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1. Introduction

Recent years have seen rapid growth in the use of randomized experiments in social sci-

ence research. In part, this has been motivated by the “credibility revolution” in which

researchers have devoted much attention to the study of the conditions that allow estima-

tion of treatment effects (Angrist and Pischke 2010; Murnane and Willett 2011). The main

advantage of a large and well-executed randomized experiment is that the researcher can

confidently rule out the possibility that unobserved differences between the treatment and

control groups could explain the study’s results.

In addition to allowing estimation of average treatment effects, experiments also make

it possible to obtain unbiased estimates of treatment effects for subgroups. Subgroup

treatment effects are of particular interest to policymakers seeking to target policies on those

most likely to benefit. As a general rule, subgroups must be created based on characteristics

that are either immutable (e.g., race) or observed before randomization (e.g., on a baseline

survey) so that they could not possibly have been affected by the treatment.

However, many researchers and policy makers are interested in estimating how treat-

ments affect those most in need of help, that is, those who would attain unfavorable out-

comes in the absence of the treatment. Treatment parameters of this nature depend on the

joint distribution of potential outcomes with and without treatment, which is not identified

by randomization (see, e.g., Heckman et al., 1997). A solution to this problem is to com-

bine baseline characteristics into a single index that reflects each participant’s predicted

outcome without treatment, and conduct separate analysis for subgroups of participants

defined in terms of intervals of the predicted outcome without treatment.

A well-known implementation of this idea is the use of data on out-of-sample untreated

units to estimate a prediction model for the outcome variable, which can then be applied to

predict outcomes without treatment for the experimental units. This approach is common

in medical research, where validated risk models are available to stratify experimental

subjects based on their predicted probability of certain health outcomes (Kent and Hayward

2007).
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However, experimental studies in the social sciences often lack externally validated

models that can be employed to predict the outcomes that experimental units would attain

in the absence of the treatment. A potential approach to this problem that is gaining

popularity among empirical researchers is to use in-sample information on the relationship

between the outcome of interest and covariates for the experimental controls to estimate

potential outcomes without treatment for all experimental units. We call this practice

endogenous stratification, because it uses in-sample data on the outcome variable to stratify

the sample.

Endogenous stratification is typically implemented in practice by first regressing the

outcome variable on baseline characteristics using the full sample of experimental controls,

and then using the coefficients from this regression to generate predicted potential outcomes

without treatment for all sample units.

Unfortunately, as we show below, this procedure generates estimators of treatment

effects that are substantially biased, and the bias follows a predictable pattern: results

are biased upward for individuals with low predicted outcomes and biased downward for

individuals with high predicted outcomes.

This bias pattern matches the results of several recent experimental studies that use this

procedure and estimate strong positive effects for individuals with low predicted outcomes

and, in some cases, negative effects for individuals with high predicted outcomes. For

example, a 2011 working paper by Goldrick-Rab et al. reports that a Wisconsin need-

based financial aid program for post-secondary education had no overall impacts on college

enrollment or college persistence among eligible students as a whole. Looking separately at

subgroups based on predicted persistence, however, the study finds large positive effects on

enrollment after three years for students in the bottom third of predicted persistence and

almost equally large negative effects for students in the top third of predicted persistence.1

1Goldrick-Rab et al. (2011) report that, for students in the bottom third group of predicted persistence,
grant receipt was associated with an increase of 17 percentage points in enrollment three years after they
started college. Conversely, for students in the top third group of predicted persistence, grant receipt
was associated with a decrease of 15 percentage points in enrollment three years after the start of college.
These findings were characterized by the authors as “exploratory” but received widespread media coverage,
including articles in the Chronicle of Higher Education, Inside Higher Education, and Education Week. In
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A 2011 working paper by Dynarski et al. analyzing long-term impacts of the Project STAR

experiment similarly finds that assignment to a small class in grades K-3 increased college

enrollment rates among the quintile of students with the lowest ex-ante probability to enroll

by 11 percentage points, but had no impact on students in the top four quintiles. Pane et al.

(2013) report experimental estimates of the effects of a technology-based algebra curriculum

on the test scores of middle and high school students disaggregated by quintiles of predicted

test scores. For middle school students exposed to the program in the first year of its

implementation they find “potentially moderately large positive treatment effects in the

lowest quintile and small negative effects of treatment in the highest two quintiles”. Hemelt

et al. (2012) find no significant average impacts in a experimental evaluation of the effects

of two elementary school interventions on college enrolment or degree receipt. They report,

however, significant positive impacts on two-year college enrollment for both interventions

and on associate’s degree completion for one of the interventions when they restrict the

sample to students in the bottom quartile of in-sample predicted probability of college-

attendance. Rodriguez-Planas (2012) reports that a mentoring program for adolescents

reduced risky behavior and improved educational attainment for students in the top half

of the risk distribution but increased risky behavior in the bottom half.2

Endogenous stratification also plays a supporting role in Angrist and Lavy’s (2009)

experimental evaluation of a cash incentive program aimed at increasing matriculation

certification rates for Israeli high school students. In order to test whether the program

was most effective for girls on the certification margin, the researchers first group students

by baseline test scores. They also, however, report results for students grouped by ex-ante

certification probability based on a broader set of background characteristics as “a check

on the notion that high lagged scores identify students who have a shot at classification”

a related paper on the design of randomized experiments, Harris and Goldrick-Rab (2012) discuss potential
explanations for the unexpected heterogeneity in their impact estimates based on full-sample endogenous
stratification.

2We should note that endogenous stratification estimates do not appear in the published versions of two
of the studies described here, see Dynarski et al. (2013) and Hemelt et al. (2013), or in a subsequent working
paper on the grant program evaluated in Goldrick-Rab et al. 2011 by the same authors, see Goldrick-Rab
et al. 2012.
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(p. 1396).

The possibility of bias arising from endogenous stratification has been previously ac-

knowledged in the evaluation literature (see, e.g., Peck, 2003), in statistics (Hansen, 2008),

and in economics (Sanbonmatsu et al., 2006, and Giné et al, 2012), but the size and sig-

nificance of the bias in realistic evaluation settings is not well understood.3 A deceivingly

comforting property of the bias is that it vanishes as sample size increases, under weak reg-

ularity conditions. However, as we demonstrate below using data from the National JTPA

Study and the Tennessee STAR experiment, biases resulting from endogenous stratification

can completely alter the quantitative and qualitative conclusions of empirical studies.

In the remainder of this article, we first describe in more detail the increasingly popular

practice of stratifying experimental data by groups constructed on the basis of the pre-

dicted values from a regression of the outcome on baseline covariates for the full sample of

experimental controls. We next explain why this method generates biases and describe the

direction of those biases. We then describe leave-one-out and repeated split sample proce-

dures that generate consistent estimators and show that the biases of these estimators are

substantially lower than the bias of the full sample estimator in two realistic scenarios. We

use data from the National JTPA Study and the Tennessee STAR experiment to demon-

strate the performance of endogenous stratification estimators and the magnitude of their

biases. We restrict our attention to randomized experiments, because this is the setting

where endogenous stratification is typically used. However, similarly large biases may arise

from endogenous stratification in observational studies.

2. Using Control Group Data to Create Predicted Outcomes

We begin by describing in detail the endogenous stratification method outlined above, which

aims to classify study participants into groups based on their predicted value of the outcome

variable in the absence of the treatment. Suppose that the sample consists ofN observations

3Hausman and Wise (1977) and Hausman and Wise (1981), from which we borrow the term “endogenous
stratification”, study the related problem of biased sampling in randomized experiments. Altonji and Segal
(1996) study biases that arise in the context of efficient generalized methods of moments estimation for
reasons that are related to those that explain the bias of the full sample endogenous stratification estimator.
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of the triple (y, w,x), where y is an outcome variable, w is the treatment, and x is a vector

of baseline characteristics. When the object of interest is the average treatment effect,

which in a randomized experiment is equal to τ = E[y|w = 1] − E[y|w = 0], researchers

typically compare sample average outcomes for the treated and the control groups:

τ̂ =

N∑
i=1

yiwi

N∑
i=1

wi

−

N∑
i=1

yi(1− wi)

N∑
i=1

(1− wi)
.

As discussed above, researchers sometimes aim to compare treated and non-treated after

stratifying on a predictor of the outcome in the absence of the treatment. To our knowl-

edge, most studies that use endogenous stratification implement it roughly as follows:

(1) Regress the outcome variable on a set of baseline characteristics using the control

group only. The regression coefficients are:

β̂ =

(
N∑
i=1

xi(1− wi)x′i

)−1 N∑
i=1

xi(1− wi)yi.

(2) Use the estimated coefficients to generate predicted outcome values for all participants

(both treatment and control groups), x′iβ̂.

