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Consider a student deciding how much effort to devote to a course graded

on the curve. Aside from her intrinsic motivation, she must consider her

innate ability, the abilities of her classmates, and the percentage of students

she believes will receive each grade. So, while some elements of her choice are

unaffected by the choices of her classmates, many elements of her choice are

strategic. This paper explores one specific element of that strategic choice:

how the enrollment in the course affects the selection of effort. We will model

this environment as an all-pay auction, with the enrollment of the course being

the number of bidders in the auction and the number of “A” grades being the

number of prizes in the auction.

Within the education community there is little discussion about the effect of

enrollment on student strategic incentives. The education literature examines

the impact of enrollment by proxy by exploring the effects of student-teacher

ratio on test scores (Mosteller, 1995), attendance (Romer, 1993), and future

earnings (Card and Krueger, 1996; Carniero and Heckman, 2003). The lit-

erature directly considers enrollment by estimating its impact on the grades

assigned to students (Kokkelenberg, Dillon, and Christy, 2006), but frames

the argument in terms of diseconomies of scale for teaching output, ignoring

changing strategic incentives for student effort.

This gap in the literature can be attributed to the fact that much of the

education research explicitly or implicitly assumes non-strategic interaction

between students. Under this assumption, students will only react to changes

in enrollment to the degree that enrollment affects the inputs—such as stu-

dent teacher ratio—of their production function. Beginning with Becker and

Rosen (1992), however, another branch of the literature arose and formalized

students’ incentives to select effort strategically when a course is graded ac-

cording to an explicit curve. This framework generates testable predictions

for courses that move from non-strategic to strategic settings. Paredes (2012)

finds significant explanatory power in these predictions and discovers that

students are indeed sensitive to a change between strategic and non-strategic

environments. We hope to take this discussion of strategic sophistication in

the classroom one step further and investigate students’ reactions to subtle
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changes within the strategic classroom environment in a way that can be pre-

dicted by game theoretic models1.

In everything from college admissions2, to scholarship awards3, to teacher

salaries within schools4 we see contests that use proportional awarding despite

large differences in the number of participants. There appears to be an insen-

sitivity among mechanism designers to the impact of contest size on behavior.

We will show here, both theoretically and through an experimental test, that

there are significant effects of a contest’s size on individual effort even when

the proportion of awards to participants is fixed. To fix ideas, our discussion

will center on the application of this result to the practice of grading on a

curve, but the results apply to a much more general class of contests. We will

return to more general applications later in the paper.

1 Background

The branch of economics investigating competitive interaction with costly ef-

fort and uncertain payoffs began when Tullock (1967) and Krueger (1974)

adapted the strategic framework of Nash (1951) to generate analytical predic-

tions for wars of attrition and competitive rent-seeking, respectively. Within

this field, there are three prominent models of competitive interaction, the

rank-order tournament, the Tullock contest, and the all-pay auction.

1While our model and experiment exist within an environment with a strict grading
curve, we believe that our results apply to all courses, even when instructors adhere to a
less-strict grading curve. This is because the reality of modern education is such that relative
position will always hold some influence over grades. Thus a rational student will certainly
be aware of the significance of her relative position regardless of what her absolute position
may be. Therefore, enrollment in a course affects not only the inputs to the student’s
production function, but also the strategic environment in which she operates.

2For example, in Texas, House Bill 588 grants high school students automatic admission
to any state university if they graduate in the top 10% of their graduating class. In Kansas,
the top 1/3 gain automatic admission. In California, high school students in the top 9% of
their graduating class are guaranteed admission one of the University of California schools.

3As an example, the Bright Flight scholarship program in Missouri awards scholarships
to high school seniors who score in the top 3% on their SAT or ACT tests.

4In North Carolina, Senate Bill 402 Section 9.6 (g) stipulates that each school admin-
istration must select the top performing 25% of their teachers to receive more favorable
contracts.
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In the decades since this field began, the breadth of applications has ex-

panded well beyond the original motivating examples. Lazear and Rosen

(1981) explore tournaments as optimal labor contracts. Becker and Rosen

(1992) then consider relative grading to be a form of tournament and compare

its results to those of an absolute grading scheme. Hillman and Riley (1989)

and Baye, Kovenock, and de Vries (1993) model political rent-seeking as a

form of all-pay auction. Amann and Leininger (1996) expand, and simplify

to an extent, the model by introducing incomplete information as a form of

Harsanyi (1973) purification, which allows for an equilibrium in pure strate-

gies. It was not until Baye, Kovenock, and de Vries (1996), however, that the

all-pay auction received a full characterization of its equilibrium, though the

result offered no strong predictions, rather finding that there exists a contin-

uum of equilibria in the model.

Moldovanu and Sela (2001) theoretically explore the optimal allocation

of prizes in a contest given different objectives of the mechanism designer.

Siegel (2009) makes great strides in generalizing the nature of contests and

the equilibrium actions of contestants. More recently, Olszewski and Siegel

(2013) theoretically address a very similar question to ours when they develop

equilibrium predictions for large but finite contests.

1.1 Experimental results

A complete recounting of experimental evidence on all-pay auctions, rank-

order tournaments, and related contests can be found in a review by Dechenaux,

Kovenock, and Sheremeta (2012). For the sake of brevity, we will discuss only

the most relevant experiments here.

Bull, Schotter, and Weigelt (1987) first brought rank-order tournaments

into the laboratory, finding that bidders approached the equilibrium after

learning, but demonstrated surprisingly high variance. Equilibrium predictions

for all-pay auction experiments, on the other hand, have consistently missed

the mark. Potters, de Vries, and van Winden (1998), Davis and Reilly (1998),

Gneezy and Smorodinsky (2006), Barut, Kovenock, and Noussair (2002) all
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find substantial over-dissipation of rents, that is, aggregate bidding that ex-

ceeds the aggregate value of the prizes. Other papers introduce heterogeneity

in the valuations of bidders, (Müller and Schotter, 2010; and Noussair and Sil-

ver, 2006), and find similar over-dissipation, but also find that bidders begin

to separate themselves by type, with stark differences appearing in the bidding

strategies of high- and low-valuation bidders.

