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1 Introduction

For over thirty years, the Lucas asset pricing model (Lucas, 1978) and its extensions

and variations have served as the basic platform for research on dynamic asset pric-

ing and business cycles. At the cross-sectional level, the Lucas model predicts that

only aggregate consumption risk is priced.1 At the time-series level, the Lucas model

predicts that the level and volatility of asset prices are correlated with the level and

volatility of aggregate consumption; in particular, the price of an asset need not follow

a martingale (with respect to the true probabilities) and need not be the discounted

present value of its expected future dividends (with respect to the true probabilities).2

The most familiar version of the Lucas model assumes a representative agent, whose

holdings consist of the aggregate endowment of securities and whose consumption is

the aggregate flow of the (perishable) dividends. The representative agent has rational

expectations, and so correctly forecasts both future prices and his own future decisions.

Asset prices are constructed as shadow prices with respect to which the representative

agent would have no incentive to trade. The heterogeneous agent version of the Lucas

model that we study here assumes that all agents have rational expectations, and so

correctly forecast both future prices and their own future decisions. Asset prices and

allocations (consumption choices) are constructed in equilibrium. The representative

agent version of the model and the heterogeneous model make the same (qualitative)

price predictions; the multi-agent model also makes allocational predictions (consump-

tion smoothing, Pareto optimality).

This paper reports on experimental laboratory tests of the Lucas model with het-

erogeneous agents. Our experiments provide broad support for the qualitative pricing

and allocational predictions: prices are correlated with fundamentals, agents smooth

consumption and insure against dividend risk. However our experiments also find that

asset prices are significantly more volatile than can be accounted for by fundamen-

tals (fundamentals explain only a small fraction of the variation of price changes of

the risky asset – the Tree – and we cannot reject the null that price changes in the

riskless asset – the Bond – are entirely random and unrelated to fundamentals), and

agents do not insure against price risk. The data suggest that the divergence from

theoretical predictions from subjects’ forecasts about future asset prices, which appear

1This is in keeping with the predictions of static models, such as CAPM, that only market risk is priced.
2These predictions are especially important because they contradict the strictest interpretation of the

Efficient Markets Hypothesis (Samuelson, 1973; Malkiel, 1999; Fama, 1991). Note that, because prices do

not admit arbitrage, the Fundamental Theorem of Asset Pricing implies the existence of some probability

measure with respect to which prices do follow a martingale – but that is a tautology, not a prediction.
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to be vastly at odds with the predictions of the Lucas model, yet almost self-fulfilling.

Of course asset price forecasts that are exactly self-fulfilling must necessarily coincide

with the prices predicted by the Lucas model: this is just the definition of equilibrium.

Surprisingly, however, asset price forecasts can be almost self-fulfilling and yet far from

the predictions of the Lucas model – and far from equilibrium prices. This suggests

that excess volatility of asset prices might not be troubling if the object of concern is

welfare.

Up to now, analysis of the Lucas model – both empirical and theoretical – has

focused on the “stochastic Euler equations” that deliver the equilibrium pricing re-

strictions (Cochrane, 2001). These equations derive from the first-order conditions of

the consumption/investment optimization problem of the representative agent in the

economy. It seems fair to say that empirical tests of the stochastic Euler equations

using historical field data have been disappointing; indeed, beginning with Mehra and

Prescott (1985), the fit of model to data has generally been considered to be poor.

Attempts to improve the fit of the model to data have taken many forms. Some of

this work has focused on the preferences of the representative agent, positing time-

inseparability (Epstein and Zin, 1991) or loss aversion (Barberis, Huang, and Santos,

2001) or disappointment aversion (Routledge and Zin, 2011). Some of this work has

focused on the nature of the data, offering corrections to the assumptions about the

consumption process (Hansen and Singleton, 1983), emphasizing the role of durable

goods (Dunn and Singleton, 1986) or the the role of certain goods as providing col-

lateral as well as consumption (Lustig and Nieuwerburgh, 2005). And some of this

work has focused on the statistical properties of the consumption process (Bansal and

Yaron, 2004).

By contrast, our experimental study of the Lucas model focuses, not on any of these

issues, but on the primitives of the model itself. In the laboratory, we can examine all

predictions of the model – both the consumption predictions and the price predictions

– and we are not limited to examining whether prices satisfy some set of stochastic

Euler equations. This is possible because the laboratory environment allows us to

observe (or control) structural information that is impossible to glean from historical

data, such as the true dividend and consumption processes, agents’ beliefs about these

processes, and private income flows.3

The nature of the Lucas model presents a number of unusual challenges for the lab-

oratory environment. The most obvious challenge is that the familiar version assumes

a representative agent, presumably as a shortcut to a tractable model rather than as an

3Note the similarity to the Roll (1977) critique.
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assumed feature of reality. However, unless agents are identical, which seems hardly

more likely in the laboratory than in the world, the representative agent is only an

equilibrium construct, and not a testable assumption/prediction. Fortunately for us,

the heterogeneous agent version of the model yields predictions that are qualitatively

no different than the predictions of the representative agent model (although they arise

in a different way) and are testable in the laboratory environment. Pareto optimal-

ity plays a central role here. In the representative agent model, Pareto optimality is

tautological – there is after all, only one agent. In the heterogeneous agent model,

a representative agent can be constructed – but only if it assumed that the result of

trade is a Pareto optimal allocation – which is not guaranteed – and the particular

representative agent that is constructed depends on the particular Pareto optimal al-

location that obtains. For the market outcome to be a Pareto optimal would seem

to require that the market reach a Walrasian equilibrium, which in turn would seem

to require a complete set of markets, an impossibility in an infinite-horizon economy

with uncertainty. However, it is in fact enough that markets be dynamically complete,

which can be the case even with a few assets provided that these assets are long-lived

and can be traded frequently (Duffie and Huang, 1985), that participants are able to

properly forecast future prices (as is required in a Radner perfect foresight equilibrium)

and that agents can employ investment strategies that exhibit the hedging features that

are at the core of the modern theory of derivatives analysis (Black and Scholes, 1973;

Merton, 1973a) and dynamic asset pricing (Merton, 1973b).

The second challenge is that agents must learn a great deal. However, in contrast

to the literature on “learning rational expectations equilibrium,” agents in our experi-

mental economy do not need to learn/forecast the exogenous uncertainty – the dividend

process; it is told to them. However they still must learn/forecast the endogenous un-

certainty – the price process. As we shall see and discuss, this presents agents with a

very difficult problem indeed.

In addition to these, three other particularly challenging aspects of the Lucas model

need to be addressed before one can test it in the laboratory. The model assumes that

the time horizon is infinite and that agents discount the future, that agents prefer to

smooth consumption over time, and that the economy is stationary. Meeting these

challenges requires a novel experimental design. We deal with the infinite horizon

as in Camerer and Weigelt (1996), by introducing a random ending time determined

by a constant termination probability.4 We provide an incentive for participants to

4As is well-known, a stochastic ending time is (theoretically) equivalent to discounting over an infinite

time horizon (assuming subjects are expected utility maximizers with time-separable preferences).
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smooth consumption by emulating perishability of consumption in each period: at the

end of every non-terminal period, holdings of cash (the consumption good) disappear;

only cash held at the end of the randomly determined terminal period is credited

to participants’ final accounts (and hence “consumed”). Stationarity of the economy

might seem to present no difficulty and stationarity of the dividend process does indeed

present no difficulty – but stationarity of the termination probability presents a very

severe difficulty. If an experimental session lasts for two hours and each period within

that session lasts for four minutes, it is quite easy for participants to believe that the

termination probability is the same at the end of the first period, when four minutes

have elapsed, as it is at the end of the second period, when eight minutes have elapsed –

but it is quite hard for participants to believe that the termination probability remains

the same at the end of the twenty-ninth period, when 116 minutes have elapsed and only

four minutes remain. In that circumstance, participants will surely believe – correctly

– that the termination probability must be higher at the end of the session. However,

if subjects believed the termination probability is not constant, a random ending time

would induce a non-constant discount factor – and very likely induce different discount

factors in different subjects. To treat this challenge, we introduce a novel termination

rule.

As is the case in most (all?) asset-pricing models, behavior in the Lucas model

is driven by risk aversion. Because laboratory stakes are small – it would be rare

for a subject to earn as much as $100 – a natural concern is whether risk aversion is

observable in the laboratory. If, as is often assumed in the literature, subjects evaluate

all losses and gains in relation to present value of lifetime wealth – and keeping in

mind that $100 is surely less than 0.1% of present value of lifetime wealth for virtually

all subjects, and much less for most – it would seem that risk aversion could not be

observable in the laboratory. However, there is ample evidence that subjects do display

substantial risk aversion in the laboratory (presumably because they do not evaluate

all losses and gains in relation to present value of lifetime wealth); see Holt and Laury

(2002) for risk aversion in laboratory betting environments, Bossaerts and Zame (2008)

for risk aversion in laboratory asset markets, and Rabin (2000) for cautions about the

use of a single utility function to represent preferences over all ranges of wealth.

In parallel work, Crockett and Duffy (2010) also study an infinite horizon asset

market in the laboratory, but their experimental approach and purpose are very differ-

ent from ours. In particular, their approach to consumption smoothing is to induce a

preference for consumption smoothing imposing a schedule of final payments to partici-

pants that is non-linear in period earnings. A problem with that approach – aside from

4



the question of whether one should try to induce preferences rather than take them as

given – is that this is (theoretically) equivalent to time-separable additive utility only if

participant’s true preferences are risk-neutral – but there is ample laboratory evidence

that participants display substantial risk-aversion even for relatively small laboratory

stakes, as mentioned before. Moreover, because their focus is different from ours – their

focus is on bubbles, ours is on the primitive implications of the model – they create

an environment and choose parameters that are conducive to little trading, while we

create an environment and choose parameters that are conducive to much trading.

Some of our colleagues have wondered why anyone would bother to carry out lab-

oratory tests of an asset pricing model that is rejected on the basis of historical field

data. To us, a more natural question would seem to be why anyone would bother to

carry out laboratory tests of an asset pricing model that is accepted on the basis of

historical field data (not to mention that the latter set of models would seem small

– or empty). Models represent ideal environments and should not be expected to fit

perfectly to a non-ideal world. The laboratory is as close as we can come to the ideal

environment that models are intended to represent. Understanding the performance

of a model in the laboratory – the extent of its success or failure in all the dimensions

in which it is predictive/descriptive in an ideal environment – may tell us how and

whether the model is or is not predictively/descriptively useful in a non-ideal world.