(3) Divide participants into groups based on their predicted outcomes. Typically, unit

i is assigned to group k if x′iβ̂ falls in some interval delimited by ck−1 and ck. The

interval limits may be fixed or could be quantiles of the empirical distribution of

x′iβ̂. Many authors use a three-bin classification scheme of low, medium, and high

predicted outcomes.

(4) Estimate treatment effects for each of the subgroups,

τ̂k =

N∑
i=1

yiI[wi=1,ck−1<x
′
iβ̂≤ck]

N∑
i=1

I[wi=1,ck−1<x
′
iβ̂≤ck]

−

N∑
i=1

yiI[wi=0,ck−1<x
′
iβ̂≤ck]

N∑
i=1

I[wi=0,ck−1<x
′
iβ̂≤ck]

,
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where IA is the indicator function that takes values one if event A is realized, and

value zero otherwise. Alternatively, treatment effect estimates could be computed

after controlling for a set of covariates using regression.

For example, Goldrick-Rab et al. (2011) in their study of the impact of a need-based

grant regress college persistence on baseline characteristics using only observations from

the control group, generate predicted probabilities of college persistence for all students,

classify students into three equal-sized groups based on their ex-ante predicted probability,

and then estimate treatment effects for each of the three groups.

This is a simple and direct approach to stratification, which has great intuitive appeal.

Moreover, it is easy to show that under usual regularity conditions, τ̂k converges to

τk = E[y|w = 1, ck−1 < x
′β ≤ ck]− E[y|w = 0, ck−1 < x

′β ≤ ck].

As we will see next, however, τ̂k is biased in finite samples, and the bias follows a predictable

pattern.

To simplify the exposition, suppose that predicted outcomes are divided into three

groups (low, medium, high). Let β = (E[xx′|w = 0])−1E[xy|w = 0] be the population

counterpart of β̂, and let ei = yi−x′iβ be the regression error. In a finite sample, untreated

observations with large negative values for ei tend to be over-fitted, so we expect x′iβ̂ < x
′
iβ,

which pushes these observations towards the lower interval of predicted outcomes. This

creates a negative bias in the average outcome among control observations that fall into

the lower interval for x′iβ̂ and, therefore, a positive bias in the average treatment effect

estimated for that group. Analogously, average treatment effect estimators for the upper

intervals of predicted outcomes are biased downward. Endogenous stratification results in a

predictable pattern: average treatment effect estimators are biased upward for individuals

with low predicted outcomes and biased downward for individuals with high predicted

outcomes. As we will demonstrate below, because the finite sample bias of the endogenous

stratification estimator is created by over-fitting, this bias tends to be more pronounced

when the number of observations is small and the dimensionality of xi is large.
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A natural solution to the over-fitting issue is provided by leave-one-out estimators.4 Let

β̂(−i) =

(∑
j 6=i

xi(1− wi)x′i

)−1∑
j 6=i

xi(1− wi)yi,

be the regression coefficients estimators that discard observation i. Over-fitting is precluded

by not allowing the outcome, yi, of each observation to contribute to the estimation of its

own predicted value, x′iβ̂(−i). Because only untreated observations are employed in the

estimation of β̂(−i) and β̂, if i is a treated observation then β̂(−i) = β̂. We consider the

following leave-one-out estimator of τk:

τ̂LOOk =

N∑
i=1

yiI[wi=1,ck−1<x
′
iβ̂≤ck]

N∑
i=1

I[wi=1,ck−1<x
′
iβ̂≤ck]

−

N∑
i=1

yiI[wi=0,ck−1<x
′
iβ̂(−i)≤ck]

N∑
i=1

I[wi=0,ck−1<x
′
iβ̂(−i)≤ck]

.

Under weak assumptions, it can be seen that both τ̂k and τ̂LOOk are consistent estimators

of τk. Moreover, τ̂k and τ̂LOOk have the same large sample distribution.5 However, we show

in section 4 that τ̂k is substantially biased in two realistic scenarios, while τ̂LOOk is not.6

Another way to avoid over-fitting is sample splitting. We consider a repeated split

sample estimator. In each repetition, m, the untreated sample is randomly divided into

two groups, which we will call the prediction and the estimation groups. Let vim = 0 if

untreated observation i is assigned the prediction group in repetition m, and vim = 1 if it

is assigned to the estimation group. In each repetition, m, we estimate β using only the

observations in the prediction group:

β̂m =

(
N∑
i=1

xi(1− wi)(1− vim)x′i

)−1 N∑
i=1

xi(1− wi)(1− vim)yi.

4This is the approach followed in Sanbonmatsu et al. (2006). Harvill et al. (2013) propose a variant of
this approach based on 10-fold cross-validation.

5Proofs of these and other formal statements made in this paper are provided in Appendix 1.
6A separate issue in the estimation of τk is that first step estimation of β affects the large sample

distribution of the estimator (see Appendix 1 for a derivation of the large sample distribution of τ̂k and
τ̂LOO
k ). The contribution of the estimation of β to the variance of τ̂k has been ignored in empirical practice.
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For each repetition, m, the split sample estimator of τk is

τ̂SSkm =

N∑
i=1

yiI[wi=1,ck−1<x
′
iβ̂m≤ck]

N∑
i=1

I[wi=1,ck−1<x
′
iβ̂m≤ck]

−

N∑
i=1

yiI[wi=0,vim=1,ck−1<x
′
iβ̂m≤ck]

N∑
i=1

I[wi=0,vim=1,ck−1<x
′
iβ̂m≤ck]

.

We then average τ̂SSkm over M repetitions to obtain the repeated split sample estimator:

τ̂RSSk =
1

M

M∑
m=1

τ̂SSkm.

The repeated split sample estimator is asymptotically unbiased and Normal but, unlike

the leave-one-out estimator, its large sample distribution does not coincide with the large

sample distribution of the full-sample endogenous stratification estimator. For large M ,

however, the difference between the large sample distribution of the repeated split sample

estimator and the large sample distribution of the full-sample and leave-one-out estimators

is small.7,8

In the next section, we apply the estimators described above to the analysis of data

from two well-know experimental studies: the National JTPA Study and the Tennessee

Project STAR experiment.

3. Evidence of Large Biases in Two Actual Applications

To demonstrate the performance of the estimators described in the previous section and the

magnitude of their biases in realistic scenarios we use data from two randomized evaluations:

the National JTPA Study, an evaluation of a vocational training program in the U.S., and

the kindergarten cohort of the Tennessee Project STAR class-size experiment.

3.1. The National JTPA Experiment

We first examine data from the National JTPA Study. The National JTPA Study was a

large experimental evaluation of a job training program commissioned by the U.S. Depart-

7This is proven in Appendix 1.
8The methods described in this section do not exhaust the possible approaches to the bias of the

full-sample endogenous stratification estimator. Bootstrap/jackknife bias corrections on τ̂k and shrinkage
estimation of β are potentially fruitful approaches that we are starting to explore.
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ment of Labor in the late 1980’s. The National JTPA Study data have been extensively

analyzed by Orr et al. (1996), Bloom, et al. (1997), and many others. The National

JTPA Study randomized access to vocational training to applicants in 16 service delivery

areas, or SDAs, across the U.S. Randomized assignment was done after applicants were

deemed eligible for the program and recommended to one of three possible JTPA service

strategies: on the job training/job search assistance, classroom training, and other ser-

vices. Individuals in the treatment group were provided with access to JTPA services,

and individuals in the control group were excluded from JTPA services for an 18-month

period after randomization. We use data for the sample of male applicants recommended

to the job training/job search assistance service strategy, and discard three SDAs with few

observations. Our sample consists of 1681 treated observations and 849 untreated obser-

vations, for a total of 2530 observations in 13 SDAs.9 In this example, wi is an indicator

of a randomized offer of JTPA services, yi is nominal 30-month earnings in U.S. dollars

after randomization, and xi includes age, age squared, marital status, previous earnings,

indicators for having worked less than 13 weeks during the year previous to randomization,

having a high-school degree, being African-American, and being Hispanic, as well as SDA

indicators.

Table 1 reports estimates for the JTPA sample. The first row reports two treatment

effect estimates. The “unadjusted” estimate is the difference in outcome means between

treated and controls. The “adjusted” estimate is the coefficient on the treatment indicator

in a linear regression of the outcome variable, yi, on the treatment indicator, wi, and the

covariates, xi, listed above. The unadjusted estimate suggests a $1516 effect on 30-month

earnings. This estimate is significant at the 10 percent level. Regression adjustment reduces

the point estimate to $1207, which becomes marginally non-significant at the 10 percent

level. The rest of Table 1 reports average treatment effects by predicted outcome group.

