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1 Introduction

We propose new estimation procedures for affine term structure models (ATSMs) with

spanned or unspanned stochastic volatility that use linear regression to simplify and stabilize

estimation. For spanned models, our procedure recovers the maximum likelihood estimator

but only requires numerically optimizing over a lower dimensional parameter space. The

stability of our method makes it possible for us to study local maxima, explain why they

exist, and their economic implications. We show how our insights from spanned models can

be extended to estimate unspanned stochastic volatility (USV) models despite the fact that

for USV models the likelihood function is not known in closed-form. Estimating a range of

popular models, we find that models with spanned volatility fit the cross section of the yield

curve better, while those with unspanned volatility fit the volatility better.

ATSMs are popular among policy makers, practitioners, and academic researchers for

studying bond prices, monetary policy, and the macroeconomic determinants of discount

rates; for overviews, see Piazzesi(2010), Duffee(2012), Gürkaynak and Wright(2012), and

Diebold and Rudebusch(2013). As the literature on ATSMs has developed over the last

decade, there is a consensus that estimation can be challenging; see, e.g. Duffee(2002), Ang

and Piazzesi(2003), Kim and Orphanides(2005), and Hamilton and Wu(2012). New proce-

dures for Gaussian ATSMs have made them easier to estimate, further increasing their pop-

ularity; see, Joslin, Singleton, and Zhu(2011), Christensen, Diebold, and Rudebusch(2011),

Hamilton and Wu(2012), Adrian, Crump, and Moench(2012) and Diez de Los Rios(2013).

However, these procedures do not address models with stochastic volatility. Moreover, in

USV models as proposed by Collin-Dufresne and Goldstein(2002) and Collin-Dufresne, Gold-

stein, and Jones(2009), the likelihood function is not known in closed-form. Potential solu-

tions to this problem are the closed-form expansions of the likelihood for continuous-time

models developed by Aı̈t-Sahalia(2008) and Aı̈t-Sahalia and Kimmel(2010) and the expec-

tation maximization (EM) algorithm. Combining our approach with these could potentially

improve estimation; we demonstrate this for the EM algorithm explicitly.
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Our main contribution are new procedures for estimating ATSMs with spanned or un-

spanned stochastic volatility. For models with spanned factors where volatility factors price

bonds, we propose to maximize a concentrated likelihood that when optimized gives exactly

the same estimator as maximizing the original likelihood function. However, it only re-

quires numerically optimizing over a subset of the parameters. The concentrated likelihood

function is simple to construct from linear regressions. Using this approach, estimation of

spanned models only takes a fraction of a second to several minutes compared to hours when

optimizing the original likelihood.

For USV models where the volatility factors do not price bonds, the log-likelihood func-

tion is not known in closed-form adding another layer of difficulty. Nevertheless, we show

how the intuition behind the concentrated likelihood for spanned models can be extended to

estimate USV models using the EM algorithm of Dempster, Laird, and Rubin(1977). The

maximization step of the EM algorithm solves a similar problem as optimizing the likeli-

hood function of a spanned Gaussian ATSM. Consequently, we can construct a concentrated

objective function for the EM algorithm using linear regressions just as we did for spanned

models.

Our method outperforms conventional approaches both in terms of stability of conver-

gence and speed. A study for a 3-factor model with one spanned volatility factor shows that

our method guarantees convergence as long as it is locally identified, and it converges to

a number of local maxima repeatedly. Aside from being able to find the global maximum,

our method helps us to locate and understand the economic implications of different local

maxima. Conversely, the conventional method of directly maximizing the original likelihood

never converges fully to any of the local maxima, nor does it converge to the same point

twice in repeated trials even when it is initialized under the same local mode. This makes it

difficult for researchers to differentiate between points near a well-behaved local maximum

having the same economic meaning and locations corresponding to local maxima that are

economically different. The median time it takes for our new procedure is less than 2 minutes
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for this model, whereas the conventional approach takes over 2 hours.

Using our method, we shed light on how local maxima with different economic implica-

tions are created in non-Gaussian spanned models. In Gaussian models, different rotations

of the factors (such as re-ordering of the factors) result in equivalent global maxima, with

identical economic implications. In non-Gaussian models with spanned factors, rotations

can have substantial economic impacts. The non-Gaussian state variables must be positive

and enter the conditional variance. This creates an asymmetry between the Gaussian and

non-Gaussian factors resulting in local maxima that are not economically equivalent.

Another contribution of this paper is to develop a family of discrete-time non-Gaussian

ATSMs that encompasses continuous-time models, including both spanned models as in

Duffie and Kan(1996), Duffee(2002), Cheridito, Filipovic, and Kimmel(2007), and Aı̈t-

Sahalia and Kimmel(2010) as well as USV models as proposed by Collin-Dufresne and Gold-

stein(2002). Gouriéroux, Monfort, and Polimenis(2002) proposed a one factor discrete-time

non-Gaussian model and Le, Singleton, and Dai(2010) generalized it to have multiple fac-

tors. Our model encompasses any admissible rotation of a multivariate discrete-time Cox,

Ingersoll, and Ross(1985) process, allowing the factors to be correlated. The model nests the

risk-neutral dynamics of other discrete-time ATSMs.1 In our model, the physical and risk

neutral dynamics follow the same stochastic process but with different parameters. The mar-

ket prices of risk have the extended affine form of Cheridito, Filipovic, and Kimmel(2007),

which is different than Le, Singleton, and Dai(2010). Finally, we also provide the restrictions

needed to generate USV in discrete-time versions of the continuous-time models studied by

Collin-Dufresne, Goldstein, and Jones(2009) and Joslin(2010).

We apply our estimation method to a range of popular spanned and unspanned models

with three and four factors. Judging by the estimated likelihood, a model with three spanned

non-Gaussian factors has the highest likelihood followed by one of the USV models. Gaussian

and non-Gaussian models with spanned factors fit the cross-section of yields equally well.

1In this paper, we do not consider the class of non-Gaussian ATSMs built from the non-central Wishart
process of Gouriéroux, Jasiak, and Sufana(2009).
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However, spanned models do not capture the volatility well at any maturity, even for the

best fitting model. This is because the non-Gaussian state variables must simultaneously

fit the conditional mean and variance. Maximum likelihood places more weight on the first

moment. In order to guarantee unspanned volatility factors, USV models place restrictions

on the bond loadings. This causes USV models to sacrifice some cross-sectional fit; their

pricing errors are larger than spanned models. On the other hand, USV models fit the

dynamics of yield curve volatility well. The USV restrictions are not unique and we show

that the choice of which USV restrictions are imposed is not inconsequential.

This paper continues as follows. In Section 2, we specify a general class of discrete-time,

non-Gaussian affine term structure models. In Section 3, we describe our new approach

to estimation for both spanned and unspanned models. Section 4 describes the data and

parameter restrictions of the models. Section 5 studies a three factor spanned model in

depth. In Section 6, we study eight three and four factor spanned and unspanned models.

In Section 7, we discuss directions for future research and conclude.

2 Model

In this section, we describe a class of discrete-time ATSMs with stochastic volatility that

encompass both spanned models, as in Duffie and Kan(1996), Dai and Singleton(2000),

Cheridito, Filipovic, and Kimmel(2007); and unspanned models, as proposed by Collin-

Dufresne and Goldstein(2002).

2.1 Bond prices

The model has a G× 1 vector of conditionally Gaussian state variables gt, whose volatilities

are captured by an H × 1 vector of positive state variables ht. Under the risk-neutral

measure Q, the Gaussian state variables follow a vector autoregression with conditional
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heteroskedasticity

gt+1 = µQg + ΦQg gt + ΦQghht + Σghε
Q
h,t+1 + εQg,t+1, εQg,t+1

Q∼ N
(
0,Σg,tΣ

′
g,t

)
, (1)

Σg,tΣ
′
g,t = Σ0,gΣ

′
0,g +

H∑
i=1

Σi,gΣ
′
i,ghit,

εQh,t+1 = ht+1 − EQ (ht+1|It)

where It captures agents’ information set at time t.

The volatility factors ht are an affine transformation of the exact discrete-time equivalent

of a multivariate Cox, Ingersoll, and Ross(1985) process

ht+1 = µh + Σhwt+1 (2)

wi,t+1 ∼ Gamma
(
νQh,i + zQi,t+1, 1

)
, i = 1, . . . , H (3)

zQi,t+1 ∼ Poisson
(

e′iΣ
−1
h ΦQh Σhwt

)
, i = 1, . . . , H (4)

where ei denotes the i-th column of the identity matrix IH . We discuss the admissibility

restrictions and interpretation of the parameters of the model in Section 2.2.

The price of a zero-coupon bond with maturity n at time t is the expected price of the

same asset at time t+ 1 discounted by the short rate rt under the risk neutral measure

P n
t = E

Q
t

[
exp (−rt)P n−1

t+1

]
.

The short rate is a linear function of the state vector

rt = δ0 + δ′1,hht + δ′1,ggt.

Given the dynamics of gt and ht under Q, bond prices are an exponentially affine function
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of the state variables

P n
t = exp

(
ān + b̄′n,hht + b̄′n,ggt

)
.

The loadings ān, b̄n,h and b̄n,g can be expressed recursively in matrix notation as

ān = −δ0 + ān−1 + µQ′g b̄n−1,g +
[
µh − ΦQh µh + Σhν

Q
h

]′
b̄n−1,h +

1

2
b̄′n−1,gΣ0,gΣ

′
0,g b̄n−1,g

+µ′hΦ
Q′
h Σ−1′

h

(
IH −

[
diag

(
ιH − Σ′hb̄n−1,gh

)]−1
)

Σ′hb̄n−1,gh

−νQ′h
[
log
(
ιH − Σ′hb̄n−1,gh

)
+ Σ′hb̄n−1,gh

]
(5)

b̄n,h = −δ1,h + ΦQ′ghb̄n−1,g + ΦQ′h b̄n−1,h +
1

2

(
IH ⊗ b̄′n−1,g

)
ΣgΣ

′
g

(
ιH ⊗ b̄n−1,g

)
−ΦQ′h Σ−1′

h

(
IH −

[
diag

(
ιH − Σ′hb̄n−1,gh

)]−1
)

Σ′hb̄n−1,gh (6)

b̄n,g = −δ1,g + ΦQ′g b̄n−1,g (7)

with initial values ā1 = −δ0, b̄1,g = −δ1,g and b̄1,h = −δ1,h, see Appendix B for a derivation.

The matrix ΣgΣ
′
g is a GH×GH block diagonal matrix with elements Σi,gΣ

′
i,g for i = 1, . . . , H

and b̄n−1,gh = Σ′ghb̄n−1,g + b̄n−1,h. The loadings must satisfy the restriction that the i-th

component of Σ′hb̄n−1,gh < 1 for i = 1, . . . , H.

Bond yields ynt ≡ − 1
n

log (P n
t ) are linear in the factors

ynt = an + b′n,hht + b′n,ggt (8)

with an = − 1
n
ān, bn,h = − 1

n
b̄n,h and bn,g = − 1

n
b̄n,g.

Gouriéroux and Jasiak(2006) built the univariate version of the non-Gaussian process

(2)-(4) and Gouriéroux, Monfort, and Polimenis(2002) used it to construct a one factor

ATSM. Le, Singleton, and Dai(2010) extended the process to allow for multiple factors;

their specification under Q is (2)-(4) but with µh = 0 and Σh diagonal.
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2.1.1 Unspanned stochastic volatility models

USV models (see Collin-Dufresne and Goldstein(2002)) impose restrictions on the parameters

under Q guaranteeing that the bond loadings for the volatility factors bn,h in (8) are zero for

all maturities. Yields consequently only depend on the Gaussian factors ynt = an + b′n,ggt.

The bond loadings (5)-(7) simplify to

ān = −δ0 + ān−1 + µQ′g b̄n−1,g +
1

2
b̄′n−1,gΣ0,gΣ

′
0,g b̄n−1,g (9)

b̄n,g = −δ1,g + ΦQ′g b̄n−1,g (10)

which are the same as Gaussian ATSMs. Unlike Gaussian ATSMs, however, USV models

constrain some of the Q parameters (i.e. elements of ΦQg ) in order to set the non-Gaussian

loadings to zero. In Section 4.2.2, we provide conditions under which discrete-time ATSMs

exhibit USV as in Collin-Dufresne, Goldstein, and Jones(2009).

2.2 Physical dynamics

Analogous to the popular class of Gaussian ATSMs, we specify the dynamics of gt and ht

under P to have the same dynamics as under Q. The Gaussian state variables follow a vector

autoregression with conditional heteroskedasticity

gt+1 = µg + Φggt + Φghht + Σghεh,t+1 + εg,t+1, εg,t+1 ∼ N
(
0,Σg,tΣ

′
g,t

)
, (11)

Σg,tΣ
′
g,t = Σ0,gΣ

′
0,g +

H∑
i=1

Σi,gΣ
′
i,ghit,

εh,t+1 = ht+1 − E (ht+1|It) .

The Gaussian state variables are a function of the non-Gaussian state variables through both

the autoregressive term Φghht and the covariance term Σghεh,t+1. The parameters controlling

the conditional mean are different under P and Q measures, while the scale parameters Σgh

and Σi,g for i = 0, . . . , H are the same.
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The model for ht+1 under the physical measure P is

ht+1 = µh + Σhwt+1 (12)

wi,t+1 ∼ Gamma (νh,i + zi,t+1, 1) , i = 1, . . . , H (13)

zi,t+1 ∼ Poisson
(
e′iΣ

−1
h ΦhΣhwt

)
, i = 1, . . . , H (14)

where νh = (νh,1, . . . , νh,H) are shape parameters, Φh is a matrix controlling the autocorre-

lation of ht+1, Σh is a scale matrix, and µh is a vector determining the lower bound of ht+1.

Sufficient conditions for non-negativity of ht are that elements of µh, Σh, and Σ−1
h ΦhΣh are

non-negative. The discrete-time equivalent of the Feller condition νh,i > 1 ensures that the

process does not attain its lower bound. A similar set of restrictions must be satisfied under

Q. The scale parameters Σh are the same under both probability measures and so is the

parameter µh. The latter restriction is required for no-arbitrage.

The conditional mean of the volatility factors ht+1 can be written in matrix form as

E (ht+1|It) = (IH − Φh)µh + Σhνh + Φhht.

It is a linear function of its own lag ht, similar to a vector autoregression. The conditional

variance is also an affine function of ht

V (ht+1|It) = Σhdiag(νh − 2Σ−1
h Φhµh)Σ

′
h + Σhdiag

(
2Σ−1

h Φhht
)

Σ′h.

In Appendix A.2, we provide the transition density of ht+1 for any admissible rotation.

A nice property of the model (11)-(14) for the vector (h′t, g
′
t)
′ is that any admissible affine

transformation remains within the same family of distributions.

Proposition 1 Let gt and ht follow the process of (11)-(14) with parameters θ. Consider
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an admissible affine transformation of the form

 h̃t

g̃t

 =

 ch

cg

+

 Chh Chg

Cgh Cgg


 ht

gt

 .

The new process g̃t and h̃t remains in the same family of distributions under updated param-

eters θ̃. The parameters νh and Σ−1
h ΦhΣh are invariant to rotation.

Proof: See Appendix C.1.

The admissibility restrictions and the relationship between the new and old parameteriza-

tions can be found in Appendix C.1. This proposition helps to understand identification

in Section 4.2.1. The admissibility constraints ensure that the non-Gaussian state variables

always remain positive after applying a transformation from (h′t, g
′
t)
′ to

(
h̃′t, h̃

′
t

)′
and that

there exists another admissible rotation to get back to the original factors.