With optimal contest design in mind, several papers have looked at the

impact of small changes in the number of opponents on the effort selection of

bidders (Gneezy and Smorodinsky, 2006; Müller and Schotter, 2010; Barut et

al., 2002), but each of these allows the proportion of winners to change with the

number of participants. Meaning that the ex ante equilibrium probability of

receiving a prize changes with the size of the auction. Harbring and Irlenbusch

(2005) make small variations in the size of tournaments while holding constant

the proportion of winners, but they employ a convex cost function, common

values, and a cap on the maximum effort choice. To our knowledge, no paper

has ever focused on the policy implications of combining or separating multiple

contests while maintaining the proportion of winners. We wish to address

this gap in the literature by restricting our analysis to situations where the

proportion of prizes to participants is fixed and testing the effects of a large-

scale change in the number of participants in the contest on the effort selection

of those participants. This specific focus allowed us to design the experiment

in a way that more precisely captures systematic effort changes across contests

of different sizes.

2 Theoretical Model

In an all-pay auction, players simultaneously place irreversible bids for one

of a limited number of prizes. Bidders must pay their bids regardless of the

outcome of the auction. Since prizes are awarded to the highest bidders, an

increase in the bid weakly increases the probability of receiving a prize.
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2.1 Grading on a curve as an all-pay auction

While the economic study of all-pay auctions began as a model motivated by

the examples of competitive rent-seeking behavior seen in lobbying efforts and

research and development contests, the intuition behind the all-pay auction

can naturally extend into other settings such as a course graded on a curve,

job promotions, the allocation of bonuses among workers in a firm, or the

method of awarding grants to applicants. Indeed, the framework of analysis

can be applied to any environment with costly, deterministic effort and proba-

bilistically awarded prizes. In a course graded on the curve, for example, each

student in a classroom casts a “bid” by studying a given amount. These bids

are measured against each other, and the students who cast the highest bids

are awarded the “prizes” of higher grades.

There is an interesting question regarding changes in the number of par-

ticipants of the contest. What are the independent effects of the number of

participants on the effort chosen by each participant? Is the effect dependent

on the ability of the student? How well do outcomes of the contest reflect the

true relative ranking of participants’ abilities when only effort is observable?

Translated, does the course enrollment affect a student’s effort in studying?

Does it affect high-skilled students differently from low-skilled students? Is

there an enrollment level where effort choices are more or less reflective of

students’ abilities? For each of these questions we will provide a theoretical

prediction and a result from a controlled laboratory study. With these results

established, we hope to encourage contest designers to take into account our

insights about the independent effects of a contest’s size.

2.2 Definitions and procedures

Let us suppose a contest environment with independent private values in the

style of Vickrey (1961). Suppose the contest features N bidders competing for

M prizes, with M < N . For simplicity, call the number of participants the

size of the contest. Participants have varying levels of ability, and the cost

of a given level of effort decreases as a participant’s ability increases, making
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the surplus value of a prize higher for the higher ability participants. Since

effort choices are invariant to affine transformations of the utility function, we

can model heterogeneous costs of effort as heterogeneous values from winning

prizes. Call this value of winning a player’s valuation, vi, and suppose that it

is drawn privately from a commonly known distribution, F (vi). Under incom-

plete information no participant has access to the vector of other participants’

true abilities, v⃗−i. Effort is measured by a participant’s bid value, bi, and is

costly regardless of the outcome of the auction. Auctions are one-shot, and

bids are cast simultaneously, so bidders have no ability to condition their effort

on other bids. The auctioneer determines the number of bidders and prizes in

the same way that an administrator might choose the enrollment of a course.

In order to optimally design the mechanism, the designer must take into ac-

count the effect that the number of participants has on the predicted effort

levels.

With incomplete information about the valuations of other bidders, we

can generate a symmetric Bayesian Nash Equilibrium in pure strategies. At

equilibrium, there exists a continuous optimal bidding function, B(vi), that

maps from the valuation space onto the bidding space: B : vi → bi, where

vi ∈ [0, 1] and bi ∈ [0, 1]. Let PN,M(bi) be the probability that bid bi will win

a prize in an auction with N participants and M prizes.

2.3 Bidder’s Utility

For simplicity, we assume risk neutrality. We show in the appendix that the

qualitative results generalize to risk aversion.5 A bidder’s utility is:

U(bi; vi, N,M) =PN,M(bi)(vi − bi) + (1− PN,M(bi)) (−bi),

=vi × PN,M(bi)− bi (1)

In this auction, the M bidders with the highest bids will each receive one of

the prizes. Therefore the probability of receiving a prize is weakly increasing

in the amount bid by construction.

5The generalization, however, does require common knowledge of risk aversion, common
knowledge of rationality, and shared risk aversion parameters.
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Proposition 1: Optimal Bidding is Weakly Monotonic in Valuation

Proof: See Appendix6.

Under monotonicity, there exists a probability function that maps valu-

ations to probabilities of winning the auction. Denote this function ZN,M :

vi → [0, 1]. This function will represent the probability that a bidder’s valua-

tion is higher than the valuations of at least N −M of the opposing bidders.

Mathematically, this is expressed in the form of an order-statistic:

ZN,M(vi) =
N−1∑

k=N−M

(
(N − 1)!

(N − 1− k)!k!

)
F (vi)

k (1− F (vi))
N−1−k ,

where F (vi) is the cumulative distribution function of the valuations.

