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1 Introduction

Recent research has explored how the firm size distribution and the network structure in an

economy can influence aggregate volatility. Gabaix (2011) points out that “granularity,”

or extreme skewness in firm sizes, concentrates economic mass among a few very large

firms, stifling diversification and increasing aggregate volatility. Acemoglu et al. (2012) and

Carvalho (2010) show that sparsity of inter-sector linkages similarly inhibits diversification

in an economy and raises aggregate volatility.

This research is silent about the impact of firm networks and firm size concentration on

the volatility at the firm level. The volatility of firm-level stock returns and cash flows varies

greatly over time (e.g. Lee and Engle, 1993) and across firms (e.g. Black, 1976; Christie,

1982). Firm-level fluctuations in uncertainty have important implications for investment

and hiring decisions as well as firm value, as highlighted by Bloom (2009).1 But the underly-

ing determinants of firm volatility are poorly understood. In much of the work on volatility

in economics and finance, firms are modeled to have heteroscedastic shocks without spec-

ifying the source of heteroscedasticity. Our goal is to understand, both theoretically and

empirically, how inter-firm linkages and size distributions interact to endogenously produce

heteroscedasticity at the firm level.

We propose a simple model in which firms are connected to other firms in a customer-

supplier network.2 It has three assumptions. Firms’ growth rates are influenced by their

own idiosyncratic shocks and by the growth rate of their customers. As a result, the firm-

specific shocks propagate through the network via connected firms. The appendix provides

a simple general equilibrium model with inter-connected firms and consumer demand shocks

that delivers a structural interpretation. Second, the probability of a customer-supplier link

1See also Leahy and Whited (1996), Bloom, Bond, and Van Reenen (2007), Stokey (2016), Bloom et al.
(2018) and the papers cited therein.

2A recent literature explores the role of production networks in macro-economics, trade, asset pricing,
and banking. See Atalay et al. (2011), Foerster, Sarte, and Watson (2011), Acemoglu et al. (2012), Carvalho
and Gabaix (2013), Ahern and Harford (2014), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Farboodi
(2015), Herskovic (2018), Kramarz, Martin, and Mejean (2020), Stanton, Walden, and Wallace (2018). For
reviews of the network literature, see Allen and Babus (2009), Jackson (2014), and the references therein.
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depends on the size of the supplier so that large firms typically supply to a higher number

of customers. Third, the importance of a customer-supplier link depends on the size of

the customer. Large customers have a stronger connection with their suppliers, presumably

because they account for a large fraction of their suppliers’ sales. We provide microeconomic

evidence for all three assumptions based on the observed customer-supplier networks among

Compustat firms.3 Differences in firms’ network connections impart total firm volatility with

cross-sectional heteroscedasticity.

Firms are aggregators of their own idiosyncratic shock and the shocks to connected firms.

The sparsity and granularity of the firm’s customer network, which in turn depend on the

firm size distribution, determine the firm’s volatility by affecting the diversification of the

shocks that they are exposed to. Our model maps the firm size distribution to network

formation, generating a rich set of testable implications for volatility in the cross-section

and the time-series. We study data on firm-level sizes, volatilities, and customer-supplier

linkages, establishing a new set of stylized facts about firm volatility and confirming the

model’s implications.

Firm-level volatilities exhibit a common factor structure tightly related to the economy-

wide firm size dispersion. In the model, each supplier’s network is a random draw from the

entire population of firms, so that any firm’s customer network inherits similar dispersion to

that of the entire size distribution. An increase in size dispersion slows down every firm’s

shock diversification and increases their volatility. We find that firm volatilities possess a

strong factor structure in the data.

The factor structure implies strong time series correlations between moments of the size

and volatility distributions. An increase in size dispersion translates into higher average

volatility among firms. It also raises the cross section dispersion in volatilities. In the time

series, size dispersion has a 63% correlation with mean firm volatility and 78% with the

3Since we only have data for publicly listed firms, we cannot verify whether the same comovement between
the firm size dispersion and the average and the dispersion of firm volatility extends to private firms. Davis
et al. (2006) document a secular decline in the volatility of employment for private firms using annual LBD
data from 1982 until 1997.
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dispersion of firm volatility. Our paper is the first to document these facts and to provide an

economic explanation for the factor structure in firm-level volatility by connecting it to firm

size dispersion. A persistent widening in the firm size dispersion should lead to a persistent

rise in mean firm volatility. We observe such a widening (increase in firm concentration)

between the early 1960s and the late 1990s, providing a new explanation for the run-up in

mean firm volatility studied by Campbell et al. (2001).

In the cross-section, differences in volatility across firms arise from two sources: differences

in the number of customers and differences in customers’ size dispersion. First, large firms are

less volatile than small firms because they are connected to more customers, which improves

diversification regardless of the size profile of its customer base. This effect also appears in

the model’s volatility factor structure. Smaller firms have larger exposures to the common

volatility factor, implying that small firms have both higher levels of volatility and higher

volatility of volatility. In the data, we find a strong negative correlation between firm size

and variance, and small firms indeed have higher volatility factor exposures.

Second, holding the number of connections fixed, a supplier’s customer network is less

diversified if there is more dispersion in the size of its customers. Because customer size

determines the strength of a link, severe customer size disparity means that shocks to the

biggest customers exert an outsized influence on the supplier, raising the supplier’s volatil-

ity. Differences in customer size disparity arise from probabilistic network formation; some

suppliers will link to a very large or very small customer by chance alone. The data indeed

show a strong positive correlation between a firm’s out-Herfindahl, our measure of concen-

tration in a firm’s customer network, and its volatility. Firm size and firm out-Herfindahl

remain the leading determinants of firm volatility after the inclusion of other determinants of

volatility previously proposed in the empirical literature. Collectively, this evidence supports

a network-based explanation of firm volatility.

To gauge its quantitative plausibility, we estimate our network model using data on

the customer-supplier network among US firms. Our estimation targets moments and cross-
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moments of the distributions of firm size, firm variance, and inter-firm business linkages. The

model can account for the large dispersion in firm volatility while respecting the evidence on

the number and concentration of customers. The estimation reveals that this requires strong

network effects: a firm’s customer’s customer shocks are nearly as important as the shocks

that directly hit the firm’s customer. Strong network effects are necessary but not sufficient

for quantitatively matching observed firm volatilities. An internal diversification mechanism

whereby larger firms have lower shock volatility complements the external diversification

mechanism of the customer network. A statistical test fails to reject the null hypothesis that

the moments in model and data are equal. One reason for the high estimate of the network

parameter is underlying heterogeneity in the network parameter of firms that is correlated

with network centrality.

The rest of the paper is organized as follows. Section 2 presents new empirical evidence

on the link between the firm size and volatility distributions. Section 3 explains these

links with a simple network model. Section 4 estimates the model and Section 5 tests two

additional model predictions in the micro-data. One is on the network determinants of firm-

level volatility and the other establishes that firm size dispersion is an important common

factor driving firm volatilities. The structural model, the proofs of the theoretical results,

and the auxiliary empirical evidence are relegated to the appendix.

2 Evidence on Firm Size Dispersion and Firm Variance

This section documents our main new empirical facts about the joint evolution of the firm

size and firm variance distributions.

2.1 Data

We consider market-based and fundamentals-based measures of firm size and firm volatility.

Both are calculated at the annual frequency. Our main measure of firm size is the equity
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market value at the end of the calendar year. The alternative fundamentals-based measure is

total sales within the calendar year. All variables in our analysis are deflated by the consumer

price index. Our main measure of firm variance is defined as the variance of daily stock

returns during the calendar year. Fundamentals-based variance in year t is defined as the

variance of quarterly sales growth (over the same quarter the previous year) within calendar

years t to t+ 4.4 The sample is the universe of publicly-listed firms. Stock market data are

from CRSP for the period 1926-2016 and sales data are from the merged CRSP/Compustat

file for the period 1952-2016. The cross-sectional size and variance distributions are well

approximated by a lognormal distribution. As a result, each distribution may be summarized

by two moments: the cross-sectional mean and cross-sectional variance of the log quantities.

We use the term dispersion to denote the cross-sectional standard deviation.

2.2 Comovement of Firm Size and Volatility Distributions

Panel A of Figure 1 plots the cross-sectional average of log firm variance, where variance

is computed from daily stock returns, against lagged log firm size dispersion, where size is

computed as the market capitalization. For ease of readability, both series are standardized

to have mean zero and standard deviation one. The correlation between average firm variance

and firm size dispersion is 63.3%. Mean firm variance experienced several large swings in

the past century, especially in the 1920s and 1930s and again in the last two decades of the

sample. These changes are preceded by similar dynamics in the cross-sectional dispersion of

firm size. The high positive correlation between mean firm volatility and firm size dispersion

is our first main new fact.

The second main stylized fact links the dispersion in firm variance to the dispersion in

firm size. Panel B of Figure 1 shows a strong positive association between the cross-sectional

dispersions of firm variance and firm size, based on the market measures. The correlation

4We also consider fundamental volatility measured by the standard deviation of quarterly sales growth
within a single calendar year. The one- and five-year fundamental volatility estimates are qualitatively
identical, though the one-year measure is noisier because it uses only four rather than twenty observations.
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Figure 1: Market-based Dispersion in Firm Size and Firm Variance
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(a) Panel A: Average Log Variance
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(b) Panel B: Dispersion in Log Variance

Notes: Panel A plots the lagged cross-sectional dispersion of log firm size (solid line) and the cross-sectional
mean of the log variance distribution (dashed red line). Panel B plots the lagged cross-sectional dispersion
of log firm size (solid line) and the cross-sectional standard deviation of the log variance distribution (dashed
blue line). Firm size is measured as market value of equity; firm variance is measured as the variance of
daily stock returns within the year. All series are rescaled for the figure to have mean zero and variance one.
Sample is from 1926 to 2016 at annual frequency.

between the two time-series is 77.6%.

Appendix C.1 shows that the positive correlation between size dispersion and the first and

second moments of the firm variance distribution is also present at business cycle frequencies;

it uses the HP-filter to decompose the time series in trend and cycle components.

The same relationship between the moments of the firm size and variance distributions

exists for our fundamentals-based measure. First, the correlation between average firm

variance and lagged firm size dispersion is 68.7%. The left panel of Figure 2 shows the

strong positive association. Because the sales-based data only start in 1965, their dynamics

are more affected by the persistent increase in firm size dispersion and variance that took

place between the 1960s and the 1990s. The right panel shows a strong positive correlation

between the dispersion of variance and the dispersion of size for the sales-based measure. The

correlation is 81.7%. Both facts corroborate the market-based evidence. Any explanation

of these facts must confront the high degree of similarity between market volatilities and its
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Figure 2: Fundamentals-based Dispersion in Firm Size and Firm Variance
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Notes: Panel A plots the lagged cross-sectional dispersion of log firm size (solid line) and the cross-sectional
mean of the log variance distribution (dashed red line). Panel B plots the lagged cross-sectional dispersion
of log firm size (solid line) and the cross-sectional standard deviation of the log variance distribution (dashed
blue line). Firm size is measured as firm sales; firm variance is measured based on 20 quarters of growth in
firm sales. All series are rescaled for the figure to have mean zero and variance one. Sample is from 1965 to
2016 at annual frequency.

(more coarsely measured) fundamental counterpart.5 This evidence suggests that financial

explanations, such as discount rate or leverage effects (Black, 1976), are incomplete.6

2.3 Subsample Results

Table 1 establishes that the two key correlations between firm size dispersion and the average

(column 3) and dispersion of firm variance (column 4) hold for various subsets of our data

(listed in column 1). The second column reports the number of firms in each subsample.

The first panel splits the sample of firms into three size terciles based on the market value

of equity and calculates the moments within each group. Firms are resorted each year. Our

main correlations are large and positive in all size groups.

5Market- and fundamentals-based measures of average log firm variance have an annual time-series cor-
relation of 68.9%, while the two volatility dispersion measures have a correlation of 73.5%.

6We take the traditional perspective of asset pricing in endowment economies where firms’ cash flow
growth is taken as given. In richer settings, changes in discount rates may affect investment decisions and
possibly input prices.
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The second panel groups firms into nine industries. The two main correlations are large

and positive in virtually all industries. The one exception is utilities, which only has a 17%

correlation between size dispersion and average variance. For consumer durables, that same

correlation is 35%. These two industries have the fewest firms. All correlations between size

dispersion and variance dispersion are higher than 50%.

Third, we find virtually the same correlation for firms that have been public less than five

years and firms that have been public for more than five years. Similar correlations are also

found for firms that have been public for at least 10 and at least 25 years. This shows that

our results are not driven by firms that recently went public, and whose size and volatility

characteristics may be different from older firms or may have changed over time. We return

to this composition hypothesis in Section 4.7.

Fourth, the results hold both in the first and in the second half of the sample. They

are somewhat stronger in the first half of the sample. Again, this suggests that a changing

composition of public firms, which applies to the second half of the sample, cannot be the

sole driver of the results.

Fifth, the correlations between size dispersion and variance mean and dispersion are

larger, but in the same ballpark, for firms listed on the NYSE and firms not listed on the

NYSE.

To summarize, we observe a strong positive association of firm size dispersion with av-

erage firm variance and dispersion in firm variance, throughout the distribution of firm size,

industry, age, and over time. The next section presents a network model that generates these

associations.

3 A Network Model of Firm Growth and Volatility

This section develops a simple network model of connections between firms. It generates the

positive correlations between firm size dispersion on the one hand and average firm volatility
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Table 1: Composition

Correlation of Size Dispersion with

# Firms Avg. Var. Disp. Var

All Firms 3069.9 67.5 77.4
By size

Smallest third 1023.4 65.8 59.9
Middle third 1023.0 59.3 67.2
Largest third 1023.5 55.0 66.4

By industry
Consumer Non-Dur. 240.8 59.5 67.2
Consumer Durables 104.6 34.9 71.7
Manufacturing 516.4 51.7 77.3
Energy 150.2 67.7 57.4
Tech/Telecom 494.4 73.9 51.0
Retail 305.8 62.1 63.4
Healthcare 199.0 73.6 53.6
Utilities 111.5 16.9 58.9
Other 884.0 56.6 66.2

By Time Since Entry
Less than 5 yrs. 905.0 74.0 79.3
At least 5 yrs. 2159.3 71.5 77.1
At least 10 yrs. 1447.5 72.9 76.4
At least 25 yrs. 489.0 46.9 77.9

By Subsample
1926-1969 496.7 74.5 83.8
1970-2016 2573.1 55.2 42.7

By Exchange
NYSE 1204.3 60.8 76.6
non-NYSE 1865.6 41.3 42.4

Notes: Annual data 1926-2016. We use the market-based volatility measure constructed from stock returns
and the market-based measure of size (market equity). The second column reports the time series average
of the cross section number of firms. Column 3 reports the correlation between average log volatility (µσ,t)
and lagged log size dispersion (σS,t−1). Column 4 reports the correlation between dispersion in log volatility
(σσ,t) and lagged log size dispersion. For each grouping, we first compute the cross-sectional moments among
the firms in the group, and then we compute the time-series correlation between the moments.

and the dispersion of firm volatility on the other hand. The reduced form network model

of Section 3.1 is micro-founded by a structural production model in Section 3.2. Section 3.3

connects a firm’s size to its position in the network. Section 3.4 presents the main result

on firm variance. Section 3.5 extends the result to the case where the firm size distribution

follows a power law, and characterizes comovement between firms’ volatilities. Section 4

then uses size, volatility, and network moments to estimate the model presented here.
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3.1 Firm Growth

Define Si as the size of firm i = 1, · · · , N with growth rate gi. Firms are connected through

a network. Firm i’s growth rate depends on its own idiosyncratic shock and a weighted

average of the growth rates of the firms j it is connected to:

gi = µg + γi

N∑
j=1

wi,j gj + εi. (1)

The parameter γi ∈ [0, 1) governs the rate of decay as a shock propagates through the

network. A special case is γi = γ, ∀i. As discussed below, allowing for heterogeneity in

γi strengthens the connection to the structural model and facilitates interpretation of the

point estimate for γ. The network weight wi,j determines how strongly firm i’s growth rate

is influenced by the growth rate of firm j. If i and j are not connected, then wi,j = 0. By

convention, we set wi,i = 0. We refer to the matrix of connection weights W = [wi,j] as the

network matrix. We assume that all rows of W sum to one. Thus, the largest eigenvalue

of W equals one. In this directed network, connections are not necessarily symmetric. We

identify firm i as the supplier and firm j as the customer. Firm j can be a customer of firm

i without i being a customer of j.

