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1 Introduction

The Black and Scholes (1973) model, which describes option prices in terms of the price and

volatility of the underlying asset, is regarded as one of the great achievements in financial

economics. Yet since Rubinstein (1994), researchers have noted a striking failure of the

model: the volatility implied by the option price varies with the exercise price. The Black-

Scholes model says that this implied volatility should be constant and equal to the volatility

of the underlying asset.

In the data, the volatility implied by out-of-the-money (OTM) put options – those with

an exercise price less than the current stock price – is significantly higher than the volatility

implied by at-the-money (ATM) put options – those with an exercise price equal to the

current stock price. The fact that the implied volatility tends to decrease as a function

“moneyness” (the difference between the stock price and the exercise price divided by the

stock price) is known as the volatility skew. The volatility skew implies that OTM put

options are expensive relative to ATM put options, because the option price is increasing

as a function of implied volatility. Moreover, even ATM implied volatilities are significantly

higher than return volatility (Coval and Shumway, 2001), implying that ATM option prices

are also expensive relative to the Black-Scholes benchmark.

Why the Black-Scholes model fails is an important and still-unresolved question in the

literature. In the Black-Scholes model, the stock price evolves as a log-normal process with

constant volatility. Under these assumptions, the stock and riskfree asset complete the

market, and so the specification of these two prices suffices to describe the economy. A

natural extension is to incorporate stochastic volatility and jumps into stock prices. In these

cases, the market cannot be completed by only two assets, and so it is necessary to further

specify a pricing kernel to determine how volatility and jump risk are priced. In one line of

work, this pricing kernel (along with the stock price and riskfree rate) is specified exogenously.
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This “reduced form” approach has been successful in explaining average implied volatilities

(see, for example, Bates (2000), Broadie, Chernov, and Johannes (2007), Eraker (2004), Pan

(2002), Santa-Clara and Yan (2010)).1 Ultimately, however, both the pricing kernel and the

stock price are endogenous objects. A deeper explanation of option prices thus requires the

same approach as in other types of asset pricing: a utility function together with a process

for the endowment and cash flows.

The purpose of this paper is to build such a model to explain implied volatilities. The

reduced-form literature suggests that non-normalities are important, and so a natural ap-

proach is to consider a model with disaster risk, as in Barro (2006) and Rietz (1988). Backus,

Chernov, and Martin (2011) show that while this disaster-risk model indeed implies a volatil-

ity skew, the size of the skew is far greater than in the data. One interpretation of their

findings is that information from option prices and from macroeconomic events are inconsis-

tent; perhaps the international data are simply not relevant for U.S. investors, who indeed

are allowing for jumps, but of a far smaller magnitude. Because rare disaster models do

rely on the international data to explain the equity premium, this appears to be a dramatic

rejection of this model.

We show, however, that a more general rare disasters model can explain implied volatili-

ties. In fact, the very same generalization that allows the models of Barro (2006) and Rietz

(1988) to explain stock market volatility also enables the model to explain options data.

This generalization is to allow the probability of a disaster to be stochastic in a setting with

a preference for early resolution of uncertainty. Under these conditions, rare disasters can

explain both the equity premium and stock market volatility.2 Moreover, the model implies

that that volatility is priced, so that implied volatilities are higher than realized volatilities,

1In earlier work, Stutzer (1996) also finds a role for non-normal distributions in explaining implied volatil-
ities.

2See Gabaix (2012), Gourio (2012) and Wachter (2013) for rare disaster models that explain stock price
volatility. This paper builds off of Wachter (2013).

2



as in the data.

Besides explaining implied volatilities across a range of exercise prices and times to ex-

piration, we also ask the model to explain the volatilities of volatilities, and, what turns out

to be harder, the volatility of the slope in the implied volatility curve. While at the money

implied volatilities say something about current volatility in stock prices, out-of-the money

volatilities say more about tail risk. In the data, these do not move one-for-one; however in

the simplest version of the model, they do. We show how introducing richer dynamics for the

probability of a disaster allows the model to account for the time-variation in this slope that

is present in the data. Given this model’s success in matching option prices along various

dimensions, we can back out the state variables using the time series of option prices. The

equity prices implied by this time series line up well with the equity prices in the data.

Our model builds on a previous literature on option pricing in endowment economies.

Gabaix (2012) develops a framework with stochastic rare-event sensitivity to match a variety

of asset pricing facts, one of which is the volatility skew. For tractability reasons, he uses

a different model to price options than that used to price equities. Our model differs in

that we assume time-variation in the probability of a disaster; as we show, this mechanism

can explain both realized stock market volatility as well as option-implied volatility. It is

tractable enough so that it can simultaneously price options and equities, and it nests the

iid case previously emphasized in the literature (e.g. Backus, Chernov, and Martin (2011)),

which makes the difference in the results transparent. We also consider a wider range of

option pricing facts, including patterns in the implied volatility surface (namely how implied

volatilities vary with maturity as well as exercise price) and time-variation in the slope of the

volatility skew.3 Other models explain the volatility skew, but unlike ours, use non-standard

beliefs or preferences. We discuss these in Section 3.4

3Recent work by Nowotny (2011) reports average implied volatilities as well. Nowotny focuses on the
implications of self-exciting processes for equity markets rather than on option prices.

3



A growing line of empirical work uses option prices to estimate time-varying risks of

rare events and their impact on risk premia. Bollerslev and Todorov (2011) show that a

substantial fraction of the equity premium can be attributable to jump risk reflected in

option prices, Gao and Song (2013) price crash risk in the cross-section using options, and

Kelly, Pastor, and Veronesi (2014) demonstrate a link between options and political risk.

The results in these papers provide empirical support for the theoretical mechanism that we

highlight, namely that options reflect the risk of economy-wide rare events, and that this

risk varies over time.

The remainder of this paper is organized as follows. Section 2 introduces a multifrequency

stochastic disaster risk (SDR) model, and discusses the solution for equity prices and options.

A limiting case of this model has a single state variable following a Cox, Ingersoll, and Ross

(1985) process. As we show in Section 3, this limiting case can explain the level and slope of

the implied volatility skew, as well as the mean and volatility of stock prices. This section

explains why allowing the disaster probability to be stochastic makes a qualitative difference

in the model’s ability to explain implied volatilities. However, this single-frequency model

is not sufficient to explain the variation in the skew over time. For this, the more general

model is needed, as we show in Section 4. This section also shows that the time series of state

variables implied by option prices are also capable of explaining the time series of aggregate

market prices. Section 5 concludes.

2 A multifrequency model with stochastic disaster risk

This section describes our multifrequency model for stochastic disaster risk. For convenience,

we describe the most general model we need in detail. However, a more restrictive model

is all that is necessary for many of our results, as we explain. Section 2.1 describes the

model assumptions, Section 2.2 describes the solution for equity prices. Given these equity
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prices, Section 2.3 describes how we solve for options on equities. Section 2.4 describes how

a single-frequency model is a limiting caes of the multifrequency model, and how a constant

disaster risk model is a limiting case of the single-frequency model.

2.1 Assumptions

We assume a complete-markets endowment economy with an infinitely-lived representative

agent. Aggregate consumption (the endowment) solves the following stochastic differential

equation

dCt = µCt− dt+ σCt− dBt + (eZt − 1)Ct− dNt, (1)

where Bt is a standard Brownian motion and Nt is a Poisson process with time-varying

intensity λt. For the range of parameter values we consider, λt is small and can therefore be

interpreted to be (approximately) the probability of a jump. We thus use the terminology

probability and intensity interchangeably, while keeping in mind the that the relation is an

approximate one. We allow the jump intensity to follow a multifrequency process:

dλt = κλ(ξt − λt)dt+ σλ
√
λtdBλ,t, (2)

where

dξt = κξ(ξ̄ − ξt)dt+ σξ
√
ξtdBξ,t, (3)

and were all Brownian motions are independent.4

The size of a jump, provided that a jump occurs, is determined by Zt. We assume Zt

is a random variable whose time-invariant distribution ν is independent of Nt, Bt and Bλ,t.

4Multifrequency processes for volatility have been shown to be important for matching option prices in
the context of reduced-form models (Andersen, Fusari, and Todorov (2013), Bates (2000), Christoffersen,
Heston, and Jacobs (2009), and Gallant, Hsu, and Tauchen (1999)). Our model differs from these in that
we specify a process for the disaster risk, and because volatility is endogenous in our model, rather than
exogenous.
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We use the notation Eν to denote expectations of functions of Zt taken with respect to the

ν-distribution. The t subscript on Zt will be omitted when not essential for clarity.

We assume a recursive generalization of power utility that allows for preferences over

the timing of the resolution of uncertainty. Our formulation comes from Duffie and Epstein

(1992), and we consider a special case in which the elasticity of intertemporal substitution

(EIS) is equal to 1. That is, we define continuation utility Vt for the representative agent

using the following recursion:

Vt = Et

∫ ∞
t

f(Cs, Vs) ds, (4)

where

f(C, V ) = β(1− γ)V

(
logC − 1

1− γ
log((1− γ)V )

)
. (5)

The parameter β is the rate of time preference and γ is the coefficient of relative risk aversion

This utility function is equivalent to the continuous-time limit (and the limit as the EIS

approaches one) of the utility function defined by Epstein and Zin (1989) and Weil (1990).

2.2 Solving for asset prices

We solve for asset prices using the state-price density, πt.Duffie and Skiadas (1994) charac-

terize the state-price density as

πt = exp

{∫ t

0

∂

∂V
f (Cs, Vs) ds

}
∂

∂C
f (Ct, Vt) . (6)

There is an equilibrium relation between utility Vt, consumption Ct and the disaster proba-

bility λt. Namely,

Vt =
C1−γ
t

1− γ
ea+bλλt+bξξt
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where

a =
1− γ
β

(
µ− 1

2
γσ2

)
+
bξκξ ξ̄

β
(7)

bλ =
κλ + β

σ2
λ

−

√(
κλ + β

σ2
λ

)2

− 2
Eν [e(1−γ)Zt − 1]

σ2
λ

(8)

bξ =
κξ + β

σ2
ξ

−

√√√√(κξ + β

σ2
ξ

)2

− 2
bλκλ
σ2
ξ

(9)

It follows that the state-price density can be written as

πt = exp

(
−β(a+ 1)t− βbλ

∫ t

0

λsds− βbξ
∫ t

0

ξsds

)
βC−γt ea+bλλt+bξξt . (10)

Details are provided in Appendix B.2.

