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1 Introduction

Bayesian methods are now widely used to estimate dynamic stochastic general equilibrium (DSGE)

models. Bayesian methods combine the likelihood function of a DSGE model with a prior distri-

bution for its parameters to form a posterior distribution that can then be used for inference and

decision making. Because it is infeasible to compute moments of the posterior distribution analyt-

ically, simulation methods must be used to characterize the posterior. Starting with Schorfheide

(2000) and Otrok (2001), the random walk Metropolis-Hastings (RWMH) algorithm – an iterative

simulation technique belonging to the class of algorithms known as Markov chain Monte Carlo

(MCMC) algorithms – has been the workhorse simulator for DSGE models. Herbst (2011) reports

that 95% of papers published from 2005 to 2010 in eight top economics journals use the RWMH

algorithm to implement Bayesian estimation of DSGE models.

While the complexity of DSGE models has increased over time, the efficacy of the RWMH

algorithm has declined. For instance, it is well documented, e.g., Chib and Ramamurthy (2010)

and Herbst (2011), that the sequences of DSGE model parameter draws generated by the RWMH

algorithm can be very slow to converge to the posterior distribution. This problem is not limited to

DSGE model applications; it is important for many areas of applied Bayesian research. Parameter

draws may exhibit high serial correlation such that averages of these draws converge very slowly

to moments of posterior distributions, or the algorithm may get stuck near local mode and fail to

explore the posterior distribution in its entirety (see, for instance, Neal (2003)).

In this paper we explore an alternative class of algorithms, namely, so-called sequential Monte

Carlo (SMC) algorithms, to generate draws from posterior distributions associated with DSGE

models. SMC techniques are usually associated with solving intractable integration problems (such

as filtering nonlinear state space systems); however, they can be used to estimate static model

parameters – a point raised by Chopin (2002). The SMC method employed here amounts to

recursively constructing importance samplers for a sequence of distributions that begin at an easy-

to-sample initial distribution and end at the posterior, supplemented by a series of intermediate

“bridge” distributions. The draws from these distributions are called particles and each particle is

associated with an importance weight. The particles that represent bridge distribution n − 1 are

“mutated” into particles for bridge distribution n using the Metropolis-Hastings (MH) algorithm.

The contributions of this paper are threefold. First, we tailor a generic SMC algorithm to make

it suitable for the analysis of a large-scale DSGE model. More specifically, building on insights from
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the application of RWMH algorithms to DSGE models, we use random blocking of parameters as

well as mixture proposal distributions during the MH mutation step of the algorithm. Without these

modification, the algorithm failed to explore the posterior surface of large scale DSGE models. We

also made the proposal distribution adaptive, that is, its mean and covariance matrix in iteration

n is a function of the particles generated in iteration n − 1. Second, we present a strong law of

large numbers (SLLN) and a central limit theorem (CLT) for the specific version of our algorithm.

In particular, we show that, under some regularity conditions, the adaptive determination of the

proposal distribution in the mutation step of our algorithm does not affect the limit distribution of

the SMC approximation of posterior moments.

Third, we provide two empirical illustrations involving large scale DSGE models, namely the

widely used Smets and Wouters (2007) model (hereafter SW model) and a DSGE model with an-

ticipated (news) shocks developed by Schmitt-Grohé and Uribe (2012) (hereafter SGU model). We

find that the SMC algorithm is more stable than the RWMH algorithm if applied repeatedly to gen-

erate draws from the same posterior distribution, providing a better approximation of multimodal

posterior distributions, in particular. We estimate the SW model under the prior used by Smets

and Wouters (2007) as well as a more diffuse prior. While the fit of the model, measured by the

marginal data density, substantially improves under the diffuse prior, the posterior surface becomes

multimodal and the standard RWMH algorithm does a poor job in capturing this multimodality.

We also introduce a small modification to the prior distribution used by SGU to estimate their news

shock model and find that conclusions about the importance of news shocks for business cycles can

change drastically. While SGU report that anticipated shocks explain about 70% of the variance

of hours worked, under our slightly modified prior the posterior distribution becomes bimodal and

most of the posterior probability concentrates near the mode that implies that the contribution

of anticipated shocks to hours is only 30%. The RWMH algorithm is unable to characterize this

multimodal posterior reliably.

We are building on several strands of the existing literature. There exists an extensive body of

work in the statistical literature on applying SMC methods to posterior inference for static model

parameters as in Chopin (2002). Textbook treatments can be found in Cappé, Moulines, and Ryden

(2005) and Liu (2008) and a recent survey is provided by Creal (2012). The theoretical analysis in

our paper builds heavily on Chopin (2004), by modifying his proofs to suit our particular version

of the SMC algorithm. So far as we know, ours is the second paper that uses SMC to implement
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Bayesian inference in DSGE models. Creal (2007) presents a basic algorithm, which he applies to

the small-scale DSGE model of Rabanal and Rubio-Ramı́rez (2005). While we used his algorithm

as a starting point, the application to large-scale DSGE models required substantial modifications

including the more elaborate adaptive mutation step described above as well as a different sequence

of bridge distributions. Moreover, our implementation exploits parallel computation to substantially

speed up the algorithm, which is necessary for the practical implementation of this algorithm on

modern DSGE models.

In complementary research, Durham and Geweke (2012) use an SMC algorithm to estimate an

EGARCH model as well as several other small-scale reduced-form time series models. They employ

a graphical processing unit (GPU) to implement an SMC algorithm using the predictive likelihood

distribution as the bridge distribution. For our applications, the use of GPUs appeared impractical

because the solution and likelihood evaluation of DSGE models involves high-dimensional matrix

operations that are not readily available in current GPU programming languages. Durham and

Geweke (2012) also propose an adaptive tuning scheme for the sequence of the bridge distributions

and the proposal distributions used in the particle mutation step. They suggest to determine the

tuning parameters in a preliminary run of the SMC algorithm to ensure that the adaptive tuning

scheme does not invalidate the CLT for the SMC approximation. Our theoretical analysis suggests

that this is unnecessary, provided that the tuning scheme satisfies certain regularity conditions.

The authors propose a version of the SMC algorithm that divides particles into groups and carries

out independent computations for each group. The variation across groups provides a measure of

numerical accuracy. By running the SMC multiple times, we employ an evaluation scheme in our

paper that is similar in spirit to theirs.

Other authors have explored alternatives to the version of the RWMH algorithm that has be-

come standard in DSGE model applications. Several papers have tried to address the problematic

aspects of the RWMH, including Chib and Ramamurthy (2010), Curdia and Reis (2010), Kohn,

Giordani, and Strid (2010), and Herbst (2011). These papers propose alternative MCMC algorithms

that improve upon the standard single-block RWMH algorithm by grouping parameters into blocks

and cycling over conditional posterior distributions (the so-called Metropolis-within-Gibbs algo-

rithm) and by changing the proposal distribution that is used to generate proposed draws in the

Metropolis steps. Each of these algorithms, however, is an MCMC technique and remains to some

extent susceptible to the above criticism of highly correlated draws.
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On the computational front, multiple processor and core environments are becoming more

readily available. While likelihood evaluation routines and MCMC algorithms can be written to

take advantage of this,1 neither is “embarrassingly parallelizable,” that is, neither naturally exploits

the parallel computing framework. This computational challenge might bias researchers to simulate

too few draws in their MCMC chains, exacerbating the statistical problem discussed above. SMC

algorithms, on the other hand, can easily take advantage of a parallel processing environment. In

the extreme case, each draw (or particle) from the initial distribution can be assigned to a separate

processor and then converted into a sequence of draws from the “bridge” distributions. True,

some communication between the processors is necessary to normalize the particle weights and to

potentially eliminate particle degeneracy by a re-sampling step. But the most time-consuming task,

namely the evaluation of the likelihood function, can be executed in parallel.

The remainder of this paper is organized as follows. In Section 2 we review some basic insights

underlying SMC methods. The SMC algorithm tailored to DSGE model applications is presented

in Section 3 and its theoretical properties are studied in Section 4. Section 5 contains three numer-

ical illustrations, one pertaining to a stylized state space model, to motivate estimation problems

inherent to DSGE models, and two based on DSGE model posteriors obtained from actual U.S.

data. Section 6 concludes. The proofs for Section 4 and a detailed description of the DSGE models

estimated in Section 5 as well as additional empirical results are relegated to the Online Appendix.

2 Sequential Monte Carlo Methods

Let p(Y |θ) denote the likelihood function and p(θ) the prior density. The object of interest is the

posterior density p(θ|Y ) given by

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

, where p(Y ) =
∫
p(Y |θ)p(θ)dθ. (1)

The parameter vector θ has support Θ. To economize on notation, we abbreviate this density

by π(θ) = p(θ|Y ). Moreover, we denote the numerator in (1) by f(θ) = p(Y |θ)p(θ) and the

denominator by Z, which does not depend on θ. Using this more compact notation

π(θ) =
f(θ)
Z

. (2)

1For instance, one can run separate Markov chains on each processor and subsequently merge the draws.
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While for linearized DSGE models with Gaussian innovations and a regular prior density the func-

tion f(θ) can be evaluated to machine accuracy without the use of simulation approximations, the

normalization constant Z is unknown and closed-form expressions for posterior moments under

π(θ) are unavailable. Thus, posterior expectations of θ and transformations h(θ) have to be ap-

proximated numerically with Monte Carlo (MC) simulation methods. Most of the Bayesian DSGE

literature applies Markov chain Monte Carlo (MCMC) techniques. As we will argue later, the in-

creasing complexity of DSGE models combined with the emerging parallel framework for scientific

computing makes MCMC less attractive for sampling. Instead, sequential Monte Carlo (SMC)

methods, we will argue, are an appealing alternative simulation technique. We describe the basics

of SMC below. More elaborate explications can be found in Chopin (2002), Del Moral, Doucet,

and Jasra (2006), and Creal (2012).

One of the important steps in all SMC algorithms involves importance sampling: we might

try to approximate π(·) by using a different, tractable density g(θ) that is easy to sample from.

Importance sampling is based on the identity

Eπ[h(θ)] =
∫
h(θ)π(θ)dθ =

1
Z

∫
Θ
h(θ)w(θ)g(θ)dθ, where w(θ) =

f(θ)
g(θ)

, (3)

Suppose that θi iid∼ g(θ), i = 1, . . . , N . Then, under suitable regularity conditions, see Geweke

(1989), the Monte Carlo estimate

h̄ =
N∑

i=1

h(θi)W̃ i, where W̃ i =
w(θi)∑N

j=1w(θj)
, (4)

converges almost surely (a.s.) to Eπ[h(θ)] as N −→ ∞. The set of pairs {(θi, W̃ i)}N
i=1 provides

a particle approximation of π(θ). The W̃ i’s are the (normalized) importance weights assigned to

each particle value θi. The accuracy of the approximation is driven by the “closeness” of g(·) to

f(·) and is reflected in the distribution of the weights. If the distribution of weights is very uneven,

the Monte Carlo approximation h̄ is inaccurate. Uniform weights arise if g(·) ∝ f(·), which means

that we are sampling directly from π(θ).