This seems especially true of asset pricing models that describe/predict both prices

and choices because both prices and choices can be observed in the laboratory data –

but choices cannot be observed in historical field data.5 We choose to test the basic

Lucas asset pricing model – rather than variants such as those of (Mehra and Prescott,

1985) – not because it most closely resembles the world, but because it is clean and

simple and because its predictions are driven by precisely the same forces that drive

the predictions of more complicated variants. If those forces cannot be observed at

work in the Lucas model, we cannot see why one should expect them to be observed

at work in more complicated variants.6

5As we have noted earlier, many parameters can also be observed – or determined – in the laboratory

but not in the field.
6Models in which the growth rates of dividends (rather than the levels) are stationary seem difficult to or

impossible to test in the laboratory in part because growth is difficult to handle smoothly in the laboratory

– both because of participant perceptions and because payoffs depend on the duration of a replication – and

in part because their central predictions rely on assumptions that seem unlikely to hold in the laboratory

environment. The Mehra and Prescott (1985) model, for instance, derives its pricing predictions from the

assumption that there is a representative agent who has homothetic preferences; absent these assumptions,

it is unclear what pricing predictions can be drawn. As we show in our discussion of the Lucas model in
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The remainder of this paper is organized as follows. Section 2 presents the Lucas

model within the framework of the laboratory economy we created. Section 3 pro-

vides details of the experimental setup. Results are provided in Section 4. Section

5 discusses potential causes behind the excessive volatility of asset prices observed in

the laboratory markets. Section 6 examines the laboratory data through the lens of

the statistical analysis that has traditionally been employed on historical field data.

Section 7 concludes.

2 The Lucas Asset Pricing Model

We formulate a particular instantiation of the Lucas asset pricing model that is simple

enough to implement in the laboratory and yet complex enough to generate a rich

set of predictions about prices and allocations, even under very weak assumptions. In

particular, we allow for agents with preferences and endowments (of assets) and time-

varying consumption streams, and we make no assumptions about functional forms

– but still obtain strong and testable implications for individual consumption choices

and trading patterns and for prices.

To create an environment suitable for the laboratory setting, we use a formulation

that necessarily generates a great deal of trade; in our formulation, Pareto optimality

(hence equilibrium) requires that trading takes place every period. This is important

in the laboratory setting because subjects do not know the “correct” equilibrium prices

(nor do we) and can only learn them through trade, which would seem problematic

(to say the least) if trade were to take place infrequently or not at all. We therefore

follow Bossaerts and Zame (2006) and treat a setting in which aggregate consumption

is stationary (i.e. a time-invariant function of dividends) but individual endowments

may not be.7

We caution the reader (again) that our formulation assumes stationarity in the levels

of dividends and aggregate consumption rather than in growth rates, as in Mehra and

Prescott (1985) and much subsequent work that has used historical field data to inform

Subsection 2.2, we can derive strong and testable predictions about both prices and choices even in the

absence of a representative agent or of any assumptions about the preferences of agents (beyond expected

utility and risk aversion).
7As Judd, Kubler, and Schmedders (2003) has shown, if individual endowments are stationary then, at

equilibrium, all trading takes place in the initial period. As Crockett and Duffy (2010) confirm, not giving

subjects a reason to trade in every period (or at least frequently) is a recipe for producing price bubbles in

the laboratory – perhaps because subjects are motivated to trade solely out of boredom.
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empirical research. We choose stationarity in levels because it is easier to implement

and easier for subjects to understand, which would seem desirable – perhaps necessary

– criteria for an experiment that already poses many other challenges. As we show

below, stationarity in levels also has the feature that it leads to strong and testable

predictions, even in the presence of heterogeneity across subjects and the absence of

any assumptions about functional forms; stationarity in growth rates does not seem to

have this feature.

2.1 A General Environment

We consider an infinite horizon economy with a single consumption good in each time

period. In the experiment, the consumption good is cash so we use the terms ‘con-

sumption’ and ‘cash’ interchangeably here. In each period there are two possible states

of nature H (high), L (low), which occur with probabilities π, 1 − π independently of

time and past history. Two long-lived assets are available for trade: (i) a Tree that

pays a stochastic dividend dHT when the state is H, dLT when the state is L and (ii)

a (consol) Bond that pays a constant dividend DH
B = dLB = dB each period.8 We

assume dHT > dLT ≥ 0 and normalize so that the Bond and Tree have the same expected

dividend: dB = πdHT + (1− π)dLT . Note that the dividends processes are stationary in

levels. (In the experiment proper, we choose π = 1/2; dHT = 1, dLT = 0; dB = 0.50, with

all payoffs in dollars.)

There are n agents. Each agent i has an initial endowment bi of bonds and τi of trees,

and also receives an additional private flow of income ei,t (possibly random) in each

period t. Write b =
∑
bi, τ =

∑
τi and e =

∑
ei for the social (aggregate) endowments

of bonds, trees and additional income flow. We assume that the social income flow e

is stationary – i.e., a time-invariant function of dividends (in the experiment proper it

will be constant) – so that aggregate consumption b+ τ + e is also stationary, but we

impose no restriction on individual endowments. (As noted earlier, we wish to ensure

that in the experimental setting subjects have a reason to trade each period.)

We assume that each agent i maximizes discounted expected lifetime utility for

infinite (stochastic) consumption streams

Ui({ct}) = E

[ ∞∑
t=1

βt−1ui(ct)

]
8Lucas (1978) assumes that a Tree and a one-period bond are available; we use a consol bond simply for

experimental convenience.
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where ct is (stochastic) consumption at time t. We assume that the period utility func-

tions ui are smooth, strictly increasing, strictly concave and have infinite derivative at

0 (so that optimal consumption choices are interior), but make no assumptions as to

functional forms. Note that agent endowments and utility functions may be heteroge-

neous but that all agents use the same constant discount factor β. (In the experimental

setting this seems an especially reasonable assumption because the discount factor is

just the probability of continuation, which is constant and common across agents.)

In each period t agents receive dividends from the Bonds and Trees they hold, trade

their holdings of Bonds and Trees at current prices, use the proceeds together with their

endowments to buy a new portfolio of Bonds and Trees, and consume the remaining

cash. Agents take as given the current prices of the Bond pB,t and of the Tree pT,t (both

of which depend on the current state), make forecasts of (stochastic) future asset prices

pB,t′ , pT,t′ for each t′ > t and optimize subject to their current budget constraint and

their forecast of future asset prices. (More directly: agents optimize subject to the their

forecast of future consumption conditional on current portfolio choices.) At a Radner

equilibrium (Radner, 1972) markets for consumption and assets clear at every date and

state and all price forecasts are correct. This is not quite enough for equilibrium to be

well-defined because it does not rule out the possibility that agents acquire more and

more debt, delaying repayment further and further into the future – and never in fact

repaying it. In order that equilibrium be well-defined, such schemes must be ruled out.

Levine and Zame (1996), Magill and Quinzii (1994) and Hernandez and Santos (1996)

show that this can be done in a number of different ways. Levine and Zame (1996)

show that all ‘reasonable’ ways lead to the same equilibria; the simplest is to require

that debt not become unbounded.9 (In the experimental setting, we forbid short sales

so debt is necessarily bounded.)

As is universal in the literature we assume that a Radner equilibrium exists and –

because markets are (potentially) dynamically complete – that it coincides with Wal-

rasian equilibrium and in particular that equilibrium allocations are Pareto optimal.

These assumptions are not innocuous, but, as noted before, the familiar version of the

Lucas model begins with the assumption of a representative agent equilibrium, and the

existence of a representative agent assumes Pareto optimality. Thus all that we are

assuming is subsumed in the familiar version.

9Lucas (1978) finesses the problem in a different way by defining equilibrium to consist of prices, choices

and a value function – but if unbounded debt were permitted then no value function could possibly exist.
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2.2 Predictions

We first show that, despite allowing for heterogeneity and without making any as-

sumptions about functional forms, the model makes testable quantitative predictions

about individual consumptions, prices and trading patterns. These predictions, which

are entirely familiar in the context of the usual Lucas model with a representative

agent having CRRA utility, follow from the nature of uncertainty and the assumption

of Pareto optimality. Some of these predictions take a particularly simple form when

the specific parameters are as in the experiment. In Subsection 2.3 below we provide

explicit solutions in the case that agents all possess constant relative risk aversion

utility.

1. Individual consumption is stationary and perfectly correlated with ag-

gregate consumption.

To see this, fix a period t and a state σ = H,L. The boundary condition guar-

antees that equilibrium allocations are interior, so Pareto optimality guarantees

that all agents have the same marginal rate of substitution for consumption in

state σ at periods t, t + 1: u′i(c
σ
i,t+1)/u

′
i(c

σ
i,t) = u′j(c

σ
j,t+1)/u

′
i(c

σ
j,t) for each i, j. In

particular, the ranking of marginal utility for consumption in state σ at dates

t, t + 1 must be the same for all agents. Because utility functions are strictly

concave, the rankings of consumption in state σ at dates t, t+1 must be the same

for all agents (and opposite to rankings of marginal utilities). But the sum of

individual consumptions is aggregate consumption, which is stationary – hence

equal in state σ at periods t, t + 1. Hence the consumption of each individual

agent must also be equal in state σ at periods t, t + 1. Since t is arbitrary this

means that individual consumption must be constant in state σ; i.e., stationary.

Because the rankings of consumption across states are the same for all agents,

the ranking must agree with the ranking of aggregate consumption, so individual

consumption is perfectly correlated with aggregate consumption.