The first set of estimates correspond to τ̂k, the full-sample endogenous stratification esti-

mator. This estimator produces a large and significant effect for the low predicted outcome

group. The unadjusted estimate is $2380 and significant at the 5 percent level. This rep-

9See Appendix 2 for detailed information on sample selection and estimation methods.
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resents a 12.6 percent effect on 30-month earnings, once we divide it by the average value

of 30-month earnings among the experimental controls. It also represents an effect that is

57 percent higher than the corresponding unadjusted estimated for the average treatment

effect in the first row of the table. The adjusted estimate is $2012, similarly large, and

significant at the 10 percent level. For the high predicted outcome group, the estimates

are also large, but not statistically significant at conventional test levels. For the middle

predicted outcome group, the estimates are negative, but of moderate magnitude and not

statistically significant. All in all, the full-sample endogenous stratification estimates pro-

vide a much more favorable picture of JTPA effectiveness relative to the average treatment

effects reported on the first row. Now, the bulk of the effect seems to be concentrated on

the low predicted outcome group, precisely the one in most need of help, with more diffuse

effects estimated for the middle and high predicted outcome groups.

The next two sets of estimates reported in Table 1 correspond to the leave-one-out

estimator, τ̂LOOk , and the repeated split sample estimator τ̂RSSk , with number of repetitions,

M , equal to 100. These two estimators, which avoid over-fitting bias arising from the

estimation of β, produce results that are substantially different than those obtained with

the full-sample endogenous stratification estimator, τ̂k. Relative to the τ̂k estimates, the

τ̂LOOk and τ̂RSSk estimates are substantially smaller for the low predicted outcome group,

and substantially larger for the high predicted outcome group. For the high predicted

outcome group we obtain unadjusted estimates of $3647 (leave-one-out) and $3569 (split

sample) both significant at the 5 percent level, and adjusted estimates of $3118 (leave-one-

out) and $2943 (split sample) significant at the 10 percent and 5 percent levels respectively.

The estimates for the low and middle predicted outcome groups are small in magnitude

and not statistically significant. These results place the bulk of the treatment effect on

the high predicted outcome group and do not provide substantial statistical evidence of

beneficial effects for the low and middle predicted outcome groups.10 The comparison of

10This is loosely consistent with the findings in Abadie, Angrist, and Imbens (2002) who report large
JTPA effects at the upper tail of the distribution of earnings for male trainees, and no discernible effects
at the middle or lower parts of the distribution.
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estimates produced with the full sample endogenous stratification estimator and the leave-

one-out and split sample estimators suggests that the over-fitting bias of the full sample

endogenous stratification estimator is of substantial magnitude and dramatically changes

the qualitative and quantitative interpretations of the results.

As a further check on the magnitude of endogenous stratification biases in the analysis

of the National JTPA Study data, Table 1 reports a last set of treatment effects estimates,

which are stratified using data on earnings before randomization. The National JTPA

Study data include individual earnings during the 12 months before randomization. We

use the sorting of the experimental subjects in terms of pre-randomization earnings to

approximate how the experimental subjects would have been sorted in terms of earnings in

the absence of the treatment. We construct the estimator τ̂PREVk in the same way as τ̂k but

using previous earnings, instead of predicted earnings, to divide the individuals into three

groups of approximately equal size. Notice that, because previous earnings is a baseline

characteristic, τ̂PREVk is not affected by over-fitting bias. As shown on the bottom of Table

1, stratification on previous earning produces results similar to those obtained with τ̂LOOk

and τ̂RSSk : large and significant effects for the high predicted outcome group and smaller

and non-significant effects for the middle and low predicted outcome groups.

3.2. The Tennessee Project STAR Experiment

Our second example uses data from the Tennessee Project STAR class-size study. In the

Project STAR experiment, students in 79 schools were randomly assigned to small, regular-

size, and regular-size classes with a teacher’s aide. Krueger (1999) analyzes the STAR data

set and provides detailed explanations of the STAR experiment. For our analysis, we use

the 3764 students who entered the study in kindergarten and were assigned to small classes

or to regular-size classes (without a teacher’s aide). Our outcome variable is standardized

end-of-the-year kindergarten math test scores.11 The covariates are indicators for African-

American, female, eligibility for the free lunch program, and school attended. We discard

11Standardized test scores are computed dividing raw test scores by the standard deviation of the dis-
tribution of the scores in regular-size classes.
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observations with missing values in any of these variables.

Results for the STAR experiment data are reported in Table 2. The adjusted and unad-

justed estimators of the average treatment effect on the first row of Table 2 show positive

and significant effects. Using a simple difference in means, the effect of small classes is es-

timated as 0.1659 of the regular class standard deviation in math test scores, and 0.1892 of

the same standard deviation when we use a regression-adjusted estimator.12 In both cases,

the estimates are significant at the 5 percent level. For the low and middle predicted out-

comes groups, the full-sample endogenous stratification estimator, τ̂k, produces estimates

that are positive and roughly double the average treatment effects estimates on the first

row of the table. Counter-intuitively, however, the full sample endogenous stratification

estimates for the high predicted outcome group are negative and significant. They seem to

suggest that being assigned to small classes was detrimental for those students predicted

to obtain high math scores if all students had remained in regular-size classes. We deem

this result counter-intuitive because it implies that reductions in the student/teacher ratio

have detrimental effects on average for a large group of students. Notice that the magni-

tudes of the negative effects estimated for high predicted outcome group are substantial:

smaller, but not far from the positive average treatment effects reported in the first row of

the table. We will see that the large and significant negative effect for the high predicted

outcome group disappears when the leave-one-out or the repeated split sample procedures

are used for estimation. Indeed, the leave-one-out and repeated split sample estimates on

the two bottom rows of Table 2 suggest positive, significant, and large effects on the low

and middle predicted outcome groups and effects of small magnitude and not reaching sta-

tistical significance at conventional test levels for the high predicted outcome group. Like

for the JTPA, the qualitative and quantitative interpretations of the STAR experiment

results change dramatically when the leave-one-out or the repeated split sample estimators

12To be consistent with much of the previous literature on the STAR experiment, we report both
regression-adjusted and unadjusted estimates. Because the probability of assignment to a small class
varied by school in the STAR experiment, the regression-adjusted estimator is most relevant in this set-
ting. Like in Krueger (1999), however, covariate regression adjustment does not substantially change our
estimates.
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are used instead of the full-sample endogenous stratification estimator.

In this section, we have used data from two well-known and influential experimental

studies to investigate the magnitude of the distortion that over-fitting may induce on en-

dogenous stratification estimators. In the next section, we use Monte Carlo simulations to

assess the magnitude of the biases of the different estimators considered Section 2. To keep

the exercise as realistic as possible, in two of our simulations we choose data generating

processes that mimic the features of the JTPA and STAR data sets.

4. Simulation Evidence on the Behavior of Endogenous Stratification
Estimators

This section reports simulation evidence on the finite sample behavior of endogenous strat-

ification estimators. We run Monte Carlo simulations in three different settings. In the

first two Monte Carlo simulations, we make use of the JTPA and STAR data sets to assess

the magnitudes of biases and other distortions to inference in realistic scenarios. The third

and fourth Monte Carlo simulations use computer-generated data to investigate how the

bias of endogenous stratification estimators changes when the sample size or the number

of covariates changes.

In the JTPA-based simulation, we first use the JTPA control units to estimate a two-

part model for the distribution of earnings conditional on the covariates of the adjusted

estimates in Table 1. The two-part model consists of a Logit specification for the probability

of zero earnings and a Box-Cox model for positive earnings.13 In each Monte Carlo iteration

we draw 2530 observations, that is, the same number of observations as in the JTPA sample,

from the empirical distribution of the covariates in the JTPA sample. Next, we use the

estimated two-part model to generate earnings data for each observation in the Monte

Carlo sample. Then, we randomly assign 1681 observations to the treatment group and

849 observations to the control group, to match the numbers of treated and control units

in the original JTPA sample. Finally, in each Monte Carlo iteration, we compute the full-

sample, leave-one-out, and repeated split sample endogenous stratification estimates. We

13Additional details about the simulation models can be found in Appendix 2.
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also compute the value of the unfeasible estimator, τ̂UNFk , obtained by stratification on the

population regression function (which can be calculated from the estimated parameters of

the two-part model by simulation). We conduct a total of 10000 Monte Carlo iterations.

Figure 1 reports the Monte Carlo distributions of the endogenous stratification esti-

mators that divide the experimental sample into three categories of predicted earnings of

roughly equal size (bottom third, middle third, and top third). To economize space this

figure shows only the distribution of the unadjusted estimators.14 Because assignment to

the treatment and control groups is randomized in our simulation and because the process

that generates earnings data is the same for treated and controls, it follows that the average

effect of the treatment in the simulations is equal to zero unconditionally as well as con-

ditional on the covariates. As a result, unbiased estimators should generate Monte Carlo

distributions centered around zero. The first plot of Figure 1 shows the Monte Carlo distri-

bution of the full-sample endogenous stratification estimator of average treatment effects

conditional on predicted earnings group. The pattern of the distribution of the average

treatment effect estimator for the bottom, middle, and top third predicted earnings groups

matches the directions of the biases discussed in Section 2. That is, τ̂k is biased upwards

for the low predicted earnings group and downwards for the high predicted earnings group.