Importance sampling was first used for posterior inference in DSGE models by DeJong, Ingram,

and Whiteman (2000). However, in practice it is extremely difficult to find densities g(θ) that lead

to efficient importance samplers. This task is particularly challenging if the posterior has a non-

normal shape, containing several peaks and valleys. The essence of the SMC methods employed in
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this paper is to construct sequential particle approximations to intermediate distributions, indexed

by n:2

πn(θ) =
fn(θ)
Zn

=
[p(Y |θ)]φnp(θ)∫
[p(Y |θ)]φnp(θ)dθ

, n = 1, . . . , φNφ
(5)

where φ1 = 0 and φNφ
= 1. Note that πn(θ) = p(θ) for n = 1. Since priors in DSGE models are

typically specified such that draws can either be generated by direct sampling or with an efficient

acceptance sampler, the initialization of the SMC algorithm is straightforward. Thus, provided it is

possible to use the approximation of πn(θ) to assist in the construction of a particle approximation

for πn+1(θ), one can use iterative approximations to estimate πNφ
(θ) = π(θ). A function (here the

likelihood) raised to a power less than one is called a tempered function. The process of estimating

the parameters of a function through a sequence of tempered functions is known as simulated

tempering. This estimation framework has a long history in statistics; see Liu (2008) and the

references therein. It is common to refer to the sequence of tempering parameters as the tempering

schedule (or heating schedule, due to its connection to simulated annealing.)

3 An SMC Algorithm for DSGE Models

We begin with the description of the basic algorithm in Section 3.1. This algorithm consists of three

steps, using Chopin (2004)’s terminology: correction, that is, reweighting the particles to reflect

the density in iteration n; selection, that is, eliminating any particle degeneracy by resampling the

particles; and mutation, that is, propagating the particles forward using a Markov transition kernel

to adapt to the current bridge density. Section 3.2 provides details on the choice of the transition

kernel in the mutation step, and the adaptive choice of various tuning parameters is discussed in

Section 3.3. Finally, we provide a summary of the key aspects of our algorithm in Section 3.4.

3.1 The Basic Algorithm

To avoid confusion as to whether θ is drawn from πn(·) or πn+1(·), we equip the parameter vector

with a subscript n. Thus, θn is associated with the density πn(·).

Algorithm 1 (Simulated Tempering SMC)

2Using the notation that Yt1:t2 = {yt1 , . . . , yt2} and Y = Y1:T one could define an integer-valued sequence φn with
φ1 = 0 and φNφ = T and define fn(θ) = p(Y1:φn |θ). This data-point tempering approach is attractive for applications
in which θ is sequentially estimated on an increasing sample.
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1. Initialization. (φ1 = 0). Draw the initial particles from the prior:

θi
1

iid∼ p(θ), W i
1 = 1, i = 1, . . . , N.

2. Recursion. For n = 2, . . . , Nφ,

(a) Correction. Reweight the particles from stage n − 1 by defining the incremental and

normalized weights

w̃i
n = [p(Y |θi

n−1)]
φn−φn−1 , W̃ i

n =
w̃i

nW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

, i = 1, . . . , N.

An approximation of Eπn [h(θ)] is given by

h̃n,N =
1
N

N∑
i=1

h(θi
n−1)W̃

i
n. (6)

(b) Selection. Compute the effective sample size ESS = N/
(

1
N

∑N
i=1(W̃

n
i )2
)
.

Case (i): If ESS < N/2, resample the particles via multinomial resampling. Let {θ̂}N
i=1

denote N iid draws from a multinomial distribution characterized by support points and

weights {θi
n−1, W̃

i
n}N

i=1 and set W i
n = 1. Case (ii): If ESS ≥ N/2, let θ̂i

n = θi
n−1 and

W i
n = W̃ i

n, i = 1, . . . , N . An approximation of Eπn [h(θ)] is given by

ĥn,N =
1
N

N∑
i=1

h(θ̂i
n)W i

n. (7)

(c) Mutation. Propagate the particles {θ̂i,W
i
n} via M steps of a MH algorithm with tran-

sition density θi
n ∼ Kn(θn|θ̂i

n; ζ) and stationary distribution πn(θ) (see Algorithm 2 for

details below). An approximation of Eπn [h(θ)] is given by

h̄n,N =
1
N

N∑
i=1

h(θi
n)W i

n. (8)

3. For n = Nφ (φNφ
= 1) the final importance sampling approximation of Eπ[h(θ)] is given by:

h̄Nφ,N =
N∑

i=1

h(θi
Nφ

)W i
Nφ
. (9)
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Our basic SMC algorithm requires tuning in two dimensions. First, the user has to specify the

number of particlesN . Under suitable regularity conditions discussed in 4, the SMC approximations

of posterior moments satisfy a CLT, which implies that the precision (i.e. inverse variance) of the

approximation increases in proportion to N . Second, the user has to determine the tempering

schedule {φn}
Nφ

n=1. All other things equal, increasing the number of stages, Nφ, will decrease the

distance between bridge distributions and thus make it easier to maintain particle weights that are

close to being uniform. The cost of increasing Nφ is that each stage requires additional likelihood

evaluations. To control the shape of the tempering schedule we introduce a parameter λ:

φn =
(
n− 1
Nφ − 1

)λ

.

A large value of λ implies that the bridge distributions will be very similar (and close to the prior)

for small values of n and very different at a later stage when n is large. In the DSGE model

applications we found a value of λ = 2 to be very useful because for smaller values the information

from the likelihood function will dominate the priors too quickly and only a few particles will

survive the correction and selection steps. Conversely, if λ is much larger than 2, it makes some of

the bridge distributions essentially redundant and leads to unnecessary computations. The choice

of λ does not affect the overall number of likelihood evaluations.

Algorithm 1 is initialized by generating iid draws from the prior distribution. This initialization

will work well as long as the prior is sufficiently diffuse to assign non-trivial probability mass to the

area of the parameter space in which the likelihood function peaks.3 If the particles are initialized

based on a more general distribution with density g(θ), then for n = 2 the incremental weights

have to be corrected by the ratio p(θ)/g(θ). In the selection step the resampling is only executed

if the effective sample size ESS, which is a function of the variance of the particle weights, falls

below some threshold. We discuss the rationale for this threshold rule in more detail in Section 4.

3.2 The Transition Kernel for the Mutation Step

The transition kernel Kn(θn|θ̂n; ζ) is generated through a sequence of M Metropolis-Hastings steps.

It is indexed by a vector of tuning parameters ζ. The transition kernel is constructed such that
3There exist papers in the DSGE model estimation literature in which the posterior mean of some parameters is

several prior standard deviations away from the prior mean. For such applications it might be necessary to choose
φ1 > 0 and to use an initial distribution that is also informed by the tempered likelihood function [p(Y |θ)]φ1 .
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for each ζ the posterior πn(θ) is an invariant distribution. The MH steps are summarized in the

following algorithm. Let θ∗ denote a particular set of values for the parameter vector θ and Σ∗ be

a covariance matrix that is conformable with the parameter vector θ. In Section 3.3 we will replace

θ∗ and Σ∗ by estimates of Eπn [θ] and Vπn [θ].

Algorithm 2 (Particle Mutation) In Step 2(c) at iteration n of Algorithm 1:

1. Randomly partition4 the parameter vector θn into Nblocks equally sized blocks, denoted by θn,b,

b = 1, . . . , Nblocks. Moreover, let θ∗b and Σ∗
b be the partitions of θ∗ and Σ∗ that correspond to

the subvector θn,b.

2. For each particle i, run M steps of the following MH algorithm. For i = 1 to M :

For b = 1 to Nblocks:

(a) Let θi
n,b,m be the parameter value for θi

n,b in the m-th iteration (initialization for m = 1:

θi
n,b,0 = θi

n−1,b) and let θi
n,−b,m =

[
θi
n,1,m, . . . , θ

i
n,b−1,m, θ

i
n,b+1,m−1, . . . , θ

i
n,Nblocks,m−1

]
.

(b) Generate a proposal draw ϑb from the mixture distribution

ϑb|(θi
n,b,m−1, θ

i
n,−b,m, θ

∗
b ,Σ

∗
b) (10)

∼ αN

(
θi
n,b,m−1, c

2Σ∗
b

)
+

1− α

2
N

(
θi
n,b,m−1, c

2diag(Σ∗
b)
)

+
1− α

2
N

(
θ∗b , c

2Σ∗
b

)

and denote the density of the proposal distribution by q(ϑb|θi
n,b,m−1, θ

i
n,−b,m, θ

∗
b ,Σ

∗
b).

(c) Define the acceptance probability

α(ϑb|θi
n,b,m−1, θ

i
n,−b,m, θ

∗
b ,Σ

∗
b)

= min

{
1,

pφn(Y |ϑb, θ
i
n,−b,m)p(ϑb, θ

i
n,−b,m)

/
q(ϑb|θi

n,b,m−1, θ
i
n,−b,m, θ

∗
b ,Σ

∗
b)

pφn(Y |θi
n,b,m−1, θ

i
n,−b,m)p(θi

n,b,m−1, θ
i
n,−b,m)

/
q(θi

n,b,m−1|ϑb, θ
i
n,−b,m, θ

∗
b ,Σ

∗
b)

}

and let

θi
n,b,m =

 ϑb with probability α(ϑb|θi
n,b,m−1, θ

i
n,−b, θ

∗
b ,Σ

∗
b)

θi
n,b,m−1 otherwise

4We assign iid U [0, 1] draws to each parameter, sort the parameters according to the assigned random numbers,
and then let the i-th block consist of parameters (i− 1)Nblocks, . . . , iNblocks.
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3. Let θi
n,b = θi

n,b,M for b = 1, . . . , Nblocks.

The particle-mutation algorithm uses several insights from the application of RWMH algo-

rithms to DSGE models. First, Chib and Ramamurthy (2010) and Herbst (2011) have documented

that in DSGE model applications blocking of parameters can drastically reduce the persistence in

Markov chains generated by the MH algorithm. Nblocks determines the number of partitions of the

parameter vector. For simple models with elliptical posteriors, blocking the parameter vector is

unnecessary. When the posterior becomes complex or the dimensionality of the parameter vector

is large, however, moving all the parameters in a single block precludes all but the smallest moves.