2.3 Stochastic discount factor

In this section, we demonstrate how an agent gets compensated for risk exposure when

holding a zero-coupon bond under stochastic volatility. Given the dynamics of the state

vector under P and Q measures, the market prices of risk have the extended affine form of

Cheridito, Filipovic, and Kimmel(2007). The full expression is in Appendix D. To provide

intuition, the log of the stochastic discount factor (SDF) can be decomposed up to a first order

approximation into the risk free rate plus three components describing risk compensation

mt+1 = −rt −
1

2
λ′gtλgt − λ′gtεg,t+1 − λ′wtεw,t+1 − λ′ztεz,t+1 (15)

where εi,t+1 are standardized shocks with mean zero and identity covariance matrix, and λit

is the price of risk i for each of the three types of shocks in the model.2 In addition to the

risk-free rt, the agent gets compensated for being exposed to the Gaussian shock εg,t+1 in

2This approximation is not used during estimation.
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(11), the gamma shock εw,t+1 in (13), and the Poisson shock εz,t+1 in (14). The prices of

these risks are defined as

λgt = V(gt+1|It, ht+1, zt+1)−1/2
[
E (gt+1|It, ht+1, zt+1)− EQ (gt+1|It, ht+1, zt+1)

]
λwt = V(wt+1|It, zt+1)−1/2

[
E(wt+1|It, zt+1)− EQ(wt+1|It, zt+1)

]
,

λzt = V(zt+1|It)−1/2
[
E(zt+1|It)− EQ(zt|It)

]
.

The market prices of risk have an intuitive form as the Sharpe ratio measuring per unit

risk compensation. Specifically, they are the difference in the conditional means of each

shock under P and Q standardized by a conditional standard deviation. The time-varying

quantities of risk are a feature of non-Gaussian models that are not available in Gaussian

models.

USV models In USV models, the components of the SDF associated with the Gaussian

factors (the first three terms in (15)) are the only parts that are directly observable from

bond yields. The risk premium for non-Gaussian factors can only be estimated jointly by

also observing derivatives because the Q parameters of the volatility process do not enter

the likelihood and are unidentified by observing only yields.

2.4 State space representation

Define xt as the vector of spanned factors; i.e., xt = (g′t, h
′
t)
′ in spanned models and xt = gt in

USV models. Stacking ynt in order for N different maturities n1, n2, ..., nN gives Yt = A+Bxt

where A = (an1 , . . . , anN
)′, B = (b′n1

, ..., b′nN
)′. If more yields are observed than the number of

spanned factors (N > N1), not all yields can be priced exactly. Following the literature, we

assume that N1 linear combinations of the yields Y
(1)
t = SY1Yt are priced without error and

the remaining N2 = N − N1 linear combinations Y
(2)
t = SY2Yt are observed with Gaussian
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measurement errors. Given this assumption, the observation equations are

Y
(1)
t = A1 +B1xt (16)

Y
(2)
t = A2 +B2xt + ηt ηt ∼ N (0,Ω) (17)

where A1 ≡ SY1A,A2 ≡ SY2A,B1 ≡ SY1B, and B2 ≡ SY2B. The state space representation

of the model is completed using the dynamics of the state variables (11)-(14).

3 Estimation methodology

In this section, we introduce new estimation procedures for spanned and unspanned models,

both of which use least square regressions to simplify and stabilize estimation. Our approach

is based on the following observations: (i) The parameter vector θ can be separated into those

parameters that enter the bond loadings and those that do not (e.g. µg,Φg,Φgh); (ii) Given

the parameters that enter the loadings, we can calculate the bond loadings and solve for the

spanned factors xt = B−1
1

(
Y

(1)
t − A1

)
using (16); (iii) The P parameters (e.g. µg,Φg,Φgh)

of the Gaussian VAR for the factors gt plus Ω enter the objective function as a quadratic

form. The first order conditions for these parameters (µg,Φg,Φgh,Ω) are linear and can be

solved by running (generalized) least squares regressions of (11). Using this basic insight,

we show how to eliminate these parameters from the numerical optimization problem.

3.1 Spanned models

Given the parameters of the model θ, the likelihood function is

p (Y1:T ; θ) = p
(
Y

(2)
1:T |Y

(1)
1:T ; θ

)
p
(
Y

(1)
1:T ; θ

)
=

T∏
t=1

p
(
Y

(2)
t |Y

(1)
t ; θ

)
|J (θ)|−T

T∏
t=1

p (gt|ht, It−1; θ)
T∏
t=1

H∏
i=1

p (hit|It−1; θ) (18)
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where J (θ) is the Jacobian of the transformation from xt = (g′t, h
′
t)
′ to Y

(1)
t , see Appendix

E for the log-likelihood ` (θ) = log p (Y1:T ; θ).3 Direct maximization of the log-likelihood is

however extremely challenging as interest rates are close to non-stationary, the bond loadings

are non-linear functions of the models’ parameters, and the maximization must impose the

condition that ht > 0.

Our approach to spanned models is a result of the following proposition:

Proposition 2 If the model is given by equations (11)-(14) and (16)-(17) with all spanned

factors, then the maximum likelihood estimator θ̂ = argmax
θ

` (θ) can be solved by maximizing

the concentrated likelihood max
θm

`
(
θ̂c (θm) , θm

)
, where θc = (µg,Φg,Φgh,Ω) and θm are the

remaining parameters of the model. The function θ̂c (θm) is obtained by solving max
θc

` (θm, θc)

using the GLS estimates for the P dynamics (11) and the OLS estimates for the variance-

covariance matrix Ω in (17).

Proof: See Appendix F.1.

The proposition raises two points. First, optimizing the concentrated likelihood gives

exactly the same solution as maximizing the original likelihood function in (18). However,

it only requires numerically optimizing over θm instead of both θm and θc. Second, the

concentrated likelihood function can be constructed from linear regressions. The method we

propose is an immediate result of Proposition 2.

Procedure 1 Maximize the concentrated log-likelihood function max
θm

`
(
θ̂c (θm) , θm

)
. For

a given value of θm, the concentrated likelihood can be constructed as follows:

(i.) Given θm, calculate the bond loadings A and B and the state variables gt and ht from

xt = B−1
1

(
Y

(1)
t − A1

)
.

3The stationary distribution is only known for special sub-classes of the affine family of models. In this
paper, we assume a diffuse initial condition and start from t = 2. This provides an analytical solution for
the first order conditions of the likelihood. If a researcher wants to include the stationary distribution as
the initial condition, we recommend using our procedure first, and then using these estimates as starting
values to optimize the likelihood with the initial condition. While including the initial conditions enforces
stationarity, it can also introduce a downward bias in estimates of the autoregressive parameters; see, e.g.
Bauer, Rudebusch, and Wu(2012).
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(ii.) Given gt and ht, calculate εh,t+1 and Σg,t. Run a GLS regression

gt+1 − Σghεh,t+1 = µg + Φggt + Φghht + Σg,tεg,t+1 (19)

to calculate µ̂g (θm) , Φ̂g (θm) , Φ̂gh (θm).

(iii.) Calculate the covariance matrix

Ω̂ (θm) =
1

T − 1

T∑
t=2

(
Y

(2)
t − A2 −B2xt

)(
Y

(2)
t − A2 −B2xt

)′
(20)

(iv.) Substitute θ̂c (θm) =
(
µ̂g (θm) , Φ̂g (θm) , Φ̂gh (θm) , Ω̂ (θm)

)
back into the original likeli-

hood to form the concentrated likelihood.

In Appendix F, we also derive the analytical gradients of the concentrated log-likelihood.

Our derivation is based on the following proposition. It decomposes the gradient into pieces

according to whether a parameter enters the bond loadings, the P dynamics, or both.

Proposition 3 The gradient of the concentrated log-likelihood `
(
θ̂c (θm) , θm

)
can be decom-

posed into three terms:

d`
(
θ̂c (θm) , θm, A (θm) , B (θm)

)
dθ′m

=
∂`
(
θ̂c, θm, A,B

)
∂θ′m

+
∂`
(
θ̂c, θm, A,B

)
∂A′

∂A (θm)

∂θ′m

+
∂`
(
θ̂c, θm, A,B

)
∂vec (B′)′

∂vec
(
B (θm)′

)
∂θ′m

.

The first term is the partial derivative of the P dynamics and Jacobian with respect to θm.

This measures the effect parameters have on the log-likelihood through the time series of the

factors. The second and third terms measure the effect parameters have on the log-likelihood

through the bond loadings A and B.

Proof: See Appendix F.2

14



The expressions for the gradient can be used for other affine models such as models for

defaultable bonds and credit default swaps.

3.2 Unspanned models

In a USV model, the pricing equation (16) can be inverted to calculate the Gaussian factors

gt conditional on the parameters that enter the bond loadings. However, the volatility

factors ht cannot be observed by inverting the pricing formula. The likelihood of the model

p (Y1:T ; θ) = p
(
Y

(2)
1:T |Y

(1)
1:T ; θ

)
p
(
Y

(1)
1:T ; θ

)
is no longer known in closed-form. The first term

p
(
Y

(2)
1:T |Y

(1)
1:T ; θ

)
remains the same as in (18). The second term p

(
Y

(1)
1:T ; θ

)
is associated with

the P dynamics of the factors and is an integral over the path of the latent volatility

p
(
Y

(1)
1:T ; θ

)
= |J (θ)|−T

∫
. . .

∫
p (g1:T |h0:T−1; θ) p (h0:T−1; θ) dh0 . . . dhT−1

where J (θ) is the Jacobian from gt to Y
(1)
t . This integral does not have a closed-form

solution. We use the Monte Carlo Expectation Maximization (MCEM) algorithm to estimate

the model, see Wei and Tanner(1990).

The EM algorithm consists of two steps: the expectation and maximization steps, which

are iterated back and forth until convergence of the algorithm to a stationary point of the

likelihood. The first step calculates the expected value of the complete data log-likelihood

Q
(
θ|θ(i)

)
= E

[
T∑
t=1

log p
(
Y

(2)
t |gt; θ

)
− T log |J (θ)| +

T∑
t=1

log p (gt|gt−1, ht−1; θ)

+
T−1∑
t=1

log p (ht|ht−1; θ) + p (h0; θ)

]
. (21)

This expectation is taken with respect to the posterior distribution p
(
h0:T−1|Y1:T ; θ(i)

)
, which

depends on the parameters θ(i) from the previous iteration. The function Q
(
θ|θ(i)

)
is known

as the intermediate quantity of the EM algorithm and it is a function of θ. In the second

step of the EM algorithm, the intermediate quantity is maximized θ(i+1) = argmax
θ

Q
(
θ|θ(i)

)
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to determine the parameters for the next iteration.

For USV models, the intermediate quantity has the same form as the log-likelihood

for spanned Gaussian models. This means that maximization of the intermediate quantity

at each iteration of the EM algorithm is (essentially) equivalent to estimating a Gaussian

ATSM. This is why we can construct a concentrated version of the intermediate quantity

from the output of linear regressions. For USV models, we separate the parameters into

three groups: θc = (µg,Φg,Ω) are the parameters that can be concentrated out, θm,h =

(νh,Φh,Σh) are the parameters that govern the dynamics of the volatility, and θm,b are

the parameters that enter the bond loadings. We only need to optimize numerically over

θm,h and θm,b, as the parameters in θc can be determined analytically as a function of θm,b.

Moreover, the intermediate quantity can be additively separated into two pieces Q
(
θ|θ(i)

)
=

Q1

(
θm,b, θc|θ(i)

)
+Q2

(
θm,h|θ(i)

)
. The first component corresponds to the first three terms in

(21), and depends only on the parameters θm,b and θc. The remaining terms in (21) are the

second component Q2

(
θm,h|θ(i)

)
, which depend only on the volatility parameters θm,h.

Our procedure can be implemented as follows:

Procedure 2 The maximum likelihood estimator for USV models can be obtained by iter-

ating over the following two steps:

(a.) E-step: compute the expectations in the intermediate quantity Q
(
θ|θ(i)

)
from (21).

(b.) M-step: maximize Q
(
θ|θ(i)

)
over θ to determine θ(i+1). This can be separated into two

sub-steps.

(b1.) Maximize Q1

(
θm,b, θc|θ(i)

)
with respect to θm,b and θc to determine θ

(i+1)
m,b and

θ
(i+1)
c . This can be solved equivalently by maximizing Q1

(
θm,b, θ̂c(θm,b)|θ(i)

)
with

respect to θm,b, where the concentrated objective function can be constructed as

follows:

(i.) Given θm,b, calculate the bond loadings A and B and the state variables gt

from xt = B−1
1

(
Y

(1)
t − A1

)
.
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(ii.) Given gt, run a GLS regression

gt+1 = µg + Φggt + S̄
1
2
t εg,t+1 (22)

to calculate µ̂g (θm,b) , Φ̂g (θm,b).

(iii.) Calculate the covariance matrix Ω̂ (θm,b) as in (20).

(iv.) Substitute θ̂c (θm,b) =
(
µ̂g (θm,b) , Φ̂g (θm,b) , Ω̂ (θm,b)

)
back into the intermedi-

ate quantity.

(b2.) Maximize Q2

(
θm,h|θ(i)

)
with respect to θm,h to determine θ

(i+1)
m,h .

Appendix H contains details of our implementation. This procedure for USV models has

many similarities with our earlier procedure for spanned models.4 The difference between

the GLS regression in (19) of Procedure 1 and the regression in (22) of Procedure 2 is

their covariance matrices. The EM algorithm imputes the latent values of ht by taking

their expectations. Finally, we note that with only a few minor modifications, the analytical

gradients for the likelihood of the spanned model from Proposition 3 can be used to calculate

the gradients of the intermediate quantity in (21).

In our experience, it takes only a few iterations of the EM algorithm to approach the

maximum when estimating the USV models of Section 4.2.2. The rate of convergence of the

EM algorithm near the maximum is known to be slow. Once the EM algorithm approaches

the maximum, a researcher can switch to alternative estimation procedures for non-Gaussian

state space models.5

For USV models, the expectation in Step 1 cannot be calculated in closed-form, requiring

a Monte Carlo version of the EM algorithm. We calculate the expectations using sequential

4There are several versions of the EM algorithm all of which lead to the MLE; see Meng and Rubin(1993).
These authors discuss issues such as concentrating the intermediate quantity as well as sequentially maxi-
mizing the intermediate quantity over subsets of θ.

5USV models are an example of a non-linear, non-Gaussian state space model. General approaches for
estimating non-Gaussian state space models include importance sampling (Durbin and Koopman(2012) and
Richard and Zhang(2007)), particle filters (see Malik and Pitt(2011)), and MCMC (see Jacquier, Johannes,
and Polson(2007)).
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Monte Carlo methods or particle filters; see Creal(2012) for a survey. In particular, we use

the particle filtering algorithm of Godsill, Doucet, and West(2004) to draw paths of h0:T−1

from the joint posterior distribution p (h0:T−1|Y1:T ; θ); see Appendix H.2 for details. The

particle filter also allows us to calculate filtered (one-sided) estimates of the volatility as well

as an estimate of the likelihood function p (Y1:T ; θ).

3.3 Discussion

We discuss how our approach can be applied to a wide range of ATSMs.

Example #1: observable macroeconomic variables

Our approach can estimate models with observable macroeconomic variables and with

homoskedastic or heteroskedastic shocks; examples with homoskedasticity are Ang and Pi-

azzesi(2003) and Hamilton and Wu(2012). Our procedure works the same as before except

the state vector xt now contains the yield factors as well as the observed macroeconomic

factors. For step (i.) of Procedure 1 or 2, we back out the latent component of xt conditional

on a subset of the parameters, the yields Y
(1)
t , and the macro variables. Given xt, we can

concentrate a large number of parameters out of the objective function including many of

the parameters introduced by adding the macroeconomic variables.

Example #2: Hidden factors

Recently, Duffee(2011) argued that more than three factors are needed to explain the

time-series dynamics of yields and risk premia, where these additional factors are “hidden”

from the cross-section of yields because the factors are not priced. For simplicity, we illustrate

the basic ideas here for Gaussian models. Extensions to spanned or unspanned non-Gaussian

models are straightforward.

