Pr (D = d|Z,A, T2 (D) = T2 (d)) =
exp

(∑N
i=1

∑
j<i dijZ

′
ijβ0

)
∑

v∈Ds exp
(∑N

i=1

∑
j<i vijZ

′
ijβ0

) , (7)

which does not depend on A.

Choosing β̂ to maximize the (log of) (7) will result in a consistent estimate (under weaker
conditions than maintained here). Andersen (1973) and Chamberlain (1980) respectively
develop conditional maximum likelihood estimators for the Rasch model of testing (with
subject and item heterogeneity) and discrete choice panel data models (with agent het-
erogeneity). Blitzstein and Diaconis (2011) develop a importance sampling algorithm for
uniformly sampling from Ds. Their algorithm can be used to estimate the numerator in (7).

A computationally simpler, albeit likely less efficient, approach is based on the relative
frequency of different configurations of tetrads (groups of four agents). As one example of
this approach, consider the following three subgraphs composed of agents i, j, k and l:

(i, j) (k, l) (i, l) (j, k) (i, k) (j, l)
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 (8)

In each of these subgraphs all agents have exactly one link. Hence re-arranging links between
i, j, k and l from the configuration in one subgraph to that in another leaves the degree
sequence of the network unchanged. Specifically the networks induced by such manipulations
all belong to Ds.

Define

Sijkl = 1 ·Dij (1−Dik) (1−Dil) (1−Djk) (1−Djl)Dkl

+2 · (1−Dij) (1−Dik)DilDjk (1−Djl) (1−Dkl)

+3 · (1−Dij)Dik (1−Dil) (1−Djk)Djl (1−Dkl) .

Observe that Sijkl equals 1,2 or 3 depending on whether the first, second or third subgraph
in (8) is observed. Consider probability that a randomly drawn tetrad takes the first config-
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uration conditional on it taking on one of the three. Tedious calculation gives

Pr (Sijkl = 1|Z,A, Sijkl ∈ {1, 2, 3}) =

exp
(
[(Zij − Zik)− (Zjl − Zkl)]′ β0

)
1 + exp

(
[(Zij − Zik)− (Zjl − Zkl)]′ β0

)
+ exp

(
[(Zil − Zik)− (Zjl − Zjk)]′ β0

) . (9)

Likewise the conditional probability of the second figuration is

Pr (Sijkl = 2|Z,A, Sijkl ∈ {1, 2, 3}) =

exp
(
[(Zil − Zik)− (Zjl − Zjk)]′ β0

)
1 + exp

(
[(Zij − Zik)− (Zjl − Zkl)]′ β0

)
+ exp

(
[(Zil − Zik)− (Zjl − Zjk)]′ β0

) (10)

with the probability of the third equal to one minus the sum of (9) and (10).

These probabilities are constant in A and hence may be used to make fixed-effects inferences
about β. Note that [(Zij − Zik)− (Zjl − Zkl)]′ β0 measures whether the surplus created from
i matching with j instead of k, exceeds the surplus generated by l matching with j instead
of k; a measure of complementarity.

To develop some additional intuition let Zij = XiXj with Xi ∈ {0, 1}; manipulation gives

[(Zij − Zik)− (Zjl − Zkl)]′ β0 = (Xi −Xl) (Xj −Xk)
′ β0.

Assume that Xi = Xj = 1 and Xk = Xl = 0. In this case the first subgraph with links
(i, j) and (k, l) exhibits homophily, while the second two subgraphs exhibit heterophily. The
probabilities of the three subgraph configurations in (8) are, keeping the Xi = Xj = 1 and
Xk = Xl = 0 conditioning implicit,

Pr (Sijkl = 1|Z,A, Sijkl ∈ {1, 2, 3}) = π1 =
exp (β0)

2 + exp (β0)

Pr (Sijkl = 2|Z,A, Sijkl ∈ {1, 2, 3}) = π2 =
1

2 + exp (β0)

Pr (Sijkl = 3|Z,A, Sijkl ∈ {1, 2, 3}) = π3 =
1

2 + exp (β0)
.

Hence β0 = ln (2) + ln
(

π1
1−π1

)
, which is an increasing function of the relative frequency

of assortative vs. anti-assortative configurations among the set (8). Recall that switches
between these configurations leave the network’s degree sequence unchanged.
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2.2 Joint maximum likelihood estimation (JMLE)

The joint maximum likelihood estimator chooses β̂ and Â simultaneously to maximize the
log-likelihood

lN (β,A) =
N∑
i=1

∑
j<i

Dij

(
Z ′ijβ +W ′

ijA
)
− ln

[
1 + exp

(
Z ′ijβ +W ′

ijA
)]
. (11)

For computational and analytical purposes it is convenient to define β̂ as the maximizer of
the concentrated likelihood

lcN

(
β, Â (β)

)
=

N∑
i=1

∑
j<i

Dij

(
Z ′ijβ +W ′

ijÂ (β)
)
− ln

[
1 + exp

(
Z ′ijβ +W ′

ijÂ (β)
)]

(12)

where Â (β) = arg max
A

lN (β,A) .

By adapting Theorem 1.5 of Chatterjee, Diaconis and Sly (2011) it is possible to show that
Â (β), when it lies in the interior of AN , is the unique solution to the fixed point problem

Â (β) = ϕ
(
Â (β)

)
(13)

where

ϕ (A)
def
=


lnD1+ − ln r1 (β,A,Z1)

...
lnDN+ − ln rN (β,A,ZN)

 , (14)

with Zi =
(
Zi1, . . . , Zi(i−1), Zi(i+1), , ZiN

)′ and
ri (β,A (β) ,Zi) =

∑
j 6=i

exp
(
Z ′ijβ

)
exp (−Aj (β)) + exp

(
Z ′ijβ + Ai (β)

) .
That Â (β) = ϕ

(
Â (β)

)
can be directly verified by rearranging the sample score of (11).

That iteration using (13) converges to Â (β) = arg max
A∈AN

lN (β,A) – when the solution exists

– is a direct implication of Lemma 4 in Appendix A.

The fixed point representation of Â (β) shows that, while the incidental parameters {Ai}Ni=1

are agent-specific, their concentrated MLEs are jointly determined using all n =
(
N
2

)
dyad

observations. This differs from joint fixed effects estimation of a nonlinear panel data model.
In such models, the value of Âi (β) is a function of only agent i′s T observations (Hahn
and Newey, 2004; p. 1297). The joint determination of the components of Â (β) is a direct

11



consequence of the multi-agent nature of the network formation problem.

My first result shows consistency of β̂.

Theorem 1. Under Assumptions 1, 2 and 3

β̂
p→ β0.

Proof. See Appendix B.

The proof of Theorem 1 is relatively straightforward (cf., Amemiya, 1985; pp. 106 - 107). A
simple intuition is as follows. Define

gij (β,Ai, Aj) = −
{
pij ln

(
pij

pij (β,Ai, Aj)

)
+ (1− pij) ln

(
1− pij

1− pij (β,Ai, Aj)

)}
+pij ln (pij) + (1− pij) ln (1− pij) (15)

The term in {·} in (15) is the Kullback-Liebler measure of divergence of pij (β,Ai, Aj) from
pij

def
= pij (β0, Ai0, Aj0) . Using (15) to rearrange the likelihood yields

lN (β,A) =
N∑
i=1

∑
j<i

(Dij − pij) ln

(
pij (β,Ai, Aj)

1− pij (β,Ai, Aj)

)
+

N∑
i=1

∑
j<i

gij (β,Ai, Aj) . (16)

An implication of (5) is that the absolute value of ln
(

pij(β,Ai,Aj)

1−pij(β,Ai,Aj)

)
is bounded above by

ln
(

1−κ
κ

)
. This fact and Hoeffding’s (1963) inequality can be used to show that the first

component of n−1lN (β,A) is op (1) uniformly in β. In large samples the maximizer of
lN (β,A) will therefore be close to the minimizer of the sum of the n Kullback-Liebler
measures of divergence of pij (β,Ai, Aj) from pij across all dyads.