This could hamper the mutation step. Second, Kohn, Giordani, and Strid (2010) proposed an

adaptive MH algorithm for DSGE model posteriors in which the proposal density is a mixture of

a random-walk proposal, an independence proposal, and a t-copula estimated from previous draws

of the chain. Adopting this general idea, our proposal density in Step 2(a) of Algorithm 2 is also a

mixture. The first component corresponds to a random-walk proposal with non-diagonal covariance

matrix, the second component is a random-walk proposal with diagonal covariance matrix, and the

third component is an independence proposal density.

The tuning parameter α ∈ [0, 1] controls the weight of the mixture components. The parameter

c scales the covariance matrices of the proposal densities.5 The number of MH steps M affects the

probability that the particle mutation step is successful in the sense that θi
n 6= θ̂i

n. In practice, the

effect of increasing M turned out to be similar to the effect of raising Nφ and thereby reducing the

distance between bridge distributions. In the applications in Section 5 we set M = 1.

3.3 Adaption of the Transition Kernel

To achieve a good performance of the SMC algorithm it is important to choose some of the tuning

parameters adaptively, that is, tuning parameters for iteration n are chosen based on the particles

generated in iteration n− 1. We collect the adaptively chosen parameters in the vector ζ:

ζ =
[
c, θ∗

′
, vech(Σ∗)′

]′
. (11)

In the implementation of the mutation algorithm we fix the remaining tuning parameters, which

are M , Nblocks, and α. We also fix the tuning parameters N , Nφ, and λ for Algorithm 1 ex ante.
5In principle one could use separate scaling factors for the three mixture components but in our applications a

single scaling factor was sufficient.
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We use importance sampling approximations of Eπn [θ] and Vπn [θ] to specify θ∗ and Σ∗ and we

adjust the scaling factor c to ensure that the acceptance rate in the MH step is approximately 25%,

along the lines of Durham and Geweke (2012). At each iteration n we replace ζ in (11) with

ζ̂n =
[
ĉn, θ̃n, vech(Σ̃n)′

]′
, (12)

where ζ̂n is measurable with respect to the σ-algebra Fn−1,N generated by the particles {θi
n−1, W̃

i
n}N

i=1.
6

The following algorithm describes how ζ̂n is constructed at each iteration n.

Algorithm 3 (Adaptive Particle Mutation) Prior to Step 1 of Algorithm 2:

1. Compute importance sampling approximations θ̃n and Σ̃n of Eπn [θ] and Vπn [θ] based on the

particles {θi
n−1, W̃

i
n}N

i=1.

2. Compute the average empirical rejection rates R̂n−1(ζ̂n−1), based on the Mutation step in

iteration n − 1. The averages are computed across the Nblocks blocks and across the three

mixture components separately.

3. Adjust the scaling factor according to

ĉn = ĉn−1f
(
R̂n−1(ζ̂n−1)

)
,

where f(·) is given by

f(x) = 0.95 + 0.10
e16(x−0.25)

1 + e16(x−0.25)
.

4. Execute Algorithm 2 by replacing ζ with ζ̂n =
[
ĉn, θ̃n, vech(Σ̃n)′

]′.
Note that f(0.25) = 1, which means that the scaling factor stays constant whenever the target

acceptance rate is achieved. If the acceptance rate is below (above) 25% the scaling factor is

decreased (increased). To satisfy the regularity conditions for the theoretical analysis in Section 4,

we chose a function f(x) that is differentiable.
6We use “tilde” instead of “hat” for θ and Σ because the approximations are based on the correction step in

Algorithm 1.
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3.4 Further Discussion

Our implementation of the SMC algorithm differs from that in Creal (2007) in two important di-

mensions. First, our mutation step is more elaborate. The mixture proposal distribution proved to

be important for adapting the algorithm to large-scale DSGE models with complicated multimodal

posterior surfaces. The random blocking scheme is important for avoiding bad blocks as the cor-

relation structure of the tempered posterior changes. Moreover, the introduction of the tempering

parameter, λ, is crucial. Creal (2007) uses a linear cooling schedule (i.e., λ = 1). Even for a large

number of stages (nφ) at n = 1, the information contained in [p(Y |θ)]φ1 dominates the information

contained in the prior. This means that initializing the algorithm from the prior is impractical, as

sample impoverishment occurs immediately. In light of this, Creal (2007) initializes the simulator

from a student-t distribution centered at the posterior mode. The initialization presumes prior

knowledge of the mode(s) of the posterior and is not well suited in applications where there are

many modes or the posterior is severely non-elliptical. Instead, by using a λ > 1, we are able to

add information from the likelihood to the prior slowly. This allows us to initialize the algorithm

from the prior, working without presupposition about the shape of the posterior. Collectively, these

additional tuning parameters yield a degree of flexibility that is crucial for the implementation of

SMC algorithms on large-scale DSGE models.

Second, our implementation exploits parallel computing to substantially speed up the algorithm.

This highlights a key advantage of SMC over MCMC routines. In Algorithm 2, step 2 involves

N ×M ×Nblocks MH steps. Here, the principal computational bottleneck is the evaluation of the

likelihood itself.7 The total number of likelihood evaluations in the SMC algorithm is equal to

N ×Nφ ×Nblocks ×M . For some of the examples considered in this paper, that number can be in

the tens of millions. In our experience, the standard number of draws in an MCMC estimation of

a DSGE model is rarely more than one million. So it would appear that the SMC algorithm would

take a prohibitively long time to run. With SMC methods, however, one can exploit the fact that

the M×NB likelihood evaluations in Step 2 of Algorithm 2 can be executed independently for each

of the N particles. Given access to a multiple processor8 environment, this feature is very useful.

Because multiple core/processor setups are quite common, parallelization can be achieved easily in

many programming languages, e.g., via the MATLAB command parfor, even on a single machine.
7We speed up the evaluation of the likelihood of the DSGE model by using the Chandrasekhar recursions to

compute the predictive decomposition of the likelihood. See Herbst (2012) for details.
8We use the term processor to refer to the basic physical unit capable of executing a single thread.
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In our implementation, we use multiple machines (distributed memory) communicating via a

Message Passing Interface (MPI). To get a sense of gains from parallelization, let T (P ) be the run-

ning time of an algorithm using P processors. The relative speedup is given by S(P ) = T (1)/T (P ).

For example, for the standard SW model in Section 5.2, S(24) ≈ 15, which means that using 24

processors speeds up the algorithm by a factor of 15. A back-of-the-envelope calculation suggests

that, for the specific model and computational setup used here, about 97% of the SMC algorithm’s

time is spent in Step 2 of Algorithm 2. This means that parallelization is extremely efficient.9

4 Theoretical Properties

We proceed with a formal analysis of Algorithm 1 and provide some regularity conditions under

which the SMC approximations satisfy a SLLN and CLT. The main results are summarized in

four theorems. The first three theorems establish a SLLN/CLT for the correction, selection, and

mutation steps of Algorithm 1. The fourth theorem shows that the adaptive choice of the transition

kernel discussed in Section 3.3 does not, under some regularity conditions, affect the asymptotic

variance of the SMC approximation. The first three theorems (and their proofs) essentially corre-

spond to Lemmas A.1, A.2, and A.3 in Chopin (2004). We make three modifications: (i) while our

proofs closely follow the proofs in Chopin (2004), we use our specific assumptions about the prior

and likelihood function; (ii) our algorithm executes the three steps in a different order; and (iii) we

resample only if ESS falls below the threshold N/2, which requires an adjustment in some of the

asymptotic variance formulas. Although the first three theorems are not new, we think that it is

worthwhile to reproduce them, because the asymptotic variance formulas provide valuable insights

for practitioners into the behavior of the algorithm. To the best of our knowledge, the fourth

theorem is new. It states that the adaptive choice of ζ has no effect on the limit distribution of

the SMC approximation. This asymptotic variance, of course, depends on ζ, which we define to be

the probability limit of ζ̂n in (12). Detailed proofs of the four theorems are provided in the Online

Appendix. We begin with some assumptions on the prior and the likelihood function:10

9We perform this calculation as follows. Divide the algorithm instructions in two parts: a fraction 1 − F of
serial (i.e., non-parallelizable) instructions and F instructions which can be executed in parallel. Amdahl’s Law,
see Amdahl (1967), states that the best expected improvement from using P processors/cores/threads is T (P ) =
T (1)(1−F +F/P ). Using the runtimes for our algorithm for various P s, we can come up with an (admittedly crude)
estimate for F .

10Our Assumptions correspond to Conditions 3 and 4 in Durham and Geweke (2012).
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Assumption 1 Suppose that (i) the prior is proper:
∫
p(θ)dθ < ∞; (ii) the likelihood function is

uniformly bounded: supθ∈Θ p(Y |θ) < M <∞; and (iii)
∫

[p(Y |θ)]φ2p(θ)dθ > 0.

For the analysis of a DSGE model, the restriction to proper prior distributions does not pose

a real constraint on the researcher. In fact most priors used in the literature are fairly informative

and many parameters have a bounded domain. We also assume that the likelihood function is

bounded from above and that there exists a set of parameters with non-zero measure under the

prior distribution for which the likelihood function is strictly positive, meaning that the marginal

tempered data density is positive at the observed data. Throughout this section we will assume that

the object of interest is the posterior mean of the scalar function h(θ). Extensions to vector-valued

functions are straightforward. The convergence of the sequential Monte Carlo approximations

requires the existence of moments. We define the classes of functions H1 and H2 as

H1 =
{
h(θ)

∣∣∃ δ > 0 s.t.
∫
|h(θ)|1+δp(θ)dθ <∞

}
,

H2 =
{
h(θ)

∣∣∃ δ > 0 s.t.
∫
|h(θ)|2+δp(θ)dθ <∞

}
and our convergence results will apply to functions in these two classes. Assumption 1 implies that

for functions in Hj j + δ posterior moments exist for all values of the tempering parameter φ.11

We follow Chopin (2004) and state the convergence results in an inductive manner, starting

from the following assumption:

Assumption 2 (i) h̄n−1,N
a.s.−→ Eπn−1 [h] for every h ∈ H1.

(ii)
√
N(h̄n−1,N − Eπn−1 [h]) =⇒ N(0,Ωn−1(h)) for every h ∈ H2.

It is straightforward to verify that Assumption 2 is satisfied for n = 2. Recall that φ1 = 0.