The Gaussian state vector can be separated into sub-vectors gt =
(
g′1,t, g

′
2,t

)′
whose di-
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mensions are G1 × 1 and G2 × 1, respectively. The dynamics under the P measure are

g1,t+1 = µg,1 + Φg,11g1t + Φg,12g2t + ε1,t+1 ε1,t+1 ∼ N
(
0,Σ0,gΣ

′
0,g

)
(23)

g2,t+1 = µg,2 + Φg,21g1t + Φg,22g2t + ε2,t+1 ε2,t+1 ∼ N (0, IG2) (24)

The dynamics of g1,t are the same under the Q measure but with the restrictions that

ΦQg,12 = 0 and the last G2 entries of δ1g are zero. These restrictions imply that only g1,t

directly impacts yields as the bond loadings on g2,t are zero by construction.

Given the parameters that enter the bond loadings, the factors that price bonds are

conditionally observable g1,t = B−1
1

(
Y

(1)
t − A1

)
just as in step (i.) of Procedure 1. We

can treat g1,t as the observed data and (23) is the new observation equation for a linear,

Gaussian state space model. The remaining state variables g2t have transition equation

(24) and are serially correlated shocks to the factors g1t that price bonds. We can use the

Kalman filter to estimate this model, which is equivalent to a GLS regression where the

errors are serially correlated. To concentrate the parameters (µg,1, µg,2,Φg,11,Φg,21) out of

the likelihood as in step (ii) of Procedure 1, we can either place these parameters in the state

vector or use the augmented Kalman filter of de Jong(1991), see also Chapter 5 of Durbin

and Koopman(2012).

Example #3: parameter constraints

In our approach, a researcher can impose constraints – such as in Ang and Piazzesi(2003),

Kim and Wright(2005), Cochrane and Piazzesi(2008) and Bauer(2014) – and still concentrate

out parameters by linear regression. We denote the penalized or constrained log-likelihood

function `p (θ) as

`p(θ) = log p (Y1:T ; θ) + p(θ),

where p(θ) is the penalty term. If the constraints are only on the Q parameters, a researcher
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can directly apply our Procedures 1 and 2. If the goal is to constrain either the P param-

eters or the relationship between the P and Q parameters, the penalty term is a vector of

Lagrange multipliers times the constraints. Step (ii.) of Procedure 1 or 2 can be replaced

by constrained GLS. If the constraints are linear in µg,Φg,Φgh, there is a unique solution.

Popular restrictions in the literature are all in this category. If the penalty term p(θ) is a

quadratic function of µg,Φg,Φgh, step (ii.) of Procedures 1 or 2 reduces to ridge regression

and the parameters can be shrunk to a pre-specified value similar to a Bayesian VAR. A

researcher may want to shrink the P parameters toward the Q parameters, which are often

measured more precisely.

Example #4: serially correlated measurement errors

Although often assumed to be i.i.d. normal in the literature, several authors have found

the measurement errors ηt in (17) to be serially correlated; see, e.g. Hamilton and Wu(2014).

Procedures 1 and 2 can be extended to cover models with serially correlated errors without in-

creasing the dimension of the numerical optimization. For example, if ηt has VAR(1) dynam-

ics ηt = Φηηt−1 +κt with κt ∼ N (0,Ω), then we can concentrate out θc = (µg,Φg,Φgh,Ω,Φη)

by least squares. Conditional on θm, we calculate the bond loadings A and B and factors xt

and, from these, the values of ηt and ηt−1 which are implicitly a function of θm. To concen-

trate Φη and Ω out of the objective function, we compute their least squares estimates from

the regression ηt = Φηηt−1 + κt and plug these values back into the log-likelihood.

Relation to Joslin, Singleton, and Zhu(2011) and Hamilton and Wu(2012)

Both Joslin, Singleton, and Zhu(2011) and Hamilton and Wu(2012) use linear regression

to estimate some parameters of Gaussian models.6 In the special case of Gaussian models

with observable factors (A1 = 0 and B1 = I), our method is identical to the ML estimator

of Joslin, Singleton, and Zhu(2011). Like the procedure in this paper, the approach of

6The work by Adrian, Crump, and Moench(2012) and Diez de Los Rios(2013) are also similar in spirit
to these methods. They focus only on Gaussian models. Our discussion here applies to these papers as well.
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Hamilton and Wu(2012) works for a wider range of Gaussian models. Their minimum chi-

square estimator is asymptotically equivalent to the ML estimator in this paper.

The critical difference is that our procedures are designed for non-Gaussian models.

Leveraging the analytical solution for linear regressions has not been explored in this area.

For spanned models with both Gaussian and non-Gaussian factors, being able to rotate the

factors is important. If a researcher takes an arbitrary basis of yields (such as principal

components) and assumes that they can be separated a priori into observable Gaussian and

non-Gaussian factors, it will restrict the likelihood. Our approach lets the data decide what

linear combination of yields are the factors.

4 Data and parameter restrictions

4.1 Data

We use the Fama and Bliss(1987) zero coupon bond data available from the Center for

Research in Securities Prices (CRSP). The data is monthly and spans from June 1952 through

June 2012 for a total of T = 721 observations with maturities of (1, 3, 12, 24, 36, 48, 60)

months. For three factor models, the yields measured without error Y
(1)
t include the (1,

12, 60) month maturities. In models with four spanned factors, Y
(1)
t are the (1, 12, 24, 60)

month maturities.

4.2 Parameter restrictions

4.2.1 Identifying restrictions for spanned models

We impose the following restrictions for identification. For the Gaussian part, these are: (i)

µQg = 0; (ii) ΦQg in ordered Jordan form;7 (iii) δ1g = ι is a column vector of ones; and (iv)

Σi,g is lower triangular. For the non-Gaussian part, (i) µh = 0. (ii) ΦQgh = 0. (iii) Elements

7For the case where ΦQg has real distinct eigenvalues, it is a diagonal matrix with diagonal elements in
descending order.
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of the vector δ1h = ±1 can take either sign8, which unlike Gaussian-only models will lead to

inequivalent maxima as we explain in Section 5.2; (iv) Σh is diagonal.

To guarantee non-negativity and admissibility of the factors, we also impose the discrete-

time equivalent of the Feller condition νh,i > 1 and νQh,i > 1 for i = 1, . . . , H. The matrices

Σh, Σ−1
h ΦhΣh and Σ−1

h ΦQh Σh must also be non-negative.

4.2.2 USV restrictions

We focus on discrete-time USV models similar to the continuous-time models presented

in Collin-Dufresne, Goldstein, and Jones(2009) and Joslin(2010).9 We label these models

U1(4) because they have one unspanned volatility factor and three Gaussian factors. USV

restrictions are not unique. We present several models whose restrictions under Q result in

non-Gaussian loadings where bn,h = 0 for all maturities.

The first model, labeled U1(4)(φ, φ2, ψ), has the following set of restrictions: (1) δ1,h =

0 and Σgh = 0. (2) ΦQg is a diagonal matrix with eigenvalues φ, φ2, ψ. (3) All entries

of Σ1,gΣ
′
1,g are zero but the (1, 1) element. This entry is Σ2

1,g,11. (4) ΦQgh,3 = 0; ΦQgh,1 =

δ1,g,1
(1−φ)

Σ2
1,g,11; ΦQgh,2 = − (1−φ2)δ21,g,1

2(1−φ)2δ1,g,2
Σ2

1,g,11. In this model, only the Gaussian factor associated

with the eigenvalue φ has stochastic volatility as the remaining entries of Σ1,gΣ
′
1,g are zero

for all the other Gaussian factors. The USV restrictions force two of the eigenvalues of ΦQg to

be related as φ and φ2. These restrictions summarize three different USV models depending

on the relative size of φ and ψ. We label the models U1(4)(φ > φ2 > ψ), U1(4)(φ > ψ > φ2),

U1(4)(ψ > φ > φ2). Each one of them is identified after imposing an ordering on the

eigenvalues.10

8In theory, δ1h = 0 is also admissible and creates additional local maxima. We would like to thank an
anonymous referee for pointing this out. Unlike a Gaussian model, the Jensen’s inequality term prevents
bn,h from being zero for maturities n ≥ 2 even when δ1h = 0. In practice, this model is not well identified, as
the factor loadings coming from the Jensen’s inequality term are extremely small and close to 0. We found
that the likelihood values under this restriction are significantly smaller in such models.

9Papers that document the potential existence of USV factors include Heidari and Wu(2003), Li and
Zhao(2006), Trolle and Schwartz(2009), and Andersen and Benzoni(2010).

10We do not consider the case where the eigenvalues may be identical and we restrict our attention to
eigenvalues that are less than one.
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A second model, labeled U1(4)(φ, φ2, φ4), allows two out of the three Gaussian factors to

share a common stochastic volatility factor. The restrictions for this model are (1) δ1,h = 0

and Σgh = 0. (2) ΦQg is a diagonal matrix with eigenvalues φ, φ2, φ4. (3) All entries of

Σ1,gΣ
′
1,g are zero but the (1, 1) and (2, 2) elements. These entries are Σ2

1,g,11 and Σ2
1,g,22.

(4) ΦQgh,1 = δ1,g,1
1−φ Σ2

1,g,11; ΦQgh,2 = δ1,g,2
(1−φ2)

Σ2
1,g,22 −

(1−φ2)δ21,g,1
2(1−φ)2δ1,g,2

Σ2
1,g,11; ΦQgh,3 = − (1−φ4)δ21,g,2

2(1−φ2)2δ1,g,3
Σ2

1,g,22.

In this model, two diagonal entries in the covariance matrix Σ1,gΣ
′
1,g are non-zero. The

additional flexibility in Σ1,gΣ
′
1,g comes at the expense of another restriction on the diagonal

components of ΦQg . This model is unique because φ > φ2 > φ4.

These restrictions lead to the following proposition

Proposition 4 If the model has risk neutral dynamics (1)-(4) and satisfies the restrictions

of U1(4)(φ, φ2, ψ) or U1(4)(φ, φ2, φ4), then the model exhibits USV where bn,h = 0 ∀ n.

Proof: see Appendix G.

Intuitively, USV models free up the volatility factors to fit the heteroskedasticity of yields

because they still enter the covariance matrix of the Gaussian factors in their P dynam-

ics. The cost of adding USV factors comes from the constraints they place on ΦQg . These

constraints can sacrifice the cross-sectional fit of the model.

We impose the identifying restrictions of Section 4.2.1 for the Gaussian factors. For the

non-Gaussian portion of the model, we need an additional restriction on the scale parameters

Σ1,g or Σh, as they enter the likelihood in the same way. We set Σh = 0.01.

5 A three factor model

In this section, we use a three factor model with one spanned volatility factor A1(3) (in

the Dai and Singleton(2000) notation) to demonstrate the performance of our method and

to discuss the local maxima that arise in spanned non-Gaussian models. This model has

been the preferred model by many researchers in the literature.11 For an A1(3) model, the

11This model has been widely considered as the benchmark non-Gaussian ATSM, see Dai and Single-
ton(2000), Cheridito, Filipovic, and Kimmel(2007), Collin-Dufresne, Goldstein, and Jones(2008), and Aı̈t-
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concentrated likelihood drops the number of parameters by one-third from 24 parameters to

16 parameters.

5.1 Performance comparison

To illustrate the mileage we gain from using our method, we compare our approach to the

conventional method that does not concentrate out (µg,Φg,Φgh) or use analytical gradients.

We perform an experiment where we estimate the A1(3) model on the CRSP dataset 100

times from 100 different starting values using both methods.12 We compare our method and

the direct approach along two dimensions: convergence and speed. To measure the former,

we use the likelihood ratio (two times the difference in log-likelihoods).

The global solution found by our method has a log-likelihood of 36647.69 (estimates and

quasi-maximum likelihood standard errors can be found on the right hand side of Table 2).

We achieve an identical value for all 17 random starting values whenever the parameters were

initialized in this region or mode of the parameter space.13 Seventeen equals the number

of times (one-sixth) that it started in this region. Conversely, the conventional method

does not find this log-likelihood once nor does the method reproduce the same (incorrect)

estimates for each of these 17 starting values. The highest log-likelihood value found by

the standard approach is 36645.29. The differences between the two methods is significant

across these 17 starting values. The conventional method yields log-likelihood values ranging

between 36645.29 to 36636.82, and it only achieves the former for one starting value. With

our method producing the same number repeatedly, we can conclude that it is a maximum.

An immediate benefit of the stable behavior of our method is that we are able to find that

the A1(3) model has 6 local modes with three well-behaved local maxima and three regions

of the log-likelihood that appear to be locally unidentified. The three well-behaved local

Sahalia and Kimmel(2010) for examples.
12To make the comparison as parallel as we can, we write the likelihood function the same way, impose

the same identifying restrictions, and use the same scaling and initial values for the parameters except that
the conventional method has additional parameters entering the numerical optimizer.

13We consider two log-likelihoods to be numerically identical if they agree up to 2 decimal points. In
practice, the log likelihood values are identical up to 8 decimal points.
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maxima are listed in Table 1 and we will discuss the properties of the model that create these

local modes in Section 5.2. Our method converges 17/100 times to Local 1, 14/100 times to

Local 2, and 17/100 times to Local 3. The median likelihood ratio between our procedure and

the un-concentrated log-likelihood with no analytical gradient is 29.5 indicating a substantial

difference between the two procedures. The conventional method, even if it gets close to a

local maximum, always stops before it fully converges. This makes it difficult for researchers

to differentiate between points that are near a well-behaved local maximum that have the

same economic meaning and locations corresponding to local maxima that are economically

different.

Estimation time is another important dimension along which we compare our approach

to the conventional method. The median estimation time for our procedure to estimate from

a random starting value is less than 2 minutes, whereas the conventional approach of directly

maximizing the log-likelihood function takes more than 2 hours. To perform our study with

100 starting values, it takes our method about 4 hours, whereas it takes roughly 9 days to

complete the same exercise with the conventional method.

In summary, our method addresses all of the following problems with the conventional

method. The conventional method is painfully slow. It does not achieve the global maximum.

And, it is extremely hard to assess convergence behavior and the number of local maxima

because conventional approaches do not repeatedly find the same local maximum even when

started in that region of the parameter space.

5.2 Local maxima

Using our approach simplifies estimation and helps uncover some features of the log-likelihood

surface that may be obscured by directly maximizing the log-likelihood. In this section,

we discuss the characteristics of the model that create local maxima and their economic

consequences.

In Gaussian models, a change in the sign of δ1g rotates the factors from gt to −gt.
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Table 1: Local maxima in the A1(3) model
Local 1 Local 2 Local 3

ht level slope curvature

ΦQh 0.9961 0.9528 0.5812
ΦQg 0.9514 1.0001 0.9983

0.5358 0.5881 0.9389
δ1,h 1 1 -1
LLF 36647.69 36482.56 36530.19

Estimates of ΦQh and ΦQg from the A1(3) model with corresponding log-likelihood. Each value is a different
local maximum depending on the sign of δ1,h and whether the non-Gaussian factor is the level, slope, or
curvature.

This rotation is economically irrelevant because the estimated model switches between two

global maximums. Unlike Gaussian models, fixing the sign of δ1h in spanned models is not

inconsequential, because the state variable ht is positive by definition. Changing the sign

of δ1h does not rotate ht to −ht. Therefore, there can exist inequivalent local maxima for

each combination of different signs of δ1h. For each of the local maxima, the estimated

latent factor ht is different, which changes the conditional variance of gt and consequently

the log-likelihood.

Reordering the eigenvalues in ΦQ has completely different implications for spanned non-

Gaussian models than for Gaussian models.14 If the eigenvalues are reordered in a multi-

factor Gaussian model, it implies equivalent global maxima with the same economic im-

plication. However, with non-Gaussian spanned factors, they can yield inequivalent local

maxima. Using the A1(3) model as an example, the factors are labeled as level, slope and

curvature. Reordering the eigenvalues across ΦQg and ΦQh does not generally change the shape

of the factors but it does change whether ht is the level, slope, or curvature. Any change

in ht from one type of factor (level) to another (slope/curvature) implies a different condi-

tional variance for gt making the likelihood no longer equivalent. Changing the order of the

14We collect the autoregressive parameters together in matrices as

Φ =

(
Φh 0
Φgh Φg

)
ΦQ =

(
ΦQh 0

ΦQgh ΦQg

)
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eigenvalues within ΦQg and/or ΦQh results in an equivalent global maximum. The intuition is

the same as re-ordering of the factors gt within a Gaussian ATSM.

