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1 Introduction

Technological differences lie at the heart of differences in economic performance across countries. A

large and growing literature on development accounting demonstrates that total factor productivity

accounts for a sizeable fraction of cross-country differences in per capita income (Hall and Jones,

1999, Caselli, 2005, Hsieh and Klenow, 2010, among many others). The problem of low technological

advancement in poor countries is not primarily one of lack of innovation, for technologies that

could make these countries vastly richer exist and are used elsewhere in the world. A major

problem, instead, is one of delayed technological adoption. That many countries are subject to large

technological usage gaps is a well-documented phenomenon. However, the factors explaining delayed

technological adoption are not well-understood. What prevents the most productive technologies,

broadly understood, from spreading to less developed economies from the world’s technological

frontier? In this chapter, we seek to shed light on this question, by quantifying the geographic and

human barriers to the transmission of technologies.

We adopt a long-term perspective. The fortunes of nations are notoriously persistent through

time, and much of the variation in economic performance is rooted in deep history.1 While there

have been reversals of fortune at the level of countries, these reversals are much less prevalent

when looking at the fortunes of populations rather than those of geographic locations.2 Indeed,

contributions by Putterman and Weil (2010), Comin, Easterly and Gong (2010) and Spolaore and

Wacziarg (2009, 2012a, 2013) argue that the past history of populations is a much stronger pre-

dictor of current economic outcomes than the past history of given geographical locations. Thus,

any explanation for the slow and unequal diffusion of frontier technologies must be able to account

for the persistence of economic fortunes over the long run. In this chapter, we argue that the

intergenerational transmission of human traits, particularly culturally transmitted traits, has led

to divergence between populations over the course of history. In turn, this divergence has intro-

duced barriers to the diffusion of technologies across societies. These barriers impede the flow of

technologies in proportion to how genealogically distant populations are from each other.

1For instance, an important literature has explored the prehistoric origins of comparative development (Diamond,

1997; Olsson and Hibbs, 2005; Ashraf and Galor, 2011 and 2013a).

2See Acemoglu, Johnson and Robinson (2002) for the reversal of fortune at the level of geographic locations (for

former colonies), and papers by Spolaore and Wacziarg (2013) and Chanda, Cook and Putterman (2013) showing that

the reversal of fortune disappears when correcting for ancestry and expanding the sample beyond former colonies.
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Our starting point is to develop a theoretical model capturing these ideas. This model proceeds

in three phases. Firstly, we argue that genealogical separation across populations leads, on average,

to differentiation along a wide range of traits transmitted from parents to children either biologically

or culturally. Populations that are genealogically distant should therefore also be distant in terms

of languages, norms, values, preferences, etc. - a set of traits we refer to as vertically transmitted

traits or more simply as vertical traits. Secondly, we consider the onset of a major innovation,

which could be interpreted as the Industrial Revolution, and argue that differences in vertical

traits introduce barriers to the diffusion of this major innovation across societies and populations.

Thus, cross-country differences in aggregate TFP or per capita income should be correlated with

their genealogical distance. Finally, we extend the model to allow for innovations taking place over

time, and innovation and imitation occurring endogenously. In this more general framework, usage

lags in the adoption of specific technologies and consequently aggregate differences in economic

development are correlated with average differences in vertical traits, and thus with genealogical

distance.

We next turn to empirical evidence on these ideas. To measure the degree of relatedness

between populations, we use genetic distance. Data on genetic distance was gathered by population

geneticists specifically for the purpose of tracing genealogical linkages between world populations

(Cavalli-Sforza et al., 1994). By sampling large numbers of individuals from different populations,

these researchers obtained vectors of allele frequencies over a large set of genes, or loci. Measures of

average differences between these vectors across any two populations provide a measure of genetic

distance. The measure we rely on, known as FST genetic distance, is the most widely used measure

in the population genetics literature because it has properties that make it well-suited to study

separation times between populations - precisely the concept we wish to capture. FST genetic

distance has been shown to correlate with other measures of cultural differences such as linguistic

distance and differences in answers to questions from the World Values Survey (Spolaore and

Wacziarg, 2009, Desmet, Le Breton, Ortuño-Ortín and Weber, 2011).

Emphatically, the purpose of our study is not to study any genetic characteristics that may

confer any advantage in development. The genes used in our measures of genealogical distance

purposedly do not capture any such traits. It is important to note that the genes chosen to compare

populations and retrace their genealogies are neutral (Kimura, 1968). That is, their spread results

from random factors and not from natural selection. For instance, neutral genes include those

2



coding for different blood types, characteristics that are known not to have conferred a particular

advantage or disadvantage to individuals carrying them during human evolutionary history. The

mutations that give rise to specific alleles of these genes arise and spread randomly. The neutral

genes on which genetic distance is based thus do not capture traits that are important for fitness

and survival. As a result, measures based on neutral genes are like a molecular clock: on average

they provide an indication of separation times between populations. Therefore, genetic distance can

be used as a summary statistics for all divergence in traits that are transmitted with variation from

one generation to the next over the long run, including divergence in cultural traits. Our hypothesis

is that, at a later stage, when such populations enter in contact with each other, differences in those

traits create barriers to exchange, communication and imitation. These differences could indeed

reflect traits that are mostly transmitted culturally and not biologically - such as languages, norms

of behavior, values and preferences. In a nutshell, we hypothesize that genetic distance measured

from neutral genes captures divergence in intergenerationally transmitted traits - including cultural

traits - between populations. This divergence in turn impedes the flow of innovations.

We use these measures of genetic distance to test our model of technological diffusion. Our

barriers model implies that the genetic distance measured relative to the world technological frontier

should trump absolute genetic distance as an explanation for bilateral income differences. We find

this to be the case empirically. Our model also implies that genetic distance relative to the frontier

should have predictive power for income differences across time even in periods when the world

distribution of income was quite different from today’s. We show indeed that the effect of genetic

distance remains strong in historical data on population density and per capita income. Our model

implies that after a major innovation, such as the Industrial Revolution, the effect of genealogical

distance should be pronounced, but that it should decline as more and more societies adopt the

frontier’s innovation. This too is true empirically. Finally, our model implies that genetic distance

should have predictive power at the level of disaggregated technologies, and find this to be the case

both historically (when measuring technological usage on the extensive margin) and for more recent

technological developments (measuring technological usage along the intensive margin). In sum,

we find considerable evidence that barriers introduced by historical separation between populations

are central to account for the world distribution of income.

In the final section of this chapter, we broaden our focus and place these hypotheses and

findings in the context of the wider emerging literature on the deep historical roots of economic
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development. Our discussion starts from a taxonomy, based on Spolaore and Wacziarg (2013),

describing how historically transmitted traits could conceivably affect socio-economic outcomes.

The taxonomy distinguishes between the mode of transmission of vertical traits, and the mode of

operation of these traits. In principle, intergenerationally transmitted traits could be transmitted

either biologically or culturally. However, the recent development of the literatures on epigenetics

and on gene-culture interactions has made this distinction based on the mode of transmission much

less clear-cut empirically and conceptually. A more fruitful discussion, we argue, is to try to better

distinguish between the modes of operation of vertical traits. These traits, in principle, could

bear direct effects on economic outcomes, or operate as barriers to economic interactions between

populations. We discuss existing contributions in light of this distinction, and discuss directions

for future research in the emerging new field concerned with the deep historical roots of economic

development.

This chapter is organized as follows. Section 2 presents a stylized model of the diffusion of

technologies as function of differences in vertically transmitted traits across human populations, and

ultimately as a function of the degree of genealogical relatedness between them. Section 3 presents

our empirical methodology and data. Section 4 discusses a wide range of empirical results pertaining

to contemporaneous and historical measures of economic development and specific technology use

measures. Section 5 discusses the interpretation of these results in the context of the broader

literature on the deep roots of economic development. Section 6 concludes.

2 A Theory of Relatedness and Growth

In this section we present a basic theoretical framework to capture the links among genetic distance,

intergenerationally-transmitted traits, and barriers to the diffusion of economic development across

different societies.3 The model illustrates two key ideas.

The first idea is that genetic distance between populations captures the degree of genealogical

relatedness between populations over time, and can therefore be interpreted as a general metric

for average differences in traits transmitted with variation across generations. Genetic distance

measures the difference in gene distributions between two populations, where the genes under con-

sideration are neutral. By definition, neutral genetic change tends to occur randomly, independently

3The model builds on Spolaore and Wacziarg (2009, 2012a).
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of selection pressure, and regularly over time, as in a molecular clock (Kimura, 1968). This diver-

gence provides information about lines of descent: populations that are closer in terms of genetic

distance have shared a common "ancestor population" more recently. The concept is analogous

to relatedness between individuals: two siblings are more closely related than two cousins because

they share more recent common ancestors: their parents rather than their grandparents. Since a

very large number of traits - not only biological but also cultural - are transmitted from one gener-

ation to the next over the long run, genetic distance provides a comprehensive measure for average

differences in traits transmitted across generations. We call vertically transmitted traits (or vertical

traits, for short) the set of characteristics passed on across generations within a population over the

very long run - that is, over the time horizon along which populations have diverged (thousands of

years).4 Vertical transmission takes place across generations within a given population, and, in our

definition, includes not only direct parent-to-child transmission of biological and cultural traits,

but also, more broadly, "oblique" transmission of cultural traits from the older to the younger

within a genetically-related group. In contrast, we define "horizontal transmission" as learning and

imitation across different populations at a point in time.

The second idea is that differences in vertically transmitted traits act as barriers to horizontal

learning and imitation, and therefore hamper the diffusion of innovations and economic development

across societies.5 We argue that populations that share a more recent common history, and are

therefore closer in terms of vertical traits, face lower costs and obstacles to adopting each other’s

innovations. This view that differences in persistent societal characteristics may act as barriers

is consistent with a large literature on the diffusion of innovations, starting with the classic work

by Rogers (1962). Empirically, we are interested primarily in the diffusion of modern economic

development in historical times, and especially after the Industrial Revolution, so our stylized

model is designed with that objective in mind.

4This terminology is borrowed from the evolutionary literature on cultural transmission (for example, see Cavalli-

Sforza and Feldman, 1981; Boyd and Richerson, 1985; Richerson and Boyd, 2005).

5Policy-induced barriers to the diffusion of technology are analyzed by Parente and Prescott (1994, 2002). In our

framework we interpret barriers more broadly to include all long-term societal differences that are obstacles to the

diffusion of development.
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2.1 Genetic Distance and Vertically Transmitted Traits

We model all vertical traits of a population as a point on the real line: each population i has

vertical traits vi, where vi is a real number. At time o ("origin"), there exists only one population

(population 0), with traits normalized to zero: v0 = 0. At time p > o ("prehistory"), the original

population splits into two populations (1 and 2). At time h > p ("history"), each of the two

populations splits into three separate populations: population 1 into populations 1.1, 1.2, 1.3, and

population 2 into populations 2.1, 2.2, and 2.3.6 The genealogical tree is displayed in Figure 1. By

analogy with the genealogy of individuals, we say that populations such as 1.1 and 1.2 are "sibling"

populations, because their last common ancestors (their "parent" population) can be found at the

more recent split (time p), while population pairs such as 1.2 and 2.1 are "cousin" populations,

because their last common ancestors (their "grandparent" population) must be traced back to a

more remote time o < p. G(i, j) denotes the genetic distance between population i and population

j.7 The genetic distance between two sibling populations is gs > 0, while the genetic distance

between two cousin populations is gc > gs. Formally,

G(1.m, 1.n) = G(2.m, 2.n) = gs where m = 1, 2, 3; n = 1, 2, 3 and 1.m 6= 1.n ; 2.m 6= 2.n (1)

and

G(1.m , 2.n) = gc where m = 1, 2, 3 and n = 1, 2, 3 (2)

Each population inherits vertical traits from its ancestor population with variation. In general,

vertical traits vd of population d (the "descendent"), descending from population a (the "ancestor"),

are given by:

vd = va + εd (3)

where εd is a shock. In particular, we model the process of variation as a random walk. This

simplification is consistent with the molecular-clock interpretation of genetic distance. While more

complex processes could be considered, this formalization has two advantages: it is economical and

illustrates how random changes are suffi cient to generate our theoretical predictions. Formally, we

assume that εd takes value ε > 0 with probability 1/2 and −ε with probability 1/2. We denote with

6 In Spolaore and Wacziarg (2009), we presented a similar model with only four populations at time h (1.1, 1.2,

2.1, and 2.2). Here we extend the framework to allow for a more general analysis, in which we also have pairs of

populations that, while they are not at the frontier themselves, are both siblings with the frontier population.