According to Step 1 of Algorithm 1 the particles {θi
1,W

i
1} are obtained using an iid sample from

the prior distribution. Thus, for h ∈ H1 and h ∈ H2 the moment conditions for the SLLN and

the CLT for iid random variables are satisfied and Ω1(h) = Eπ1

[
(h − Eπ1 [h])

2
]
. To present the

subsequent results it is convenient to normalize the incremental weights as follows. Let

vn(θ) =
Zn−1

Zn
[p(Y |θ)]φn−φn−1

11In principle the classes of functions Hj can be enlarged to functions for which posterior moments exist only if
φ ≥ φ > 0. In this case one could start the algorithm from φ1 = φ using a proposal density that delivers uniformly
bounded importance weights.
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such that Eπn−1 [h(θ)vn(θ)] = Eπn [h(θ)]. Theorem 1 summarizes the convergence results for the

Monte Carlo approximations obtained after the correction step:

Theorem 1 [Correction Step] Suppose that Assumptions 1 and 2 are satisfied. Then, h̃n,N defined

in (6) converges as follows: (i) h̃n,N
a.s.−→ Eπn [h] for every h ∈ H1; (ii)

√
N(h̃n,N − Eπn [h]) =⇒

N(0, Ω̃n(h)), where Ω̃n(h) = Ωn−1

(
vn(θ)

(
h(θ)− Eπn [h]

))
, for every h ∈ H2.

The asymptotic variance Ω̃n(h) has the familiar form of the variance of an importance sampling

approximation where the vn(θ)s correspond to the importance sampling weights. As discussed, for

instance, in Liu (2008), a crude approximation of Ω̃n(h) is given by (N/ESS)Ωn−1

(
h(θ)−Eπn [h]

)
,

which provides a rationale for monitoring ESS (see the selection step of Algorithm 1).12 However,

ESS does not directly measure the overall asymptotic variance of the SMC approximation. For

the subsequent selection step we distinguish between the case in which the particles are resampled,

i.e. ESS < N/2, and the case in which the resampling is skipped.

Theorem 2 [Selection Step] Suppose that Assumptions 1 and 2 are satisfied. Then, ĥn,N defined

in (7) converges as follows: (i) ĥn,N
a.s.−→ Eπn [h] for every h ∈ H1; (ii)

√
N(ĥn,N − Eπn [h]) =⇒

N(0, Ω̂n(h)) for every h ∈ H2. Case (a): if the particles are resampled, then Ω̂n(h) = Ω̃n(h) +

Vπn [h]. Case (b): if the particles not are resampled, then Ω̂n(h) = Ω̃n(h).

A comparison of Ω̂n(h) in cases (a) and (b) highlights that the resampling adds noise Vπn [h]

to the Monte Carlo approximation. However, it also equalizes the particle weights and thereby

reduces the variance in the correction step of iteration n + 1. The rule of resampling whenever

ESS < N/2 tries to strike a balance between this trade-off. To obtain the convergence results for

the mutation step we need the following additional assumption on the transition kernel:

Assumption 3 πn(θ) is an invariant distribution associated with the transition kernel, that is:∫
θ̂ Kn(θ|θ̂; ζ)πn(θ̂)dθ̂ = πn(θ).

Theorem 3 [Mutation Step] Suppose that Assumptions 1, 2, and 3 are satisfied. Then, h̄n,N de-

fined in (8) converges as follows: (i) h̄n,N
a.s.−→ Eπn [h] for every h ∈ H1; (ii)

√
N(h̄n,N−Eπn [h]) =⇒

12Creal, Koopman, and Shephard (2009) suggest various visual indicators of weight performance: (i) a scatter plot
of the top 100 weights should be free of outliers; (ii) the histogram of the remaining weights should not be sharply
skewed, indicating that many of the particles have very little weight; and (iii) recursive estimates of the variance of
the weights should be stable.
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N(0,Ωn(h)) for every h ∈ H2. Case (a): if the particles were resampled in the preceeding selection

step, then Ωn(h) = Eπn

[
VKn(·|θ;ζ)[h]

]
+ Ω̂n

(
EKn(·|θ̂n;ζ)[h]

)
. Case (b): If the last resampling was

executed in iteration n− p, then Ωn(h) = E
[
W 2VKn(·|θ;ζ)[h]

]
+ Ω̂n

(
EKn(·|θ̂n;ζ)[h]

)
, where

E
[
W 2VKn(·|θ;ζ)[h]

]
=

∫
θn−1

· · ·
∫

θn−p

VKn(·|θn−1;ζ)[h]

(
p∏

l=1

v2
n+1−l(θn−l)

)(
p−1∏
l=1

Kn−l(θn−l|θn−l−1; ζ)

)
×πn−p(θn−p)dθn−p · · · dθn−1.

The asymptotic variance Ωn(h) consists of two terms. The first term captures the average

conditional variance of the Markov transition kernel Kn(·|θ; ζ). If the particle weights are not equal

to one, then the conditional variance needs to get scaled by the weights, which are functions of

the particles from the previous iterations. The second term captures the variance of the average of

the conditional expectations EKn(·|θ̂i
n;ζ)[h], which are functions of the resampled particles θ̂i

n. The

variance Ωn(h) depends on the tuning parameter ζ of the Markov transition kernel.

To study the effect of choosing the tuning parameters ζ adaptively by replacing it with ζ̂n, where

ζ̂n is measurable with respect to the σ-algebra generated by {θi
n−1, W̃

i
n}N

i=1, we use the following

decomposition

EKn(·|θ̂;ζ)[h] = h(θ̂) + Ψ(θ̂, ζ;h). (13)

Since Eπn

[
EKn(·|θ̂;ζ)[h]

]
= Eπn [h] by Assumption 3, we deduce that Eπn [Ψ(θ̂, ζ;h)] = 0 for all ζ.

We now make the high-level assumption that ζ̂n approaches a limit value ζ as N −→ ∞ and that

Ψ(θ̂, ζ;h) is differentiable with respect to ζ.

Assumption 4 Suppose the following conditions are satisfied:

(i)
√
N(ζ̂n − ζ) = Op(1)

(ii) Ψ(θ, ζ;h) ∈ H1 and Ψ(θ, ζ;h2) ∈ H1 are twice differentiable and there exist constants M1

and M2, independent of θ and ζ, such that ‖Ψζζ(θ, ζ;h)‖ < M1 and ‖Ψζζ(θ, ζ;h2)‖ < M2.

Theorem 4 If Assumption 4 is satisfied then the fixed tuning parameters ζ in Algorithm 2 can be

replaced by the adaptive tuning parameters ζ̂n in Algorithm 3 without affecting the limit distribution

Ωn(h) in Theorem 3.
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Since Eπn [Ψ(θ̂, ζ;h)] = 0 for all ζ, it is also the case that the expected values of the derivatives

with respect to ζ are equal to zero: Eπn [Ψζ(θ̂, ζ;h)] = 0 and Eπn [Ψζζ(θ̂, ζ;h)] = 0. The proof relies

on the insight that

1√
N

N∑
i=1

(
EKn(·|θ̂i

n;ζ̂n)[h]− EKn(·|θ̂i
n;ζ)[h]

)
=

(
1
N

N∑
i=1

Ψζ(θ̂i
n, ζ;h)W

i
n

)
√
N(ζ̂n − ζ) + op(1)

= op(1)Op(1) + op(1).

The first op(1) is obtained by noting that according to Theorem 2, 1
N

∑N
i=1 Ψζ(θ̂i

n, ζ;h)W
i
n

a.s.−→

Eπn [Ψζ(θ̂, ζ;h)] = 0. In the remainder of this section we will verify Assumption 4 for a special case

of Algorithm 2.

Example: Suppose that M = 1, Nblocks = 1, and α = 1. The transition density can be expressed

as

Kn(θ|θ̂; ζ) = αn(θ|θ̂; ζ)q(θ|θ̂; ζ) + rn(θ̂; ζ)δ(θ|θ̂), (14)

where q(θ|θ̂; ζ) is the proposal density, δ(θ|θ̂) is the dirac function,13 and

αn(θ|θ̂; ζ) = min

{
1,
πn(θ)/q(θ|θ̂; ζ)
πn(θ̂)/q(θ̂|θ; ζ)

}
, rn(θ̂; ζ) = 1−

∫
αn(θ|θ̂; ζ)q(θ|θ̂; ζ)dθ.

The function rn(θ̂; ζ) is the probability that the proposed draw is rejected. The function Ψ(θ̂, ζ;h)

is given by

Ψ(θ̂, ζ;h) =
∫
h(θ)αn(θ|θ̂; ζ)q(θ|θ̂; ζ)dθ − h(θ̂)

∫
αn(θ|θ̂; ζ)q(θ|θ̂; ζ)dθ. (15)

Under the restriction α = 1 the conditional acceptance probability does not depend on ζ, that is,

αn(θ|θ̂; ζ) = αn(θ|θ̂), and the proposal density takes the form

q(θ|θ̂; ζ) = (2π)−k/2|c21Σ∗|−1/2 exp
{
−1

2
(θ − θ̂)′(c21Σ∗)−1(θ − θ̂)

}
= exp

{
l(θ|θ̂; ζ)

}
.

Its derivatives are given by

qζ(θ|θ̂; ζ) = lζ(θ|θ̂; ζ)q(θ|θ̂; ζ) and qζζ(θ|θ̂; ζ) =
[
lζ(θ|θ̂; ζ)l′ζ(θ|θ̂; ζ) + lζζ(θ|θ̂; ζ)

]
q(θ|θ̂; ζ).

13It has the properties that δ(θ|θ̂) = 0 for θ 6= θ̂ and
∫

δ(θ|θ̂)dθ = 1.
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The derivatives of the log density with respect to ζ, lζ(θ|θ̂; ζ), and lζζ(θ|θ̂; ζ) are polynomial func-

tions of θ and therefore integrable with respect to θ under the Gaussian proposal density q(θ|θ̂; ζ).

Thus, the differentiability condition of Assumption 4 is satisfied.

We now verify that
√
N(ζ̂n−ζ) is stochastically bounded. Let Σ∗ = Vπn [θ] and define Σ̃n as the

Monte Carlo approximation of Σ∗ based on the particles {θi
n−1, W̃

i
n}N

i=1. Then, Theorem 1 implies

that
√
N
(
vech(Σ̃n)−vech(Σ∗)

)
= Op(1). The empirical rejection rate in iteration n−1 is given by

R̂j,n−1(ζ̂n−1) =
1
N

∑
i=1

{θi
n−1 = θ̂i

n−1}

and has expected value

E[R̂j,n−1(ζ̂n−1)|F̂n−1,N ] =
1
N

N∑
i=1

rn−1(θ̂i
n−1; ζ̂n−1).