In an ATSM with spanned non-Gaussian factors, it is not clear a priori which local

maximum created by these characteristics of the model will be the global maximum. One

must intentionally search each region that potentially has a local maximum and compare

their likelihood values. To illustrate this idea, we present different local maxima for theA1(3)

model corresponding to different signs of δ1,h and different orderings of the eigenvalues. We

report ΦQ, δ1,h, and log-likelihood values in Table 1. In the first column, ht is the level factor

and δ1,h is positive. This is the global maximum in this case. In our sample, volatility is

high during episodes where interest rates are high, so the level factor tends to explain the

volatility best and δ1,h is positive. The next two columns present what happens when ht is

the slope or curvature factor. Due to the nature of the data we are using, the likelihood

function drops significantly from the global maximum to these alternative local maxima. In

theory, there are six potentially different local maxima for each combination of eigenvalues

and sign of δ1,h but in practice there are only three well-behaved local maxima. For the rest,

we observe parameters hitting a boundary or eigenvalues of the autoregressive parameters

being numerically 1. Each of these local maxima correspond to models where volatility

declines in the 1970’s, which contradicts the data. Those points can be locally unidentified,

meaning that there exists a region of the parameter space where a subset of the parameters

are unidentified. For models with unspanned volatility factors, the issues of multiple modes

do not appear, because the likelihood surface of USV models is similar to spanned Gaussian

models.

6 Model comparison

In this section, we use our methodology to estimate a collection of popular and prominent

ATSMs. The models that we estimate include three factor spanned models AH(3) with
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Table 2: Maximum likelihood estimates for the A0(3) and A1(3) models.

G = 3, H = 0 LLF = 37080.94 G = 2, H = 1 LLF = 36647.69

µg Σhνh µg νh
6.97e-05 -4.85e-05 -3.37e-04 3.00e-05 -1.34e-05 3.32e-05 1.9332

(4.92e-05) (1.12e-04) (7.06e-05) — (5.14e-05) (2.78e-05) (2.0989)
Φg Φh

1.0074 0.0475 0.0665 0.9943
(0.0084) (0.0137) (0.0316) (0.0061)

Φgh Φg

-0.0115 0.9375 0.0192 0.0077 0.9854 0.0657
(0.0184) (0.0309) (0.0607) (0.0132) (0.0224) (0.0462)
-0.0366 -0.0585 0.6306 -0.0405 -0.0729 0.6434
(0.0111) (0.0183) (0.0535) (0.0077) (0.0152) (0.0426)

µQg δ0 Σhν
Q
h µQg δ0 νQh

0 0 0 0.0083 4.09e-05 0 0 -0.0011 2.6371
— — — (0.0005) — — — (0.0002) (0.2879)

ΦQg ΦQh ΦQg
0.9950 0.9538 0.5299 0.9961 0.9514 0.5358

(0.0007) (0.0031) (0.0295) (0.0006) (0.0029) (0.0293)

Σ0,g Σh

3.99e-04 0 0 1.55e-05
(2.62e-05) — — (1.68e-06)

Σgh Σ0,g Σ1,g

-3.09e-04 5.09e-04 0 -0.8932 3.61e-11 0 0.0063 0
(4.54e-05) (3.66e-05) — (0.0587) (1.11e-11) — (0.0004) —
-4.50e-06 -2.52e-04 3.78e-04 0.0538 -1.89e-11 -5.80e-12 -0.0035 0.0046
(2.23e-05) (2.82e-05) (2.37e-05) (0.0397) (8.52e-12) (1.30e-12) (0.0003) (0.0003)

δ1,g δ1,h δ1,g
1 1 1 1 1 1
— — — — — —√

diag (Ω)× 1200
√

diag (Ω)× 1200
3 m 2 yr 3 yr 4 yr 3 m 2 yr 3 yr 4 yr

0.2243 0.1251 0.1235 0.1077 0.2245 0.1248 0.1236 0.1078

Maximum likelihood estimates with quasi-maximum likelihood standard errors. Left: Gaussian A0(3) model.
Right: non-Gaussian A1(3) model. The identifying restrictions µQg = 0, δ1,g = ι, and δ1,h = 1 are imposed
during estimation.

H = 0, 1, 2, 3 volatility factors and four factor spanned models AH(4) with H = 0, 1. We

also estimate four USV models from Section 4.2.2: three versions of U1(4)(φ, φ2, ψ) as well

as the U1(4)(φ, φ2, φ4) model. We report the estimates as well as quasi-maximum likelihood

standard errors as in White(1982) for eight models that have better empirical performance,

leaving out the estimates for models with lower likelihoods for brevity.
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Figure 1: Bond loadings for six different three factor models.
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Bond loadings B as a function of maturity n. Top row from left to right: A0(3) model, A1(3) model, A3(3)

model. Second row: A3(3) model with diagonal ΦQh , U1(4)(φ > φ2 > ψ) model, U1(4)(ψ > φ > φ2) model.

Reported in each graph are the eigenvalues of the risk-neutral feedback matrix ΦQ. To make the restricted

A3(3) model easily comparable, we report the absolute value of the loadings for this model.

6.1 Estimates and model fit

Three factor spanned models Estimates with standard errors for the A0(3) and A1(3)

models are included in Table 2. These two models have historically drawn most of the

attention in the term structure literature. For the A0(3) model, the concentrated likelihood

drops the number of parameters entering the numerical optimizer from 22 to 10 (excluding

Ω), while this number drops from 24 to 16 for the A1(3) model. The likelihood for the A0(3)

model at 37080.94 is significantly higher than the A1(3) model at 36647.69.

Surprisingly, among the models that we estimated, the A3(3) model has the highest

likelihood with a value of 37385.28, substantially higher than the A0(3) model. We report

estimates for this model on the right panel of Table 3. In order to satisfy the admissibility
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restrictions, all values in Σh, Σ−1
h ΦQh Σh and Σ−1

h ΦhΣh must be non-negative.15 We also

impose the discrete-time equivalent of the Feller condition, i.e. νh,i > 1 and νQh,i > 1 for

i = 1, . . . , H.16 In the A3(3) model, we found that some of these parameters were near

their boundaries. We fix them at the boundary when calculating the standard errors. For

comparison purposes, we also report on the left panel of Table 3 estimates of an A3(3)

model where the matrices Φh and ΦQh are restricted to be diagonal in which case the estimated

parameters are not close to the boundaries. Finally, we note that the A2(3) model (estimates

not reported for brevity) had the lowest likelihood among the models we estimated with a

value of 36120.34.

The bond loadings for the A0(3), A1(3), and diagonal A3(3) models are almost the same,

see Figure 1. This happens for two reasons. First, the functional form of the bond loading

recursions are the same up to Jensen’s inequality. Second, the size of the measurement errors

in the cross-section of yields are small relative to the magnitude of the time series shocks

causing an efficient estimator (like maximum likelihood) to emphasize the fit of the cross

section. The estimated factors of these models have high correlations (ranging from 0.95

to 1). Interestingly, the bond loadings for the unrestricted A3(3) model appear to be non-

stationary, even though the eigenvalues of ΦQh for this model are inside the unit circle and are

nearly identical to the other models.17 The average pricing errors are similar in these models,

with the more restricted diagonal A3(3) model having larger values. The measurement errors

are about 22 basis points for 3 months, 12 for 2 years, 12 for 3 years and 11 for 4 years.

These errors have the same magnitude as those reported in Ang and Piazzesi(2003).

Differences between these models are largely driven by their ability to fit the time series

15Multiple non-Gaussian factors tend to make the inversion problem more complicated. We solve this with
randomized starting values, and use several iterations of “fminsearch” in MATLAB for each starting value
to get an initial value that does not produce negative volatility. It takes roughly 20 trials (within a minute)
to locate a starting value for the A3(3) model.

16No arbitrage requires that the stochastic discount factor Mt+1 is strictly positive which is guaranteed
by the Feller condition, see Appendix D for details.

17Unlike Gaussian models, the bond loading recursions b̄n,h for multi-factor non-Gaussian models in (6)
are non-linear difference equations. The stability conditions for these equations appear to be determined by
more than the eigenvalues of ΦQh . We leave the conditions for stability of b̄n,h for future research.
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component of the likelihood. For example, in the A1(3) model, the conditional mean under P

is more restricted than the A0(3) model as the Gaussian factors cannot enter the conditional

mean of the non-Gaussian factors. The economic implication of this restriction for the A1(3)

model is that the level factor does not depend on the past values of slope and curvature

factors. This is apparently counterintuitive. If the slope is high in the last period, i.e., the

long rate is much higher than the short rate (more than explained by compensating for risk),

then it means the market expects the short rate will increase in the future. On average, the

next periods’ short rate or level will increase.

Four factor USV models The two best fitting USV models are the U1(4)(φ > φ2 > ψ)

and U1(4)(ψ > φ > φ2) models, whose estimates are in Table 4. See Section 4.2.2 for the

definition of the models. We calculate the likelihood for USV models by the particle filter,

see Creal(2012). The likelihood for the best fitting U1(4)(φ > φ2 > ψ) model is 37331.25,

which is lower than the unrestrictedA3(3) model but substantially higher than other spanned

models.

The bond loadings for USV models are not as flexible compared to spanned models due

to the USV restrictions explained in Section 4.2.2. The first USV model constrains the two

largest eigenvalues of ΦQ for the level and slope factors to be related as φ and φ2. Without any

restrictions on the eigenvalues of ΦQ as in the A0(3) and A1(3) models, these are estimated

to be 0.995 and 0.954. In the U1(4)(φ > φ2 > ψ) model, if the level factor has φ = 0.995,

the USV restriction would require the slope factor to be more persistent φ2 = 0.990 than

it would be without the restriction (0.954). Conversely, if the model tried to fit the slope

factor first, the USV restriction would not allow the level factor to be persistent enough.

As a compromise, the two eigenvalues in the U1(4)(φ > φ2 > ψ) model are closer to each

other than what the data would like with estimated values φ = 0.9868 and φ2 = 0.9738.

Consequently, the loadings on the level and slope factors in this model lie in between the

loadings for spanned models, see Figure 1. Due to the more restrictive loadings, it is not
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Table 3: Maximum likelihood estimates for two A3(3) models.
diagonal LLF = 36949.94 flexible LLF = 37385.28

Σhνh Σhνh
5.48e-05 2.75e-04 3.27e-04 5.35e-07 4.45e-05 9.35e-06

— — — — — —
νh νh

7.2325 10.7472 5.3456 1 3.1176 1
(5.2324) (4.9148) (1.2905) — (2.7588) —

Φh Φh

0.9918 0 0 0.9587 0.0010 0
(0.0056) — — (0.0102) (0.0003) —

0 0.9511 0 0.3109 0.9133 0.5975
— (0.0136) — (0.2807) (0.0259) (0.1841)
0 0 0.8133 0 0.0226 0.7876
— — (0.0298) (0.0018) (0.0408)

Σhν
Q
h Σhν

Q
h

2.01e-05 3.10e-04 6.63e-04 8.10e-07 1.43e-05 9.35e-06
— — — — — —

νQh δ0 νQh δ0
2.6464 12.0937 10.8396 -0.0070 1.5151 1 1 -9.12e-04

(0.7721) (5.2723) (1.9412) (0.0016) (1.7822) — — (4.82e-04)

ΦQh ΦQh
0.9996 0 0 0.9890 0.0002 0

(0.0005) — — (0.0014) (0.0000) —
0 0.9479 0 0 0.8850 1.3287
— (0.0018) — — (0.0333) (0.2776)
0 0 0.4837 0.4968 0.0206 0.6122
— — (0.0239) (0.0964) (0.0047) (0.0490)

Σh Σh

7.58e-06 0 0 5.35e-07 0 0
(1.27e-06) — — (5.84e-08) — —

0 2.56e-05 0 0 1.43e-05 0
— (6.60e-06) — — (3.05e-06) —
0 0 6.12e-05 0 0 9.35e-06
— — (5.95e-06) — — (2.43e-06)

δ1,h δ1,h
1 1 -1 1 1 -1
— — — — — —√

diag (Ω)× 1200
√

diag (Ω)× 1200
3 m 2 yr 3 yr 4 yr 3 m 2 yr 3 yr 4 yr

0.2247 0.1324 0.1286 0.1112 0.2230 0.1274 0.1236 0.1077

Maximum likelihood estimates with asymptotic quasi-maximum likelihood standard errors. Left: A3(3) model

with diagonal matrices ΦQh and Φh. Right: A3(3) model. The identifying restrictions µh = 0, and δ1,h =
(1, 1,−1) are imposed during estimation.

surprising that the average pricing errors for this model are larger than for spanned models.

Moreover, the Gaussian factors whose eigenvalues share the relationship φ and φ2 are highly

correlated with a correlation of -0.928. This number is 0.43 in absolute value for the A0(3)

and A1(3) models for example.

Estimation of an A0(3) that includes the same restrictions on ΦQg as the U1(4)(φ > φ2 >

ψ) model but no stochastic volatility has a likelihood of 37040.5. This indicates that this
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Table 4: Maximum likelihood estimates for two U1(4)(φ, φ2, ψ) models.
G = 3, H = 1 LLF = 37331.25 G = 3, H = 1 LLF = 37241.05

µg µg
2.11e-04 -1.88e-04 -2.37e-04 7.42e-04 -1.17e-03 8.49e-06

(5.04e-07) (3.66e-07) (2.39e-06) (8.80e-05) (8.42e-05) (5.76e-06)
Φg Φg

1.0724 0.1181 0.1107 1.1316 0.3251 0.0520
(0.0020) (0.0008) (0.0009) (0.0427) (0.1009) (0.0161)
-0.0788 0.8736 -0.0555 -0.2881 0.4463 -0.0923
(0.0008) (0.0015) (0.0005) (0.0213) (0.0715) (0.0149)
-0.0321 -0.0372 0.6347 0.0348 0.0349 0.9995
(0.0000) (0.0001) (0.0070) (0.0162) (0.0233) (0.0029)

µQg δ0 µQg δ0
0 0 0 0.0061 0 0 0 0.0115
— — — (0.0000) — — — (0.0007)

ΦQg ΦQg
0.9868 0.9738 0.4931 0.9073 0.8231 0.9967

(0.0004) — (0.0019) (0.0045) — (0.0004)

Σ0,g Σ0,g

1.16e-03 0 0 1.21e-03 0 0
(2.41e-06) — — (7.24e-05) — —
-1.23e-03 2.44e-04 0 -1.30e-03 2.13e-05 0
(2.83e-06) (1.14e-07) — (4.63e-06) (4.40e-05) —
5.04e-05 -4.27e-04 1.66e-10 -3.67e-04 7.05e-05 3.31e-04

(9.23e-08) (2.10e-06) (3.90e-13) (1.06e-04) (1.43e-04) (9.73e-05)
Σ1,g Σ1,g

7.05e-04 0 0 8.35e-04 0 0
(1.44e-06) — — (4.03e-05) — —

0 0 0 0 0 0
— — — — — —
0 0 0 0 0 0
— — — — — —

νh Φh Σh νh Φh Σh

1 0.9598 0.0100 1.0658 0.9539 0.0100
— (0.0086) — (0.0319) (0.0101) —

δ1,g δ1,g
1 1 1 1 1 1
— — — — — —√

diag (Ω)× 1200
√

diag (Ω)× 1200
3 m 2 yr 3 yr 4 yr 3 m 2 yr 3 yr 4 yr

0.2266 0.1298 0.1316 0.1101 0.2266 0.1298 0.1316 0.1101

Maximum likelihood estimates with quasi-maximum likelihood standard errors for two unspanned models.
Left: U1(4)(φ > φ2 > ψ) model. Right: U1(4)(ψ > φ > φ2) model. The USV and the identifying restrictions
Σh = 0.01, µQg = 0, and δ1,g = (1, 1, 1) are imposed during estimation.

single USV restriction is rejected relative to the benchmark Gaussian A0(3) model of Table 2

by a likelihood ratio test. On the other hand, the addition of unspanned stochastic volatility

factors increases the likelihood by 37331.25 - 37040.5 = 290.75. The primary source is a

significantly better fit of the dynamics of volatility, as we discuss further below.