7By defintion, G(i, i) = 0.

6



V (i, j) the distance in vertically transmitted traits (vertical distance, for short) between populations

i and j:

V (i, j) ≡ |vj − vi| (4)

We are now ready to summarize our first idea as:

Proposition 1

The distance in vertical traits V (i, j) between two populations i and j is, on average, increasing

in their genetic distance G(i, j).

Derivation of Proposition 1:

The expected distance in vertical traits between sibling populations is:

E{V (i, j) | G(i, j) = gs} = ε (5)

because their vertical distance is equal to 2ε with probability 1/2, when one population experiences

a positive shock ε and the other a negative shock −ε, and equal to 0 with probability 1/2, when

both populations experience the same shock (either ε with probability 1/4 or −ε with probability

1/4). In contrast, the expected distance in vertical traits between cousin populations is:

E{V (i, j) | G(i, j) = gc} =
3ε

2
(6)

because their vertical distance is 0 with probability 3/8, 2ε with probability 1/2, and 4ε with

probability 1/8.8 Therefore, the expected distance in vertical traits is increasing in genetic distance:

E{V (i, j) | G(i, j) = gc} − E{V (i, j) |G(i, j) = gs} =
ε

2
> 0 (7)

8The details of the calculation are as follows. With probability 1/4, the two populations experienced identical

shocks at time h, and their respective ancestor populations experienced identical shocks at time p, implying V (i, j) = 0.

With probability 1/8, one population lineage experienced a positive shock ε at time p and a negative shock −ε at

time h while the other population lineage experienced −ε and ε,implying again V (i, j) = 0. With probability 1/4,

the two populations’ancestors experienced identical shocks at time p, but the two populations experienced different

shocks at time h, implying V (i, j) = 2ε. With probability 1/4, the shocks were the same at time h but different at

time p, also implying V (i, J) = 2ε. Finally, with probability 1/8, one population linaeage experienced two positive

shocks (ε+ ε = 2ε) and the other two negative shocks (−ε− ε = −2ε), therefore leading to a vertical distance equal

to 4ε. In sum, their expected vertical distance is given by E{V (i, j)|G(i, j) = gc} = 3
8
0 + 1

2
2ε+ 1

8
4ε =

3ε

2
.
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It is important to notice that the relation between distance in vertical traits and genetic distance

is is not deterministic, but works on average. Some pairs of populations, while genealogically more

distant, may end up with more similar vertical traits than two more closely related populations.

However, that outcome is less likely to be observed than the opposite. On average, genetic distance

and vertical distance go hand in hand.

2.2 Barriers to the Diffusion of Economic Development

Our second idea is that differences in vertical traits constitute barriers to the spread of innovations

across populations. A stylized illustration of this idea is provided below.

At time p all populations produce output using the basic technology Yi = ALi, so that all

populations have the same income per capita y = A. In period h a population happens to find

a more productive technology A′ = A + ∆ where ∆ > 0. We abstract from the possibility that

the likelihood of finding the innovation is itself a function of a society’s vertical traits. Such direct

effects of vertical traits could strengthen the links between genetic distance and economic outcomes,

but are not necessary for our results.

We denote the innovating population as f (for technological frontier). To fix ideas and without

loss of generality, in the rest of the analysis we assume that population 1.1 is the frontier population

(f = 1.1). Populations farther from population f in terms of vertical traits face higher barriers

to adopt the new technology. Formally, we assume that a society i at a vertical distance from the

frontier equal to V (i, f) can improve its technology only by:

∆i = [1− βV (i, f)]∆ (8)

where the parameter β > 0 captures the barriers to the horizontal diffusion of innovations due

to distance in vertical traits. To ensure non-negativity, we assume that β ≤ 1

maxV (i, f)
=

1

4ε
.9

Therefore, income per capita in society i will be given by:

yi = A+ ∆i = A+ [1− βV (i, f)]∆ (9)

This immediately implies:

Proposition 2

9Alternatively, the formula could be re-written as ∆i = max{[1− βV (i, f)]∆, 0}.
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The difference in income per capita |yi − yj | between society i and society j is a function of

their relative vertical distance from the frontier |V (i, f)− V (j, f)|:

|yj − yi| = β∆|V (i, f)− V (j, f)| (10)

2.3 Genetic Distance and Income Differences

Since income differences are associated with differences in vertical traits across populations (Propo-

sition 2), and differences in vertical traits, on average, go hand in hand with genetic distance (Propo-

sition 1), we can now establish a link between expected income differences and genetic distance.

These links are formally derived as Propositions 3 and 4 below.

Proposition 3

The expected income difference E{|yj − yi|} between societies i and j is increasing in their

genetic distance G(i, j).

Derivation of Proposition 3:

First, we must calculate the expected income of all pairs of populations at genetic distance

gs (sibling populations). V (i, j) between two sibling populations is 0 with probability 1/2 and 2ε

with probability 1/2. When the two populations have identical traits, they have identical incomes.

When they are at a distance 2ε from each other, one of them must be closer to the frontier’s traits

by a distance equal to 2ε, no matter where the frontier’s traits are located (at 0, 2ε, or −2ε), or

whether one of the two sibling populations is the frontier. Thus, when V (i, j) = 2ε, the income

difference between the two populations is β∆2ε. In sum, for all pairs of sibling populations is

|yk.m − yk.n| = 0 with probability 1/2 , and |yk.m − yk.n| = β∆2ε with probability 1/2, implying

E{|yk.m − yk.n|} = β∆ε where k = 1, 2; m = 1, 2, 3;n = 1, 2, 3;and m 6= n. Consequently, the

expected income difference between sibling populations is:

E{|yj − yi| || G(i, j) = gs} = β∆ε (11)

Now, we must calculate the expected income difference between cousin populations. V (i, j) between

two cousin populations is 0 with probability 3/8, 2ε with probability 1/2, and 4ε with probability

1/8. The calculation is slightly more complicated, because we must distinguish between pairs that

include the frontier and pairs that do not include the frontier f = 1.1. First, consider pairs that
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include the frontier. With probability 3/8 a population 2.n shares the same traits (and hence

income) with the frontier, with probability 1/2, population 2.n has income lower than the frontier’s

by β∆2ε, and with probability 1/8 population 2.n’s income is lower by β∆4ε. Thus, we have:

E{|yf − y2.n|} =
β∆2ε

2
+
β∆4ε

8
=

3β∆ε

2
where n = 1, 2, 3 (12)

Now, consider pairs of cousin populations that do not include the frontier population - that is, pairs

1.m and 2.n, with m = 2, 3, and n = 1, 2, 3. Again, the income difference between each pair of

cousin populations is equal to zero when both populations share the same traits (which happens

with probability 3/8), and is equal to β∆2ε when their traits are at a distance 2ε from each other

(which happens with probability 1/2), no matter where the frontier is located. However, when the

two cousin populations are at a distance 4ε from each other (which happens with probability 1/8),

their income distance depends on the location of the traits of the frontier. If the frontier is at an

extreme (either 2ε or -2ε− an event with probability 1/2), the 4ε vertical distance between 1.m

and 2.n implies that their income distance is equal to β∆4ε. In contrast, if the frontier’s traits are

at 0 (also an event with probability 1/2), 1.m and 2.n are equally distant from the frontier (each

at a distance 2ε), and therefore have identical incomes per capita. In sum, we have:

E{|y1.m − y2.n|} =
β∆2ε

2
+

1

2

β∆4ε

8
=

5β∆ε

4
where m = 2, 3; n = 1, 2, 3 (13)

Consequently, expected income difference between pairs of cousin populations is:

E{|yj − yi| || G(i, j) = gc} =
1

9

3∑
m=1

3∑
n=1

E{|y1.m − y2.n|} =
1

9
[3

3β∆ε

2
+ 6

5β∆ε

4
] =

4β∆ε

3
(14)

Therefore, the expected income difference between cousin populations is higher than the one be-

tween sibling populations: higher genetic distance is associated, on average, with higher income

differences, as stated in Proposition 3. Formally:

E{|yj − yi| || G(i, j) = gc} − E{|yj − yi| || G(i, j) = gs} =
β∆ε

3
> 0 (15)

Why do populations which are genetically more distant from each other tend to differ more in

income per capita, on average? The reason is that populations which are distant from each other

genetically are also more likely to find themselves at more different distances from the frontier.

Relative distance from the frontier, rather than genetic distance between populations per se, is the

key determinant of expected income differences. Therefore, we can find an even stronger relation

between income differences and genetic distance if we consider not the absolute genetic distance
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between two populations G(i, j), but their relative genetic distance from the technological frontier,

defined as follows:

R(i, j) ≡ |G(i, f)−G(j, f)| (16)

Our model predicts that the effect of relative genetic distance on income differences is not only

positive, but also larger than the effect of absolute genetic distance:

Proposition 4

The expected income difference E{|yj − yi|} between society i and j is increasing in the two

populations’relative genetic distance from the frontier R(i, j). The effect of relative genetic distance

R(i, j) on income differences is larger than the effect of absolute genetic distance G(i, j).

Derivation of Proposition 4:

The expected income difference between pairs of populations at relative genetic distanceR(i, j) =

gs is10:

E{|yj − yi| || R(i, j) = gs}| = E{|yf − y1.2|}+ E{|yf − y1.3|} = β∆ε (17)

while the expected income difference between pairs of populations at relative genetic distance

R(i, j) = gc is11:

E{|yj − yi| ||R(i, j) = gc}| =
1

3

3∑
n=1

E{|yf − y2.n|} =
3β∆ε

2
(18)

Therefore, the effect of an increase of relative genetic distance from gs to gc is

E{|yj − yi| || R(i, j) = gc} − E{|yj − yi| || R(i, j) = gs} =
β∆ε

2
>
β∆ε

3
> 0 (19)

The effect is positive (
β∆ε

2
> 0), and larger than the analogous effect of absolute genetic distance

(
β∆ε

3
), derived above.

By the same token, the effect of relative genetic distance on expected income differences is also

positive when moving from R(i, j) = gc − gs to R(i, j) = gc:

E{|yj − yi| || R(i, j) = gc} − E{|yj − yi| || R(i, j) = gc − gs} =
3β∆ε

2
− 5β∆ε

4
=
β∆ε

4
> 0 (20)

10We use the result, derived above, that all expected income differences between siblings are equal to β∆ε.

11We use the result, derived above, that the expected income difference between the frontier and each of its cousing

populations is
3β∆ε

2
.
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The results above are intuitive. As we increase relative genetic distance from the frontier, the

expected income gap increases. The size of the effect is a positive function of the extent of divergence

in vertically transmitted traits (ε), the extent to which this divergence constitutes a barrier to the

horizontal diffusion of innovations (β), and the size of the improvement in productivity at the

frontier (∆).

In summary, our model has the following testable implications, which are brought to the data

in the empirical analysis carried in the rest of this chapter:

1. Relative genetic distance from the frontier population is positively correlated with differences

in income per capita.

2. The effect on income differences associated with relative genetic distance from the frontier

population is larger than the effect associated with absolute genetic distance.