Let g and ε ∼ N (0, σ2
εI) be the N × 1 vectors of growth rates and shocks, respectively.

Let Γ be a diagonal matrix with generic element γi. For simplicity, set µg = 0. The growth

rate equation (1) for all firms can be written in vector form as:

g = ΓWg + ε = (I − ΓW )−1 ε. (2)

The Leontief inverse matrix (I − ΓW )−1 is the key object describing the effects of network

structure on the behavior of growth rates.

In this section, we purposely impose stark assumptions on the nature of the underlying

innovations: each firm i experiences i.i.d. growth rate shocks εi ∼ N(0, σε). In Section 4, we
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augment the model to consider heterogeneity in firms’ idiosyncratic shock variances.

3.2 A Structural Interpretation

Appendix A derives equation (2) as the equilibrium outcome in a production economy. It is a

constant returns-to-scale economy with N firms in the tradition of Long and Plosser (1983).

The output of one firm is used as input in the production of another firm. A representative

agent has Cobb-Douglas preferences defined over the N goods that are produced, with pref-

erence weights collected in the vector θ. The reduced-form shocks ε are consumer demand

shocks for the various goods, dθ, scaled by the vector ψ whose ith entry measures the ratio

of output of firm i to economy-wide value added. These taste shocks travel upstream from

customers to suppliers, i.e., from final goods producers to their suppliers, the producers of

intermediate goods, and to their suppliers’ suppliers, the producers of more basic inputs,

etc., thereby affecting the growth in their real output g = dY/Y . The parameter γi mea-

sures the share of output of firm i used by intermediate good producers. The entries of the

network matrix W , wij, measure the sales of good i to intermediate goods firm j divided by

the total output of firm i, and multiplied by γi. These entries are linked to the cost shares,

which are primitives of the production function. The following proposition, proved in the

appendix, shows that the structural model delivers the same “network equation” (3) as the

reduced-form model’s equation (2).

Proposition 1. The responses of firm output to demand shocks dθ equals:

dY

Y
= (I − ΓW )−1dθ

ψ
. (3)

Since the proof shows that product prices are unchanged, the response of firm sales (which is

easy to measure) equals that of firm output (which is harder to measure). Appendix A works

out an example with three layers of production that illustrates how demand shocks travel

from the final good’s firm to its supplier, the intermediate good’s firm, and its supplier’s
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supplier, the basic input firm. We provide a sufficient condition on structural parameters

under which an increase in the first size dispersion, resulting from preference shocks, is

associated with an increase in average firm variance. Simulation evidence for three-firm

economies shows that this condition is satisfied for the vast majority of network parameters

and preference shocks.

Shea (2002) and Kramarz, Martin, and Mejean (2020) consider different models where

demand shocks travel upstream from customers to suppliers, like in our model. Acemoglu

et al. (2012) solve a similar model, but emphasize productivity shocks that are transmitted

downstream from suppliers to customers. In principle, shocks could travel both upstream and

downstream. The empirical evidence in section 5.1 is consistent with upstream propagation.

3.3 Size Effects in Network Structure

The content of the spatial autoregression model (2) lies in the specification of the weighting

matrix W . Since we cannot directly measure wij in the data, we make two plausible assump-

tions on the probability and strength of connections between suppliers and their customers.

These assumptions link the firm size distribution to the network structure of the economy.

In Section 4, we confront the model with data on the production network in the US and

validate these assumptions.

The firm size distribution determines the linkage structure between customers and sup-

pliers. The existence of a link between supplier i and customer j is described by:

bi,j =


1 if i connected to j

0 otherwise.

Each element of the connections matrix, B = [bi,j], is drawn from a Bernoulli distribution

with probability P (bi,j = 1). This connection probability is assumed to be a function of the
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size of the supplier i:

P (bi,j = 1) ≡ pi =
S̃i
Z
N−ζ (for i 6= j), (4)

where S̃i = Si/E[Si] is the relative size of firm i versus the population mean and Z is a

scalar. While the functional form matters quantitatively, the crucial qualitative assumption

is that the probability of a connection depends on the relative size of firm i. That is, larger

firms have more connections on average. This is the model’s first size effect.

Equation (4) also builds sparsity into the network. The sparsity parameter ζ ∈ (0, 1)

governs the rate at which the likelihood of a connection decreases as the number of firms

N grows large. It implies that the number of links (customers) in the system diverges as

the number of firms goes to infinity, but that the probability of connecting to any single

customer goes to zero. In a large economy, the expected number of customers for firm i,

called the out-degree, is approximately:

N out
i ≈ Npi =

S̃i
Z
N1−ζ . (5)

The number of linkages grows with the number of firms in the economy, but the rate of

growth is slower when ζ is closer to 1.

The second key assumption on the network we make is that, conditional on a link existing

between a supplier i and a customer j, the strength of that link depends on the size of the

customer j:

wi,j =
bi,jSj∑N
k=1 bi,kSk

, ∀i, j. (6)

One natural measure of size is sales. This weighting scheme then has the natural feature

that customers j who represent a larger share of supplier i’s sales have a stronger impact on

the growth rate of i. This is the model’s second size effect.

While there is obvious value in understanding more deeply why firms forge connections,

modeling the endogenous choice over network linkages is notoriously difficult.7 Our approach

7For some promising steps forward in this direction recently, see Acemoglu, Ozdaglar, and Tahbaz-Salehi
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is to model two key features of the observed supplier-customer networks. Any network choice

model would have to generate these features as an outcome. Our simpler approach suffices

to study how the network structure among firms affects the link between the firm size and

volatility distribution. This simplicity allows us prove theoretical results on the relationship

between firm volatility and the structure of its customer network. Our paper also contributes

new facts on the properties of production networks that the literature on endogenous network

formation can target as outcomes. Also, our approach is what enables us to estimate the

model in Section 4.

3.4 Firm Variance

Conditional on W , the variance-covariance matrix of growth rates g is given by

V (g) = σ2
ε (I − ΓW )−1 (I −W ′Γ)

−1
. (7)

The vector of firm volatilities is the square root of the diagonal of the variance-covariance

matrix. In standard network settings, the Leontief inverse (I − ΓW )−1 is an obstacle to

deriving a tractable analytic characterization of volatility. Our model, in contrast, lends

itself to a convenient variance representation when the number of firms in the economy

becomes large.

Before deriving our main result, it is useful to build intuition for the behavior of variance

by considering a simplified version of the network model. Suppose that growth rates follow

the process:

g = (I + ΓW )
(
µg + ε

)
. (8)

In our full network model (1), a firm’s growth rate is influenced by the growth rates of each

of its connections. The latter are in turn influenced by their connections’ growth rates, and

(2015), Farboodi (2015), Oberfield (2018), Stanton, Walden, and Wallace (2018), Herskovic and Ramos
(Forthcoming), and Taschereau-Dumouchel (2018). The latter paper has the advantage that solving for the
equilibrium production network is relatively straightforward even with a few thousand firms.
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so on. The simplification in (8) differs from the full network in that idiosyncratic shocks

only propagate one step in the supply chain and then die out. In fact, (8) is a first order

approximation to (1), because:

(I − ΓW )−1 = I + ΓW + (ΓW )2 + (ΓW )3 + · · · ≈ I + ΓW ,

under our maintained assumption that γi ∈ [0, 1), ∀i. In this system, the variance of firm i’s

growth rate simplifies to:

V (gi) = V

(
γi
∑
j

wi,jεj + εi

)
= σ2

ε

(
1 + γ2

iH
out
i

)
, (9)

where

Hout
i ≡

N∑
j=1

w2
i,j (10)

is the Herfindahl index of firm i’s network of customers. We refer to Hout
i as the out-

Herfindahl. Equation (9) shows that, to a first order approximation, the variance of a firm’s

growth rate is determined by its out-Herfindahl, the volatility of the underlying innovations

σ2
ε , and the strength of shock transmission in the network γi,∀i.

The higher firm i’s out-Herfindahl, the more concentrated is its network of connections.

Standard diversification logic applies: a low degree of diversification in a firm’s customer

base raises its variance. The out-Herfindahl is driven by two characteristics: the number of

customers and the size dispersion among its customers. The supplier is more diversified and

has lower volatility when it has more customers and when the size dispersion of its customers

is small.

Because all firms, large and small, draw their connections from the same economy-wide

firm size distribution, all firms’ customer networks have equal firm size dispersion in expecta-

tion. The expected customer size dispersion of any firm i is given by the economy-wide firm

size dispersion. Thus, the economy-wide out-Herfindahl is a key determinant of the volatil-
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ity of each firm. The economy-wide out-Herfindahl moves all firms’ volatilities up and down

together; it is a common factor in firms’ volatilities. Differences between firms’ volatilities

arise from how many connections they draw from this economy-wide firm size distribution.

Small firms draw fewer links on average than large firms and therefore are more volatile.

Our main theoretical proposition below formalizes the above intuition. It maps the

variance of a firm to its size and to the concentration of firm sizes throughout the economy.

It does so for the full network model, i.e., without the first-order approximation in (8). The

proof is relegated to Appendix B as are the lemmas the proposition relies on.

Proposition 2. Consider a sequence of economies indexed by the number of firms N . If

the firm size distribution has finite variance, then the Leontief inverse has limiting behavior

described by

(I − ΓW )−1 ≈ I + ΓW +
γ

1− γ
ΓW̄ .

where γ = 1
N

∑N
i=1 γi. Fixing the size of the ith firm, Si, volatility of firm i has limiting

behavior described by

V (gi|Si) ≈ σ2
ε

[
1 +

(
Z

N1−ζS̃i
+

γ (2− γ)

N(1− γ)2

)
γ2
i

E[S2]

E[S]2
+ 2γi

γ

1− γ
S̃i
N

]
. (11)

This proposition highlights the determinants of firm-level growth rate variance in a large

economy. A firm’s variance depends on its own shock variance σ2
ε plus a term that reflects

the network effect of interest. The latter consists of three terms.

First, firm variance depends on economy-wide firm size dispersion given by the ratio of the

second non-central moment of the size distribution to the squared first moment E[S2]/E[S]2.

In the special case where the firm size distribution is log-normal with variance σ2
s , this ratio

simplifies to exp(σ2
s). This establishes a theoretical connection between firm size disper-

sion and the firm volatility distribution (and its mean and dispersion), just like we found

empirically in Section 2. Economy-wide size dispersion is a common factor affecting all

firms’ volatilities, since more size dispersion makes every supplier less diversified. The first-
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round reduction in customer network diversification has ripple effects through the higher

order terms: customers’ customer networks are also less diversified, etc. As γi approach one,

these higher order terms become quantitatively important as firms’ idiosyncratic shocks have

far reaching effects throughout the network. In the cross-section, firms with higher γi will

propagate a given shock to firm size dispersion to their customers more strongly.

Second, relative firm size, S̃i, affects volatility in two ways. Its primary role is captured

by the first coefficient on E[S2]/E[S]2. Larger firms have a lower exposure to the common

factor in volatility, economy-wide size dispersion, than do smaller firms because they typically

connect to more customers and achieve better shock diversification. This diversification

channel lowers the volatility of large firms. Smaller factor exposure also makes large firms

less sensitive to fluctuations in the firm size dispersion. That is, they display lower volatility

of volatility.

Third, the firm’s relative size also appears in the numerator of the last term. Shocks

to the largest firms are the most strongly propagated shocks in the model since these firms

have the largest influence on their suppliers. Shocks to large firms ultimately “reflect” back,

raising large firms’ own volatility. In contrast, small firms’ shocks die out relatively quickly

in the network. Thus, the last term in (11) captures a countervailing increase in volatility

for larger firms. In all of our numerical results, we find that the diversification channel of the

first size term dominates the reflection channel of the last term. Only for the very largest

firms does the reflection effect contribute meaningfully to firm variance.

Finally, we note that the strength of the diversification channel depends on the term

N1−ζ . A high ζ means that there are relatively few linkages compared to the size of the

economy. This network sparsity effect slows down the diversification benefits for all firms.

Because the other two network terms in (2) decline at a faster rate N , the diversification

channel becomes the dominant effect in an economy with many firms.8

8The same logic behind Proposition 2 allows us to describe the limiting behavior of covariances among
firms’ growth rates, Cov(gi, gj). See Corollary 1 in Appendix B.

18



3.5 Additional Theoretical Results

We derive two more theoretical results with proofs in Appendix B. Proposition 3 character-

izes firm variance when the firm size distribution follows a power law while Proposition 4

characterizes the comovement across firms’ volatilities.

Proposition 3. Consider a sequence of economies indexed by the number of firms N . If firm

sizes are distributed according to a power law with exponent η ∈ (1, 2], then firm variance

decays at rate N (1−ζ)(2−2/η).

Gabaix (2011) emphasizes that extreme right skewness of firm sizes can also slow down

volatility decay in large economies. We show that the firm-level network structure adds a

complementary mechanism that slows down the volatility decay beyond Gabaix’s granularity

mechanism. In the absence of network effects, firm variance decays at rate N2−2/η, where η

is the power law coefficient of the firm size distribution. With network sparsity, the rate of

decay is N (2−2/η)(1−ζ), where ζ is our network sparsity parameter.

Proposition 4. Consider a sequence of economies indexed by the number of firms N , and

fix Si and Sj. If the firm size distribution has finite fourth moment, then the covariance

between the out-Herfindahls Hi and Hj has limiting behavior described by

Cov(Hi, Hj|Si, Sj) ≈
1

N1+2(1−ζ)
V (S2)

SiSj

Z2

E[S]2
.

The covariance between V (gi|Si) and V (gj|Sj) decays at the same rate.

Proposition 4 shows that comovement among firm variances decays at rate N1+2(1−ζ) in

a large economy. Intuitively, the volatility comovement among a pair of firms is lowest when

both firms are large, since large firms have low exposure to overall size concentration. We

test this prediction on the comovement between volatilities in the data in Section 5.2.
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4 Simulated Method of Moments Estimation

Section 2 documents strong statistical relationships between the distributions of firm size

and firm volatility. Section 3 provides a network-based foundation for these relationships. In

this section we go one step further and ask whether the production network model can quan-

titatively account for the observed joint distribution of firm size, firm volatility, and inter-

firm production network linkages. We estimate the key network parameters in a Simulated

Method of Moments (SMM) framework. By insisting on matching data on customer-supplier

relationships we provide evidence for the network assumptions made in the model.

4.1 Model Extensions

The stylized model of the previous section implicitly assumed that when two firms of equal

size merge, the new firm is as volatile as each of the two original firms. A large literature on

mergers suggests that many firms seek diversification benefits from mergers resulting in lower

firm volatility of the combined entity. We label these gains from internal diversification to

distinguish them from external diversification gains that accrue through the firm’s network

of customers. To capture internal diversification benefits in a simple way, we assume that

the volatility of a firm’s own fundamental shock depends negatively on its size. Specifically,

σε,i = σε + λ log

(
1 +

Smedian
Si

)
, (12)

where λ governs the sensitivity of fundamental volatility to firm size. The parameter σε is

the minimum shock volatility, after all possible internal diversification benefits have been

exhausted. The larger the firm, the closer its shock volatility is to σε. For the median firm,

Si = Smedian, and the shock volatility equals σε + λ log(2). This functional form keeps all

firm variances positive. In Appendix C.7 we explore an alternative internal diversification

function based on Stanley et al. (1996) and find similar results.

We also generalize the weighting function wi,j, which governs the importance of customer
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j in supplier i’s network:

wi,j =
bi,jS

ψ
j∑N

k=1 bi,kS
ψ
k

. (13)

The sensitivity of the importance of the link to the size of the customer is governed by the

curvature parameter ψ. When λ = 0 (and therefore σ2
ε,i = σ2

ε) and ψ = 1, we recover the

simple model of Section 3.