When the USV restriction is imposed on the second and third largest eigenvalues as in

the U1(4)(ψ > φ > φ2) model of Table 4, it constrains the bond loadings of the slope and
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curvature factors because the eigenvalues in ΦQg associated with these factors now share the

relationship φ and φ2. This restriction causes them to be closer than they would otherwise

have been if left unrestricted. The U1(4)(φ, φ2, φ4) model imposes even stronger restrictions

on ΦQg because it only has a single free parameter. It has likelihood 36889.44 (parameter

estimates not reported), which is well below the benchmark A0(3) model.

Four factor spanned models Finally, we consider two four factor spanned models: the

GaussianA0(4) model and the non-GaussianA1(4) model. There are a total of 35 parameters

in theA0(4) model and only 20 of these parameters enter the numerical optimizer, while there

are 39 parameters in the A1(4) model and 15 of these can be concentrated out. Parameter

estimates and standard errors for both models are in Table 5. While adding another Gaussian

factor increases the likelihood relative to the A0(3) model to 37194.34 for the A0(4), the

additional factor is not as important as adding an USV factor.

Repeated eigenvalues When we estimated the A1(4) model, we found that it had re-

peated eigenvalues and our estimates in Table 5 have imposed them using the Jordan de-

composition. If we use a diagonal matrix for ΦQ, the matrix B1 will be singular and one

element in ΦQ is unidentified.18 To illustrate this point, Table 6 reports different sets of

parameter values all with the same likelihood. Across the four local maxima, the values of

ΦQh , the last eigenvalue of ΦQg , and the log-likelihood function are almost identical but the

first two eigenvalues of ΦQg vary across different optima. The last column of Table 6 shows

the results when we impose repeated eigenvalues (from the model reported in Table 2). The

estimates of ΦQh , the last eigenvalue of ΦQg and the likelihood function have the same values

as before. However, the first two eigenvalues of ΦQg are identical by definition and are equal

to the average of the first two eigenvalues in those local maxima. The log-likelihood value

also does not change.

18For a matrix with repeated eigenvalues, the Jordan decomposition imposes the additional restrictions
necessary to obtain identification. With two repeated eigenvalues in ΦQg , the Jordan decomposition is

vec
(
ΦQg
)′

= (λ1 1 0 ; 0 λ1 0 ; 0 0 λ2) where λ1 and λ2 are the unique eigenvalues.
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Table 5: Maximum likelihood estimates for the A0(4) and A1(4) models.

G = 4, H = 0 LLF = 37195.84 G = 3, H = 1 LLF = 36729.22

µg Σhνh µg νh
3.89e-04 -9.73e-04 1.28e-03 -8.19e-04 5.64e-05 3.07e-04 -3.76e-05 -3.10e-04 2.6780

(1.73e-04) (2.11e-04) (3.07e-04) (3.68e-04) — (1.76e-04) (1.84e-05) (1.79e-04) (1.8951)
Φg Φh

1.0336 0.0874 -0.0142 0.0908 0.9901
(0.0352) (0.0536) (0.0475) (0.0646) (0.0073)

Φgh Φg

-0.0783 0.8338 0.2044 -0.0788 0.0037 0.8668 1.1695 0.0911
(0.0626) (0.0893) (0.1298) (0.1734) (0.0260) (0.0644) (0.4487) (0.0974)
0.0889 0.1541 0.6935 0.1926 0.0016 0.0153 0.8156 0.0028

(0.0766) (0.1312) (0.1731) (0.2259) (0.0031) (0.0062) (0.0456) (0.0097)
-0.0851 -0.1405 -0.0398 0.5456 -0.0352 -0.0095 -0.1235 0.6508
(0.0528) (0.0901) (0.0924) (0.1377) (0.0257) (0.0555) (0.4361) (0.0974)

µQg Σhν
Q
h µQg νQh

0 0 0 0 2.71E-05 0 0 0 1.2839
— — — — — — — — (0.3516)

ΦQg ΦQh ΦQg
0.9922 0.9604 0.8764 0.6964 0.9952 0.9121 — 0.7021

(0.0024) (0.0116) (0.0303) (0.0504) (0.0011) (0.0075) — (0.0324)

Σ0,g Σh

6.94e-04 0 0 0 2.11e-05
(2.33e-04) — — — (3.75e-06)

Σgh Σ0,g

-1.47e-03 9.77e-04 0 0 0.9248 8.37e-04 0 0
(2.80e-04) (3.98e-04) — — (0.4737) (2.90e-04) — —
1.66e-03 -1.39e-03 8.74e-04 0 -0.2171 -9.03e-05 7.43e-13 0

(1.96e-04) (4.33e-04) (3.21e-04) — (0.0333) (2.69e-05) (4.22e-12) —
-8.06e-04 5.65e-04 -7.18e-04 4.04e-04 -1.5635 -7.96e-04 9.41e-11 4.03e-10
(3.69e-04) (2.68e-04) (3.59e-04) (2.68e-05) (0.4198) (2.72e-04) (1.75e-11) (6.48e-11)

Σ1,g

1.04e-02 0 0
(2.48e-03) — —
-6.75e-04 8.15e-04 0
(2.75e-04) (7.96e-05) —
-9.01e-03 1.12e-03 4.68e-03
(2.69e-03) (4.10e-04) (3.04e-04)

δ0 δ0
3.92e-03 -4.44e-04

(6.45e-04) (3.67e-04)
δ1,g δ1,h δ1,g

1 1 1 1 1 1 1 1
— — — — — — — —√

diag (Ω)× 1200
√

diag (Ω)× 1200
3 m 3 yr 4 yr 3 m 3 yr 4 yr

0.2390 0.1013 0.0982 0.2408 0.1005 0.0981

Maximum likelihood estimates with quasi-maximum likelihood standard errors. Left: Gaussian A0(4) model.
Right: non-Gaussian A1(4) model. The identifying restrictions µQg = 0, δ1,g = ι, and δ1,h = 1 are imposed
during estimation.
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Figure 2: Estimated conditional volatility of yields from four different affine models.
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Table 6: Repeated Eigenvalues
Local 1 Local 2 Local 3 Repeated

ΦQh 0.9952 0.9952 0.9952 0.9952
ΦQg 0.9130 0.9164 0.9126 0.9121

0.9112 0.9075 0.9115 –
0.7021 0.7025 0.7021 0.7021

LLF 36729.22 36729.20 36729.22 36729.22
Estimates from the A1(4) model when repeated eigenvalues are not imposed compared to when they are. The
table illustrates how this can create identification problems in affine models.

6.2 Volatility

The blue lines in Figure 2 are the conditional volatilities from four different models; across

the rows are the A1(3),A3(3), U1(4)(φ > φ2 > ψ) and U1(4)(ψ > φ > ψ2) models.19 The

three columns represent maturities of 1 month, 1 year, and 5 years. The volatilities for

the USV models are the filtered (one-sided) estimates calculated from the particle filter.

To provide a point of comparison, we also plot in these graphs the unconditional volatility

from the A0(3) model in green and in red estimates of the conditional volatilities from the

multivariate generalized autoregressive score model of Creal, Koopman, and Lucas(2011)

and Creal, Koopman, and Lucas(2013).20

The estimated volatilities from spanned models (first two rows) are much less volatile

than GAS volatility. A similar observation was made by Collin-Dufresne, Goldstein, and

Jones(2009). With only a single volatility factor, the A1(3) model does not fit yield volatil-

ity at any maturity. The A3(3) model adds flexibility with two more factors, which improves

the fit for volatility at shorter horizons, especially for the recent episode of low volatility.

At longer horizons, the fit to volatility appears to be the same as the A1(3) model. This

is because the estimated level (volatility) factor is similar across both the A1(3) and A3(3)

models, and the long term volatility loads mostly on it. Ultimately, spanned models lack

19The volatilities from the remaining models have the same qualitative features and are not shown.
20The generalized autoregressive score model with time-varying covariance matrix is similar to a multi-

variate GARCH model. To make the volatilities of yields comparable across models, we use a VAR(1) for

the conditional mean of yields Y
(1)
t and allow the errors to have time-varying volatilities and correlations.
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flexibility because the non-Gaussian state variables ht serve a dual role: they must simultane-

ously fit the conditional mean and variance. The maximum likelihood estimator chooses the

parameter vector θ to fit the conditional mean first before fitting the conditional variance.

USV models are designed to fit volatility by separating the role of Gaussian and non-

Gaussian factors. The U1(4)(φ > φ2 > ψ) model performs much better than spanned models

at fitting the volatility across different maturities, although it only has a single stochastic

volatility factor. It does a particularly good job for short and medium maturities. At longer

maturities, it fits the high volatility periods of the early 1980’s well, although misses the

period of low volatility early in the sample.

Our results suggest, however, that not all USV models fit yield volatility equally well

and researchers must be careful when choosing USV restrictions. We demonstrate this

point by comparing the performance of the two best USV models U1(4)(φ > φ2 > ψ)

and U1(4)(ψ > φ > φ2). Instead of having stochastic volatility on the level factor, the

U1(4)(ψ > φ > φ2) model has stochastic volatility on the slope factor. It fits the volatility

at shorter maturities equally well but, at longer maturities, it exhibits almost no stochastic

volatility. This is because the eigenvalue associated with the slope factor that has stochastic

volatility is φ = 0.9073 as opposed to φ = 0.9868 in the first USV model. The bond loadings

on this factor decay rapidly as maturity increases, meaning that long maturities have no

stochastic volatility. To summarize, although USV models are designed to fit the volatility,

the restrictions needed to impose USV are not unique and the choice of which restriction to

impose is not innocuous.

7 Conclusion

We provide new estimation procedures for non-Gaussian affine term structure models with

spanned or unspanned stochastic volatility. The new estimation approach for spanned mod-

els leverages the fact that many of the parameters can be concentrated out of the likelihood
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function. By optimizing the concentrated likelihood, it provides exactly the same solution as

maximizing the original likelihood. But, it improves the estimation dramatically by reduc-

ing the number of parameters that need to be maximized numerically. We demonstrate the

improvement in performance with our method. Using our procedure, we show what charac-

teristics of spanned non-Gaussian models cause local maxima to exist and how alternative

local maxima may have dramatically different economic implications. We apply a similar

idea to the concentrated likelihood to estimate unspanned models.

Estimating a wide range of popular models, we find that models with spanned volatility

have similar cross sectional fit for yields. They fit better than the USV models, because the

latter impose restrictions on the cross section in order to introduce USV factors. Models with

USV fit the volatility better by design. The choice of how to impose USV restrictions is not

innocuous as some USV models can severely limit yield volatility at particular maturities.

USV models make an effort to fit the volatility of yields. Future work on term struc-

ture models aiming to fit both the conditional mean and volatility of yields simultaneously

will likely require (1) multiple unspanned volatility factors, and (2) the ability to relax the

restrictions that USV impose on the cross section.
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Appendix A Distributions

We define the distributions found in the paper. The notation for them is local to the appendix.

Appendix A.1 Gamma and multivariate gamma distributions

A gamma r.v. wt+1 ∼ Gamma (νh, κ) has p.d.f p (wt+1|νh, κ) = 1
Γ(νh)w

νh−1
t+1 κ−νh exp

(
−wt+1

κ

)
and E (wt+1) =

νhκ and V (wt+1) = νhκ
2. The Laplace transform is E [exp (uwt+1)] =

(
1

1−κu

)νh
, which exists only if κu < 1.

A multivariate gamma random vector ht+1 ∼ Mult. Gamma (νh,Σh, µh) can be obtained by shifting and

rotating a vector of uncorrelated gamma r.v.’s. Let ht+1 = µh + Σhwt+1 where wt+1 is an H × 1 vector with

elements wi,t+1 ∼ Gamma (νh,i, 1) for i = 1, . . . ,H. The H × 1 vector of (non-negative) location parameters

is µh, Σh is a full rank H ×H matrix of (non-negative) scale parameters, and νh > 0 is a H × 1 vector of

shape parameters. The p.d.f of ht+1 can be determined by a standard change-of-variables

p (ht+1|νh,Σh, µh) = |Σ−1
h |

H∏
i=1

1

Γ (νh,i)

(
e′iΣ
−1
h [ht+1 − µh]

)νh,i−1
exp

(
−e′iΣ

−1
h [ht+1 − µh]

)
where ei is an H × 1 unit vector. The mean and variance are E [ht+1] = µh + Σhνh and V [ht+1] =

Σhdiag (νh) Σ′h. The Laplace transform is

E [exp (u′ht+1)] =

∫ ∞
0

exp (u′ht+1) p (ht+1|νh,Σh, µh) dht+1

= exp (u′µh)

∫ ∞
0

exp (u′Σhwt+1)
H∏
i=1

1

Γ (νh,i)
w
νh,i−1
i,t+1 exp (−wt+1) dwt+1

= exp (u′µh)
H∏
i=1

(
1

1− e′iΣ
′
hu

)νh,i
= exp

(
u′µh −

H∑
i=1

νh,i log [1− e′iΣ
′
hu]

)

The Laplace transform exists only if e′iΣ
′
hu < 1 for i = 1, . . . ,H.

Appendix A.2 Multivariate non-central gamma distributions

A H × 1 non-central gamma (NCG) random vector ht+1 ∼ Mult.-N.C.G. (νh,Φhht,Σh, µh) is a Poisson

mixture of multivariate gamma r.v.’s as in (12)-(14). The process ht remains positive and well-defined as

long as µh ≥ 0, Σ−1
h ΦhΣh ≥ 0, νh > 1, and elements of Σh cannot be negative. A standard multivariate NCG

random variable (the discrete-time CIR process) is obtained by setting µh = 0 and letting Σh be a diagonal

matrix. Further properties of the univariate NCG process are described in Gouriéroux and Jasiak(2006).
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As long as Σh has full rank, the p.d.f. can be found by integrating out the Poisson r.v.’s

p (ht+1|νh,Φhht,Σh, µh) = |Σ−1
h | exp

(
−

H∑
i=1

e′iΣ
−1
h [ht+1 − µh] + e′iΣ

−1
h Φh [ht − µh]

)
H∏
i=1

(
e′iΣ
−1
h [ht+1 − µh]

)νh,i−1

∞∑
zi,t+1=0

1

Γ (νh,i + zi,t+1)

1

zi,t+1!

[(
e′iΣ
−1
h [ht+1 − µh]

) (
e′iΣ
−1
h Φh [ht − µh]

)]zi,t+1

Using the definition of the modified Bessel function of the first kind21, the p.d.f. can be expressed as

p (ht+1|νh,Φhht,Σh, µh) = |Σ−1
h | exp

(
−

H∑
i=1

e′iΣ
−1
h [ht+1 − µh] + e′iΣ

−1
h Φh [ht − µh]

)
H∏
i=1

(
e′iΣ
−1
h [ht+1 − µh]

) νh,i−1

2
(
e′iΣ
−1
h Φh [ht − µh]

)− νh,i−1

2

Iνh,i−1

(
2
√(

e′iΣ
−1
h [ht+1 − µh]

) (
e′iΣ
−1
h Φh [ht − µh]

))
.

The Laplace transform can be derived from the law of iterated expectations

E [exp (u′ht+1)] = Ez
(
Eh|z [exp (u′ht+1)]

)
= Ez

(
exp (u′µh)

H∏
i=1

(
1

1− e′iΣ
′
hu

)νh,i+zi)

= exp (u′µh)
H∏
i=1

(
1

1− e′iΣ
′
hu

)νh,i
Ez

(
H∏
i=1

(
1

1− e′iΣ
′
hu

)zi)

= exp (u′µh)
H∏
i=1

(
1

1− e′iΣ
′
hu

)νh,i H∏
i=1

exp

((
e′iΣ
−1
h Φh [ht − µh]

)
e′iΣ
′
hu

1− e′iΣ
′
hu

)

= exp

(
u′µh +

H∑
i=1

e′iΣ
′
hu

1− e′iΣ
′
hu

e′iΣ
−1
h Φh (ht − µh)−

H∑
i=1

νh,i log (1− e′iΣ
′
hu)

)

where e′iΣ
′
hu denotes the i-th element of the H×1 vector Σ′hu. The Laplace transform exists only if e′iΣ

′
hu < 1

for i = 1, . . . ,H.