We assume a standard model for dividends (Campbell (2003), Abel (1999)): Dt = Cφ
t ,

for leverage parameter φ.5 Let F (Dt, λt, ξt) be the value of the aggregate market (it will be

apparent in what follows that F is a function of Dt, λt and ξt). It follows from no-arbitrage

that

F (Dt, λt, ξt) = Et

[∫ ∞
t

πs
πt
Ds ds

]
.

The stock price can be written explicitly as

F (Dt, λt, ξt) = DtG(λt, ξt), (11)

5This implies that dividends respond more than consumption to disasters, an assumption that is plausible
given the U.S. data (Longstaff and Piazzesi (2004)). As elsewhere in the literature on endowment economies,
we take the disconnect between consumption and dividends as given. The assumption of leverage is not
crucial in that we would obtain similar results in a model with no leverage and a higher value of the EIS.
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where the price-dividend ratio G is given by

G(λt, ξt) =

∫ ∞
0

exp (aφ(τ) + bφλ(τ)λt + bφξ(τ)ξt) dτ, (12)

where aφ, bφλ and bφξ solve the differential equations

a′φ(τ) = −β + (φ− 1)µ+
(1

2
φ− γ

)
(φ− 1)σ2 + bφξ(τ)κξ ξ̄

b′φλ(τ) = −bφλ(τ)κλ +
1

2
bφλ(τ)2σ2

λ + bλbφλ(τ)σ2
λ + Eν

[
e(φ−γ)Zt − e(1−γ)Zt

]
b′φξ(τ) = −bφλ(τ)κλ − bφξ(τ)κξ +

1

2
bφξ(τ)2σ2

ξ + bξbφξ(τ)σ2
ξ ,

with boundary condition

aφ(0) = bφλ(0) = bφξ(0) = 0.

(see Appendix B.3). We will often use the abbreviation Ft = F (Dt, λt, ξt) to denote the

value of the stock market index at time t.

2.3 Solving for implied volatilities

Let P (Ft, λt, ξt, τ ;K) denote the time-t price of a European put option on the stock market

index with strike price K and expiration t+τ . For simplicity, we will abbreviate the formula

for the price of the dividend claim as Ft = F (Dt, λt, ξt). Because the payoff on this option

at expiration is (K − Ft+τ )+, it follows from the absence of arbitrage that

P (Ft, λt, ξt, T − t;K) = Et

[
πT
πt

(K − FT )+

]
.
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Let Kn = K/Ft, the normalized strike price (or “moneyness”), and define

P n(λt, ξt, T − t;Kn) = Et

[
πT
πt

(
Kn − FT

Ft

)+
]
. (13)

We will establish below that P n is indeed a function of λt, time to expiration and moneyness

alone Clearly P n
t = Pt/Ft. Because our ultimate interest is in implied volatilities, and

because, in the formula of Black and Scholes (1973), normalized option prices are functions

of the normalized strike price (and the volatility, interest rate and time to maturity), it

suffices to calculate P n
t .6

Returning to the formula for P n
t , we note that, from (11), it follows that

FT
Ft

=
DT

Dt

G(λT , ξT )

G(λt, ξt)
. (14)

Moreover, it follows from (10) that

πT
πt

=

(
CT
Ct

)−γ
exp

{∫ T

t

−β(1 + a+ bλλs + bξξs) ds+ bλ(λT − λt) + bξ(ξT − ξt)
}
. (15)

At time t, λt and ξt are sufficient to determine the distributions of consumption and dividend

6Given stock price F , strike price K, time to maturity T − t, interest rate r, and dividend yield y, the
Black-Scholes put price is defined as

BSP(F,K, T − t, r, y, σ) = e−r(T−t)KN(−d2)− e−y(T−t)FN(−d1)

where

d1 =
log(F/K) +

(
r − y + σ2/2

)
(T − t)

σ
√
T − t

and d2 = d1 − σ
√
T − t

Given the put prices calculated from the transform analysis, inversion of this Black-Scholes formula gives us
implied volatilities. Specifically, the implied volatility σimp

t = σimp(λt, T − t;Kn) solves

Pnt (λt, T − t;Kn) = BSP
(

1,Kn, T − t, rbt , 1/G(λt), σ
imp
t

)
where rbt is the model’s analogue of the Treasury Bill rate, which allows for a probability of a default in case
of a disaster (see Barro (2006); as in that paper we assume a default rate of 0.4).
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growth between t and T , as well as the distributions of future values of λs and ξs, s = 1, . . . , T

It follows that normalized put prices (and therefore implied volatilities) are a function of λt,

ξt, the time to expiration, and moneyness.

To calculate normalized put prices, we use the transform analysis of Duffie, Pan, and

Singleton (2000), applied to a highly-accurate log-linear approximation of the price-dividend

ratio. This analytical method avoids the curse of dimensionality and the need to simulate

the expectation in (13) which is inefficient due to rare events. See Appendix D for details.

2.4 Limiting cases

Setting the high-frequency state variable ξt to a constant results in the single-frequency SDR

model considered by Wachter (2013). For ease of notation, we will let λ̄ = ξ̄ be the mean of

λt when discussing this single-frequency model. In what follows, we will refer to this as the

single-frequency SDR model, or simply, the SDR model, while the general case will always

be called the multifrequency model.

Further setting λt to a constant λ̄ results in a model with constant disaster risk. In this

iid model, the EIS and the discount rate are not separately identified and so the model with

recursive utility is isomorphic to one with power utility. Thus this model is equivalent to

that considered by Barro (2006), Rietz (1988) and Backus, Chernov, and Martin (2011). We

refer to this model as the constant disaster risk (CDR) model. Appendix C.2 shows that this

limit is indeed well-defined and is what would be computed if one were to solve the constant

disaster risk model from first principles. Note that, for the CDR model, the assumption of

recursive utility is observationally equivalent to that of power utility (see Tallarini (2000);

we establish this fact for our setting in Appendix C.3).
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3 Average implied volatilities in a single-frequency model

We first consider average implied volatilities, as these are the focus of the prior literature

(see, for example, Backus, Chernov, and Martin (2011) and Drechsler (2013)). To highlight

the main mechanism of the model, we consider the (single-frequency) SDR model described

in Section 2.4 (see Appendix C.1 for more details). To ensure the model also matches equity

data, we use the same parameters as Wachter (2013). Thus parameters are chosen for this

model without appeal to option prices.

We will compare our results to the findings of Backus, Chernov, and Martin (2011),

and thus use their parameters for the CDR model.7 The two calibrations differ in their

relative risk aversion, in the volatility of normal-times consumption growth, in leverage, in

the probability of a disaster, and of course in whether the probability is time-varying. The

net effect of some of these differences turns out to be less important than what one may

think: for example, higher risk aversion and lower disaster probability roughly offset each

other.8 We explore the implications of leverage and volatility in what follows.

The two models also assume different disaster distributions. For the SDR model, the

disaster distribution is multinomial, and taken from Barro and Ursúa (2008) based on actual

consumption declines. The benchmark CDR model assumes that consumption declines are

log-normal. For comparison, we plot the smoothed density for the SDR model along with the

density of the consumption-based model in Figure 1. Compared with the lognormal model,

the SDR model has more mass over small declines in the 10–20% region, and more mass over

large declines in the 50-70% region.9

7In the terminology of Backus et al., this is the “consumption-based model”. We consider a calibration
that is isomorphic to their power utility case in the sense described in Section 2.4, and use their assumption
of a riskfree rate of 2% to back out a discount rate.

8In fact, the results are very similar if we use the same parameters as in the SDR model, except with
σλ = 0.

9One concern is the sensitivity of our results to behavior in the tails of the distribution. By assuming
a multinomial distribution, we essentially assume that this distribution is bounded, which is probably not
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The volatility skew in the data represents an average of implied volatilities at different

points in time. We follow the same procedure in the model, calculating an unconditional

average volatility skew. To do so, we first solve for the implied volatility as a function

of λt. We numerically integrate this function over the stationary distribution of λt. This

stationary distribution is Gamma with shape parameter 2κλ̄/σ2
λ and scale parameter σ2

λ/(2κ)

(Cox, Ingersoll, and Ross (1985)).

Figure 2 shows the resulting implied volatilities as a function of moneyness, as well as

implied volatilities in the data. Confirming previous results, we find that the CDR model

leads to implied volatilities that are dramatically different from those in the data. First, the

implied volatilities are too low, even though the model was calibrated to match the volatility

of equity returns. Second, they exhibit a strong downward slope as a function of the strike

price. While there is a downward slope in the data, it is not nearly as large. As a result,

implied volatilities for ATM options in the CDR model are less than 10%, far below the

option-based implied volatilities, which are over 20%.

In contrast, the SDR model can explain both ATM and OTM implied volatilities. For

OTM options with moneyness equal to 0.94, the SDR model gives an implied volatility of

23%, close to the data value of 24%. There is a downward slope, just as in the data, but it is

much smaller than that of the CDR model. ATM options have implied volatilities of about

21% in both the model and the data. There are a number of differences between this model

and the CDR model. We now discuss which of these differences is primarily responsible for

the change in implied volatilities.

realistic. However, it makes very little difference if we consider a unbounded distribution that matches the
observations in the data. Barro and Jin (2011) suggest this can be done with a power law distribution
with tail parameter of about 6.5. We have tried this version of the model and the results are virtually
indistinguishable. The reason is that, even though low realizations are possible in theory, their probability
is so small as to not affect the model’s results.

12



3.1 The role of leverage

In their discussion, Backus, Chernov, and Martin (2011) emphasize the role of very bad con-

sumption realizations as a reason for the poor performance of the disaster model. Therefore,

this seems like an appropriate place to start. The disaster distribution in the SDR bench-

mark actually implies a slightly higher probability of extreme events than the benchmark

CDR model (Figure 1). However, the benchmark CDR model has much higher leverage:

the leverage parameter is 5.1 for the CDR calibration versus 2.6 for the SDR calibration.

Leverage does not affect consumption but it affects dividends, and therefore stock and option

prices. A higher leverage parameter implies that dividends will fall further in the event of a

consumption disaster. It is reasonable, therefore, to attribute the difference in the implied

volatilities to the difference in the leverage parameter.