2.4 Optimal Bidding Function

So far, we have assumed that a symmetric bidding function, B : vi → R+,

exists, is well-defined, and continuous. We then demonstrated its monotonic-

ity. Continuous, monotone functions are invertible, implying that there exists

a function, B−1(bi), that maps bids cast into the valuations implied by those

bids. Denote this inverse function V (bi).

To demonstrate the optimality of this bidding function, the bidding func-

tion must solve the first order condition of the bidder’s utility,

U(bi; vi) = vi × ZN,M(V (bi))− bi, (2)

where ZN,M(V (bi)) captures the bidder’s incentive to misrepresent his valua-

tion by casting a higher or lower bid than what his bidding function would

prescribe. At equilibrium this term must be equal to ZN,M(vi). Maximizing

Equation (2) with respect to bi returns

∂U

∂bi
= vi×

∂

∂bi

[
N−1∑

k=N−M

(
(N − 1)!

(N − 1− k)!k!

)
F (V (bi))

k (1− F (V (bi)))
N−1−k

]
−1 ≡ 0.

6Also included in the appendix is a version of this proof under risk aversion.
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Taking the derivative and rearranging, we find

1

V ′(bi)
=vi ×

N−1∑
k=N−M

{(
(N − 1)!

(N − 1− k)!k!

)
×[

k × f (V (bi))F (V (bi))
k−1 (1− F (V (bi)))

N−1−k −

(N − 1− k)× f (V (bi))F (V (bi))
k (1− F (V (bi)))

N−2−k
]}

.

Since V (bi) ≡ B−1(bi), it follows that,
1

V ′(bi)
= B′(vi).

This derivation yields a first order differential equation from which we can

solve the general form of the bidding function under risk neutrality

B′(vi) =vi ×
N−1∑

k=N−M

{(
(N − 1)!

(N − 1− k)!k!

)
×[

k × f (V (bi))F (V (bi))
k−1 (1− F (V (bi)))

N−1−k −

(N − 1− k)× f (V (bi))F (V (bi))
k (1− F (V (bi)))

N−2−k
]}

. (3)

3 Experimental Model

Equation (3) provides general results and implications for any values of N

and M and cumulative distribution F (vi). In our experiment, we will be

testing the following two pairs: (N,M) = (2, 1) and (20, 10) with valuations

uniformly distributed, vi ∼ U [0, 1]. The distributional assumption is without

loss of generality, since the analysis is identical under any distribution, though

the exact values of our predictions will vary with the distribution chosen. We

will now proceed to derive closed-form solutions for the bidding functions of

these two pairs.

3.1 Bidding Functions

Proceeding from Equation (3) and substituting in N = 2, M = 1, F (vi) = vi

gives us
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B′(vi) = vi.

Solving the differential equation yields7

B(vi) =
v2i
2
.

Keeping the uniform distribution, but evaluating the bidding function for N =

20 and M = 10 we find

B′(vi) =vi ×
19∑

k=10

[(
(19)!

(19− k)!k!

)
×(

(k)V (bi)
k−1(1− V (bi))

19−k − (19− k)V (bi)
k(1− V (bi))

18−k
)]

.

The equilibrium assumption requires that bids reveal values truthfully, so

V (bi) = vi. Substituting and rearranging,

B′(vi) =
19∑

k=10

[(
(19)!

(19− k)!k!

)(
(k)vki (1− vi)

19−k − (19− k)vk+1
i (1− vi)

18−k
)]

.

This implies

B′(vi) = 923780v10i (1− vi)
9.

Solving this differential equation results in the optimal bidding function:

B(vi) =83980v11i − 692835v12i + 2558160v13i − 5542680v14i

+ 7759752v15i − 14549535

2
v16i + 4564560v17i

− 1847560v18i + 437580v19i − 46189v20i .

Rather than using f(vi) = U [0, 1], as above, our subjects will draw valua-

tions uniformly from the set {$0.01, $0.02, ... , $20.00}. We assert that subjects

7Technically, B(vi) =
v2
i

2 + C, however, we can use dominance to show that C = 0.
Suppose that C > 0. Therefore, in equilibrium, a bidder with valuation vi = 0 will make
a bid, bi > 0. That bid guarantees a negative payoff, so the same bidder would be made
better off by deviating and choosing bi = 0 , which guarantees a zero payoff. Thus, C ≤ 0.
But, we restrict bids to positive values so C = 0.
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view this setting as continuous, so we will use a rescaled version of the contin-

uous bidding functions to generate predictions.

B2(vi) =10×
( vi
20

)2

B20(vi) =20×
(
83980

( vi
20

)11

− 692835
( vi
20

)12

+ 2558160
( vi
20

)13

− 5542680
( vi
20

)14

+ 7759752
( vi
20

)15

− 14549535

2

( vi
20

)16

+ 4564560
( vi
20

)17

− 1847560
( vi
20

)18

+ 437580
( vi
20

)18

−46189
( vi
20

)20
)
.

Graphically, the optimal bidding functions for our experiment can be seen

in Figure 1.

0
2

4
6

8
10

Bi
ds

0 5 10 15 20
Valuation

N=2 N=20

Figure 1: Optimal Bid Functions
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To understand the intuition behind the shapes of the bidding functions,

consider first the limit case where we maintain the proportion of prizes to

participants (M = N
2
), but let N → ∞. In this case, the bidding function will

look like a step function, where all bidders with vi < $10 bid near-zero and

all bidders with vi > $10 bid near bi = $10. This is because only the top half

of bidders receive prizes, so bidders below the median should best respond by

bidding as little as possible, and bidders above the median should bid only

just enough that they are guaranteed a prize.8 The minimum winning bid in

this case is equal to the valuation of the median participant, vi = $10.

Since our large auction is ten times the size of the small auction, the Law

of Large Numbers will draw it closer to the limit case. That is, the distri-

bution of valuations in the larger auction is expected to be more reflective of

the underlying probability distribution than the distribution of valuations in

the smaller auction. This convergence will cause the median of the realized

distribution in the larger auction to be closer to the median of the probability

distribution, giving less uncertainty to the minimum bid required to win a

prize in the larger auction.