Appendix A.3 Mixture of Gaussian and mult. NCG distributions

From standard results in statistics, the multivariate (G × 1) Gaussian r.v. gt+1 ∼ N
(
gt+1|µg,ΣgΣ′g

)
has

Laplace transform E [exp (u′gt+1)] = exp
(
µ′gu+ 1

2u
′ΣgΣ

′
gu
)

for any real (G × 1) vector u. Consider

a (G + H) × 1 vector xt+1 = (h′t+1, g
′
t+1)′ where ht+1 is an H × 1 vector having a multivariate NCG

21This is defined as Iλ(x) =
(
x
2

)λ∑∞
z=0

1
Γ(λ+z+1)z!

(
x2

4

)z
, see Abramowitz and Stegun(1964).
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distribution p (ht+1|νh,Φhht,Σh, µh) and gt+1 is a G × 1 vector of conditionally Gaussian r.v. gt+1 ∼

N
(
µg + Σghht+1,ΣgΣ

′
g

)
. Let u = (u′h, u

′
g)
′ where uh and ug are H×1 and G×1 vectors, respectively. Using

the law of iterated expectations, the Laplace transform is

E [exp (u′xt+1)] = E
[
exp

(
u′ggt+1

)
exp (u′hht+1)

]
= Eh

[
Eg|h

[
exp

(
u′ggt+1

)]
exp (u′hht+1)

]
= Eh

[
exp

(
(µg + Σghht+1)′ug +

1

2
u′gΣgΣ

′
gug

)
exp (u′hht+1)

]
= exp

(
u′gµg +

1

2
u′gΣgΣ

′
gug

)
Eh
[
exp

([
u′gΣgh + u′h

]
ht+1

)]
= exp

(
u′gµg +

1

2
u′gΣgΣ

′
gug + u′ghµh −

H∑
i=1

νh,i log (1− e′iΣ
′
hugh)

+
H∑
i=1

e′iΣ
′
hugh

1− e′iΣ
′
hugh

e′iΣ
−1
h Φh (ht − µh)

)

where ugh = Σ′ghug+uh is an H×1 vector. The Laplace transform exists only if e′iΣ
′
hugh < 1 for i = 1, . . . ,H.

This is the key expression for solving for closed-form zero-coupon bond prices.

Appendix B Bond pricing

Bond prices can be solved by induction. Guess that bond prices are Pnt = exp
(
ān + b̄′n,hht + b̄′n,ggt

)
for

some coefficients ān, b̄n,h, and b̄n,g. At maturity n = 1 when the payoff is P 0
t+1 = 1, we find

P 1
t = EQt

[
exp (−rt)P 0

t+1

]
= exp

(
−δ0 − δ′1,hht − δ′1,ggt

)
such that ā1 = −δ0, b̄1,g = −δ1,g and b̄1,h = −δ1,h. Next, consider an n-period bond whose price in the next

period is Pn−1
t+1 . We find

Pnt = EQt
[
exp (−rt)Pn−1

t+1

]
= EQt

[
exp

(
−δ0 − δ′1,hht − δ′1,ggt

)
exp

(
ān−1 + b̄′n−1,hht+1 + b̄′n−1,ggt+1

)]
= exp

(
−δ0 − δ′1,hht − δ′1,ggt + ān−1

)
EQt
[
exp

(
b̄′n−1,hht+1 + b̄′n−1,ggt+1

)]
where the expectation is taken with respect to the distribution of the random vector xt+1 =

(
h′t+1, g

′
t+1

)′
ht+1

Q∼ Mult-NCG
(
νQh,i,Φ

Q
hht,Σh, µh

)
gt+1

Q∼ N
(
µQg + ΦQg gt + ΦQghht + Σgh

[
ht+1 −

(
(IH − ΦQh )µh + Σhν

Q
h + ΦQhht

)]
,Σg,tΣ

′
g,t

)
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This expectation has the same form as the Laplace transform provided in Appendix A. We find

Pnt = exp

(
−δ0 − δ′1,ggt − δ′1,hht + ān−1 +

1

2
b′n−1,gΣg,tΣ

′
g,tb̄n−1,g

+
[
µQg + ΦQg gt + ΦQghht − Σgh

(
(IH − ΦQh )µh + Σhν

Q
h + ΦQhht

)]′
b̄n−1,g

+
[
Σ′ghb̄n−1,g + bn−1,h

]′
µh +

H∑
i=1

e′iΣ
′
hb̄n−1,gh

1− e′iΣ
′
hb̄n−1,gh

e′iΣ
−1
h ΦQh [ht − µh]−

H∑
i=1

νQh,i log
(
1− e′iΣ

′
hb̄n−1,gh

))
= exp

(
−δ0 + ān−1 + µQ′g b̄n−1,g + µ′h

[
bn−1,h + ΦQ′h Σ′ghb̄n−1,g

]
− νQ′h Σ′hΣ′ghb̄n−1,g

+
1

2
b′n−1,gΣ0,gΣ

′
0,g b̄n−1,g −

H∑
i=1

νQh,i log
(
1− e′iΣ

′
hb̄n−1,gh

)
−

H∑
i=1

e′iΣ
′
hb̄n−1,gh

1− e′iΣ
′
hb̄n−1,gh

e′iΣ
−1
h ΦQhµh

+
[
b̄′n−1,gΦ

Q
g − δ′1,g

]
gt

+

[
H∑
i=1

e′iΣ
′
hb̄n−1,gh

1− e′iΣ
′
hb̄n−1,gh

e′iΣ
−1
h ΦQh + b̄′n−1,g

(
ΦQgh − ΣghΦQh

)
− δ′1,h

+
1

2

(
IH ⊗ b̄n−1,g

)′
ΣgΣ

′
g

(
ιH ⊗ b̄n−1,g

)]
ht

)

where ΣgΣ
′
g is a GH×GH matrix with diagonal elements Σi,gΣ

′
i,g for i = 1, . . . ,H and b̄n−1,gh = Σ′ghb̄n−1,g+

b̄n−1,h. The Laplace transform exists only if e′iΣ
′
hb̄n−1,gh < 1 for i = 1, . . . ,H.

Appendix C Factor rotations

Appendix C.1 Proof of Proposition 1

The admissibility restrictions needed to keep ht positive are: (1.) Chg = 0; (2.) Chh is such that all elements

ChhΣh are non-negative; (3.) ch is such that ch + Chhµh is non-negative; (4.) Chh and Cgg are full rank.

For some values of θ, these restrictions may allow ch and Chh to be negative.

Under these restrictions, the process
(
h̃′t, g̃

′
t

)′
is a member of the same family of distributions as (h′t, g

′
t)
′

only under a new parameters θ̃. The proof is immediate by comparing the Laplace transform of these random

variables before and after rotating them. The mapping between the parameters θ̃ and θ is

µ̃h = ch + Chhµh Φ̃h = ChhΦhC
−1
hh Σ̃h = ChhΣh Φ̃g = CggΦgC

−1
gg

µ̃g = cg +Cggµg −CggΦgC−1
gg cg +Cgh ([IH − Φh]µh + Σhνh)−

(
CghΦh − CggΦgC−1

gg Cgh + CggΦgh
)
C−1
hh ch

Φ̃gh =
(
CghΦh − CggΦgC−1

gg Cgh + CggΦgh
)
C−1
hh Σ̃gh = (Cgh + CggΣgh)C−1

hh
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Σ̃0,gΣ̃
′
0,g = CggΣ0,gΣ

′
0,gC

′
gg −

H∑
i=1

CggΣi,gΣ
′
i,gC

′
gge
′
iC
−1
hh ch Σ̃i,gΣ̃

′
i,g =

H∑
j=1

CggΣj,gΣ
′
j,gC

′
gge
′
jC
−1
hh ei

�

Appendix D Stochastic discount factor

We define the stochastic discount factor as

Mt+1 =
exp (−rt) p (gt+1|It, ht+1, zt+1; θ,Q) p (ht+1|It, zt+1; θ,Q) p (zt+1|It; θ,Q)

p (gt+1|It, ht+1, zt+1; θ,P) p (ht+1|It, zt+1; θ,P) p (zt+1|It; θ,P)

where the distributions are Gaussian, gamma, and Poisson. The exact SDF is

Mt+1 =
exp

(
−rt − 1

2ε
Q′
g,t+1ε

Q
g,t+1 −

∑H
i=1 e′iΣ

−1
h ΦQh [ht − µh]

)
exp

(
− 1

2ε
′
g,t+1εg,t+1 −

∑H
i=1 e′iΣ

−1
h Φh [ht − µh]

)
H∏
i=1

w
νQh,i−νh,i
i,t+1

Γ (νh,i + zi,t+1)

Γ
(
νQh,i + zi,t+1

) (e′iΣ
−1
h ΦQh [ht − µh]

e′iΣ
−1
h Φh [ht − µh]

)zi,t+1

where εg,t+1 = Σ−1
g,t (gt+1 − µg − Φggt − Φghht − Σghεh,t+1) and wt+1 = Σ−1

h [ht+1 − µh]. No arbitrage

requires that Mt+1 > 0 which implies that wt+1 > 0. The Feller conditions νh > 1 and νQh > 1 guarantee

that wt+1 > 0 under both probability measures.

For intuition, break the log-SDF mt+1 = log (Mt+1) into three terms; one for each of the shocks

mt+1 = −rt +mg,t+1 +mh,t+1 +mz,t+1

where mi,t+1 is the compensation for risk i. Let λg = µg −µQg , λh = νh− νQh , Λg = Φg −ΦQg , Λh = Φh−ΦQh ,

and Λgh = Φgh − ΦQgh.

For the Gaussian part, we find mg,t+1 = − 1
2λ
′
gtλgt − λ′gtεg,t+1 where εg,t+1 = Σ−1

g,tεg,t+1 is a standard,

zero mean Gaussian shock. The price of Gaussian risk is

λgt = Σ−1
g,t {(λg + Λggt + Λghht)− Σgh [Σhλh + Λh (ht − µh)]}

This generalizes the expression for Gaussian ATSMs, with a time-varying quantity of risk Σg,t.
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Recall that wt+1 = Σ−1
h (ht+1 − µh). We will write risk compensation in terms of wt+1.

mh,t+1 =
H∑
i=1

− log Γ
(
νQh,i + zi,t+1

)
+
(
νQh,i + zi,t+1 − 1

)
log
(
e′iΣ
−1
h (ht+1 − µh)

)
− e′iΣ

−1
h (ht+1 − µh)

H∑
i=1

log Γ (νh,i + zi,t+1)− (νh,i + zi,t+1 − 1) log
(
e′iΣ
−1
h (ht+1 − µh)

)
+ e′iΣ

−1
h (ht+1 − µh)

=
H∑
i=1

log

 Γ (νh,i + zi,t+1)

Γ
(
νQh,i + zi,t+1

)
− (νh,i − νQh,i) log

(
e′iΣ
−1
h (ht+1 − µh)

)

≈
H∑
i=1

log
(

[νh,i + zi,t+1]
νh,i−νQh,i

)
− λh,i log (wi,t+1) =

H∑
i=1

−λh,i [log (wi,t+1)− log (νh,i + zi,t+1)]

=
H∑
i=1

−λh,i
[
log

(
1 +

wi,t+1 − νh,i − zi,t+1

νh,i + zi,t+1

)]
≈

H∑
i=1

− λh,i√
νh,i + zi,t+1

wi,t+1 − νh,i − zi,t+1√
νh,i + zi,t+1

The compensation for gamma risks is approximately mh,t+1 ≈ −λ′wtεw,t+1 where εw,t+1,i =
wi,t+1−νh,i−zi,t+1√

νi+zi,t+1

is a gamma r.v. standardized to have mean 0 and variance 1.22 The market price of risk is λwt,i =

λh,i√
νh,i+zi,t+1

. We note that V (wit|zt) = νh,i + zi,t.

Consider the non-Gaussian part due to the Poisson distribution

mz,t+1 =
H∑
i=1

zi,t+1 log
(

e′iΣ
−1
h ΦQh (ht − µh)

)
− log (zi,t+1!)− e′iΣ

−1
h ΦQh (ht − µh)

−zi,t+1 log
(
e′iΣ
−1
h Φh (ht − µh)

)
+ log (zi,t+1!) + e′iΣ

−1
h Φh (ht − µh)

=
H∑
i=1

zi,t+1 log

(
1−

e′iΣ
−1
h ΛhΣhwt

e′iΣ
−1
h ΦhΣhwt

)
+ e′iΣ

−1
h ΛhΣhwt

≈
H∑
i=1

−zi,t+1
e′iΣ
−1
h ΛhΣhwt

e′iΣ
−1
h ΦhΣhwt

+ e′iΣ
−1
h ΛhΣhwt

=
H∑
i=1

−e′iΣ
−1
h ΛhΣhwt

(
zi,t+1 − e′iΣ

−1
h ΦhΣhwt

e′iΣ
−1
h ΦhΣhwt

)
=

H∑
i=1

−
e′iΣ
−1
h ΛhΣhwt√

e′iΣ
−1
h ΦhΣhwt

εz,t+1,i

The log SDF is mz,t+1 ≈ −λ′ztεz,t+1 where εz,t+1 =
zi,t+1−e′iΣ

−1
h ΦhΣhwt√

e′iΣ
−1
h ΦhΣhwt

is Poisson r.v. standardized to have

mean 0 and variance 1 and λzt,i =
e′iΣ
−1
h ΛhΣhwt√

e′iΣ
−1
h ΦhΣhwt

.

22Our derivation uses the approximation that Γ(a+x)
Γ(b+x) ∝ x

a−b (1 +O
(

1
x

))
for large x. We also use the fact

that log(1 + x) = x for small x.
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Appendix E Log-likelihood for spanned models

Dropping the initial condition, the conditional log-likelihood for the general affine model is given by

`(θ) = CONST− (T − 1) log |B1| −
T − 1

2
log |Ω| − 1

2

T∑
t=2

tr
(
Ω−1ηtη

′
t

)
− 1

2

T∑
t=2

log
∣∣Σg,t−1Σ′g,t−1

∣∣
−1

2

T∑
t=2

tr
((

Σg,t−1Σ′g,t−1

)−1
εgtε

′
gt

)
−(T − 1) log|Σh| −

T∑
t=2

H∑
i=1

e′iΣ
−1
h (ht − µh)−

T∑
t=2

H∑
i=1

e′iΣ
−1
h Φh (ht−1 − µh)

+
T∑
t=2

H∑
i=1

(νh,i − 1)

2
log
(
e′iΣ
−1
h [ht − µh]

)
−

T∑
t=2

H∑
i=1

(νh,i − 1)

2
log
(
e′iΣ
−1
h Φh [ht−1 − µh]

)
+

T∑
t=2

H∑
i=1

log Iνh,i−1

(
2
√(

e′iΣ
−1
h [ht − µh]

) (
e′iΣ
−1
h Φh [ht−1 − µh]

))

where Iλ (x) is the modified Bessel function of the first kind and ei is the H × 1 unit vector.

Appendix F Proofs and Analytical Derivatives

In this appendix, we prove the propositions in the paper. We begin with a preliminary lemma.