A more involved argument shows that it is possible to estimates the elements of A with
uniform accuracy.

Theorem 2. With probability 1−O (N−2)

sup
1≤i≤N

∣∣∣Âi − Ai0∣∣∣ < O

(√
lnN

N

)
.

Proof. See Appendix B.

Chatterjee, Diaconis and Sly (2011) show uniform consistency of Âi in the model with
no dyad-level covariates (i.e., in model (4)). Theorem 2 follows from Theorem 1 and an
adaptation of their results.

12



Theorems 1 and 2 involve familiar intuitions. Although the dimension of A grows with the
number of sampled agents (N), it becomes small relative to the number of sampled dyads
(n =

(
N
2

)
= O (N2)). Consequently, in large samples, there will be many observations per

parameter.

Characterizing the sampling properties of β̂ is not as straightforward. The sampling prop-
erties of β̂ are influenced by the estimation error in Â. This fact generates two challenges.
First, it influences the sampling properties of the each dyad’s contribution to the score equa-
tions associated with the concentrated log-likelihood function. This influence generates both
bias and variance inflation. Bias arises for reasons analogous to those which drive it in large-
N, large-T nonlinear panel data models (Hahn and Newey, 2004; Arellano and Hahn, 2007).
Variance inflation arises because Âi (β0) covaries with Âj (β0) for i 6= j; this is not a feature
of the panel data problem.

A second challenge is to characterize the probability limit of the (suitably normalized) Hes-
sian matrix of the concentrated log-likelihood. This matrix depends the inverse of the N×N
block of the full likelihood’s Hessian that is associated with the incidental parameters. This
submatrix, unlike in the corresponding panel data problem, is not diagonal. Consequently
characterizing the probability limit of the concentrated log-likelihood’s Hessian matrix re-
quires some additional work.

I require some additional notation. Define

I0 (β)
def
≡ Ei

[
Ej
[
pij (1− pij)ZijZ ′ij

]
− 2

Ej [pij (1− pij)Zij]Ej [pij (1− pij)Zij]′

Ej [pij (1− pij)]

]
(17)

Υ0

def
≡ Ei

[
Ej
[
pij (1− pij) Z̃i+Z̃j+

]]
(18)

where

Z̃i+
def
≡
∑

j 6=i pij (1− pij)Z ′ij∑
j 6=i pij (1− pij)

.

Here the notation Ei [Ej [g (Zij)]] denotes a sequential population average of g (Zij) over the
j and i subscripts. For example, if Zij = h (Xi, Xj) = h (Xj, Xi), then

Ei [Ej [g (Zij)]] =

ˆ
r

ˆ
s

g (h (r, s)) fX (r) fX (s) dsdr

with fX (x) the marginal density function of X.

Equation (17) is Fisher’s information for β, specifically the probability limit of the negative
Hessian matrix of the concentrated log-likelihood function (12). An interpretation of Υ0 will
be provided below.

13



I also define
B0 =

1

2
Ei
[
Ej [pij (1− pij) (1− 2pij)Zij]

Ej [pij (1− pij)]

]
. (19)

Theorem 3. Under Assumptions 1, 2 and 3

N
(
β̂ − β0

)
D→ N

(√
2B0, 2I−1

0 (β0) + 2I−1
0 (β) Υ0I−1

0 (β0)
)
.

Proof. See Appendix B

While the N rate-of-convergence appears non-standard, recall that the log-likelihood is com-
posed of n = 1

2
N (N − 1) conditionally independent terms. Since N = O (

√
n), the scaling

term is, in fact, the “normal” one.

Theorem 3 does indicate, however, that two aspects of β̂’s asymptotic sampling distribution
are, in fact, non-standard. First, the asymptotic distribution of N

(
β̂ − β0

)
is not centered

at zero. This bias is a manifestation of sampling error in Â1, . . . , ÂN . The sampling variance
of each Âi is of O (N−1). This sampling error implies that the mean of the n terms entering
the score equations associated with the concentrated log-likelihood (12) are not mean zero
when evaluated at β0. The derivation and structure of this bias term is similar to that of the
O (T−1) bias term present in nonlinear panel data models (Hahn and Newey, 2004; Arellano
and Hahn, 2007).

Second, the asymptotic variance of N
(
β̂ − β0

)
exceeds its inverse Fisher information. The

limiting variance of the score of the concentrated log-likelihood, evaluated at the true param-
eter, equals I0 (β0) + Υ0. As noted above, variance inflation does not arise in joint maximum
likelihood estimation on nonlinear panel data models under large-N, large-T asymptotics
(e.g., Hahn and Newey, 2004; Theorem 1), but it does arise in other problems with param-
eter spaces which grow with the sample size (e.g., Bekker, 1994; Newey and Windmeijer,
2009).

3 Finite sample properties

Although β̂ is consistent for β0, Theorem 3 suggests that in finite samples its bias will be
non-negligible relative to its sampling variability. This suggests that inferential procedures
that do not account for bias will have incorrect coverage/size.

To evaluate the finite sample properties of the JMLE of β I conduct a series of simple Monte
Carlo experiments. Let Xi

iid∼ 2 {beta (2, 2)− 1/2} for i = 1, . . . , N and define the dyad

14



Table 1: Finite sample bias and variance of β̂ and β̂BC

A. Without bias correction B. With bias correction
0 1/4 1/2 0 1/4 1/2

-10 −10.2799
(0.3712)

−10.2896
(0.3658)

−10.2928
(0.3410)

−10.0344
(0.3598)

−10.0261
(0.3530)

−10.0110
(0.3280)

-5 −5.0996
(0.2562)

−5.1146
(0.1932)

−5.1190
(0.2310)

−4.9970
(0.2501)

−5.0054
(0.1879)

−5.0142
(0.2254)

0 −0.0027
(0.1831)

0.0152
(0.1350)

0.0056
(0.1630)

−0.0026
(0.1803)

0.0147
(0.1328)

0.0016
(0.1603)

5 5.1234
(0.2347)

5.1099
(0.2491)

5.1268
(0.2212)

5.0240
(0.2293)

5.0091
(0.2433)

5.020
(0.2156)

10 10.3060
(0.3460)

10.2866
(0.3676)

10.2818
(0.3685)

10.0180
(0.3320)

10.0313
(0.3558)

10.0206
(0.3558)

Notes: Median value of β̂ and β̂BC across 1,000 Monte Carlo replications with N = 100.
Standard deviation of Monte Carlo estimates reported in parentheses.

covariate Zij = XiXj. The agent-level heterogeneity is distributed as

Ai
iid∼ λXi + (1− λ) 2 {beta (2, 2)− 1/2}

for λ = 0, 1/4, 1/2. Links form according to rule (1) with β = −10,−5, 0, 5, 10. Negative
(positive) values of β induce negative (positive) assortative matching on X across agents.
The parameter λ governs the degree of dependence between Ai+Aj and Zij. Here beta (α, β)

denotes a Beta distributed random variable with shape parameters α and β. This data
generating process satisfies Assumptions 1 to 3.