Bearing in mind this lower level of uncertainty in the larger auction, con-

sider the net benefit of lowering a bid from the limit case of bi = $10 for a

bidder with vi > $10 in each of our auctions. These costs depend both on the

auction’s size and the bidder’s valuation. In either auction, the marginal bene-

fit of lowering a bid is constant, since bids are paid with certainty, so foregone

bids are recovered with certainty. On the other hand, the marginal cost of

lowering a bid is paid stochastically by lowering the probability of winning a

prize. For high-valuation bidders, this decrease in probability is greater in the

large auction than in the small auction, so bids cast by high-valuation bidders

are larger in the large auction.

Bidders with low valuations face the constant cost of increasing their bid

from the limit case of bi = $0 and the probabilistic benefit of increasing the

likelihood of receiving a prize. At low enough valuations, bidders see greater

8In the limit case equilibrium, the marginal player will be mixing to ensure that bidders
above the median maintain their bids of $10 instead of cheating down towards $0.
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increases in the probability of winning a prize in the small auction, so bids in

the small auction rise above those of the large auction.910

4 Experimental Hypotheses

Principally, a test of our model is a specific test that bidders behave according

to the risk-neutral Nash Equilibrium displayed in Figure 1, but we can also

consider several more general predictions of the model. We will restrict our

focus to predictions that could serve as components of a mechanism designer’s

objective function. We have identified three such objectives for which our

model generates predictions that our experimental data can put to the test.

Objective 1 is the total effort of the subjects, Objective 2 is the distribution

of effort across subject types, and Objective 3 is the ability of the auction to

create an accurate ranking of subjects based on their effort alone.

In the event that the equilibrium prediction holds exactly, these objectives

will also match their predictions exactly. But, even if the precise equilibrium

prediction is rejected by statistical tests, the relative predictions about the

effects of contest size may still be informative for the policy debate about

the merits of different class sizes. Thus, we will test the objectives of the

mechanism designer independently of the equilibrium test.

Hypothesis: Equilibrium predictions hold

Given the complexity of the equilibrium bidding functions, strict hypotheses

about equilibrium bidding seem overly restrictive. In addition to the computa-

9Surprisingly, the equilibrium is not strongly affected by adding in risk-aversion to the
bidders’ utilities, as shown in the appendix. This results mainly from the fact that bidding
is driven mostly by changes in probability, which is unaffected by risk aversion, not changes
in surplus, which is affected by risk aversion. See Figure ?? for a graph of the equilibrium
bidding functions under common risk aversion parameters.

10In the appendix, we also include a graph of the equilibrium under a common joy-of-
winning value. Trivially, this improves the fit of our model to the data. This is mechanical,
since the joy-of-winning specification is simply the Nash Equilibrium specification with an
added degree of freedom. We do not include this specification of the model in the discussion,
because it provides no alternative qualitative predictions for us to compare with the Nash
Equilibrium model.
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tional difficulty, there appears to be no obvious heuristic that subjects might

adopt. We might believe that our subjects could instinctively discover the

equilibrium through experimentation, but even with experience, the complex-

ity of the bidding functions makes a tight fit between the data and the theory

unlikely in either auction size. Nonetheless, we will consider equilibrium as a

starting point and move from there to the more general objectives identified

below.

4.1 Qualitative Predictions: The Designer’s Objectives

Objective 1: Maximize aggregate bidding.

In our education example, this means maximizing the total effort of students.

Our equilibrium bidding function predicts that aggregate bidding will be higher

in the larger auction. Increasing the size of the auction gives bidders less un-

certainty about the valuation of the minimum winning bidder. With tighter

predictions about the minimum winning bidder’s valuation, bidders face higher

probabilistic costs when decreasing their bids, which raises bids for the major-

ity of bidders and increases the rent dissipation.

Objective 2: Generate the desired distribution of bids.

Translated into the education context, this implies that the instructor may

value effort exerted by one type of student over another. For example, the

instructor may prefer a mechanism that promotes effort by low-ability stu-

dents. As the auction size increases and the uncertainty decreases, we expect

bids in the larger auction to dominate for high valuations. At the same time,

among bidders with low valuations, the decrease in uncertainty drives the bids

towards zero in the large auction. Therefore, we expect to see higher bids

in the small auction across low valuations. Our equilibrium predictions place

the crossover point at vi = $8.48. This point corresponds to the point of

intersection between the optimal bidding functions in Figure 1.
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Objective 3: Accurately order the valuations of bidders based only

on their bids.

An instructor may wish to employ the mechanism that generates the most

accurate ordering of his students’ unobservable abilities based only on their

observable effort. Indeed, any mechanism designer may have a desire to rank

of bidders, inferring their true abilities by their bids. Thus, regardless of the

outcome of any one auction, the designer wants to be able to infer the true

ranking of abilities across auctions from only the bids cast. Our theory asserts

that, in equilibrium, there should be a one-to-one, monotonic matching of bids

to valuations for both auctions, making the bids a perfect proxy for relative

ability. In practice, deviations from the equilibrium bid will almost surely make

the inferred ranking imprecise. Therefore, one objective of an instructor might

be to employ the mechanism that minimizes the impact of these deviations on

the accuracy of the ordering of bidders.

5 Experimental Procedures

To test the sensitivity of effort to a change in the size of a contest, we employ

an independent private value all-pay auction with multiple prizes. We use a

paired bidding design similar to Kagel and Levin (1993) and Andreoni, Che,

and Kim (2007) in which we elicit bids for both the large auction and the

small auction from all bidders every round. Using this design, we can pair

data perfectly and analyze the difference in bidding at each valuation rather

than relying on subject fixed effects for statistical power. These pairs also give

us more power to test our hypotheses about the relative levels of bids at any

point in the distribution of valuations.