Figure 3 tests this directly by showing option prices in the CDR model for leverage of

5.1 and for leverage of 2.6 (denoted “lower leverage”) in the figure. Surprisingly, the slope

for the calibration with leverage of 2.6 is slightly higher than the slope for leverage of 5.1.

Lowering leverage results in a downward shift in the level of the volatility skew, not the

slope. Thus the difference in leverage cannot be the explanation for why the slope in our

model is lower than the slope for CDR.

Why does the change in leverage result in a shift in the level of the skew? It turns out

that in the CDR model, changing normal-times volatility has a large effect. Leverage affects

both the disaster distribution and normal-times volatility. Lowering leverage has a large

effect on normal-times volatility and thus at-the-money options. This is why the level of the

curve is lower, and the slope is slightly steeper.10

10Yan (2011) shows analytically that, as the time to expiration approaches zero, the implied volatility is
equal to the normal-times volatility in the stock price, while the slope is inversely related to the normal-times
volatility of the stock price.
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3.2 The role of normal shocks in consumption

To further consider the role of normal-times volatility, we explore the impact of changing

the consumption volatility parameter σ. In the benchmark CDR comparison, consumption

volatility is equal to the value of consumption volatility over the 1889–2009 sample, namely

3.5%. Most of this volatility is accounted for by the disaster distribution, because, while the

disasters are rare, they are severe. Therefore normal-times volatility is 1%, lower than the

U.S. consumption volatility over the post-war period. The SDR model is calibrated differ-

ently; following Barro (2006), the disaster distribution is determined based on international

macroeconomic data, and the normal-times distribution is set to match postwar volatility in

developed countries. The resulting normal-times volatility is 2%. To evaluate the effect of

this difference, we solve for implied volatilities in the CDR model with leverage of 5.1 and

normal-times volatility of 2%. In Figure 3, the result is shown in the line denoted “higher

normal-times volatility.”

As Figure 3 shows, increasing the normal-times volatility of consumption growth in the

CDR model has a noticeable effect on implied volatilities: The implied volatility curve is

higher and flatter. The change in the level reflects the greater overall volatility. The change

in the slope reflects the greater probability of small, negative outcomes. However, the effect,

while substantial, is not nearly large enough to explain the full difference. The level of the

“higher normal-times volatility” smile is still too low and the slope is too high compared

with the data.11

While raising the volatility of consumption makes the CDR model look somewhat more

like the SDR model, it is not the case that lowering the volatility of consumption makes

the SDR model more like the CDR model. Namely, reducing σ to 1% (which would imply

11Note further that leverage of 5.1, combined with a normal-times consumption volatility of 2% means
that normal-times dividend volatility of dividends is 10.2%. However, annual volatility in postwar data is
only 6.5%.
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a normal-times consumption volatility that is lower than in the post-war data) has almost

no effect on the implied volatility curve of the SDR model. There are two reasons why

this parameter affects implied volatilities differently in the two cases. First, the leverage

parameter is much lower in the SDR model than the CDR model. Second, volatility in the

SDR model comes from time-variation in discount rates (driven by λt) as well as in payouts

(φσ). The first of these terms is much larger than the second.12

3.3 The role of stock price volatility in normal times

We showed above that, while normal-times volatility in consumption determines the skew in

the CDR model, it does not for the SDR model because, in the SDR model, consumption

volatility has a negligible impact on stock prices. What does drives stock prices is time-

variation in the disaster probability λt. When λt rises, risk premia on stocks rise, causing

fluctuations in asset prices beyond what one would see from the realization of disasters

themselves.

This normal-times fluctuation in stock prices is crucial for matching the level and slope of

the volatility skew. Normal-times volatility in stock prices generates high implied volatilities

for ATM options. Moreover, because of the importance of normal shocks (λt follows a

diffusion), the slope is shallow for ATM options.13 In contrast, while the CDR model can

match the unconditional volatility in the market, the entirety of this volatility occurs during

periods with disasters. Thus ATM implied volatilities are low, and, because of the importance

of jump risk, the skew is very steep.

12To be precise, total return volatility in the SDR model equals the square root of the variance due to
λt, plus the variance in dividends. Dividend variance is small, and it is added to something much larger to
determine total variance. Thus the effect of dividend volatility on return volatility is very small, and changes
in dividend volatility also have relatively little effect.

13In a reduced-form model, Yan (2011) shows analytically that, as the time to expiration approaches zero,
the implied volatility for ATM options is equal to the normal-times volatility in the stock price, while the
slope is inversely related to the normal-times volatility of the stock price.
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Note that the success in matching implied volatilities comes about simply by making a

constant parameter stochastic. Even though average implied volatilities are an unconditional

moment of the data, a change in the conditional distribution in the model has a large effect.

The results are in stark contrast to the impact of a similar exercise in a reduced-form model.14

The reason is that, in an equilibrium model like the present one, unconditional stock market

volatility arises endogenously from conditional moments of fundamentals. While it is possible

to match the unconditional volatility of stock returns and consumption in an iid model, this

can only be done by having all of the volatility occur during disasters. In such a model

it is not possible to generate sufficient stock market volatility in normal times to match

either implied or realized volatilities. While in the reduced-form literature, the difference

between iid and dynamic models principally affects the conditional second moments, in the

equilibrium literature, the difference affects the level of volatility itself.

The SDR model contains an additional mechanism that further increases ATM volatili-

ties above the level of realized volatility. This mechanism is embedded in recursive utility.

Recursive utility plays a number of roles in the model, including enabling the model to

match realized volatilities; without recursive utility, the price-dividend ratio would not fall

on an increased risk of rare disasters, because, at reasonable parameter values, the riskfree

rate effect would be larger than the risk premium effect. Thus recursive utility is needed

to match the level of realized volatility itself. However, there is an additional affect that is

relevant for option pricing. Drechsler and Yaron (2011) note that recursive utility implies

a premium for volatility. Assets that fall in price when volatility rises are hedges and thus

14Backus, Chernov, and Martin (2011) write: “The question is whether the kinds of time dependence we
see in asset prices are quantitatively important in assessing the role of extreme events. It is hard to make a
definitive statement without knowing the precise form of time dependence, but there is good reason to think
its impact could be small. The leading example in this context is stochastic volatility, a central feature of
the option-pricing model estimated by Broadie et al. (2007). However, average implied volatility smiles
from this model are very close to those from an iid model in which the variance is set equal to its mean.
Furthermore, stochastic volatility has little impact on the probabilities of tail events, which is our interest
here.”
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have higher equilibrium prices than they would otherwise. Options are such an asset. We

see the same mechanism in our model, except that it works through the channel of disaster

risk. Indeed, an increase in the probability of a rare disaster raises option prices, while at the

same time increasing marginal utility. Thus options are a hedge, which raises their prices,

and thus raises implied volatilities.

The hedging property of options is quantitatively important. We can see this by replacing

the pricing kernel in (10) with a fictitious one in which bλ = 0 (note that bξ = 0 because

we are starting with the single-frequency model).15 Because bλ determines the risk premium

due to covariance with λt, setting bλ = 0 will shut off the hedging effect. Note that the

assumption of bλ = 0 does not imply an iid model. This model still assumes that stock

prices are driven by stochastic disaster risk; otherwise the volatility of stock returns would

be equal to that of dividends. As Figure 4 shows, setting bλ = 0 reduces the level of implied

volatilities so that it is noticeably below that of the data.

3.4 Alternative mechanisms

While it is not the purpose of this article to rule out all other possible explanations, here,

we briefly discuss alternative models that could potentially explain the volatility skew.

Backus, Chernov, and Martin (2011) propose one such alternative mechanism, namely,

that the consumption growth distribution is characterized by smaller and more negative

jumps than in the disaster literature. This distribution is consistent with average implied

volatilities as well as with the equity premium, and the mean and volatility of consumption

15Note that a also depends on bλ: these expressions are also changed in the experiment. While it may
first appear that bλ should also affect the riskfree rate, this does not occur in the model with EIS= 1. The
riskfree rate satisfies a simple expression

rt = β + µ− γσ2 + λtEν
[
e−γZ

(
eZ − 1

)]
.
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growth observed in the U.S. in the 1889-2009 period (provided a coefficient of relative risk

aversion equal to 8.7). However, this consumption distribution can be ruled out based on

the history of consumption itself. Because it assumes that negative consumption jumps are

relatively frequent (as they must be to explain the equity premium), some would have oc-

curred in the 60-year postwar period in the U.S. The unconditional volatility of consumption

growth in the U.S. during this period was less than 2%. Under the option-implied consump-

tion growth distribution, there is less than a 1 in one million chance of observing a 60-year

period with volatility this low.16

What about alternative modifications to the consumption distribution? In light of the

discussion in Section 3.3, one such modification would be to allow volatility in consumption

to be stochastic. This could generate variation in risk premia on equities, thus contributing

to stock price volatility. However, consumption volatility does not appear to vary enough

to explain equity volatility, nor does the resulting economy deviate sufficiently from uncon-

ditional normality to explain the slope of the volatility skew (additional details available

from the authors upon request). In fact, the existing literature has explored rich models

of consumption dynamics that include time-varying volatility (see Benzoni, Collin-Dufresne,

and Goldstein (2011), Buraschi and Jiltsov (2006) and Drechsler (2013)). These papers find

that, while the mechanism can capture deviations from the Black-Scholes benchmark, it is

insufficient to match the extent of the deviation as measured by the skew in the data. Even

models that can generate sufficient stock price volatility can fail to explain the skew. Du

(2011) shows that the Campbell and Cochrane (1999) model alone does not explain option

prices, though it can when augmented with iid rare events.

Other models that can quantitatively explain implied volatilities do so by making non-

16There are multiple additional objections to an iid model for returns. Another that arises in the context
of options and rare disaster is that of Neuberger (2012), who shows that an iid model is unlikely based on
the lack of decay in return skewness as the measurement horizon grows. We discuss this result further in
Section 4.3.
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standard assumptions on utilities or beliefs. For example, Drechsler (2013) assumes ambi-

guity aversion and Shaliastovich (2015) assumes jumps in confidence. These papers build

on earlier work (Bates (2008), Liu, Pan, and Wang (2005)) that shows that crash aversion

or ambiguity aversion is necessary to reconcile option prices and equity prices in the context

of an iid model. One way to characterize this literature is that models that can explain

the equity premium (or, in the case of dynamic models, the equity premium and volatility)

can have difficulty explaining options without the addition of non-standard preferences or

beliefs. The present model is an exception.