I report the median bias of β̂, the joint MLE of β analyzed in the previous section, and β̂BC an
iterated bias-corrected estimate of β. Bias correction is analytic, based on the sample analog
of (19). The iterated bias-correction algorithm is as described in Hahn and Newey (2004).
Other methods of bias correction, including those based on the Jackknife, are possible. In
principle the limiting variance of N

(
β̂BC − β0

)
need not coincide with the one given in

Theorem 3, although the results of Hahn and Newey (2004) and others suggest it should.

The median bias of β̂ is substantial across all designs (with the exception of those with β = 0).
In most cases median bias is of the same order of magnitude as the standard deviation of the
β̂ across Monte Carlo replications. Bias correction virtually eliminates bias for the designs
considered here. Furthermore it has no detectable effect on sampling variance.

Table 2 reports the rejection rate for an α = 0.05 t-test of H0 : β = β0. Size distortion is
substantial for the test based on β̂. Basing the test of β̂BC eliminates size distortion for the
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Table 2: Actual size of a 5 percent t-test
A. Without bias correction B. With bias correction

0 1/4 1/2 0 1/4 1/2
-10 0.1050 0.1560 0.1450 0.0530 0.0590 0.0500
-5 0.0890 0.1040 0.0990 0.0550 0.0420 0.0600
0 0.0530 0.0500 0.0670 0.0500 0.0460 0.0630
5 0.0800 0.0900 0.0850 0.0490 0.0580 0.0560
10 0.1730 0.1400 0.1380 0.0570 0.0470 0.0610

Notes: Rejection rate for a t-test of H0 : β = β0 across 1,000 Monte Carlo replications with
N = 100.

designs considered here.6

Figure 1 plots the Nyakatoke risk-sharing network analyzed by De Weert (2004) and oth-
ers (e.g., Comola and Fafchamps (forthcoming)). Each point in the figure corresponds to a
household (node) in the village of Nyakatoke, Tanzania. Node size is proportional to degree.
The dashed gray lines correspond to risk-sharing links. Yellow nodes correspond to house-
holds with total land and livestock wealth below 150,000 Tanzanian shillings, orange those
with wealth between 150,000 and 300,000 shillings, green those with wealth between 300,000
and 600,000 shillings and blue those with 600,000 or more shillings of wealth.7 De Weerdt
(2004) and De Weert and Fafchamps (2011) provide detailed descriptions of the dataset.

I fit three models to the Nyakatoke network. First I fit model (3). This class of models has
been used by Fafchamps and Gubert (2007), Attanasio et al (2012), Apicella et al. (2012)
and others. Second I compute the joint MLE of model (2). I use the observed information
matrix to construct standard errors. This procedure was used by De Weerdt (2004) on the
Nyakatoke network. Finally I compute (iterated) bias corrected JMLE of β. I use the sample
analog of the covariance matrix appearing in Theorem 3 to construct standard errors. The
three sets of results are reported in Table 3. Variable definitions are given in the Table notes.

A comparison of the estimates of β appearing in columns (2) and (3) reveals that bias correc-
tion results in a substantive change in the point estimates (of the same order of magnitude as
their estimated standard errors). Using the sandwich variance estimator results in modestly
larger standard errors. Both features of the limiting distribution characterized by Theorem
3 are present in the empirical illustration: bias and variance inflation.

These differences are large enough to result in incorrect inference. Recall that an individual’s
siblings, children and parents share 50 percent of their genotype, nieces, nephews, aunts,
uncles and grandparents 25 percent of their genotype, and other blood relatives (e.g., cousins)

6To estimate the asymptotic variance of β̂ and β̂BC I use the standard sandwich variance estimator.
7Following Comola and Fafchamps (forthcoming) I value stated household land holdings at 300,000

shillings per acre.
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Figure 1: Nyakatoke risk-sharing network

Source: de Weerdt (2004) and author’s calculations.
Notes: Node size proportional to household degree. Yellow nodes represent households with
land and livestock wealth below 150,000 Tanzanian Shillings, orange those between 150,000
and 300,000, green those between 300,000 and 600,000 and blue those with 600,000 and
above. Network plotted using igraph package in R (see http : //igraph.org/r/).
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12.5 percent (or less) of their genotype. The last row of Table 3 reports a Wald test of the
restriction that the link probability index is a linear function of genotype overlap across the
two household heads in a given dyad. Apicella et al. (2012) model link formation (in a
related context) as a linear function of genotype overlap.

The linearity assumption imposes two restrictions on the three kinship dummy variable
coefficients appearing in Table 3. This restriction is rejected at the 5 percent level using
the Column (1) estimates, marginally accepted using the joint ML column (2) estimates and
non-marginally accepted using the bias-corrected joint ML column (3) estimates.

4 Extensions and areas for further work

The development of models of link formation admitting externalities has been a preoccu-
pation of theorists (see Jackson (2008) for a survey and references). Such externalities are
also of considerable interest to empirical researchers (e.g., De Weerdt, 2004). The model
developed in Sections 1 and 2 excludes externalities. Link clustering and other features of
network topology are driven solely by observed dyad-level covariates and unobserved agent-
level heterogeneity.

Two natural questions arise. First, can one construct a test for the assumption of no exter-
nalities in link formation? Second, can one augment the model to include such externalities?
I can provide an affirmative answer to the first question (albeit with non-trivial issues of
practical implementation) and a mixed answer to the second.

Externalities in link formation can take many forms. A simple, and leading, example is that
agents i and j are more likely to form a link if they share a friend in common. Preferences of
this type tend to generate networks with lots of transitive triads: triples of agents that are all
connected to one another. Let TT (D) denote the number of transitive triads in the network
(note there are a total of

(
N
3

)
triads in the network). Let TTS (D) denote the number of

“two-star” triads. These are triads with two connections. Such triads can become transitive
with the addition of a single link.

The transitivity index or clustering coefficient (cf., Jackson, 2008) is

c (D) =
3TT (D)

TTS (D) + 3TT (D)
. (20)

Let
Dt = {v : v ∈ D, T1 (v,Z) = T1 (d,Z) , T2 (v) = T2 (d)} (21)

be the set of network adjacency matrices where both the sufficient statistic for β and A
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Table 3: Fitted Nyakatoke network-formation models
(1)
ML

(2)
ML-FE

(3)
BC-ML-FE

Sibling, child or parent 3.0307
(0.2329)

3.2546
(0.2636)

3.0717
(0.2900)

Niece, nephew, aunt, uncle or grandparent 1.9778
(0.2452)

2.0035
(0.2736)

1.9192
(0.2843)

Other blood relative 1.2057
(0.2101)

1.3250
(0.2339)

1.2600
(0.2509)

Distance (meters) −0.0026
(0.0002)

−0.0029
(0.0002)

−0.0029
(0.0003)

Absolute difference in age −0.0130
(0.0042)

−0.0157
(0.0050)

−0.0162
(0.0048)

Same gender 0.2245
(0.1652)

0.2067
(0.1703)

0.1355
(0.1626)

Same education −0.0646
(0.1735)

−0.0551
(0.1799)

−0.1096
(0.1631)

Same wealth 0.3133
(0.1495)

0.3396
(0.1559)

0.3087
(0.1555)

Close wealth 0.1633
(0.1396)

0.1797
(0.1447)

0.1524
(0.1404)

Same religion 0.3523
(0.1090)

0.3657
(0.1144)

0.3514
(0.1156)