5.1 Recruitment and Participation

60 undergraduate students from the University of California, San Diego partic-

ipated in our experiment. We recruited all of our subjects by means of online

advertisements on the EconLab website. The experiment was conducted in 3
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sessions in February of 2013 in the EconLab at UCSD. Each session required

exactly 20 subjects. All subjects received a $20 participation payment in ad-

dition to the money gained or lost in the experiment. Our sessions lasted

approximately 90 minutes, and subjects earned between $15 and $45.

5.2 Instructions

We first read the instructions aloud to all subjects and then administered a

quiz to test their comprehension of the auction formats and the payoffs from

different outcomes. The instructions and quiz can be found in the appendix.

We designed instructions to clarify the means by which we awarded prizes

and the payoffs conditional on receiving or not receiving a prize. We carried

out the entire experiment on computers using the Z-Tree Economics Software

(Fischbacher, 1999). This allowed us to keep key instructions posted at the top

of every decision screen. Specifically, we reminded subjects that any bid would

be deducted from their winnings regardless of the outcome of the auction, and

that their final payment for the experiment would be based on one round

selected at random. We reinforced the number of opponents they faced and

the number of prizes available in each round. We also reminded subjects

that they would see two auctions for each valuation they drew, first the small

auction, then the large auction.

5.3 Auction Design

Every round, subjects received valuations drawn uniformly in 1 cent incre-

ments between $.01 and $20.00. That is, vi ∼ U [$.01 , $20.00]. With this

valuation, subjects participated in both a “2-Person Auction,” for which they

were randomly and anonymously paired, and a “20-Person Auction,” which

consisted of all participants.

Subjects cast bids for both auctions in each round. Subjects were re-

peatedly reminded of the two auctions they would see and the order. Upon

submission of both bids, we revealed the auction outcomes to the subjects.

This included the subject’s own payoffs from both auctions as well as all bids
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cast by all bidders in both auctions that round. All bids were cast without

knowledge of opponents’ bids or valuations, so we consider them simultaneous

bids under incomplete information. No communication was allowed, and we

never revealed the valuations associated with any bids.

The auction stage was repeated 20 times in session 1 and 15 times in ses-

sions 2 and 3. In every repetition, subjects drew new valuations and new pairs

were randomly assigned. For the sake of uniformity, we exclusively analyze

the first 15 rounds of each session, but our results only strengthen with the

inclusion of the final 5 rounds of the first session.11

After completing the auction rounds, subjects made 3 incentivized choices

between gambles in order to elicit their preference for risk. We employed a

discretization of the method detailed in Andreoni & Harbaugh (2009). These

measures of risk aversion will be used as a control in the analysis.

6 Results

With 15 rounds in which subjects drew valuations and cast bids in two different

auctions, we collected a total of 900 different valuations and 1800 different bids.

For the analysis, however, we will drop any bid that exceeds the valuation of

the bidder. These bids guaranteed a negative profit for the bidders. There

are 14 such bids across both auction sizes. The dropped bids were evenly

distributed across periods and auction sizes. It is not clear if they resulted

from typing errors, confusion, apathy, or a desire to win at any cost. We will

indicate when our analysis is substantively affected by removing these bids.

Figure 2 graphs the bidding behavior in the 2-Person and 20-Person Auc-

tions. We split valuations split into 10 different, equally sized bins. Adjacent

dots represent bidding in different auction sizes for bidders with the same val-

uations. They are placed alongside each other to facilitate comparison. Every

dot represents the mean bid for that bin with the 95% confidence intervals

11We planned each session to fit 20 rounds into 90 minutes. During the first session we
discovered that 20 rounds would not work due to a slow server. The second and third session
were shortened to accommodate this.
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overlaid. The dashed lines represent the equilibrium predictions for the two

auctions.
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5
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Figure 2: Auction Bidding

6.1 Hypotheses

It is clear from Figure 2 that, on average, our subjects performed rather closely

to the risk neutral Nash Equilibrium predictions. Despite this, when we test

the difference between observed bids and the bids predicted by the Nash Equi-

librium we can reject equilibrium bidding in both the small (t = 7.03, p < .001,

n = 893) and large (t = 4.73, p < .001, n = 893) auctions.12 If we employ a

12We calculate the difference between the observed bid and the predicted bid and perform
an uncontrolled linear regression with standard errors clustered at the individual level. The
statistics of the constant capture the mean deviation. It is that set of statistics that are
reported.
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seemingly more conservative notion of over-bidding and consider the revenue

of a given round as the unit of observation, we can reject equilibrium bidding

at an even higher significance level in both the small (t = 10.46, p < .001,

n = 45) and large (t = 5.82, p < .001, n = 45) auctions.

Of course, one should not be surprised that in this unique environment

with complex and precise predictions, our model fails these statistical tests.

As the literature on auction experiments reveals, the theory often provides a

good benchmark but seldom predicts precise outcomes. Indeed, as we noted

in regards to Figure 2, the qualitative features of the theory are captured by

the plotted bids. We frame our objectives in terms of the relative performance

of the two auction sizes, so, while noisy behavior may be enough to cause

our statistical tests to reject the equilibrium prediction, it may not affect the

relative performance with respect to our stated objectives. Therefore, the

question becomes whether, despite the lack of a precise fit, the qualitative

predictions of our model and the intuitions gleaned from our theory extend

to the observed data. We will explore this question within the context of the

following three objectives.

Objective 1: Maximize aggregate bidding.