2.4 A Dynamic Extension

In the stylized model above, for simplicity we assumed that only one big innovation took place at

time h. We now present a dynamic example, where innovations take place over time, and innovation

and imitation are modeled endogenously.12 The key insights and results carry over to this extension.

In this dynamic example we assume, for simplicity, that populations do not change in modern

times and have fixed size (normalized to one). More importantly, we assume that their inherited

vertical traits do not change over the relevant time horizon. This is a reasonable simplification,

because changes in vertical traits tend to take place much more slowly and at a longer horizon than

the spread of technological innovations, especially if we focus on modern economic growth. Adding

small random shocks to vertical traits after time h would significantly complicate the algebra, but

would not affect the basic results.

Consider our six populations (i = 1.1, 1.2, 1.3, 2.1, 2.2, 2.3), with vertical traits inherited from

their ancestral populations as described above, and unchanged in modern times (i.e., for t ≥ h).

Time is continuous. Consumers in economy i at time t maximize:

Ui(t) =

∫ ∞
s

ln ci(s)e
−ρ(t−s)ds (21)

under a standard budget constraint, where ci(t) is consumption, and ρ > 0 is the subjective discount

rate. We assume that the six economies are not financially integrated, and that each economy i

12The model builds heavily on Barro and Sala-i-Martin (1997, 2003) and Spolaore and Wacziarg (2012a).
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has its own real interest rate, denoted by ri(t). Hence, the optimal growth rate of consumption in

society i is:
dci
dt

1

ci(t)
= ri(t)− ρ (22)

The production function for final output yi(t) is:

yi(t) =

∫ Ai(t)

0
[xzi(t)]

αdz, 0 < α < 1 (23)

where xzi(t) is the quantity of intermediate good of type z employed at time t in economy i, and

the interval [0, Ai(t)] measures the continuum of intermediate goods available in economy i at time

t. Each intermediate good is produced by a local monopolist.

As before, without loss of generality we assume that society 1.1 is the technological frontier

(f = 1.1). In this setting, this means that Af (h) > Ai(h) for all i 6= f. However, unlike in the

previous analysis, innovation at the frontier economy now takes place endogenously. Following

Barro and Sala—i-Martin (1997 and 2003, chapters 6 and 8), we assume that the inventor of input

z retains perpetual monopoly power over its production within the frontier economy. The inventor

sells the intermediate good at price Pz = 1/α, earning the profit flow π = (1 − α)α(1+α)/(1−α) at

each time t.

The cost of inventing a new intermediate good at the frontier is η units of final output. Free

entry into the innovation sector implies that the real interest rate rf (t) must be equal to π/η, which

is assumed to be larger than ρ, therefore implying that consumption grows at the constant rate:

γ ≡ π

η
− ρ > 0 (24)

Output yf (t) and the frontier level of intermediate goods Af (t) will also grow at the rate γ.

The other populations cannot use the intermediate goods invented in economy f directly, but,

as in Barro and Sala-i-Martin (1997), must pay an imitation cost µi in order to adapt those

intermediate goods to local conditions. Our key assumption is that the imitation costs are increasing

in the distance in vertical traits between the imitator and the frontier. Specifically, we assume that

society i’s imitation cost is:

µi(t) = λeθV (i,f)
(
Ai(t)

Af (t)

)ξ
(25)

This is an instance of our general idea: a higher V (i, f) is associated with higher imitation costs,

because differences in vertical traits between the imitator and the inventor act as barriers to adop-

tion and imitation. The parameter θ captures the extent to which dissimilarity in vertical traits
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between imitator and inventor increases imitation costs. For a given vertical distance, an imitator

in society i faces lower imitation costs when there is a larger set of intermediate goods available

for imitation - that is, when Ai(t)/Af (t) is low. The rationale for this assumption is the usual

one: intermediate goods that are easier to imitate are copied first. Hence, the parameter ξ > 0

captures this advantage from technological backwardness. Our perspective may indeed shed some

light on whether backward economies face higher or lower imitation costs overall, an issue debated

in the literature (for instance, see Fagerberg, 2004). As we will see, our model predicts that, in

steady state, societies that are farther technologically, and should therefore face lower imitation

costs for this reason (captured by the parameter ξ), are also farther in terms of vertical distance

from the frontier, and hence should face higher imitation costs through this channel (captured by

the parameter θ), with conflicting effects on overall imitation costs.

Again, we assume that an imitator who pays cost µi(t) to imitate good k has perpetual monopoly

power over the production of that input in economy i, and charges Pk = 1/α, earning the profit

flow π = (1 − α)α(1+α)/(1−α), while output is proportional to available intermediate goods Ai(t)

in equilibrium: yi(t) = α2α/(1−α)Ai(t). With free entry into the imitation sector, economy i’s real

interest rate in equilibrium is13:

ri(t) =
π

µi(t)
+
dµi
dt

1

µi(t)
(26)

In steady state, the level of imitation costs µ∗i is constant. The number of intermediate goods,

output and consumption in all economies grow at the same rate γ as at the frontier. Therefore,

in steady state the real interest rates in all economies are identical and equal to
π

η
, and imitation

costs are identical for all imitators, which implies:

Proposition 2bis

The difference in log of income per capita in steady state | ln y∗i − ln y∗j | between society i and

society j is a function of their relative vertical distance from the frontier |V (i, f)− V (j, f)| :14

| ln y∗i − ln y∗j | =
θ

ξ
|V (i, f)− V (j, f)| (27)

The intuition of the above equation is straightforward: long-term differences in total factor pro-

ductivity and output between societies are an increasing function of their relative cost to imitate,

13See Barro and Sala-i-Martin (1997, 2003) for the details of the derivation.

14Of course we also have | lnA∗i (t)− lnA∗j (t)| = | ln y∗i (t)− ln y∗j (t)|
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which depends on their relative vertical distance from the frontier. Therefore, societies that are

more distant from the frontier in terms of vertically transmitted traits will have lower incomes per

capita in steady state.

This dynamic model confirms the key implications of the simplified model that we had presented

before. In particular, the equivalents of Propositions 3 and 4 hold in this setting as well, as long as

one substitutes income differences |yj−yi| with differences in log of income per capita in steady state

| ln y∗i − ln y∗j |, and β∆ with
θ

ξ
. We can then re-interpret those results as implying that societies at

different relative genetic distance from the technological frontier will have different levels of income

per capita in steady state. The effect of relative genetic distance on the income gap is larger when

differences in vertical traits are associated with higher imitation costs (higher θ). Interestingly, we

also have that the effect of relative genetic distance on income differences is lower when there are

larger benefits from technological backwardness (higher ξ). In sum, the effects of relative genetic

distance on economic development extend to this dynamic setting.

3 Empirical Methodology and Data

3.1 Specification and Estimation

The starting points for our empirical investigation into the long-term barriers to economic devel-

opment are Propositions 3 and 4. These theoretical results show that if differences in vertical

traits act as barriers to the diffusion of technologies, then differences in measures of development

or technological sophistication across pairs of countries should 1) be correlated with the absolute

genetic distance between these countries, 2) be correlated more strongly with their genetic distance

relative to the technological frontier and 3) genetic distance relative to the frontier should trump

simple genetic distance between two countries. Whether these patterns hold true constitutes an

empirical test of the barriers model. Denote by Di a measure of development or technological so-

phistiction in country i. We will consider alternatively per capita income (for the modern period),

population density (for the pre-Industrial period) and direct measures of technology use, to be

further detailed below. Denote by FSTWij the absolute genetic distance between countries i and j.

Analogous to the theoretical definition, genetic distance relative to the frontier country is defined

as: FSTRij = |FSTWif − FSTWjf | where f denotes the frontier country.

Then the empirical predictions of Propositions 3 and 4 lead to the following empirical specifi-
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cations:

|Di −Dj | = α0 + α1FST
R
ij + α′2Xij + εαij (28)

|Di −Dj | = β0 + β1FST
W
ij + β′2Xij + εβij (29)

|Di −Dj | = γ0 + γ1FST
R
ij + γ2FST

W
ij + γ′3Xij + εγij (30)

where Xij is a vector of control variables, primarily composed of alternative sources of barriers to

diffusion, primarily geographic barriers. The predictions of our model are that α1 > 0, β1 > 0,

α1 > β1, γ1 > 0 and γ2 = 0.

Equations (28), (29) and (30) are estimated using least squares. However, an econometric

concern arises from the construction of the left-hand side variable as the difference in development

or technological sophistication across country pairs. Indeed, consider pairs (i, j) and (i, k). By

construction, the log per capita income of country i appears in the difference in log per capita

incomes of both pairs, introducing some spatial correlation in the error term. To deal with this

issue, we correct the standard errors using two-way clustering, developed by Cameron, Gelbach

and Miller (2006). Specifically, standard errors are clustered at the level of country 1 and country

2. This results in larger standard errors compared to no clustering.15

We complement these tests with additional empirical results that can shed light on our barriers

interpretation of the effect of genetic distance. In particular, we examine the evolution of the

effect of genetic distance through time. If genetic distance continues to have an effect on differencs

in economic performance in periods where the world distribution of income was very different, it

should put to rest the idea that vertically transmitted traits bear direct, unchanged effects on

productivity. We therefore examine the effects of genetic distance on population density in the

pre-industrial era, going as far back as year 1. In Malthusian times, population density is the

proper measure of overall technological sophistication, since per capita income gains resulting from

innovation are only transitory, and soon dissipated by an increase in fertility (Ashraf and Galor,

2011 provide empirical evidence on this point). We also study the time path of the effect of genetic

distance around the Industrial Revolution. Our model predicts that this effect should peak during

the initial phases of the diffusion of the Industrial Revolution, as only places close to its birthplace

15 In past work, we employed various methods to deal with the spatial correlation that arises as a byproduct of the

construction of the left-hand side variable, such as including a set of common country dummies. The results were not

sensitive to the method used to control for spatial correlation. See Spolaore and Wacziarg (2009) for further details.
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have adopted the new innovation. The model predicts that the effect should decline thereafter, as

more and more societies adopt industrial and post-industrial modes of production.

3.2 Data

3.2.1 Genetic distance data

Our source for genetic distance data is Cavalli Sforza et al. (1994). The main dataset covers

42 ethnolinguistic groups samples across the globe.16 The genetic data concerns 120 gene loci,

for which allele frequencies were obtained by population. The gene loci were chosen to represent

neutral genes, i.e. genes that did not spread through natural selection but through random drift, as

determined by geneticists. Thus, when aggregated over many genes, measures of genetic distance

obtained from neutral genes capture separation times between populations, precisely the analog of

genealogical distance employed in our theoretical model.

The specific measure of genetic distance we use is known as FST genetic distance, also known

as Wright’s fixation index.17 To illustrate the index, we derive it for the specific case of two

populations, one locus and two alleles. The number of individuals in population i is ni. Total

population is n =
∑2

i=1 ni. The share of population i is wi = ni/n. Consider one locus with

two possible alleles: either Q or q. Let 0 ≤ pi ≤ 1 be the frequency of individuals in population

i with allele Q. Let p be this frequency in the whole population
(
p =

∑2
i=1wipi

)
. The degree

of heterozygosity (i.e. the probability that two randomly selected alleles within a population are

different) within population i is Hi = 2pi(1 − pi), and average heterozygosity across populations

is HS =
∑2

i=1wiHi. Heterozygosity for the whole population is HT = 2p(1 − p). Then Wright’s

fixation index, FST , is defined as:

FST = 1− HS

HT
= 1− n1p1(1− p1) + n2p2(1− p2)

np(1− p) (31)

This is one minus the ratio of group level average heterozygosity to total heterozygosity. If both

populations have the same allele frequencies (p1 = p2), then Hi = HS = HT , and FST = 0. In

the polar opposite case, individuals within each population all have the same alleles, and these

16We will also make use of a more detailed dataset covering 26 European populations. Since populations were

sampled at the country level rather than at the ethnic group level for the European dataset, matching populations

to countries was an easier task.