N 115 115 115
H0 linear relatedness (p-value) 0.0373 0.0633 0.0955

Source: de Weerdt (2004) and author’s calculations.
Notes: Column (1) reports the MLE of β in model (3). TheXi vector includes the household
head’s age, the household head’s gender (1 if female, 0 if male), the highest education level
attained by a household member (1 if primary school or more, 0 otherwise), dummies for the
four wealth categories described in the main text (with the lowest wealth category excluded),
and dummies for religion (Lutheran and Muslim with Catholic excluded). The first three
variables actually listed in the table equal one if the stated kinship relationship characterizes
the dyad and zero otherwise. “Distance” equals the distance in meters between the two
households. Also included is the absolute difference in age between the two household heads.
“Same gender” and “Same education” equal 1 if, respectively, the two household heads are of
the same gender and both households have at least one primary school graduate or neither
does, and zero otherwise. “Same wealth” equals one if both households’ land and livestock
holdings are in the same wealth category (out of the four described in the main text) and
zero otherwise. “Close wealth” equals 1 if the two households have wealth levels in adjacent
categories and zero otherwise. Finally same religion equals one if the two households share
a common religion and zero otherwise. The estimate of φ is not reported. Columns (2)
and (3) report joint ML, and biased corrected joint ML, estimates of β in model (2). The
observed information matrix is used to construct the standard errors reported in column
(2), while an analog estimate of the covariance appearing in Theorem 3 is used to construct
those appearing in column (3).
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coincide with those observed in the actual network (see Section 2). Due to the exponential
family form of the likelihood, the probability of observing a particular realization of D in
Dt is the inverse of the cardinality of set (21). (i.e., 1/ |Dt|). The probability that a random
draw V from Dt has a transitivity index higher than the one observed in the actual network
is therefore given by

Pr (c (V) ≤ c (D)) =

∑
v∈Dt 1 (c (v) > c (D))

|Dt|
. (22)

If this probability is very low, then observed network transitivity is very high relative to that
typically found in the null distribution of networks. We may take this as evidence against
the model as specified. This test is exact.

Direct evaluation of (22) is infeasible, but it can be consistently estimated if a method for
taking uniform random draws from |Dt| can be constructed. Formulating such a method
would be an interesting area for future research.

If the econometrician observes a network for two periods, the incorporation of externalities
in link formation, albeit of a particular kind, is possible. Assume that individuals i and j

form a period t link, for i = 1, . . . , N and j < i, according to the rule

Dijt = 1

(
Z ′ijtβ + γDijt−1 + δ

N∑
k=1

Dikt−1Djkt−1 + Ai + Aj − Uijt ≥ 0

)
, (23)

where Uijt is iid across pairs and over time as well as logistic. This model allows the prob-
ability of a period t link to depend on whether two agents shared a link in the prior period
and also on the number of friends they shared in common in the prior period.

In the two period case, both the conditional and joint estimation procedures remain valid,
with “Zij” now augmented by functions of Dt−1. This observation hinges critically on the
way in which agent-level heterogeneity is modeled. For example, the conditional estimator
is based on within-agent variation in a given network; over time contrasts are not used. If
Ai + Aj were replaced with, say, Aij = Bi + Bj + h (Ci, Cj) for Bi and Ci agent-specific
heterogeneity and h (•, •) symmetric but otherwise arbitrary, then identification of (β, γ, δ)

would rely on (over-time) within-dyad variation and a variant of the “initial condition” prob-
lem that occurs in single agent dynamic panel data analysis would arise. Graham (2012,
2013) studies models of this type.

Returning to the case where the network is observed only once, consider the link model

Dij = 1
(
Z ′ijβ + Ai + Aj + h (Ai, Aj; γ)− Uijt ≥ 0

)
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with h (Ai, Aj; γ) a known family of symmetric functions indexed by γ. Such a specification
can allow for complementarity in unobserved agent level attributes. A study of the properties
of the JMLE of (β, γ,A) also would be an interesting topic for future research. The proof
methods used in this paper make use of the additive way in which heterogeneity enters link
surplus as well as the logit structure. However it seems plausible, that at least for some
forms of h (Ai, Aj; γ), consistent estimate of β and γ would be possible.

A Appendix

This Appendix states and, where required, proves, several Lemmas used in the proofs of
Theorems 1, 2 and 3. The proofs of these three Theorems appear in Appendix B. All
notation is as defined in the main text, unless noted otherwise. The abbreviation TI refers
to the Triangle Inequality.

I begin with two useful matrix analysis results.

Lemma 1. Let the matrix A belong to the class LN (δ) if ‖A‖∞ ≤ 1 and, for all 1 ≤ i 6=
j ≤ N and for some δ > 0,

aii ≥ δ and aij ≤ −
δ

N − 1
.

If A,B ∈ LN (δ), then

‖AB‖∞ ≤ 1− 2 (N − 2) δ2

N − 1
.

Proof. See Lemma 2.1 of Chatterjee, Diaconis and Sly (2011).

Lemma 2. For all N ×N symmetric diagonally dominant matrices J with Jij ≥ δ > 0 we
have ∥∥J−1

∥∥
∞ ≤

∥∥S−1
N (δ)

∥∥
∞ =

3N − 4

2δ (N − 2) (N − 1)
= O

(
1

N

)
for SN (δ) = δ {(N − 2) IN + ιN ι

′
N} and N ≥ 3.

Proof. See Theorem 1.1 of Hillar, Lin, Wisbisono (2013).

Lemma 3. Under Assumptions 1, 2 and 3

sup
1≤i≤N

∣∣∣∣∣ 1

N − 1

∑
j 6=i

(Dij − pij)

∣∣∣∣∣ <
√

3

2

lnN

N
,

with probability 1−O (N−2) .
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Proof. Hoeffding’s (1963) inequality gives

Pr

(∣∣∣∣∣ 1

N − 1

∑
j 6=i

(Dij − pij)

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−2 (N − 1) ε2

(1− 2κ)2

)

for κ as defined by (5). Setting ε =
√

3
2

lnN
N

gives the probability bound

Pr

(∣∣∣∣∣ 1

N − 1

∑
j 6=i

(Dij − pij)

∣∣∣∣∣ ≥
√

3

2

lnN

N

)
≤ 2 exp

(
−2 (N − 1)

(1− 2κ)2

3

2

lnN

N

)
= 2 exp

(
ln

(
1

N3

)
N − 1

(1− 2κ)2N

)
=

2

N3
exp

(
(N − 1)

(1− 2κ)2N

)
= O

(
N−3

)
.

Applying Boole’s Inequality then yields

Pr

(
max

1≤i≤N

∣∣∣∣∣ 1

N − 1

∑
j 6=i

(Dij − pij)

∣∣∣∣∣ ≥
√

3

2

lnN

N

)
≤ 2

N2
exp

(
− 2 (N − 1)

(1− 2κ)2N

)
= O

(
N−2

)
,

from which the result follows.

The next Lemma formalizes the fixed point characterization of Â (β) discussed in Section
1 of the main text. Lemma 4 is a straightforward extension of Theorem 1.5 of Chatterjee,
Diaconis and Sly (2011) to accommodate dyad-level covariates in the link formation model.
Since it is constructive, a complete proof is provided here.

Lemma 4. Suppose the concentrated MLE Â (β) lies in the interior of AN , then for 0 <

δ ≤ κ2

1−κ and Ak+1 (β) = ϕ (Ak (β)) with ϕ (A) as defined by (14) of the main text (i)

∥∥∥Ak+1 (β)− Â (β)
∥∥∥
∞
≤
(

1− 2 (N − 2)

N − 1
δ2

)∥∥∥Ak−1 (β)− Â (β)
∥∥∥
∞

and (ii)

‖Ak+2 (β)−Ak+1 (β)‖∞ ≤
(

1− 2 (N − 2)

N − 1
δ2

)
‖Ak (β)−Ak−1 (β)‖∞ .