In 33 of the 45 rounds, relative revenues were consistent with our theory. That

is, the larger auction generated greater bidding than the smaller auction. We

perform a paired t-test on the difference in total revenue between auctions and

find that the larger auctions generate significantly more revenue (t = 4.74,

p < .001, n = 45). Our paired design allows us to test this hypothesis on

the individual level and perform a paired t-test that matches each bid in the

large auction with its counterpart in the small auction. We can reject the

null hypothesis of equal bidding in both auctions, in favor of the alternate

hypothesis that bidding in the large auction is significantly larger than bidding

in the small auction (t = 5.02, p < .001, n = 888).13

13These results are unchanged by including all outlying bids except one particularly ex-
treme outlier, where the bid was 9,900 times the valuation of the bidder.
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Objective 2: Generate the desired distribution of bids.

Our model predicts that bids in the small auction will be greater than bids in

the large auction for all vi < $8.48. Figure 3 graphs the predicted difference

along with the observed mean differences across 10 equally spaced bins. While

the magnitudes are clearly attenuated, the qualitative predictions appear to

be captured quite well.
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Figure 3: Bidding Differences

We test this prediction more formally in three ways. First by estimating

the point at which bids in the large auction cross over bids in the small auction,

second with a direct test of the sign of the bidding difference predicted by our

model at the theoretical and fitted crossover points, and finally with a test

of the relative revenues on either side of the theoretical and fitted crossover

points.
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To estimate the valuation at which bids in the large auction begin to dom-

inate those of the small auction, we perform a random effects regression of the

difference in bids on the valuation of the bidder to the first, second, and third

power.14 The regression results can be seen in Table 1.

Table 1: Predicting the Crossover Point

Difference in Bids (Small-Large)
V aluation .211

(0.169)
V aluation2 -0.047**

(0.023)
V aluation3 0.002**

(0.001)
Constant -0.073

(0.258)
N 888

* p < 0.10, **p < 0.05, ***p < 0.01

Standard errors clustered by subject.

Using these results, we can predict the difference in bids at each valuation,

and determine at what valuation the predicted difference is equal to zero. Call

this point the fitted crossover point. The predicted difference in bids is plotted

in Figure 4. Notice that the shape of the predicted difference in bids captures

many of the characteristics of the equilibrium predictions, but with a smaller

magnitude. From Figure 4 you can see that our fitted crossover valuation is

vi ≈ $5.32, and our theoretical crossover valuation is vi ≈ $8.48.

To test if our model accurately predicts the relative levels of bidding on

either side of the theoretical crossover, vi = $8.48, we will split our data into

two bins, one on each side of the crossover point. We generate a dummy vari-

able, LowerBin, to indicate valuations below the crossover. To best exploit

our paired data, our dependent variable will be the difference between the bid

in the small auction and the bid in the large auction. Our theory predicts

that the difference will be positive until vi = $8.48 and negative afterwards.

14We can use random-effects instead of fixed-effects because our valuations were randomly
assigned and so are mechanically uncorrelated with other explanatory variables.
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Figure 4: Predicted Difference in Bids

We regress this difference onto LowerBin and risk aversion controls using a

random effects regression with subject-specific random effects terms. Mathe-

matically,

Di,t = β0 + β1LowerBini + ρRAi,t + ϵi,t, (4)

where

Di,t = Bid2i,t −Bid20i,t,

and15

RAi,t = {α1,i, α2,i, α3,i, α1,i×LowerBini,t, α2,i×LowerBini,t, α3,i×LowerBini,t}.

The results can be seen in the left-hand side of Table 2.

15Here the set, RAI,t, is a set of risk aversion parameters and interactions between those
parameters and the lower bin. We generate the interactions because there is no overall
directional prediction for risk averse bidders as some bids are predicted to increase and
some predicted to decrease. The appendix includes a longer discussion of risk aversion.
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Repeating this analysis with the fitted crossover point is straightforward.

We generate a new dummy variable, LowerF ittedBin, for valuations below

the fitted crossover point, vi = $5.32, and replicate Equation (4) replacing

LowerBin with LowerF ittedBin, and interacting our risk aversion measures

with the new bin. The results are found on the right-hand side of Table 2.

Table 2: The difference in bids across different valuations
Difference in Bids (Small-Large)

Predicted Cutoff: $8.48 Fitted Cutoff: $5.32
Periods: 1-15 1-15 9-15 1-15 1-15 9-15
LowerBin=1 if
Valuation ≤ $8.48 1.070*** 1.079*** 1.151***

(0.33) (0.30) (0.43)
LowerFittedBin=1 if
Valuation ≤ $5.32 0.827*** 0.862*** 1.154***

(0.26) (0.24) (0.35)
Constant -0.994*** -0.973*** -1.192*** -0.770*** -0.765*** -1.038***

(0.32) (0.29) (0.41) (0.25) (0.24) (0.32)
R.A. Controls No Yes Yes No Yes Yes
N 888 888 417 888 888 417

*p < 0.10, **p < 0.05, ***p < 0.01

Standard errors clustered by subject

The difference in bids in the upper bin is captured by the constant, while

the difference in bids in the lower bin is captured by the sum of the constant

and the coefficient of the dummy variable for LowerBin. Clearly, the differ-

ence in bids in the upper bin is large in magnitude and highly statistically

significant. This difference in bids is also statistically distinguishable from the

same difference in the lower bin. However, the difference in bids in the lower

bin is not statistically distinguishable from zero. Recall Figure 3, which graphs

the predicted differences in the bidding functions. We can see that there are

not large differences in the equilibrium predictions for bidders with low val-

uations, so it is not surprising that we failed to find a significant difference

from zero for these bidders. For valuations just above the median, however,

we predict large differences between bids cast in the different auction sizes,

and this separation shows up strongly in both statistical tests, and graphical
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analysis.16

Finally, we consider the distribution of revenues for the two auction sizes.

We split revenues according to the same theoretical and fitted crossover points

as before, and report revenues from the large auction as a percentage of rev-

enues from the small auction. Our results can be seen in Table 3. The first

two columns represent either side of the theoretical crossover point, and the

second two columns represent either side of the fitted crossover point.