The arguments used in the proof of Theorem 3 can be modified to verify that conditional on F̂n−1,N ,
√
N
(
R̂j,n−1(ζ̂n−1) − E[R̂j,n−1(ζ̂n−1)|F̂n−1,N ]

)
converges in distribution to a Gaussian limit and is

therefore Op(1). Using the relationship between ĉn and the rejection rate in iteration n−1 specified

in Algorithm 3, we deduce that
√
N(ĉn − c) = Op(1). �

Verifying the regularity conditions for the general transition kernel associated with Algorithm 2

is more tedious. For M > 1 or Nblocks > 1 the representation of the transition kernel’s density

in (14) involves additional point masses and the expression for Ψ(θ̂, ζ;h) in (15) becomes more

complicated. For α < 1 it is no longer true that the conditional acceptance probability αn(θ|θ̂; ζ)

is invariant to ζ. Due to the min operator in the definition of αn(·) there are points at which the

function is no longer differentiable with respect to ζ. Thus, rather than verifying the differentiability

of the integrants in (15) directly one has to integrate with respect to θ separately over the regions

Θl =
{
θ
∣∣ πn(θ)q(θ̂|θ, ζ) ≤ πn(θ̂)q(θ|θ̂, ζ)

}
and Θu = Θ\Θl and show that the boundary ∂Θl is a

smooth function of ζ.

5 Applications

We now consider three applications of the proposed SMC algorithm and provide comparisons to

a standard RWMH algorithm. Section 5.1 evaluates the posterior distribution of a small stylized

state-space model based on simulated data. In Section 5.2 we consider the SW model. Typically, the
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SW model is estimated under a fairly informative prior distribution that leads to a well-behaved

posterior distribution when combined with U.S. data. However, under a less informative prior

the posterior distribution becomes more irregular and provides an interesting application for our

algorithm. Finally, in Section 5.3 we apply the algorithm to a real business cycle model proposed

by Schmitt-Grohé and Uribe (2012) which, in addition to standard shocks, is driven by a large

number of anticipated shocks, e.g., news about future changes in technology. These news shocks

make parameter identification more difficult. The SW model and the SGU model are estimated

based on actual U.S. data.

5.1 A Stylized State-Space Model

To illustrate the difficulties that can arise when generating draws from the posterior density p(θ|Y ),

consider the following stylized state-space model discussed in Schorfheide (2010):

yt = [1 1]st, st =

 φ1 0

φ3 φ2

 st−1 +

 1

0

 εt, εt ∼ iidN(0, 1). (16)

The mapping between some structural parameters θ = [θ1, θ2]′ and the reduced-form parameters

φ = [φ1, φ2, φ3]′ is assumed to be

φ1 = θ2
1, φ2 = (1− θ2

1), φ3 − φ2 = −θ1θ2. (17)

The first state, s1,t, looks like a typical exogenous driving force of a DSGE model, e.g., total

factor productivity, while the second state s2,t evolves like an endogenous state variable, e.g., the

capital stock, driven by the exogenous process and past realizations of itself. The mapping from

structural to reduced form parameters is chosen to highlight the identification problems endemic

to DSGE models. First, θ2 is not identifiable when θ1 is close to 0, since it enters the model only

multiplicatively. Second, there is a global identification problem. Root cancellation in the AR and

MA lag polynomials for yt causes a bimodality in the likelihood function. To illustrate this, we

simulate T = 200 observations given θ = [0.45, 0.45]′. This parameterization is observationally

equivalent to θ = [0.89, 0.22]′. Moreover, we use a prior distribution that is uniform on the square

0 ≤ θ1 ≤ 1 and 0 ≤ θ2 ≤ 1.

Tuning of Algorithms. The SMC algorithm is configured as follows. We set Nφ = 50, N = 1024,
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Figure 1: State Space Model: Log Likelihood Function and Posterior Draws
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Notes: The left panel shows a contour plot of the log likelihood function overlaid with draws from
the RWMH (red) and SMC (red) algorithms. The right panel shows sequential density estimates
of πn(θ1) using output from the SMC algorithm. Here n = 1, . . . , 50, φ1 = 0, and φ50 = 1.

and λ = 1. Since this is a very simple (and correctly specified) model, we use only Nblocks = 1

block, M = 1, and set α = 0.9. The SMC algorithm works extremely well for this small problem,

so changing the hyperparameters does not change the results or running time very much. For

comparison, we also run the standard RWMH algorithm with a proposal density that is a bivariate

independent normal scaled to achieve a 25% acceptance rate. Changing this proposal variance does

not materially affect the results.

Results. The left panel of Figure 1 plots the contours of the posterior density overlaid with draws

from the SMC algorithm (black) and the RWMH (red). It is clear that the RWMH algorithm fails

to mix on both modes, while the SMC does a good job of capturing the structure of the posterior.

To understand the evolution of the particles in the SMC algorithm, in the right panel of Figure 1

we show estimates of the sequence of (marginal) densities πn(θ1) ∝
∫ [
p(Y |θ1, θ2)

]φnp(θ1, θ2)dθ2,

where φn = (n − 1)/49 and n = 1, . . . 50. The density for θ1 starts out very flat, reflecting the

fact that for low n the uniform prior dominates the scaled likelihood. As n increases, the bimodal

structure quickly emerges and becomes very pronounced as φn approaches one. This plot highlights

some of the crucial features of SMC. The general characteristics of the posterior are established

relatively quickly in the algorithm. For larger DSGE models, this feature will guide our choice set

λ > 1, as the early approximations are crucial for the success of the algorithm. As the algorithm

proceeds, the approximation at step n provides a good importance sample for the distribution at
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step n+ 1.

5.2 The Smets-Wouters Model

The SW model is a medium-scale macroeconomic model that has become an important benchmark

in the DSGE model literature. The model is typically estimated with data on output, consumption,

investment, hours, wages, inflation, and interest rates. The details of the model, which we take

exactly as presented in SW, are summarized in the Online Appendix. In our subsequent analysis

we consider two prior distributions. The first prior, which we refer to as the standard prior, is

the one used by SW and many of the authors that build on their work. Our second prior is less

informative than SW’s prior and we will refer to it as the diffuse prior. However, the second prior

is still proper.

Comparison Among Algorithms. We compute posterior moments based on our proposed SMC

algorithm as well as a standard RWMH algorithm. To assess the precision of the Monte Carlo

approximations, we run both algorithms 20 times and compute means and standard deviations of

posterior moment estimates across runs. To the extent that the number of particles is large enough

for the CLTs presented in Section 4 to be accurate, the standard deviations reported below for

the SMC can be interpreted as simulation approximations of the asymptotic variance (for n = Nφ)

that appears in Theorem 3. We have taken some care to ensure an “apples-to-apples” comparison

by constraining the processing time to be roughly the same across algorithms. Given our choice

of tuning parameters (see below) the SMC algorithm for the SW model with the standard prior

(diffuse prior) runs about 1 hour and 40 minutes (2 hours and 30 minutes) using two twelve-core

Intel Xeon X5670 CPUs (24 processors in total) in parallel. The code is written in Fortran 95 and

uses the distributed-memory communication interface MPI.

When comparing the SMC and RWMH algorithms, it is important to avoid giving the SMC

algorithm an advantage simply because it can more easily exploit parallel programming techniques.

In principle, we could instead run 24 copies of the RWMH on separate processor cores and merge

the results afterwards. This may reduce sampling variance if each of the RWMH chains has reliably

converged to the posterior distribution. However, if there is a bias in the chains – because of, say,

the failure to mix on a mode in a multimodal posterior or simply a slowly converging chain –

then merging chains will not eliminate that bias. Moreover, choosing the length of the “burn-

in” phase may become an issue as discussed in Rosenthal (2000). Instead, we use a poor-man’s
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parallelization of the RWMH algorithm. It is possible to parallelize MH algorithms via pre-fetching

as discussed in Strid (2009). Pre-fetching tries to anticipate the points in the parameter space that

the MH algorithm is likely to visit in the next k iterations and executes the likelihood evaluation for

these parameter values in parallel. Once the likelihood values have been computed one can quickly

determine the next k draws. While coding the parallel MCMC algorithm efficiently is quite difficult,

the simulation results reported in Strid (2009) suggest that a parallelization using 24 processors

would lead to a speedup factor of eight at best. Thus, in our poor-man’s parallelization, we simply

increase the running time of the RWMH algorithm on a single CPU by a factor of eight. This

results in approximately 10 million draws.

Tuning of Algorithms. The hyperparameters of the SMC algorithm for the estimation under

the standard prior are N = 12, 000, Nφ = 500, λ = 2.1, Nblocks = 3, M = 1, and α = 0.9.

The total product of the number of particles, stages, and blocks was chosen by the desired run

time of the algorithm. The choice of Nφ at 500 was somewhat arbitrary, but it ensured that the

bridge distributions were never too “different.” The parameter λ was calibrated by examining the

correction step at n = 1. Essentially, we increased λ until the effective sample size after adding

the first piece of information from the likelihood was at least 10, 000; roughly speaking, 80% of the

initial particles retained substantial weight. We settled on the number of blocks by examining the

behavior of the adaptive scaling parameter c in a preliminary run. Setting Nblocks = 3 ensured that

the proposal variances were never scaled down too much for sufficient mutation. For the estimation

under the diffuse prior we increase the number of blocks to Nblocks = 6. For the RWMH algorithm,

we scale the proposal covariance to achieve an acceptance rate of approximately 30% over 5 million

draws after a burn-in period of 5 million. Each RWMH chain was initialized with a draw from the

prior distribution.

Results from the Standard Prior. It turns out that the results for the RWMH algorithm and

the SMC algorithm are close, both for the posterior means and for the 5% and 95% quantiles of the

posterior distribution. The Online Appendix contains a table with posterior means as well as 90%

equal-tail-probability credible intervals obtained from the two algorithms. A visual comparison of

the RWMH and SMC algorithm under the standard prior is provided in the left panel of Figure 2.

For seven selected parameters, Figure 2 presents the estimates of the mean, 5th, and 95th percentiles

of the posterior distribution. The shaded region covers plus and minus two standard deviations

(across runs) around the point estimates for each of the three statistics. The RWMH estimates are
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Figure 2: SW Model: Estimates of Posterior Means and Quantiles
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Notes: This figure shows estimates of the mean, 5th and 95th percentile for the RWMH (black) and
SMC (red) simulators for the SW model under the standard prior (left) and diffuse prior (right).
The boxes are centered at the mean estimate (across 20 simulations) for each statistic while the
shaded region shows plus and minus two standard deviations around this mean.

shown in black, while the SMC estimates are in red. The figure shows that both simulators are

capturing the distribution, although the SMC algorithm is more precise, as indicated by the size of

the red boxes relative to the black ones.