17 In past work, we also used the Nei index. Results did not hinge on the use of either index.

17



alleles differ completely across groups (p1 = 1 − p2). Then FST = 1 (total fixation). In general,

the higher the differences in allele frequencies across populations, the higher is FST . The formula

can easily be extended to account for more than two alleles. FST can be averaged in a variety of

ways across loci, so that the resulting FST distance is a summary measure of relatedness between

the two populations. Moreover, boostrapping techniques can be used to obtain standard errors on

estimates of FST . Details of these extensions are provided in Cavalli-Sforza et al. (1994, pp. 26-27).

We rely on the genetic distance data that they provide, i.e. we rely on population geneticists’best

judgment as to the proper choice of alleles, the proper sampling methods, and the proper way to

aggregate heterozygosity across alleles.

The genealogical tree of human populations is displayed in Figure 2, where the genetic distance

data was used to construct a tree showing the successive splits between human populations over

the course of the last 70, 000 years or so. In this figure, recent splits indicate a low genetic distance

between the corresponding populations. In the source data pertaining to 42 world populations,

the largest FST genetic distance between any two populations is between the Mbuti Pygmies and

the Papua New Guineans (FST = 0.4573). The smallest is between the Danish and the English

(FST = 0.0021).

Genetic distance is obtained at the level of populations but it was necessary to construct mea-

sures pertaining to countries. We matched ethnolinguistic groups in Cavalli-Sforza et al. (1994) to

ethnic groups for each country using the ethnic group data from Alesina et al. (2003), and then

constructed the expected distance between two individuals, each drawn randomly from each of the

two countries in a pair. Thus, our baseline measure of genetic distance between countries 1 and 2

is:

FSTW12 =
I∑
i=1

J∑
j=1

(s1i × s2j × FSTij) (32)

where s1i is the share of population i in country 1, s2j is the share of population j in country 2, and

FSTij is genetic distance between population i and j. This index is also known as the Greenberg

index (after Greenberg, 1956), and is increasingly used in economics as a measure of ethnolinguistic

heterogeneity (see for instance Bossert, D’Ambrosio and La Ferrara, 2011).18

The measure derived above, FSTW12 , is the absolute measure of expected distance between any

18 In past work we also used the genetic distance between the largest populations (i.e. genetic groups) in countries

1 and 2. The correlation between expected (weighted) genetic distance and this alternative index is very high, and it

does not matter which one we use in our empirical work.
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two countries 1 and 2. In keeping with the theoretical definition, we can also define a measure of

these countries’relative distance to the technological frontier f :

FSTR12 = |FSTW1f − FSTW2f | (33)

Finally, the procedure above matches populations to ethnolinguistic groups as they occur in the

contemporary period. It is, however, also possible to calculate genetic distance as of the year 1500

AD, by matching populations to the plurality group in each country given their composition in 1500.

Thus, for instance, in the 1500 match, Australia is matched to the Aborigenes population (while

for the contemporary period Australia is matched to a combination of English and Aborigenes -

predominantly the former). We make use of the 1500 match in some historical regressions, or as

an instrument for contemporary genetic distance. Again, measures of absolute and relative genetic

distance are computed using the 1500 match of populations to countries.

3.2.2 Measures of development and technological sophistication

We use a variety of measures of differences in economic development and technological sophisti-

cation. The first set of measures is defined at an aggregate level. The primary measure for the

contemporary period is the absolute difference in log per capita income in 2005 (from the Penn

World Tables version 6.3). For the pre-industrial periods, we consider the absolute difference in

population density. The population density data pertains to the year 1500, and the source is

McEvedy and Jones (1978). Despite more limited geographic coverage, we also use data on per

capita income going back to 1820, from Maddison (2003), in order to examine the time path of the

effect of genetic distance around the time of the Industrial Revolution.

The second set of measures includes disaggregated measures of technology usage, either along

the extensive margin (for the historical period) or along the intensive margin (for the contemporary

period).19 We rely mostly on data from Easterly, Comin and Gong (2010, henceforth CEG). CEG

gathered data on the degree of technological sophistication for the years 1000 BC, 1 AD, 1500

AD and the contemporary period (1970-2000 AD). We make use of the data for 1500 AD and the

contemporary period, since this corresponds most closely to the available genetic distance data.

The data for 1500 pertain to the extensive margin of adoption of 24 separate technologies, grouped

into 5 categories: military, agricultural, transportation, communication and industry. For each

19These technologies are listed in Appendix 1.
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technology in each category, a country is given a score of 1 if the technology was in use in 1500,

0 otherwise. The scores are summed within categories, and rescaled to vary between 0 and 1. An

overall index of technological sophistication is also obtained by taking the simple average of the

technological index for each of the 5 categories.

For the 1970-2000 AD data, technology usage is measured along the intensive margin. The

basic data covers the per capita usage intensity of nine technologies, obtained from the database of

Comin, Hobijn and Rovito (2008). For each technology, a country’s usage is characterized as the

number of years since the technological frontier (the United States) had the same level of per capita

usage. The index is then rescaled to vary from 0 to 1, where 1 denotes usage at the same level as

the frontier. Technologies are aggregated into 4 of the 5 aforementioned categories (all except the

military category), and a simple average of the four measures is also available.

Finally, we attempted to measure technological sophistication at a more disaggregated level.

This allows for a more refined analysis based on individual technologies that were not aggregated

into broader categories, as is the case in the CEG dataset. For this, we relied on the CHAT dataset

(Comin and Hobijn, 2009), which contains data on usage of 100 technologies. We restricted atten-

tion to technologies for which data is available for at least 50 countries over the 1990-1999 period.

This led to a restricted set of 33 technologies, covering a wide range of sectors - medical, trans-

portation, communications, industrial and agricultural technologies. For each of the underlying

33 technologies, we calculated usage per capita, in order to maintain a consistent definition of the

intensity of use.20 For instance, for the technology "personal computers", the dependent variable

is the absolute difference, between country i and country j, in the number of computers per capita.

For all technologies, the technological leader was assumed to be the United States, an assumption

confirmed in virtually all cases when examining the actual intensity of use.

All of these measures of technological sophistication were available at the country level, so we

computed the absolute difference in technology measures across all available pairs of countries for

the purpose of empirical analysis.

20One exception was for the share of cropland area planted with modern varieties, for which it would make little

sense to divide by population. All other technologies were entered in per capita terms.
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3.2.3 Measures of geographic barriers

Measures of genetic distance are correlated with geographic distance. Indeed, Homo sapiens is

estimated to have migrated out of East Africa around 70,000 years ago, and from there spread

first to Asia, and then later fanned out to Europe, Oceania, and the Americas. As early humans

split into subgroups, the molecular clock of genetic drift started operating, and populations became

more genetically distant. It is not surprising that the farther in space, the more genetically distant

populations are expected to be. It is therefore important to control for geographic distance when

estimating the human barriers to the diffusion of innovations. At the same time, as we describe

below, the correlation between geographic distance and genetic distance is not as large as one might

expect. This is the case for two major reasons: First, genetic drift occurred along rather specific

geographic axes. For instance, a major dimension along which populations array themselves in

proportion to their genetic distance is a rough straight line between Addis Ababa and Beijing.

There need not be a strict correspondence, then, between genetic distance and common measures

of geographic distance relevant as geographic barriers to the spread of innovations, such as the

greater circle distance or latitudinal distance. Second, more recent population movements have

served to break the initial links between geographic distance and genetic distance. Two highly

relevant population movements were the conquests of parts of the New World by Europeans, and

the slave trades occuring thereafter. We obtain some (but not all) of our identifying variation off

of these post-1500 population movements.

To capture geographic distance we use a large array of controls, capturing both simple geodesic

distance, distance along the longitudinal and latitudinal dimensions, and binary indicators of micro-

geography such as whether the countries in a pair are contiguous, are islands, are landlocked, or

share a common sea or ocean. This set of controls was included in every regression, and was

supplemented in robustness tests by additional geographic controls such as climatic differences,

continent effects and freight costs.

3.2.4 Summary statistics and data patterns

Figure 3 presents a simple plot of weighted genetic distance to the USA against per capita in-

come, and Figure 4 does the same after partialling out the effect of geodesic distance (a similar

figure obtains after partialling out the effect of a longer list of geographic distance metrics). Both

figures reveal a negative association between per capita income and genetic distance to the USA.
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Table 1 presents summary statistics to help in the interpretation of regression estimates. Panel

B displays correlations based on 10, 440 country pairs, based on 145 countries. These correlations

are informative: the absolute genetic distance between pairs bears a correlation of 19.5% with the

absolute difference in log per capita income. Genetic distance relative to the USA, however, bears a

much larger correlation of 32.26%, a pattern consistent with the predictions of the barriers model,

implying a larger effect of relative genetic distance compared to absolute genetic distance. Finally,

as mentioned above, the correlation between genetic distance (either relative to the frontier or

not) with geodesic distance is positive but moderate in magnitude, offering hope that the effect of

genealogical barriers can be estimated separately from that of geographic barriers.

4 Barriers to Development: Empirical Results

4.1 Results for Aggregate Measures of Economic Development

4.1.1 Baseline estimates

Baseline estimates of equations (28), (29) and (30) are presented in Table 2. The predictions of

the barriers model are borne out: after controlling for various measures of geographic distance,

differences in per capita income are significantly correlated with both absolute and relative genetic

distance (columns 1 and 2).21 However, the magnitude of the effect of genetic distance relative to

the technological frontier (column 1) is about three times as large as the effect of absolute genetic

distance (column 2). This is true when comparing both the estimated coeffi cient and a standardized

measure of magnitude (the standardized beta, reported in the next to last row of Table 2). When

including both measures in the regression (column 3), genetic distance relative to the frontier

remains significant while absolute genetic distance becomes insignificantly different from zero. In

terms of magnitudes, a one standard deviation increase in FST genetic distance relative to the USA

is associated with an increase in the absolute difference in log income per capita of almost 29% of

that variable’s standard deviation.

Column 4 of Table 2 reports results of IV estimation, using relative genetic distance to the Eng-

lish population in 1500 as an instrument for current genetic distance to the USA. This is meant to

21A myriad additional controls were included as robustness tests in analogous regressions presented in Spolaore

and Wacziarg (2009). These included climatic differences, freight costs, etc. Results were robust to the inclusion of

these additional control variables.
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address two specific concerns: First, matching the 42 populations for which genetic distance data is

available to contemporaneous ethnolinguistic groups may introduce measurement error. The main

diffi culties in the match arise for the New World where it is sometimes diffi cult to assess which

European population to match with the descendents of past European settlers, which African pop-

ulations to match with former slaves, and what shares to ascribe to these various populations in

the total population, given that many of them mixed over time, resulting in significant shares of

populations with mixed ancestry (the latter issue arises mainly in Latin America). In contrast, the

1500 match of genetic groups (populations) to the plurality ethnic group is much more straightfor-

ward, since the Cavalli-Sforza et al. (1994) data was gathered precisely to represent the makeup of

countries as they stood in 1492, prior to the population movements associated with the conquest

of the New World. The second concern is endogeneity: genetic distance between countries changed

in the post-1492 era due to the aforementioned conquest of the New World and the slave trades. It

is possible that areas well-suited to high incomes in the Industrial Era, perhaps due to geographic

factors such as a temperate climate, happened to attract certain populations (for instance Euro-

peans) as settlers. In this case, it would be the potential for differential incomes that would causally

affect genetic distance rather than the opposite. Using genetic distance lagged by 500 years as an

instrument addresses this particular endogeneity concern. The results presented in column 4 show

that, if anything, OLS understated the effect of relative genetic distance: its standardized effect

rises under IV to 46.49%. Since the IV estimates are larger than the OLS estimates, to remain

conservative we rely in the rest of this chapter on OLS estimates.