Table 3: Mean revenue in the large auction relative to the small auction
vi ≤ $8.48 vi > $8.48 vi ≤ $5.32 vi > $5.32

Large/Small 94% 114% 89% 113%
To calculate the percentage, we divided bidders using the cutoff valuation and summed all bids

within a period in that interval in each auction. We then divided the aggregate bidding in the

large auction by the aggregate bidding in the small auction for each interval. We report the

mean of this percentage across all 45 pairs of auctions here.

On average, the general predictions of the model with respect to relative

revenue hold quite well. The interval of valuations over which we predict

greater revenues from the large auction do indeed have greater revenues from

the large auctions, do indeed dominate, and the same is true for the small

auction. These results demonstrate that on aggregate and individually the

predictions of the model capture many distributional characteristics of the

data.

Objective 3: Accurately order the valuations of bidders based only

on their bids.

As indicated by Figure 1, we expect bidders in the larger auction with low

valuations to pool near zero, and bidders with high valuations to pool near

$10. In the smaller auction we expect a more gradual increase of bids, which

means that the predicted bids of any two bidders are less likely to be very close

to each other in the small auction than in the large auction. This provides

16These results are also unchanged with the inclusion of all outlying bids except for the
particularly extreme outlier mentioned in objective 1.
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an advantage to the small auction with respect to maintaining a well ordered

sorting of bidders in the presence of errors. On the other hand, bids in the

large auction pool at opposite ends of the bidding space. This provides an

advantage to the larger auction as it creates a greater distinction between bids

by high- and low-valuation bidders.

In venturing down the path of off-equilibrium dynamic responses to bid-

ding, it becomes clear that our model can no longer provide strong predictions,

and the intuition gleaned above represents the fullest extent to which we are

comfortable speculating.

We test which auction best accomplishes Objective 3 with Kendall’s (1938)

tau rank correlation coefficient, K-T. The K-T coefficient measures the rela-

tionship between the number of concordant pairs, C, and discordant pairs, D,

in a sample with N observations. Mathematically, the K-T coefficient is

K =
C −D(
N×(N−1)

2

) .

A pair of bids in a given auction is concordant if the ranking of the two bids

is consistent with the ranking of the valuations of the bidders (bi < bj ⇐⇒
vi < vj), while a pair of bids is discordant if it is inconsistent with the rankings

of the bidders’ valuations (bi > bj ⇐⇒ vi < vj)
17 18

The K-T coefficients and their significance tests for the pooled data are

reported in the first and second row of Table 4. We then split the data by

period and generate the K-T coefficient for each auction in that period before

running a pairwise analysis of the two auctions.19

17We can also make a correction found in Kendall (1970) that accommodates ties in bids
or in valuations. The signs and significance of our results are maintained or increased under
this specification.

18A possibly more recognizable test of rank-correlation is the Spearman (1904) coefficient.
We have chosen Kendall’s tau for two reasons: First, Spearman’s coefficient is more heavily
influenced by outliers. This will bias our results in the direction of the large auction, since
there are many more outlying bids in the small auction. Second, Kendall’s tau has a more
straightforward interpretation.
Repeating the analysis using Spearman’s coefficient returns the same signs, but with

larger magnitudes.
19Given that we have 45 pairs of K-T statistics, we invoke the Central Limit Theorem

and perform a standard t-test on the difference between the pairs.
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Table 4: Measuring the Well-Ordering of Bids

Kendall-Tau Coefficient of Well-Ordering
Obs Small Auction Large Auction Difference

Pooled† 900 0.546 0.586 -0.040**
(0.014) (0.012)

Pooled⋆ 888 0.549 0.591 -0.043***
(0.014) (0.012)

Per Period 45 0.565 0.608 -0.042**
(0.014) (0.014)

*p < 0.10, **p < 0.05, ***p < 0.01

† Standard errors clustered at the period level.

⋆ Outliers omitted, and standard errors clustered at the period level.

Our results show that the ability to generate a perfect ordering of valuations

based only on bids is compromised in both the large and small auctions, but

unevenly so. Observing a properly ordered pair of bids is roughly 55% more

likely than observing an improperly ordered pair of bids in the small auction,

while in the large auction the percentage is closer to 59%. The difference

in likelihood is highly statistically significant. Changing the unit of analysis

from individual bids to means across auctions has no meaningful effect on the

magnitude or significance of the coefficients.

Digging deeper into the K-T coefficients reveals some of the mechanisms

that drive bids out of their well-ordered ranking. While the small auction

equilibrium bidding function showed a more gradual increase in Figure 1, the

larger auction showed starker contrasts between bids of high- and low-valuation

bidders. These competing mechanisms are clearly visible in the data.

Consider two groups of bidders, those above the median of the distribution

and those below it, call them expected winners and expected losers. Rows 1

and 3 of Table 5 report the K-T coefficients for expected winners and losers,

respectively. Clearly, the coefficients within a group are much different than

the pooled coefficients reported in Table 4, and indeed are relatively more fa-

vorable towards the small auction. In the second row, we maintain the interval

length, but now compare sorting between expected winners and losers. This

sorting strongly favors the larger auction, indicating that bidders identified
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the probabilistic distinction of expected outcomes more in the larger auction,

causing them to separate based on the side of the median on which their valu-

ation lies. This separation is consistent with the predicted influence of the law

of large numbers. These two sorting mechanisms closely follow the intuition

of our model, which demonstrates that the larger auction should see pooling

among expected winners and losers, but strong separation of the two groups,

while the smaller auction should see more gradual separation of all types along

the distribution.

Table 5: The Well-Ordering of Bids for Expected Winners and Losers

Kendall-Tau Coefficient of Well-Ordering
Obs Small Auction Large Auction Difference

V aluationi < 10 414 0.375 0.295 0.079***
(0.028) (0.029)

5 < V aluationi < 15 474 0.404 0.482 -0.078***
(0.029) (0.021)

10 < V aluationi 474 0.334 0.345 -0.011
(0.031) (0.028)

*p < 0.10, **p < 0.05, ***p < 0.01

Outliers omitted, and standard errors clustered at the period level.