4 Option prices in a multifrequency stochastic disaster

risk model

4.1 Why multiple frequencies?

The previous section shows that a model with stochastic disaster risk can explain average

implied volatilities. To show this result, it suffices to use a simple model for the rare disaster

probability in which a single state variable follows a square-root process.

However, closer examination suggests that this model may be overly restrictive. Figure 5

shows implied volatilities for λt equal to the median and for the 20th and 80th percentile

value for put options with moneyness as low as 0.85. Implied volatilities increase almost in

parallel as λt increases. That is, ATM options are affected by an increase in the rare disaster

probability almost as much as out-of-the-money options. The model therefore implies that

there should be little variation in the slope of the implied volatility curve.

Figure 6 shows the historical time series of implied volatilities computed on one month

ATM and OTM options with moneyness of 0.85. Panel C shows the difference in the implied

volatilities, a measure of the slope of the volatility skew. Defined in this way, the average
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slope is 12%, with a volatility of 2%. Moreover, the slope can rise as high as 18% and fall

as low as 6%. While the SDR model can explain the average slope, it seems unlikely that

it would be able to account for the time-variation in the slope, at least under the current

calibration. Moreover, comparing Panel C with Panels A and B of Figure 6 indicates that

the slope varies independently of the level of implied volatilities. Thus it is unlikely that any

model with a single state variable could account for these data.17

The mechanism in the SDR model that causes time-variation in rare disaster probabilities

is identical to the mechanism that leads to volatility in normal times. Namely, when λt is

high, rare disasters are more likely and returns are more volatile. In order to account for the

data, a model must somehow decouple the volatility of stock returns from the probability of

rare events. This is challenging, because volatility endogenously depends on the probability

of rare events. Indeed, the main motivation for assuming time-variation in the probabil-

ity of rare events is to generate volatility in stock returns that seems otherwise puzzling.

Developing such a model is our goal in this section of the paper.18

4.2 Calibration

For simplicity, we keep risk aversion γ, the discount rate β and the leverage parameter φ the

same as in the single frequency SDR model. We also keep the distribution of consumption in

the event of a disaster the same. Note that κλ and σλ will not have the same interpretation

in the multifrequency model as κ and σλ do in the single frequency model.

Our first goal in calibrating the multifrequency model is to generate reasonable predic-

tions for the aggregate market and for the consumption distribution. That is, we do not

17Christoffersen and Jacobs (2004) make this point in the context of reduced-form models.
18One might think that introducing time-variation in, say, the volatility of consumption growth would

accomplish the same task. However, the problem is the same as that discussed in Section 3.4: the volatility
in consumption growth does not vary nearly enough (at least at the relevant frequency) to generate variance
in the slope independent of the level.
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want to allow the probability of a disaster to become too high. One challenge in calibrating

representative agent models is to match the high volatility of the price-dividend ratio. In

the multifrequency model, as in the single frequency model, there is an upper limit to the

amount of volatility that can be assumed in the state variable before a solution for utility

fails to exist. The more persistent the processes, namely the lower the values of κλ and κξ,

the lower the respective volatilities must be so as to ensure that the discriminants in (8) and

(9) stay nonnegative. We choose parameters so that the discrimant is equal to zero; thus

there is only one more free parameter relative to to the single-frequency model.

The resulting parameter choices are shown in Table 2. The mean reversion parameter

κλ and volatility parameter σλ are relatively high, indicating a fast-moving component to

the λt process, while the mean reversion parameter κξ and σξ are relatively low, indicating a

slower-moving component. The parameter ξ̄ (which represents both the average value of ξt

and the average value of λt) is 2% per annum. This is lower than λ̄ in our calibration of the

single-frequency model. In this sense, the multifrequency calibration is more conservative.

However, the extra persistence created by the ξt process implies that λt could deviate from

its average for long periods of time. To clarify the implications of these parameter choices,

we report population statistics on λt in Panel C of Table 2. The median disaster probability

is only 0.37%, indicating a highly skewed distribution. The standard deviation is 3.9% and

the monthly first-order autocorrelation is 0.9858.

Implications for the riskfree rate and the market are shown in Table 3. We simulate

100,000 samples of length 60 years to capture features of the small-sample distribution. We

also simulate a long sample of 600,000 years to capture the population distribution. Statistics

are reported for the full set of 100,000 samples, and the subset for which there are no disasters

(38% of the sample paths). The table reveals a good fit to the equity premium and to return

volatility. The average Treasury Bill rate is slightly too high, though this could be lowered
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by lowering β or by lowering the probability of government default.19 The model successfully

captures the low volatility of the riskfree rate in the postwar period. The model matches the

equity premium well, with a median value for no-disaster simulations of 8% (compared with

the data value of 7.3%).20 The model also matches equity volatility; the median is 19.3%,

compared with a data value of 17.8%. Like other models of this type (see, e.g. Bansal and

Yaron (2004), Bansal, Kiku, and Yaron (2012)), the volatility of the price-dividend ratio is

somewhat below its value in the data (0.27 versus 0.43). However, the data value is still lower

than the 95th percentile among the simulated samples.21 For the market moments, only the

very high AR(1) coefficient in postwar data falls outside the 90% confidence bounds: it is

0.92 (annual), while in the data, the median is 0.79 and the 95th percentile value is 0.91.

While it is theoretically possible to match this autocorrelation in the model, it comes at a

cost of raising the autocorrelation of option prices beyond realistic levels. Moreover, so that

utility converges, there is a tradeoff between persistence and volatility. One view is that the

autocorrelation of the price-dividend ratio observed in the postwar period may in fact have

been very exceptional and perhaps is not a moment that should be targeted too stringently.

4.3 Implied volatilities in the multifrequency model

We first examine the fit of the model to the mean of implied volatilities in the data. We

consider implied volatilities at a wider range of moneyness; we also look at 1- and 6-month

options as well as 3-month options and we consider the second moment of implied volatilities

as well as the first moment. Finally, rather than looking only at the population average,

19As in the single frequency model, we assume a 40% probability of government default.
20The population value of the equity premium is higher, at 9%. However, the no-disaster median is the

more relevant number of comparison with postwar data. The no-disaster median is lower because, on average,
the disaster probability is lower in samples without disasters.

21The single-frequency model, which was calibrated to match the population persistence of the price-
dividend ratio, has a median price-dividend ratio volatility of 0.21 for sample paths without disasters and a
population price-dividend ratio volatility of 0.38.
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we consider the range of values we would see in repeated samples that resemble the data,

namely, samples of length 17 years with no disaster. This is a similar exercise to what was

performed in Table 3, though calculating option prices is technically more difficult than

calculating equity prices.22

Figure 7 shows means and volatilities of implied volatilities for the three option maturities.

We report the averages across each sample path, as well as 90% confidence intervals from

the simulation. We see that this new model is successful at matching the average level of the

implied volatility curve for all three maturities, even with this extended moneyness range,

and even though we are looking at sample paths in which the disaster probability will be

lower than average. In fact the slope in the model is slightly below that in the data. Similarly,

the model’s predictions for volatility of volatility are well within the standard error bars for

all moneyness levels and for all three option maturities.23

The volatility skew computed from options expiring in as long as six months indicates that

the risk-neutral distribution of returns exhibits considerable skewness at long horizons. This

is known as the skewness puzzle (Bates (2008)) because the law of large numbers would sug-

gest convergence toward normality as the time to expiration increases. Recently, Neuberger

(2012) makes use of options data to conclude that the skewness in the physical distribution of

22Because of the extra persistence in the multifrequency model, λt spends more time near zero. To
accurately capture the dynamics when λt is near zero, we simulate the model at a half-day interval for
17 years. This simulation is repeated 1000 times for the options calculation, and more for the (easier)
equity calculations. Along each simulation path, we pick monthly observations of the state variables and
calculate option prices for these monthly observations. Given the values of the state variables, the log-linear
approximation is equally accurate as in the single-frequency model.

23One issue that arises in fitting both options and equities with a single model is the very different levels
of persistence in the option and equity markets. As Table 3 reports, the annual AR(1) coefficient for the
price-dividend ratio in the data is extremely high: 0.92; just outside of our 10% confidence intervals. The
median value from the simulations is still a very high 0.79; in monthly simulations, this value is 0.98. Implied
volatilities in simulated data have much lower autocorrelations. Median autocorrelations are roughly the
same across moneyness levels, and are in the 0.92 to 0.94 range; substantially below the level for the price-
dividend ratio. The AR(1) coefficients in the data are lower still, though generally within the 10% confidence
intervals. While the same state variables drive equity and option prices, they do so to different extents. The
model endogenously captures the greater persistence in equity prices, which represent value in the longer
run than do option prices.
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returns is also more pronounced than has been estimated previously. Neuberger emphasizes

the observed negative correlation between stock prices and volatility (French, Schwert, and

Stambaugh (1987)) as a reason why skewness in long-horizon returns does not decay as the

law of large numbers in an iid model suggests that it would (see also Bates (2000)).

Figure 7 shows that our model can capture the downward slope in 6-month implied

volatilities as well as the slope for shorter-term options. Thus stock returns in the model

exhibit skewness at both long and short-horizons. The short-horizon skewness arises from

the existence of rare disasters. Long-horizon skewness, however, comes about endogenously

because of the time-variation in the disaster probability. An increase in the rare disaster

probability leads to lower stock prices, and, at the same time, higher volatilities, thereby

accounting for this co-movement in the data. As a result, returns maintain their skewness at

long horizons, and the model can explain six-month as well as one-month implied volatility

curves.

4.4 Slope of the implied volatility skew

We now return to the question we posed at the beginning of this section. Does this model

explain variation in the slope of the volatility skew, and, if so, how does it do this?

As in the previous section, we simulate 1000 samples of length 17 years from the multi-

frequency SDR model, retaining only those with no disasters. For each simulation path, we

calculate the mean and the volatility of the difference between the OTM and ATM implied

volatilities. Figure 8 shows a scatter plot of these means and volatilities, along with the

value in the data, represented by circles. For comparison, we repeat this exercise for the

single-frequency SDR model (represented by squares). We also show the value for the CDR

model. Because the CDR model is iid, any simulation will generate an identical volatility

skew, and so the CDR model is represented by a single point (a triangle). Moreover, there
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is zero variance in the CDR volatility skew.