Proof. I suppress the dependence of Â (β) , Ak (β) and other objects on β in what follows
(note that the Lemma holds for any β in its parameter space). Tedious calculation gives a
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N ×N Jacobian matrix of

∇Aϕ (A) =



∑
j 6=1 p

2
1j∑

j 6=1 p1j
−p12(1−p12)∑

j 6=1 p1j
· · · −p1N (1−p1N )∑

j 6=1 p1j

−p21(1−p12)∑
j 6=2 p2j

∑
j 6=2 p

2
2j∑

j 6=2 p2j
· · · −p2N (1−p2N )∑

j 6=2 p2j
... . . . ...

−pN1(1−p1N )∑
j 6=N pNj

−p2N (1−p2N )∑
j 6=N pNj

· · ·
∑
j 6=N p2Nj∑
j 6=N pNj

 . (24)

Observe that ‖∇Aϕ (A)‖∞ = 1 (i.e., is “diagonally balanced”); further note that

inf
1≤i≤N

∑
j 6=i p

2
ij∑

j 6=i pij
≤ (N − 1)κ2

(N − 1) (1− κ)
=

κ2

1− κ

as well as
sup

1≤i,j≤N, i6=j
− pij (1− pij)∑

k 6=i pik
≤ − κ (1− κ)

(N − 1) (1− κ)
= − κ

N − 1
.

Therefore ∇Aϕ (A) ∈ LN (δ) with 0 < δ ≤ κ2

1−κ with LN (δ) as defined in Lemma 1.

Assume that the MLE Â = ϕ
(
Â
)

exists. A mean value expansion of ϕ (Ak) about Â,

followed by a second mean value expansion of Ak = ϕ (Ak−1), also about Â, yields

Ak+1 − Â = ϕ (Ak)− ϕ
(
Â
)

= ϕ
(
Â
)

+∇Aϕ
(
Ā
) (

Ak − Â
)
− Â

= ∇Aϕ
(
Ā
) (
ϕ (Ak−1)− Â

)
= ∇Aϕ

(
Ā
) (
ϕ
(
Â
)

+∇Aϕ
(
Ā
) (

Ak−1 − Â
)
− Â

)
= ∇Aϕ

(
Ā
)
∇Aϕ

(
Ā
) (

Ak−1 − Â
)

where Ā is a “mean value” between Â and Ak (or Â and Ak−1) which may vary from row to
row (as well as across the two Jacobian matrices in the last expression above). Taking the
absolute row sum norm of both sides of the last equality gives∥∥∥Ak+1 − Â

∥∥∥
∞
≤

∥∥∥∇Aϕ
(
Ā
)
∇Aϕ

(
Ā
) (

Ak−1 − Â
)∥∥∥
∞

≤
∥∥∇Aϕ

(
Ā
)
∇Aϕ

(
Ā
)∥∥
∞

∥∥∥(Ak−1 − Â
)∥∥∥
∞

≤
(

1− 2 (N − 2)

N − 1
δ2

)∥∥∥(Ak−1 − Â
)∥∥∥
∞

for 0 < δ ≤ κ2

1−κ . The last inequality follows from an application of Lemma 1. Similar
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arguments give the second result in the Lemma.

The next two Lemmas require some additional notation. The Hessian matrix of the joint
log-likelihood is given by

HN =

(
HN,ββ HN,βA

H ′N,βA HN,AA

)
(25)

with

HN,ββ = −
N∑
i=1

∑
j<i

pij (1− pij)ZijZ ′ij

H ′N,βA = −


∑

j 6=1 p1j (1− p1j)Z
′
1j

...∑
j 6=N pNj (1− pNj)Z ′Nj



HN,AA = −


∑

j 6=1 p1j (1− p1j) · · · p1N (1− p1N)
... . . . ...

p1N (1− p1N) · · ·
∑

j 6=N pNj (1− pNj)

 .

The next Lemma, which is due to Yan and Xu (2013), shows that HN,AA is, in a certain
sense, well-approximated by its diagonal:

VN = diag

{∑
j 6=1

p1j (1− p1j) , . . . ,
∑
j 6=N

pNj (1− pNj)

}
. (26)

Lemma 5. Under Assumptions 1, 2 and 3

∥∥−H−1
N,AA − V

−1
N

∥∥
max

= O

(
1

N2

)
,

for HN,AA and VN as defined in (25) and (26) respectively.

Proof. See Proposition A.1 of Yan and Xu (2013).

Lemma 6. Under Assumptions 1, 2 and 3
√
N
[
Â (β0)−A (β0)

]
has the asymptotically

linear representation

√
N
[
Â (β0)−A (β0)

]
=

[
VN
N

]−1

× 1√
N

N∑
i=1

∑
j<i

sAij (β0,A (β0)) + op (1) , (27)
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as well as, for a fixed L, a limiting distribution of

√
N
[
Â (β0)−A (β0)

]
1:L

D→ N
(

0, diag

(
1

E [p1j (1− p1j)]
, . . . ,

1

E [pLj (1− pLj)]

))
. (28)

Proof. A second order Taylor series expansion gives

N∑
i=1

∑
j<i

sAij

(
β0, Â (β0)

)
=

N∑
i=1

∑
j<i

sAij (β0,A (β0))

+

[
N∑
i=1

∑
j<i

∂

∂A′
sAij (β0,A (β0))

](
Â (β0)−A (β0)

)
+

1

2

[
N∑
k=1

(
Âk (β0)− Ak (β0)

) N∑
i=1

∑
j<i

∂

∂Ak∂A′
sAij

(
β0, Ā (β0)

)]
×
(
Â (β0)−A (β0)

)
, (29)

with Ā (β0) a mean value between Â (β0) and A (β0). It is convenient to evaluate the last
term in (29) row by row. Its pth row is, for p = 1, . . . , N ,

Rp =
1

2

(
Â (β0)−A (β0)

)′ [ N∑
i=1

∑
j<i

∂

∂A∂A′
s

(p)
Aij

(
β0, Ā (β0)

)](
Â (β0)−A (β0)

)
,

with
∂

∂A∂A′
s

(p)
Aij

(
β̄, Ā (β0)

)
= −pij (1− pij) (1− 2pij)WijW

′
ijWp,ij.

Lemma 2, the form of ∂
∂A∂A′

s
(p)
Aij

(
β̄, Ā (β0)

)
, and the fact that |pij (1− pij) (1− 2pij)| < 1,

gives the bound

|Rp| ≤ λ2
N

N∑
i=1

∑
j 6=i

|pij (1− pij) (1− 2pij)|Wp,ij

≤ 2λ2
N (N − 1) ,

where λN = sup
1≤i≤N

∣∣∣Âi − Ai0∣∣∣ . Observe that, for VN as defined in (26), −V −1
N HN,AA/2 is a

row stochastic matrix (i.e., a non-negative matrix with all rows summing to one (e.g., Horn
and Johnson (2013, p. 547))). Therefore

−
(
V −1
N HN,AA

)−1
V −1
N ιN2λ2

N (N − 1) ≤ ιN
λ2
N

κ (1− κ)
,
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with κ as defined in (5). From Lemma 2, λ2
N = C2 lnN

N
for some constant C, which combined

with the bound given above yields, after rearranging (29),

√
N
(
Â (β0)−A (β0)

)
= −

[
HN,AA

N

]−1

× 1√
N

N∑
i=1

∑
j<i

sAij (β0,A (β0)) +O

(
lnN√
N

)
.