4.1.2 Regional controls and analysis

In Table 3, we run a variety of regressions accounting for regional effects. In column 1, we include

a full set of continental dummy variables capturing both whether the countries in a pair are both

located on the same specific continent (an effect presumed to go in the direction of reducing the

difference in economic performance between these countries) and whether they are located on

different ones (as further defined in the footnote to Table 3). The idea behind this test is to further

control for geographic factors not already captured by the included geographic distance variables.

However, this is a demanding test, since continent effects could capture geographic barriers but

also part of the effect of human barriers that could be mismeasured when using genetic distance.

Nonetheless, the effect of genetic distance remains robust to controlling for a full set of twelve same-

and different-continent dummies. While the effect of genetic distance falls in magnitude, it remains
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large and highly significant statistically.

Columns 2 and 3 make use of the separate genetic distance dataset we have for 26 countries

in Europe. Here, the relevant measure of genetic distance is FST distance to the English (the

birthplace of the Industrial Revolution), though the results do not change if we use distance to

the Germans instead. We find that within Europe, genetic distance is again a strong predictor of

absolute differences in log per capita income. The standardized beta on genetic distance relative to

the English is of the same order of magnitude as that found in the world sample, and it is highly

significant. There are two major genetic clines in Europe: one separating the North and the South,

another one separating the East and the West. These correspond to North-South and East-West

income differences. Since the East-West cline overlaps to a large degree with regions that were

on either side of the Iron Curtain during the Cold War, to assess whether this historical feature

explains all of the effect of genetic distance on economic performance we repeat our regression

using income in 1870 (from Maddison), well prior to the rise of the Eastern bloc. We find that the

effect of genetic distance is in fact larger in magnitude in the immediate aftermath of the Industrial

Revolution, with the standardized beta rising to almost 44%. This results assuages concerns that

the contemporary results were a result of the fact that the Iron Curtain as a first approximation

separated Slavic from non-Slavic Europeans. It is also highly consistent with the barriers story

since, as we further explore below, the effect of genetic distance should be larger around the time of

a large innovation, in the midst of the process whereby countries other than the frontier are busy

adopting the frontier technology in proportion to how genetically far they are from the frontier. In

sum, our effects hold within Europe, where genetic distance is better measured.

Since the basic result of this chapter holds so strongly for Europe, might Europe drive the World

results? To test this, in column 4 we exclude any pairs of countries containing at least one European

country. Compared to the baseline results, the standardized effect of genetic distance relative to

the USA declines from 30% to 25%, but remains large and statistically significant - highlighting

that the results are not due to Europe alone. To drive home the point, in column 5 we control

for the absolute difference in the share of the population of European descent, using data from the

Putterman and Weil (2010) migration matrix. The regression now controls more broadly for the

effect of Europeanness, and while the effect of the absolute difference in the share of Europeans is

a positive and statistically significant determinant of differences in per capita income, its inclusion

in the regression only moderately reduces the standardized effect of relative genetic distance (to
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27%). We conclude that our results are not driven by the inclusion of European countries in the

sample, nor are they driven by the genetic difference between Europeans and the rest.

The final geographic concern that we explore is whether Sub-Saharan Africa drives our results.

As Figure 2 illustrates, Sub-Saharan African populations are genetically distant from the rest of

the world: the Out of Africa migrations occurring about 70,000 years were the first foray of modern

humans out of Africa, and consequently Africans and other world populations have had the longest

time to drift apart genetically from each other. Sub-Saharan populations also have some of the

lowest pre capita GDPs recorded in the world. While it is part of our story to ascribe some of the

poverty of Africa to the barriers to technological transmission brought about by its high degree of

genealogical distance from the rest of the world, it would be concerning if our results were entirely

driven by Sub-Saharan Africa. To address this concern, in column (6) of Table 3 we exclude any

pair that involves at least one Sub-Saharan country from our sample. We find that the effect of

genetic distance falls a little, but remains positive, statistically significant, and large in magnitude

with a standardized beta equal to 17%. Together with the strong results within Europe, this should

lay to rest any notion that our results are driven solely by Sub-Saharan Africa.

4.1.3 Historical analysis

We now turn to a historical analysis of the determinants of aggregate measures of economic per-

formance, seeking to achieve two main goals. The first is to assess the robustness of the effect of

genetic distance through time. The second goal is to describe the time path of the standardized

effect of genetic distance around the time of the Industrial Revolution. In our barriers model, a

major innovation such as the Industrial Revolution should lead to a specific pattern in the evolution

of the effect of relative genetic distance on differences in economic development. Specifically, the

effect of genetic distance should be large in the aftermath of the onset of the Industrial Revolution

in the frontier country. As more and more societies adopt the Industrial Revolution, the effect

should gradually decline. We now redefine the frontier country as the United Kingdom (i.e. the

English population) since it is a more appropriate choice for the period concerned.22

22This choice is not very material. In fact, relative genetic distance to the English and relative genetic distance

to the United States are very highly correlated, because the United States are primarily composed of populations

from Western Europe - either the English or populations genetically very close to the English. In fact, by world

standards genetic distances betweem Western European populations are so small that it matters little empirically

which Western European population is chosen as the frontier. For instance, for 1500 we experimented with using
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Table 4 displays pairwise correlations between historical measures of differences in economic

development and genetic distance. For the 1500 period, we consider the correlation between relative

genetic distance to the English using the 1500 match, and population density. For periods from

1820 to today, it is best to rely on the correlation between contemporaneous weighted genetic

distance relative to the UK, and the absolute difference in log per capita income at various dates.23

A few remarks are in order: First, this data reveals some persistence in economic fortunes. In

spite of being different measures, even the absolute difference in population density in 1500 and

the absolute difference in log per capita income in 2005 bear a correlation of about 12% with each

other. Correlations between income-based measures are much higher (for instance the correlation of

income differences in 1820 and 2005 is 33%). Second, genetic distance is positively and significantly

correlated with these measures of differences in economic performance at all dates. For instance,

the correlation between the absolute difference in population density in 1500 and relative genetic

distance to the English in 1500 is about 16%. This rises to 32% in 2005 (comparisons of magnitudes

should be made cautiously from this table as the underlying samples differs by date - but in the

case of 1500 and 2005 the samples are very similar - more on this point below). In general, simple

correlations reveal that despite some changes in the relative fortunes of nations over the last 500

years, the correlation between genetic distance and development seems to exist at all dates.

Table 5 turns to regression analysis. Across all columns, corresponding to different dates,

genetic distance relative to the UK comes out with a positive, significant coeffi cient. Thus, the

effect of genetic distance is robust to considering different dates and a different measure of economic

development for the Malthusian period. The penultimate row of Table 5 shows the evolution of

the standardized effect of genetic distance over time for a common sample of 820 country pairs

(41 countries), for which income data is available at all dates. The magnitudes here are somewhat

smaller than when using unrestricted samples across periods, in part because the 41 countries only

include one Sub-Saharan African country (and that country is South Africa, which is relatively

rich). However, restricting the sample to pairs available at all dates allows for a comparison of

magnitudes across time. To facilitate interpretation, the standardized effects from the common

Italy as the frontier country; results were unchanged.

23We lack genetic distance data suitable for the millenia prior to 1500, despite the existence of some population

density data for early dates. At any rate it is not clear that our barriers story would apply with as much force in

periods where geographic barriers to the diffusion of innovation were so overwhelming, except perhaps in a regionally

narrow context.
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sample are displayed in Figure 5.

This figure lends further credence to the barriers model. Indeed, just as predicted above, the

effect of genetic distance, which is initially modest in 1820, rises by around 75% to reach a peak

in 1913, and thereafter declines. Thus, in the few decades following the adoption of the Industrial

Revolution by countries in the (genetic) periphery of England, the effect of genetic distance was

maximal. Thereafter, as more and more societies industrialized, the effect fell steadily.

4.2 Results for specific innovations

The analysis above concerns determinants of differences in aggregate productivity. This is useful

to analyze very broad trends like the diffusion of the Industrial Revolution. Yet our model also

applies to the diffusion of more specific technologies. Indeed, if our empirical results applied to

aggregate measures of development or technological sophistication only, but did not extend to

more disaggregated technologies, it would cast doubt on the hypothesis that the main effect of

genetic distance is to hinder the transmission of technologies across societies with very different

cultures and histories. In this subsection, we use data directly at the technology usage level to

address this issue.

Table 6 starts with some summary statistics from the CEG dataset, pertaining to the con-

temporary period. Panel A is mainly meant to assist in the interpretation of the regressions that

come next, but Panel B already contains interesting information. The first observation is that

differences in the intensity of technology usage in 1970-2000 across various technological categories

are correlated, but imperfectly. Second, differences in technology usage intensity are positively

correlated with per capita income, but the correlations are in the 0.4 − 0.7 range depending on

the technological category, so these variables do not all measure the same thing. In other words,

our measures of differences in technology usage are not simply indicators of differences in overall

economic performance. Third, differences in technology usage are correlated more strongly with

genetic distance relative to the frontier than with genetic distance per se. In fact, correlations

with the latter are often close to zero while correlations with the former are always positive and

significant.

Table 7 carries out the regression analysis for the contemporary period, controlling for geo-

graphic distance. Genetic distance relative to the frontier comes out positive in all cases, and sig-

nificant at the 5% level or better for 3 of the 4 technological categories, as well as for the summary
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index of overall technology usage. The only category for which genetic distance is not significant

is agricultural technologies. One possible interpretation is that agricultural technologies, for the

contemporary period under consideration, have already widely diffused around the globe and are

already intensively in use in much of the developing world, so that the effect of genetic distance

as a barrier to their adoption can no longer be detected. We also carried out the same regression

analysis as that in Table 8, but adding to the specification the measure of absolute genetic distance

between pairs.24 We found that relative genetic distance always trumped absolute distance, which

sometimes carried a negative sign and was statistically insignificant in most cases. Thus, our test

of the barriers story (equation 30) also works when considering technology usage intensity rather

than aggregate measures of development.

Turning to the historical evidence, Table 8 examines the determinants of technology usage

differences along the extensive margin in the year 1500. As before, we use the English population

as the frontier (as before, it matters little if we use the Italians instead - Italy was arguably the

most technologically sophisticated country in the world in 1500). For 1500 we have 5 rather than

4 technological categories, plus the overall index of technological sophistication. We find that in

all cases, genetic distance relative to the English is positive and statistically significant at the 10%

level. In 5 of the 6 columns, it is significant at the 1% level (as before, the weakest results are for

agricultural technologies). This is remarkable given the crudeness of the measure of technological

use in 1500, based on counting whether or not each of 24 technologies, grouped in functional

categories, were in use at all in a given country at the time. Moreover, as before we also conducted

horseraces between relative genetic distance and absolute genetic distance.25 For five of the six

indicators we again found that relative genetic distance trumps absolute genetic distance, with the

latter entering with either the wrong sign, a very small magnitude, or low significance levels. The

only exception, once again, was for agriculture.

Finally, we carried out the same analysis with the 33 disaggregated technologies chosen from

the CHAT dataset. The results are presented in Table 9. For each technology, the table reports

the coeffi cient on relative genetic distance to the USA (from a regression in which the standard set

of geographic controls are included), the number of observations and countries, the standardized

beta coeffi cient on genetic distance, and the R2. The results vary across technologies of course, but

24Results are available upon request.