4.2 Network Data, Selection, and Truncation

We use data on customer-supplier networks from the Compustat segment dataset. The

sample is 1980-2012. If a customer represents more than 10% of its sellers’ revenue, then the

customer’s name and sales amount are reported. Combining this information with the total

sales, available in Compustat, we obtain the sales shares wi,j. In a typical sample year, we

have about 1,330 firms (suppliers) with non-missing customer information. We compute the

cross-sectional distribution of the number of customers or out-degree (N out
i ), the dispersion

of the customer network or out-Herfindahl (Hout
i ), the number of suppliers or in-degree (N in

i ),

and the dispersion of the supplier network (H in
i ). Key moments of these four distributions

are reported in the first column of Table 3 and discussed further below. For consistency,

the moments of the firm size and variance distributions, reported in that same table, are

computed over the same sample period.

There are two data issues we address as part of our estimation algorithm. First, our

network data as well as our firm size and volatility data cover a subset of firms. Only

Compustat firms present in the customer segment data are included in the network statistics.

Customer-supplier links between public and private companies are unobserved, as well as

links of public firms with missing customer data. To capture this selection effect, we simulate

the model for N firms, and allow all these firms to forge links with each other according to

the network formation rules outlined above. However, we select only the largest Npub firms

to compute model-implied moments. Implicit is the assumption that large, listed firms are
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the most likely to have non-missing customer data. We set N = 5, 000 for computational

reasons; Npub is a parameter estimated to match the average number of firms with non-

missing network data.9

Second, firms in Compustat are only required to report customers that represent at least

10% of their sales. Despite some voluntary reporting of smaller customers, the vast majority

of weights wi,j we observe exceed 10%. Our model accounts for all customers, with weights

larger and smaller than 10%. To capture this truncation effect, we treat a link as unobserved

whenever wi,j is below 10%. For consistency, we delete the few wi,j observations below 10%

in the data as well. The procedure allows us to compare truncated moments in the model

to truncated moments in the data. Since both truncated and untruncated moments are

available in the model, we can make indirect inferences about the full network structure.

4.3 Parameters

Our empirical approach is to estimate the key parameters that govern the network by SMM.

These parameters are listed in Panel A of Table 2. While all parameters jointly determine all

moments, we nevertheless provide some intuition for which moments most directly identify

each parameter. First, we assume that all firms have the same network parameter γi = γ.

The parameter γ governs the strength of the network. When γ = 0, there are no network

effects. A value of γ close to 1 implies strong higher-order effects, or equivalently, slow spatial

decay in the network. Second, the fundamental volatility of the innovations σε governs

the average level of firm volatility. Third, the probability of forming a supplier-customer

connection in (4) depends on the parameter Z. This parameter affects the average number of

customers, the average out-degree. Fourth, as just discussed, λ affects the relative volatility

of large and small firms (over and above the differences generated by the network) and

ψ affects the relative importance of large and small customers in determining a supplier’s

growth rate. The average number of firms with network data pins down Npub. Finally, the

9One additional argument for using public firms only in estimation, besides data availability, is that firm
variance is hard to measure for private firms.
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Table 2: Parameter Estimates

(1) (2) (3)

Benchmark No Network No ID

γ Network propogation effect 0.918 0.000 0.918
(0.026) – –

σε Fundamental shock volatility 0.298 0.298 0.388
(0.035) – –

λ Internal diversification effect 0.131 0.131 0.000
(0.025) – –

Z New connections 0.003 0.003 0.003
(0.001) – –

ψ Sensitivity of connection weight to customer size 0.184 0.184 0.184
(0.003) – –

µs Mean of initial log size distribution 13.412 13.412 13.412
(0.243) – –

σs Standard deviation of initial log size distribution 5.104 5.104 5.104
(0.102) – –

Npub Number of public firms 1332 1332 1332
(47.7) – –

Notes: This table report model parameters. Column 1 reports the estimated parameters using Simulate
Method of Moments estimation, along with the parameters’ standard errors in parenthesis. Columns 2 and 3
report the parameters from the benchmark estimation but without network effects (i.e. γ = 0) and without
internal diversification (i.e. λ = 0), respectively.

mean and variance of the observed log firm size distribution identify the first two moments

of the log-normally distributed firm size distribution, µs and σs, in the model. We collect

the parameters to be estimated in the vector Θ.

Two parameters are determined outside the estimation. Mean firm growth rate µg is set

equal to zero, matching the observed full-sample growth rate in real market capitalization.

Second, 1 − ζ is the elasticity of the average number of customers to the number of firms

in the economy; see equation (5). We set ζ = 0.87 to match the estimated elasticity in our

network data.10

10We estimate a time-series regression of the log average number of connections on a constant and the log
number of firms. The slope of this regression, which corresponds to 1−ζ, is estimated at 0.13 with t-statistic
of 2.85. The estimation sample is the same sample of Compustat firms for which we have non-missing
customer information (1980-2012). The parameter ζ is difficult to identify since other things change in the
time series.
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4.4 Simulated Method of Moments

Our SMM estimation is standard; see Gourieroux, Monfort, and Renault (1993) and Duffie

and Singleton (1993). The estimation chooses the parameter vector Θ which minimizes the

distance between the data moments, collected in the 1×K vector G, and the corresponding

moments obtained from a simulation of the network model, collected in Ĝ(Θ):

F = min
Θ

E
[(
G − Ĝ(Θ)

)
W
(
G − Ĝ(Θ)

)′]
.

We target K = 28 moments in the estimation, listed in Table 3. They consist of four moments

of the firm size distribution, four moments of the firm volatility distribution, twelve moments

of the network distribution, seven correlation moments between size, variance, and network

moments, and one moment related to the number of firms with network data. All moments

are expressed as logs or log differences and are of similar magnitude. For simplicity and

robustness we use the K × K identity weighting matrix for W . We draw an initial size

distribution for N = 5, 000 firms and then simulate the network links (the bi,j shocks) and

fundamental shock volatilities (the ε shocks) 100 times. The moment function Ĝ(Θ) is the

average over the 100 draws. The calculation of standard errors is detailed in Appendix C.2.

We also provide a Wald test of the null hypothesis that all targeted moments are the same

in model and data. The p-value calculation is also in Appendix C.2.

4.5 Estimation Results

The first column of Table 2 reports the SMM point estimates and standard errors for the

parameters in Θ. The corresponding moments are in the second column of Table 3. To

disentangle the separate roles of network effects and internal diversification, we consider two

restricted versions of the benchmark model. Model “No Network” in column 2 of Table 2 is

a model without network effects; it has the same parameters as the benchmark except that

it sets γ = 0. Model “No ID” in column 3 of Table 2 shuts down internal diversification by
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setting λ = 0 and σε equal to the median volatility of the benchmark model in (12). All

other parameters are held at benchmark values. The resulting model fits are reported in the

last two columns of Table 3.

Firm Size Panel A shows that the benchmark model closely matches the moments of the

firm size distribution. It generates not only the correct average firm size and size dispersion,

but also large enough differences between the median firm and the smallest firms and between

the median firm and the largest firms. This is mostly by virtue of the calibration. The log

normality assumption on firm size fits the data very well. Since firm size is pre-determined,

the restricted models fit the size distribution equally well.

Firm Variance The network effects reveal themselves in the distribution of firm variance,

reported in Panel A of Table 3. The benchmark model matches the mean firm variance.

Fundamental shock volatility is estimated just below 30% for the least volatile firms. The

median firm has fundamental shock volatility of 38.9% (0.298 + 0.131 log(2)). More impor-

tantly, the model generates most of the observed dispersion in firm variance (86% vs 105% in

the data). The cross-sectional differences in firm variance are driven by differences in firms’

sizes and customer networks. Some firms have a poorly diversified customer base resulting

in high variance, while others achieve a high degree of external diversification resulting in

low variance. The point estimate for γ is 0.918 and is precisely estimated. A γ close to 1

points to strong network effects. The null hypothesis of no network effects (H0 : γ = 0) is

strongly rejected. In sum, the cross-sectional dispersion of firm variance is what identifies

the parameter γ.11

The “No Network” model in column 3 of Table 3, generated under the null of no network

effects, shows that the dispersion in firm volatility is very small. The model with no network

11In a dynamic model, time series variation in this cross-sectional dispersion would additionally aid in
identification of the network parameters. Cyclical variation in the cross-sectional dispersion in firm-level
TFP could also help explain time series variation in firm-level variance (Midrigan and Xu, 2014; Kehrig,
2015).
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effects still has an internal diversification mechanism which creates a negative cross-sectional

correlation between size and variance. The first row of Panel D shows that the No Network

model matches that correlation closely. But the internal diversification mechanism generates

far too little volatility dispersion.12 Network effects are necessary. However, they are not

sufficient. The “No ID” model in column 4 of Table 3 generates about half of the observed

dispersion in volatility of the data and of the benchmark model that has both network effects

and diversification. Appendix C.4 shows that these conclusions regarding the model without

network effects and the model without ID effects are robust when we re-estimate all other

parameters of the model freely.

Network Moments A key question is whether the network effects that are necessary

to deliver the dispersion in firm variance are consistent with the observed properties of the

network. Panel B of Table 3 shows that this is indeed the case. The median firm in the model

has 1.12 customers whose sales represent at least 10% of that firm’s total sales, compared

to 1.0 in the data. There are large differences in the cross-section. The firms with the most

customers (at the 90th percentile) have 83% more customers than the median firm. The

model produces a similar difference at 102%.13

12While internal diversification generates substantial variation in firm variance, most of this variation
occurs between very small firms. The dispersion among the largest Npub firms, reported in the table, is very
small.

13The restricted models have the same network moments as the benchmark model since they have the
same size distribution.
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Table 3: Size, Variance, and Network Moments

(1) (2) (3) (4)
Data Model Model Model

Bench No Network No ID

Panel A: Size and Volatility Distributions
log Size

Average 19.83 19.83 19.83 19.83
Stadard Deviation 2.56 2.53 2.53 2.53
prc 50 - prc 10 2.91 2.37 2.37 2.37
prc 90 - prc 50 3.88 3.91 3.91 3.91

log Variance
Average −1.40 −1.40 −2.42 −1.39
Stadard Deviation 1.05 0.86 0.01 0.46
prc 50 - prc 10 1.38 0.40 0.00 0.24
prc 90 - prc 50 1.31 1.69 0.02 0.93

Panel B: Network Moments
Nout

Median 1.00 1.12 1.12 1.12
log prc 50 - log prc 10 0.00 0.08 0.08 0.08
log prc 90 - log prc 50 0.83 1.02 1.02 1.02

Hout

Median 0.05 0.18 0.18 0.18
log prc 50 - log prc 10 1.27 1.88 1.88 1.88
log prc 90 - log prc 50 1.85 1.71 1.71 1.71

Nin

Median 1.00 1.00 1.00 1.00
log prc 50 - log prc 10 0.00 0.00 0.00 0.00
log prc 90 - log prc 50 1.69 1.09 1.09 1.09

Hin

Median 1.00 1.00 1.00 1.00
log prc 50 - log prc 10 0.95 0.89 0.89 0.89
log prc 90 - log prc 50 0.00 0.00 0.00 0.00

Panel C: Cross-sectional Correlations
Corr(log Size,log Var) −0.64 −0.61 −0.67 −0.69
Corr(log Nout,log Size) −0.00 0.31 0.31 0.31
Corr(log Hout,log Size) −0.28 −0.88 −0.88 −0.88
Corr(log Hout,log Var) 0.22 0.51 0.68 0.75
Corr(log Nin,log Size) 0.53 0.34 0.34 0.34
Corr(log Hin,log Size) −0.47 −0.34 −0.34 −0.34
Corr(log Hin,log Var) 0.13 0.19 0.19 0.21

Panel D: Firms with Network Data
log number of public firms 7.15 6.95 6.95 6.95

Panel E: Goodness of Fit Statistics
FVAL – 2.88 7.53 3.72
Wald – 24.76 – –
p-value – 0.64 – –

Notes: This table reports different size, variance, and network moments both from the data and from our
simulation. We use Compustat and CRSP data from 1980 to 2012, and the moments reported are time-
series averages of cross-sectional moments. Column 2 reports the moments from a SMM estimation of the
benchmark model. Columns 3 and 4 report the SMM estimation of a model without network effects (i.e.
γ = 0) and without internal diversification effects (i.e. λ = 0), respectively. Panel A reports average,
standard deviation, and percentile spreads for both log size and log variance. Panel B reports median
and percentilae spreads for four distinct network moments: out-degree or number of customers (Nout),
out-Herfindahl (Hout), in-degree of number of suppliers (N in), and in-Herfindahl (Hin). Panel C reports
correlations between log size, log variance, and network moments. Panel D reports the log number of firms
with network data avaiable. Finally, in Panel E, we report the distance function minimized in the SSM and
a Wald test for the null hypotheses that all moments in the data (Column 1) and in the estimated model
(Column 2) are equal.
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Customer network concentration (out-Herfindahl), constructed from network weights as

in equation (10), is also similar in model and data. We recall that the out-Herfindahl directly

affects firm variance per equation (9). Dispersion in out-Herfindahl directly maps into dis-

persion in variance. The model generates the same amount of dispersion in out-Herfindahls

as in the data. The firms with the most sparse customer networks (90th percentile) have

185% higher out-Herfindahls than the median firm in the data and 171% in the model.

As Panel C shows, these high-Hout firms tend to have higher variance. The cross-sectional

correlation is 51% in the model, compared to 22% in the data. Firms with under-diversified

(more concentrated) customer networks also tend to be smaller. The correlation is -88% in

the model and -28% in the data. The reason these model correlations are not perfect is, first,

because higher-order network effects affect variance as well (equation 11 versus equation 9),

and second, because internal diversification provides an independent source of dispersion in

variance. The model without internal diversification produces a correlation between out-

Herfindahl and variance that is indeed higher at 75%. The random nature of the network

accounts for the less than perfect correlation between size and out-Herfindahl.

Our network model assumes that larger firms have more connections, on average. Panel

C bears this out with a 31% correlation between size and number of customers N out. In the

data the correlation is 0%, suggesting little empirical support for the assumption. However,

that correlation is subject to a large truncation bias. The correlation between untruncated

N out and size is 69% in the model, implying a 38% bias. Applying that bias to the data would

suggest a 38% correlation, indicating stronger support for the assumption. Appendix C.3 dis-

cusses biases arising from truncation in more detail. It also uses industry-level input-output

data from the Bureau of Economic Analysis (BEA) which do not suffer from truncation.

The BEA data show a 58% correlation between size and untruncated N out. The BEA data

imply an even larger truncation bias. Appendix C.3 also provides evidence for the second

size assumption underlying the model, that larger customers represent a larger share of a

firm’s sales.
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We also study the implications of our model for two in-degree moments: the number of

suppliers a firm has (N in) and the concentration of the supplier network (H in). Because

the Compustat segment data do not contain information on a firm’s suppliers, we must use

the customer data to infer supplier links. Since we measure suppliers the exact same way in

the model, the selection issues that this data structure creates are reproduced in the model.

Panel B of Table 3 shows that the model matches the median number of (truncated) suppliers

and its dispersion, as well as the (truncated) supplier concentration and its dispersion. The

model also fits the cross-sectional correlations between in-degree moments and firm size and

variance quite well. The positive correlation between size and number of suppliers is entirely

caused by truncation, since the model assumes no relationship. Subtracting the 34% upward

bias from the 53% correlation in the data reduces the empirical estimate to below 20%.

We conclude that our simple model is consistent with the key moments of the cross-

sectional distribution of firm size, firm variance, and the number and concentration of

customer-supplier relationships.