The remaining three plots of Figure 1 do not provide evidence of substantial biases for the

leave-one-out, repeated split sample, or unfeasible estimators. These three estimators pro-

duce Monte Carlo distributions that are centered around zero for each predicted earnings

category.

Table 3 reports biases, coverage rates for nominal 0.05 confidence intervals based on

the Normal approximation, and root mean square error (root-MSE) values for endogenous

stratification estimators in the JTPA-based Monte Carlo simulation. In addition to the

estimators considered in Figure 1, we compute a single split sample estimator, τ̂SSSk , which

is defined like the repeated split sample estimator but with M = 1. The full-sample

endogenous stratification estimator is subject to substantial distortions for the low and

14Simulation results for unadjusted and adjusted estimators are very similar, as reflected in Tables 3 to
6 below.
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high predicted earnings group. The magnitude of the bias in each these two groups is more

than $1000, which is substantial compared to the $1516 and $1207 unadjusted and adjusted

average effect estimates in the JTPA data. As reflected in Figure 1, the bias is positive

for the low predicted earnings group and negative for the high predicted earnings group.

Biases are uniformly small for the leave-one-out, repeated split sample, and unfeasible

estimators, but the leave-one-out estimator has higher biases than the repeated split sample

and the unfeasible estimator. Similar results emerge for coverage rates and mean square

errors. The full-sample endogenous stratification estimator produces substantially higher

than nominal coverage rates and substantially higher root-MSE than the leave-one-out and

repeated split sample estimators for the low and high predicted income categories. The

repeated split sample estimator dominates in terms of root-MSE. The single split sample

estimators produce small biases and close to nominal coverage rates, but have root-MSE

values consistently higher than the full-sample endogenous stratification estimator.

Figure 2 and Table 4 report simulation results for the STAR-based Monte Carlo sim-

ulation. For this simulation, the data generating process is based on a linear model with

Normal errors. The model is estimated using data for STAR students in regular size classes.

The results are qualitatively identical to those obtained in the JTPA-based simulation. The

biases of τ̂k are around 0.05 and -0.05 for the low and medium predicted test score groups,

respectively. These are sizable magnitudes, compared to the STAR effect estimates in Table

2. Also, like in the JTPA-based simulation, for the low and high predicted outcome groups

coverage rates of the full-sample endogenous stratification estimator are heavily distorted

and root-MSE values are larger than for the leave-one-out and the repeated split sample

estimators. The repeated split sample estimator has the lowest root-MSE, and single sam-

ple splits produce root-MSE values larger than any other estimator with the exception of

the full-sample endogenous stratification estimator.

The analysis of how average treatment effects co-vary with predicted outcomes without

the treatment can also be based on a regression equation with interaction terms, such as:

yi = α0 + (x′iβ)α1 + wiα2 + wi(x
′
iβ)α3 + ui,
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where ui is a regression error orthogonal to the included regressors. A negative sign of α3

would indicate average treatment effects inversely related to x′β. Under the data generating

processes employed in our simulations α3 is equal to zero. Figure 3 reports Monte Carlo

distributions of estimators of α3 for the JTPA-based and STAR-based simulations. The

full sample and leave-one-out estimators use β̂ and β̂(−i), respectively, instead of β, and

estimate the regression equation by ordinary least squares. The unfeasible estimator uses

the true value, β. For m = 1, . . . ,M , the repeated split sample estimator uses β̂m and

average the resulting estimates of α3 over the M repetitions. Finally, we also report the

distribution of the estimator of α3 given by one-step nonlinear least squares estimation of

the regression equation above. The one-step nature of the nonlinear least squares estimator

implies that predicted outcomes are fitted to all experimental units, and not only to the

units in the control group.15 The results in Figure 3 are consistent with our previous

evidence on the performance of estimators that stratify on subgroups of predicted values.

The Monte Carlo distributions of the leave-one-out, repeated split sample, nonlinear least

squares and unfeasible estimators are all centered around zero. In contrast, the full-sample

endogenous stratification estimator of α3 is negatively biased.

The third and fourth Monte Carlo simulations use computer generated data only. The

purpose of these simulations is to demonstrate how the bias of endogenous stratification

estimators changes with changes in the sample size and in the number of covariates. The

data generating model for the third simulation is

yi = 1 +
40∑
l=1

zli + vi

for i = 1, . . . , N , where the variables zli have independent Standard Normal distributions,

and the variable vi has a independent Normal distribution with variance equal to 60. As a

result, the unconditional variance of yi is equal to 100. In each Monte Carlo simulation the

sample is divided at random into two equally-sized treated and control groups. Predicted

15We thank Gary Chamberlain for suggesting this estimator. Nonlinear least squares estimation of
the regression equation above uses the normalization α0 = 0 and α1 = 1 to ensure that the regression
parameters are properly defined.
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outcomes are computed using data for the control group to estimate

yi = α + x′KiβK + uKi

by least squares, where xKi is the (K × 1)-vector (z1i, . . . , zKi)
′, for K ≤ 40. That is, xKi

contains the values of the first K regressors in z1i, . . . , z40i. The data generating process

implies that α is equal to one, βK is a (K × 1)-vector of ones, uKi = zK+1i + · · ·+ z40i + vi

if K < 40 and u40i = vi. We run Monte Carlo simulations for samples sizes N = 200,

N = 1000, and N = 5000, and numbers of included regressors K = 10, K = 20, and

K = 40.

The results are reported in Table 5. To economize space, we omit results on the single

split sample estimator and report bias results only. Coverage rate and root-MSE results are

available upon request. The magnitude of the biases in the Table 5 are easily understood

when compared to the standard deviation of the outcome, which is equal to 10. As ex-

pected, the bias of the full-sample endogenous stratification estimator is particularly severe

when the sample size is small or when the number of included regressors is large, because in

both cases significant over-fitting may occur. The increase in bias resulting from increasing

the number of regressors is particularly severe when the sample size is small, N = 200. The

biases of the leave-one-out, repeated split sample, and unfeasible estimators are negligible

in most cases and consistently smaller than the bias of the full-sample endogenous strat-

ification estimators, although the leave-one-out estimator tends to produce larger biases

than the repeated split sample and unfeasible estimators.

The bias of the full-sample endogenous stratification estimator increases with K in spite

of the fact that, as K increases, each additional included regressor has the same explanatory

power as each of the regressors included in simulations with smaller K. Our final simulation

studies a setting where each additional included regressor has lower explanatory power than

the previously included ones. Consider:

yi = 1 +
40∑
l=1

ρl−1zli + ṽi,

where the variables zli have independent Standard Normal distributions as before, and the
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variable ṽi has a independent Normal distribution with a variance such that the variance

of yi is equal to 100. Table 6 reports the biases of the endogenous stratification estimators

across Monte Carlo simulations under the new data generating process (with ρ = 0.80). The

biases of the endogenous stratification estimator are larger than in the previous simulation.

Their magnitudes increase faster than in the previous simulation when the number of

included covariates increases, and decrease slower than in the previous simulation when the

number of observations increases. The biases of the leave-one-out, repeated split sample,

and unfeasible estimators are smaller and less sensitive to changes in the number of included

covariates and sample size.

Overall, among the estimators that address the over-fitting problem of full-sample en-

dogenous stratification, the repeated split sample estimator out-performs leave-one-out in

the simulations. Moreover, the leave-one-out estimator can behave erratically in settings

where the regressors take on only a few values and the variance of ei is large.16 The single

split sample estimator has low bias and produces close-to-nominal coverage rates, but also

large dispersion induced by the reduction in sample size. The increased variance of the sin-

gle split sample estimator can make root-MSE of this estimator larger than the root-MSE

of the full-sample endogenous stratification estimator (Table 3). All in all, the repeated

split sample estimator displays the best performance in our simulations. It has low bias,

accurate coverage rates, and out-performs alternative estimators in terms of root-MSE.