Lemma 1 The derivative of the concentrated log-likelihood function can be computed as the partial derivative

of the log-likelihood function:
d`(θ̂c(θm),θm)

dθ′m
=

∂`(θ̂c,θm)
∂θ′m

, where θ̂c (θm) = arg max
θc

` (θc, θm)

Proof:
d`(θ̂c(θm),θm)

dθ′m
=

∂`(θ̂c,θm)
∂θ′m

+ ∂`(θc,θm)
∂θ′c

|θc=θ̂c
dθ̂c(θm)
dθ′m

=
∂`(θ̂c,θm)
∂θ′m

, where ∂`(θc,θm)
∂θ′c

|θc=θ̂c = 0 by the

definition of θ̂c. �

Appendix F.1 Proof of Proposition 2

Proof First, we show that optimizing the original likelihood and optimizing the concentrated likelihood

lead to equivalent solutions. Solving max
θ

` (θ) requires ∂`(θc,θm)
∂θ′m

= 0 and ∂`(θm,θc)
∂θ′c

= 0. The solution

to max
θm

`
(
θ̂c (θm) , θm

)
has the property

d`(θ̂c(θm),θm)
dθ′m

= 0. By Lemma 1,
∂`(θ̂c,θm)
∂θ′m

= 0. This with

∂`(θc,θm)
∂θ′c

|θc=θ̂c = 0 by the definition of θ̂c constitute the two F.O.C.’s for the original problem.

Second, showing θ̂c can be solved by least squares given θm is straightforward. A value for θm maps

into a value for the loadings A and B though (9)-(10), and therefore xt by (16). Given the factors, equation
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(11) is a linear regression with heteroskedasticity, hence GLS. Given yields, factors and bond loadings, Ω in

equation (17) is the variance-covariance matrix in a linear regression with homoskedasticity, hence OLS. �

Appendix F.2 Proof of Proposition 3

We use the result in Lemma 1 to derive the gradients for the concentrated log likelihood based on the original

log-likelihood, which makes the derivation easier.

Proof A direct result of Lemma 1 is
d`(θ̂c(θm),θm,A(θm),B(θm))

dθ′m
=

∂`(θ̂c,θm,A(θm),B(θm))
∂θ′m

. Applying the chain

rule,

∂`
(
θ̂c, θm, A (θm) , B (θm)

)
∂θ′m

=
∂`
(
θ̂c, θm, A,B

)
∂θ′m

+
∂`
(
θ̂c, θm, A,B

)
∂A′

∂A (θm)

∂θ′m

+
∂`
(
θ̂c, θm, A,B

)
∂vec (B′)

′
∂vec

(
B (θm)

′)
∂θ′m

.

�

Appendix F.3 Gradients

We now provide the analytical gradient. Note that θ̂c = (µ̂g, Φ̂g, Φ̂gh, Ω̂) are optimized by θ̂c = argmax
θc

` (θc, θm)

detailed in Proposition 2. Let h̃it = 2
√(

e′iΣ
−1
h [ht − µh]

) (
e′iΣ
−1
h Φh [ht−1 − µh]

)
, ĥt = Σ−1

h (ht − µh), and

ˆ̂
ht−1 = Σ−1

h Φh (ht−1 − µh). The matrices Sg and Sh extract the Gaussian gt = Sgxt and non-Gaussian

factors ht = Shxt from xt.

∂`

∂νh,i
= −

T∑
t=2

ε′gt
(
Σg,t−1Σ′g,t−1

)−1
ΣghΣhei +

1

2

T∑
t=2

log

(
e′iĥt

e′i
ˆ̂
ht−1

)
+

T∑
t=2

1

Iνh,i−1

(
h̃it

) ∂Iνh,i−1

(
h̃it

)
∂νh,i

∂`

∂vec (Φh)
′ = −

T∑
t=2

vec
(

Σ′gh
(
Σg,t−1Σ′g,t−1

)−1
εgth

′
t−1

)′
−

T∑
t=2

H∑
i=1

vec
(

(Σ′h)
−1

ei (ht−1 − µh)
′
)′
−

T∑
t=2

H∑
i=1

(νh,i − 1)

2e′i
ˆ̂
ht−1

vec
(

(Σ′h)
−1

ei (ht−1 − µh)
′
)′

+
T∑
t=2

H∑
i=1

 (νh,i − 1)

h̃it
+

Iνh,i

(
h̃it

)
Iνh,i−1

(
h̃it

)
 2e′iĥt

h̃it
vec
(

(Σ′h)
−1

ei (ht−1 − µh)
′
)′

where we have used ∂Iλ(x)
∂x = λ

xIλ(x) + Iλ+1(x), see, Abramowitz and Stegun(1964). The derivative ∂Iλ(x)
∂λ

is a complicated expression that is easier to compute numerically. The derivatives for parameters entering
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the loadings are calculated by the chain rule. Take derivatives of ` w.r.t. the loadings A1, A2, B1 and B2.

Then, take derivatives of the loadings w.r.t. the parameters.

∂`

∂δ0
=

∂`

∂A′
∂A

∂δ0

∂`

∂δ′1,g
=

∂`

∂A′
∂A

∂δ′1,g
+

∂`

∂vec (B′)
′
∂vec (B′)

∂δ′1,g

∂`

∂δ′1,h
=

∂`

∂A′
∂A

∂δ′1,h
+

∂`

∂vec (B′)
′
∂vec (B′)

∂δ′1,h

∂`

∂νQ′h
=

∂`

∂A′
∂A

∂νQ′h

∂`

∂µQ′g
=

∂`

∂A′
∂A

∂µQ′g

∂`

∂vec
(

ΦQg
)′ =

∂`

∂A′
∂A

∂vec
(

ΦQg
)′ +

∂`

∂vec (B′)
′
∂vec (B′)

∂vec
(

ΦQg
)′

∂`

∂vec
(

ΦQgh

)′ =
∂`

∂A′
∂A

∂vec
(

ΦQgh

)′ +
∂`

∂vec (B′)
′
∂vec (B′)

∂vec
(

ΦQgh

)′
∂`

∂vec
(

ΦQh

)′ =
∂`

∂A′
∂A

∂vec
(

ΦQh

)′ +
∂`

∂vec (B′)
′
∂vec (B′)

∂vec
(

ΦQh

)′
The derivatives of the remaining parameters that enter both the loadings and the P dynamics are

d`

dµ′h
=

∂`

∂µ′h
+

∂`

∂A′
∂A

∂µ′h

d`

dvech (Σ0,g)
′ =

∂`

∂vech (Σ0,g)
′ +

∂`

∂A′
∂A

∂vech (Σ0,g)
′

d`

dvec (Σh)
′ =

∂`

∂vec (Σh)
′ +

∂`

∂A′
∂A

∂vec (Σh)
′ +

∂`

∂vec (B′)
′
∂vec (B′)

∂vec (Σh)
′

d`

dvec (Σgh)
′ =

∂`

∂vec (Σgh)
′ +

∂`

∂A′
∂A

∂vec (Σgh)
′ +

∂`

∂vec (B′)
′
∂vec (B′)

∂vec (Σgh)
′

d`

dvech (Σi,g)
′ =

∂`

∂vech (Σi,g)
′ +

∂`

∂A′
∂A

∂vech (Σi,g)
′ +

d`

∂vec (B′)
′
∂vec (B′)

∂vech (Σi,g)
′

∂`

∂vec (Σh)
′ = −

T∑
t=2

vec
(

Σ′gh
(
Σg,t−1Σ′g,t−1

)−1
εgtν

′
h

)′
− (T − 1)vec

((
Σ−1
h

)′)′
+

T∑
t=2

H∑
i=1

vec
((

Σ−1
h

)′
eiĥ
′
t

)′
+

T∑
t=2

H∑
i=1

vec
((

Σ−1
h

)′
ei

ˆ̂
h′t−1

)′
−

T∑
t=2

H∑
i=1

(νh,i − 1)

2e′iĥt
vec
((

Σ−1
h

)′
eiĥ
′
t

)′
+

T∑
t=2

H∑
i=1

(νh,i − 1)

2e′i
ˆ̂
ht−1

vec
((

Σ−1
h

)′
ei

ˆ̂
h′t−1

)′

−
T∑
t=2

H∑
i=1

 (νh,i − 1)

h̃it
+

Iνh,i

(
h̃it

)
Iνh,i−1

(
h̃it

)
 2e′iĥt

h̃it
vec
((

Σ−1
h

)′
ei

ˆ̂
h′t−1

)′

−
T∑
t=2

H∑
i=1

 (νh,i − 1)

h̃it
+

Iνh,i

(
h̃it

)
Iνh,i−1

(
h̃it

)
 2e′i

ˆ̂
ht−1

h̃it
vec
((

Σ−1
h

)′
eiĥ
′
t

)′
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∂`

∂vec (Σgh)
′ =

T∑
t=2

vec
((

Σg,t−1Σ′g,t−1

)−1
εgtε

′
ht

)′

∂`

∂vech (Σ0,g)
′ =

T∑
t=2

vec
([(

Σg,t−1Σ′g,t−1

)−1
εgtε

′
gt − IG

] (
Σg,t−1Σ′g,t−1

)−1
Σ0,g

)′
DLG

∂`

∂vech (Σi,g)
′ =

T∑
t=2

vec
([(

Σg,t−1Σ′g,t−1

)−1
εgtε

′
gt − IG

] (
Σg,t−1Σ′g,t−1

)−1
Σi,ghi,t−1

)′
DLG

∂`

∂µ′h
= −

T∑
t=2

ε′gt
(
Σg,t−1Σ′g,t−1

)−1
Σgh (IH − Φh) +

T∑
t=2

H∑
i=1

e′iΣ
−1
h +

T∑
t=2

H∑
i=1

e′iΣ
−1
h Φh

−
T∑
t=2

H∑
i=1

(νh,i − 1)

2e′iĥt
e′iΣ
−1
h +

T∑
t=2

H∑
i=1

(νh,i − 1)

2e′i
ˆ̂
ht−1

e′iΣ
−1
h Φh

−
T∑
t=2

H∑
i=1

 (νh,i − 1)

h̃it
+

Iνh,i

(
h̃it

)
Iνh,i−1

(
h̃it

)
 2

h̃it
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e′iĥte

′
iΣ
−1
h Φh + e′i

ˆ̂
ht−1e′iΣ

−1
h

]

∂`

∂A′2
=

T∑
t=2

η′tΩ
−1 ∂`

∂vec (B′2)
′ =

T∑
t=2

vec
(
xtη
′
tΩ
−1
)′

∂`

∂A′1
=

T∑
t=2
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−η′tΩ−1B2B

−1
1 + ε′gt

(
Σg,t−1Σ′g,t−1

)−1
[(IG − Φg)Sg − (Φgh + Σgh − ΣghΦh)Sh]B−1

1

+
1

2
vec
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Σg,t−1Σ′g,t−1

)−1
[
IG − εgtε′gt

(
Σg,t−1Σ′g,t−1

)−1
])′ H∑

i=1

vec
(
Σi,gΣ

′
i,g

)
ShiB

−1
1

+
T∑
t=2

H∑
i=1

e′iΣ
−1
h ShB

−1
1 −

T∑
t=2

H∑
i=1

(νh,i − 1)

2e′iĥt
e′iΣ
−1
h ShB

−1
1

+
T∑
t=2

H∑
i=1

e′iΣ
−1
h ΦhShB

−1
1 +

T∑
t=2

H∑
i=1

(νh,i − 1)

2e′i
ˆ̂
ht−1

e′iΣ
−1
h ΦhShB

−1
1

−
T∑
t=2

H∑
i=1

 (νh,i − 1)

h̃it
+

Iνh,i

(
h̃it

)
Iνh,i−1

(
h̃it

)
 2e′i

ˆ̂
ht−1

h̃it
e′iΣ
−1
h ShB

−1
1

−
T∑
t=2

H∑
i=1

 (νh,i − 1)

h̃it
+

Iνh,i

(
h̃it

)
Iνh,i−1

(
h̃it

)
 2e′iĥt

h̃it
e′iΣ
−1
h ΦhShB

−1
1
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∂`

∂vec (B′1)
′ = −(T − 1)vec

(
B−1

1

)′
+

T∑
t=2

[
−vec

(
xtη
′
tΩ
−1B2B

−1
1

)′
+vec

(
xtε
′
gt

(
Σg,t−1Σ′g,t−1

)−1
(Sg − ΣghSh)B−1

1

)′
−vec

(
xt−1ε

′
gt

(
Σg,t−1Σ′g,t−1

)−1
(ΦgSg + [Φgh − ΣghΦh]Sh)B−1

1

)′
+

1

2
vec
((

Σg,t−1Σ′g,t−1

)−1
[
IG − εgtε′gt

(
Σg,t−1Σ′g,t−1

)−1
])′ H∑

i=1

vec
(
Σi,gΣ

′
i,g

) [
ShiB

−1
1 ⊗ x′t−1

]
+

T∑
t=2

H∑
i=1

vec
(
xte
′
iΣ
−1
h ShB

−1
1

)′ − T∑
t=2

H∑
i=1

(νh,i − 1)

2e′iĥt
vec
(
xte
′
iΣ
−1
h ShB

−1
1

)′
+

T∑
t=2

H∑
i=1

vec
(
xt−1e′iΣ

−1
h ΦhShB

−1
1

)′
+

T∑
t=2

H∑
i=1

(νh,i − 1)

2e′i
ˆ̂
ht−1

vec
(
xt−1e′iΣ

−1
h ΦhShB

−1
1

)′
−

T∑
t=2

H∑
i=1

 (νh,i − 1)

h̃it
+

Iνh,i

(
h̃it

)
Iνh,i−1

(
h̃it

)
 2e′i

ˆ̂
ht−1

h̃it
vec
(
xte
′
iΣ
−1
h ShB

−1
1

)′

−
T∑
t=2

H∑
i=1

 (νh,i − 1)

h̃it
+

Iνh,i

(
h̃it

)
Iνh,i−1

(
h̃it

)
 2e′iĥt

h̃it
vec
(
xt−1e′iΣ

−1
h ΦhShB

−1
1

)′

The derivatives of A and B w.r.t. the parameters can be computed recursively as a function of maturity

along with ān, b̄n,g and b̄n,h. The derivatives of Bg and Bh have separate recursions. Let b̄n,g,ψ denote

the derivatives of the Gaussian loadings b̄n,g at maturity n w.r.t. a parameter ψ. All recursions are written

assuming that ψ is a full vector/matrix of parameters with no restrictions. If the matrix has fewer parameters

than entries, the user will have to multiply the respective recursion by a selection matrix. Let d̄n−1 =

diag
(
ιH − Σ′hb̄n−1,gh

)
be a diagonal H × H matrix. Let c̄′n−1 =

(
νQ′d̄−1

n−1 − µ
Q′
h ΦQ′h Σ−1′

h d̄−2
n−1

)
Σ′h be an

1×H vector.