Confirming the results from Section 3, Figure 8 shows that the volatility skew in the

CDR model is much larger than the average volatility skew in the data. Much closer to the

data is the average volatility skew for the SDR model. However, as discussed above, the

single-frequency model predicts that the volatility in the volatility skew is close to zero. The

multifrequency model is closer to the data along both the mean and volatility dimensions.

Unlike the single-frequency model, the data fall within the 95 percent confidence ellipse

implied by the model.

Why does the multifrequency model succeed in producing independent variation in the

slope and level of the volatility skew? Figure 9 shows how each state variable affects the

volatility skew: in Panel A we vary λt while holding ξt at its median, while in Panel B we

vary ξt, holding λt at its median. As expected, both variables impact both the ATM and

OTM options. However, λt has a greater effect on OTM options, which is intuitive, as λt

directly measures the disaster probability. On the other hand, ξt has a larger effect on ATM

options, because of its impact on volatility.

4.5 The time series of options and equities

We now ask what these implied volatilities say about equity valuations.

We consider the time series of one-month ATM and OTM implied volatilities (Figure 6).

For each of these data points, we compute the implied value of λt and ξt. Note that this

exercise would not be possible if the model were not capable of simultaneously matching the

level and slope of the implied volatility curve for one-month options.24 Before embarking on

this exercise we note that the matching the time series is not usually a target for general

equilibrium models because these models operate under tight constraints. We expect that

24The resulting time series provides an excellent fit to the time-series of 3 and 6-month options, suggesting
that the choice of 1-month options is not important for this exercise.
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there will be some aspects of the time series that our model will not be able to match.

Given the option-implied values of ξ and λ, we can impute a price-dividend ratio using

(12). This price-dividend ratio uses no data on equities, only data on options and the model.

Figure Figure 10 shows the results, along with the price-dividend ratio from data available

from Robert Shiller’s webpage. The model can match the sustained level of the price-dividend

ratio, and, most importantly, the time series variation after 2004.25 Indeed, between 2004

and 2013, the correlation between the option-implied price-dividend ratio and the actual

price-dividend ratio is 0.84, strongly suggesting these two markets share a common source

of risk.

5 Conclusion

Since the early work of Rubinstein (1994), the volatility skew has constituted an important

piece of evidence against the Black-Scholes Model, and a lens through which to view the

success of a model in matching option prices.

The volatility skew, almost by definition, has been associated with excess kurtosis in stock

prices. Separately, a literature has developed linking kurtosis in consumption (which would

then be inherited by returns in equilibrium) with the equity premium. However, much of the

work up to now suggests that, at least for standard preferences, the non-normalities required

to match the equity premium are qualitatively different from those required to match implied

volatility.

We have proposed an alternative and more general approach to modeling the risk of

downward jumps that can reconcile the volatility skew and the equity premium. Rather

than assuming that the probability of a large negative event is constant, we allow it to vary

25Not surprisingly, the disaster-risk model is not able to match the run-up in stock prices from the late 90s
until around 2004. It may be that time-varying fears of a disaster will not be able to capture the extreme
optimism that characterized that period.
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over time. The existence of very bad consumption events leads to both the downward slope

in the volatility skew and the equity premium. Moreover, the time-variation in these events

moderates the slope, raises the level and generates the excess volatility observed in stock

prices. Thus the model can simultaneously match the equity premium, equity volatility, and

implied volatilities on index options. Option prices, far from ruling out rare consumption

disasters, provide additional information for the existence of what has been referred to as

the “dark matter” of asset pricing (Campbell (2008), Chen, Dou, and Kogan (2013)).

The initial model that we develop in the paper is deliberately simple and parsimonious.

However, there are some interesting features of option and stock prices that cannot be

matched by a model with a single state variable; for example, the imperfect correlation

between the slope and the level of the volatility skew. For this reason, we investigate a more

general model that allows for variation in disaster risk to occur at multiple time scales. This

modification naturally produces time-variation in the slope of implied volatilities because

it introduces variation in stock price volatility that can be distinguished from the risk of

rare disasters. Taken together, these results indicate that options data support the existence

of rare disasters in beliefs about the equity premium. Moreover, options data can provide

information about the disaster distribution beyond that offered by stock prices. In particular,

data from options suggest that modeling time-variation in disaster risk occurring at multiple

time scales may be a fruitful avenue for future work.

27



Appendix

A Data construction

Our sample consists of daily data on option prices, volume and open interest for European put

options on the S&P 500 index from OptionMetrics. Data are from 1996 to 2012. Options

expire on the Saturday that follows the third Friday of the month. We extract monthly

observations using data from the Wednesday of every option expiration week. We apply

standard filters to ensure that the contracts on which we base our analyses trade sufficiently

often for prices to be meaningful. That is, we exclude observations with bid price smaller

than 1/8 and those with zero volume and open interest smaller than one hundred contracts

(Shaliastovich (2009)).

OptionMetrics constructs implied volatilities using the formula of Black and Scholes

(1973) (generalized for an underlying that pays dividends), with LIBOR as the short-term

interest rate. The dividend-yield is extracted from the put-call parity relation. We wish to

construct a data set of implied volatilities with maturities of 1, 3 and 6 months across a range

of strike prices. Of course, there will not be liquid options with maturity precisely equal to,

say, 3 months, at each date. For this reason, we use polynomial interpolation across strike

prices and times to expiration.26 Specifically, at each date in the sample, we regress implied

volatilities on a polynomial in strike price K and maturity T :

σ(K,T ) = θ0 + θ1K + θ2K
2 + θ3T + θ4T

2 + θ5KT + θ6KT
2 + εK,T

We run this regression on options with maturities ranging from 30 to 247 days, and with

moneyness below 1.1. The implied volatility surface is generated by the fitted values of this

26See Dumas, Fleming, and Whaley (1998), Christoffersen and Jacobs (2004) and Christoffersen, Heston,
and Jacobs (2009).
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regression.

B Model Solution

B.1 Utility

We conjecture that, in equilibrium, the continuation utility Vt equals a function J of con-

sumption and the state variables λ and ξ such that:

J(C, λ, ξ) =
C1−γ

1− γ
ea+bλλ+bξξ. (B.1)

By differentiating J(C, λ, ξ), we obtain

∂J

∂C
= (1− γ)

J

C
,

∂2J

∂C2
= −γ(1− γ)

J

C2
,

∂J

∂λ
= bλJ,

∂2J

∂λ2
= b2

λJ,

∂J

∂ξ
= bξJ,

∂2J

∂ξ2
= b2

ξJ. (B.2)

Applying Ito’s Lemma to J(C, λ, ξ) with conjecture (B.1) and derivatives (B.2):

dVt
Vt−

= (1− γ)(µdt+ σdBt)−
1

2
γ(1− γ)σ2dt

+ bλ

(
κλ(ξt − λt)dt+ σλ

√
λtdBλ,t

)
+

1

2
b2
λσ

2
λλtdt

+ bξ

(
κξ(ξ̄ − ξt)dt+ σξ

√
ξtdBξ,t

)
+

1

2
b2
ξσ

2
ξξtdt+ (e(1−γ)Zt − 1)dNt.

Under the optimal consumption path, it must be that

Vt +

∫ t

0

f(Cs, Vs)ds = Et

[∫ ∞
0

f(Cs, Vs)ds

]
(B.3)
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(see Duffie and Epstein (1992)). By definition,

f(C, V ) = β(1− γ)V

(
logC − 1

1− γ
log [(1− γ)V ]

)
(B.4)

= β(1− γ)V logC − βV log [(1− γ)V ]

= βV log

(
C1−γ

(1− γ)V

)
= −βV (a+ bλλ+ bξξ),

where the last equation follows from the equilibrium condition that the utility process is

equal to the value function under the optimal policies: Vt = J(Ct, λt, ξt).

By the law of iterative expectations, the left-hand side of (B.3) is a martingale. Thus,

the sum of the drift and the jump compensator of (Vt +
∫ t

0
f(Cs, Vs)ds) equals zero. That is,

0 = (1− γ)µ− 1

2
γ(1− γ)σ2 + bλκλ(ξt − λt) +

1

2
b2
λσ

2
λλt + bξκξ(ξ̄ − ξt) +

1

2
b2
ξσ

2
ξξt

+ λtEν
[
e(1−γ)Zt − 1

]
− β(a+ bλλt + bξξt). (B.5)

By collecting terms in (B.5), we obtain

0 =

[
(1− γ)µ− 1

2
γ(1− γ)σ2 + bξκξ ξ̄ − βa

]
︸ ︷︷ ︸

=0

+ λt

[
−bλκλ +

1

2
b2
λσ

2
λ + Eν

[
e(1−γ)Zt − 1

]
− βbλ

]
︸ ︷︷ ︸

=0

+ ξt

[
bλκλ − bξκξ +

1

2
b2
ξσ

2
ξ − βbξ

]
︸ ︷︷ ︸

=0

. (B.6)
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Solving these equations gives us

a =
1− γ
β

(
µ− 1

2
γσ2

)
+
bξκξ ξ̄

β
(B.7)

bλ =
κλ + β

σ2
λ

−

√(
κλ + β

σ2
λ

)2

− 2
Eν [e(1−γ)Zt − 1]

σ2
λ

(B.8)

bξ =
κξ + β

σ2
ξ

−

√√√√(κξ + β

σ2
ξ

)2

− 2
bλκλ
σ2
ξ

, (B.9)

where we have chosen the negative root based on the economic consideration that when

there are no disasters, λt and ξt should not appear in the value function. Namely, for Zt = 0,

bλ = bξ = 0. Lastly, note that these results verify the conjecture (B.1).

B.2 State-price density

Duffie and Skiadas (1994) show that the state-price density πt equals

πt = exp

{∫ t

0

∂

∂V
f (Cs, Vs) ds

}
∂

∂C
f (Ct, Vt) . (B.10)

Our goal is to obtain an expression for the state-price density in terms of Ct, λt and ξt.