The parameter where this difference is most stark is µp, which is the moving average term in

the exogenous ARMA(1,1) price-markup shock process. For µp the black boxes representing the

noise around estimates of the mean, 5th, and 95th percentiles overlap, which indicates substantial

convergence problems. A close inspection of the output from the posterior simulators shows the

reason for this. On two of the twenty runs for the RWMH algorithm, the simulator becomes trapped

in a region with relatively low posterior density. That is, there is a local mode on which the RWMH

gets stuck. Note that this mode is small, so that it can be safely ignored when characterizing the

posterior distribution, unlike the multimodal posterior distributions seen below. Perhaps most

disturbing is that output from these simulators “looks” fine, in the sense that there are no abrupt

shifts in acceptance rates, recursive means, or other summary statistics routinely used as indications

of convergence. The SMC algorithm easily avoids getting trapped in the vicinity of this mode, as

the relatively small weight on particles in this region ensures they are dropped during a resampling

step or mutated.
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Table 1: SW Model: Log MDD Estimates

Algorithm (Method) MEAN(Log MDD) STD(Log MDD)
Standard Prior

SMC (Particle Estimate) -901.739 0.33
RWMH (Modified Harmonic Mean) -902.626 2.34

Diffuse Prior
SMC (Particle Estimate) -873.46 0.24
RWMH (Modified Harmonic Mean) -874.56 1.20

Notes: Means and standard deviations are over 20 runs for each algorithm.

In addition to the posterior distribution of the parameters, the so-called marginal data density

(MDD) p(Y ) =
∫
p(Y |θ)p(θ)dθ plays an important role in DSGE model applications, because it

determines the posterior model probability. The MDD is the normalization constant that appears

in the denominator of (1) and as constant Z in (2). The top panel of Table 1 shows estimates of the

marginal data densities (MDD) associated with the posterior simulators. While the SMC algorithm

delivers an estimate of the MDD as a by-product of the simulation, for the RWMH an auxiliary

estimator must be used. We use the modified harmonic mean estimator of Geweke (1999). The

estimates in Table 1 indicate that the SMC algorithm is a more stable estimator of the MDD. The

high standard deviation of the RWMH-based estimate is driven by the two runs that get stuck in

a local mode. These runs produce MDD estimates of about −902.6, a much worse fit relative to

the SMC algorithm.

The Diffuse Prior. Some researchers argue that the prior distributions used by SW are implau-

sibly tight, in the sense that they seem hard to rationalize based on information independent of the

information in the estimation sample. For instance, the tight prior on the steady-state inflation rate

is unlikely to reflect a priori beliefs of someone who has seen macroeconomic data only from the

1950s and 1960s. At the same time, this prior has a strong influence on the empirical performance

of the model, as discussed in Del Negro and Schorfheide (2013). Closely related, Müller (2011)

derives an analytical approximation for the sensitivity of posterior means to shifts in prior means

and finds evidence that the stickiness of prices and wages is driven substantially by the priors.

One side benefit of tight prior distributions is that they tend to smooth out the posterior

surface by down-weighting areas of the parameter space that exhibit local peaks in the likelihood

function but are deemed unlikely under the prior distribution. Moreover, if the likelihood function
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Table 2: SW Model with Diffuse Prior: Posterior Comparison

SMC RWMH
Parameter Mean [0.05, 0.95] STD(Mean) Neff Mean [0.05, 0.95] STD(Mean) Neff

σl 3.06 [ 1.40, 5.26] 0.04 1058 3.04 [ 1.41, 5.14] 0.15 60
l -0.06 [-2.99, 2.92] 0.07 732 -0.01 [-2.92, 2.93] 0.16 177
ιp 0.11 [ 0.01, 0.29] 0.00 637 0.12 [ 0.01, 0.29] 0.02 19
h 0.70 [ 0.59, 0.78] 0.00 522 0.69 [ 0.58, 0.78] 0.03 5
Φ 1.71 [ 1.50, 1.94] 0.01 514 1.69 [ 1.48, 1.91] 0.04 10
rπ 2.78 [ 2.12, 3.52] 0.02 507 2.76 [ 2.11, 3.51] 0.03 159
ρb 0.19 [ 0.03, 0.44] 0.01 440 0.21 [ 0.03, 0.48] 0.08 3
ϕ 8.12 [ 4.27, 12.59] 0.16 266 7.98 [ 4.16, 12.50] 1.03 6
σp 0.14 [ 0.09, 0.23] 0.00 126 0.15 [ 0.11, 0.20] 0.04 1
ξp 0.72 [ 0.60, 0.82] 0.01 91 0.73 [ 0.62, 0.82] 0.03 5
ιw 0.73 [ 0.37, 0.97] 0.02 87 0.72 [ 0.39, 0.96] 0.03 36
µp 0.77 [ 0.47, 0.98] 0.02 77 0.80 [ 0.54, 0.96] 0.10 3
ρw 0.69 [ 0.21, 0.99] 0.04 49 0.69 [ 0.21, 0.99] 0.09 11
µw 0.63 [ 0.09, 0.97] 0.05 49 0.63 [ 0.09, 0.98] 0.09 11
ξw 0.93 [ 0.80, 0.99] 0.01 43 0.93 [ 0.82, 0.99] 0.02 8

Notes: Means and standard deviations are over 20 runs for each algorithm. The RWMH algorithms
use 10 million draws with the first 5 million discarded. The SMC algorithms use 12,000 particles
and 500 stages. The two algorithms utilize approximately the same computational resources. We
define Neff = V̂π[θ]/STD2.

contains hardly any information about certain parameters and is essentially flat with respect to

these parameters, tight priors induce curvature in the posterior. In both cases the prior information

stabilizes the posterior computations. For simulators such as the RWMH this is crucial, as they

work best when the posterior is well-behaved. With a view toward comparing the effectiveness of the

different posterior simulators, we relax the priors on the SW model substantially. For parameters

which previously had a Beta prior distribution we now use a uniform distribution. Moreover, we

scale the prior variances of the other parameters by a factor of three – with the exception that we

leave the priors for the shock standard deviations unchanged. A table with the full specification of

the prior is available in the Online Appendix.

Results from the Diffuse Prior. Table 2 summarizes the output of the posterior simulators

under the diffuse prior, focusing on parameters for which the standard deviation (STD) of the

posterior mean approximation under the RWMH algorithm is greater than 0.02 (the results for the

remaining parameters are reproduced in the Online Appendix). While the average estimated mean

of the posterior seems to be roughly the same across the algorithms, the variance across simulations
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is substantially higher under the RWMH algorithm. For instance, the standard deviation of the

estimate of the mean for ρw, the autoregressive coefficient for the wage markup, is 0.09. Given the

point estimate of 0.69, this means that any given run of the simulator could easily return a mean

between 0.5 and 0.9, even after simulating a Markov chain of length 10 million. In almost all cases,

the SMC estimates are about half as noisy, usually substantially less so.

Suppose we were able to generate M iid draws from the marginal posterior distribution for a

parameter θ. The variance of the mean of these draws would be given by V(MEAN) = Vπ/M .

Thus, we define Neff = V̂π[θ]/STD2, where V̂π[θ] is an estimate of the posterior variance of

θ obtained from the output of the SMC algorithm and STD2 is the variance of the posterior

mean estimate across the 20 runs of each algorithm. The effective sample sizes Neff are also

reported in Table 2. The Neff differences across the two algorithms are striking. The SMC

algorithm is substantially more efficient, generating effective sample sizes that are one to two

orders of magnitudes larger. Neff for the inverse Frisch elasticity of labor supply σl is 1058 for

the SMC algorithm and only 60 for the RWMH. The least efficient numerical approximation is

obtained for the posterior mean of the parameters governing the wage (ξw, ιw, ρw, µw) and price

(ξp, µp, σp) stickiness. Under the SMC algorithm Neff ranges from 43 to 126, whereas for the

RWMH algorithm the effective sample size ranges from 1 to 36.

We return to Figure 2, which graphically illustrates the precision of the algorithms estimates

of the mean, 5th, and 95th percentiles of selected parameters. For the diffuse prior, the differences

across algorithms are more pronounced. First, note that relative to the analysis with the standard

prior, the posterior distributions are now more spread out. Second, the precision of the estimates

is much lower for the RWMH simulations than for the SMC simulations, as the black boxes are

generally much larger than the red boxes. In fact, the performance of the RWMH algorithm is

so poor that for the parameters restricted to the unit intervals, the boxes overlap substantially,

meaning that there is sufficient noise in the RWMH algorithm to tangle the, say, 5th and 95th

percentile of the posterior distribution for µp. Moreover, the figure confirms the message from

Table 2: some of the worst performing aspects of the RWMH algorithm are associated with the

parameters controlling the movements of wages and prices.

To examine the posterior distribution more closely, we plot joint kernel density estimates of

parameters from the wage and price block of the model. The two panels of Figure 3 display joint

density estimates of [ρw, ξw] and [ρp, µp]. ρw is the autocorrelation parameter in the exogenous
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Figure 3: SW Model with Diffuse Prior: Bivariate Contour Plots
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Notes: This figure shows contour plots for bivariate kernel density estimates of the posteriors for
[ρw, ξw] (left) and [ρp, µp] (right) from the SMC simulator. The black solid line is the 45◦ line.

wage-markup shock process, whereas ξw is the wage-Calvo parameter that determines the degree

of nominal wage rigidity. The parameters ρp and µp are the autoregressive and moving-average

coefficients of the exogenous price-markup shock process. The black line shows the 45◦ line. It is

clear that both panels display multimodal, irregular posterior distributions, exacerbated by hard

parameter boundaries.14 For the left panel, it is clear that when the autoregressive coefficient for

the exogenous wage-markup parameter, ρw, is very close to one, the endogenous wage stickiness of

the model, embodied in the wage-Calvo parameter ξw, is less important. On the other hand, when

ξw is close to one, the exogenous persistence of wage movements is much lower. The right panel in

Figure 3 shows identification problems related to the coefficients of the ARMA(1,1) price-markup

shock process.

Motivated by the bimodal features of the bivariate posteriors displayed in Figure 3, we graph

estimates of posterior probabilities associated with particular regions in the parameter space in

Figure 4. According to Figure 3 there exists a mode for which ρw > ξw (ρp > µp) and a mode for

which ρw < ξw (ρp < µp). To measure the posterior probabilities associated with these regions it is

necessary for the posterior simulator to mix draws from the two modal regions in the right propor-

tion. Figure 4 shows that the RWMH algorithm has severe difficulties approximating the posterior

probabilities precisely. The RWMH estimates are highly variable, and in the case of Pπ{ρp ≥ µp}

range from 0 to 1, whereas the SMC algorithm fairly precisely determines this probability to be
14We did some exercises using parameters transformed to unbounded space. The results were essentially unchanged.
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Figure 4: SW Model with Diffuse Prior: Posterior Probability Statements
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Notes: This figure shows estimates of various posterior probability statements. The black (RWMH)
and red (SMC) boxes are centered at the mean (across the 20 simulations) estimate of each prob-
ability statement. The shaded region shows plus and minus two standard deviations around this
mean.