Panel E of Table 3 reports the SMM function value, which is the sum of the squared

distances between model and data moments. The restricted versions of the model in the

last two columns have a substantially worse fit. Removing internal diversification increases

the L2 norm from 2.88 to 3.72. Removing the network mechanism makes for a far greater

deterioration in fit, from 2.88 to 7.53. The panel also reports a Wald statistic for the null

hypothesis that all moments (in Table 3) are equal in model and data. We fail to reject the

null hypothesis, providing further support for the network model.14

14According to the same Wald statistic, the γ = 0 model also cannot be rejected either. However, this
result needs to be interpreted cautiously. The Wald statistic is poorly behaved for the γ = 0 model since
that model cannot generate any meaningful variation in the dispersion of firm variance. The columns of the
Hessian matrix corresponding to these moments are very close to zero which leads to invertibility problems
for the matrices that enter in the computation of the Wald statistic. This issue does not arise for the
benchmark model since those corresponding columns of the Hessian matrix are not close to zero.
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4.6 Interpreting the Network Effects

The estimation lends strong support for the presence of network effects between firms. When

interpreted through the lens of the structural model in Appendix A, a point estimate for

γ of 0.918 suggests that most of firms’ output serves as input into other firms’ production

and only 8.2% is final goods consumption. Such a low estimate for the consumption share is

belied by sectoral input-output data, which suggest a final goods share around 37%.15 One

possibility is that the estimation uncovers links between firms that go beyond input-output

linkages. Financial ties such as trade credit could strengthen network effects between firms

(e.g. Raddatz, 2010; Bams, Bos, and Pisa, 2016). Another possibility is that a common value

of γ fails to provide an accurate representation of network transmission effects. Indeed, if

network transmission is heterogeneous across firms, for example with each firm possessing its

own γi as in equation (1), then the estimated common γ parameter will be a biased estimate

of the average network effect. To investigate, we consider a model under the benchmark

parameters except that γi can take on one of three values that are centered around 0.6:

γi ∈ {.22, .60, .98}. We choose the central value of 0.6 as a reasonable number for the average

share of value-added that is bought by other firms. We assume a positive cross-sectional

correlation between γi and the firm’s eigenvector centrality. The top-third of firms with the

highest centrality measure is assigned the highest value for γi, the middle third the middle

value, and the bottom third the lowest value. This positive correlation seems natural in a

production economy; firms that sell more to other firms are more central in the production

network. After simulating data from this heterogeneous-γ model, we estimate a homogenous-

γ model. We estimate γ = 0.93, very close to the point estimated of 0.918 presented above.

The estimate far exceeds the mean and median value for γi of 0.6. The intuition for the “bias”

is that heterogeneity in γi contributes to the cross-sectional dispersion in firm variance. The

econometrician who assumes a constant-γ model needs to rely on stronger network effects

15Using 2007 BEA data from table “The Use of Commodities by Industries,” the ratio of final goods
consumption to total industry output is 0.373.
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instead to generate the same cross-sectional difference in firm variances. When heterogeneity

in γi aligns with eigenvector centrality, this force is particularly strong because firms that

strongly propagate idiosyncratic shocks (i.e. high-γi firms) are also centrally located in the

network, playing a key role in the cross-sectional distribution of volatility.

4.7 Composition Effects

An interesting question, left for future research, is whether the comovement of firm size

dispersion on the one hand and average firm volatility and the dispersion of firm volatility

on the other hand extends to the full cross-section of public and private firms. Answering this

question requires access to panel data on sales or TFP for private firms. For example, Bloom

et al. (2018) use such data for the manufacturing sector. One issue is that manufacturing is

a rapidly shrinking part of the economy. An additional challenge is that measuring firm-level

volatility requires a sufficiently long time-series of at least quarterly frequency, which may

bias the sample of private firms that can be studied.

A related question is to what extent our results are driven by changes over time in the

nature of public firms. Davis et al. (2006) show that private firms started going public earlier

in their life cycle in the 1990s, at a time that they were both smaller and more volatile than

the average public firm. Doidge et al. (2018) show that this process went into reverse after

the year 2000, with fewer private firms going public and more firms delisting. The fraction

of small firms with market capitalization below $100 million in real 2015 dollars has fallen

from 60% in the 1980s to 40% in 1997 to 22% in 2016. The changing composition of the

universe of public firms could in principle generate the positive comovement between firm

size dispersion and firm volatility.

We have already presented empirical evidence in Figure 1 and in Table 1 that speaks

against the composition hypothesis. In Appendix C.6, we provide additional evidence from

the model. Specifically, we show that a model without network effects in which the changes

in the firm size dispersion over time are caused by a changing composition of public firms
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(and match the observed changes in the firm size dispersion) cannot generate the observed

changes in the mean and dispersion of firm volatility. That said, with better data, future

work could extend our analysis to the universe of public and private firms.

5 Additional Testable Implications

The network model suggests two additional testable predictions. First, a firm’s volatility

should depend on its size and on its out-Herfindahl. Second, all firms’ volatilities should

comove because they are driven by a common factor: the economy-wide dispersion in firm

size. We find empirical support for both predictions.

5.1 Determinants of Firm Variance

A large literature has examined the determinants of firm variance. Black (1976) proposed

that differences in leverage drive heterogeneity in firm variance. Comin and Philippon (2005)

study the role of industry competition and R&D intensity. Davis et al. (2006) emphasize age

effects. Brandt et al. (2010) argue that institutional ownership is related to firm variance.

Our model predicts a negative correlation between firm variance and firm size and a posi-

tive correlation between firm variance and customer network concentration (out-Herfindahl),

controlling for other firm characteristics.

Table 4 reports panel regressions of firm-level log annual return variance on log size

and log out-Herfindahl, controlling for a range of firm characteristics including log age,

leverage, industry concentration, as well as industry and cohort fixed effects.16 Consistent

with our model, we find that size and out-Herfindahl are important determinants of firm

variance. The elasticity of firm variance to firm size is around -0.15 and precisely estimated

in all specifications. Decreasing the log firm size from the 90th percentile to the median

increases firm variance by 58% (-3.88 × -0.15), which is more than one-half of a standard

16Cohorts are defined by the year in which a firm first appears in the CRSP/Compustat data set.
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deviation in variance. The elasticity of firm variance to customer concentration is 0.05 and

also significant in all specifications. Increasing the log out-Herfindahl from the median to

the 90th percentile increases firm variance by 9.3% (1.85 × 0.05). As we showed in Table 3,

log size and log out-Herfindahl are negatively correlated in both network model and data.

Network concentration conveys similar information since size determines network structure.

Given that concentration in the customer network is measured with noise, size likely captures

an important part of the true network concentration effect. Nevertheless, the table provides

strong evidence that network concentration matters separately for firm variance and survives

the inclusion of other well-known volatility determinants such as age and leverage.

As an aside, when we use the in-Herfindahl instead of the out-Herfindahl, we find that

it does not enter significantly either in isolation or after controlling for size. This suggests

that the firm variance data are more consistent with upstream than downstream shock

propagation.
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5.2 Comovement in Firm Variances

Recent research has documented a puzzling degree of common variation in the panel of firm-

level volatilities. Herskovic et al. (2016) show that a single common factor explains roughly

one-third of the variation in log firm variance for the panel of CRSP stocks.17 They also

show that this strong factor structure is not only a feature of return variance, but also of

sales growth variance. The puzzling aspect of this result is that the factor structure remains

nearly completely intact after removing all common variation in returns or sales growth

rates. Hence, common volatility dynamics are unlikely to be driven by an omitted common

return or sales growth factor. That paper raises the question of what the common factor in

(idiosyncratic) firm volatility might be.

Our granular network model suggests an answer. It predicts a high degree of comovement

in firm volatility arising from concentration in the firm size distribution. Proposition 2 implies

that the dispersion of the firm size distribution is the common factor. Proposition 4 further

clarifies that large firms have low exposure to this size concentration factor. In other words,

fluctuations in firm size dispersion are an important determinant of fluctuations in firm-level

volatility, and more so for small than for large firms. Furthermore, if the true data generating

process is a network model, then factor model residual volatilities will possess a similar degree

of comovement as total volatilities, despite residual growth rates themselves being nearly

uncorrelated. To understand this, consider that in the literature, idiosyncratic volatility

is typically constructed by first removing the aggregate component of growth rates with a

statistical procedure such as principal component analysis, then calculating the volatilities

of the residuals. In a granular network model like ours, such a factor regression approach

is misspecified. There is no dimension-reducing common factor that fully captures growth

rate comovement since, by virtue of the network, every firm’s shock may be systematic. A

17Similarly, Engle and Figlewski (2015) document a common factor in option-implied volatilities since
1996, and Barigozzi et al. (2014) examine the factor structure in realized volatilities of intra-daily returns
since 2001. Bloom et al. (2018) show that firm-specific sales growth and productivity exhibit cross-sectional
dispersion that fluctuates with the macro economy.
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sign of the misspecification of the factor model is that the residuals exhibit a volatility factor

structure that looks very similar to the factor structure for total firm volatility.

Table 5 provides empirical support for the fact that the common factor in firm volatilities

is the firm size dispersion. It contains panel regressions for firm variance using three different

factor models. In column 1, the factor is the lagged dispersion in log firm size (market-based).

In column 2 the factor is the lagged cross-sectional average volatility. Since this is essentially

the first principal component of firm volatilities, it is a natural yardstick for any one-factor

model. The third column instead uses the contemporaneous average volatility as a factor.

Because it uses finer conditioning information, it can be considered an upper bound on the

explanatory power of a single factor. The main point of Table 5 is that the explanatory

power of firm size dispersion (R2 of 15.65%) is nearly as high as that of mean volatility (R2

of 20.94%), and about half as large as the one-factor upper bound (R2 of 33.65%). Firm size

dispersion is a powerful factor.

Columns 4-6 repeat the exercise on model-generated data. For the model calculations, we

match the observed cross-sectional average and standard deviation of the log size distribution,

year by year, from 1980 to 2012. The model implies a firm variance distribution in each year.

We use the model-implied time series for firm size dispersion and mean firm variance to

estimate the factor model. Similar to the data, lagged firm size dispersion is about as strong

a predictor as lagged average firm variance. The R2 is about half that of contemporaneous

mean variance.18

Panel B confirms the model prediction that large firms, in quintile 5 (Q5) of the firm size

distribution have lower exposure to the common size dispersion factor than small firms in

quintile 1 (Q1). Finally, the data in Panel A show that the size dispersion factor explains

a smaller fraction of the variation for large firms than for small firms, as predicted by

Proposition 4.

18In unreported results, we confirmed these results for fundamental variance, as well as for residual market
and fundamental variances. Residual variances are obtained by orthogonalizing firm returns or sales growth
rates to a common factor in returns or sales growth rates, and then taking a variance.
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Table 5: Comovement in Firm Variances

Data Model

(1) (2) (3) (4) (5) (6)

Factors Factors

σS,t−1 µσ,t−1 µσ,t σS,t−1 µσ,t−1 µσ,t

Panel A: Return Volatility R2 by Size Quintile

All firms 15.65 20.94 33.65 52.18 55.92 93.22

Q1 19.44 22.85 29.37 51.99 54.97 84.14

Q5 11.06 17.62 36.55 51.91 56.10 98.48

Panel B: Return Volatility Loadings by Size Quintile

All firms 0.55 0.48 0.73 1.31 0.67 1.06

Q1 0.71 0.57 0.73 1.12 0.57 1.15

Q5 0.37 0.43 0.76 0.31 0.16 0.24

Notes: Each factor model regression is a time-series regression of log total volatility on a factor. Total
volatility is measured as variance of daily returns within the calendar year, and size is measured as market
equity. All volatility factor regressions take the form log σi,t = ai + bifactort + ei,t. For each stock i, we
estimate the factor model and report the cross-sectional average of the R2 in Panel A and cross-sectional
average of the slopes in Panel B. We require a minimum of 25 observation to run the regression. In each
panel, we report the full sample average and the average within the first and last quintile of the time-series
average size distribution. We deflate size by CPI when constructing size quintiles. We consider three different
volatility factors. The first, motivated by our network model, is the lagged cross section standard deviation
of log market equity, σS,t−1 (Columns 1 and 4). The second and third factors we consider are the lagged
and contemporaneous cross-sectional average log volatility, µσ,t−1 (Columns 2 and 5) and µσ,t (Columns 3
and 6). All three factors use the full sample in the cross section. Columns 1-3 report the estimation results
for the data at annual frequency from 1926 to 2016. We estimate the same factor structure for the model as
well in Columns 4-6.

6 Conclusion

We document new features of the joint evolution of the firm size and firm volatility distri-

bution and propose a new model to account for these features. In the model, shocks are

transmitted from customers to suppliers in a production network. The larger the supplier,

the more customer connections it has, the better diversified its customer base, and the lower

its volatility. Large customers have a strong influence on their suppliers, so shocks to large

firms have an important effect throughout the economy. A equilibrium model with consumer

demand shocks and multiple inter-connected firms delivers a structural interpretation of the
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reduced-form network model.

When the firm size dispersion increases in this economy, large firms become more im-

portant, and many customer networks become less diversified. In those times, average firm

volatility is higher as is the cross-sectional dispersion of volatility. Because the underlying

innovations are i.i.d. over time, the model endogenously generates “uncertainty shocks.” The

model quantitatively replicates the most salient features of the firm size and the volatility

distributions, while being consistent with data on customer network linkages. The estimation

reveals the importance of strong network effects, without which the model cannot account

for the large dispersion in firm volatilities.

Future work could explore in more depth the various sources of network linkages to fully

account for the strong complementarity in firm-level volatilities.
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A Structural Model of Upstream Shock Transmission

This appendix sets up a simple structural model that delivers upstream transmission of shocks, and that
delivers the network equation (1). It is a simple version of the canonical Long and Plosser (1983) model,
applied to firms rather than to industries. Our derivation relies heavily on teaching notes that Xavier Gabaix
graciously shared with us (Gabaix (2016)). The result generalizes Acemoglu, Akcigit, and Kerr (2016).

A.1 Setup

Households supply labor L inelastically. They derive utility from consuming each of the N goods:

U =
N∑
i=1

θi log ci,

where θi is a taste shifter for good i. Without loss of generality,
∑N
i=1 θi = 1. The household chooses its

consumption basket to maximize total utility.
Good i is produced using labor as well as all of the other commodities:

Yi = exp(zi)L
bi
i

N∏
j=1

X
aij
ij ,

where the coefficient satisfy
∑N
j=1 aij + bi = 1, i = 1, 2, . . . , N , implying constant returns to scale.

A.2 Characterizing Equilibrium

Market clearing for goods implies that, for each good j:

Cj +

N∑
i=1

Xij = Yj (A1)

Market clearing in the labor market implies that
∑N
i=1 Li = L.

Each firm maximizes profits. The first order conditions for profit maximization dictate that, for each
good i, the demand for labor inputs and other goods satisfy:

πjXij = aijπiYi, (A2)

wLi = biπiYi. (A3)

where πi is the price of good i.
Define economy-wide value added G as G =

∑N
i=1 πiCi = wL. Define the ratio of firm i’s output to total

value added as ψi:

ψi =
πiYi
G

.

We can restate equation (A2) as:

aij =
πjXij

πiYi
=
πjXij

ψiG
. (A4)

This shows that aij is the cost of input j in the value of the output i.
The household’s first order condition for good j is given by:

πjCj = θjG
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Substituting this equation and equation (A4) into the market clearing condition (A1), we obtain:

πjYj = πjCj +
∑
i

πjXij ,

ψjG =

(
θj +

∑
i

aijψi

)
G,

ψj = θj +
∑
i

aijψi.

If firm i is the supplier of good i while firm j denotes a customer who uses good i as an input, then we get:

ψi = θi +
N∑
j=1

ajiψj (A5)

We use A to denote an N × N matrix with aij as the (i, j)th element of the matrix. We use ψ to
denote the vector of firm shares with ψi as the ith element, and we use θ to denote the vector of preference
parameters θi. Using matrix notation, equation (A5) can be stated as follows:

ψ = θ +A′ψ, (A6)

which in turn implies that the firm shares can be stated as follows:

ψ = (I −A′)−1θ.

The firm shares do not depend on the productivity shocks, but are only determined by preferences θ and
costs shares A.

A.3 Link with W Matrix

Define w̃ij as the ratio of sales of supplier i to customer j, divided by the output of good i:

w̃ij =
πiXji

πiYi
=
πiXji

πjYj

πjYj
πiYi

= aji
ψj
ψi

(A7)

Let Ψ = diag(ψ) be the N × N matrix with the vector ψ on its diagonal. Then (A7) can be written in
matrix notation as:

W̃ = Ψ−1A′Ψ.