ā′
n,µQg
1×G

= ā′
n−1,µQg

+ b̄′n−1,g

ā′n,µh
1×H

= ā′n−1,µh
+ b̄′n−1,h + b̄′n−1,gΣghΦQh − b̄

′
n−1,ghΣhd̄

−1
n−1Σ−1

h ΦQh

ā′
n,νQh

1×H

= ā′
n−1,νQh

− log
(
ι′H − b̄′n−1,ghΣh

)
− b̄′n−1,gΣghΣh

ā′n,Σ0,g

1×G(G+1)/2

= ā′n−1,Σ0,g
+ vec

(
b̄n−1,g b̄

′
n−1,gΣ0,g

)′DLG
ā′n,δ1h
1×H

= ā′n−1,δ1h
+ µ′hb̄n−1,h,δ1h + c̄′n−1b̄n−1,h,δ1h
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ā′
n,ΦQgh

1×GH

= ā′
n−1,ΦQgh

+ µ′hb̄n−1,h,ΦQgh
+ c̄′n−1b̄n−1,h,ΦQgh

ā′n,Σi,g
1×G(G+1)/2

= ā′n−1,Σi,g + µ′hb̄n−1,h,Σi,g + c̄′n−1b̄n−1,h,Σi,g i = 1, . . . ,H

ā′
n,ΦQh

1×H2

= ā′
n−1,ΦQh

+ µ′hb̄n−1,h,ΦQh
+ c̄′n−1b̄n−1,h,ΦQh

+vec
((

Σ′ghb̄n−1,g − Σ−1′
h d̄−1

n−1Σ′hb̄n−1,gh

)
µ′h
)′

ā′n,Σgh
1×GH

= ā′n−1,Σgh
+ µ′hb̄n−1,h,Σgh + c̄′n−1b̄n−1,h,Σgh + vec

[
b̄n−1,g

(
µ′hΦQ′h − ν

Q′
h Σ′h + c̄′n−1

)]′
ā′n,δ1g
1×G

= ā′n−1,δ1g + µ′hb̄n−1,h,δ1g + c̄′n−1b̄n−1,gh,δ1g

+
(
µQ′g + µ′hΦQ′h Σ′gh − ν

Q′
h Σ′hΣ′gh

)
b̄n−1,g,δ1g + b̄′n−1,gΣ0,gΣ

′
0,g b̄n−1,g,δ1g

ā′
n,ΦQg

1×G2

= ā′
n−1,ΦQg

+ µ′hb̄n−1,h,ΦQg
+ c̄′n−1db̄n−1,gh,ΦQg

+
(
µQ′g + µ′hΦQ′h Σ′gh − ν

Q′
h Σ′hΣ′gh

)
b̄n−1,g,ΦQg

+ b̄′n−1,gΣ0,gΣ
′
0,g b̄n−1,g,ΦQg

ā′n,Σh
1×H(H+1)/2

= ā′n−1,Σh
+ µ′hb̄n−1,h,Σh + c̄′n−1b̄n−1,h,Σh + vec

(
Σ−1′
h d̄−1

n−1Σ′hb̄n−1,ghµ
′
hΦQ′h Σ−1′

h

)′
−vec

(
Σ′ghb̄n−1,gν

′
h

)′
+ vec

(
b̄n−1,ghc̄

′
n−1Σ−1′

h

)′
and ∂vec(A)

∂δ0
= ιN and with b̄1,g,δ1g = −IG, b̄1,h,δ1h = −IH . All other initial conditions start at zero.

b̄n,g,δ1g
G×G

= ΦQ′g b̄n−1,g,δ1g − IG

b̄n,g,ΦQg
G×G2

= ΦQ′g b̄n−1,g,ΦQg
+
(
IG ⊗ b̄′n−1,g

)
b̄n,h,δ1h
H×H

= ΦQ′h Σ−1′
h d̄−2

n−1Σ′hb̄n−1,h,δ1h − IH

b̄n,h,ΦQgh
H×GH

= ΦQ′h Σ−1′
h d̄−2

n−1Σ′hb̄n−1,h,ΦQgh
+ IH ⊗ b̄′n−1,g

b̄n,h,Σi,g
H×G(G+1)/2

= ΦQ′h Σ−1′
h d̄−2

n−1Σ′hb̄n−1,h,Σgi + eivec
(
b̄n−1,g b̄

′
n−1,gΣi,g

)′DLG i = 1, . . . ,H

b̄n,h,ΦQh
H×H2

= ΦQ′h Σ−1′
h d̄−2

n−1Σ′hb̄n−1,h,ΦQh
− IH ⊗ b̄′n−1,gΣgh + IH ⊗ b̄′n−1,ghΣhd̄

−1
n−1Σ−1

h

b̄n,h,Σgh
H×GH

= ΦQ′h Σ−1′
h d̄−2

n−1Σ′hb̄n−1,h,Σgh − ΦQ′h Σ−1′
h

(
IH − d̄−2

n−1

)
Σ′h ⊗ b̄′n−1,g

b̄n,h,δ1g
H×G

= ΦQ′h Σ−1′
h d̄−2

n−1Σ′hb̄n−1,gh,δ1g +
(

ΦQgh − ΣghΦQh

)′
b̄n−1,g,δ1g

+
(
IH ⊗ b̄′n−1,g

)
ΣgΣ

′
g

(
ιH ⊗ b̄n−1,g,δ1g

)
b̄n,h,ΦQg
H×G2

= ΦQ′h Σ−1′
h d̄−2

n−1Σ′hb̄n−1,gh,ΦQg
+
(

ΦQgh − ΣghΦQh

)′
b̄n−1,g,ΦQg

+
(
IH ⊗ b̄′n−1,g

)
ΣgΣ

′
g

(
ιH ⊗ b̄n−1,g,ΦQg

)
b̄n,h,Σh

H×H(H+1)/2

= ΦQ′h Σ−1′
h d̄−2

n−1Σ′hb̄n−1,h,Σh −
(

ΦQ′h Σ−1′
h ⊗ b̄′n−1,ghΣhd̄

−1
n−1Σ−1

h

)
+
(

ΦQ′h Σ−1′
h d̄−2

n−1 ⊗ b̄′n−1,gh

)
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where we also need to account for the derivatives of b̄n,gh = Σ′ghb̄n,g + b̄n,h as

b̄n−1,gh,δ1g
H×G

= Σ′ghb̄n−1,g,δ1g + b̄n−1,h,δ1g b̄n−1,gh,ΦQg
H×G2

= Σ′ghb̄n−1,g,ΦQg
+ b̄n−1,h,ΦQg

Many of the derivatives of the loadings are zero for all maturities including b̄n,g,µh
G×H

, b̄n,h,µQg
H×G

,b̄n,g,δ1h
G×H

, b̄n,g,ΦQh
G×H2

,

b̄n,g,Σh
G×H2

, b̄n,g,Σ0,g

G×G(G+1)/2

, b̄n,h,Σ0,g

H×G(G+1)/2

, b̄n,g,ΦQgh
G×GH

, b̄n,g,Σi,g
H×G(G+1)/2

, b̄n,g,Σgh
G×GH

, b̄n,g,νQh
G×H

, b̄n,h,νQh
H×H

.

Appendix G USV restrictions

Appendix G.1 Proof of Proposition 4

We provide proofs for the U1(4)(φ, φ2, ψ) and U1(4)(φ, φ2, φ4) models.

Proof for U1(4)(φ, φ2, ψ): Showing bn,h = 0 is equivalent to b̄n,h = 0. We prove b̄n,h = 0 by induction

over n. At n = 1, we have b̄1,h = −δ1,h = 0. Next, suppose b̄n,h = 0, then under the restriction that Σgh = 0,

we find that b̄n,gh = 0. Imposing the restrictions on Σ1,gΣ
′
1,g and from (6), the loading recursion reduces to

b̄n+1,h = ΦQgh,1b̄n,g,1 + ΦQgh,2b̄n,g,2 + ΦQgh,3b̄n,g,3 +
1

2
b̄2n,g,1Σ2

1,g,11

The restrictions on ΦQg together with (7) implies the solution for b̄n,g: b̄n,g,1 = − 1−φn
1−φ δ1,g,1, b̄n,g,2 =

− 1−φ2n

1−φ2 δ1,g,2, b̄n,g,3 = − 1−ψn
1−ψ δ1,g,3. Substituting these above gives

b̄n+1,h = −ΦQgh,1
1− φn

1− φ
δ1,g,1 − ΦQgh,2

1− φ2n

1− φ2
δ1,g,2 − ΦQgh,3

1− ψn

1− ψ
δ1,g,3

+
1

2

(1− φn)
2

(1− φ)
2 δ

2
1,g,1Σ2

1,g,11

Collect terms related to (φn)
0
, (φn)

1
, (φn)

2
, ψn, we get the following three equations

b̄n+1,h =

(
−ΦQgh,1

δ1,g,1
1− φ

− ΦQgh,2
δ1,g,2

1− φ2
− ΦQgh,3

δ1,g,3
1− ψ

+
1

2

δ2
1,g,1

(1− φ)
2 Σ2

1,g,11

)
+

(
ΦQgh,3

δ1,g,3
1− ψ

)
ψn

+

(
ΦQgh,1

δ1,g,1
1− φ

−
δ2
1,g,1

(1− φ)
2 Σ2

1,g,11

)
φn +

(
ΦQgh,2

δ1,g,2
1− φ2

+
1

2

δ2
1,g,1

(1− φ)
2 Σ2

1,g,11

)
φ2n

The restrictions on ΦQgh guarantee that the coefficients in front of (φn)
0
, (φn)

1
, (φn)

2
, ψn are all zero. Hence,

b̄n+1,h = 0. �
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Proof for U1(4)(φ, φ2, φ4): We prove b̄n,h = 0 by induction. First, at maturity n = 1, we have

b̄1,h = −δ1,h = 0. Next, suppose b̄n,h = 0, then b̄n,gh = 0 because Σgh = 0 under the USV restrictions. From

(6), the non-Gaussian loading simplifies to

b̄n+1,h = ΦQ′ghb̄n,g +
1

2
b̄′n,gΣ1,gΣ

′
1,g b̄n,g (G.1)

Substituting the parameter restrictions on Σ1,gΣ
′
1,g into the equation, we find

b̄n+1,h = ΦQgh,1b̄n,g,1 + ΦQgh,2b̄n,g,2 + ΦQgh,3b̄n,g,3 +
1

2
b̄2n,g,1Σ2

1,g,11 +
1

2
b̄2n,g,2Σ2

1,g,22

The parameter restrictions on ΦQg together with (7) implies the solution for b̄n,g: b̄n,g,1 = − 1−φn
1−φ δ1,g,1, b̄n,g,2 =

− 1−φ2n

1−φ2 δ1,g,2, b̄n,g,3 = − 1−φ4n

1−φ4 δ1,g,3. Substituting these in, we find

b̄n+1,h = −ΦQgh,1
1− φn

1− φ
δ1,g,1 − ΦQgh,2

1− φ2n

1− φ2
δ1,g,2 − ΦQgh,3

1− φ4n

1− φ4
δ1,g,3

+
1

2

(1− φn)
2

(1− φ)
2 δ

2
1,g,1Σ2

1,g,11 +
1

2

(
1− φ2n

)2
(1− φ2)

2 δ2
1,g,2Σ2

1,g,22

Collect terms related to (φn)
0
, (φn)

1
, (φn)

2
, (φn)

4

b̄n+1,h =

(
−ΦQgh,1

δ1,g,1
1− φ

− ΦQgh,2
δ1,g,2

1− φ2
− ΦQgh,3

δ1,g,3
1− φ4

+
1

2

δ2
1,g,1

(1− φ)
2 Σ2

1,g,11 +
1

2

δ2
1,g,2

(1− φ2)
2 Σ2

1,g,22

)

+

(
ΦQgh,1

δ1,g,1
1− φ

−
δ2
1,g,1

(1− φ)
2 Σ2

1,g,11

)
φn

+

(
ΦQgh,2

δ1,g,2
1− φ2

+
1

2

δ2
1,g,1

(1− φ)
2 Σ2

1,g,11 −
δ2
1,g,2

(1− φ2)
2 Σ2

1,g,22

)
φ2n

+

(
ΦQgh,3

δ1,g,3
1− φ4

+
1

2

δ2
1,g,2

(1− φ2)
2 Σ2

1,g,22

)
φ4n

The restrictions on ΦQgh guarantee that the coefficients in front of (φn)
0
, (φn)

1
, (φn)

2
, (φn)

4
are all zero.

Therefore, b̄n+1,h = 0. �
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Appendix H EM algorithm

Appendix H.1 Intermediate quantity

Given the identifying restriction µh = 0, we drop this parameter for convenience. The two components of

the intermediate quantity Q
(
θ|θ(i)

)
= Q1

(
θm,b, θc|θ(i)

)
+Q2

(
θm,h|θ(i)

)
are

Q1

(
θm,b, θc|θ(i)

)
= − (T − 1) log |B1| −

T − 1

2
log |Ω| − 1

2

T∑
t=2

tr
(
Ω−1ηtη

′
t

)
−1

2

T∑
t=2

E
[
log
∣∣Σg,t−1Σ′g,t−1

∣∣]− 1

2

T∑
t=2

tr
(
E
[(

Σg,t−1Σ′g,t−1

)−1
]
εgtε

′
gt

)

and

Q2

(
θm,h|θ(i)

)
= −(T − 1) log|Σh| −

T−1∑
t=1

H∑
i=1

e′iΣ
−1
h E [ht]−

T−1∑
t=1

H∑
i=1

e′iΣ
−1
h ΦhE [ht−1]

+

T−1∑
t=1

H∑
i=1

(νh,i − 1)

2
E
[
log
(
e′iΣ
−1
h ht

)]
−
T−1∑
t=1

H∑
i=1

(νh,i − 1)

2
E
[
log
(
e′iΣ
−1
h Φhht−1

)]
+

T−1∑
t=1

H∑
i=1

E

[
log Iνh,i−1

(
2
√(

e′iΣ
−1
h ht

) (
e′iΣ
−1
h Φhht−1

))]

MaximizingQ1

(
θm,b, θc|θ(i)

)
is similar to estimation of a Gaussian ATSM. When maximizingQ1

(
θm,b, θc|θ(i)

)
,

the analytical gradient of the intermediate quantity can be derived from the gradients in Appendix E.

There are several options for maximizing Q2

(
θm,h|θ(i)

)
, all of which lead to different types of EM

algorithms. Each EM algorithm leads to the same maximum but they converge at different rates.

• Option #1: Maximize the intermediate quantity Q2

(
θm,h|θ(i)

)
numerically over θm,h as above.

• Option #2: From the definition of ht+1 in (2)-(4), there is also the variable zt. When calculating

Q2

(
θm,h|θ(i)

)
, take the expectations of zt and ht. By introducing zt, the maximization of Φh is

analytical.

• Option #3: Instead of optimizing over Q2

(
θm,h|θ(i)

)
at each iteration, a valid EM algorithm can

optimize the log-likelihood over θm,h. When H = 1, we can use the particle filter of Malik and

Pitt(2011) to maximize the log-likelihood log p
(
Y

(1)
1:T ; θ

)
over θm,h.

For the results in the paper, we used the third option.
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Appendix H.2 Particle filter

We implement a basic particle filter for the E-step in (a.). Let q
(
ht|h(m)

t−1, gt+1, gt, θ
)

be an importance

density whose tails are heavier than the target distribution.

For t = 1, . . . , T , run:

• For m = 1, . . . ,M , draw from a proposal distribution: h
(m)
t ∼ q

(
ht|h(m)

t−1, gt+1, gt, θ
)

.

• For m = 1, . . . ,M , calculate the importance weight: w
(m)
t ∝ ŵ

(m)
t−1

p
(
gt+1|gt,h(m)

t ,θ
)
p
(
h
(m)
t |h(m)

t−1,θ
)

q
(
h
(m)
t |h(m)

t−1,gt+1,gt,θ
)

• For m = 1, . . . ,M , normalize the weights: ŵ
(m)
t =

w
(m)
t∑M

m=1 w
(m)
t

.

• Calculate the effective sample size: ESSt = 1∑M
m=1

(
ŵ

(m)
t

)2

• If ESSt < 0.5M resample
{
h

(m)
t

}M
m=1

with probabilities
{
ŵ

(m)
t

}M
m=1

and set ŵt = 1/M .

At time t = 1, q (h1; θ) does not depend on any previous particles. Simple proposal distributions are to draw

from the transition density p (ht+1|ht; θ) of the model (2)-(4).

To calculate the expectations within Q
(
θ|θ(i)

)
, we use the algorithm of Godsill, Doucet, and West(2004)

that draws samples from the posterior. Store
{
ŵ

(m)
t , h

(m)
t

}M
m=1

for t = 1, . . . , T during the particle filter.

On a backwards pass, sample h̃T = h
(m)
T with probability ŵ

(m)
T and then for t = T − 1, . . . , 1

• For m = 1, . . . ,M , calculate backwards weights w
(m)
t+1|t ∝ w

(m)
t p

(
h̃t+1|h(m)

t ; θ
)

.

• For m = 1, . . . ,M , normalize the weights: ŵ
(m)
t+1|t =

w
(m)

t+1|t∑M
m=1 w

(m)

t+1|t
.

• Sample h̃t = h
(m)
t with probability ŵ

(m)
t+1|t

To calculate the expectations Q
(
θ|θ(i)

)
, we repeat this backwards pass a large number of times.

For the final climb after the EM algorithm, we optimize over all θ using the algorithm from Malik and

Pitt(2011). To implement this particle filter, we resample at every time period and use the resampling

algorithm described in their appendix.
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