It follows from (B.4) that

∂

∂C
f (Ct, Vt) = βC−γt ea+bλλt+bξξt

and

∂

∂V
f(Ct, Vt) = β(1− γ)

(
logCt −

1

1− γ
log ((1− γ)Vt)

)
+ β.
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In equilibrium, continuation value Vt = J(Ct, λt, ξt). Substituting in for Vt from (B.1) implies

∂

∂V
f(Ct, Vt) = −βa− β − βbλλt − βbξξt. (B.11)

Therefore, from (B.10), it follows that the state-price density can be written as

πt = exp

{
−β(a+ 1)t− βbλ

∫ t

0

λsds− βbξ
∫ t

0

ξsds

}
βC−γt ea+bλλt+bξξt . (B.12)

B.3 Dividend claim price

Let Ft denote the price of the dividend claim. The pricing relation implies

Ft = Et

[∫ ∞
t

πs
πt
Dsds

]
=

∫ ∞
t

Et

[
πs
πt
Ds

]
ds.

Let H(Dt, λt, ξt, s− t) denote the price of the asset that pays the aggregate dividend at time

s, namely,

H(Dt, λt, ξt, s− t) = Et

[
πs
πt
Ds

]
.

By the law of iterative expectations, it follows that πtHt is a martingale:

πtH(Dt, λt, ξt, s− t) = Et[πsDs].

Conjecture that

H(Dt, λt, ξt, τ) = Dt exp (aφ(τ) + bφλ(τ)λt + bφξ(τ)ξt) . (B.13)
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Define µD to be the drift rate of the dividend process. By Ito’s Lemma applied to the

definition of dividends, it follows that

µD = φµ+
1

2
φ(φ− 1)σ2.

Applying Ito’s Lemma to the conjecture implies

dHt

Ht−
=

{
µD + bφλ(τ)κλ(ξt − λt) +

1

2
bφλ(τ)2σ2

λλt + bφξ(τ)κξ(ξ̄ − ξt) +
1

2
bφξ(τ)2σ2

ξξt

− a′φ(τ)− b′φλ(τ)λt − b′φξ(τ)ξt

}
dt

+ φσdBt + bφλ(τ)σλ
√
λtdBλ,t + bφξ(τ)σξ

√
ξtdBξ,t + (eφZt − 1)dNt.

Combining the SDE for Ht with the one for πt derived in the previous sections, we can derive

the SDE for πtHt:

d(πtHt)

πt−Ht−
=

{
− β − µ+ γσ2 − λtEν

[
e(1−γ)Zt − 1

]
+ µD + bφλ(τ)κλ(ξt − λt) +

1

2
bφλ(τ)2σ2

λλt

+ bφξ(τ)κξ(ξ̄ − ξt) +
1

2
bφξ(τ)2σ2

ξξt

− a′φ(τ)− b′φλ(τ)λt − b′φξ(τ)ξt

− γφσ2 + bλbφλ(τ)σ2
λλt + bξbφξ(τ)σ2

ξξt

}
dt

+ (φ− γ)σdBt + (bλ + bφλ(τ))σλ
√
λtdBλ,t + (bξ + bφξ(τ))σξ

√
ξtdBξ,t

+ (e(φ−γ)Zt − 1)dNt.
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Since πtHt is a martingale, the sum of the drift and the jump compensator of πtHt equals

zero. Thus:

0 = −β − µ+ γσ2 − λtEν
[
e(1−γ)Zt − 1

]
+ µD + bφλ(τ)κλ(ξt − λt) +

1

2
bφλ(τ)2σ2

λλt

+ bφξ(τ)κξ(ξ̄ − ξt) +
1

2
bφξ(τ)2σ2

ξξt

− a′φ(τ)− b′φλ(τ)λt − b′φξ(τ)ξt

− γφσ2 + bλbφλ(τ)σ2
λλt + bξbφξ(τ)σ2

ξξt + λtEν
[
e(φ−γ)Zt − 1

]
. (B.14)

Collecting terms of (B.14) results in the following equation:

0 =
[
−β − µ+ γσ2 + µD + bφξ(τ)κξ ξ̄ − γφσ2 − a′φ(τ)

]︸ ︷︷ ︸
=0

+ λt

[
−bφλ(τ)κλ +

1

2
bφλ(τ)2σ2

λ + bλbφλ(τ)σ2
λ + Eν

[
e(φ−γ)Zt − e(1−γ)Zt

]
− b′φλ(τ)

]
︸ ︷︷ ︸

=0

+ ξt

[
bφλ(τ)κλ − bφξ(τ)κξ +

1

2
bφξ(τ)2σ2

ξ + bξbφξ(τ)σ2
ξ − b′φξ(τ)

]
︸ ︷︷ ︸

=0

.

It follows that

a′φ(τ) = µD − µ− β + γσ2(1− φ) + κξ ξ̄bφξ(τ)

b′φλ(τ) =
1

2
σ2
λbφλ(τ)2 + (bλσ

2
λ − κλ)bφλ(τ) + Eν

[
e(φ−γ)Zt − e(1−γ)Zt

]
(B.15)

b′φξ(τ) =
1

2
σ2
ξbφξ(τ)2 + (bξσ

2
ξ − κξ)bφξ(τ) + κλbφλ(τ).
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This establishes that H satisfies the conjecture (B.13). We note that by no-arbitrage,

H(Dt, λt, ξt, 0) = Dt.

This condition provides the boundary conditions for the system of ODEs (B.15):

aφ(0) = bφλ(0) = bφξ(0) = 0.

Recall that once we get aφ(τ), bφλ(τ), and bφξ(τ),

Ft =

∫ ∞
t

Et

[
πs
πt
Ds

]
ds

=

∫ ∞
t

H(Dt, λt, ξt, s− t)ds

= Dt

∫ ∞
t

exp (aφ(s− t) + bφλ(s− t)λt + bφξ(s− t)ξt) ds

= Dt

∫ ∞
0

exp (aφ(τ) + bφλ(τ)λt + bφξ(τ)ξt) dτ.

That is, the price-dividend ratio can be written as

G(λt, ξt) =

∫ ∞
0

exp (aφ(τ) + bφλ(τ)λt + bφξ(τ)ξt) dτ.

B.4 Approximating the price-dividend ratio to obtain option prices

The transform analysis we use to price options requires that the log of the price-dividend ratio

be linear. Fortunately, the exact price-dividend ratio we derive can be closely approximated

by a log-linear function.

Let g(λ, ξ) = logG(λ, ξ). For given λ∗ and ξ∗, the two-dimensional Taylor approximation
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implies

g(λ, ξ) ' g(λ∗, ξ∗) +
∂g

∂λ

∣∣∣∣
λ∗,ξ∗

(λ− λ∗) +
∂g

∂ξ

∣∣∣∣
λ∗,ξ∗

(ξ − ξ∗). (B.16)

We note that

∂g

∂λ

∣∣∣∣
λ∗,ξ∗

=
1

G(λ∗, ξ∗)

∂G

∂λ

∣∣∣∣
λ∗,ξ∗

=
1

G(λ∗, ξ∗)

∫ ∞
0

bφλ(τ) exp (aφ(τ) + bφλ(τ)λ∗ + bφξ(τ)ξ∗) dτ (B.17)

Similarly, we obtain

∂g

∂ξ

∣∣∣∣
λ∗,ξ∗

=
1

G(λ∗, ξ∗)

∂G

∂ξ

∣∣∣∣
λ∗,ξ∗

=
1

G(λ∗, ξ∗)

∫ ∞
0

bφξ(τ) exp (aφ(τ) + bφλ(τ)λ∗ + bφξ(τ)ξ∗) dτ. (B.18)

Expression (B.17) and (B.18) can be interpreted as weighted averages of the coefficients

bφλ(τ) and bφξ(τ) respectively. The average is over τ , and the weights are proportional to

exp {aφ(τ) + bφλ(τ)λ∗ + bφξ(τ)ξ∗}. With this in mind, we define the notation

b∗φλ =
1

G(λ∗, ξ∗)

∫ ∞
0

bφλ(τ) exp (aφ(τ) + bφλ(τ)λ∗ + bφξ(τ)ξ∗) dτ (B.19)

b∗φξ =
1

G(λ∗, ξ∗)

∫ ∞
0

bφξ(τ) exp (aφ(τ) + bφλ(τ)λ∗ + bφξ(τ)ξ∗) dτ, (B.20)

and the log-linear function

Ĝ(λt, ξt) = G(λ∗, ξ∗) exp
{
b∗φλ(λt − λ∗) + b∗φξ(ξt − ξ∗)

}
. (B.21)
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It follows from exponentiating both sides of (B.16) that

G(λt, ξt) ' Ĝ(λt, ξt).

In our analysis, we pick λ∗ and ξ∗ as the stationary mean of λt and ξt, respectively.

This log-linearization method differs from the more widely-used method of Campbell

(2003), applied in continuous time by Chacko and Viceira (2005). However, in this appli-

cation it is more accurate. This is not surprising, since we are able to exploit the fact that

the true solution for the price-dividend ratio is known. In dynamic models with the EIS not

equal to one, the solution is typically unknown.

C Derivation of Limiting Cases

C.1 Single-frequency SDR as the limit of multifrequency SDR

Note that bξ in equation (B.9) can be written as

bξ =
1

σ2
ξ

(
κξ + β −

√
(κξ + β)2 − 2bλκλσ2

ξ

)
.

Applying L’Hopital’s rule yields

lim
σξ→0

bξ = lim
σξ→0

1

2

(
(κξ + β)2 − 2bλκλσ

2
ξ

)− 1
2 2bλκλ =

bλκλ
κξ + bξ

(C.1)
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It follows from the equation for a, (B.7), that

lim
σλ→0

(a+ bλλt + bξξt) = lim
σξ→0

(a+ bξλ̄+ bλλt)

=
1− γ
β

(
µ− 1

2
γσ2

)
+
bξκξλ̄

β
+ λ̄ lim

σξ→0
bξ + bλλt

=
1− γ
β

(
µ− 1

2
γσ2

)
+

1

β
bλκλλ̄+ bλλt,

where we assume ξ0 = ξ̄ ≡ λ̄ and apply (C.1).27 Note that the limit of the stochastic process

for consumption is given by (1), with

dλt = κ(λ̄− λt) dt+ σλ
√
λt dBλ,t.

We now apply these results to calculate the limit of the state-price density πt. For asset

prices, all that matters are ratios of πt at different points in time, so we normalize by π0.