Note that the rows of the W̃ sum to less than one:

N∑
j=1

w̃ij =
N∑
j=1

aji
ψj
ψi
,

=
N∑
j=1

πiXji

πiYi
,

=
πiYi − πiCi

πiYi
≡ γi < 1,

unless good i is only used as an intermediary good but not used for final consumption. We call the fraction
of total output of good i used as inputs for other firms, γi.

In our empirical implementation, we cannot directly measure the expenditure share matrix A for the
U.S economy. However, we make two plausible assumptions. First, we assume that w̃ij is more likely to be
non-zero when firm i is larger. Second, we assume that w̃ij is more likely to be larger when firm j is larger.
Sales is our proxy for size.
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Define wij = w̃ij/γi and collect the γi in a diagonal matrix Γ. The matrix W is:

W = Γ−1W̃

We note that all the rows of W sum to one:
∑N
j=1 wij = 1.

A.4 Upstream Transmission of Preference Shocks

We are now ready to state the main result, Proposition 1, which delivers the network equation of the
reduced-form model in the main text from the structural model described in this appendix.

We note at the outset that because the level of wages and prices is not determined, we choose the wage
as the numéraire and express all good prices relative to the price of labor.

Proposition. The responses of firm output to taste shocks dθ approximately equals:

dY

Y
= (I − ΓW )−1 dθ

ψ
. (A8)

Proof. By differentiation of equation (A5), we obtain the following system of equations:

dψi = dθi +

N∑
j=1

ajidψj , i = 1, . . . , N.

This system of equations implies the following system for growth rates in firm shares:

dψi
ψi

=
dθi
ψi

+
N∑
j=1

aji
dψj
ψi

,

dψi
ψi

=
dθi
ψi

+
N∑
j=1

γiwij
dψj
ψj

,

where we have used the mapping from the cost shares to the expenditure shares in (A7) and the link between
wij and w̃ij . Hence, in matrix notation, we get the following result:

dψ

ψ
=
dθ

ψ
+ ΓW

dψ

ψ
.

This in turn implies that:
dψ

ψ
= (I − ΓW )−1 dθ

ψ

Let x̂ denote dx/x. To complete the proof, we need to show that Ŷ = ψ̂.
We start with the goods market. First, note that the firm share ψi = πiYi

G . Hence, the percentage changes

satisfy: π̂i + Ŷi = ψ̂i, because Ĝ = 0. The latter is because aggregate labor supply L is fixed and ŵ = 0, a
normalization. Similarly, for firm j: π̂j + Ŷj = ψ̂j . Second, equation (A4) implies that:

ψ̂i = π̂j + X̂ij .

By combining the two preceding equations, we get the following expression for the growth rate of intermediate
inputs:

X̂ij = ψ̂i − ψ̂j + Ŷj . (A9)

Next, we turn to the labor market where:

wLi = biπiYi = ψibiG.
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In growth rates, this implies that:
L̂i = ψ̂i. (A10)

Finally, we consider the change in output in firm i, which is given by:

Ŷi = ẑi + biL̂i +
∑
j

aijX̂ij

Because there are only preference shocks and no productivity shocks, ẑ = 0. After substituting expressions
(A9) and (A10), we obtain:

Ŷi = biψ̂i +
∑
j

aij

(
ψ̂i − ψ̂j + Ŷj

)
.

This can be simplified to yield:

Ŷi = ψ̂i +
∑
j

aij

(
−ψ̂j + Ŷj

)
,

where we have used the constant returns to scale assumption bi +
∑
j aij = 1. In matrix notation, this

implies that:
Ŷ −AŶ = ψ̂ −Aψ̂ ⇒ Ŷ = ψ̂.

The proposition implies that all prices are constant, i.e., unaffected by taste shocks: π̂i = 0.

By setting the reduced-form shocks equal to the scaled taste shocks ε = dθ/ψ and µg = 0 (an assumption
we make in our estimation exercise), equation (A8) is identical to the network equation (2) in the main text.

The structural model provides an interpretation of the shocks as consumer preference shocks. It also
provides an interpretation of the network coefficients γi, which modulate the strength of the network effects.
In the structural model, γi is the share of output of firm i used as inputs in other firms. Intuitively, shocks
to one firm do not propagate if other firms do not use that firm’s good as an input. Finally, the structural
model makes clear that demand shocks propagate upstream.

Since we cannot accurately measure γi for different goods produced by different firms, in our empirical
work, we impose that γi = γ, ∀i. Then 1 − γ denotes the average share of output that accrues to final
consumption. That is, 1−γ measures the leakage in the production network due to final goods consumption.

A Simple Example with Two Firms A simple example where good 1 is the intermediate good
and good 2 is the final good illustrates the upward shock propagation:

A =

[
0 0
α 0

]
Then

W̃ = ΓW =

[
0 αψ2

ψ1

0 0

]
and

(I − ΓW )−1 =

[
1 αψ2

ψ1

0 1

]
Using our expression, this implies that the growth rates can be expressed as:

dψ1

ψ1
=

dθ1

ψ1
+ α

ψ2

ψ1

dθ2

ψ2
. (A11)

dψ2

ψ2
=

dθ2

ψ2
. (A12)

Generally, if A is lower triangular, which means that i uses only inputs from j < i, then (I − ΓW )−1 is
upper triangular. Hence, demand shocks are transmitted upstream, from the final goods firm (firm 2) to the
intermediate goods firm (firm 1).
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Example with Three Firms A simple three-firm example where good 1 is the basic input , good 2
is intermediate good firm and firm 3 produces the final good illustrates taste shocks affect the distribution
of firm volatility even hough they leave aggregate value added unchanged (Ĝ = 0). Under upstream shock
transmission, the A matrix is lower triangular (i uses only inputs from j < i):

A =

 0 0 0
α 0 0.
β ν 0.


Then

W̃ = ΓW =

 0 αψ2

ψ1
β ψ3

ψ1

0 0 ν ψ3

ψ2

0 0 0


and

(I − ΓW ) =

 1 −αψ2

ψ1
−β ψ3

ψ1

0 1 −ν ψ3

ψ2

0 0 1


Then the matrix that governs the transmission of shocks is upper triangular:

(I − ΓW )−1 =

 1 αψ2

ψ1
αψ2

ψ1
ν ψ3

ψ2
+ β ψ3

ψ1

0 1 ν ψ3

ψ2

0 0 1


Using our expression from equation (A8), this implies that the growth rates of each firm can be expressed
as:

dψ1

ψ1
=

dθ1

ψ1
+ α

ψ2

ψ1

dθ2

ψ2
+ (αν + β)

ψ3

ψ1

dθ3

ψ3
.

dψ2

ψ2
=

dθ2

ψ2
+ ν

ψ3

ψ2

dθ3

ψ3
.

dψ3

ψ3
=

dθ3

ψ3
.

Demand shocks are transmitted upstream, from the final goods firm (firm 3) to the raw inputs firm (firm 1).
The latter is exposed to firm 3’s shocks via firm 2 as well as directly. To see that, it helps to restate these
expressions as:

dψ1

ψ1
=

dθ1

ψ1
+ α

ψ2

ψ1
(ν
ψ3

ψ2

dθ3

ψ3
+
dθ2

ψ2
) + β

ψ3

ψ1

dθ3

ψ3

dψ2

ψ2
= ν

ψ3

ψ2

dθ3

ψ3
+
dθ2

ψ2

dψ3

ψ3
=

dθ3

ψ3

The first term in the first equation above measures the direct impact of firm 1’s demand shocks on firm
1. The second term measures the impact of firm 2’s shocks on firm 1. The third term measures the direct
impact of firm 3’s demand shock on firm 1. Note that the second term also comprises the impact of firm 3’s
shock on firm 2. Hence, firm 1 is exposed to demand shocks for final goods directly and via firm 2.
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A.5 Size Dispersion and Average Variance in Example Economies

We provide a sufficient condition under which an increase in firm size dispersion coincides with an increase in
average firm variance, as well as simulation evidence for three-firm economies that shows that the sufficient
condition is likely to be satisfied.

To show the implications for firm variance, we are interested in Var
(
dY
Y

)
= Var

(
dψ
ψ

)
, and, from the

model, we know that changes in firm size relate to preference shocks in the following way:

dψ

ψ
=
(
I − W̃

)−1 dθ

ψ
=
(
I −Ψ−1A′Ψ

)−1 dθ

ψ
,

where dθ
ψ =

[
dθ1
ψ1
, dθ2ψ2

, dθ3ψ3
, . . .

]′
, ψ = [ψ1, ψ2, ψ3, . . .]

′
, and Ψ = diag (ψ) is a diagonal matrix with the vector

ψ on the main diagonal. Hence, the variance-covariance of firms’ growth rates is given by:

Var

(
dψ

ψ

)
=
(
I −Ψ−1A′Ψ

)−1
Var

(
dθ

ψ

)(
I −ΨAΨ−1

)−1

=
(
I −Ψ−1A′Ψ

)−1
Ψ−1Var (dθ) Ψ−1

(
I −ΨAΨ−1

)−1

= (Ψ−A′Ψ)
−1

Σ0 (Ψ−ΨA)
−1

= Ψ−1 (I −A′)−1
Σ0 (I −A)

−1
Ψ−1

= Ψ−1MΨ−1

where Σ0 ≡ Var (dθ), and M = (I −A′)−1
Σ0 (I −A)

−1
. The variance of firm i is given by (M)ii ψ

−2
i , where

Mii is the ith diagonal element of M , which consists only of model primitives. Average firm variance is the
average of the diagonal elements of the variance matrix:

Average Firm Variance =
1

n

n∑
i=1

(M)ii
ψ2
i

(A13)

When comparing two economies with different size dispersion, it is desirable to hold the size of the
final consumption goods sector constant. The latter is given in equilibrium by 1∑n

i=1 ψi
. Without such an

assumption, one could engineer a higher average firm variance by lowering all firms’ ψi’s. But the resulting
increase in variance would mechanically be coming from an increase in the consumption share. Henceforth,
we study changes in the firm size distribution that keep the size of the final goods sector constant.

The next proposition shows a sufficient condition under which an increase in size dispersion is accompa-
nied by an increase in the average firm variance.

Proposition 5. An economy with a uniform firm size distribution (i.e. firms of equal size ψi) has lower
average firm variance than an economy with a non-uniform size distribution (i.e. firms of unequal size),
holding fixed the consumption share, provided that the cross-sectional covariance between 1/ψi and (M)ii
satisfies:

2ψ−1
∑
i

(M)ii

(
ψ−1
i − ψ−1

)
> −

∑
i

(M)ii

(
ψ−1
i − ψ−1

)2

︸ ︷︷ ︸
<0

(A14)

where ψ−1 = 1
n

∑n
i=1

1
ψi

.

Proof. Let AvgVar Equal Size (AvgVar Unequal Size) be the average firm variance under an (un)equal firm size

49



distribution:

AvgVar Unequal Size =
1

n

∑
i

(M)ii ψ
−2
i =

1

n

∑
i

(M)ii

[
ψ−1 + di

]2
=

1

n

∑
i

(M)ii

[(
ψ−1

)2

+ d2
i + 2ψ−1di

]
>

1

n

∑
i

(M)ii

(
ψ−1

)2

>
1

n

∑
i

(M)ii ψ
−2

= AvgVar Equal Size

where di = ψ−1
i − ψ−1. The first inequality holds by the covariance bound, and the last inequality holds

because of Jensen’s inequality. Finally, the last equality holds because under equal size and holding con-
sumption share fixed we have ψi = ψ for every i.

The sufficient condition provided by equation (A14) requires the cross-sectional covariance between the
inverse of firm-size-to-value-added ratio, i.e. ψ−1

i , and network-implied volatility to be greater than a negative
lower bound. An implication of this result is that more dispersion in firm size distribution leads to higher
average firm volatility whenever firm size is orthogonal to the network structure (e.g. ψi ⊥ (M)ii).

To gain insight in how likely the positive relationship between size dispersion and average variance is to
arise, we resort to a simulation exercise. To avoid that the specific correlation structure of preference shocks
drives our results, we assume a symmetric correlation structure with var (dθi) = σ2 for every i = 1, . . . , n,
and cov (dθi, dθj) = ρσ2 for every i 6= j:

Σ0 = Var (dθ) =


σ2 ρσ2 · · · ρσ2

ρσ2 σ2 · · · ρσ2

...
. . .

...
ρσ2 ρσ2 . . . σ2

 .
By the nature of preference shocks, the last shock has to be implied by dθn = 1 −

∑n−1
i=1 dθi. This relation

pins down the value for ρ based either on the variance of the last shock, i.e. σ2 = (n−1)σ2+(n−1)(n−2)ρσ2,
or on the covariance of the last shock with the other shocks, i.e. ρσ2 = −σ2− (n−2)ρσ2. Either one delivers
a preference shock correlation given by:

ρ = − 1

n− 1
.

We specialize to a three-firm setting. We simulate 50,000 distinct networks, i.e., entries of matrix A of
3 firms. Each entry of the network matrix Aij is drawn from a uniform distribution in the unit interval. We
focus on changes in preference parameters that are (i) feasible, i.e. θi ≥ 0 for every i and

∑
i θi = 1; and

(iii) do not change consumption share, i.e. 1∑n
i=1 ψi

remains unchanged, where ψ = (I − A′)−1θ is implied

by equilibrium conditions. We require each simulated economy to satisfy two conditions: (i) each row of A
have to sum to at most one, (ii) there exist feasible preference parameter values such that firms having the
same size is an equilibrium. The first condition is a network-parameter restriction. We impose the second
condition so that we can increase firm size dispersion, starting from an equilibrium where firms have the same
size. For each of the 50,000 simulated economies, we compute an underlying feasible preference shock vector
dθ to deliver the minimum average firm variance for each possible level of model-implied size Herfindahl.
Choosing the minimum variance is a conservative choice when establishing a rise in average variance.

Figure A1 plots the change in average average firm variance relative to the equal-size economy across all
50,000 models (solid line), as well as percentiles of the distribution of average variance across simulations, at
each level of size Herfindahl (dashed lines). Overall, there is clear positive relation between size dispersion
and average firm variance. This is not only the case for the average model, but for the vast majority of
models. There is a tail of models (about 5-10%) for which increases in Herfindahl below 0.02 are associated
with declines in average firm variance. But even for this set of models, the relationship turns positive for
larger increases in size dispersion. In sum, for the vast majority of network models and preference shocks,
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the relationship between size dispersion and average variance is positive.

Figure A1: Minimum Average Firm Variance by Size Herfindahl for 50,000 Network Models
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Notes: The figure plots the average firm variance as size Herfindahl increases for 50,000 simulated networks. For each simulation,
we find the feasible firm size distribution that delivers the size Herfindahl displayed in the x-axis and the minimum average firm
variance. Specifically, in each simulation, we assume that there are three firms and we randomly draw the entries of the matrix
A from a uniform distribution in the unit interval. We require each simulated network to satisfy the two properties: (i) all rows
in A sum to less than or equal to one, (ii) there has to be a distribution of preference parameters such that firms having equal
shares is an equilibrium. Once we draw a feasible network, we then solve for different preference parameters that minimize the
average firm variance and deliver the Herfindahl target. Finally, we compute the log difference between the simulated economy
relative to the same economy when firm have equal size (i.e. minimum size Herfindahl).
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B Proofs of Propositions in Main Text

Returning to the full network specification in (1), the following results formalize the preceding intuition in
a large N economy. First, we provide a limiting description of each supplier’s customer Herfindahl. In this
appendix, we use the simplified notation H to represent the object Hout from the main text. Throughout, we
use asymptotic equivalence notation x(N) ∼ y(N) to denote that x(N)/y(N)→ 1 almost surely as N →∞.
We use x(N) ≈ a + b(N) + c(N) to denote that x(N) = a + b(N) + c(N) + o(min[a, b(N), c(N)]). Where
there is no ambiguity, we suppress time and/or firm subscripts. We start by stating and proving two helper
lemmas.

B.1 Lemma 1

The following lemma highlights the common structure in customer Herfindahls across suppliers. The ratio
of the second non-central moment of the size distribution to the squared first moment captures the degree of
concentration in the entire firm size distribution. Economy-wide firm size concentration affects the customer
network concentration of all firms. Differences in customer Herfindahl across suppliers are inversely related
to supplier size, capturing the model feature that larger firms are connected to more firms on average. Under
lognormality, E[S2]/E[S]2 equals the (exponentiated) cross-sectional standard deviation of log firm size. The
lemma applies more generally to the case where the size distribution has finite variance, and below we analyze
firm volatility decay in the case of power law size distributions with infinite variance but finite mean.