16This is the case, for example, in the Tennessee STAR experiment if school indicators are excluded from
the vector xi. In that case, xi only includes three indicator variables for race, gender, and eligibility for
a free lunch program. As a result, x′iβ̂ takes on only eight different values. In this setting, over-fitting is
not an issue and the full-sample endogenous stratification estimator produces small biases in simulations.
However, the leave-one-out estimator generates large biases. The reason is that, in this setting, choosing
c1 and c2 to be the quantiles 1/3 and 2/3 of the distribution of the predicted outcomes results in a

large number of observations being located exactly at the boundaries of the values of x′iβ̂ that define the

predicted outcome groups. To be concrete, consider the untreated observations with x′iβ̂ = c1. These
observations are classified by the full-sample endogenous stratification estimator as members of the low
predicted outcome group. However, it is easy to see that if x′iβ̂ = c1, then x′iβ̂(−i) > c1 if yi < c1 and

x′iβ̂(−i) ≤ c1 if yi ≥ c1, which induces biases in the leave-one-out estimator.
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5. Conclusions

In this paper, we have argued that the increasingly popular practice of stratifying exper-

imental units on the basis of a prediction of the outcome without treatment estimated

using full sample data from the control group leads to substantially biased estimates of

treatment effects. We illustrate the magnitude of this bias using data from two well-known

social experiments: the National JTPA Study and the Tennessee STAR Class Size Exper-

iment. The full-sample endogenous stratification approach is most problematic in studies

with small sample sizes and many regressors, where the predictor of the outcome without

treatment may be severely over-fitted in the control sample. We demonstrate that alterna-

tive endogenous stratification estimators based on leave-one-out and repeated split sample

techniques display substantially improved small sample behavior in our simulations relative

to the full-sample endogenous stratification estimator.

Some questions remain open to future research. First, the methods described in this

article do not exhaust the possible approaches to the bias of the full-sample endogenous

stratification estimator. Bootstrap/jackknife bias corrections on τ̂k and shrinkage estima-

tion of β are potentially fruitful approaches that we are starting to explore. In addition, a

question of interest is whether the good small-sample behavior of the repeated split sample

estimator generalizes to other settings, like the two-step generalized method of moments

setting analyzed by Altonji and Segal (1996).
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Appendix 1: Proofs

Suppose that we have data from an experiment where a fraction p of experimental units are
assigned to a treatment group and a fraction 1 − p to a control group, with 0 < p < 1. Let N1

be the number of units assigned to the treatment group and N0 the number of units assigned
to the control group, with N = N0 + N1. We will derive the limit distributions of endogenous
stratification estimators as N → ∞. For each experimental unit, i, we observe the triple uNi =
(yNi, wNi,xNi), where wNi is a binary indicator that takes value one if observation i is in the
treatment group, and value zero otherwise, yNi is the outcome of interest for observation i, and
xNi is a vector of baseline characteristics for observation i. We conduct our analysis assuming that
the experimental units are sampled at random from some large population of interest, so the values
of (yNi,xNi) for the treated and the non-treated can be regarded as independent i.i.d. samples of
sizes N1 and N0 from some distributions P1 and P0, respectively. Probability statements about
u = (y, w,x) are understood to refer to the distribution induced by first sampling w at random
from a Bernoulli with parameter p and then sampling (y,x) from P1 with probability p and from
P0 with probability 1 − p. Because w is randomized, the marginal distribution of x is the same
under P1 and P0. Let

β = (E[xx′|w = 0])−1E[xy|w = 0].

That is, x′β is the linear least-squares predictor of E[y|x, w = 0]. Let c be a known constant
such that Pr(x′β ≤ c) > 0. We aim to estimate:

τ = E[y|w = 1,x′β ≤ c]− E[y|w = 0,x′β ≤ c].

This is the average effect of the treatment for individuals with x′β ≤ c. Consider the full-sample
endogenous stratification estimator:

τ̂(β̂) =

N∑
i=1

yNiI[wNi=1,x′Niβ̂≤c]

N∑
i=1

I
[wNi=1,x′Niβ̂≤c]

−

N∑
i=1

yNiI[wNi=0,x′Niβ̂≤c]

N∑
i=1

I
[wNi=0,x′Niβ̂≤c]

,

where β̂ is a first-step estimator of the linear regression parameters that uses the untreated sample
only:

β̂ =

(
N∑
i=1

xNi(1− wNi)x′Ni

)−1 N∑
i=1

xNi(1− wNi)yNi.

Notice that, because wNi is randomized, the entire sample could be used to estimate E[xx′|w = 0].
To our knowledge, this is not done in empirical research, so we do not follow that route in the
derivations. However, all our large sample results would remain unchanged if we used both treated
and untreated observations to estimate E[xx′|w = 0]. We will assume that x has bounded support

and that E[y2] < 0. Under these assumptions, β̂
p→ β, and

√
N(β̂ − β) = (E[x(1− w)x′])−1

1√
N

N∑
i=1

xNi(1− wNi)(yNi − x′Niβ) + op(1)

20



= Op(1).

For j = 0, 1 and any l, let
µjl = E[I[x′β≤c]y

l|w = j].

Notice that µ10 = µ00 = Pr(x′β ≤ c) > 0. Let µ̂jl(β̂) be

µ̂0l(β̂) =
1

N0

N∑
i=1

(1− wNi)I[x′Niβ̂≤c]y
l
Ni

=
1

N

N∑
i=1

(1− wNi)
(1− p)

I
[x′Niβ̂≤c]

ylNi,

for j = 0, and

µ̂1l(β̂) =
1

N1

N∑
i=1

wNiI[x′Niβ̂≤c]
ylNi

=
1

N

N∑
i=1

wNi
p
I
[x′Niβ̂≤c]

ylNi,

for j = 1. Then,

τ̂(β̂) =
µ̂11(β̂)

µ̂10(β̂)
− µ̂01(β̂)

µ̂00(β̂)
.

Notice that

√
N
(
µ̂0l − µ0l(β)

)
=

1√
N

N∑
i=1

(1− wNi)
(1− p)

(
I[x′Niβ≤c]y

l
Ni − µ0l(β)

)
+

1√
N

N∑
i=1

(1− wNi)
(1− p)

[(
I
[x′Niβ̂≤c]

ylNi − µ0l(β̂)
)
−
(
I[x′Niβ≤c]y

l
Ni − µ0l(β)

)]
+
√
N
(
µ0l(β̂)− µ0l(β)

)
.

Consider now M1 = {yI[x′b≤c] : b ∈ Θ} and M0 = {I[x′b≤c] : b ∈ Θ}. If follows from Andrews
(1994, Theorems 2 and 3) thatM1 satisfies Pollard’s entropy condition with envelope max{1, y},
while M0 satisfies Pollard’s entropy condition with envelope 1. By Andrews (1994, Theorem 1),
if E[|y|2+δ] < ∞ for some δ > 0, we obtain that the second term on the right hand side of last
equation converges in probability to zero. As a result:

√
N
(
µ̂0l − µ0l(β)

)
=

1√
N

N∑
i=1

(1− wNi)
(1− p)

(
I[x′Niβ≤c]y

l
Ni − µ0l(β)

)
+
√
N
(
µ0l(β̂)− µ0l(β)

)
+ op(1).

For j, l = 0, 1, we will assume that µjl(b) is differentiable at β (Kim and Pollard 1990 section 5
provides high-level sufficient conditions). Then,

µjl(β + h)− µjl(β)− rjl(β)h = o(‖h‖)
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where

rjl(β) =
∂µjl(b)

∂b′
(β).

As a result (see, e.g., Lemma 2.12 in van der Vaart, 1998),

µjl(β̂)− µjl(β)− rjl(β)(β̂ − β) = op(‖β̂ − β‖).

Therefore, because
√
N‖β̂ − β‖ = Op(1), we obtain

√
N
(
µ0l(β̂)− µ0l(β)

)
=
√
Nr0l(β)′(β̂ − β) + op(1)

= r0l(β)′Q−1
1√
N

N∑
i=1

xNi(1− wNi)eNi + op(1),

where Q = E[x(1− w)x′]. Then,

√
N
(
µ̂0l − µ0l(β)

)
=

1√
N

N∑
i=1

(1− wNi)
(1− p)

(
I[x′Niβ≤c]y

l
Ni − µ0l(β)

)
+ r0l(β)′Q−1

1√
N

N∑
i=1

xNi(1− wNi)eNi + op(1).

Similarly,

√
N
(
µ̂1l − µ1l(β)

)
=

1√
N

N∑
i=1

wNi
p

(
I[x′Niβ≤c]y

l
i − µ1l(β)

)
+ r1l(β)′Q−1

1√
N

N∑
i=1

xNi(1− wNi)eNi + op(1).

Consider now,

ξjl,Ni =
1√
N

[(
1− wNi

1− p

)1−j(
wNi
p

)j(
I[x′Niβ≤c]y

l
Ni − µjl(β)

)
+ rjl(β)′Q−1xNi(1− wNi)eNi

]
,

and let

ξNi =


ξ11,Ni
ξ10,Ni
ξ01,Ni
ξ00,Ni

 .