25Results are available upon request.
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interesting observations emerge: 1) In every single case the effect of genetic distance on differences

in technology usage intensity is positive. 2) In 22 of the 33 cases, the coeffi cient on genetic distance

is significant at the 10% level, and in 19 cases at the 5% level. 3) The effect of genetic distance

is particularly strong for disaggregated agricultural technologies and industrial technologies, and

weakest for transportation and medical technologies. 4) The magnitude of the standardized effects,

for those that are statistically significant, vary from 8% to 24%, a bit smaller but roughly in line

with what we found using aggregate measured of productivity or the CEG dataset.26

A consideration of technologies at a more disaggregated data, rather than measures of overall

productivity at the economy-wide level, provides additional evidence that human barriers matter.

Not only is genetic distance relative to the frontier a strong predictor of technological usage dif-

ferences in 1500 and in the contemporary period, we also find that it generally trumps absolute

genetic distance. The fact that genetic distance accounts for differences in technological usage in-

dicates that our previous aggregate results might in large part be accounted for by hindrances to

the adoption of frontier technology brought about by historical separation between populations.

5 Ancestry and Long Run Development

In this section, we broaden the discussion of the role of ancestry as a determinant of the comparative

wealth of nations, building on the discussion in Spolaore andWacziarg (2013).27 Our basic argument

is that traits passed on across generations within societies play a fundamental role in accounting

for the persistence of economic fortunes. However, the specific way in which these traits operate

can take a variety of forms. In the model presented above, we argued that differences in vertically-

transmitted traits introduced barriers to the diffusion of innovations across nations. We found

much evidence that this was the case for aggregate productivity and for specific innovations going

back to the year 1500. However, we have not said much about what causes the onset of these

innovations. Other authors have pointed to a role for traits to bear a direct effect on the onset

of major productivity enhancing innovations, broadly construed. We have also not said much

26We also conducted horseraces between absolute and relative genetic distance for each of the 33 disaggregated

technologies. Relative genetic distance remains positive and significant in 17 of the 22 cases where relative genetic

distance is significant at the 10% level when entered on its own. In the vast majority of cases, absolute genetic

distance enters insignificantly or with a negative sign.

27The discussion of the relation between cultural traits and economic outcomes is also drawn in part from Spolaore

(2014).

29



about the nature and specific method of transmission of the traits that are thought to matter for

prosperity. These traits could be transmitted culturally, biologically, or through the interaction of

culture and biology.

We proceed in several steps. We start by briefly describing the growing literature on long

run persistence in the wealth of nations. We argue that the intergenerational transmission of

traits has a lot to do with explaining long-run persistence, because traits are much more easily

transmitted across generations that across societies. That is, ancestry matters to explain the wealth

of nations. Next, we introduce a taxonomy to understand the manner in which ancestry matters.

In particular, we introduce a distinction between barrier effects and direct effects of vertical traits.

We also distinguish between the mode of transmission of the traits, either cultural, biological or

dual. Finally, we provide several examples from the recent literature illustrating the various ways

in which ancestry can matter.

5.1 Persistence and Reversals: The Role of Ancestry

Discussions of the long run roots of comparative development usually starts with geographic fac-

tors. A large literature has documented strong correlations between economic development and

geographic factors, for instance latitude, climate and the disease environment.28 The observation

that geographic factors are correlated with development was at the root of Diamond’s 1997 book

on the long-run development advantage enjoyed by Eurasia - particularly Europe. On the surface,

geography is a convenient explanation for persistence, because geography does not change very

much, so that this immutable factor can be thought of as a prime reason for persistence in the

wealth of nations. This view, however, is overly simplistic, for at least two reasons: First, the

effect of geography on economic outcome can change depending on the technology of production.

Geographic features useful to produce GDP in an agrarian economy may not be as helpful in an

industrial society. Second, the manner in which geographic factors affect development today is

open to a variety of interpretations. The factors could operate directly (for instance a high disease

burden can reduce productivity) or have an indirect effect through their historical legacy. While

both channels could be operative, the literature has increasingly moved in the latter direction.

28See, for instance: on climate and temperature, Myrdal (1968); Kamarck (1976); Masters and McMillan (2001);

Sachs (2001). On the disease environment: Bloom and Sachs (1998); Sachs, Mellinger and Gallup (2001); Sachs and

Malaney (2002). On natural resources: Sachs and Warner (2001).
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In fact, Jared Diamond (1997) pointed out early that geographic factors such as the shape of

continents and the availability of domesticable plants and animals probably did not have much to

do with current development directly. It is because these factors gave people from Eurasia an early

advantage in development, and because this advantage has persisted through the generations, that

Europeans were able to conquer the New World (and many parts of the old one) and to remain

at the top of the world distribution of income for a long time. This point became more widely

recognized since a pathbreaking paper by Acemoglu, Johson and Robinson (2002) where these

authors pointed out that the reversal of fortune experienced by former colonies between 1500 and

today was inconsistent with a simple, direct effect of geography: for the geographic factors that

made countries poor five hundred years ago should be expected to make them poor today still. And

yet fortunes were reversed among a significant portion of the world’s countries. This paper pointed

to an indirect effect of geography, operating through institutions: where Europeans settled, they

brought good institutions, and these are the fundamental proximate cause of development. Where

Europeans chose to exploit and extract, the institutions they bequeathed had negative effects on

development.

Yet that interpretation, too, became the subject of debates. Glaeser, La Porta, Lopez-de-Silanes

and Shleifer (2004), for instance, state: "the Europeans who settled in the New World may have

brought with them not so much their institutions, but themselves, that is, their human capital.

This theoretical ambiguity is consistent with the empirical evidence ”We would go even further:

Europeans who settled in the New World brought with them the whole panoply of vertically trans-

mitted traits - institutions, human capital, norms, values, preferences. This vector of vertical traits

was by definition easier to transmit to the descendents of Europeans than it was to convey to

colonized populations. This interpretation suggests an important role for ancestry, rather than

only institutions, as an explanation for the reversal of fortunes. Locations that were colonized

by Europeans and were previously characterized by low population density and the prevalence of

non-agrarian modes of subsistence became rich. Locations that were inhospitable to Europeans

remained poor, and Europeans remained at the top of the world distribution of aggregate produc-

tivity throughout.29 That the wealth of a nation seems so strongly affected by the wealth of the

29We greatly expand on this point in Spolaore and Wacziarg (2013). In that paper, we revisit the Acemoglu,

Johnson and Robinson (2002) evidence on the reversal of fortune. By examining the correlation between population

density in 1500 and per capita income today, we confirm their findings for former colonies. Yet we also show that:

1) any evidence of a reversal of fortune disappears when European countries are included in the sample; 2) there
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ancestors of those living in that nation suggests a central role for vertically transmitted traits as

an explanation for both long-run persistence and the current distribution of income.

This interpretation led various authors to focus explicitly on persistence and ancestry. First

came our own work on genetic distance as a barrier to development, already discussed in the

previous sections (Spolaore and Wacziarg, 2009). Next came important papers by Putterman and

Weil (2010) and Comin, Easterly and Gong (2010). These papers also explore the deep historical

roots of current development.

Putterman and Weil (2010) look at two important determinants of the current wealth of na-

tions: experience with agriculture, measured by the time elapsed since the adoption of sedentary

agriculture as a primary means of food production; and experience with a centralized state, mea-

sured by the number of years a country has experienced centralized governance, discounting years

that occurred farther in the past. Both variables are predictors of today’s per capita income, but

they enter even more strongly when they are adjusted for ancestry. To adjust variables for ancestry,

Putterman and Weil construct a migration matrix. In this matrix, a row pertains to a country, and

columns contain the fraction of that country’s population whose ancestors in 1500 lived in each

of the world’s countries. For the Old World, entries are mostly diagonal: that is, the ancestors of

the French mostly lived in France in 1500. For the New World, however, the ancestors of current

populations are often in significant numbers from other continents altogether - primarily Euro-

pean countries for European colonizers, and Sub-Saharan African countries for the descendants of

former slaves. By premultiplying a variable by the migration matrix, one obtains this variable’s

ancestry-adjusted counterpart. For instance, for Australia the history of the location is the history

of the Aborigenes, while the history of the current population is mostly the history of the English.

Putterman and Weil’s major contribution is to show that ancestry-adjusted years of agriculture

and ancestry-adjusted state centralization are much stronger predictors of current income than

their non-ancestry adjusted counterparts. This suggests an important role, again, for traits that

are passed on intergenerationally within populations.

Comin, Easterly and Gong (2010) take a different approach, but reach a similar conclusion: they

show that the degree of technological sophistication of countries is highly autocorrelated even at

is evidence of persistence among countries that were not former European colonies; 3) persistence is even stronger

when looking at countries that are populated mostly by their indigenous populations. These facts are suggestive of

a strong role for ancestry as an explanation for persistence.
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very long horizons: they detect correlations between current technological usage levels (measured

along the intensive margin in the current period) and technological usage as far back as the year

1,000 BC (measured along the extensive margin for a set of 12 ancient technologies). Current per

capita income is also correlated strongly with past technological sophistication in the years 1,000

BC, 1 AD and 1500 AD. In this case, a history of technological advancement predicts current

income and technological advancement, an indication of persistence. The crucial point, however,

is again that when the historical (lagged) variables are entered in their ancestry-adjusted forms,

they are much stronger predictors of current outcomes than variables that capture the history of a

location. In this context also, there appears to be a strong role for ancestry and intergenerational

transmission as explanations for the persistence in technology and income levels.

Why does ancestry matter? In what follows we present a taxonomy of the possible effects of

vertically transmitted traits on growth and development. This taxonomy is summarized in the

following matrix:

Mode of Operation −→

Mode of Transmission ↓
Direct Effect Barrier Effect

Biological Transmission

(genetic and/or epigenetic)
Quadrant I Quadrant IV

Cultural Transmission

(behavioral and/or symbolic)
Quadrant II Quadrant V

Dual Transmission

(biological-cultural interaction)
Quadrant III Quadrant VI

.

5.2 Modes of Transmission

The inheritance of traits from one generation to the next in humans takes place through several

modes of transmission and along multiple dimensions. Recent scientific advances stress the com-

plexity of different inheritance mechanisms (for example, see Jablonka and Lamb, 2005) which

interact with each other as well as with environmental and societal factors. For simplicity, in our

taxonomy we focus on three broad categories: biological transmission, cultural transmission, and

the interaction of biological and cultural transmission (dual transmission)

Biological transmission includes genetic transmission. Individuals inherit nuclear DNA from

their parents. Humans also inherit mitochondrial DNA (mtDNA) only from their mothers Mito-
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chondrial DNA codes for the genes of the cell structures which convert food into useable energy,

while nuclear DNA codes for the rest of the human genome. The measures of genetic distance

used previously in this chapter are based on differences in the distribution of nuclear DNA across

populations - that is, on differences in DNA inherited from both parents. As already mentioned,

genetic distance is based on neutral genes, which change randomly and are not affected by natural

selection. Other parts of the DNA code for genes that are affected by natural selection, such as

those affecting eye color or skin color. All these traits are transmitted biologically.

However, genetic transmission is not the only form of biological transmission. In recent years

biologists have also given much attention to epigenetic inheritance systems. Epigenetics refers to

the mechanisms through which cells with the same genetic information (i.e., DNA) acquire different

phenotypes (i.e., observable characteristics) and transmit them to their daughter cells. Examples

of epigenetic markers are methylation patterns: DNA methylation is a biochemical process that

stably alters the expression of genes in cells by adding a methyl group to a DNA nucleotide. There

is currently a debate in the scientific literature about the extent to which epigenetic changes can

be inherited from one generation to the next - for instance, see Chandler and Alleman (2008) and

Morgan and Whitelaw (2008). An example of possible intergenerational epigenetic inheritance,

mentioned by Morgan and Whitelaw (2008), is the Dutch Famine Birth Cohort Study by Lumey

(1992), reporting that children born during famine in World War II were smaller than average

and that the effects could last two generations (but see also Stein and Lumey, 2002). In principle,

epigenetic mechanisms could explain rapid biological changes in populations that could not be due

to genetic selection. Epigenetic mechanisms have recently been emphasized by microeconomists

working on human capital formation, such as Cunha and Heckman (2007, p. 32), who wrote:

"the nature versus nurture distinction is obsolete. The modern literature on epigenetic expression

teaches us that the sharp distinction between acquired skills and ability featured in the early human

capital literature is not tenable."