Lemma 1. Fix the size of the ith firm, Si, and consider a sequence of economies indexed by the number of
firms N . If the firm size distribution has finite variance, then

N∑
k=1

bi,kS
q
k ∼

N (1−ζ)

Z
S̃iE[Sq], q = 1, 2. (B1)

Therefore,

Hi ∼
1

N (1−ζ)
Z

S̃i

E[S2]

E[S]2
. (B2)

In particular, if log(S) is normal with variance σ2
s , then

Hi ∼
1

N1−ζ
Z

S̃i
exp(σ2

s).

Proof. Given Si, and for fixed N , the expected value of N−1
∑
k bi,kS

q
k (q = 1, 2) is

E

[
1

N

∑
k

bikS
q
k|Si

]
= E

[
1

N

∑
k

piS
q
k|Si

]
=
pi
N
E

[∑
k

Sqk|Si

]
→ piE [Sq] =

N−ζ

Z
S̃iE[Sq].

The first equality follows from the fact that all bik, k = 1, ..., N are iid with expectation (conditional on Si) of
pi. Thus, the stated convergence is given by the law of large numbers and this, together with the definition
of pi in equation (4) of the main text, establishes the asymptotic relation in (B1).

Next, we analyze Hi. Because b2i,k = bi,k, we have

Hi =
∑
k

w2
i,k =

∑
k bi,kS

2
k

(
∑
k bi,kSk)

2 .

Applying (B1) in the numerator and denominator and appealing to Slutsky’s theorem delivers (B2).

Lastly, in the special case of lognormality, E[S2]/E[S]2 = eσ
2
s .
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B.2 Lemma 2

As described above, Hi is the first order determinant of firm volatility in our model. The following interme-
diate lemma allows us to capture higher order network effects that contribute to a firm’s variance.

Lemma 2. Consider a sequence of economies indexed by the number of firms N .

(i) Fixing Sj, E[wi,j |Sj ] ∼ S̃j/N .

(ii) Fixing Si,
∑N
k=1

γiγkbi,kbk,jSk∑N
l=1 bk,lSl

∼ piγiγ, where γ = 1
N

∑N
i=1 γi.

(iii) Fixing Si, and defining the matrix W̄ as [W̄ ]i,j = S̃j/N , we have

[W q]i,j ∼
S̃j
N

= [W̄ ]i,j , for q ≥ 2,

and, more generally,

[(ΓW )
q
]i,j ∼ γq−1 γiS̃j

N
= γq−1[ΓW̄ ]i,j , for q ≥ 2.

(iv) Fixing Si,

[WW̄ ′]i,j ∼
E[S2]

NE[S]2
, [W̄W̄ ′]i,j ∼

E[S2]

NE[S]2
, and [WW ′]i,i = Hi, for all i, j.

Additionally fixing Sj,

[WW ′]i,j ∼
E[S2]

NE[S]2
, for all i 6= j.

Proof.

(i) Fix Sj and recall wi,j =
bijSj∑
k bikSk

. Then, applying Lemma 1 to the denominator,

E [wi,j |Sj ] ∼ SjE

[
bij

N1−ζ

Z Si

]
= SjE

[
E

[
bij

N1−ζ

Z Si
|Si

]]
= SjE

[
pi

N1−ζ

Z Si

]
=
S̃j
N
.

(ii) Define Zk ≡ γiγkbi,kbk,jSk∑N
l=1 bk,lSl

. Then µk ≡ E[Zk|Si] ∼ pi
N γiγ because

µk = E

[
γiγkbi,kbk,jSk∑N

l=1 bk,lSl
|Si

]
= piE

[
bk,jSk∑N
l=1 bk,lSl

|Si

]
γiγk (by bi,k ⊥)

∼ piE

[
bk,jSk
N1−ζ

Z Sk

]
γiγk (by Lemma 1)

=
Z

N1−ζ piE [pk] γiγk =
pi
N
γiγk. (since E [pk] = N−ζ/Z)

Note that µk is O(N−(1+ζ)), so
∑
k µk converges. By the LLN for heterogeneous and dependent

variables,19

N−1
N∑
k=1

Zk −N−1
N∑
k=1

µk
a.s.−−−−→
N→∞

0

19E.g., Theorem 3.47 of White (2001).
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and therefore
N∑
k=1

γiγkbi,kbk,jSk∑N
l=1 bk,lSl

=
N∑
k=1

Zk ∼
N∑
k=1

µk = piγiγ.

(iii) We begin with the case q = 2.

[(ΓW )
2
]i,j =

∑
k

γiwi,kwk,jγk =
∑
k

(
γibi,kSk∑
m bi,mSm

γkbk,jSj∑
l bk,lSl

)
=

(
Sj∑

m bi,mSm

)(∑
k

γiγkbi,kbk,jSk∑
l bk,lSl

)
.

Applying Lemma 1 to the denominator of the first term, we have

Sj∑
m bi,mSm

∼ Sj
Si

Z

N1−ζ .

The asymptotic behavior of the second term is given by part (ii) of this lemma along with the definition
of pi. Combining the limits for the first and second terms, we have

[W 2]i,j ∼
(
Sj
Si

Z

N1−ζ

)
piγiγ =

S̃j
N
γiγ.

For induction, assume that [(ΓW )
q
]i,j ∼ γq−1γiS̃j/N for q > 2. Then

[ΓW (ΓW )
q
]i,j ∼

N∑
k=1

γiγkγ
q−1bi,kSkS̃j

N (
∑
l bi,lSl)

= γiγ
q−1 S̃j

N

∑
k bi,kSkγk∑
l bi,lSl

∼ S̃j
N
γiγ

q.

The first equivalence is from matrix multiplication of W and the asymptotic equivalent of W q (from
the induction assumption), and the equalities are immediate.

(iv) Subsequent results involve the matrix W̄ , where [W̄ ]i,j = S̃j/N . First, we have

[WW̄ ′]i,j =
∑
k

bi,kS
2
k

(
∑
l bi,lSl)NE[S]

∼ E[S2]

NE[S]2
,

which follows the same argument structure as part (ii) of this lemma. Next,

[W̄W̄ ′]i,j =
∑
k

S̃2
k

N2
∼ E[S2]

NE[S]2
,

which relies on the LLN for N−1
∑
k S

q
k for q = 1, 2. Note that Hi = [WW ′]ii, where the behavior of

Hi is given in Lemma 1.

For off-diagonal elements of WW ′, fix Si and Sj . Then

[WW ′]i,j =

∑
k bi,kbj,kS

2
k

(
∑
l bi,lSl) (

∑
l bj,lSl)

∼ E[S2]

NE[S]2
,

which follows from preceding results. In particular, noting that E
[∑

k bi,kbj,kS
2
k|Si, Sj

]
=

pipjE
[∑

k S
2
k|Si, Sj

]
, the numerator is asymptotically equivalent to S̃iS̃j

N1−2ζ

Z2 E[S]2, and the lim-
its of denominator sums are given in Lemma 1.
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B.3 Main Result on Firm Volatility: Proposition 2

Our main theoretical proposition connects the variance of a firm to its size and to the concentration of firm
sizes throughout the economy.

Proposition. Consider a sequence of economies indexed by the number of firms N . If the firm size distri-
bution has finite variance, then the Leontief inverse has limiting behavior described by

(I − ΓW )−1 ≈ I + ΓW +
γ

1− γ
ΓW̄ .

where γ = 1
N

∑N
i=1 γi. Fixing the size of the ith firm, Si, volatility of firm i has limiting behavior described

by

V (gi|Si) ≈ σ2
ε

[
1 +

(
Z

N1−ζ S̃i
+

γ (2− γ)

N(1− γ)2

)
γ2
i

E[S2]

E[S]2
+ 2γi

γ

1− γ
S̃i
N

]
.

Proof. Because V (g) = σ2
ε(I − ΓW )−1(I −W ′Γ)−1, we study the behavior of (I − ΓW )−1 as the number

of firms N becomes large, and holding Si fixed. The Leontief inverse can be rewritten as an infinite sum,
(I − ΓW )−1 = I + ΓW + (ΓW )

2
+ .... From Lemma 2, (ΓW )

q ∼ γq−1ΓW̄ and [(ΓW )
q
]i,j ∼ γq−1γiS̃j/N for

q > 2, which therefore implies that

(I − ΓW )−1 = I + ΓW + (ΓW )
2

+ (ΓW )
3

+ . . .

≈ I + ΓW + ΓW̄
(
γ + γ2 + γ3 + . . .

)
= I + ΓW +

γ

1− γ
ΓW̄ .

By Slutsky’s theorem, the growth rate variance is determined in the limit by the outer product of I + ΓW +
γ

1−γΓW̄ . Expanding out this product produces

(I − ΓW )−1(I −W ′Γ)−1 ≈ I + ΓW +W ′Γ + ΓWW ′Γ +
γ

1− γ
ΓW̄ +

γ

1− γ
W̄ ′Γ (B3)

+
γ

1− γ
ΓWW̄ ′Γ +

γ

1− γ
ΓW̄W ′Γ +

(
γ

1− γ

)2

ΓW̄W̄ ′Γ.

The ith firm’s variance conditional on its size, V (gi|Si), is asymptotically equivalent to the ith diagonal
element of (B3). Diagonal elements of W are zero by definition. Limits of the remaining terms (W̄ , WW ′,
WW̄ ′, etc.) are given explicitly in Lemmas 1 and 2. Therefore,

V (gi|Si) ≈ σ2
ε

[
1 + 0 + 0 + γ2

i

1

N1−ζ
Z

S̃i

E[S2]

E[S]2
+ 2γi

γ

1− γ
S̃i
N

+ 2γ2
i

γ

1− γ
E[S2]

NE[S]2
(B4)

+γ2
i

(
γ

1− γ

)2
E[S2]

NE[S]2

]
.

Note that the fourth term on the right side, γ2
i

1
N1−ζ

Z
S̃i

E[S2]
E[S]2 , is the asymptotic equivalent of γ2

iHi, as given

in Lemma 1. Rearranging yields the result.

Corollary 1. As a corollary to Proposition 2, fixing Si and Sj, the limiting behavior of the covariance of
growth rates for firms i and j is

Cov(gi, gj |Si, Sj) ≈ σ2
ε

[
γiwi,j + γjwj,i +

γ

N(1− γ)
(γiS̃i + γjS̃j) +

γiγj
N(1− γ)2

E[S2]

E[S]2

]
.

Proof. Immediate from equation (B3) and Lemma 2.
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B.4 Firm Size Follows Power Law: Proposition 3

Thus far we have assumed that the firm size distribution has finite variance, thus the slow volatility decay
in Proposition 2 arises only due to network sparsity. Gabaix (2011) emphasizes that extreme right skewness
of firm sizes can also slow down volatility decay in large economies. In the next result, we show that the
firm-level network structure adds a mechanism to further slow down volatility decay beyond Gabaix’s (2011)
granularity mechanism, which depends on the power law behavior of the size distribution. In the absence of
network effects, power law-based firm sizes would imply that firm variance decays at rate N2−2/η. For any
given rate of decay determined by the power law, network sparsity further lowers the decay rate by ζ.

Proposition. Consider a sequence of economies indexed by the number of firms N . If firm sizes are dis-
tributed according to a power law with exponent η ∈ (1, 2], then firm variance decays at rate N (1−ζ)(2−2/η).

Proof. Note that in equation (B4), the term that converges the slowest is the one involving firm i’s Herfindahl,
Hi (the ith diagonal element of WW ′). Therefore, Hi determines the rate of convergence for firm variance.

Recall the expression for a firm’s Herfindahl:

Hi =
∑
k

bi,kS
2
k

(
∑
l bi,lSl)

2 =
N

2/η
i N

−2/η
i

∑
k bi,kS

2
k

N2
i

(
N−1
i

∑
l bi,lSl

)2 ,

where Ni =
∑
k Bi,k describes firm i’s customer count.

From Gabaix (2011, Proposition 2) in the case η ∈ (1, 2], we have that

N
−2/η
i

∑
k

bi,kS
2
k

d→ u,

where u is a Levy-distributed random variable. Because η > 1, mean size is finite and so the LLN implies
N−1
i

∑
l bi,lSl

a.s.→ E[S]. Therefore,

N
2(1−1/η)
i Hi =

N
−2/η
i

∑
k bi,kS

2
k

N−1
i

∑
k bi,kSk

d→ u

E[S]
.

Finally, note that holding Si fixed,

Ni ∼ Npi = N1−ζ S̃i
Z

due to the fact that E[Ni|Si] = Npi. Combining these facts gives the result:

N (1−ζ)(2−2/η)Hi
d→ u

E[S]

(
Z

S̃i

)2−2/η

.

B.5 Comovement in Firm Volatilities: Proposition 4

We have referred to the volatility structure described in Proposition 2 as a factor model. The next result
characterizes comovement among firms’ volatilities when N is large. Because Hi determines the rate of
convergence for firm variance, we may understand how firm variances comove in a large economy by studying
the asymptotic covariance among Hi and Hj . As the number of firms grows, not only does the level of
volatility decay, but so does its variance and covariance between the volatilities of different firms. Proposition
4 shows that comovement among firm variances decays at rateN1+2(1−ζ). Intuitively, covariance among a pair
of firms is lowest when both firms are large, since large firms have low exposure to overall size concentration.

Proposition. Consider a sequence of economies indexed by the number of firms N , and fix Si and Sj. If the
firm size distribution has finite fourth moment (for example, if it is lognormal), then the covariance between
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Hi and Hj has limiting behavior described by

Cov(Hi, Hj |Si, Sj) ≈
1

N1+2(1−ζ)
V (S2)

SiSj

Z2

E[S]2
.

The covariance between V (gi|Si) and V (gj |Sj) decays at the same rate.

Proof. Because Hi determines the rate of convergence for firm variance, we may understand how firm
variances covary in a large economy by studying the asymptotic covariance among Hi and Hj .

Define Êi[S
2] = N−1

i

∑
k bi,kS

2
k, where Ni =

∑
k Bi,k. We first characterize the asymptotic behavior of

Cov
(
Êi[S

2], Êj [S
2]|Si, Sj

)
= E

[
N−1
i N−1

j

∑
k

∑
l

bi,kbj,lS
2
kS

2
l |Si, Sj

]

−E

[
N−1
i

∑
k

bi,kS
2
k|Si, Sj

]
E

[
N−1
j

∑
k

bj,kS
2
k|Si, Sj

]

Because size has finite fourth moment, the LLN implies that (holding Si, Sj fixed)

N−(1−2ζ)
∑
k

bi,kbj,kS
4
k
a.s.→ E[S4]S̃iS̃j/Z

2,

N−(1−2ζ)(N − 1)−1
∑
k 6=l

bi,kbj,lS
2
kS

2
l
a.s.→ E[S2]2S̃iS̃j/Z

2,

and
N−(1−ζ)

∑
k

bi,kS
2
k
a.s.→ E[S2]S̃i/Z.

These, together with Ni ∼ Npi, imply that

E

[
N−1
i N−1

j

∑
k

∑
l

bi,kbj,lS
2
kS

2
l |Si, Sj

]
≈ N1−2ζE[S4]S̃iS̃j

N2pipjZ2
+ (N − 1)N1−2ζ +

E[S2]2S̃iS̃j
N2pipjZ2

=
1

N
E[S4] +

N − 1

N
E[S2]2

and

E

[
N−1
i

∑
k

bi,kS
2
k|Si, Sj

]
E

[
N−1
j

∑
k

bj,kS
2
k|Si, Sj

]
∼ N2(1−ζ)E[S2]2S̃iS̃j

N2pipjZ2
= E[S2]2

so that
Cov

(
Êi[S

2], Êj [S
2]|Si, Sj

)
≈ N−1V (S2).