Lemma 5 implies that
∥∥∥∥(−HN,AA

N

)−1

−
(
VN
N

)−1

∥∥∥∥
max

= O
(

1
N

)
and hence that

√
N
[
Â (β0)−A (β0)

]
=

[
VN
N

]−1

× 1√
N

N∑
i=1

∑
j<i

sAij (β0,A (β0))

+O

(
1

N

)
op

(√
N
)

+O

(
lnN√
N

)
.

The O
(

1
N

)
op

(√
N
)
and O

(
lnN√
N

)
terms respectively capture approximation error from re-

placing −H−1
N,AA with V −1

N and from the remainder term in the Taylor series expansion. The
overall remainder term is op (1) as required. This gives the first part of the Lemma. To
show the second result observe that the ith element of

∑N
i=1

∑
j<i sAij (β0,A (β0)) equals∑

j 6=i (Dij − pij). This is a sum of independent, but not identically distributed, Bernoulli
random variables. Asymptotic normality of 1√

N

∑
j 6=i (Dij − pij) follows from the fact that

|Dij − pij| ≤ 1− κ and hence

∑
j 6=i

E
[
|dij − pij|3

](∑
j 6=i pij (1− pij)

)3/2
≤
∑
j 6=i

(1− κ)E
[
|dij − pij|2

](∑
j 6=i pij (1− pij)

)3/2
=

(1− κ)(∑
j 6=i pij (1− pij)

)1/2
→ 0

as N → ∞. Result (28) then follows from an application of Lyapounov’s central limit
theorem for triangular arrays (e.g., Billingsley, 1995, p. 362).

B Appendix

Proof of Theorem 1

Condition (5) implies that ln
(

κ
1−κ

)
≤ ln

(
pij(β,Ai,Aj)

1−pij(β,Ai,Aj)

)
≤ ln

(
1−κ
κ

)
. Note that ln

(
1−κ
κ

)
=

− ln
(

κ
1−κ

)
for κ ∈ (0, 1) . These bounds and the Triangle Inequality (TI) gives, for all β ∈ B
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and A ∈ AN ,∣∣∣∣∣
(
N

2

)−1 N∑
i=1

∑
j<i

(Dij − pij) ln

(
pij (β,Ai, Aj)

1− pij (β,Ai, Aj)

)∣∣∣∣∣ ≤ 1

N

N∑
i=1

∣∣∣∣∣ 1

N − 1

∑
j 6=i

(Dij − pij)

× ln

(
pij (β,Ai, Aj)

1− pij (β,Ai, Aj)

)∣∣∣∣
≤ 1

N

N∑
i=1

∣∣∣∣∣ 1

N − 1

∑
j 6=i

(Dij − pij)

∣∣∣∣∣
∣∣∣∣ln(1− κ

κ

)∣∣∣∣ .
Lemma 3 then implies that, with probability equal to 1−O (N−2),

sup
β∈B,A∈AN

∣∣∣∣∣
(
N

2

)−1 N∑
i=1

∑
j<i

(Dij − pij) ln

(
pij (β,Ai, Aj)

1− pij (β,Ai, Aj)

)∣∣∣∣∣ < O

(√
lnN

N

)
. (30)

Equations (16) and (30) therefore give, again with probability equal to 1 − O (N−2), the
uniform convergence result

sup
β∈B,A∈AN

∣∣∣∣∣
(
N

2

)−1

lN (β,A)− 1

N

1

N − 1

N∑
i=1

∑
j 6=i

gij (β,Ai, Aj)

∣∣∣∣∣ < O

(√
lnN

N

)
. (31)

Let B0 be an open neighborhood in B which contains β0. Let B̄0 be its complement in B.
Define

εN = max
A∈AN

1

N

1

N − 1

N∑
i=1

∑
j 6=i

gij (β0, Ai, Aj)− max
β∈B̄0,A∈AN

1

N

1

N − 1

N∑
i=1

∑
j 6=i

gij (β,Ai, Aj) (32)

and let CN be the event∣∣∣∣∣max
A∈AN

(
N

2

)−1

lN (β,A)− max
A∈AN

1

N

1

N − 1

N∑
i=1

∑
j 6=i

gij (β,Ai, Aj)

∣∣∣∣∣ < εN
2

for all β ∈ B.

By definition (15) we have, for all (β,Ai, Aj) ∈ (B,A× A), the inequality

gij (β,Ai, Aj) ≤ pij ln (pij) + (1− pij) ln (1− pij) = gij (β0, Ai0, Aj0) (33)
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and hence that εN ≥ 0. Therefore, under CN , we get the inequalities

max
A∈AN

1

N

1

N − 1

N∑
i=1

∑
j 6=i

gij

(
β̂, Ai, Aj

)
>

(
N

2

)−1

lN

(
β̂, Â

)
− εN

2
(34)

and

max
A∈AN

(
N

2

)−1

lN (β0,A) > max
A∈AN

1

N

1

N − 1

N∑
i=1

∑
j 6=i

gij (β0, Ai, Aj)−
εN
2
. (35)

By definition of the MLE we have that
(
N
2

)−1
lN

(
β̂, Â

)
≥ max

A∈AN

(
N
2

)−1
lN

(
β0, Â

)
and hence,

making use of (34),

max
A∈AN

1

N

1

N − 1

N∑
i=1

∑
j 6=i

gij

(
β̂, Ai, Aj

)
> max

A∈AN

(
N

2

)−1

lN (β0,A)− εN
2
. (36)

Adding both sides of (35) and (36) gives

max
A∈AN

1

N

1

N − 1

N∑
i=1

∑
j 6=i

gij

(
β̂, Ai, Aj

)
> max

A∈AN

1

N

1

N − 1

N∑
i=1

∑
j 6=i

gij (β0, Ai, Aj)− εN

= max
β∈B̄0,A∈AN

1

N

1

N − 1

N∑
i=1

∑
j 6=i

gij (β,Ai, Aj) , (37)

where the second line follows from the definition of εN (i.e., from equation (32)).

From (37) we have that CN ⇒ β̂ ∈ B0. Therefore Pr (CN) ≤ Pr
(
β̂ ∈ B0

)
. But (31) implies

that lim
N→∞

Pr (CN) = 1 and hence β̂ p→ β0 as claimed.

Proof of Theorem 2

Let A0 denote the population vector of heterogeneity terms and A1 = ϕ (A0). From (14)
we can show that the ith element of A1 −A0 is

A1i − A0i = lnDi − ln
{

exp (A0i) ri

(
β̂,A0,Zi

)}
= lnDi − ln

∑
j 6=i

exp (A0i) exp
(
Z ′ijβ̂

)
exp (−A0j) + exp

(
Z ′ijβ̂ + Ai0

)
= lnDi − ln

∑
j 6=i

exp
(
Z ′ijβ̂ + A0i + A0j

)
1 + exp

(
Z ′ijβ̂ + A0i + A0j

) .
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A mean value expansion gives

ln
∑
j 6=i

exp
(
Z ′ijβ̂ + A0i + A0j

)
1 + exp

(
Z ′ijβ̂ + A0i + A0j

) = ln
∑
j 6=i

pij +

∑
j 6=i p̄ij (1− p̄ij)Zij∑

j 6=i p̄ij

(
β̂ − β0

)
,

where p̄ij =
exp(Z′ijβ+A0i+A0j)

1+exp(Z′ijβ+A0i+A0j)
(with β a mean value between β̂ and β0). Using (5), the

compact support assumption on Zij, and Theorem 1 yields∣∣∣∣∣
∑

j 6=i p̄ij (1− p̄ij)Zij∑
j 6=i p̄ij

(
β̂ − β0

)∣∣∣∣∣ ≤ ∑
j 6=i

∣∣∣∣∣ p̄ij (1− p̄ij)Zij∑
j 6=i p̄ij

∣∣∣∣∣ ∣∣∣(β̂ − β0

)∣∣∣
≤

sup
z∈Z
|z|

4κ

∣∣∣(β̂ − β0

)∣∣∣
= Op (1) · op (1)

= op (1) .