Of course, biological inheritance is not the only mode of intergenerational transmission of traits

across human beings. Many traits are transmitted culturally from one generation to the next. An

important example is the specific language that each child acquires through learning and imitation,

usually (but not necessarily) from parents or other close relatives. Other cultural traits include

values, habits, and norms. In general, culture is a broad concept, which encompasses a vast range

of traits that are not transmitted biologically across generations. The Webster’s Encyclopedic
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Unabdidged Dictionary defines culture as including “the behaviours and beliefs characteristic of

a particular social, ethnic or age group” and “the total ways of living built up by a group of

human beings and transmitted from one generation to the other.”Richerson and Boyd (2005, p.

5), two leading scholars in the field of cultural evolution, define culture as "information capable

of affecting individuals’behavior that they acquire from other members of their species through

teaching, imitation, and other forms of social transmission."

Following Jablonka and Lamb (2005), we can distinguish between two forms of cultural trans-

mission, both involving social learning: behavioral transmission and symbolic transmission. Be-

havioral transmission takes place when individuals learn from each other by direct observation and

imitation. Symbolic transmission instead is about learning by means of systems of symbols - for

example, by reading books. Most scholars of human evolution believe that the bulk of observed hu-

man variation in intergenerationally transmitted traits is mainly due to cultural transmission rather

than to biological transmission. For instance, prominent anthropologists Henrich and McElreath

(2003, p. 123) write: "While a variety of local genetic adaptations exist within our species, it seems

certain that the same basic genetic endowment produces arctic foraging, tropical horticulture, and

desert pastoralism [...]. The behavioral adaptations that explain the immense success of our species

are cultural in the sense that they are transmitted among individuals by social learning and have

accumulated over generations. Understanding how and when such culturally evolved adaptations

arise requires understanding of both the evolution of the psychological mechanisms that underlie

human social learning and the evolutionary (population) dynamics of cultural systems."

In sum, our classification of modes of intergenerational transmission includes two broad cate-

gories: biological transmission (both genetic and epigenetic) and cultural transmission (behavioral

and symbolic). However, these two forms of transmission should not be viewed as completely dis-

tinct and independent. On the contrary, a growing line of research stresses that human evolution

often proceeds from the interaction between biological and cultural inheritance systems, where each

system is influenced by the other system. According to Richerson and Boyd (2005, p. 194), genes

and culture can be seen as "obligate mutualists, like two species that synergistically combine their

specialized capacities to do things that neither can do alone. [. . . ] Genes, by themselves can’t

readily adapt to rapidly changing environments. Cultural variants, by themselves, can’t do any-

thing without brains and bodies. Genes and culture are tightly coupled but subject to evolutionary

forces that tug behavior in different directions." This approach to evolution is known as dual in-
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heritance theory or gene-culture coevolution (Cavalli-Sforza and Feldman, 1976, 1981; Boyd and

Richerson, 1985; Richerson and Boyd, 2005). In such a framework, observable human outcomes can

be viewed as stemming from the interplay of genetically and culturally transmitted traits. A well-

known example of gene-culture coevolution is the spread of the gene controlling lactose absorption

in adults in response to cultural innovations, such as domestication and dairying (Simoons, 1969,

1970; Richerson and Boyd, 2005, chapter 6). The ability to digest milk as an adult (i.e., to be

"lactase persistent") is given by a gene that is unequally distributed among different populations:

it is prevalent among populations of European descent, but very rare among East Asians and com-

pletely absent among Native Americans. It is well-understood that such gene did spread rapidly

after the introduction of domestication among populations that kept milk-producing animals, such

as cows or goats, reinforcing the advantages from those practices from an evolutionary perspective.

In general, dual inheritance - the third "mode of transmission" in our taxonomy - captures such a

complex interaction between genetic and cultural factors.

5.3 Modes of Operation

Traits can be transmitted from one generation to the next biologically, culturally, or through the

interaction of genes and culture (dual transmission). But how do such traits affect economic

outcomes? Our taxonomy distinguishes between direct effects and barrier effects.

Direct Effects. Most of the economic literature has focused on direct effects of vertically trans-

mitted traits on income and productivity. Such effects occur when individuals inherit traits that

directly impact economic performance, either positively or negatively. For example, most contri-

butions on the relation between cultural values and economic development stress inherited norms

and beliefs that directly lead to positive or negative economic outcomes. Max Weber (1905), the

great German sociologist and political economist, in his classic book The Protestant Ethic and the

Spirit of Capitalism, provided a systematic and influential study emphasizing the direct positive

effects of specific culturally transmitted traits on economic performance. Weber was in part re-

acting to the Marxist view, which considered cultural beliefs and values, such as religion, as the

by-product of underlying economic factors. Instead, Max Weber argued for direct causal effects of

culturally transmitted traits on economic outcomes. Specifically, he proposed that the emergence

of a new Protestant ethic, which linked “good works”to predestination and salvation, had a direct

effect on the rising of the “spirit of capitalism,” a new attitude towards the pursuit of economic
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prosperity. Among Weber’s more recent followers is, for example, the economic historian David

Landes (1998, 2000), who titled one of his contributions “Culture Makes Almost All the Differ-

ence,”and opened it with the line "Max Weber was right.”Landes’emphasis was also on the direct

economic effects of culture, defined as “the inner values and attitudes that guide a population.”

According to Landes (p. 12): “This is not to say that Weber’s “ideal type”of capitalist could be

found only among Calvinists [. . . ]. People of all faiths and no faith can grow up to be rational,

diligent, orderly, productive, clean, and humourless. [. . . ] Weber’s argument, as I see it, is that in

sixteenth- to eighteenth-century northern Europe, religion encouraged the appearance in numbers

of a personality type that had been exceptional and adventitious before and that this type created

a new economy (a new mode of production) that we know as (industrial) capitalism.”

An extensive empirical literature has attempted to directly test Weber’s hypotheses, often

concluding with a negative assessment of direct effects of Protestant values on economic outcomes.

Recent contributors to this literature were Sascha Becker and Ludger Woessman (2009), who used

county-level data from nineteenth century Prussia, and attempted to estimate the causal effect of

Protestantism on economic performance by exploiting the fact that the Lutheran Reform expanded

concentrically from Wittenberg, Martin Luther’s city. They concluded that Protestantism fostered

economic development, but that the main channel was not the spread of a new work ethic associated

with religious values, but the expansion of literacy as a consequence of education in reading the

Bible.

The direct effects of religious beliefs on economic outcomes were investigated empirically by

Barro and McCleary (2003). Barro and McClearly used instrumental variables, such as the existence

of a state religion and of a regulated market structure, to identify the direct effect of religion on

growth. They concluded that economic growth is positively associated with the extent of religious

beliefs, such as those in hell and heaven, but negatively associated to church attendance. They

interpreted their results as consistent with a direct effect of religion - a culturally transmitted set

of beliefs - on individual characteristics that foster economic performance. Guiso, Sapienza and

Zingales (2003) also studied the effects of religious beliefs on economic attitudes and outcomes,

such as cooperation, legal rules, thriftiness, the market economy, and female labor participation.

They found that religious beliefs tend to be associated with attitudes conducive to higher income

per capita and higher economic growth, and that the effects differ across religious denominations.

While scholars such as Weber have stressed the positive direct effects of cultural traits, such as
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the Protestant ethic, other scholars have argued that specific culturally transmitted traits and values

can be responsible for economic backwardness and underdevelopment. An influential and widely

debated example of this view was provided by the political scientist Edward Banfield (1958) in his

classic book The Moral Basis of a Backward Society, written in collaboration with his wife Laura

Fasano, and based on their visit to the Southern Italian town of Chiaromonte (called “Montegrano”

in the book). Banfield argued that the economic backwardness of that society could be partly

explained by the direct effects of inherited values summarized by the term “amoral familism," and

consisting in a lack of mutual trust and cooperation, and a disregard for the interests of fellow

citizens who were not part of one’s immediate family. A theory of intergenerational transmission

directly inspired by Bansfield’s analysis has been provided recently by Guido Tabellini (2008), who

also built on Alberto Bisin and Thierry Verdier’s (2000, 2001) seminal work on the economics

of cultural transmission. In Tabellini’s model, parents choose which values to transmit to their

children, depending on the patterns of external enforcement and expected future transactions. In

particular, Tabellini shows that path dependence is possible: adverse initial conditions can lead

to a unique equilibrium where legal enforcement is weak and inherited cultural values discourage

cooperation.

A recent example of an empirical study of the direct effects of inherited traits on economic

growth is Algan and Cahuc (2010). Algan and Cahuc document how the level of inherited trust

of descendants of immigrants in the United States is significantly influenced by the country of

origin and the timing of arrival of their ancestors. They then use the inherited trust of descendants

of immigrants in the US as a time-varying measure of inherited trust in their country of origin,

in order to identify the impact of inherited trust on growth, controlling for country fixed effects.

Algan and Cahuc find that changes in inherited trust during the 20th century have a large impact

on economic development in a panel of 24 countries.

The above-mentioned contributions are examples of a much larger literature on the direct effects

of cultural traits on economic outcomes. There is also a smaller but important literature that has

extended the analysis to traits that are transmitted biologically, or stem from the interaction of

genes and culture (dual inheritance). An example is the contribution by Galor and Moav (2002),

who modeled an intergenerationally transmitted trait affecting humans’fertility strategies. They

posited that some individuals inherited traits that induced them to follow a quantity-biased strat-

egy, consisting in the generation of a higher number of children, while other individuals followed
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a quality-biased strategy, consisting in the investment of more resources in a smaller number of

offspring. Galor and Moav argued that the evolutionary dynamics of these traits had direct impli-

cations for the onset of the Industrial Revolution and the following demographic transition. In the

preindustrial world, caught in a Malthusian trap, selective pressures favored parental investment,

which led to higher productivity. In their model, the spread of this inherited predilection for a

smaller number of children led endogenously to the transition out of the Malthusian regime. Galor

and Moav in their contribution stressed biological transmission. However, their analysis can also

be interpreted as a model of cultural transmission of traits influencing fertility strategies, or as the

outcome of the interaction of biological and cultural traits.

A more recent contribution that stresses the direct effects of different distributions of inter-

generationally transmitted traits on economic development is Ashraf and Galor (2013a). In that

study, Ashraf and Galor focus on genetic diversity. While genetic distance refers to genetic differ-

ences between populations, genetic diversity is about heterogeneity within populations. In their

study, Ashraf and Galor (2013a) document a non-monotonic relationship between genetic diversity

and development, and argue that such relation is causal, stemming from a trade-off between the

beneficial and the detrimental effects of diversity of traits on productivity. Again, while the focus

of Ashraf and Galor’s empirical analysis is on genetic variables, the modes of transmission from

intergenerational traits to economic outcomes can operate both through biological and cultural

channels, and their interactions. A further discussion of the relation between genetic diversity and

ethnic and cultural fragmentation is provided by Ashraf and Galor (2013b).

The interaction of culture and genes is explicitly at the center of the economic analysis of

the effecst of lactase persistence provided by Justin Cook (2012). Cook argues that country-level

variation in the frequency of lactase persistence is positively and significantly related to economic

development in pre-modern times - which he measures by using population density in 1500 CE,

as we did earlier in this chapter. Specifically, he finds that an increase in one standard deviation

in the frequency of lactase persistent individuals (roughly 24 percentage points) is associated with

a 40 percent increase in pre-modern population density. Cook uses instrumental variables (solar

radiation) to assess causality, and interprets his results as reflecting the direct effects of inherited

cultural and biological traits associated with the introduction of dairying.