Interpreting Table 4 in light of the results from Table 5 gives us insight

into the relative strengths of each sorting mechanism. It appears that as

the auction size grows, the superior sorting into expected winners and losers

dominates the diminished sorting within expected winners and losers.

7 Discussion

Our results show that subjects are sensitive to changes in the size of their

competitive environment in a way that closely follows many predictions of our

model. While choices are statistically different than the Nash equilibrium,

the comparative static predictions generated by our model served as useful

benchmarks in our analysis.
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Taking our results from the abstract environment and returning them to

the environment of an undergraduate course will provide context and useful

policy recommendations. We would be remiss if we failed to offer a caveat to

our interpretation: our analysis takes all other inputs as held equal. That is,

we abstract away from systematic correlations between the quality of inputs

to the students’ production function and the size of the classroom. Of course,

in any discussion of policy these correlations will need to be weighed against

the effects we discovered. We do not feel that the effects we uncovered trump

other effects of classroom size, but by bringing them to light we will allow

policy-makers to factor them into the discussion of optimal classroom size.

Recall that we supposed that administrators were restricted to fixed pro-

portions of students receiving each grade, but were given flexibility with re-

spect to the enrollment of the course. Since the larger auctions generated

more revenue, we predict that, conditional on a relative grading scheme, larger

classes will likewise generate greater effort from students. In smaller classes,

the greater uncertainty surrounding the minimum effort required for a given

grade may cause students to strategically lower their effort. This could be in

an attempt to exploit the randomness of the environment, an effect of loss

aversion, or a discouragement effect from previously receiving a low grade de-

spite substantial investment of effort. In larger classes, however, there is less

uncertainty about the minimum effort required for a given grade, and students

will likely respond by increasing their effort to match this minimum required

effort for their desired grade.

Aggregate effort, however, may not be the primary goal of the instructor.

We demonstrated that the distribution of effort was strongly affected by the

size of the contest in the direction predicted by our model. From our results, we

can infer that high ability students will likely offer higher effort in larger classes,

while students with lower-middle abilities may exert slightly more effort in

smaller classes. Unfortunately, our data do not provide strong predictions for

how the lowest ability students will respond to changes in enrollment, since

they did not demonstrate any sensitivity to the size of an auction.

Another advantage of the larger auction was its ability to sort bidders
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by their valuation when only effort was observable. In the classroom, student

abilities are unobservable and so assignments, test, and other evaluations in the

course must serve as a sorting mechanism, attempting to distinguish students’

abilities by students’ outcomes. What we discovered suggests that the ability of

a relative grading scheme to sort students could be systematically undermined

in courses with low enrollment. That is, a student’s ability seems to be less

correlated to her relative performance in courses with fewer students.

With multiple grade levels (A,B,C,D,F, for example), each student will face

greater uncertainty with regards to their relative position in low-enrollment

courses. Our results indicate that this uncertainty may cause effort to diminish

and weaken the correlation between ability and performance. On the other

hand, with large enough enrollment, we still expect students to match the

minimum required effort, but at a finer scale, now matching the minimum

score required for the highest grade they can receive.20 With a finer grading

scheme, the ordering of bids will be more dependent on between-group sorting,

likely giving an even stronger advantage to courses with higher enrollment.

This speculation, however, needs to be verified by further studies.

8 Conclusions

We designed and executed an experiment to examine how the size of a con-

test will affect the effort choices by players of different types. We leveraged

the paired-auction design of our experiment to focus on the difference in bids

between auctions of different sizes and analyzed how that difference evolved

across the type space. With this approach we were able to abstract away from

the exacting question of on- or off-equilibrium bidding and focus on more

general, comparative static differences in bidding across auction sizes. We dis-

covered economically and statistically significant results that hold implications

for a broad category of contest design. These results will allow mechanism de-

signers to select the size of their contests in order to optimize with respect to

20For a deeper discussion of optimally selecting the fineness of a grading scheme, see
Dubey and Geanakoplos (2010).
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aggregate effort, the distribution of effort, and the well-ordering of players. In

addition to selecting the size of a contest, there is room for further research

to illuminate how adjusting other contest characteristics affect large and small

contests differently.

Our equilibrium predictions correctly identified that a larger contest size

would lead to higher aggregate bidding, larger bids from high-valuation bid-

ders, and a more accurate between-group ordering of relative ability. These

predictions drew attention to some undesirable effects of smaller contests on

participant behavior that our results then verified. Specifically, as the size of

a contest decreased, the uncertainty faced by each bidder increased, causing

them to shade down their bids. Shrinking the size of a contest also limited the

ability of observers to determine an accurate ordering of contestants’ under-

lying quality, demonstrating that the ordering of bidders between groups of

expected winners and losers was relatively more important than the ordering

within groups, which was actually superior in the small contest.

With respect to bidding levels and revenues, holding constant the propor-

tion of winners, a policy maker should seek to implement the largest contest

if maximizing total effort, or maximizing effort among high types is the goal.

The lowest types seem unaffected by the size of a contest, and offer similarly

low levels of aggregate effort regardless of their environment, while bidders

with lower-middle valuations exert more effort in smaller contests. An inter-

esting topic for study could address endogenous selection of a contest’s size,

because it is not clear from the data the degree to which players can predict

the responses of other players to a change in the contest’s size.

As policy makers, administrators, and other mechanism designers continue

to employ contests, this research sheds light on the effect of contest’s size on

the effort exerted by its participants. While this study considered only two

sizes of a stylized contest, we believe it serves as a strong foundation for further

research on the independent effect of a contest’s size on the performance of its

participants. With specific focus on the classroom application of this model,

a field experiment testing grading schemes under different enrollment levels

could confirm the external validity of our results.
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