For any a ∈ R4, the terms a′ξNi are martingale differences with respect to the filtration FNi
spanned by (yN1, wN1,xN1), . . . , (yNi, wNi,xNi). For j, l = 0, 1 and j′, l′ = 0, 1, let,

sjlj′l′ = E

(1− wNi
1− p

)(2−j−j′)(
wNi
p

)j+j′
(I[x′iβ≤c,wi=j]y

l
i − µjl)(I[x′iβ≤c,wi=j′]y

l′
i − µj′l′)
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and let S be a (4× 4) matrix with element (2(1− j) + (2− l), 2(1− j′) + (2− l′)) equal to sjlj′l′ .
Then,

S =


(µ12 − µ211)/p µ11(1− µ10)/p 0 0
µ11(1− µ10)/p µ10(1− µ10)/p 0 0

0 0 (µ02 − µ201)/(1− p) µ01(1− µ00)/(1− p)
0 0 µ01(1− µ00)/(1− p) µ00(1− µ00)/(1− p)

 .

Let

D =

(
1

µ10
,
−µ11
µ210

,− 1

µ00
,
µ01
µ200

)′
.

The asymptotic distribution of the unfeasible estimator that employs the treated and control units
with x′iβ ≤ c is √

N
(
τ̂UNFk − τk

) d→ N(0,D′SD),

where

D′SD =
1

µ10p

[
µ12
µ10
−
(
µ11
µ10

)2
]

+
1

µ00(1− p)

[
µ02
µ00
−
(
µ01
µ00

)2
]
.

Let

C = E




0
0

I[x′β≤c]y(y − x′β)(1− w)/(1− p)
I[x′β≤c](y − x′β)(1− w)/(1− p)

x′
Q−1r′,

Σ = E[(1− wi)xie2ix′i],

and
V = S + rQ−1ΣQ−1r′ +C +C ′.

We obtain that the asymptotic distribution of the full-sample endogenous stratification estimator
is √

N (τ̂k − τk)
d→ N(0,D′V D).

Notice that estimation of the derivative vector r can be accomplished using numerical methods
(see, e.g., Newey and McFadden 1994, Theorem 7.4).

Similar derivations can be used to find the large sample distribution of τ̂RSSk . Let ps be the
fraction of untreated observations that are assigned to the estimation group. We present the
result next, omitting details. Consider the matrix partition

S =

(
S11 S12

S21 S22

)
,

where each of the sub-matrices is (2× 2). Let

S∗ =

(
S11 S12

S21 S∗22

)
,

where

S∗22 =

[
1 +

1

M

(
1− ps
ps

)]
S22.
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Let

V ∗ = S∗ +

[
1 +

1

M

(
ps

1− ps

)]
rQ−1ΣQ−1r′ +

[
1− 1

M

]
(C +C ′).

The asymptotic distribution of the repeated split sample estimator is:

√
N
(
τ̂RSSk − τk

) d→ N(0,D′V ∗D).

The following intermediate lemma will be useful to derive the properties of the leave-one-out
estimator.

Lemma A.1: Let xN be a sequence of random variables, aN a sequence of real numbers, and IAN
be the indicator function for the event AN . Suppose that aN Pr(IAN = 0)→ 0 and aN Pr (IANxN > ε)
→ 0 for some ε > 0. Then, aN Pr (xN > ε)→ 0.

Proof:

aN Pr(xN > ε) = aN Pr(xN > ε, IAN = 1) + aN Pr(xN > ε, IAN = 0)

= aN Pr(IANxN > ε, IAN = 1) + aN Pr(xN > ε, IAN = 0)

≤ aN Pr(IANxN > ε) + aN Pr(IAN = 0)→ 0.

�

Next, we prove that the leave-one-out estimator has the same large sample distribution as the
full-sample estimator. For simplicity and because it does not play any role in the calculations
below, we omit the subscript N from the notation for sample units. Consider the leave-one-out
estimator:

τ̂LOO =

1

N

N∑
i=1

yiI[wi=1,x′iβ̂(−i)≤c]

1

N

N∑
i=1

I
[wi=1,x′iβ̂(−i)≤c]

−

1

N

N∑
i=1

yiI[wi=0,x′iβ̂(−i)≤c]

1

N

N∑
i=1

I
[wi=0,x′iβ̂(−i)≤c]

=

1

N

N∑
i=1

yiI[wi=1,x′iβ̂≤c]

1

N

N∑
i=1

I
[wi=1,x′iβ̂≤c]

−

1

N

N∑
i=1

yiI[wi=0,x′iβ̂(−i)≤c]

1

N

N∑
i=1

I
[wi=0,x′iβ̂(−i)≤c]

.

Therefore,

√
N
(
τ̂(β̂)− τ̂LOO

)
=
√
N


1

N

N∑
i=1

yiI[wi=0,x′iβ̂(−i)≤c]

1

N

N∑
i=1

I
[wi=0,x′iβ̂(−i)≤c]

−

1

N

N∑
i=1

yiI[wi=0,x′iβ̂≤c]

1

N

N∑
i=1

I
[wi=0,x′iβ̂≤c]
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=

1√
N

N∑
i=1

yi

(
I
[wi=0,x′iβ̂(−i)≤c]

− I
[wi=0,x′iβ̂≤c]

)
1

N

N∑
i=1

I
[wi=0,x′iβ̂(−i)≤c]

−

1√
N

N∑
i=1

(
I
[wi=0,x′iβ̂(−i)≤c]

− I
[wi=0,x′iβ̂≤c]

)
1

N

N∑
i=1

I
[wi=0,x′iβ̂≤c]

1

N

N∑
i=1

I
[wi=0,x′iβ̂(−i)≤c]

1

N

N∑
i=1

yiI[wi=0,x′iβ̂≤c]
.

We will show that
√
N(τ̂(β̂) − τ̂LOO)

p→ 0. Suppose that the r-th moment of |y| exists, where
r > 1 (later we will strengthen this requirement to r > 2 and eventually to r > 3). Then, by
Holder’s Inequality:

1√
N

N∑
i=1

|yi|
∣∣∣I[x′iβ̂≤c]−I[x′iβ̂(−i)≤c]

∣∣∣ ≤ N1/2

(
1

N

N∑
i=1

|yi|r
)1/r(

1

N

N∑
i=1

∣∣∣I[x′iβ̂≤c] − I[x′iβ̂(−i)≤c]

∣∣∣)(r−1)/r

.

The first sample average on the right hand side of last equation is bounded in probability. Now
we need to show that the second sample average on the right hand side of last equation goes
to zero fast enough to beat N1/2 after taking the (r − 1)/r power. Because the distribution of
(x′iβ̂,x

′
iβ̂(−i)) does not depend on i, we obtain:

E

[
1

N

N∑
i=1

∣∣∣I[x′iβ̂≤c] − I[x′iβ̂(−i)≤c]

∣∣∣] = E

[
1

N

N∑
i=1

I
[x′iβ̂≤c<x′iβ̂(−i) ∪x′iβ̂(−i)≤c<x′iβ̂]

]
= Pr

(
x′iβ̂ ≤ c < x′iβ̂(−i) ∪ x′iβ̂(−i) ≤ c < x′iβ̂

)
.

Therefore, by Markov’s inequality, it is enough to show that:

N
r

2(r−1) Pr
(
x′iβ̂ ≤ c < x′iβ̂(−i) ∪ x′iβ̂(−i) ≤ c < x′iβ̂

)
p→ 0.

Let ζN = Nα, where α > r/(2(r − 1)). Notice that,

Pr
(
x′iβ̂ ≤ c < x′iβ̂(−i) ∪ x′iβ̂(−i) ≤ c < x′iβ̂

)
≤ Pr

(
x′iβ̂ ≤ c < x′iβ̂(−i) ∪ x′iβ̂(−i) ≤ c < x′iβ̂, |x′iβ̂ − c| > 1/ζN

)
+ Pr

(
|x′iβ̂ − c| ≤ 1/ζN

)
≤ Pr

(
|x′i(β̂ − β̂(−i))| > 1/ζN

)
+ Pr

(
|x′iβ̂ − c| ≤ 1/ζN

)
.

Suppose that there exists ε > 0 such that for b ∈ B(β, ε), the distribution of x′b is absolutely
continuous with density bounded (uniformly) by a constant C. Assume that r > 2. Consider a
sequence εN = N−γ , where 0 < γ < (r − 2)/4(r − 1). Then, for large enough N (so εN < ε)

Pr
(
|x′iβ̂ − c| ≤ 1/ζN

)
≤ Pr

(
|x′iβ̂ − c| ≤ 1/ζN , β̂ ∈ B(β, εN )

)
+ Pr

(
β̂ 6∈ B(β, εN )

)
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≤ sup
b∈B(β,εN )

Pr
(
|x′ib− c| ≤ 1/ζN

)
+ Pr

(
‖β̂ − β‖ > εN

)
≤ 2C

ζN
+ Pr

(
Nγ‖β̂ − β‖ > 1

)
.