We can conclude that

A1i − A0i = ln

[∑
j 6=iDij∑
j 6=i pij

]
+ op (1) .

A second mean-value expansion, this time of ln
[∑

j 6=iDij

]
in
∑

j 6=iDij about the point∑
j 6=i pij gives

ln

[∑
j 6=i

Dij

]
= ln

[∑
j 6=i

pij

]
+

1[
λ
(∑

j 6=iDij

)
+ (1− λ)

(∑
j 6=i pij

)]∑
j 6=i

(Dij − pij) ,

for some λ ∈ (0, 1). Using condition (5) gives∣∣∣∣∣∣ 1[
λ
(∑

j 6=iDij

)
+ (1− λ)

(∑
j 6=i pij

)]∑
j 6=i

(Dij − pij)

∣∣∣∣∣∣ ≤ 1

(1− λ)κ

∣∣∣∣∣ 1

N − 1

∑
j 6=i

(Dij − pij)

∣∣∣∣∣ .
Lemma 3 then gives, with probability 1−O (N−2), the uniform bound

sup
1≤i≤N

∣∣∣∣∣ln
[∑

j 6=iDij∑
j 6=i pij

]∣∣∣∣∣ < O

(√
lnN

N

)
. (38)
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To complete the proof, observe that sequentially expanding A0 − Â in Â about A1,A2, . . .

gives

A0 − Â = A0 −A1 + ϕ
(
Ā
) (

A1 − Â
)

= A0 −A1 + ϕ
(
Ā
)

(A1 −A2) + ϕ
(
Ā
)
ϕ
(
Ā
) (

A2 − Â
)

= A0 −A1 + ϕ
(
Ā
)

(A1 −A2) + ϕ
(
Ā
)
ϕ
(
Ā
)

(A2 −A3)

+ϕ
(
Ā
)
ϕ
(
Ā
)
ϕ
(
Ā
) (

A3 − Â
)

= A0 −A1 + ϕ
(
Ā
)

(A1 −A2) + ϕ
(
Ā
)
ϕ
(
Ā
)

(A2 −A3)

+ϕ
(
Ā
)
ϕ
(
Ā
)
ϕ
(
Ā
)

(A3 −A4) + ϕ
(
Ā
)
ϕ
(
Ā
)
ϕ
(
Ā
)
ϕ
(
Ā
) (

A4 − Â
)
.

This pattern, the fact that ‖∇Aϕ (A)‖∞ = 1, the TI and Lemma 1 then gives

∥∥∥A0 − Â
∥∥∥
∞
≤

∞∑
k=0,2,4

[
1− 2 (N − 2)

N − 1
δ2

] k
2

(‖Ak −Ak+1‖∞ + ‖Ak+1 −Ak+2‖∞) , (39)

for δ as defined in Lemmas 1 and 4. Using the second inequality of Lemma 4 to derive

‖Ak+2 −Ak+1‖∞+‖Ak+1 −Ak‖∞ ≤
(

1− 2 (N − 2)

N − 1
δ2

)
(‖Ak−1 −Ak−2‖∞ + ‖Ak −Ak−1‖∞) .

and substituting into (39) gives the geometric sequence

∥∥∥A0 − Â
∥∥∥
∞
≤

∞∑
k=0

[
1− 2 (N − 2)

N − 1
δ2

]k
(‖A0 −A1‖∞ + ‖A1 −A2‖∞)

=
N − 1

2 (N − 2) δ2
(‖A0 −A1‖∞ + ‖A1 −A2‖∞)

≤ N − 1

(N − 2) δ2
‖A0 −A1‖∞ ,

which, together with (38), gives the result.

Proof of Theorem 3

Following, for example, Amemiya (1985, pp. 125 - 127), the Hessian of the concentrated
log-likelihood is given by

(
HN,ββ −HN,βAH

−1
N,AAH

′
N,βA

)
= HN,ββ +HN,βAV

−1
N H ′N,βA

+HN,βA

(
−H−1

N,AA − V
−1
N

)
H ′N,βA.
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Under condition (5) −HN,AA ≥ SN (δ) for δ = κ (1− κ) and SN (δ) as defined in Lemma
2; HN,AA is also diagonally balanced. Lemma 2 therefore gives the bound

∥∥H−1
N,AA

∥∥
∞ ≤

3N−4
2κ(1−κ)(N−2)(N−1)

= O
(

1
N

)
. We also have the bounds ‖HN,βA‖∞ ≤

N−1
4

sup
z∈Z
|z| = O (N) and∥∥V −1

N

∥∥
∞ ≤

1
(N−1)κ(1−κ)

= O
(

1
N

)
. These bounds and the TI give

∥∥HN,βA

(
−H−1

N,AA − V
−1
N

)
HN,βA

∥∥
∞ ≤

∥∥HN,βAH
−1
N,AAHN,βA

∥∥
∞ +

∥∥HN,βAV
−1
N HN,βA

∥∥
∞

≤ ‖HN,βA‖2
∞

∥∥H−1
N,AA

∥∥
∞ + ‖HN,βA‖2

∞

∥∥V −1
N,AA

∥∥
∞

= O (N)

and hence, after dividing by n = 1
2
N (N − 1) = O (N2) ,

n−1
(
HN,ββ −HN,βAH

−1
N,AAH

′
N,βA

)
= n−1

(
HN,ββ +HN,βAV

−1
N H ′N,βA

)
+ o (1) .

Evaluating this approximate Hessian yields

HN,ββ +HN,βAV
−1
N HN,βA = −

N∑
i=1

{
1

2

∑
j 6=i

pij (1− pij)ZijZ ′ij

−

(∑
j 6=i pij (1− pij)Zij

)(∑
j 6=i pij (1− pij)Z ′ij

)
∑

j 6=i pij (1− pij)

 ,

which, after dividing by n, converges in probability to −I0 (β) as defined by (17).

Now consider the first order condition associated with the concentrated log-likelihood, a
mean value expansion gives

√
n
(
β̂ − β0

)
= −

[
1

n

N∑
i=1

∑
j<i

∂

∂β′
sβij

(
β̄, Â

(
β̄
))]−1

×

[
1√
n

N∑
i=1

∑
j<i

sβij

(
β0, Â (β0)

)]
,

which, after applying the result for the Hessian of the concentrated log-likelihood derived
immediately above, gives

√
n
(
β̂ − β0

)
= −I−1

0 (β)×

[
1√
n

N∑
i=1

∑
j<i

sβij

(
β0, Â (β0)

)]
+ op (1) , (40)
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since 1
n

∑N
i=1

∑
j<i

∂
∂β′
sβij

(
β̄, Â

(
β̄
)) p→ −I0 (β). We cannot apply a CLT directly to

1√
n

N∑
i=1

∑
j<i

sβij

(
β0, Â (β0)

)
in (40). Instead we will replace it with an approximation. Specifically, a third order Taylor
expansion of 1√

n

∑N
i=1

∑
j<i sβij

(
β0, Â (β0)

)
gives

1√
n

N∑
i=1

∑
j<i

sβij

(
β0, Â (β0)

)
=

1√
n

N∑
i=1

∑
j<i

sβij (β0,A (β0))

+

[
1√
n

N∑
i=1

∑
j<i

∂

∂A′
sβij (β0,A (β0))

](
Â (β0)−A (β0)