Table 3: SW Model with Diffuse Prior: Two Modes

Parameter Mode 1 Mode 2
ξw 0.844 0.962
ιw 0.812 0.918
ρw 0.997 0.394
µw 0.978 0.267
ξp 0.591 0.698
ιp 0.001 0.085
ρp 0.909 0.999
µp 0.612 0.937
Log Posterior -804.14 -803.51

around 0.95.

To further explore the multimodal shape of the posterior under the diffuse prior, Table 3 lists

the values of the key wage and price parameters at two modes of the joint posterior density captured

by the SMC algorithm.15 With respect to wages, the modes identify two different drivers of fit.
15Note that these two modes of the joint posterior are different from the two modes in the marginal posteriors for

[ρw, ξw] and [ρp, µp] seen in Figure 3.
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At Mode 1, the values of the wage Calvo parameter, ξw, and wage indexation parameter, ιw, are

relatively low, while the parameters governing the exogenous wage markup process, ρw and µw, are

high. That is, model dynamics for wages near this mode are driven by the exogenous persistence

of the shock. At Mode 2, the relative importance of the parameters is reversed. The persistence of

wages is driven by the parameters that control the strength of the endogenous propagation, echoing

the shape in Figure 3. The exogenous wage markup process is much less persistent. We see that the

data support both endogenous and exogenous persistence mechanisms. Thus, a researcher’s priors

can heavily influence the assessment of the importance of nominal rigidities, echoing a conclusion

reached by Del Negro and Schorfheide (2008).

Finally, we return to the marginal data densities, which for the SW model with diffuse prior

are reported in the bottom panel of Table 1. The SMC estimate is much more precise, which is

unsurprising, given the difficulties of using the modified harmonic mean estimator on a bimodal

distribution. The modified harmonic mean estimator actually performs better on the model with

diffuse prior than on model with standard prior, mostly because the “height” of the different modes

is more similar. Still, the high standard deviation of the estimate indicates severe problems in the

algorithm. Finally, as a substantive point it should be noted that the diffuse prior model has

an MDD that is about 30 log points higher than the standard prior SW model. This is a large

difference in favor of the diffuse prior model and it highlights the a strong tension between the

standard prior and the data. This point may apply more generally to DSGE models.

5.3 The Schmitt-Grohe and Uribe News Model

The final application is SGU’s “news” model, which has been used to examine the extent to which

anticipated shocks (i.e., news) to technology, government spending, wage markups, and preferences

explain movements in major macroeconomic time series at business cycle frequencies. The core of

the SGU is a real business cycle model with real rigidities in investment, capital utilization, and

wages. While there is not enough space to go through the complete model here, we summarize

the key features below. The complete equilibrium conditions for this model are summarized in the

Online Appendix.

Important Model Features. We focus on two key features of the SGU model. First, the model

has seven exogenous processes in total: stationary and nonstationary technology, stationary and

nonstationary investment specific technology, government spending, wage markup, and preference
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shocks. Each of the seven processes is driven by three (independent) innovations, one of which is

realized contemporaneously, and two of which are realized four and eight quarters ahead. So, the

determination of a given exogenous process xt looks like:

xt = ρxxt−1 + εx,0
t + εx,4

t−4 + εx,8
t−8.

Each innovation εx,h is scaled by its own variance, σh
x , for horizons h = 0, 4, 8. Given the model’s

seven exogenous processes, there are 21 shocks in total, plus a measurement error for output.

This framework allows one to capture anticipated changes in, say, productivity as a driver of the

business cycle. This can lead to expectation-driven booms, which are, strictly speaking ruled out

in most DSGE models. In forward-looking models anticipated shocks can have large effects, so it is

crucial for the econometrician to recover plausible values for the size of these shocks. The second

key feature of the SGU model is that households a nonstandard utility function. Specifically,

the representative agent has constant-relative-risk-aversion (CRRA) preferences defined over Vt, a

bundle of consumption (Ct), labor (Lt), and additional variable St:

Vt = Ct − bCt−1 − ψLθ
tSt.

The parameter b controls the degree to which households display (internal) habit formation, and

the parameters ψ and θ are related to the level and elasticity of labor supply, respectively. The

variable St reflects a geometric average of past habit-adjusted consumption:

St = (Ct − bCt−1)
γ S1−γ

t−1 .

The presence of St, owing to Jaimovich and Rebelo (2009), nests two popular specifications for

preferences. As γ −→ 1, preferences take the form introduced by King, Plosser, and Rebelo (1988).

Here, the labor choice will be related to the intertemporal consumption-savings decision; that is,

there will be a wealth effect on labor supply. This is the standard form of preferences used in most

estimated DSGE models. In a model with anticipated shocks, it might be problematic because,

if there is a large wealth effect, hours today might fall in response to positive news about future

economic conditions. On the other hand, as γ −→ 0, preferences take the form of Greenwood,

Hercowitz, and Huffman (1988). Labor supply depends only on the current real wage: the wealth

effect on labor supply is eliminated. Jaimovich and Rebelo (2009) highlight how crucial this style
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of preference – coupled with specific adjustment costs – is to generating comovements in response

to the news about technology shocks. It is important to note that γ must lie strictly above zero to

be compatible with a balanced growth path for the economy.

The model is estimated on seven economic time series: real GDP growth, real consumption

growth, real investment growth, real government spending growth, hours, TFP growth and the

relative price of investment. The estimation period is 1955:Q1 to 2006:Q4. This model is an

interesting application for the SMC algorithm for several reasons. First, the scale of the model

is quite large. There are almost 100 states and 35 estimated parameters. Second, the model

contains many parameters for which the priors are quite diffuse, relative to standard priors used in

macroeconometrics. In particular, this is true for the variances of the shocks. Also, the prior for

the Jaimovich-Rebelo parameter, γ, is uniform across [0, 1]. We estimate the SGU model under the

prior specified by SGU (tabulated in the Online Appendix) and a modified version of this prior in

which we change the distribution of the preference parameter γ.

Tuning of Algorithms. We run the same comparison as in previous sections. For each posterior

simulator, we compute 20 runs of the algorithm. For the SMC runs, we use N = 30, 048 particles,

Nφ = 500 stages, λ = 2.1, Nblocks = 6 blocks, M = 1, and α = 0.9. We choose the tuning

parameters in a way similar to that for the SW model. We use many more particles because the

parameter space is larger and the prior is more diffuse compared to the SW model. Given the high-

dimensional parameter vector, we increase the number of blocks from 3 to 6 to ensure that mutation

still can occur. For the RWMH algorithm, we simulate chains of length 10 million, considering only

the final 5 million draws. For the proposal density we use a covariance matrix computed from an

earlier run, scaled so that the acceptance rate is roughly 32%. The SMC algorithm takes about

14 hours to run while the RWMH algorithm takes about 4 days. This suggests that a parallelized

RWMH algorithm with a speed-up factor of 6.85 would take roughly as long as the SMC algorithm.

This is in line with the estimates of Strid (2009), so we take it that the algorithms are on roughly

equal footing in terms of computing power.

Results from the SGU Prior. Table 4 displays the posteriors for the SGU model with the

standard prior. It is clear that the average posterior means from the RWMH and SMC algorithms

are roughly the same, with a few exceptions, but that the posteriors generated by the RWMH

algorithm are substantially noisier. Mean estimates of parameters associated with news about the

wage markup, σ4
µ and σ8

µ, have standard deviations about twice as large under the RWMH simulator
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Table 4: Posterior Comparison for News Model

SMC RWMH
Parameter Mean [0.05, 0.95] STD(Mean) Neff Mean [0.05, 0.95] STD(Mean) Neff

σ4
zi 3.14 [ 0.21, 7.98] 0.04 4190 3.08 [ 0.21, 7.80] 0.24 108
σ8

g 0.41 [ 0.03, 0.99] 0.01 1830 0.41 [ 0.03, 0.98] 0.03 108
σ8

zi 5.59 [ 0.75, 10.59] 0.09 1124 5.68 [ 0.87, 10.54] 0.30 102
θ 4.13 [ 3.19, 5.18] 0.02 671 4.14 [ 3.22, 5.19] 0.05 146
σ0

zi 12.27 [ 9.07, 15.84] 0.09 640 12.36 [ 9.05, 16.12] 0.09 616
σ0

µ 1.04 [ 0.06, 2.79] 0.04 626 0.92 [ 0.06, 2.39] 0.04 625
σ0

g 0.62 [ 0.06, 1.08] 0.01 609 0.60 [ 0.06, 1.07] 0.03 111
κ 9.32 [ 7.48, 11.33] 0.05 578 9.33 [ 7.49, 11.40] 0.09 208
σ4

ζ 2.43 [ 0.15, 5.95] 0.09 406 2.44 [ 0.15, 6.04] 0.04 2066
σ0

ζ 3.82 [ 0.50, 6.77] 0.10 384 3.80 [ 0.51, 6.78] 0.22 73
σ8

ζ 2.65 [ 0.17, 6.22] 0.11 335 2.62 [ 0.17, 6.07] 0.18 126
σ4

µ 4.26 [ 0.28, 5.91] 0.24 49 4.33 [ 0.84, 5.92] 0.49 12
σ8

µ 1.36 [ 0.03, 5.14] 0.24 46 1.34 [ 0.04, 4.83] 0.49 11

Notes: Means and standard deviations are over 20 runs for each algorithm. The RWMH algorithms
use 10 million draws with the first 5 million discarded. The SMC algorithms use 30,048 particles
and 500 stages. The two algorithms utilize approximately the same computational resources. We
define Neff = V̂π[θ]/STD2.

relative to the SMC simulator. Related, in terms of coverage, the posterior credible interval for the

standard deviation of the contemporaneous wage markup shock, σ0
µ, has a 95% quantile estimate to

be 2.79 under the SMC algorithm and 2.39 under the RWMH algorithm. Furthermore, the estimate

of the mean of the Jaimovich-Rebelo parameter, γ, under the SMC algorithm is outside the 90%

credible interval generated by the RWMH algorithm (not listed in Table 4). Estimates related

to news about the investment specific technology shock, σ4
zi and σ8

zi , similarly contain much more

Monte Carlo noise under the RWMH. Using the numeric efficiency measure discussed in Section 5.2,

there are about 3 times as many independent draws in the SMC samples relative to the RWMH

samples, based on the median parameter.