2. The stochastic Euler equations obtain.

To see this, fix an agent i; write {ci} for i’s stochastic equilibrium consumption

stream (which we have just shown to be stationary). Because i optimizes given

current and future asset prices, asset prices in period t must equalize marginal

utility of consumption at each state in period t with expected marginal utility of

consumption at period t+ 1. If i buys (sells) an additional infinitesimal amount

ε of asset A = B, T at period t, consumption in period t is reduced (increased)

by ε times the price of the asset but consumption in period t + 1 is increased

9



(reduced) by ε times the delivery of the asset, which is the sum of its dividend

and its price in period t+ 1. Hence the first order condition is:

pσA,t = β

{
π

[
u′i(c

H
i )

u′i(c
σ
i )

]
(dHA + pHA,t+1) + (1− π)

[
u′i(c

L
i )

u′i(c
σ
i )

]
(dLA + pLA,t+1)

}
where superscripts index states and subscripts index assets, time, agents in the

obvious way. We can write this in more compact form as

pσA,t = βE

{[
u′i(ci)

u′i(c
σ
i )

]
(dA + pA,t+1)

}
(1)

for σ = H,L and A = B, T . (1) is the familiar stochastic Euler equation except

that the marginal utilities are those of an arbitrary agent i and not of the repre-

sentative agent. (Equality of the ratios of marginal utilities across agents, which

is a consequence of Pareto optimality, implies that (1) is independent of the choice

of agent i, and also that we could write (1) in terms of the utility function of a

representative agent – but the utility function of the representative agent would

be determined in equilibrium.)

3. Asset prices are stationary.

Fix an asset A = B, T and a period t. The stochastic Euler equation (1) expresses

prices pA,t at time t in terms of marginal rates of substitution, dividends and prices

at times t + 1. Substituting t + 1 for t expresses prices pA,t+1 at time t + 1 in

terms of marginal rates of substitution, dividends and prices at times t+2, and so

forth. Combining all these substitutions and keeping in mind that consumptions,

marginal rates of substitution and dividends are stationary yields an infinite series

for prices

pσA,t =
∞∑
τ=0

βτ+1E

[
u′i(ci,t+τ+1)

u′i(c
σ
i,t)

dA,t+τ+1

]

= βE

[
u′i(ci)

u′i(c
σ
i )
dA

] ∞∑
τ=0

βτ

=

(
β

1− β

)
E

[
u′i(ci)

u′i(c
σ
i )
dA

]
(2)

The terms in the infinite series are stationary so prices are stationary as well.

4. Asset prices are determined by one unknown parameter.

Let µ = u′i(c
L
i )/u′i(c

H
i ) be the marginal rate of substitution of substitution in the

Low state for consumption in the High state (which Pareto optimality guarantees

is independent of which agent i we use); note that risk aversion implies µ > 1.
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The assertion then follows immediately from (2) but a slightly different argument

is perhaps more revealing. For each asset A = B, T we can write the stochastic

Euler equations as

pHA = β
[
π(dHA + pHA ) + (1− π)(dLA + pLA)µ

]
pLA = β

[
π(dHA + pHA )(1/µ) + (1− π)(dLA + pLA)

]
It follows immediately that

pHA /p
L
A = µ (3)

Substituting and solving yields

pHA =

(
β

1− β

)[
πdHA + (1− π)dLA µ

]
pLA =

(
β

1− β

)[
πdHA (1/µ) + (1− π)dLA

]
(4)

Specializing to the parameters of the experiment dHT = 1, dLT = 0; dHB = dLB = 0.5;

β = 5/6 yields

pHB = (2.5)(1 + µ)/2 (5)

pLB,t = (2.5)(1 + µ)/2µ (6)

pHT = 2.5 (7)

pLT = 2.5/µ (8)

In particular, pHT = 2.5 (the price of the tree in the High state is independent of

risk attitudes) and pHB /p
L
B = pHT /p

L
T (the ratios of asset prices in the two states

are the same).

5. Asset prices are correlated with fundamentals.

This is also an immediate consequence of equations (4); because µ > 1 asset prices

are higher in the High state than in the Low state. Informally, this is understood

most clearly by thinking about the representative agent. In state H, aggregate

consumption supply is high, so high prices (low returns) must be in place to

temper the representative agent’s desire to save (buy). The opposite is true for

state L: aggregate consumption is low, so low prices (high returns) temper the

representative agent’s desire to borrow (sell).

6. The Tree is cheaper than the Bond.

This too is a consequence of equations (4). In the context of static asset-pricing
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theory this pricing relation is a simple consequence of the fact that the dividends

on the Tree have higher covariance with aggregate consumption than does the

Bond; the Tree has higher “beta” than the Bond. However, in the dynamic

context the result is more subtle because asset prices in period t depend on

dividends in period t + 1 and on asset prices in period t + 1; since prices are

determined in equilibrium, it is not automatic a priori that prices of the Tree

have higher covariance with aggregate consumption than prices of the Bond.

7. The equity premium is positive and counter-cylical.

The difference in the prices of the Tree and the Bond can be translated into

differences in expected returns; the difference between the expected return on

the risky security (the Tree) and the expected return on the (relatively) risk free

security (the Bond) is the equity premium (Mehra and Prescott, 1985).10 The

conclusion that the Tree is cheaper than the Bond implies that the equity premium

is positive. Because asset prices are stationary, equity premia are stationary as

well; simple computations show that the equity premia in the High and Low

states are (remember that the expected dividends are the same for both assets

and equal to dB, and that for each asset A, pHA = µpLA):

EH =
πpHT + (1− π)pLT + dB − pHT

pHT
−
πpHB + (1− π)pLB + dB − pHB

pHB

= dB

(
1

pHT
− 1

pHB

)
EL =

πpHT + (1− π)pLT + dB − pLT
pLT

−
πpHB + (1− π)pLB + dB − pLB

pLB

= dB

(
1

pLT
− 1

pLB

)
= dB

(
µ

pHT
− µ

pHB

)
= µEH

Note that both equity premia are positive. The difference across states is:

EH − EL = (1− µ)EH

This difference is strictly negative (because µ > 1) so the equity premium is

counter-cyclical (lower in the High state than in the Low state). Note that

counter-cyclicality provides the correct incentives: when dividends are low, the

equity premium is high, so investors buy risky Trees rather than consuming scarce

dividends; when dividends are high, the equity premium is low, so investors prefer

to consume rather than engage in risky investment.

10(Mehra and Prescott, 1985) use a slightly different model, with long-lived Tree and a one-period bond.
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Conversely, the discount of the price of the Tree relative to that of the Bond

pB − pT is pro-cyclical. (This follows directly from the fact that the ratio of the

prices across states of both securities are equal and the fact that the Bond is

always more expensive than the Tree.)

8. Asset prices and returns are predictable.

Asset prices are predictable because they depend on the state; again this is em-

bodied in (4). That returns are predictable follows from the additional fact that

dividends are i.i.d. It is important to note that predictability of prices and re-

turns flatly contradicts the simplest versions of the Efficient Markets Hypothesis,

which asserts that prices form a martingale under the true probabilities (Samuel-

son, 1973; Malkiel, 1999; Fama, 1991). (Predictability of asset prices and returns

was one of the original points made by Lucas (1978).) Of course prices do form

a martingale under the risk-neutral probabilities – the probabilities adjusted by

marginal rates of substitution – but the risk-neutral probabilities are equilbrium

constructions.

9. Cross-sectional and time series properties of asset prices reinforce each

other.

To be more precise, as the discount of the Tree price relative to the Bond price

increases because risk aversion rises, the difference in Tree prices or in Bond prices

across states increases. That is,

cov(pσB − pσT , pHA − pLA) > 0,

for σ = H,L and A = B, T , with covariance computed based on sampling across

cohorts of agents (economies), keeping everything else constant. “Everything

else” means: initial endowments, private income flows, asset structure, outcome

probabilities, as well as impatience β. Economies are therefore distinguishable at

the price level only in terms of the risk aversion (embedded in x) of the represen-

tative agent.11

11To obtain the result, write all variables in terms of µ:

pHB − pHT = (0.5)2
(

β

1− β

)
(µ− 1)

pLB − pLT = −(0.5)2
(

β

1− β

)(
1

µ

)
+ constant

pHB − pLB =

(
β

1− β

)(µ
4

)
+ constant
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10. Agents smooth consumption over time.

Individual equilibrium consumptions are stationary but individual endowments

are not, so agents smooth over time.

11. Agents trade to hedge price risk.

If there were no price risk, agents could smooth consumption simply by buying

or selling one asset. However, there is price risk, because prices move with fun-

damentals and fundamentals are risky. Hence, when agents sell assets because

private income is low (relative to average private income), they also need to in-

sure against the risk that prices might change by the time they are ready to buy

back the assets. In equilibrium, prices increase with the dividend on the Tree,

and agents correctly anticipate this. Since the Tree pays a dividend when prices

are high, it is the perfect asset to hedge price risk. Consequently – but perhaps

counter-intuitively! – agents buy Trees in periods when private income is low and

sell when private income is high.

Hedging is usually associated with Merton’s intertemporal asset pricing model

(Merton, 1973b) and is the core of modern derivatives analysis (Black and Scholes,

1973; Merton, 1973a). Here, it forms an integral part of the trading predictions

of the Lucas model.

It can be shown that price risk hedging increases with the risk aversion of the

representative agent. This is because equilibrium price risk, measured as the

difference in prices across H and L states, increases with risk aversion (embedded

in µ).

In summary, our implementation of the Lucas model predicts that securities prices

differ cross-sectionally depending on consumption betas (the Tree has the higher beta),

while intertemporally, securities prices move with fundamentals (dividends of the Tree).

The two predictions reinforce each other: the bigger the difference in prices across

securities, the larger the intertemporal movements. Investment choices should be such

that consumption (cash holdings at the end of a period) across states becomes perfectly

rank-correlated between agent types (or even perfectly correlated, if agents have the

same preferences). Likewise, consumption should be smoothed across periods with and

without income. Investment choices are sophisticated: they require, among others,

pHT − pLT = −0.5

(
β

1− β

)(
1

µ

)
+ constant

All variables increase in µ (for µ > 1). As µ changes from one agent cohort (economy) to another, these

variables all change in the same direction. Hence, across agent cohorts, they are positively correlated.
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Table 1: Prices, discounts and equity premia for various levels of constant relative risk

aversion (γ).

γ State Tree Bond Price Equity

Price Return Price Return Discount Premium

0.2 High (H) $2.50 16.1% $2.61 15.3% $0.11 0.8%

Low (L) $2.31 25.9% $2.40 25% $0.09 0.9%

0.5 High (H) $2.50 10.8% $2.78 8.8% $0.28 2%

Low (L) $2.04 35.7% $2.27 33.3% $0.23 2.5%

1 High (H) $2.50 3.3% $3.13 -0.7% $0.63 4%

Low (L) $1.67 55% $2.08 49% $0.41 6%

that agents hedge price risk, by buying Trees when experiencing income shortfalls (and

selling Bonds to cover the shortfalls), and selling Trees in periods of high income (while

buying back Bonds).