Barrier effects. As we already mentioned, most of the contributions on the relation between

ancestry and economic performance, including the examples mentioned above, tend to focus on
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the direct effects of intergenerationally transmitted traits on economic outcomes. However, as we

emphasized in the theoretical and empirical analysis presented in the first sections of this chapter,

differences in inherited traits can also affect comparative development by acting as barriers to the

diffusion of goods, services, ideas and innovations. A focus on barriers can explain why differences

in inherited traits may matter, even though many new ideas and innovations are learned "hori-

zontally," from individuals and populations that are not directly related, rather than "vertically,"

from one’s close relatives and ancestors. The fact is that, when barrier effects do exist, vertically

transmitted traits also affect horizontal learning and diffusion. People are more likely to learn new

ideas and adopt new technologies from other people who, while not directly related to them, share

more recent common ancestors and, consequently, also share on average a larger set of inherited

traits and characteristics.

The literature on the barrier effects of vertically transmitted traits is not as large as the one

on direct effects. In addition to our own contributions, already discussed, a recent example is

Guiso, Sapienza and Zingales (2009), who studied the barrier effects of cultural traits by using

data on bilateral trust between European countries. They found that bilateral trust is affected by

cultural aspects of the match between trusting country and trusted country, such as their history

of conflicts and their religious, genetic, and somatic similarities. Lower bilateral trust then acts as

a cultural barrier: it is associated with less bilateral trade, less portfolio investment, and less direct

investment between the two countries, even after controlling for other characteristics of the two

countries. These findings suggest that culturally transmitted traits can have a significant barrier

effect on economic interactions between different societies.

Another study that documents the effects of cultural barriers on trade is provided by Gabriel

Felbermayr and Farid Toubal (2010). Felbermayr and Toubal measure cultural proximity or dis-

tance between countries using bilateral score data from the Eurovision Song Contest, a popular

European television show. For instance, viewers in Cyprus award Greek singers more points on av-

erage than the Greeks receive from viewers in other countries, and vice versa. In contrast, Cypriot

and Turkish viewers give each other below-average scores. Felbermayr and Toubal exploit the vari-

ation of these scores within-pair and across time to estimate the effects of cultural proximity on

bilateral trade, finding significant effects.

An open question concerns the relationship between direct and barrier effects. Of course, in

principle both modes of operation can be at work simultaneously, and some specific traits can play
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a role along both channels. For example, populations that inherit values and beliefs that make

them more open to risk and innovation could benefit directly from such traits, but may also face

lower barriers to interactions with other groups. In general, the study of barrier effects stemming

from historical and cultural divergence is a promising area of research, still in its infancy, both from

a theoretical and empirical perspective. The taxonomy and discussion presented in this chapter are

only a first step towards a more complete understandiing of this important topic.

6 Conclusion

In this chapter we provided a theoretical framework and empirical evidence to shed light on a

fundamental question: What barriers prevent the diffusion of the most productive technologies

from the technological frontier to less developed economies?

In the first part of this chapter, we presented a simple analytical framework to illustrate two basic

ideas. The first idea was that genetic distance between populations, which measures their degree

of genealogical relatedness, can be interpreted as a summary metric for average differences in traits

that are transmitted with variation from one generation to the next. We modeled the transmission

of such "vertical" traits - that is, the transmission of characteristics which are passed on vertically

across generations within a population over the very long run - and derived the relation between

divergence in vertical traits and genetic distance. The second idea was that differences in vertically

transmitted traits act as obstacles to horizontal learning and imitation across different populations.

We argued that populations that share a more recent common history and are therefore closer in

terms of vertical traits tend to face lower costs and barriers to adopting each other’s technological

innovations.

In the second part of this chapter we brought these ideas to the data. We introduced measures

of genetic distance between populations, and used them to test our barrier model of diffusion. We

found that, as the model predicts, genetic distance measured relative to the world’s technological

frontier trumps absolute genetic distance as an explanation for bilateral income differences and

for the different usage of specific technological innovations. This was the case both historically,

when we measured technological usage on the extensive margin, and for more recent technological

developments, when we measured technological usage along the intensive margin. We also docu-

mented that, as implied by our model, the effect of genetic distance was more pronounced after a

major innovation, such as the onset of the Industrial Revolution, and declined as more populations
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adopted the frontier’s innovation. Overall, we found considerable evidence that barriers introduced

by historical separation between populations have played a key role in the diffusion of technological

innovations and economic growth.

In the third and final part of this chapter, we discussed our hypotheses and results within the

broader context of the growing literature on the deep historical roots of economic development.

To organize our discussion we presented a taxonomy based on Spolaore and Wacziarg (2013). The

taxonomy provided a conceptual basis for discussing how intergenerationally transmitted traits

could conceivably affect economic outcomes. Our taxonomy distinguished possible economic effects

of vertical traits along two dimensions. The first dimension referred to the mode of transmission of

vertical traits, which could be biological (genetic or epigenetic), cultural (behavioral or symbolic), or

resulting from the interaction of genes and culture (dual inheritance). The second dimension defined

the mode of operation of these traits, depending on whether they have direct effects on economic

outcomes, or operate as barriers to economic interactions between populations. We briefly reviewed

examples of economic contributions that focused on different effects - direct effects or barrier effects

- of traits transmitted biologically, culturally, or through dual transmission. We argued that most

of the literature so far has mainly focused on direct effects, while much less attention has been given

to the study of barriers to development stemming from long-term cultural and historical divergence.

The topic of human barriers introduced by historical divergence and their effects on social,

political and economic outcomes is an exciting emerging field of study. Our own work continues to

explore the effects of variation in human relatedness on a variety of political economy outcomes.

For instance, Spolaore and Wacziarg (2012b) examines the effects of genealogical relatedness on the

propensity for interstate militarized conflict, finding that a smaller genetic distance is associated

with a significantly higher probability of a bilateral conflict between two countries. This effect,

again, is interpreted as evidence of a barrier between societies characterized by distinct norms,

values, preferences and cultures. This time, however, the barrier impedes a costly rather than a

beneficial interaction. In ongoing work, we explore the effects of relatedness on trade and financial

flows across countries. Finally, we have recently begun an effort to better characterize what ge-

netic relatedness captures, by investigating the relationship between various measures of cultural

differences and genetic distance - the goal being to more clearly identify the source of the barriers

introduced by a lack of genealogical relatedness. For instance, the barriers could take the form of

a lack of trust, differences in preferences or norms, or transactions costs linked to an inability to
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communicate and coordinate. This chapter provides only an introduction and first step towards a

more comprehensive and systematic analysis of such important, unexplored, and promising topics.
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Appendix 1 - Technologies used in the various datasets

A. 24 Technologies in the CEG 1500 AD Dataset.

1. Military : Standing army, cavalry, firearms, muskets, field artillery, warfare capable ships, heavy

naval guns, ships (+180 guns).

2. Agriculture: Hunting and gathering, pastoralism, hand cultivation, plough cultivation.

3. Transportation : Ships capable of crossing the Atlantic Ocean, ships capable of crossing the

Pacific Ocean, ships capable of reaching the Indian Ocean, wheel, magnetic compass, horse powered

vehicles.

4. Communications: Movable block printing, woodblock or block printing, books, paper.

5. Industry : Steel, iron.

B. 9 Technologies in the CEG 2000 AD Dataset.

Electricity (in 1990), Internet (in 1996), PCs (in 2002), cell phones (in 2002), telephones (in 1970),

cargo and passenger aviation (in 1990), trucks (in 1990), cars (in 1990), tractors (in 1970).

C. 33 Technologies in the CHAT dataset for 1990-1999.

1. Agriculture: Harvest machines, tractors used in agriculture, metric tons of fertilizer consumed,

area of irrigated crops, share of cropland area planted with modern varieties (% cropland), metric

tons of pesticides.

2. Transportation: civil aviation passenger km, lengths of rail line, tons of freight carried on

railways, passenger cars in use and commercial vehicles in use.

3. Medical : Hospital beds, DPT immunization before age 1, measles immunization before age 1.

4. Communications: Cable TV, cell phones, personal computers, access to the Internet, items

mailed/received, newspaper circulation, radios, telegrams sent, mainline telephone lines, television

sets in use.

5. Industry and other : Output of electricity, KwHr, automatic looms, total looms, crude steel

production in electric arc furnaces, weight of artificial (cellulosic) fibers used in spindles, weight

of synthetic (non cellulosic) fibers used in spindles, weight of all types of fibers used in spindles,

visitor beds available in hotels and elsewhere, visitor rooms available in hotels and elsewhere.
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Table 1 – Summary Statistics for the Main Variables of Interest 
 
 
Panel A - Mean and Variation 
 

Variable Mean Standard 
Deviation 

Minimum Maximum 

Difference in log income per 
capita 2005  

1.3844 0.9894 0.0000241 4.8775

FST genetic distance relative 
to the English, 1500 

0.0710 0.0555 0 0.2288

Weighted FST genetic 
distance relative to the USA  

0.0612 0.0475 0 0.2127

Weighted FST genetic 
distance between pairs  

0.1124 0.0818 0 0.3364

Geodesic distance (thousands 
of km) 

7.1349 4.1330 0.0105 19.9512

(10,440 observations) 
 
 
 
Panel B - Correlations  
 

 Difference in 
log income 
per capita 

2005 

FST genetic 
distance 

relative to the 
English, 1500

Weighted 
FST gen. dist. 
relative to the 

USA 

Weighted 
FST genetic 

distance 
between pairs

FST genetic distance relative 
to the English, 1500 

0.2745* 1  

Weighted FST genetic 
distance relative to the USA  

0.3226* 0.6105* 1 

Weighted FST genetic 
distance between pairs  

0.1950* 0.2408* 0.5876* 1

Geodesic distance (thousands 
of km) 

0.0126 0.0644* 0.0899* 0.3317*

(*: significant at the 5% level. 10,440 observations) 
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Table 2 - Income difference regressions 
(Dependent variable: Difference in log per capita income, 2005) 

 
 (1) (2) (3) (4) 
 OLS with 

relative GD 
OLS with 
simple GD 

Horserace 
between 

simple and 
relative GD 

2SLS with 
1500 GD 

FST gen. dist. relative to  6.290 6.029 9.720
the USA, weighted (1.175)*** (1.239)*** (1.974)***
FST genetic distance 2.164 0.275 
 (0.596)*** (0.541) 
Absolute difference in  0.232 0.559 0.255 0.152
latitudes (0.245) (0.279)** (0.248) (0.300)
Absolute difference in  -0.025 -0.196 -0.007 0.238
longitudes (0.220) (0.240) (0.213) (0.247)
Geodesic Distance -0.012 -0.008 -0.016 -0.042
 (0.026) (0.027) (0.025) (0.028)
=1 for contiguity -0.418 -0.495 -0.414 -0.326
 (0.060)*** (0.060)*** (0.061)*** (0.069)***
=1 if either country is  0.174 0.143 0.174 0.211
an island (0.083)** (0.083)* (0.083)** (0.084)***
=1 if either country is  0.008 0.024 0.005 -0.029
landlocked (0.085) (0.090) (0.087) (0.085)
=1 if pair shares at least  -0.001 0.028 -0.000 -0.024
one sea or ocean (0.067) (0.077) (0.067) (0.078)
Constant 1.022 1.143 1.017 0.891
 (0.089)*** (0.086)*** (0.090)*** (0.099)***
Standardized Beta (%) 30.18 10.39 28.93 46.49
R-Squared 0.11 0.07 0.11 0.09

Two-way clustered standard errors in parentheses. 
* significant at 10%; ** significant at 5%; *** significant at 1%. 
All regressions are based on 10,440 observations.    
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Figure 2 - Genetic distance among 42 populations.  
Source: Cavalli-Sforza et al., 1994. 
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