To shed light on the relative performance of the simulators, Figure 5 displays histograms for

the marginal posterior of parameters associated with the wage markup process. For each of the 20

runs we are computing separate histograms. Each box is centered at the mean relative histogram

height across the 20 runs for the RWMH (black) and SMC (red) algorithms. The shaded rectangles

span plus and minus two standard deviations (across the 20 runs) about this mean. We choose

evenly-sized bins for the histograms, restricting the span of the bins to a range with non-trivial
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Figure 5: News Model: RWMH and SMC Histogram of Wage Markup Process

0.9 0.92 0.94 0.96 0.98 1
0

0.1

0.2

0.3

0.4

ρ
µ

0 2 4 6
0

0.1

0.2

0.3

0.4

σ
µ

0

0 2 4 6
0

0.1

0.2

0.3

0.4

σ
µ

4

0 2 4 6
0

0.1

0.2

0.3

0.4

σ
µ

8

Notes: The boxes show estimates of histograms from each of the simulators. The RWMH algorithm
is in red and the SMC is in black. Each box is centered at the mean of the number of elements
in each, while the height of the box indicates plus or minus two standard deviations around this
mean.

posterior density. In the upper left panel, the histogram estimates for ρµ, the persistence of the

wage markup, shows that the RWMH and SMC algorithm capture roughly the same posterior

shape. The size of the black boxes relative to the red boxes shows that the SMC estimator is much

more precise. For the parameter, σ0
µ, the standard deviation of unanticipated markup shock, the

posteriors appear very slightly different, as the SMC algorithm has a long tail, consistent with the

difference in credible intervals discussed above.

Finally, the bottom two panels of Figure 5 indicate that the RWMH has the most trouble with

the multimodalities and irregularities associated with the variances of the news shocks. Looking

at the size of the boxes, it is clear that these bimodal distributions are more precisely estimated

using SMC. For instance, σ4
µ, the size of the four-quarter-ahead news about wage markups has two

sharp peaks, one roughly at 0.35, and another at 4.9. The reason for the two peaks is a (global)

identification problem. The model has difficulty distinguishing markup news at 4-quarter-ahead

frequency from 8-quarter ahead. This is borne out by the density of σ8
µ, which has similar bimodal
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Figure 6: News Model: RWMH and SMC Histograms of γ
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Notes: The boxes show estimates of histograms from each of the simulators. The RWMH algorithm
is in red and the SMC is in black. The left panel shows output from the standard prior model and
the right panel shows output from the diffuse prior model. Each box is centered at the mean of
the number of elements in each, while the height of the box indicates plus or minus two standard
deviations around this mean.

shape the density of σ4
µ, although the heights are peaked differently.16 Indeed, in the posterior

correlation of the two parameters is −0.9. The Online Appendix plots a kernel density estimate

of the bivariate posterior. In this particular instance, the economic effects of anticipated shocks

are unchanged by the failure of the RWMH to mix properly, precisely because of the identification

problem: the effects of an eight- and four-periods-ahead shock are very similar. On the other hand,

fine parsings of the structural results are incorrect under the RWMH. For instance, Table 6 of SGU

reports that eight-periods-ahead shocks are responsible for about five percent of the variation in

hours worked. Our RWMH runs that do not mix on the second σ8
µ are consistent with that result.

The SMC algorithm, which properly reflects the bimodal structure of the shock variances, puts that

number close to 20% and, in general, places more importance on longer run news about wages.

With respect to the Jaimovich-Rebelo parameter, γ, the posteriors generated by the RWMH

and the SMC algorithm yield small but interesting differences. The left panel of Figure 6 displays

the histograms for the posterior for γ. The histograms are set up as in Figure 5, with the exception

that the left panel has a different scale for the smallest bin. The RWMH algorithm essentially finds

a “pointmass” very close to zero. All of the draws from the RWMH runs are less than 0.03, which

we refer to as Mode 1. The SMC algorithm also finds significant posterior probability mass near
16To examine whether the bimodality is specific to the U.S. data that are used to estimate the SGU model, we

re-estimated the model based on simulated data. The posterior obtained from simulated data exhibits a similar
bimodal shape as the posterior given the actual data.
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zero, but in addition it detects a small mode (Mode 2) around γ = 0.6, comprising about 3% of

the total posterior. This can be seen again by looking at the red boxes to the right of 0.1, vs. the

non-existent black boxes. Keep in mind though, that the scale for Mode 2 is magnified relative to

Mode 1.

The two modes have very different economic implications. Near Mode 2 the wealth effect as-

sociated with an increase in income is nonzero. This changes the dynamics of the news model:

positive news about the future tend to decrease labor supplied today, because consumers anticipate

higher income in the future. Indeed, a parameter value of γ ≈ 0.6 implies that the importance of

anticipated shocks for hours is substantially diminished. To compensate for the reduced impor-

tance of anticipated shocks, values of γ ≈ 0.6 are associated with high standard deviations of the

unanticipated wage-markup shock. Overall, a variance decomposition implies that conditional on

γ ≈ 0.6 unanticipated movements in the wage markup account for about 50% of the movement in

hours, compared with just 10% of the movement when γ ≈ 0. Thus, for parameters near Mode 2,

movements in hours are not principally driven by news.

Results from a Modified Prior. To highlight this potential pitfall more clearly, we re-estimate

the news model under a different prior for γ, namely, γ ∼ Beta(2, 1). Relative to the uniform prior,

this prior places more mass on the region near 1. Its probability density function is a 45-degree

line. A possible justification for this prior is that it places more weight on the “standard” utility

functions used in the macroeconomics literature. Mechanically, this prior causes Mode 2 in the

original SGU model to become more important. Indeed, now most of the mass resides in this

region, although the peak at γ ≈ 0 is still important. The heights of the two modes in the posterior

distribution of γ is approximately equal under the modified prior. The right panel of Figure 6

displays the histogram estimates for γ under the new prior for 20 runs each of the RWMH (black)

and the SMC (red) algorithms. One can see that the estimates for γ are now extremely noisy,

place anywhere from 0 to 1 probability mass in the region [0, 0.05] for the RWMH, indicating that

some runs of the RWMH did not mix on both modes. The reason for this is that the peak around

γ ≈ 0 is extremely sharp and the valley around is very deep. If the RWMH gets to this region, it is

extremely unlikely to ever leave it. On the other hand, the SMC algorithm mixes on both modes

easily.

To see how this translates into problems for substantive economic inference, Figure 7 plots

the histograms for the share of the long-run variance in hours accounted for by anticipated shocks
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Figure 7: News Model: Anticipated Shocks’ Variance Shares for Hours
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Notes: Prior (Blue), RWMH (Black), and SMC (Red). The boxes show estimates of histograms
for the share of long-run variance in hours attributable to news shocks from each of the simulators.
The RWMH algorithm is in red and the SMC is in black. The prior share is shown with the blue
line. The left panel shows output from the standard prior model and the right panel shows output
from the diffuse prior model. Each box is centered at the mean of the number of elements in each,
while the height of the box indicates plus or minus two standard deviations around this mean.

under both priors along with the prior shares. Under the standard prior, both simulators generate

roughly the same posterior variance shares, although the SMC has a slightly longer left tail due

to the small second mode, and to be sure, this tail is relatively imprecisely estimated (as it is

small). Once the prior for γ is changed to a Beta(2, 1) distribution, the problems associated with

the RWMH are exacerbated and inference is substantially changed. As with the posterior for γ, the

RWMH places anywhere from 0 to 1 probability mass on the anticipated shocks accounting for 80%

of the long-run movements in hours. The bimodal shape of the posterior distribution distribution

of the news shock share under the modified prior is much more precisely estimated by the SMC

algorithm and the economic inference is not overwhelmed by Monte Carlo noise. Relative to the

standard prior, news shocks are much less important in determining the behavior of hours.

Finally, we report log marginal data density estimates in Table 5. As in the case of the Smets-

Wouters model the modified harmonic mean estimate computed from the output of the RWMH

algorithm is more noisy, in particular under the modified prior. It turns out that the data slightly

favor the model specification with the original SGU prior distribution, but further modifications,

e.g. larger prior variances, may easily overturn this ranking. While the analysis under the modified

prior was designed to highlight the merit of the SMC sampler, it makes an empirical point as well.
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Table 5: Log MDD Estimates for News Model

Algorithm (Method) MEAN(Log MDD) STD(Log MDD)
SGU Prior

SMC (Particle Estimate) -1802.15 0.23
RWMH (Modified Harmonic Mean) -1800.77 0.35

Modified Prior
SMC (Particle Estimate) -1805.00 0.11
RWMH (Modified Harmonic Mean) -1836.42 7.72

Notes: Means and standard deviations are over 20 runs for each algorithm.

Conclusions about the importance of news as a drivers of the business cycle are very sensitive to

prior choices. By pushing the prior for γ towards more standard values in the literature, we were

able to reduce the effect of news on hours substantially. This result signals cautious interpretation

of DSGE model-based estimates of the importance (or lack thereof) of news on the business cycle.

6 Conclusion

This paper has presented an alternative simulation technique for estimating Bayesian DSGE mod-

els. We showed that, when properly tailored to DSGE models, a sequential Monte Carlo technique

can be more effective than the random walk Metropolis Hastings algorithm. The RWMH is poorly

suited to dealing with complex and large posteriors, while SMC algorithms, by slowly building a

particle approximation of the posterior, can overcome the problems inherent in multimodality. This

is important for DSGE models, where the parameters enter the likelihood in a highly nonlinear fash-

ion and identification problems may be present. We have seen in the both the SW model and the

SGU model that when priors are not very informative, the posterior can possess multimodalities.

It is difficult to correctly characterize the posterior with the RWMH in this case. Moreover, the

SMC algorithm has an embarrassingly parallelizable structure. Within each tempering iteration,

likelihoods can be evaluated simultaneously. In most programming languages, this kind of paral-

lelism can be employed easily, for example, MATLAB’s parfor command. Finally, we have shown

that the sequential Monte Carlo methods can be used for very large DSGE models. Indeed, it is

on large complex distributions that returns to using an SMC algorithm over an MCMC algorithm

are highest.
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Schmitt-Grohé, S., and M. Uribe (2012): “What’s News in Business Cycles?,” Econometrica,

forthcoming.

Schorfheide, F. (2000): “Loss Function-based Evaluation of DSGE Models,” Journal of Applied

Econometrics, 15, 645–670.

(2010): “Estimation and Evaluation of DSGE Models: Progress and Challenges,” NBER

Working Paper.

Smets, F., and R. Wouters (2007): “Shocks and Frictions in US Business Cycles: A Bayesian

DSGE Approach,” American Economic Review, 97, 586–608.

Strid, I. (2009): “Efficient Parallelisation of Metropolis-Hastings Algorithms Using a Prefetching

Approach,” Computational Statistics and Data Analysis, in press.