Since Hi = N−1
i Êi[S

2
k]/
(
N−1
i

∑
k bi,kS

2
k

)
, we have

Cov(Hi, Hj |Si, Sj) ≈
1

N2(1−ζ)
Z2

S̃iS̃jE[S]4
Cov

(
Êi[S

2], Êj [S
2]|Si, Sj

)
,

which delivers the stated asymptotic approximation.
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C Empirical Appendix

This appendix discusses several additional empirical results.

C.1 Frequency Decomposition

To study the trend and cycle in the size and volatility moments, we apply the Hodrick-Prescott filter with
a smoothing parameter of 50. Figure C1 reports HP-detrended moments. The top-left panel shows firm
size dispersion and mean firm variance based on market capitalization and return volatility. The top right
panel reports size dispersion and variance dispersion, also based on market data. The bottom two panels
are the counter-parts where size and variance are based on sales data. The correlations between the cyclical
component in average variance and size dispersion are 25.8% for the market-based measure and 42.0% for
the fundamentals-based measure. The correlations between the cyclical component in variance dispersion
and size dispersion are 72.9% for the market-based measure and 54.1% for the sales-based measure. These
results suggest that comovement between the dispersion in the firm size distribution and moments of the
firm variance distribution occur both at cyclical and at low frequencies.

Figure C1: Detrended Size and Variance Moments
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Notes: The figure plots HP-detrended time series moments of size and volatility distributions using smoothing parameter of 50.
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C.2 Simulated Method of Moments Estimation Details

Objective Function Our estimation chooses the parameter vector Θ which minimizes the distance
between the data moments, collected in the 1×K vector G, and the corresponding moments obtained from
a simulation of the network model, collected in Ĝ(Θ):

F = min
Θ

E
[(
G − Ĝ(Θ)

)
W
(
G − Ĝ(Θ)

)′]
,

where the moment function Ĝ(Θ) is the average over the 100 draws, while G is a vector with the time-series
average of the cross-sectional moments from the data.

Formally, these two moments functions are defined as

G =
1

T

T∑
t=1

gt

Ĝ(Θ) =
1

T (T )

T (T )∑
t=1

ĝt (Θ) ,

where T is the number of time-series observations (33 for our sample), T (T ) is the number of simulations
(100 for our model). The function gt is a K × 1 vector of cross-sectional moments from the data for year t,
while the function ĝt (Θ) is a K × 1 vector of cross-sectional moments from the simulation t and parameter
vector Θ. The weighting matrix W is the identity matrix. All moments are expressed in logs or are log
differences so that they have the same order of magnitude.

Standard Error Calculation To derive the estimator asymptotics, we assume that T
T (T ) → τ with

τ being a finite positive number. Under sufficient regularity conditions, the asymptotic distribution of Θ is
given by: √

T
(

Θ̂−Θ0

)
−→ N (0, V0) ,

where

V0 =(1 + τ) (G′0WG0)
−1
G′0WΩ0WG0 (G′0WG0)

−1
,

G0 =E

[
∂

∂Θ′
ĝt (Θ)

∣∣∣∣
Θ=Θ0

]
,

Ω0 =
∞∑

j=−∞
E
[
(gt − E(gt)) (gt − E(gt))

′]
.

To compute standard errors of the estimated parameters, we estimate G0 as the numerical derivative
of Ĝ(Θ) evaluated at the estimated parameters. We compute numerical derivatives by central difference
approximation and by changing parameters by one percent. We estimate Ω0 as the variance-covariance
matrix of the moments from the data. For the estimated terms Ĝ0 and Ω̂0 and assuming τ = 33

100 , the
asymptotic standard errors are given by the square root of the diagonal elements of the following variance
covariance matrix:

1

T
V̂0 =

(
1 +

T

T (T )

)
1

T

(
Ĝ′0WĜ0

)−1

Ĝ′0WΩ̂0WĜ0

(
Ĝ′0WĜ0

)−1

.

Wald statistic To test whether some moments are collectively statistically equal to zero, we conduct
the following hypothesis testing:

H0 : h(Θ0) = 0 v.s. H1 : h(Θ0) 6= 0,
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where h(Θ) is a vector of moments to be tested. In our case, h(Θ) includes all the estimation moments.
Let H(Θ) be a matrix of the partial derivatives of h(Θ) with respect to Θ, then the Wald statistic is

given by

W = Th(Θ̂)′
[
H(Θ̂)V̂0H(Θ̂)′

]−1

h(Θ̂) ∼ χ2
J

where J is the number of moments being tested.

C.3 Network Data and Truncation

Compustat Segment Data Our data for annual firm-level linkages come from Compustat. It
includes the fraction of a firm’s dollar sales to each of its major customers. Firms are required to supply
customer information in accordance with Financial Accounting Standards Rule No. 131, in which a major
customer is defined as any firm that is responsible for more than 10% of the reporting seller’s revenue. Firms
have discretion in reporting relationships with customers that account for less than 10% of their sales, and
this is occasionally observed. In our data, 23% of firms report at least one customer that accounts for less
that 10% of its sales. The Compustat data have been carefully linked to CRSP market equity data by Cohen
and Frazzini (2008). This link allows us to associate information on firms’ network connectivity with their
market equity value and return volatility. We update the Cohen and Frazzini data to 2012. Cohen and
Frazzini (2008) used the data to show that news about business partners does not immediately get reflected
into stock prices. Atalay et al. (2011) and Herskovic (2018) also use Compustat sales linkage data to develop
a model of customer-supplier networks.

BEA Data To gather additional evidence, we study a second data source which is at the industry level.
Industry input-output data are from the Bureau of Economic Analysis (BEA). Because industry definitions
vary quite dramatically over time, we focus on a set of 65 industries we can track consistently over time
between 1997 and 2015. These are the input-output use tables, after redefinitions at producers’ prices. In
related work, Ahern and Harford (2014) use the network topography implied by the BEA industry data
to show that the properties of these networks have a bearing on the incidence of cross-industry mergers.
Herskovic (2018) also uses the BEA data to study the asset pricing effects of aggregate shocks to network
moments.

Truncation To evaluate the effect of the 10% customer share truncation as well as the effect of selection,
we conduct two exercises. First, we use the model. Since the model specifies the full network before imposing
truncation, we can compute both truncated and untruncated moments in the model. If the model is the
true data generating process, the difference between untruncated and truncated moments is the truncation
bias. Second, we use the BEA data, which do not suffer from truncation. Again, we can artificially impose
truncation on these data to study the effect.

Table C1 reports our findings for several key correlations of interest. Panel A reports truncated moments,
including the Compustat moments reported in the main text, Panel B reports untruncated moments. The
model and BEA data both show large truncation biases. This is especially true for moments that involve the
number of customers (Nout) or the number of suppliers (N in). The second row shows that Corr(Nout

i , logSi)
has a massive downward bias of 38 percentage points in the model and 65 percentage points in the BEA data.
The fourth row shows that Corr(N in

i , logSi) has an upward bias of 35 percentage points in the model and 17
percentage points in the BEA data. Since Herfindahl moments are based on network weights squared, they
are dominated by the larger weights. Large customers or suppliers are less likely to be missing or truncated.
The Herfindahl correlations in rows 3 and 5 are nearly unbiased in the BEA data. The model shows a modest
bias for row 3 but a sizeable bias for row 5.

Empirical Evidence for Model Assumptions The model makes two key assumptions on the
network. First, large suppliers are more likely to have more customers: Corr(Si, N

out
i ) > 0. Second, the

importance of a customer is higher the larger that customer is: Corr(wij,Sj > 0. These are assumptions
on the full untruncated network of firms. The untruncated BEA data in column (4) of Table C1 provide
empirical support for both assumptions in rows 1 and 2. The former correlation is 58% and the latter
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Table C1: Truncation Analysis

Panel A: Truncated Panel B: Untruncated

(1) (2) (3) (4) (5)

Compustat BEA Model BEA Model

Corr (wi,j , logSj) 0.19 0.55 1.00 0.40 1.00

Corr
(
Nout
i , logSi

)
−0.00 −0.07 0.31 0.58 0.69

Corr
(
Hout
i , logSi

)
−0.28 −0.39 −0.88 −0.38 −0.67

Corr
(
N in
i , logSi

)
0.53 0.34 0.34 0.17 −0.01

Corr
(
H in
i , logSi

)
−0.47 0.10 −0.34 0.10 0.14

Notes: The table reports time-series averages of cross-sectional correlations between various features of customer-supplier
networks with size and volatility. We report the following correlation in rows 1-5: correlation between the log network weight
and log customer size, correlation between the out-degree (number of customers) and log supplier size, correlation between the
out-Herfindahl and log supplier size, correlation between the in-degree (number of suppliers) and log supplier size, correlation
between the in-Herfindahl and log supplier size, and correlation between the network weight and log size. Column (1) reports
the correlation using Compustat sample for firms with network data available. Compustat sample is at firm-level and annual
frequency for the period 1980-2012. Columns (2) and (4) are based on annual industry-level Bureau of Economic Analysis data
for a set of 65 consistently measured industries for the period 1997-2015. Column (2) reports the correlation using BEA data
assuming and artificially imposing 10% truncation on the network weights, which implies that we discard all customer-supplier
pairs that represent less than 10% of supplier sales. Column (4) is not truncated. Columns (3) and (5) report the correlations
for the truncated and untrucated model, respectively.

correlation is 40%. The former correlation is severly downward biased, as we discussed above. Adding either
the model-implied bias or the BEA data-implied bias to the Compustat estimate raises the “untruncated”
Compustat to a substantial positive number. The latter correlation is already positive in the Compustat
data and suffers much less from bias. We conclude that the empirical evidence provides support for the two
main assumptions in the model.

C.4 Model Estimation without Network or without Internal Di-
versification Effects

To highlight the importance of network effects for the model’s ability to simultaneously match size, variance
and network moments, we re-estimate two versions of the model. One version does not feature network
effects, i.e., γ = 0. The other version does not feature internal diversification (ID), i.e., λ = 0. In each case,
we allow the estimation to freely choose all other parameters. The estimated parameters and model-implied
moments are in Tables C2 and C3. Both estimations make clear that the combination of network effects and
internal diversification is necessary to successfully match the cross-sectional distribution of log variance.

Although the average log firm variance is similar to our benchmark, the estimated model without network
effects generates almost no cross-sectional dispersion in variance. See column (3) of Table C3. It features
fundamental shock volatility of 49.6%, which is significantly greater than our benchmark estimation of 29.8%;
see column (2) of Table C2. If γ > 0, then the growth rate of a firm depends on the growth rate of other
firms, which generates more dispersion in variance and amplifies firm-level volatility. In our estimation with
γ = 0, a higher fundamental shock volatility is necessary to compensate for the lack of network effects and
to match the average log variance. Although the estimation with γ = 0 matches the average variance, the
only source of variance heterogeneity is the internal diversification channel embedded in σi,t. This channel is
insufficient to match the cross-sectional dispersion in volatility. These results shows that the network effects
are crucial to generate variance dispersion.

The model estimated without internal diversification, i.e., λ = 0, also falls short in terms of generating
cross-sectional dispersion in variances. See column (4) of Table C3. It generates only half of the dispersion
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Table C2: Parameter Estimates

(1) (2) (3)

Benchmark No Network No ID

γ Network propogation effect 0.918 0.000 0.949
(0.026) – (0.005)

σε Fundamental shock volatility 0.298 0.496 0.335
(0.035) (0.025) (0.010)

λ Internal diversification effect 0.131 0.090 0.000
(0.025) (3.674) –

Z New connections 0.003 0.002 0.004
(0.001) (0.000) (0.000)

ψ Sensitivity of connection weight to customer size 0.184 0.189 0.208
(0.003) (0.005) (0.002)

µs Mean of initial log size distribution 13.412 13.192 13.384
(0.243) (0.157) (0.166)

σs Standard deviation of initial log size distribution 5.104 5.291 5.152
(0.102) (0.035) (0.052)

Npub Number of public firms 1332 1337 1388
(47.7) (40.8) (46.3)

Notes: This table reports model parameters. Column 1 reports the estimated parameters from the SMM. Columns 2 and
3 report the estimated parameters assuming no network effects (i.e. γ = 0) and not internal diversification (i.e. λ = 0),
respectively. Compared to the exercise in the main text, all model parameters are re-estimated in Columns 2 and 3. Estimates’
standard errors are in parenthesis.

observed in the data—a standard deviation of 0.55 out of the 1.05 observed in the data. The estimation with
λ = 0 has significantly stronger network effects with γ estimated at 0.949; see column (3) of Table C2. The
estimation compensates the lack of internal diversification with stronger network effects. Although this is
an improvement relative to the model without network effects, this estimation generates far less dispersion
in variance than what we observe in the data.
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Table C3: Size, Variance, and Network Moments

(1) (2) (3) (4)
Data Model Model Model

Bench No Network No ID

Panel A: Size and Volatility Distributions
log Size

Average 19.83 19.83 19.86 19.83
Standard Deviation 2.56 2.53 2.64 2.60
prc 50 - prc 10 2.91 2.37 2.49 2.56
prc 90 - prc 50 3.88 3.91 4.05 3.89

log Variance
Average −1.40 −1.40 −1.40 −1.40
Standard Deviation 1.05 0.86 0.00 0.55
prc 50 - prc 10 1.38 0.40 0.00 0.34
prc 90 - prc 50 1.31 1.69 0.01 1.07

Panel B: Network Moments
Nout

Median 1.00 1.12 1.12 1.00
log prc 50 - log prc 10 0.00 0.08 0.08 0.00
log prc 90 - log prc 50 0.83 1.02 1.02 1.10

Hout

Median 0.05 0.18 0.19 0.24
log prc 50 - log prc 10 1.27 1.88 1.91 2.00
log prc 90 - log prc 50 1.85 1.71 1.66 1.44

Nin

Median 1.00 1.00 1.00 1.00
log prc 50 - log prc 10 0.00 0.00 0.00 0.00
log prc 90 - log prc 50 1.69 1.09 1.10 1.09

Hin

Median 1.00 1.00 1.00 1.00
log prc 50 - log prc 10 0.95 0.89 0.90 0.84
log prc 90 - log prc 50 0.00 0.00 0.00 0.00

Panel C: Cross-sectional Correlations
Corr(log Size,log Var) −0.64 −0.61 −0.66 −0.70
Corr(log Nout,log Size) −0.00 0.31 0.31 0.35
Corr(log Hout,log Size) −0.28 −0.88 −0.89 −0.89
Corr(log Hout,log Var) 0.22 0.51 0.66 0.69
Corr(log Nin,log Size) 0.53 0.34 0.36 0.36
Corr(log Hin,log Size) −0.47 −0.34 −0.37 −0.36
Corr(log Hin,log Var) 0.13 0.19 0.20 0.22

Panel D: Firms with Network Data
log number of public firms 7.15 6.95 6.95 6.98

Panel E: Goodness of Fit Statistics
FVAL – 2.88 6.50 3.45
Wald – 24.76 26.80 27.33
p-value – 0.64 0.53 0.50

Notes: This table reports different size, variance, and network moments both from the data and from our simulation. It takes
the same structure as Table 3 in the main text. The only difference is that all model parameters are re-estimated in Columns
3 and 4.
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C.5 Model with Aggregate Shocks

The model can be extended to allow for aggregate shocks. Firm growth in the benchmark model is given by:

gi = µg + γi

N∑
j=1

wi,j gj + εi.

In order to incorporate correlation in the ε shocks, we can assume one additional source of aggregate risk:

gi = µg + γi

N∑
j=1

wi,j gj + νagg + εi.

where νagg has mean zero and variance σ2
agg, and is independent from εi. In matrix notation, the growth

rates become
g = ΓWg + ε+ ν = (I − ΓW )

−1
[ε+ ν] ,

and the variance-covariance matrix becomes

V (g) = (I − ΓW )
−1

[Σagg + Σidio] (I − ΓW )
−1
,

where Σagg is an N ×N matrix with σ2
agg in each entry and Σidio is an N ×N diagonal matrix with σ2

ε,i in
the main diagonal.