2.3 A Numerical Example

For illustration, we compute predicted equilibrium prices, holdings and consumptions,

taking the parameters as in the experiment and assuming that all agents display iden-

tical constant relative risk aversion.

• There are an even number n = 2m of agents; agents i = 1, . . . ,m are of Type I,

agents i = m+ 1, . . . , 2m are of Type II.

• Type I agents are endowed with asset holdings bI = 0, τI = 10 and have income

eI,t = 15 when t is even and eI,t = 0 when t is odd.

• Type II agents are endowed with asset holdings bII = 10, τII = 0 and have income

eII,t = 15 when t is odd and eII,t = 0 when t is even.

• All agents have constant relative risk aversion γ = .2, .5, 1. (There is nothing

special about these particular choices of risk aversion; we offer then solely for

comparison purposes. We note that risk aversion in the range .2− .5 is consistent

with the experimental findings of Holt and Laury (2002) and Bossaerts and Zame

(2008).

• The initial state is High.
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Table 2: Type I agent equilibrium holdings and trades as a function of period (Odd/Even)

and constant relative risk aversion (γ); Type I agents receive income in Even periods only.

Calculations assume that the state in period 1 is High.

γ Period Tree Bond (Total)

0.2 Odd 5.45 2.70 (8.15)

Even 4.63 6.23 (10.86)

(Trade in Odd) (+0.82) (-3.53) (-2.71)

0.5 Odd 6.32 1.96 (8.28)

Even 3.48 7.24 (10.72)

(Trade in Odd) (+2.84) (-5.28) (-2.44)

1 Odd 7.57 0.62 (8.19)

Even 2.03 7.78 (9.81)

(Trade in Odd) (+5.54) (-7.16) (-1.62)

Table 1 provides equilibrium asset prices, the discounts in the price of the Tree

relative to the Bond, and equity premia, as functions of the state and of risk aversion.

As expected, Trees are always cheaper than Bonds. The discount on the Tree is higher

in state H than in state L, while the equity premium is lower in state H than in state

L, reflecting the pro-cyclical behavior of the discount and the counter-cyclical behavior

of the equity premium. The dependence of prices on the state, and the predictability

of returns is apparent from the table.12

Table 2 displays equilibrium holdings and trades for Type I agents, who receive

income in Even periods and face an income shortfall in Odd periods. (Equilibrium

holdings and trades of Type II agents are of course complements to those of Type I

agents.) As expected, the absence of income in Odd periods is resolved not through

outright sales of assets, but through a combination of sales of Bonds and purchases

of Trees. The Bond sales provide income; the Tree purchases hedge price risk across

12From Equation 1, one can derive the (shadow) price of a one-period pure discount bond with principal of

$1, and from this price, the one-period risk free rate. (For instance, if risk aversion is equal to 1 (logarithmic

utility), then in the High state, the one-period risk free rate is -4% and in the Low state it is 44%.) The

risk free rate mirrors changes in expected returns on the Tree and Bond. The reader can easily verify that,

when defined as the difference between the expected return on the market portfolio (the per-capita average

portfolio of Trees and Bonds) and the risk free rate, the equity premium is countercyclical, just like it is

when defined as the difference between the expected return on the Tree and on the Bond.
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time.13,14

Equilibrium holdings and trades ensure that Type I agents consume a constant

fraction (48%,) of total available consumption in the economy, independent of state

or date; of course Type II agents consume the complementary fraction (52%). That

consumption shares are constant is a consequence of the assumptions that allocations

are Pareto optimal and that agents have identical homothetic utilities; as we have noted

earlier, without the assumption of identical homothetic utilities all we can conclude is

that individual consumptions are perfectly correlated with aggregate consumption.

3 Implementing the Lucas Model

As we have already noted, implementing the Lucas economy in the laboratory encoun-

ters three difficulties:

(a) The Lucas model has an infinite horizon and assumes that agents discount the

future.

(b) The Lucas model assumes that agents prefer to smooth consumption over time.

(c) The Lucas economy is stationary.

In our experiment, we used the standard solution (Camerer and Weigelt, 1996)

to resolve issue (a), which is to randomly determine if a period is terminal. This

ending procedure induces discounting with a discount factor equal to the probability

of continuation. We set the termination probability equal to 1/6 so the continuation

probability (and induced discount factor) is β = 5/6. In mechanical terms: after the

markets in period t closed we rolled a twelve-sided die; if it came up either 7 or 8, we

terminated; otherwise we moved on to a new period.

To resolve issue (b), we made end-of-period individual cash holdings disappear in

every period that was not terminal; only securities holdings carried over to the next pe-

riod. If a period was terminal, however, securities holdings perished and cash holdings

13Notice that equilibrium holdings and trade depend on whether the period is odd/even but not on the

state (dividend of the Tree).
14In this Table, we have chosen the state in period 1 to be H so that the Tree pays a dividend of $1. If

the state in Period 1 were L, and risk aversion were strictly greater than 0.5, agents would need to short sell

Bonds – which we do not permit in the experiment.
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were credited; participants’ earnings were then determined entirely by the cash they

held at the end of this terminal period. To see that this has the desired implication

for preferences, note that the probability that a given replication terminates in period

t is the product of (1 − β) (the probability that it terminates in period t, conditional

on not having terminated in the first t− 1 periods) times βt−1 (the probability that it

does not terminate in the first t − 1 periods). Hence, assuming expected utility, each

agent maximizes

∞∑
t=1

(1− β)βt−1E[u(ct)] = (1− β)E
[ ∞∑
t=1

βt−1u(ct)
]

Of course the factor (1− β) has no effect on preferences.15

It is less obvious how to resolve problem (c). The problem is not with the divi-

dends and personal income but with the termination probability. In principle, simply

announcing a constant termination probability should do the trick: because each pe-

riod is equally likely to be terminal. However, if the probability of termination is in fact

constant (and independent of the current duration) then the experiment could continue

for an arbitrarily long time. In particular there would be a non-negligible probability

that the experiment would continue much longer than a typical session. It is clear

that subjects understand this: in our own pilot experiments, subject beliefs about the

termination probability increased substantially as the end of the session approached.

To deal with this problem we employed a simple termination rule: We announced that

the experimental session would last until a pre-specified time and there would be as

many replications of the (Lucas) economy as could be fit within this time frame. If

a replication ended at least 10 minutes before the announced ending time of the ses-

sion, a new replication would begin; otherwise, the experimental session would end.

If a replication was still running 10 minutes before the announced ending time of the

session, we announced before trade opened that the current period would be either the

last one (if our die turned up 7 or 8) or the next-to-last one (for all other values of

the die). In the latter case, the next period was the terminal period, with certainty, so

subjects would keep the cash they received through dividends and income for that period.

15Starting with Epstein and Zin (1991), it has become standard in research on the Lucas model with

historical field data to use time-nonseparable preferences, in order to allow risk aversion and intertemporal

consumption smoothing to affect pricing differentially. Because of our experimental design, we cannot appeal

to time-nonseparable preferences if we need to explain pricing anomalies. Indeed, separability across time

and states is a natural consequence of expected utility. We consider this to be a strength of our experiment:

we have tighter control over preferences. This is addition to our control of beliefs: we make sure that subjects

understand how dividends are generated, and how termination is determined.
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(There should be no trade in the terminal period because assets perish at the end and

hence are worthless – but we did check to be sure subjects correctly understood the

situation.) In the Appendix, we re-produce the time line plot that we used alongside

the instructions to facilitate comprehension.

To see that equilibrium prices remain the same whether the new termination proto-

col is applied or if termination is perpetually determined with the roll of a die, consider

an agent’s optimization problem in period t, which is terminal with probability 1− β
and penultimate with probability β: maximize (1 − β)u(cσt ) + βE[u(ct+1)] subject to

the standard budget constraint. The first-order conditions for asset A are:

(1− β)u′(cσt )pA,t = βE[u′(ct+1)dA,t+1].

The left-hand side is expected marginal utility from keeping cash worth one unit of

the security; the right-hand side is expected marginal utility from buying the unit;

optimality implies equality. Re-arranging yields

pσA,t =

(
β

1− β

)
E

[
u′(ct+1)

u′(cσt )
dA,t+1

]
Because dividends, consumption and prices are stationary, this reduces to (2), as as-

serted.

In the experiment, the task for the subjects is to trade off cash against securities.

In a given period, cash is desirable because it constitutes experimental earnings if

the current period is in fact the terminal period; securities are desirable because they

generate experimental earnings in future periods if the current period is in fact not

the terminal period. It was easy for subjects to grasp the essence of this task, and

the simplicity allowed us to make instructions short. See the Appendix for sample

instructions.

There is one further difficulty which we have not mentioned: default. In the (finite

or infinite horizon) Radner model, assets are simply promises; selling an asset – borrow-

ing – entails a promise to repay in the future. However, in the model, nothing enforces

these promises: that they are kept in equilibrium is simply part of the definition of

equilibrium. If nothing enforced these promises in the laboratory then participants

could (and in our experience, would) simply make promises that they could not keep.

One possibility for dealing with this problem is to impose penalties for default – failing

to keep promises. In some sense that is what Radner equilibrium implicitly presumes:

there are penalties for default and these penalties are so great that no one ever defaults.

However imposing penalties in the laboratory is highly problematic: What should the

punishment be? The rules governing experimentation with human subjects prevent us
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from forcing subjects to pay from their own pockets, and excluding subjects from fur-

ther participation in the experiment would raise a host of problems following such an

exclusion – to say nothing of the fact that neither of these penalties might be enough

to guarantee that default would not occur and to make it common knowledge that

default would not occur. Moreover, this speaks only to intentional default, but what

about unintentional default – mistakes? And what about plans that would have led

to default in circumstances that might have occurred but did not? And what about

the fact that the mechanisms for discouraging default might change behavior in other

– unexpected – ways? There is no simple solution to this problem because it is not

a problem confined to the laboratory. Radner equilibrium effectively prohibits default

but it is entirely silent about how this prohibition is to be enforced. As Kehoe and

Levine (1993) and Geanakoplos and Zame (2007) (and others) have pointed out, mech-

anisms for dealing with default may eliminate default – but only at the cost of other

distortions.