)
+

1

2

[
1√
n

N∑
k=1

(
Âk (β0)− Ak (β0)

) N∑
i=1

∑
j<i

∂2

∂Ak∂A′
sβij (β0,A (β0))

×
(
Â (β0)−A (β0)

)]
+

1

6

1√
n

N∑
k=1

N∑
l=1

[(
Âk (β0)− Ak (β0)

)(
Âl (β0)− Al (β0)

)
×

[
N∑
i=1

∑
j<i

∂3

∂Ak∂Al∂A′
sβij

(
β0, Ā (β0)

)]](
Â (β0)−A (β0)

)
.(41)

I begin by showing that the last component of (41) is asymptotically negligible. After tedious
manipulation it is possible to show that this term coincides with

1

3

1√
n

N∑
i=1

∑
j 6=i

(
Âi − Ai

)2 (
Âj − Aj

)
(1− pij) (1− 6pij (1− pij))Zij. (42)

Condition (5) and the compact support assumption for Zij implies that the absolute value
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of (42) is bounded above by, for λN = sup
1≤i≤N

∣∣∣Âi − Ai0∣∣∣ ,
1

3

N (N − 1)√
n

∣∣∣∣λ3
N

1

4
(1− 6κ (1− κ))

∣∣∣∣× sup
z∈Z
|z| =

N (N − 1)

3
√
n

×

∣∣∣∣∣C3 (lnN)3/2

N3/2

N − 1

4
(1− 6κ (1− κ))

∣∣∣∣∣× sup
z∈Z
|z|

= O

(
(lnN)3/2

√
N

)
= o (1) .

Let ek be a K×1 vector with a one in its kth element and zeros elsewhere. Substituting (27)
from Lemma 6 and (41) into (40) yields, using the inequality on (42) derived immediately
above,

√
n
(
β̂ − β0

)
= −I−1

0 (β)×

{[
1√
n

N∑
i=1

∑
j<i

sβij (β0,A (β0))

]

+

[
1√
n

N∑
i=1

∑
j<i

∂

∂A′
sβij (β0,A (β0))

]
V −1
N ×

N∑
i=1

∑
j<i

sAij (β0,A (β0))

+
1

2

K∑
k=1

ek

[
1

N

N∑
i=1

∑
j<i

sAij (β0,A (β0))

]′
V −1
N

×

[
1

N

N∑
i=1

∑
j<i

∂2

∂A∂A′
s

(p)
βij (β0,A (β0))

]
V −1
N

[
N∑
i=1

∑
j<i

sAij (β0,A (β0))

]}
+op (1) . (43)

The third term in the expression above equals the asymptotic bias of
√
n
(
β̂ − β0

)
. To

evaluate this term first note that
∑N

i=1

∑
j<i

∂
∂A∂A′

s
(p)
βij

(
β0, Ā (β0)

)
equals

∑
j 6=1 p1j (1− p1j) (1− 2p1j)Zp,1j · · · p1N (1− p1N) (1− 2p1N)Zp,1N

... . . . ...
p1N (1− p1N) (1− 2p1N)Zp,1N · · ·

∑
j 6=1 pNj (1− pNj) (1− 2pNj)Zp,Nj
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and hence that V −1
N

[∑N
i=1

∑
j<i

∂
∂A∂A′

s
(p)
βij

(
β0, Ā (β0)

)]
equals


1

N−1

∑
j 6=1 p1j(1−p1j)(1−2p1j)Zp,1j
1

N−1

∑
j 6=1 p1j(1−p1j)

· · ·
1

N−1
p1N (1−p1N )(1−2p1N )Zp,1N

1
N−1

∑
j 6=1 p1j(1−p1j)

... . . . ...
1

N−1
p1N (1−p1N )(1−2p1N )Zp,1N
1

N−1

∑
j 6=1 pNj(1−pNj)

· · ·
1

N−1

∑
j 6=1 pNj(1−pNj)(1−2pNj)Zp,Nj

1
N−1

∑
j 6=1 pNj(1−pNj)

 . (44)

Further note that, for i 6= j,

1

N − 1

∑
j 6=i

pij (1− pij)−
1

N − 1
(Di+ − pi+)2 = op (1)

1

N − 1
(Di+ − pi+) (Dj+ − pj+) = op (1) . (45)

Using (44) and (45) and the fact that
∑N

i=1

∑
j<i sAij (β0,A (β0)) = (D1+ − p1+, . . . , DN+ − pN+)′

gives the kth element of the third term inside the {•} in (43) equal to

1

2
√
n

N∑
i=1

1
N−1

∑
j 6=i pij (1− pij) (1− 2pij)Zk,ij

1
N−1

∑
j 6=1 pij (1− pij)

+ op

(
1

N

)
.

Stacking these k = 1, . . . , K terms and applying the LLN gives (19) in the main text.

The first and second terms inside the {•} in (43) equal a sum of soβij (β,A) = sβij (β,A) +

HN,βAV
−1
N sAij (β,A) over i and j (the ‘o’ superscript stands for ‘oracle’ in the sense that

soβij (β0,A0) would be a feasible estimating equation for β0 if A0 were known). Manipulation
gives

soβij (β0,A0) = (Dij − pij)
{
Zij − Z̃i+ − Z̃j+

}
,

for Z̃ij =
[∑

k 6=i pik (1− pik)
]−1

× [pij (1− pij)Zij] . Under condition (5) and the bounded
support assumption for Zij, each of the k = 1, . . . , K elements of soβij (β0,A0) are bounded
random variables. We also have that E

[
soβij (β0,A0) soβkl (β0,A0)

]
= 0 for i 6= k and/or

j 6= l. Therefore, implicitly conditioning on Z and A we get V
(∑N

i=1

∑
j<i s

o
βij (β0,A0)

)
=∑N

i=1

∑
j<i E

[
soβij (β0,A0) soβij (β0,A0)′

]
,which after tedious calculation can be shown to co-
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incide with n (IN (β0) + ΥN) for

IN (β0) =
1

N

N∑
i=1

{
1

N − 1

∑
j 6=i

pij (1− pij)ZijZ ′ij

−2

[
1

N−1

∑
j 6=i pij (1− pij)Zij

] [
1

N−1

∑
j 6=i pij (1− pij)Zij

]′[
1

N−1

∑
j 6=i pij (1− pij)

]


ΥN =
N∑
j=1

∑
i6=j

pij (1− pij) Z̃i+Z̃j+

where Z̃i+ is as defined in the main text immediately preceding the statement of Theorem
3.

Let γN,k be the kth diagonal component of IN (β0) and C = sup
z1,z2∈Zk

|z1 − 2z2| <∞. We have

∑
i

∑
j 6=i

E
[∣∣sop,βij (β0,A0)

∣∣3]
n3/2γ

3/2
N,k

=
∑
i

∑
j 6=i

E
[∣∣∣(Dij − pij)

{
Zij − Z̃i+ − Z̃j+

}∣∣∣3]
n3/2γ

3/2
N,k

≤
∑
i

∑
j 6=i

C (1− κ)E
[∣∣∣(Dij − pij)

{
Zij − Z̃i+ − Z̃j+

}∣∣∣2]
n3/2γ

3/2
N,k

=
C (1− κ)

n1/2γ
1/2
N,k

→ 0,

which is Lyapounov’s condition. Lyapounov’s central limit theorem for triangular arrays
(e.g., Billingsley, 1995, p. 362) then gives

1√
n

N∑
i=1

∑
j<i

soβij (β0,A0)
D→ N (0, I0 (β0) + Υ0) .

The statement of the Theorem follows after an application of Slutsky’s Theorem.
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