From (B.12) it follows that

lim
σξ→0

πt
π0

= exp

{
−β
(

lim
σξ→0

(a+ bξλ̄)t+ bλ

∫ t

0

λs ds

)
+ bλλt

}
β

(
Ct
C0

)−γ
= exp

{
−β − (1− γ)(µ− 1

2
γσ2)− bλκλλ̄− βbλ

∫ t

0

λs ds+ bλλt

}
β

(
Ct
C0

)−γ

This is the same state-price density as in Wachter (2013). Note that this result requires that

we chose the lower of the two roots in (B.6).28

C.2 CDR as the iid limit of the SDR model

We now further take the limit as σλ goes to zero to produce an iid model.

27This matches the expression in Wachter (2013), when adjusted for the fact that, in this paper, we express
the value function in terms of wealth, whereas the previous paper expressed the value function in terms of
consumption.

28This point is also made by Tauchen (2005) for a model with stochastic volatility.
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Note that bλ in equation (B.8) can be rewritten as

bλ =
1

σ2
λ

(
κλ + β −

√
(κλ + β)2 − 2Eν [e(1−γ)Z − 1]σ2

λ

)
.

We take limits using L’Hopital’s rule:

lim
σλ→0

bλ = lim
σλ→0

1

2

(
(κλ + β)2 − 2Eν

[
e(1−γ)Z − 1

]
σ2
λ

)− 1
2 2Eν

[
e(1−γ)Z − 1

]
=

Eν
[
e(1−γ)Z − 1

]
κλ + β

.

Define â as the constant term in the single-frequency model derived in C.1

â =
1− γ
β

(
µ− 1

2
γσ2

)
+

1

β
bλκλλ̄.

Then

lim
σλ→0

(â+ bλλt) = lim
σλ→0

(â+ bλλ̄)

=
1− γ
β

(
µ− 1

2
γσ2

)
+ (κλ + β)

λ̄

β
lim
σλ→0

bλ

=
1− γ
β

(
µ− 1

2
γσ2

)
+
Eν
[
e(1−γ)Z − 1

]
λ̄

β
,

where we assume that λ0 = λ̄ and therefore that λt = λ̄ for all t.

Finally,

lim
σλ→0

πt
π0

= exp

{(
−β − β lim

σλ→0
(â+ bλλ̄)

)
t

}(
Ct
C0

)−γ
exp

{(
−β − (1− γ)(µ− 1

2
γσ2)− Eν

[
e(1−γ)Z − 1

]
λ̄

)
t

}(
Ct
C0

)−γ
,
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which is equivalent to the result one obtains by calculating the state price density in the iid

case. As above, this result requires that we choose the lower of the two roots.

C.3 An isomorphism with power preferences under the iid assumption

In this section we show that, in an iid model, ratios of the state price density at different

times implied by power utility are the same as those implied by recursive utility assuming

the discount rate is adjusted appropriately. Thus the power utility model and the recursive

utility model are isomorphic when the endowment process is iid.

Let πp,t be the state price density assuming power utility with discount rate βp and

relative risk aversion γ. Then

πp,t
πp,0

= e−βpt
(
Ct
C0

)−γ
.

For convenience, let πt be the state price density for recursive utility (with EIS equal to one).

As shown in Appendix C.2,

πt
π0

= e((1−γ)(−µ+ 1
2
γσ2)−λ̄Eν[e(1−γ)Z−1]−β)t

(
Ct
C0

)−γ
.

It follows that, for β given by

β = βp + (1− γ)

(
−µ+

1

2
γσ2

)
− λ̄Eν

[
e(1−γ)Z − 1

]
,

ratios of the state price densities are the same.
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D Transform analysis

The normalized put option price is given as

P n(λt, ξt, T − t;Kn) = Et

[
πT
πt

(
Kn − FT

Ft

)+
]
. (D.1)

It follows from (14), (15), and (B.21) that

πT
πt

= exp

{∫ T

t

−β(1 + a+ bλλs + bξξs) ds− γ log

(
CT
Ct

)
+ bλ(λT − λt) + bξ(ξT − ξt)

}
FT
Ft

= exp

{
φ log

(
CT
Ct

)
+ b∗φλ(λT − λt) + b∗φξ(ξT − ξt)

}
,

where bλ, bξ, b
∗
φλ and b∗φξ are constants defined by , (8), (9), (B.19), and (B.20), respectively.

To use the method of Duffie, Pan, and Singleton (2000), it is helpful to write down the

following stochastic process, which, under our assumptions, is well-defined for given λt and

ξt:

Xτ =


logCt+τ − logCt

λt+τ

ξt+τ

 .
Note that the {Xτ} process is defined purely for mathematical convenience. We further

define

d1 =


0

bλ

bξ

 , d2 =


−γ

bλ

bξ

 , d3 =


0

b∗φλ

b∗φξ

 , d4 =


φ

b∗φλ

b∗φξ

 .
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Using this notation, (D.1) can be rewritten as

P n(λt, ξt, T − t;Kn) = KnEt

[
e−

∫ T−t
0 R(Xτ ) dτ+d>2 XT−t−d>1 X0 1{

FT
Ft
≤Kn

}]
− Et

[
e−

∫ T−t
0 R(Xτ ) dτ+(d2+d4)>XT−t−(d1+d3)>X0 1{

FT
Ft
≤Kn

}] (D.2)

where

R(Xτ ) = βd>1 Xτ + β(1 + a)

1{
FT
Ft
≤Kn

} = 1{d>4 XT−t≤logKn+d>3 X0}.

Since {Xτ} is an affine process in the sense defined by Duffie, Pan, and Singleton (2000),

(D.2) characterizes the put option price in terms of expectations that can be computed using

their transform analysis. Specifically, if we define

Gp,q(y;X0, T − t) ≡ E
[
e−

∫ T−t
0 R(Xτ )dτep

>XT−t1{q>XT−t≤y}

]
, (D.3)

then the normalized put price is expressed as

P n(λt, ξt, T − t;Kn) = e−d
>
1 X0KnGd2,d4

(
logKn + d>3 X0;X0, T − t

)
− e−(d1+d3)>X0KnGd2+d4,d4

(
logKn + d>3 X0;X0, T − t

)
,

where X0 = [0, λt, ξt]. The terms written using the function G can then be computed

tractably using the transform analysis of Duffie et al: this analysis requires only the solution

of a system of ordinary differential equations and a one-dimensional numerical integration.
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Barro, Robert J., and José F. Ursúa, 2008, Macroeconomic crises since 1870, Brookings

Papers on Economic Activity no. 1, 255–350.

Bates, David S., 2000, Post-’87 crash fears in the S&P 500 futures option market, Journal

of Econometrics 94, 181–238.

Bates, David S., 2008, The market for crash risk, Journal of Economic Dynamics and Control

32, 2291–2321.

43



Benzoni, Luca, Pierre Collin-Dufresne, and Robert S. Goldstein, 2011, Explaining asset

pricing puzzles associated with the 1987 market crash, Journal of Financial Economics

101, 552 – 573.

Black, Fischer, and Myron Scholes, 1973, The Pricing of Options and Corporate Liabilities,

Journal of Political Economy 81, 637–654.

Bollerslev, Tim, and Viktor Todorov, 2011, Tails, Fears, and Risk Premia, The Journal of

Finance 66, 2165–2211.

Broadie, Mark, Mikhail Chernov, and Michael Johannes, 2007, Model specification and risk

premia: Evidence from futures options, Journal of Finance 62, 1453–1490.

Buraschi, Andrea, and Alexei Jiltsov, 2006, Model Uncertainty and Option Markets with

Heterogeneous Beliefs, The Journal of Finance 61, 2841–2897.

Campbell, John Y., 2003, Consumption-based asset pricing, in G. Constantinides, M. Harris,

and R. Stulz, eds.: Handbook of the Economics of Finance, vol. 1b (Elsevier Science, North-

Holland ).

Campbell, John Y., 2008, Risk and return in stocks and bonds, Lecture 2, Princeton Lectures

in Finance.

Campbell, John Y., and John H. Cochrane, 1999, By force of habit: A consumption-based

explanation of aggregate stock market behavior, Journal of Political Economy 107, 205–

251.

Campbell, John Y., and Robert J. Shiller, 1988, The dividend-price ratio and expectations

of future dividends and discount factors, Review of Financial Studies 1, 195–228.

44



Chacko, George, and Luis Viceira, 2005, Dynamic consumption and portfolio choice with

stochastic volatility in incomplete markets, Review of Financial Studies 18, 1369–1402.

Chen, Hui, Winston Wei Dou, and Leonid Kogan, 2013, Measuring the “Dark Matter”in

Asset Pricing Models, Working paper, MIT.

Christoffersen, Peter, Steven Heston, and Kris Jacobs, 2009, The Shape and Term Structure

of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well,

Management Science 55, 1914–1932.

Christoffersen, Peter, and Kris Jacobs, 2004, The importance of the loss function in option

valuation, Journal of Financial Economics 72, 291–318.

Coval, Joshua D., and Tyler Shumway, 2001, Expected option returns, The Journal of Fi-

nance 56, 983–1009.

Cox, John C., Jonathan C. Ingersoll, and Stephen A. Ross, 1985, A theory of the term

structure of interest rates, Econometrica 53, 385–408.

Drechsler, Itamar, 2013, Uncertainty, Time-Varying Fear, and Asset Prices, The Journal of

Finance 68, 1843–1889.

Drechsler, Itamar, and Amir Yaron, 2011, What’s vol got to do with it, Review of Financial

Studies 24, 1–45.

Du, Du, 2011, General equilibrium pricing of options with habit formation and event risks,

Journal of Financial Economics 99, 400–426.

Duffie, Darrell, and Larry G Epstein, 1992, Asset pricing with stochastic differential utility,

Review of Financial Studies 5, 411–436.

45



Duffie, Darrell, Jun Pan, and Kenneth Singleton, 2000, Transform analysis and asset pricing

for affine jump-diffusions, Econometrica 68, 1343–1376.

Duffie, Darrell, and Costis Skiadas, 1994, Continuous-time asset pricing: A utility gradient

approach, Journal of Mathematical Economics 23, 107–132.

Dumas, Bernard, Jeff Fleming, and Robert E. Whaley, 1998, Implied Volatility Functions:

Empirical Tests, The Journal of Finance 53, 2059–2106.

Epstein, Larry, and Stan Zin, 1989, Substitution, risk aversion and the temporal behavior of

consumption and asset returns: A theoretical framework, Econometrica 57, 937–969.