Our solution in the laboratory is simply to prohibit short-sales (negative holdings) of

assets. This creates a potential problem because the analysis of Section 2 presumes that

it was always possible for any agent to buy or sell an infinitesimal additional quantity

of either asset, but if an agent’s current holding of an asset were 0 he could not sell

it and if his consumption and portfolio were both 0 he could not buy it. However, so

long as agents do not bump up against the zero bound, the analysis remains correct; in

the actual experimental data, the number of agents who bumped up against the zero

bound was quite small. In our analysis, therefore, we shall simply take note of the

prohibition of short sales but assume that the prohibition is never binding.

The need to bar short sales explains why we use an instantiation in which the Bond

is in positive net supply: risk tolerant subjects could merely reduce their holdings of

Bonds rather than having to sell short (which was not permitted). Because both assets

are in positive supply, our economy is, strictly speaking, a Lucas orchard economy

(Martin, 2011), but the qualitative predictions of the model are not different from

those of a model in which the Bond is in zero net supply.

Because income and dividends vary across time and states and cash disappears at

the end of each non-terminal period, such who are optimizing or nearly optimizing

must trade often. As we shall see, trading volume was indeed substantial.16 Trad-

ing took place through an anonymous, electronic continous open book system. The

trading screen, part of software called Flex-E-Markets, was intuitive, requiring little

16As we have noted earlier, we agree with Crockett and Duffy (2010) that frequent trading deters the

formation of pricing anomalies such as bubbles.
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instruction.17 Subjects quickly familiarized themselves with key aspects of trading in

the open-book mechanism (bids, asks, cancelations, transaction determination proto-

col, etc.) through one mock replication of our economy during the instructional phase

of the experiment. A snapshot of the trading screen is re-produced in Figure 1.

All accounting and trading was done in U.S. dollars. Thus, subjects did not have

to convert from imaginary experiment money to real-life currency.

Within each experimental session, we conducted as many replications as possible

within the time allotted. In order to minimize wealth effects, we paid for only a

fixed number (say, 2) of the replications, randomly chosen after conclusion of the

experiment.18 However, we do not view wealth effects as important in this context in

any event, since there is no assumption that subject preferences are constant across

replications within a give session – and they are certainly not constant across sessions,

since the populations of subjects in different sessions were disjoint.

4 Results

Table 3 provides specifics of the six experimental sessions, each of which contained

several replications; the number of participants ranged from 12 to 30. Three sessions

were conducted at Caltech, two at UCLA, and one at the University of Utah. In all

there were 15 replications, totaling 80 periods. Whenever the end of the experiment

occurred during a replication (starred sessions), our novel termination protocol was

applied: in the terminal period of these replications, participants knew for certain that

it was the last period and hence, generated no trade. In the other (unstarred) session,

the last replication occurred sufficiently close to the end of the experiment that a new

replication was not begun, so our termination protocol was not applied.

We first discuss volume, and then look at prices and choices.

Volume. Table 4 lists average trading volume per period (excluding terminal

periods in which should be no trade). Trading volume in Periods 1 and 2 is signif-

icantly higher, reflecting trading needed for agents to move from initial holdings to

their steady-state holdings. In the theory, subsequent trade takes place only to smooth

consumption across odd and even periods.19 Volume in the Bond is significantly lower

17Flex-E-Markets is documented at http://www.flexemarkets.com; the software is freely available to aca-

demics upon request.
18If a session ended with fewer replications we paid for multiples of some or all of the replications.
19In principle, subjects should be able to trade to steady-state consumption smoothing allocations within

one period; we do allow for an extra period of adjustment.
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Table 3: Summary data, all experimental sessions.

Session Place Number of Number of Periods Subject

Replications (Total within Session, Count

Min. across Replications,

Maximum)

1 Caltech∗ 4 (14, 1, 7) 16

2 Caltech 2 (13, 4, 9) 12

3 UCLA∗ 3 (12, 3, 6) 30

4 UCLA∗ 2 (14, 6, 8) 24

5 Caltech∗ 2 (12, 2, 10) 20

6 Utah∗ 2 (15, 6, 9) 24

(Overall) 15 (80, 1, 10)

in Periods 1 and 2. This appears to be an artifact of the few replications when the

state in Period 1 was low, which deprived Type I participants (who are endowed with

10 Trees and have no personal income in odd periods) of cash. In principle, Type I

participants should have been able to sell enough Trees to buy Bonds, but it appears

that they did not manage to complete all the necessary trades in the allotted time

(four minutes). On average, 23 Trees and 17 Bonds were traded per period. Since the

average supply was 210 Trees and 210 Bonds and the average period was 210 seconds

long, this means that roughly 10% of available securities were traded each period and

that one transaction occurred roughly every 5 seconds. While substantial (recall that

we choose a design in which subjects ought to trade often), this volume of trade is low

compared to theoretical predictions: Table 2 shows that even for γ (risk aversion) as

low as 0.2, average volume should be about 20% of average holdings for the Tree and

over 50% for the bond. As we shall see, however, subjects did not follow the sophis-

ticated price hedging strategy reflected in the numbers in Table 2 (which was to buy

Trees when in need of cash). Without this hedging strategy, the volume needed to

smooth consumption is substantially lower. Fewer assets have to be sold since no offset

of Tree purchases is necessary (Trees are bought as a hedge for price risk).

Cross-Sectional Price Differences. Table 5 displays average period transaction

prices as well as the period’s state (High if the dividend of the Tree was $1; Low if it

was $0). Consistent with the Lucas model, the Bond is priced above the Tree, with a

price differential of about $0.50.
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Table 4: Trading volume.

Periods Tree Bond

Trade Volume Trade Volume

All

Mean 23 17

St. Dev. 12 11

Min 3 2

Max 59 58

1 and 2

Mean 30 21

St. Dev. 15 14

Min 5 4

Max 59 58

≥ 3

Mean 19 15

St. Dev. 8 9

Min 3 2

Max 36 41

Table 5: Period-average transaction prices and corresponding discount of the Tree price

relative to the Bond price.

Tree Bond Discount

Price Price

Mean 2.75 3.25 0.50

St. Dev. 0.41 0.49 0.40

Min 1.86 2.29 -0.20

Max 3.70 4.32 1.79
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Table 6: Mean period-average transaction prices and corresponding discount of the Tree

price relative to the Bond price, as a function of state.

State Tree Bond Discount

Price Price

High 2.91 3.34 0.43

Low 2.66 3.20 0.54

Difference 0.24 0.14 -0.11

Prices Over Time. Figure 2 shows a plot of the evolution of (average) prices

over time, arranged chronologically by experimental sessions (numbered as in Table 3);

replications within a session are concatenated. The plot reveals that prices are volatile.

In theory, prices should move only because of variability in economic fundamentals,

which in this case amounts to changes in the dividend of the Tree. Prices should be

high in High states, and low in Low states. In reality, a large fraction of price movements

is unrelated to fundamentals; following LeRoy and Porter (1981) and Shiller (1981), we

will refer to this as excessive volatility . Some price drift can be detected, but formal

tests reported below will reveal that the drift is entirely due to the impact of states on

prices, and the particular sampling of the states across the sessions.

As Table 6 shows, pHT is higher than predicted (it is predicted to be 2.50 but is

actually 2.91) and that the ratio pHT /p
L
T is greater than the ratio pHB /p

L
B; however it is

not clear whether these deviations are statistically significant. Prices in the High state

are on average 0.24 (Tree) and 0.14 (Bond) above those in the Low state – prices do

move with fundamentals (dividends). (We do not show statistical information because

(average) transaction prices are not i.i.d., so that we cannot rely on standard t tests to

determine significance. We will provide formal statistical evidence later on.) Table 6

also shows that the discount on the price of the Tree relative to the Bond is higher in

the Low state than in the High state; the observed discount is counter-cyclical. As we

have shown earlier, the prediction of theory is that the discount should be higher in

the High state than in the Low state; the predicted discount is pro-cyclical.

Cross-Sectional And Time Series Price Properties Together. The theory

predicts that the differential in prices between High and Low states should correlate

positively with the difference between the Bond price and the Tree price, i.e., the dis-

count of the Tree price relative to the Bond price. Correlation is to be taken across

economies, where economies are distinguished only by session cohort. Table 7 displays
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Table 7: Correlation across replications between the average discount on the Tree price

relative to the Bond price and the average price differential of the Tree or Bond between

High and Low states.

Tree Bond

Correlation 0.80 0.52

(St. Err.) (0.40) (0.40)

correlations of the average discount on the Tree price relative to the Bond price (re-

gardless of state) and the average difference between prices of the Tree or of the Bond

across states. Each observation corresponds to one replication, so there are 15 observa-

tions in total. Consistent with the theoretical prediction, the correlations are positive,

though the estimate is insignificant for the Bond.

Prices: Formal Statistics. To enable formal statistical statements about the

price differences across states, we ran a regression of period transaction price levels

onto the state (=1 if high; 0 if low). To adjust for time series dependence evident in

Figure 2, we added session dummies and a time trend (Period number). In addition,

to gauge the effect of our session termination protocol, we added a dummy for periods

when we announce that the session is about to come to a close, and hence, the period

is either the penultimate or last one, depending on the draw of the die. Lastly, we add

a dummy for even periods. Table 8 displays the results.

We confirm the positive effect of the state on price levels. Moving from a Low to

a High state increases the price of the Tree by $0.24, while the Bond price increases

by $0.11. The former is the same number as in Table 6; the latter is a bit lower. The

price increase is significant (p = 0.05) for the Tree, but not for the Bond.

The coefficient to the termination dummy is insignificant, suggesting that our termi-

nation protocol is neutral, as predicted by the Lucas model. This constitutes comforting

evidence that our experimental design was correct.

However, closer inspection of the properties of the error term revealed substantial

dependence over time, despite our including dummies to mitigate time series effects.

Table 8 shows Durbin-Watson (DW) test statistics with value that correspond to p <

0.001. Therefore, inference gauged from the results displayed in Table 8 cannot be

trusted.

Further model specification analysis was performed, to ensure that the error term

became properly behaved. This revealed that the best model required first differencing
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Table 8: OLS regression of period-average transaction price levels on several explanatory

variables, including state dummy. (∗ = significant at p = 0.05; DW = Durbin-Watson

statistic of time dependence of the error term.)

Explanatory Tree Price Bond Price

Variables Estim. (95% Conf. Int.) Estim. (95% Conf. Int.)