The first term on the right hand side of last equation multiplied by N r/(2(r−1)) converges to zero
because N r/(2(r−1))/ζN → 0. For any arbitrary real square matrix A, let λmin(A) and λmax(A)
be the minimum and maximum eigenvalue of A, respectively. Assume λmin(Q) > 0. Because
‖xi‖ is bounded by some constant, C, it follows that

λmax

(
1

N
xi(1− wi)x′i

)
= max
‖v‖=1

v′xi(1− wi)x′iv/N ≤
C2

N
.

Let

QN =
1

N

N∑
i=1

xi(1− wi)x′i.

Now, Corollary 5.2 in Tropp (2012) implies

Pr (λmin (QN ) ≤ tλmin(Q)) ≤ K e−
N(1−t)2λmin(Q)

2C2 , (A.1)

where K is the length of xi and t ∈ [0, 1]. Define the event

AN = {λmin(QN ) ≥ Cλ} ,

for some 0 < Cλ < λmin(Q), and let IAN be the indicator function for the event AN . The
concentration inequality in (A.1) implies

N
r

2(r−1) Pr(IAN = 0)→ 0. (A.2)

Let ei = yi − x′iβ. Notice that,

IANN‖β̂ − β‖
2 = IANN(β̂ − β)′(β̂ − β)

= IAN

(
1√
N

N∑
i=1

ei(1− wi)x′i

)(
1

N

N∑
i=1

xi(1− wi)x′i

)−2(
1√
N

N∑
i=1

xi(1− wi)ei

)

≤ IANλ
−2
min(QN )

(
1√
N

N∑
i=1

ei(1− wi)x′i

)(
1√
N

N∑
i=1

xi(1− wi)ei

)

≤ C−2λ

(
1√
N

N∑
i=1

ei(1− wi)x′i

)(
1√
N

N∑
i=1

xi(1− wi)ei

)
.

Given that x is bounded, E[e2i ] < ∞ (which follows from r > 2), and given that E[ei(1 −
wi)x

′
ixj(1− wj)ej ] = E[ei(1− wi)x′i]E[xj(1− wj)ej ] = 0 for any 1 ≤ i < j ≤ N , we obtain

lim sup
N→∞

E[IANN‖β̂ − β‖
2] <∞. (A.3)
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By Markov’s inequality, equation (A.3), and because γ < (r − 2)/4(r − 1)

N
r

2(r−1) Pr
(
IANN

γ‖β̂ − β‖ > 1
)
≤ N2γ−1+ r

2(r−1)E[IANN‖β̂ − β‖
2]→ 0. (A.4)

From equations (A.2), (A.4), and Lemma A.1, it follows that

N
r

2(r−1) Pr
(
Nγ‖β̂ − β‖ > 1

)
→ 0.

Therefore,

N
r

2(r−1) Pr
(
|x′iβ̂ − c| ≤ 1/ζN

)
→ 0.

Next, we will prove N
r

2(r−1) Pr(|x′i(β̂ − β̂(−i))| > 1/ζN ) → 0. Notice that (see Hansen, 2012
sections 4.12 and 4.13)

|x′i(β̂ − β̂(−i))| =
hNi

1− hNi
|yi − x′iβ̂|

≤
(

maxi=1,...,N hNi
1−maxi=1,...,N hNi

)
|yi − x′iβ̂|,

where the leverage values hNi are

hNi = (1− wi)x′i

(
N∑
i=1

xi(1− wi)x′i

)−1
xi. (A.5)

Therefore,

max
1≤i≤N

hNi ≤ λ−1min (QN )
C2

N
.

Notice also that,

IAN ‖β̂ − β‖
r

≤ IAN

( 1

N

N∑
i=1

(1− wi)eix′i

)(
1

N

N∑
i=1

xi(1− wi)x′i

)−2(
1

N

N∑
i=1

xiei(1− wi)

)r/2

≤ IANλ
−r
min(QN )

((
1

N

N∑
i=1

(1− wi)eix′i

)(
1

N

N∑
i=1

xiei(1− wi)

))r/2

≤ C−rλ

((
1

N

N∑
i=1

(1− wi)eix′i

)(
1

N

N∑
i=1

xiei(1− wi)

))r/2

= C−rλ Cr

 1

N2

N∑
i=1

N∑
j=1

|eiej |

r/2

.
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If r ≥ 2, by Minkowski’s and Cauchy-Schwartz’s inequalities:E

 1

N2

N∑
i=1

N∑
j=1

|eiej |

r/2



2/r

≤ 1

N2

N∑
i=1

N∑
j=1

(
E
[
|eiej |r/2

])2/r

≤ 1

N2

N∑
i=1

N∑
j=1

(E [|e1|r])2/r .

Because E[|ei|r] = E[|yi − x′iβ|r], E[|yi|r] <∞ and ‖xi‖ is bounded, we obtain

lim sup
N→∞

E[IAN ‖β̂ − β‖
r] <∞,

which, by Minkowski’s inequality, implies

lim sup
N→∞

E[IAN |yi − x
′
iβ̂|r] <∞. (A.6)

By Markov’s inequality:

N
r

2(r−1) Pr
(
IAN |x

′
i(β̂ − β̂(−i))| > 1/ζN

)
≤ N

r
2(r−1)

+rα
E
[
IAN |x

′
i(β̂ − β̂(−i))|r

]
.

The condition α < (2r− 3)/(2(r− 1)) implies r/(2(r− 1)) + rα < r. So, under that condition, it
is left to be proven that for any ϑ > 0

N r−ϑE
[
IAN |x

′
i(β̂ − β̂(−i))|r

]
→ 0. (A.7)

Consider N large enough so that there is a positive constant Cd, such that 1/(1−C−1λ C2/N) < Cd.
Then,

IAN |x
′
i(β̂ − β̂(−i))| ≤ CdC−1λ

C2

N
|yi − x′iβ̂|.

This result, along with equation (A.6) implies:

lim sup
N→∞

E[IANN
r|x′i(β̂ − β̂(−i))|r] <∞,

so equation (A.7) holds. Notice that for the condition

r

2(r − 1)
< α <

2r − 3

2(r − 1)

to hold we need r > 3.

Appendix 2: Estimation and Simulation Details

Leave-one-out predictions can be efficiently calculated using:

x′iβ̂(−i) = x′iβ̂ −
hNi

1− hNi
(yi − x′iβ̂),
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where hNi is the leverage value defined in equation (A.5). Let ŷi be generic notation for a
predicted outcome without treatment. The prediction, ŷi, may come from full-sample, leave-one-
out, or split sample endogenous stratification, stratification on previous earnings in the JTPA
example of Section 3, or stratification on the true regression value in the simulations of Section
4. We group observations on the basis of predicted outcomes, ŷi, in the following way. First we
sort the observations based on predicted outcomes: ŷ(1) ≤ ŷ(2) ≤ · · · ≤ ŷ(N). We then define t1
and t2 as N/3 and 2N/3 rounded to the nearest integer, respectively. We classify unit i in the
low, medium, and high predicted outcome groups if ŷi ≤ ŷ(t1), ŷ(t1) < ŷi ≤ ŷ(t2), and ŷ(t2) < ŷi,
respectively.

For the repeated split sample estimator estimation is as follows. For the JTPA data we randomly
select 425 control observations and use them to estimate β. We use the remaining 424 observations
and all the treated JTPA units for the second step estimation of τk. For the STAR data, we use
1009 untreated observations to estimate β and the remaining 1008 and all the treated observations
in the second step. We average the split sample estimators over 100 repetitions to obtain τ̂RSSk .

As explained in Section 3, the JTPA sample consists of male applicants assigned to on the job
training/job search assistance. We discard three of the sixteen SDAs, Jersey City (21 observa-
tions), Butte (15 observations), and Oakland (5 observations) because of small sample sizes. The
STAR sample consists of use 3764 students who entered the study in kindergarten, were assigned
to small classes or to regular-size classes without a teacher’s aide, and for whom there is complete
information on all the variables used in our analysis.

Standard errors in Tables 1 and 2 are calculated using the nonparametric bootstrap (conditioning
on the number of treated and untreated observations in the original samples).