Eraker, Bjørn, 2004, Do stock prices and volatility jump? Reconciling evidence from spot

and option prices, The Journal of Finance 59, 1367–1404.

French, Kenneth R., G. William Schwert, and Robert F. Stambaugh, 1987, Expected stock

returns and volatility, Journal of Financial Economics 19, 3–29.

Gabaix, Xavier, 2012, An exactly solved framework for ten puzzles in macro-finance, Quar-

terly Journal of Economics 127, 645–700.

Gallant, A. Ronald, Chien-Te Hsu, and George Tauchen, 1999, Using Daily Range Data to

Calibrate Volatility Diffusions and Extract the Forward Integrated Variance, Review of

Economics and Statistics 81, 617–631.

Gao, George P., and Zhaogang Song, 2013, Rare disaster concerns everywhere, Working

paper, Cornell University.

Gourio, François, 2012, Disaster risk and business cycles, American Economic Review 102,

2734–2766.

46



Kelly, Bryan T., Lubos Pastor, and Pietro Veronesi, 2014, The Price of Political Uncertainty:

Theory and Evidence from the Option Market, Working paper, University of Chicago.

Liu, Jun, Jun Pan, and Tan Wang, 2005, An equilibrium model of rare-event premia and its

implication for option smirks, Review of Financial Studies 18, 131–164.

Longstaff, Francis A., and Monika Piazzesi, 2004, Corporate earnings and the equity pre-

mium, Journal of Financial Economics 74, 401–421.

Neuberger, Anthony, 2012, Realized Skewness, Review of Financial Studies 25, 3423–3455.

Nowotny, Michael, 2011, Disaster begets crisis: The role of contagion in financial markets,

Working paper, Boston University.

Pan, Jun, 2002, The jump-risk premia implicit in options: evidence from an integrated

time-series study, Journal of Financial Economics 63, 3–50.

Rietz, Thomas A., 1988, The equity risk premium: A solution, Journal of Monetary Eco-

nomics 22, 117–131.

Rubinstein, Mark, 1994, Implied Binomial Trees, The Journal of Finance 49, 771–818.

Santa-Clara, Pedro, and Shu Yan, 2010, Crashes, Volatility, and the Equity Premium:

Lessons from S&P 500 Options, Review of Economics and Statistics 92, 435–451.

Shaliastovich, Ivan, 2009, Learning, Confidence and Option Prices, working paper, University

of Pennsylvania.

Shaliastovich, Ivan, 2015, Learning, confidence, and option prices, Journal of Econometrics

187, 18–42.

47



Shiller, Robert J., 1981, Do stock prices move too much to be justified by subsequent changes

in dividends?, American Economic Review 71, 421–436.

Stutzer, Michael, 1996, A Simple Nonparametric Approach to Derivative Security Valuation,

The Journal of Finance 51, 1633.

Tallarini, Thomas D., 2000, Risk-sensitive real business cycles, Journal of Monetary Eco-

nomics 45, 507–532.

Tauchen, George, 2005, Stochastic volatility in general equilibrium, Working paper, Duke

University.

Wachter, Jessica A., 2013, Can time-varying risk of rare disasters explain aggregate stock

market volatility?, The Journal of Finance 68, 987–1035.

Weil, Philippe, 1990, Nonexpected utility in macroeconomics, Quarterly Journal of Eco-

nomics 105, 29–42.

Yan, Shu, 2011, Jump risk, stock returns, and slope of implied volatility smile, Journal of

Financial Economics 99, 216–233.

48



Figure 1: Probability density functions for consumption declines
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Notes: The probability density functions (pdfs) for consumption declines for log-normally
distributed disasters and for the multinomial distribution assumed in the stochastic disaster
risk (SDR) model. In the case of the SDR model, the pdf approximates the multinomial
distribution from Barro and Ursúa (2008). The exact multinomial distribution is used to
calculate the results in the paper. The pdfs are for the quantities 1− eZ in each model.
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Figure 2: Average implied volatilities in the SDR and CDR models
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Notes: Average implied volatilities for 3-month options as a function of moneyness for the
single-frequency stochastic disaster risk (SDR) model, for the constant disaster risk (CDR)
model and in the data. Average implied volatilities are shown as functions of moneyness,
defined as the exercise price divided by the asset price.
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Figure 3: Comparative statics for the CDR model
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Notes: Implied volatilities for 3-month options as a function of moneyness in the data and for
three parameterization of the constant disaster risk (CDR) model. The line labeled “CDR”
shows the benchmark calibration. The line labeled “higher normal-times volatility” raises
the volatility of consumption shocks that are not associated with disasters from 1% to 2%
per annum but keeps all other parameters, including the consumption disaster distribution,
the same. The line labeled “lower leverage” lowers the term multiplying dividends from 5.1
to 2.6, while keeping all other parameters the same.
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Figure 4: The premium for volatility risk
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Notes: Implied volatilities for 3-month options as a function of moneyness in the data, in the
CDR model, and in the (single-frequency) SDR model. Also shown are implied volatilities
in the SDR model computed under the assumption that the premium associated with time-
variation in the disaster probability is equal to zero (SDR model with bλ = 0). Note both
the benchmark and the bλ = 0 version of the SDR model are dynamic models. The CDR
model is iid.
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Figure 5: Implied volatilities at the 20th, 50th, and 80th percentile disaster probability
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Notes: Implied volatilities on 3-month options in the single-frequency SDR model for the
disaster probability at the 20th, 50th, and 80th percentile. Also shown are the average
implied volatilities in the data.
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Figure 6: 1-month implied volatility time series
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Notes: Monthly time series of implied volatilities on 1-month options in the data and of the
difference in implied volatilities. Implied volatilities are calculated for ATM options and
OTM options with moneyness equal to 0.85.
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Figure 7: Means and standard deviations of implied volatilities in simulated data
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Notes: We simulate 1000 samples of length 17 years from the multifrequency SDR model. For each

sample path, we compute the mean and volatility of implied volatilities at three different moneyness

levels and for three maturities. The dotted line shows the means of these statistics across sample

paths, while the dashed-dotted lines show 95th and 5th percentiles. The solid line shows the data.
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Figure 8: Means and volatilities of the volatility skew
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Notes: We simulate 1000 samples of length 17 years from the single- and multi-frequency SDR

models. For each sample path, we compute the mean and volatility of the slope of the volatility

skew, defined as the difference in implied volatilities between the 0.85 OTM and the ATM put

options. We plot the volatilities and means of the implied volatility slope for each sample path

for the multifrequency model (circles) and the single-frequency model (squares), as well as for the

CDR model (triangle) and the data (cross). The shaded regions denote 95% confidence ellipses

based on the models.
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Figure 9: Implied volatilities as functions of the state in the multifrequency SDR model
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Notes: Implied volatilities on 3-month options as functions of moneyness for the multifre-
quency SDR model. The figures show the effects of varying the state variables λt (the disaster
probability) and ξt (the value to which λt reverts). Panel A sets ξt equal to its median value
and varies λt, while Panel B sets λt equal to its median value and varies ξt.
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Figure 10: The price-dividend ratio in the data and in the model
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Notes: The solid line shows the time series of the price-dividend ratio on the data. The red
line shows the price-dividend ratio implied by the multifrequency SDR model for state prices
chosen to fit the one-month ATM and OTM (0.85 moneyness) put options.

58



Table 1: Parameter values

SDR CDR
Relative risk aversion γ 3.0 5.19
EIS ψ 1 1
Rate of time preference β 0.0120 0.0189
Average growth in consumption (normal times) µ 0.0252 0.0231
Volatility of consumption growth (normal times) σ 0.020 0.010
Leverage φ 2.6 5.1429
Average probability of a rare disaster λ̄ 0.0355 0.010
Mean reversion κ 0.080 NA
Volatility parameter σλ 0.067 0

Notes: Parameters for the single-frequency stochastic disaster risk (SDR) model and for the
benchmark constant disaster risk (CDR) model, in annual terms.
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Table 2: Parameter values for the multifrequency SDR model

Panel A: λ process
Mean reversion κλ 0.2
Volatility parameter σλ 0.1576

Panel B: ξ process
Mean ξ̄ 0.02
Mean reversion κξ 0.1
Volatility parameter σξ 0.0606

Panel C: Population statistics of λ
Median 0.0037
Standard deviation 0.0386
AR(1) coefficient 0.9858

Notes: Parameter values for the multifrequency SDR model. The processes are as follows:

dλt = κλ(ξt − λt)dt+ σλ
√
λtdBλ,t

dξt = κξ(ξ̄ − ξt)dt+ σξ
√
ξtdBξ,t.

Panels A and B show parameter values expressed in annual terms. Panel C shows population
statistics for the disaster probability λt calculated by simulation at a monthly frequency
(while the median disaster probability is annual, the AR(1) coefficient should be interpreted
as monthly).
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Table 3: Moments for the government bill rate and the market return for the multifrequency
SDR model

No-Disaster Simulations All Simulations
Data 0.05 0.50 0.95 0.05 0.50 0.95 Population

E[Rb] 1.25 1.68 2.96 3.46 -0.47 2.41 3.37 2.02
σ(Rb) 2.75 0.34 1.07 2.71 0.48 2.06 7.14 3.69
E[Rm −Rb] 7.25 5.40 8.01 12.36 5.30 8.49 14.25 9.00
σ(Rm) 17.8 13.24 19.26 27.91 14.59 22.59 34.38 24.13
Sharpe Ratio 0.41 0.32 0.42 0.55 0.26 0.39 0.53 0.37
exp(E[p− d]) 32.5 28.96 40.63 48.88 22.93 36.95 47.41 35.36
σ(p− d) 0.43 0.15 0.27 0.47 0.17 0.33 0.59 0.43
AR1(p− d) 0.92 0.59 0.79 0.91 0.62 0.82 0.92 0.90

Notes: Data moments are calculated using annual data from 1947 to 2010. Population
moments are calculated from simulating data from the multifrequency stochastic disaster
risk (SDR) model at a monthly frequency for 600,000 years and then aggregating monthly
growth rates to an annual frequency. We also simulate 100,000 60-year samples and report
the 5th, 50th and 95th percentile for each statistic, both from the full set of simulations and
for the subset of samples for which no disasters occur. Rb denotes the government bill return,
Rm denotes the return on the aggregate market and p − d denotes the log price-dividend
ratio.
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