Session Dummies:

1 2.69∗ (2.53, 2.84) 3.17∗ (2.93, 3.41)

2 2.69∗ (2.51, 2.87) 3.31∗ (3.04, 3.59)

3 1.91∗ (1.75, 2.08) 2.49∗ (2.23, 2.74)

4 2.67∗ (2.50, 2.84) 2.92∗ (2.66, 3.18)

5 2.47∗ (2.27, 2.67) 2.86∗ (2.56, 3.17)

6 2.23∗ (2.05, 2.40) 3.42∗ (3.16, 3.69)

Period Number 0.06∗ (0.03, 0.08) 0.06∗ (0.01, 0.10)

State Dummy (High=1) 0.24∗ (0.12, 0.35) 0.11 (-0.07, 0.29)

Initiate Termination -0.07 (-0.28, 0.14) -0.01 (-0.33, 0.31)

Dummy Even Periods -0.00 (-0.11, 0.11) -0.11 (-0.28, 0.06)

R2 0.71 0.52

DW 1.05∗ 0.88∗

26



Table 9: OLS regression of changes in period-average transaction prices. (∗ = significant at

p = 0.05.)

Explanatory Tree Price Change Bond Price Change

Variables Estim. (95% Conf. Int.) Estim. (95% Conf. Int.)

Change in State Dummy

(None=0; High-to-Low=-1, 0.19∗ (0.08, 0.29) 0.10 (-0.03, 0.23)

Low-to-High=+1)

R2 0.18 0.04

Autocor. (s.e.=0.13) 0.18 -0.19

price changes. All dummies could be deleted, and the highest adjusted R2 was obtained

for a model that predicted price changes across periods as the result of only the change

in the state. See Table 9.20 For the Tree, the effect of a change in state from Low to

High is significant (p < 0.05) and substantial ($0.19). The effect of a change in state

on the Bond price is lower ($0.10), though insignificant (p > 0.05). Both confirm the

theoretical prediction that prices should be determined by the state. The regression

does not include an intercept; average price changes are insignificantly different from

zero once the change in the state is accounted for. This implies that the apparent

intra-session drift in the visual display of the price data (Figure 2) is entirely due to

sampling of the states. The autocorrelations of the error terms are now acceptable

(comfortably within two standard errors from zero).

The excess volatility of prices is apparent from Table 9. Fundamentals (changes in

the state) explain only 18% of the variability of the Tree prices (R2 = 0.18); 82% of

price variance is unexplained.21 The situation is even worse for the Bond: 96% of the

variance of Bond price changes are unexplained by changes in the state. (Of course

the Lucas model predicts that Fundamentals should explain all of the variability of

asset prices.) It deserves emphasis that the unexplained variability is essentially noise;

in particular, it is unrelated to the subject cohort, because session dummies were

insignificant. Overall, the regression in first differences shows that, consistent with the

Lucas model, fundamental economic forces are behind price changes – significantly so

20We deleted observations that straddled two replications. Hence, the results in Table 9 are solely based

on intra-replication price behavior.
21We relate price changes to state changes uses a linear model; however, because there are only two states,

linearity is without loss of generality.
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Table 10: Average consumption (end-of-period cash, in dollars) across states (High or Low

Tree dividend) and across periods (Odd/Even), stratified by participant Type (autarchic

numbers in parentheses). Last two rows: p levels of the contribution of State and Period to

explaining variation of the consumption share of Type I (end-of-period cash holdings as a

proportion of total cash available) in a two-way mixed-effects ANOVA (Analysis of Variance).

For choices to be Pareto efficient, consumption shares should be independent of State and

Period (provided the representative agents for the two participants Types have homothetic

utility).

States Periods

High Low Odd Even

Type I 14.93 (19.75) 7.64 (4.69) 7.69 (2.41) 13.91 (20.65)

Type II 15.07 (10.25) 12.36 (15.31) 14.72 (20) 11.74 (5)

ANOVA p-value 0.09 0.27

ANOVA Interaction p-value 0.23

for the Tree. But at the same time, prices are excessively volatile, with no distinct

drift.

Consumption Across States. In the Lucas equilibrium, consumption choices are

Pareto optimal. This means, in particular, that agents of both types should trade to

holdings that generate high consumption in High states, and low consumption in Low

states. Table 10 displays the average amount of cash (consumption) per type in High

vs. Low states.22 Consistent with the theoretical prediction, consumption is positively

rank-correlated across Types. To gauge the significance of this finding, Table 10 also

displays, in parentheses, the consumption (cash) levels that agents could have reached

if they were not allowed to trade. These are the consumption levels under autarky.

Note that consumption levels are anti-correlated. Through trading, the average Type I

and Type II agents manage to move their consumptions from negatively to positively

correlated, suggesting economically significant Pareto improvements, consistent with

the Lucas model.

Consumption Across Odd And Even Periods. Another prediction is that sub-

jects should be able to perfectly offset income differences across odd and even periods.

22To compute these averages, we ignored Periods 1 and 2, to allow subjects time to trade from their initial

holdings to steady state positions.
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Table 10 demonstrates that our subjects indeed managed to smooth consumption sub-

stantially; the outcomes are far more balanced than under autarky (numbers in paren-

theses; averaged across High and Low states, excluding Periods 1 and 2). Therefore,

the experimental results suggest substantial Pareto improvements through trading.23

Consumption Shares Across States and Across Odd and Even Periods. If

one is willing to entertain the assumption that utilities of our subjects are homothetic,

Pareto efficiency suggests a stronger prediction than positive correlation of consumption

across states, or smoothing of income across Odd and Even periods. Under homothetic

utilities, consumption shares should be independent across states and across periods.

Table 10 displays the results of a formal test of equality of the consumption share of

the average Type I subject across states and periods. The share of total consumption

(total cash available) that the average Type I subject chose at the end of each period

was computed and a two-way analysis of variance (ANOVA) was applied, with state

(High/Low) and period (Odd/Even) as potential factors determining variability in

this consumption share, allowing for interaction between state and period. A mixed-

effects approach was used, to accommodate differences in consumption shares across

replications due to differences in drawing of the state in the first period and in subject

cohort.

Table 10 shows that neither the state nor the nature of the period (nor their interac-

tion) are significant factors (p > 0.05) in explaining the variability of the consumption

share of the average Type I subject across periods. As such, the apparent violations

of the prediction of equal consumption shares across states/periods implied by the

average consumption levels reported in Table 10 are solely due to sampling error.

The finding is rather striking, because the assumption of homothetic preferences is

questionable. Yet, our empirical results suggest that the assumption can be maintained

as far as the choices of the average subject of Type I (and by implication, of Type II)

are concerned.

Price Hedging. The above results suggest that our subjects (on average) managed

to move towards the Pareto-optimal equilibrium consumption patterns of the Lucas

model. However, contrary to model prediction, they did not resort to price hedging as

a means to ensure those patterns. Table 11 lists average asset holdings across periods

for Type I subjects (who received income in Even periods). They were net sellers

23Autarchic consumption of Type II subjects is independent of the state, because Type II subjects are

endowed with Bonds whose dividends are riskless; autarchic consumption of Type I subjects depends on

states because they are endowed with Trees, whose dividends are risky. We used the sequence of realized

states across all the sessions to compute their autarky consumption.
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Table 11: End-of-period asset holdings, type I subjects. Averages across all replications and

subjects (of Type I). Initial allocation in parentheses, for reference.

Period 1 2 3 4 5 6 7 8 9

$ Income 0 15 0 15 0 15 0 15 0

Asset:

Tree (10) 6.67 7.00 5.67 6.33 5.75 6.75 5.92 6.67 6.92

Bond (0) 0 1.08 0.33 1.25 0.50 1.60 0.92 2.58 2.25

Total (10) 6.67 8.08 6.00 7.58 6.25 8.35 6.84 9.25 9.17

of assets in periods of income shortfall (see “Total” row). But unlike in the theory,

they decreased Tree holdings in low-income periods and increased them in high-income

periods. Only in period 9 is there some evidence of price hedging: Type I subjects

on average bought Trees while they were income-poor (Period 9’s holding of Trees is

higher than Period 8’s).

Subject-Level Differences There are, however, significant individual differences

in portfolio choices. Table 12 illustrates how three subjects of Type I end up holding

almost opposing portfolios of Trees and Bonds. Subject 7 increased his holdings of

Trees over time. Significantly, this subject bought Trees even in periods with income

shortfall (odd periods), effectively implementing the price hedging strategy of the the-

ory. Subject 5 is almost a mirror image of subject 7, though s/he did not resort to

price hedging. Subject 3 diversified across Trees and Bonds but did not hedge price

risk either because Tree holdings decreased in odd periods.

The subject-level differences reported in Table 12 are no exception. The contrast

between choices at the individual level and at the Type level is sharp. The theory

“works” at the Type level, but not at the individual level. This contrast suggests that

one has to be careful extrapolating to phenomena at the market level (e.g., prices) from

observing individuals singly. If we had taking any of the three subjects as “typical,”

and had predicted cross-sectional and temporal behavior of prices on the basis of their

choices, the fit would have been poor. The situation is reminiscent of the cross-sectional

variation in choices in static asset pricing experiments. There too, prices at the market

level can be “right” (satisfy, e.g., CAPM) even if individual choices are at odds with

the theory; see Bossaerts, Plott, and Zame (2007a).
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Table 12: End-Of-Period Asset Holdings Of Three Type I Subjects. Initial allocations: 10

Trees, 0 Bonds. Data from one replication in the first Caltech session.

Subject 1 2 3 4 5 6

Trees:

3 4 4 3 4 3 4

5 1 1 0 1 1 3

7 7 10 13 15 19 20

Bonds:

3 3 5 3 5 3 4

5 8 15 14 15 16 17

7 2 3 0 4 0 4

5 The Expected and the Anomalous

With respect to the predictions of the Lucas model, our experiments generate findings

that are expected – prices and individual consumption are correlated with fundamentals

(aggregate consumption) – and findings that seem anomalous – prices are excessively

volatile and price risk is not hedged. Because volatile prices would seem to signal clearly

the presence of price risk that should be hedged, the co-existence of excess volatility and

un-hedged price risk seems surprising. However, the particular kind of excess volatility

that we see in the experimental data might well lead subjects to conclude that there

is no need or ability to hedge against price risk

To see why this might be so, recall first that the predictions of the Lucas model

– and indeed the very definition of Radner equilibrium – depend on the assumption

that agents have perfect foresight and in particular that the beliefs of subjects about

the dividend process and the price process are exactly correct. In the experiment, the

subjects are told the dividend process but the price process must be learned, so it

would be too much to expect that beliefs be exactly correct – but perhaps not too

much to expect that beliefs be approximately correct. Optimization against exactly

correct beliefs leads exactly to the Radner equilibrium predicted by the Lucas model,

and it would seem that optimization against approximately correct beliefs should lead

to something that approximates the Radner equilibrium predicted by the Lucas model.