We can numerically solve this version of the model with aggregate shocks and vary the parameter σagg
from 0, which is our benchmark model, to 0.20, which delivers 20% volatility solely from aggregate shocks.
These results are in Table C4. As aggregate volatility increases, average firm variance naturally increases,
but firms also become more homogeneous in terms of volatility and cross-sectional dispersion in variance
declines. As a result, there is also a lower correlation between log size and log variance. These features
move the model with high aggregate risk farther from the data. The network moments as well as the size
distribution remain unchanged in this exercise. The size distribution is driven by µs and σs, which are
unchanged. The number of connections, who connects with whom, and the intensity of the network linkages
all depend on the size distribution and other parameters that are kept at their benchmark values.

A second exercise which studies the effects of aggregate volatility while keeping average firm volatility
the same as in the benchmark. The results are similar to the previous exercise, and are available from the
authors upon request. The fit deteriorates in terms of the cross-sectional distribution of variances as well as
the correlation between size and variance.
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Table C4: Size, Variance, and Network Moments by Varying Aggregate
Volatility

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Aggregate Volatility (σagg) – 0.00 0.01 0.02 0.03 0.04 0.05 0.10 0.20
Fundamental Shock Volatility (σε) – 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298

Panel A: Firm Size and Volatility Distribution
log Size

Average 19.83 19.83 19.83 19.83 19.83 19.83 19.83 19.83 19.83
Standard Deviation 2.56 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53
prc 50 - prc 10 2.91 2.37 2.37 2.37 2.37 2.37 2.37 2.37 2.37
prc 90 - prc 50 3.88 3.91 3.91 3.91 3.91 3.91 3.91 3.91 3.91

log Variance
Average −1.40 −1.40 −1.33 −1.14 −0.89 −0.64 −0.39 0.62 1.86
Standard Deviation 1.05 0.86 0.82 0.74 0.65 0.56 0.48 0.25 0.10
prc 50 - prc 10 1.38 0.40 0.36 0.28 0.21 0.15 0.11 0.04 0.01
prc 90 - prc 50 1.31 1.69 1.63 1.47 1.26 1.07 0.89 0.39 0.12

Panel B: Network Moments
Nout

Median 1.00 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12
log prc 50 - log prc 10 0.00 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
log prc 90 - log prc 50 0.83 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02

Hout

Median 0.05 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
log prc 50 - log prc 10 1.27 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88
log prc 90 - log prc 50 1.85 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71

Nin

Median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
log prc 50 - log prc 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
log prc 90 - log prc 50 1.69 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09

Hin

Median 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
log prc 50 - log prc 10 0.95 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
log prc 90 - log prc 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel C: Cross-sectional Correlations
Corr(log Size,log Var) −0.64 −0.61 −0.60 −0.58 −0.56 −0.53 −0.51 −0.45 −0.40
Corr(log Nout,log Size) −0.00 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31
Corr(log Hout,log Size) −0.28 −0.88 −0.88 −0.88 −0.88 −0.88 −0.88 −0.88 −0.88
Corr(log Hout,log Var) 0.22 0.51 0.50 0.49 0.47 0.45 0.43 0.38 0.35
Corr(log Nin,log Size) 0.53 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34
Corr(log Hin,log Size) −0.47 −0.34 −0.34 −0.34 −0.34 −0.34 −0.34 −0.34 −0.34
Corr(log Hin,log Var) 0.13 0.19 0.19 0.18 0.17 0.17 0.16 0.14 0.12

Panel D: Firms with Network Data
log number of public firms 7.15 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95

Panel E: Goodness of Fit Statistics
FVAL – 2.88 2.93 3.11 3.50 4.09 4.82 9.05 16.50
Wald – 24.76 – – – – – – –
p-value – 0.64 – – – – – – –

Notes: This table reports different size, variance, and network moments both from the data and from our model simulation. It
takes the same structure as Table 3 in the main text. Column 1 reports the data. Column 2 repeats the estimation results for the
benchmark model. The benchmark model has zero aggregate shock volatility (σagg = 0.00). Columns 3–9 report simulations
for a model with increasing aggregate volatility, keeping idiosyncratic shock volatility fixed at its benchmark value.
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C.6 Composition Effect

The evidence in Davis et al. (2006) and Doidge et al. (2018) suggests that there may be a sample composition
explanation whereby firm size dispersion and firm volatility first rise together (before 1997) and then fall
(after 1997) as firms decide to go public earlier (before 1997) and again later (after 1997). We argue in this
appendix that this alternative explanation cannot account for the facts on firm volatility.

First, we note that the dynamics of firm size dispersion and average firm volatility in Figure 1 are not
obviously consistent with a composition explanation. Specifically, firm size dispersion among public firms
rises pre-1997, but does not fall afterwards. It continues to fluctuate in the last 20 years of the sample. Firm
volatility rises strongly until 1997, but then fluctuates afterwards.

Second, Table 1 provides empirical evidence against the sample composition hypothesis by studying
sample splits based on firm size, on industry, on vintage (how long firms have been publicly traded), on
historical period, and on exchange on which the firm is listed. It shows that the correlation between firm size
dispersion and firm-level volatility (both average vol and the dispersion of vol) is found in all size, industry
vintage, and exchange of listing groups. The correlations are lower for the non-NYSE group, for the second
half of the sample, and for the Tech industry. If the sample composition story were driving the results, we
would expect stronger results exactly in those three subsamples.

Third, we can use the model to ask whether the dynamic selection effect is quantitatively strong enough
to explain the observed comovement between the firm size dispersion and average firm-level volatility and
the dispersion of firm-level volatility. Simulation-based evidence from the model shows that the “changing
composition of the public firms” explanation falls far short in explaining the firm volatility data, in the
absence of network effects. The details of our simulation exercise are as follows:

• We define six sub-periods in the data in which there are noticeable changes in the firm size dispersion.
These subperiods are chosen to capture the changing composition of public firms, and are listed in
column (1) of Panel A of Table C5. They are 1981-1987, 1987-1992, 1992-2000, 2000-2004, 2004-2007,
2007-2012. The percentage change in the firm size dispersion from the start date to the end date of
each subperiod in the data is listed in column (3) of Table C5. Column (2) reports the percentage
change in the number of publicly listed firms in each of these subperiods. The subperiods alternate
between a growing and shrinking number of public firms. When the number of public firms grows,
the firm size dispersion tends to grow, and vice versa.

• Recall that the model contains both private and public firms. We call firms above a size threshold
S public and those below it private. In the baseline model, this threshold is constant and chosen to
match the observed number of public firms in the data. For this choice of S, we match the 1981 level
of firm size dispersion.

• We simulate six alternative economies, where we choose a different threshold S to match the observed
firm size dispersion at the other turning point dates 1987, 1992, 2000, 2004, 2007, and 2012. Column
(7) shows that the model indeed matches the observed changes in firm size dispersion in each subperiod
exactly. The six alternative economies have the same parameters as the benchmark model except that
we shut down the network effects (γi = γ = 0, ∀i).

• Column (6) reports the change in the number of public firms in the model over each period, induced
by the different listing thresholds. The change in the number of firms over these sub-periods is
substantial. But so are the changes in the number of public firms in the data, listed in column (2).
The model does a reasonable job matching these numbers, even though they were not targeted in the
exercise. Put differently, the composition hypothesis can generate substantial fluctuations in the firm
size dispersion.

• In the model, lowering the listing threshold results in smaller firms being public. Because of the
internal diversification force in the model, these firms have higher volatility. Column (8) reports the
average firm volatility. It rises when more firms go public and falls when fewer firms are public.
Column (9) reports the dispersion in firm volatility.

• The main finding from this exercise is that the quantitative changes in average firm volatility and
volatility dispersion that are induced by changes in the firm size dispersion (which itself is of the
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Table C5: Composition Effect Among Public Firms

Data Model

Public Firms Public Firms with Network Data Public Firms Public Firms with Network Data

Year # of Size Avg Vol # of Size Avg Vol
Firms Disp Vol Disp Firms Disp Vol Disp

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: No network effects
1987-1981 0.28 0.21 0.18 0.24 0.27 0.21 0.01 0.02
1992-1987 −0.02 −0.11 0.27 0.14 −0.14 −0.11 −0.01 −0.01
2000-1992 0.16 0.14 0.59 −0.24 0.16 0.14 0.01 0.02
2004-2000 −0.19 −0.28 −1.20 −0.06 −0.37 −0.28 −0.02 −0.03
2007-2004 0.04 0.02 1.34 −0.17 0.03 0.02 0.00 0.00
2012-2007 −0.06 0.01 −1.69 0.13 0.02 0.01 0.00 0.00

Panel B: Different internal diversification function
1987-1981 0.28 0.21 0.18 0.24 0.28 0.21 0.16 0.04
1992-1987 −0.02 −0.11 0.27 0.14 −0.14 −0.11 −0.09 −0.02
2000-1992 0.16 0.14 0.59 −0.24 0.16 0.14 0.10 0.03
2004-2000 −0.19 −0.28 −1.20 −0.06 −0.38 −0.28 −0.22 −0.05
2007-2004 0.04 0.02 1.34 −0.17 0.03 0.02 0.01 0.00
2012-2007 −0.06 0.01 −1.69 0.13 0.02 0.01 0.01 0.00

Notes: Columns (1) to (5) report data moments, while Columns (6) to (9) report their model counterparts. All moments are
percentage changes over the period listed in the first column. We report three moments both from the data and model: size
dispersion, average volatility, and volatility dispersion. We compute them using only public firms with network data available.
Panel A is for our benchmark model. Panel B uses an alternative internal diversification function.

identical magnitude as in the data) are small. In particular, they are much smaller than the observed
changes in average firm volatility and volatility dispersion reported in columns (4) and (5).

• This shows that the composition hypothesis is quantitatively far too weak to produce the observed
fluctuations in the firm volatility distribution.

One downside of the baseline model with γ = 0 is that it generates low levels of volatility dispersion.
To give the composition hypothesis a better shot, we redo the simulation exercise with a different internal
diversification function, taken from Stanley et al. (1996), that generates about the right baseline level of
volatility dispersion (absent network effects). Panel B of Table C5 presents the results. The changes in
average firm volatility in column (8) and the dispersion in firm volatility in column (9) are similar to those
in Panel A, and far from the data.

We conclude that compositional changes to the distribution of public firms, of the kind documented by
Davis et al. for the late 1990s and by Karolyi et al. for the period since then, cannot explain the quantitative
comovement of firm size dispersion, average firm volatility, and volatility dispersion, absent network effects.
We have included a discussion of the composition effect

C.7 Alternative Internal Diversification Function

This appendix considers an alternative functional form for the internal diversification effect, due to Stanley et

al. (1996). Table C7 compares the data (column 1), our benchmark model with σε,i = σε+λ log
(

1 + Smedian
Si

)
(column 2), the proposed alternative specification for firm volatility, σε,i = 6.66×S−0.15

i , with the parameters
taken directly from Stanley et al. (Alternative 1, column 3), and the same specification σε,i = κ×Sαi , where
κ and α are estimated on our data (Alternative 2, column 4). For the specification where we estimate κ and
α, we also re-estimate all other parameters of the model to give that alternative model the best shot. The
estimated parameters are reported in column 3 of Table C6. When we fix κ and α in Alternative 1, we also
fix the other parameters of the model (column 2 of Table C6).
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Table C6: Parameter Estimates with Alternative Internal Diversification
Function

(1) (2) (3)
Bench Alternative 1 Alternative 2

γ Network propogation effect 0.918 0.918 0.913
(0.026) – (0.011)

σε Fundamental shock volatility 0.298 – –
(0.035) – –

λ Internal diversification effect 0.131 – –
(0.025) – –

Z New connections 0.003 0.003 0.003
(0.001) – (0.000)

ψ Sensitivity of connection weight to customer size 0.184 0.184 0.179
(0.003) – (0.011)

µs Mean of initial log size distribution 13.412 13.412 13.456
(0.243) – (0.144)

σs Standard deviation of initial log size distribution 5.104 5.104 5.089
(0.102) – (0.086)

Npub Number of public firms 1332 1332 1321
(47.7) – (27.0)

κ – 6.660 2.249
– – (0.300)

α – 0.150 0.097
– – (0.005)

Notes: This table reports model parameters. Column 1 reports the estimated parameters from the SMM in the benchmark
model. Columns 2 holds the parameters constant at their benchmark values but uses an alternative internal diversification
function due to Stanley et al. (1996). It takes the values for the parameters κ and α of that function directly from Stanley et
al. (1996). Column 3 re-estimates all parameters, including those of the internal diversification function.

Turning to the results in Table C7, two main observations stand out. First, the alternative functional
form for the internal diversification effect explains the data really poorly when the parameters are taken
from the Nature paper. Average firm variance in column 3 is far too high and there is too much dispersion
in firm variance. Since the size distribution is not affected, neither are the network moments. The poor fit
results in a large distance between model and data (FVAL of 3.76). Likely this is because the Stanley et al.
paper fits data on total firm volatility rather than fundamental volatility. The additional amplification from
network effects in our model leads to excessive firm variance.

Second, the alternative model fares better when the parameters are re-estimated (in column 4 of Table
C7). Mean firm variance is somewhat too high, unlike the benchmark parameterization. The 90-50 percentile
difference in firm variance also deteriorates. Finally, the correlation between firm size and firm variance
deteriorates meaningfully compared to the benchmark. However, both the standard deviation of firm variance
and the 50-10 percentile improve. Overall the distance between this model and the data is 2.29, which is
slightly lower than the benchmark. The estimated network strength γ̂ is nearly unaffected for the alternative
functional form for the diversification effect. In sum, our results are robust to using this alternative internal
diversification function.
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Table C7: Size, Variance, and Network Moments with Alternative Internal
Diversification Function

Data Benchmark Alt ID Alt ID
Model No Reestimation Reestimation

(1) (2) (3) (4)

Panel A: Firm Size and Volatility Distribution
log Size

Average 19.83 19.83 19.83 19.86
Standard Deviation 2.56 2.53 2.53 2.52
prc 50 - prc 10 2.91 2.37 2.37 2.33
prc 90 - prc 50 3.88 3.91 3.91 3.90

log Variance
Average −1.40 −1.40 −0.38 −1.31
Standard Deviation 1.05 0.86 1.18 1.01
prc 50 - prc 10 1.38 0.40 0.88 0.93
prc 90 - prc 50 1.31 1.69 2.17 1.76

Panel B: Network Moments
Nout

Median 1.00 1.12 1.12 1.14
log prc 50 - log prc 10 0.00 0.08 0.08 0.10
log prc 90 - log prc 50 0.83 1.02 1.02 1.00

Hout

Median 0.05 0.18 0.18 0.18
log prc 50 - log prc 10 1.27 1.88 1.88 1.87
log prc 90 - log prc 50 1.85 1.71 1.71 1.74

Nin

Median 1.00 1.00 1.00 1.00
log prc 50 - log prc 10 0.00 0.00 0.00 0.00
log prc 90 - log prc 50 1.69 1.09 1.09 1.09

Hin

Median 1.00 1.00 1.00 1.00
log prc 50 - log prc 10 0.95 0.89 0.89 0.88
log prc 90 - log prc 50 0.00 0.00 0.00 0.00

Panel C: Cross-sectional Correlations
Corr(log Size,log Var) −0.64 −0.61 −0.69 −0.78
Corr(log Nout,log Size) −0.00 0.31 0.31 0.31
Corr(log Hout,log Size) −0.28 −0.88 −0.88 −0.88
Corr(log Hout,log Var) 0.22 0.51 0.46 0.61
Corr(log Nin,log Size) 0.53 0.34 0.34 0.33
Corr(log Hin,log Size) −0.47 −0.34 −0.34 −0.33
Corr(log Hin,log Var) 0.13 0.19 0.22 0.25

Panel D: Firms with Network Data
log number of public firms 7.15 6.95 6.95 6.94

Panel E: Goodness of Fit Statistics
FVAL – 2.88 3.76 2.29
Wald – 24.76 – 25.13
p-value – 0.64 – 0.62

Notes: This table reports different size, variance, and network moments both from the data and from our simulation. The
structure is the same as Table 3 in the main text. Column 1 is for the data. Column 2 is for the benchmark model estimated
by SMM. Columns 3 and 4 are for the alternative internal diversification (ID) function based on Stanley et al. (1996). Column
3 takes the values for the ID function parameters κ and α of that function directly from Stanley et al. (1996). Column 4
re-estimates all parameters, including those of the ID function.
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