In the JTPA-based simulation we first estimate a Logit model, p(x,γ) = ex
′γ/(1 + ex

′γ), for
the probability of employment, measured as positive labor market earnings, using the sample
of experimental controls. Next, using only the experimental control with positive earnings, we
estimate a Box-Cox regression model

yλ − 1

λ
= x′θ + σu,

where u has a Standard Normal distribution. We will use γ∗ to refer to the estimate of γ,
and analogous notation for the estimated parameters of the Box-Cox model. We create each
simulated data set in the following manner. We first resample 2530 observations from the empirical
distribution of x among all the JTPA sample units. We assign zero earnings with probability
1− p(x,γ∗). With probability p(x,γ∗) we assign earnings using

y =
(
max{1 + λ∗(x′θ∗ + σ∗u), 0}

)1/λ∗
,

where u has a Standard Normal distribution. We randomly label 1681 observations as treated
and 849 as untreated. As a result, all treatment effects are equal to zero by construction. The
coefficients of the regression function of y on x under this data generating process, which are
needed to compute τ̂UNFk , are calculated by simulation.

For the STAR-based simulations, we estimate the linear model

y = x′β + σu,
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where u has a Standard Normal distribution, using the sample of experimental controls. We use
least squares to estimate β and the variance of the regression residuals corrected for degrees of
freedom to estimate σ. To construct each simulated sample, we first randomly resample 3764
observations from the empirical distribution of x in the STAR sample. We simulate math scores
using

y = x′β∗ + σ∗u,

where u has a Standard Normal distribution, and β∗ and σ∗ are the estimates of β and σ.

Section 4 contains detailed information on data generating processes for the simulations of Tables
5 and 6.

Bias, coverage rates, and root-MSE are calculated as follows. Because the simulations impose
zero treatments effects, the bias and the MSE are calculated as the mean of the estimates and the
mean of the square of the estimates, respectively, across all simulation repetitions. We calculate
t-ratios dividing the estimates from each simulation repetition by the standard deviation of the
estimates across repetitions. Coverage rates are the frequencies of the t-ratios falling outside the
[−1.96, 1.96] interval across repetitions. Root-MSE is the square-root of the MSE.
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Distributions of the Estimators in the JTPA Simulation
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Table 1
JTPA Estimation Results

Panel A: Average treatment effect

unadjusted adjusted

τ̂ 1516.49* 1207.22
(807.27) (763.54)

Panel B: Average treatment effect by predicted outcome group

unadjusted adjusted
low medium high low medium high

τ̂k 2379.65** −719.38 2397.26 2011.70* −554.65 1769.03
(1151.07) (1474.81) (1672.62) (1150.68) (1482.32) (1639.06)

τ̂LOOk 573.74 35.31 3646.53** 173.45 172.28 3118.17*

(1201.33) (1509.30) (1727.08) (1213.25) (1513.70) (1679.62)

τ̂RSSk 788.75 254.25 3569.41** 412.01 181.81 2942.69**

(1027.47) (1092.85) (1496.73) (1042.17) (1087.51) (1454.16)

τ̂PREVk 1278.88 −67.95 3972.21** 822.05 −150.89 3146.85**

(1221.96) (1284.77) (1497.47) (1235.13) (1274.45) (1430.37)

Note: The JTPA sample includes 1681 treated observations and 849 untreated observations, for
a total of 2530 observations. Bootstrap standard errors, based on 1000 bootstrap repetitions,
are reported in parentheses. The repeated split sample estimator, τ̂RSSk , uses 100 repetitions.
Each repetition randomly permutes the order of the untreated observations. Then, the first 425
untreated observations after re-ordering are used to estimate β. The remaining 424 untreated
observations and the 1681 treated observations are used in the second step estimation of τk. The
“unadjusted” estimates are differences in mean outcomes between treated and non-treated. The
“adjusted” estimates are regression coefficients on the treatment variable in a linear regression
that includes the list of covariates detailed in Section 3.
∗ indicates statistical significance at the 0.10 level.
∗∗ indicates statistical significance at the 0.05 level.
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Table 2
STAR Estimation Results

Panel A: Average treatment effect

unadjusted adjusted

τ̂ 0.1659** 0.1892**

(0.0329) (0.0294)

Panel B: Average treatment effect by predicted outcome group

unadjusted adjusted
low medium high low medium high

τ̂k 0.3705** 0.2688** −0.1330** 0.3908** 0.3023** −0.1242**

(0.0521) (0.0655) (0.0636) (0.0509) (0.0678) (0.0614)

τ̂LOOk 0.3277** 0.2499** −0.0486 0.3440** 0.2730** −0.0660
(0.0547) (0.0670) (0.0654) (0.0519) (0.0696) (0.0634)

τ̂RSSk 0.3152** 0.2617** −0.0520 0.3130** 0.3005** −0.0374
(0.0467) (0.0505) (0.0567) (0.0459) (0.0526) (0.0552)

Note: The STAR sample includes 1747 treated observations and 2017 untreated observations, for
a total of 3764 observations. Bootstrap standard errors, based on 1000 bootstrap repetitions,
are reported in parentheses. The repeated split sample estimator, τ̂RSSk , uses 100 repetitions.
Each repetition randomly permutes the order of the untreated observations. Then, the first 1009
untreated observations after re-ordering are used to estimate β. The remaining 1008 untreated
observations and the 1747 treated observations are used in the second step estimation of τk. The
“unadjusted” estimates are differences in mean outcomes between treated and non-treated. The
“adjusted” estimates are regression coefficients on the treatment variable in a linear regression
that includes the list of covariates detailed in Section 3.
∗ indicates statistical significance at the 0.10 level.
∗∗ indicates statistical significance at the 0.05 level.
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Table 3
JTPA Simulation Results

Panel A: Bias
unadjusted adjusted

low medium high low medium high

τ̂k 1017.51 -4.81 -1082.42 1017.60 -0.98 -1062.39

τ̂LOOk -88.23 -23.28 96.57 -59.08 -54.01 42.86

τ̂RSSk -2.74 -2.34 -20.75 -3.30 -5.96 -17.56

τ̂SSSk 5.62 -9.88 6.62 1.34 -11.24 1.39

τ̂UNFk -1.50 -8.56 -16.85 -2.50 -9.04 -11.67

Panel B: Coverage rates for nominal 0.05 C.I.
unadjusted adjusted

low medium high low medium high

τ̂k 0.152 0.049 0.089 0.154 0.050 0.089

τ̂LOOk 0.051 0.048 0.050 0.051 0.049 0.051

τ̂RSSk 0.051 0.048 0.049 0.052 0.048 0.050

τ̂SSSk 0.050 0.048 0.051 0.052 0.049 0.050

τ̂UNFk 0.053 0.050 0.050 0.053 0.051 0.051

Panel C: Root-MSE
unadjusted adjusted

low medium high low medium high

τ̂k 1492.26 1364.27 2145.78 1489.89 1375.04 2065.87

τ̂LOOk 1192.35 1399.74 1895.93 1180.13 1398.76 1800.86

τ̂RSSk 1031.61 1101.14 1751.43 1022.53 1103.53 1660.50

τ̂SSSk 1500.97 1797.74 2383.17 1493.40 1792.14 2271.90

τ̂UNFk 1119.34 1372.67 1867.51 1118.52 1383.76 1792.25

Note: Averages over 10000 simulations. See Section 4 and Appendix 2 for
details.
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Table 4
STAR Simulation Results

Panel A: Bias
unadjusted adjusted

low medium high low medium high

τ̂k 0.0483 0.0006 -0.0511 0.0487 0.0010 -0.0506

τ̂LOOk -0.0025 0.0005 0.0046 0.0028 -0.0025 -0.0075

τ̂RSSk 0.0001 -0.0000 -0.0012 0.0002 0.0001 -0.0010

τ̂SSSk -0.0005 0.0004 -0.0017 -0.0002 0.0003 -0.0015

τ̂UNFk 0.0004 -0.0003 -0.0009 0.0002 -0.0002 -0.0006

Panel B: Coverage rates for nominal 0.05 C.I.
unadjusted adjusted

low medium high low medium high

τ̂k 0.161 0.051 0.178 0.178 0.049 0.191

τ̂LOOk 0.048 0.050 0.051 0.050 0.049 0.056

τ̂RSSk 0.053 0.051 0.048 0.052 0.051 0.049

τ̂SSSk 0.051 0.050 0.052 0.052 0.052 0.050

τ̂UNFk 0.051 0.052 0.049 0.051 0.050 0.050

Panel C: Root-MSE
unadjusted adjusted

low medium high low medium high

τ̂k 0.0695 0.0472 0.0716 0.0677 0.0471 0.0691

τ̂LOOk 0.0526 0.0509 0.0530 0.0492 0.0507 0.0494

τ̂RSSk 0.0473 0.0402 0.0470 0.0444 0.0399 0.0439

τ̂SSSk 0.0617 0.0589 0.0615 0.0577 0.0583 0.0571

τ̂UNFk 0.0501 0.0469 0.0503 0.0480 0.0475 0.0476

Note: Averages over 10000 simulations. See Section 4 and Appendix 2 for
details.
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