However, this is not so: because the price process is endogenous, beliefs about the price

process can be approximately correct and still very far from the price process predicted
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by the Lucas model. The same point has been made by Adam, Marcet, and Nicolini

(2012), who used it to explain excess volatility in historical data (as we use it to make

sense of excess volatility in our experimental data).

On the basis of our experimental data, it seems quite plausible that agents expected

prices to follow a martingale – as would be predicted by the (naive version of the) Effi-

cient Markets Hypothesis – and not to co-move with economic fundamentals – as would

be predicted by the Lucas model. This belief is wrong, but it is not readily falsifiable

on the basis of the limited number of observations available to subjects. Indeed, the

belief that Bond prices do not follow a martingale would not be falsifiable even after 80

observations – an order of magnitude more observations than were available to subjects.

The belief that prices follow a martingale is thus a credible working hypothesis.

A thought experiment may help to understand the consequences of these incorrect

beliefs. Imagine that in every period agents always believe that past prices are the best

predictions of future prices, independently of economic fundamentals; that, given these

beliefs, agents correctly solve their current optimal investment-consumption problem

as a function of prices; that agents then send demand schedules to the market; and

that the market generates prices so that demand and supply are equal in that period.

Of course, beliefs are wrong and will be revealed to be wrong next period, so we are

considering in this thought experiment only a kind of temporary equilibrium, but one

in which beliefs, although incorrect, are disciplined by observation. How would prices

in this temporary equilibrium evolve over time? Simulations suggest that prices would

evolve very much as in the experiment: they do co-move with dividends, but very

noisily – hence they are excessively volatile.

Figure 3 displays the evolution of prices and states in a typical simulation of this

temporary equilibrium. There are two types of agents, endowed as in the experiment,

each type represented by an agent with logarithmic utility. Agent beliefs (that prices

revert to the levels of the previous period) are affected every period by an additive

gaussian disturbance with mean zero and standard deviation $0.40. Agents start out

believing that the Tree will be priced at $2.5 and the Bond at $3. This produces price

evolutions very much in line with those in the experiment. At the same time, agents

do not hedge price risk (they don’t perceive any and accommodate income shortfalls

solely by selling Bonds and Trees). Still, their choices do move substantially towards

Pareto optimality: the consumption share of the Type I agent fluctuates only between

39% and 44%, little affected by state and period (Odd/Even).

This thought experiment demonstrates starkly that the price predictions of the Lu-

cas model are fragile to small mistakes in beliefs about the price process. This comes as
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a surprise because the price predictions of the Lucas model are robust to small mistakes

in beliefs about the dividend process (Hassan and Mertens, 2010). However, it seems

that mistakes in beliefs about these processes can manifest themselves quite differently:

because the dividend process is exogenous, mistakes are damped out; because the price

process is endogenous, mistakes can create positive feedback.

6 The Data Viewed Through A Traditional Lens

As we have noted we (control and) observe much more in our laboratory environment

than is possible in the field: our laboratory data are much richer than historical field

data. However, an interesting and potentially revealing exercise is to ignore this addi-

tional richness, treat our laboratory data as if it were historical field data, and carry

out on our laboratory data the same kinds of econometric tests that have been carried

out on historical field data. In particular, we can consider only the times series of asset

returns and aggregate consumption in our laboratory data – ignoring the additional in-

formation (true dividend process, true realized state, individual choices, etc) – and use

the Generalized Method of Moments (GMM) to test whether the first-order conditions

(the stochastic Euler equations) are satisfied for a representative agent. To be specific,

we assume – as has been done in the analysis of historical field data – the presence of

a representative agent with constant relative risk aversion (power utility); we estimate

the coefficient of risk aversion γ and the discount factor (β) while testing whether the

Euler equations hold, assuming that the representative agent “consumes” the aggre-

gate cash each period. Note that, because we have only two states, the assumption

of constant relative risk aversion is without loss of generality: in equilibrium only the

marginal rate of substitution µ between consumption in a Low state and consumption

in a High state needs to be estimated – the reverse marginal rate of substitution is 1/µ

and the marginal rates of substitution beween consumption in two High states or two

Low states are 1. Hence, only the marginal rate of substitution µ and the discount

factor β need to be estimated.

The Euler equations are:

E

[
β

(
c∗t+1

c∗t

)−γ dA + pA,t+1

pA,t
− 1
∣∣∣It] = 0

where c∗t and c∗t+1 denote aggregate (per capita) consumption in periods t and t + 1,

respectively, A ∈ {B, T}, and It is the information that agents in the economy (par-

ticipants in our experiments) had at the end of period t. As is standard in GMM tests
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of these Euler equations, we choose variables zt (“instruments”) in the agents’ infor-

mation set. Each instrument generates a set of two unconditional moment conditions

(one for each of the assets, B and T ), by applying the law of iterated expectations:

E

[
E

[(
β

(
c∗t+1

c∗t

)−γ dA + pA,t+1

pA,t
− 1

)
zt

∣∣∣It]]

= E

[(
β

(
c∗t+1

c∗t

)−γ dA + pA,t+1

pA,t
− 1

)
zt

]
= 0

Each choice of instruments leads to a different test.

Our first test is based on a traditional instrument choice, going back to Hansen and

Singleton (1983). We choose as instruments (i) the constant 1, (ii) lagged consumption

growth, and (iii), lagged returns on the Tree T and (iv) lagged returns on the Bond

B. Thus, we have 4 instruments, and hence have 8 moment conditions. Only two

parameters β, γ need to be estimated, so we have 6 over-identifying restrictions. The

idea behind GMM is to find values of the parameters that minimizes a quadratic form

in the moment conditions. With a suitable weighting matrix, the resulting minimum

is χ2 distributed, with degrees of freedom equal to the number of over-identifying

restrictions.24 The necessary time series, of consumption growth and asset returns, were

constructed by concatenating periods across all replications and all sessions, leaving

out observations that would straddle two different replications, as we did for Table 9.

The top panel of Table 13 displays the results of the first test. We note three points:

1. The model is not rejected: p = 0.310.

2. The estimated discount factor β is significantly different from the theoretical one.

3. The coefficient of risk aversion γ is not significantly different from zero.

However, it seems fair to say that the results of this test are misleading. In particu-

lar, GMM produces the estimate that the representative agent is risk-neutral or even

slightly risk-loving – but the data we have not used in the test clearly show that subjects

are risk averse: the Tree is cheaper than the Bond, and participants smooth consump-

tion both across states and across time.25 Closer inspection of the data suggests why

24We implemented GMM using Matlab routines provided by Michael Cliff.
25This finding is reminiscent of that in Asparouhova (2006), which studied a competitive market for loans

under adverse selection. Standard structural estimation using the Rothschild-Stiglitz equilibrium pricing

model failed to reject the model even when the model was obviously false, and yielded parameter estimates

that were significantly different from the truth.
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Table 13: GMM Estimation And Testing Results For Three Different Sets Of Instruments.

Instruments χ2 test β γ

(p value) (p value (p value

for β = 5/6) for γ = 0)

constant 1, lagged 7.124 0.86 -0.01

consumption growth (0.310) (0.003) (0.917)

& asset returns

constant 1, lagged 0.731 0.86 -0.18

consumption growth (0.694) (0.029) (0.162)

high & low state 14.349 0.86 0.16

dummies, lagged (0.006) (0.002) (0.001)

consumption growth

GMM produces the peculiar estimate of risk aversion: average returns on the securities

are positive (reflecting the significant discount rate) but the average return on the Tree

(12.8%) is below that of the Bond (15.9%). GMM can only reconcile this perverse

ranking of expected returns by assuming that the representative agent is risk-loving,

and hence produces an incorrect estimate of risk aversion.

In looking more closely, we might view the χ2 GMM test of over-identifying restric-

tions as suspect. Two instruments – the lagged returns on the Tree and Bond – are

“weak”, in the sense that they are uncorrelated (even independent) over time, both

with themselves and with consumption growth.26 Hence these moment conditions do

not provide additional restrictions beyond the ones imposed by the moment conditions

constructed with the constant as instrument. Effectively, the number of degrees of

freedom in the χ2 test is not 6, but only 2.

To determine the impact of these weak instruments, we ran a second test, re-

estimating the model with only the constant and lagged consumption as instruments.

The second panel of Table 13 displays the results. The model fails to be rejected at an

even higher p-level, the estimation of the discount factor β is nearly the same, but the

estimation of risk attitude is even more risk loving.

However, GMM tests with traditional instruments do not exploit all restrictions

of the model. In particular, expected returns are predicted to be different across

26The details of the calculation can be obtained from the authors upon request.
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states, but consumption growth can only capture the change in the state, and not

the realization of the state. In historical data from the field, consumption growth is

readily observable (though there is a debate whether the right consumption series is

being used), but not the state itself. Here, we are in control of the state, and hence, can

use it as an instrument. This is particularly appropriate because of the finding that the

discount of the price of the Tree relative to the price of the Bond is counter-cyclical, in

contrast to the theoretical prediction. (As we shall discuss below, the equity premium

– which is the analog in terms of returns – is pro-cyclical, in violation of the theory.)

GMM may be able to pick up this perverse result and thereby the reject the model.

Consequently, in our third test, we replaced the constant instrument with two

dummy variables, one that tracked the high state, and the other one tracking the low

state. We kept the remaining instrument, the consumption growth. In total, this gives

three instruments and as such generated six moment conditions. With two parameters

to estimate, we are left with four degrees of freedom. The results are presented in the

bottom panel of Table 13. We observe the following.

1. The model is now rejected (p < 0.01).

2. The discount factor, β remains a bit too high.

3. Risk aversion is now highly significant (p = 0.001).

Further inspection sheds light on why the GMM test (which is based on moment

restrictions on asset returns) rejects. At the estimated parameters, most moment

conditions fit tightly. However, the moment condition involving the Tree return and

using the dummy variable for the High state does not fit well. And indeed, the average

return on the Tree in the High state is lower (at 12.8%) than that of the Bond (at

15.9%). Thus, the equity premium in the High state is negative, and this can only be

fit with a negative risk aversion coefficient. In contrast, in the Low state, the ranking

of returns is consistent with risk aversion: 17.8% for the Tree and 16.1% for the Bond.

GMM estimates a positive risk aversion coefficient, allows it to fit well the moment

conditions in the Low state for both assets, as well as the moment condition for the

Bond in the High state (which is lower than in the Low state, consistent with the

theoretical prediction). Notice also that the equity premium is pro-cyclical, contrary

to the theory (but in line with the counter-cyclical nature of the discount of the Tree

price against the Bond price).
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7 Conclusion

Over the last thirty years, the Lucas model and and the ideas that underlie it have

become the central theoretical models through which scholars of macroeconomics and

finance interpret the real world. Despite this, little is known about the true relevance

of the Lucas model and confidence in the model has certainly been shaken by recent

events. This paper was prompted in part by the belief that proper understanding of

the Lucas model – and of the thinking underlying it and the applications that are

made of it – could be greatly advanced if we could examine the workings of the model

in the laboratory. Of course, it is a long way from the laboratory to the real world.

There are many features of the real world that are absent in the laboratory and these

features may well have an enormous bearing on the applicability of the Lucas model

(or any other model). But this seems to us to argue even more forcefully for laboratory

experiment. As we have noted in the Introduction, models are idealizations and the

laboratory is an idealized environment; if the models do not work in the laboratory,

why should we expect them to work in the real world?

In our view, our experiments provide substantial support for the Lucas asset pricing

model. Our experimental findings display features that are consistent with the most

important predictions of the Lucas model: prices move with fundamentals, agents trade

assets to smooth consumption and insure against risk, risky assets yield a substantial

premium over riskless assets. Our experimental findings also display features are at

odds with other predictions of the Lucas model: prices display excess volatility, stan-

dard tests reject the stochastic Euler equations. Interestingly, the latter features are

precisely those that much of the literature has attempted to explain in terms of real-

world “frictions” or deviations from the basic model – frictions and deviations that are

entirely absent in the laboratory environment.

The dimension in which our experimental findings diverge most sharply from the

predictions of the Lucas model is in the ability of subjects to predict future prices. The

Lucas model presumes that the representative agent perfectly forecasts future asset

prices – but the subjects in our experiments do not do so. Given the length of the time

series that subjects can observe and the amount of noise, this is not surprising, Indeed,

it would require something like 80 periods for subjects to learn how Tree prices correlate

with fundamentals (while still being unable to discern an effect of fundamentals on

Bond prices). It might be argued that, because our experiments are short – the longest

replication is only 10 periods – we have not provided a fair opportunity for subjects to

learn perfect forecasts. However, it must also be kept in mind that in many ways we
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have given our subjects a much simpler problem than they face in the real world. In

our experiment, subjects are told the true dividend process – in the world they would

have to learn it. In our experiment the true dividend process is precisely stationary – in

the world it is not. (Indeed, it might be argued that the world is not stationary at all –

that stationarity is just an assumption imposed on a model which would otherwise be

completely intractable.) And finally, in our world there is a great deal more aggregate

consumption risk than in the real world. In our experiment the ratio of aggregate

consumption in the High dividend state to aggregate consumption in the Low dividend

state is 1.50, while in the real world it is (using the Mehra and Prescott (1985) estimates

of U.S. data) only about 1.08. Thus, in many dimensions, we give the Lucas model

the best possible chance to succeed – and (in this dimension) it does not. Nevertheless

it would be of interest to know whether our subjects would eventually learn to make

correct forecasts if they had many more observations. Unfortunately a design that

provides enough observations seems quite impractical. As we have noted, given the

noise it would require 80 periods for subjects to learn about the true relation between

prices and fundamentals; to obtain replications of 80 periods we would need to choose

the continuation probability β uncomfortably close to 1. Perhaps more importantly, a

replication of 80 periods would last at least 4-5 hours (following the very substantial

initial time for training etc.); carrying out an experimental session of such a duration

would be very difficult.

However, the fact that subjects’ forecasts of future prices are wrong, and that this

appears to have very significant effects, despite the fact that the errors do not appear

to be far wrong – current forecasts are not far from future realizations – is important

in itself. If perfect forecasting is difficult in our idealized laboratory environment, it is

absolutely impossible in the real world; if small errors in forecasts can have big effects

in the laboratory, perhaps they can also have big effects in the real world.

At various points we have made statements to the effect that subjects smooth

consumption and insure dividend risk but they do not insure price risk. Subjects may

not insure price risk, because either they don’t perceive it, or they don’t think they

can insure it. We think it is the latter. The former would be credible if the theory were

right, because indeed, the closed-form equation for prices has only dividends in it, so

there is no price risk (separate from dividend risk). If subjects did perceive price risk,

we may be over-estimating risk aversion when fitting the Euler equations, because these

equations assume that price risk derives from dividend risk, instead of being distinct

from dividend risk. As such, we should refrain from drawing strong conclusions from

the estimate of the coefficient of relative risk aversion, which is 0.16. (One should
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always be careful in drawing conclusions from estimates of parameters of models that

are rejected.)

Our experimental findings also illustrate that it is dangerous to extrapolate from

the individual to the market. As in our static experiments (Bossaerts, Plott, and

Zame, 2007b), we find substantial heterogeneity in choices across subjects; most indi-

vidual choices have little or no explanatory power for market prices, or even for choices

averaged across subjects of the same type (same endowments). Overall, the system

(market) behaves as predicted by the theory (at least qualitatively), but individual

choices do not. Hence, we caution strongly against giving too much credence to asset

pricing theories in which the system is simply a mirror image of one of its parts. (In

particular, that some – perhaps many – individuals appear to display behavior that

conforms to prospect theory (Barberis, Huang, and Santos, 2001) does not mean that

markets would reflect that behavior in any obvious way.) The “laws” of the (financial)

system are different from those of its parts.

The idea of looking at experimental findings using the methodology typically used

to study historical field data was suggested to us by the pioneering work of Asparouhova

(2006). Here, as there, we think it yields interesting insights: because much information

is missing from historical field data, the analysis of such data may yield misleading

conclusions. In this case (as in Asparouhova (2006)), unless one uses the “correct”

instruments, the “usual” methodology, when applied to price data alone, fails to reject

the null – which it should, given all the data available. In our case, the experimental

environment itself suggests which should be the “correct” instruments; outside the

laboratory, it would surely be much harder to know which instruments to use.
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PERIOD 1 2 3 4 5 6 
State H L L H L H 
Initial 
Holdings 

      

Tree 10 10 10 10 10 10 
Bond 0 0 0 0 0 0 

Dividends       
Tree $1*10=10 $0*10=0 $0*10=0 $1*10=10 $0*10=0 $1*10=10 

Bond $0.5*0=0 $0.5*0=0 $0.5*0=0 $0.5*0=0 $0.5*0=0 $0.5*0=0 
Income 0 15 0 15 0 15 
Initial Cash $10  

(=10+0+0) 
$15  
(=0+0+15) 

$0  
(=0+0+0) 

$25  
(=10+0+15) 

$0 
(=0+0+0) 

$25  
(=10+0+15) 

Trade       
Tree 0 0 0 0 0 0 

Bond 0 0 0 0 0 0 
Cash Change $0 $0 $0 $0 $0 $0 
Final 
Holdings 

      

Tree 10 10 10 10 10 10 
Bond 0 0 0 0 0 0 

CASH $ 10.00 $ 15.00 $ 0.00 $ 25.00 $ 0.00 $ 25.00 
 
!

!"#$%&)(&

 
PERIOD 1 2 3 4 5 6 
State H L L H L H 
Initial 
Holdings 

      

Tree 10 5 6 4 5 3 
Bond 0 5 6 4 6 4 

Dividends       
Tree $1*10=10 $0*5=0 $0*6=0 $1*4=4 $0*5=0 $1*3=3 

Bond $0.5*0=0 $0.5*5=2.5 $0.5*6=3 $0.5*4=2 $0.5*6=3 $0.5*4=2 
Income $0 $15 $0 $15 $0 $15 
Initial Cash $10  

(=10+0+0) 
$17.5  
(=0+2.5+15) 

$3 
(=0+3+0) 

$21  
(=4+2+15) 

$3 
(=0+3+0) 

$20 
(=3+2+15) 

Trade       
Tree -5 +1 -2 +1 -2 +1 

Bond +5 +1 -2 +2 -2 +1 
Cash Change $0 -$5 +$10 -$7.5 +$10 -$5 
Final 
Holdings 

      

Tree 5 6 4 5 3 4 
Bond 5 6 4 6 4 5 

CASH $ 10.00 $ 12.50 $ 13.00 $ 13.50 $ 13.00 $ 15.00 
!
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Appendix: Time Line Plot To Complement In-

structions

Period 1 Period 2 Period 3 

   Dividends
from initial allocation
of  “Trees” and “Bonds”
  Income

Trade
to a !nal allocation
of “Trees,” “Bonds,” and
CASH

Possible Termination of Session
*If termination--keep CASH
*If continuation--lose CASH, 
       carry over “Trees” and “Bonds”

   Dividends
from carried over allocation
of  “Trees” and “Bonds”
  Income

Trade
to a !nal allocation
of “Trees,” “Bonds,” and
CASH

Possible Termination of Session
*If termination--keep CASH
*If continuation--lose CASH, 
       carry over “Trees” and “Bonds”

Etc.
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Figure 1: Snapshot of the trading interface. Two bars graphically represent the book of

the market in Trees (left) and in Bonds (right). Red tags indicate standing asks; blue tags

indicate standing bids. Detailed information about standing orders is provided by clicking

along either of the bars (here, the Tree bar is clicked, at a price level of $3.66). At the

same time, this populates the order form to the left, through which subjects could submit

or cancel orders. Asset holdings are indicated next to the name of the market, and cash

balances are given in the top right corner of the interface. The remaining functionality in

the trading interface is useful but non-essential.
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Figure 2: Time series of Tree (solid line) and Bond (dashed line) transaction prices; averages

per period. Session numbers underneath line segments refer to Table 3.
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Figure 3: Time series of Tree and Bond prices in a temporary equilibrium where agents

expect prices to revert back to last period’s levels, plus mean-zero gaussian noise with $0.40

standard deviation. Also shown is the evolution of the state (High = 1; Low = 0).
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