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ABSTRACT

School choice plans in many cities grant students higher priority for some (but not all) seats at their
neighborhood schools. This paper demonstrates how the precedence order, i.e. the order in which different
types of seats are filled by applicants, has quantitative effects on distributional objectives comparable
to priorities in the deferred acceptance algorithm. While Boston's school choice plan gives priority
to neighborhood applicants for half of each school's seats, the intended effect of this policy is lost because
of the precedence order. Despite widely held impressions about the importance of neighborhood priority,
the outcome of Boston's implementation of a 50-50 school split is nearly identical to a system without
neighborhood priority. We formally establish that either increasing the number of neighborhood priority
seats or lowering the precedence order positions of neighborhood seats at a school have the same effect:
an increase in the number of neighborhood students assigned to the school. We then show that in Boston
a reversal of precedence with no change in priorities covers almost three-quarters of the range between
0% and 100% neighborhood priority. Therefore, decisions about precedence are inseparable from
decisions about priorities. Transparency about these issues—in particular, how precedence unintentionally
undermined neighborhood priority—Iled to the abandonment of neighborhood priority in Boston in 2013.
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1 Introduction

School choice programs aspire to weaken the link between the housing market and access to good
schools. In purely residence-based public school systems, families can purchase access by moving to
neighborhoods with desirable schools. Children from families less able to move do not have the same
opportunity. With school choice, children are allowed to attend schools outside their neighborhood
without having to re-locate. This may generate a more equitable distribution of school access.
Enabling choice requires specifying how school seats will be rationed among students from within
and outside of schools’ neighborhoods. During the 1970s, court rulings on the appropriate balance
of neighborhood and non-neighborhood assignment, often drawn on racial and ethnic lines, had
a large impact on the shape of urban America (Baum-Snow and Lutz 2011, Boustan 2012). The
debate about the appropriate balance between these two factions continues today within school
choice plans.

The initial literature on school choice mechanisms did not explicitly consider the issue of how
to specify property rights for school seats. Instead, they were taken as given, and research focused
on how property rights are interpreted by the assignment mechanism (Balinski and Sénmez 1999,
Abdulkadiroglu and Sénmez 2003). Efforts in the field have also avoided taking positions on how
to endow agents with claims to schools, and instead have advocated for strategy-proof mechanisms,
which make it easier for participants to rank schools.! Now, with the growing use of mechanisms
based on the student-proposing deferred acceptance algorithm (DA), it is possible to more explicitly
consider the role of property rights.? By setting school priorities, such as giving higher claims
to sibling or neighborhood applicants, districts using DA can precisely define applicants’ property
rights in a way that is independent of applicant demand.

Specifying priorities is only one part of determining students’ access to schools. Another part
involves determining the fraction of seats where the priorities apply. For the last thirteen years,
Boston Public Schools (BPS) split schools’ priority structures into two equally-sized pieces, with
one half of the seats at each school giving students from that school’s neighborhood priority, and
the other half of the seats not giving neighborhood priority a role.®> When students in Boston rank
a school in their preference list, they are considered for both types of seats.* The order in which the
slots are processed, the slots’ precedence order, determines how the seats are filled by applicants.

BPS’s current 50-50 seat split emerged out of a city-wide discussion following the end of racial

and ethnic criteria for school placement in 1999. Many advocated abandoning choice and returning

'For example, a December 2003 community engagement process in Boston considered six different proposals for
alternative neighborhood zone definitions. However, the only recommendation adopted by the school committee was

to switch the assignment algorithm (Abdulkadiroglu, Pathak, Roth, and Sénmez 2005).
20ther mechanisms often lack this complete separation. For instance, in the pre-2005 Boston mechanism, appli-

cants’ preference rankings first determined whose claims were justified; priorities were only used to adjudicate claims

among equal-ranking applicants.
3The 50-50 school seat split was not altered when Boston changed their assignment mechanism in 2005 to one

based on the student-proposing deferred acceptance algorithm (Abdulkadiroglu, Pathak, Roth, and Sénmez 2005,

Abdulkadiroglu, Pathak, Roth, and Sénmez 2006, Pathak and Sénmez 2008).
4Throughout this paper, we use slot and seat interchangeably.



to neighborhood schools at that point, but the school committee decided to reduce the fraction of
seats where neighborhood, i.e. “walk-zone” priority, applies from 100% to 50% of seats within each
school. The official policy document states (BPS 1999):

Fifty percent walk zone preference means that half of the seats at a given school are subject

to walk zone preference. The remaining seats are open to students outside of the walk zone.

RATIONALE: One hundred percent walk zone preference in a controlled choice plan without
racial guidelines could result in all available seats being assigned to students within the walk
zone. The result would limit choice and access for all students, including those who have
no walk zone school or live in walk zones where there are insufficient seats to serve the

students residing in the walk zone.

Patterns of parent choice clearly establish that many choose schools outside of their walk
zone for many educational and other reasons. [...] One hundred percent walk zone preference
would limit choice and access for too many families to the schools they want their children
to attend. On the other hand, the policy also should and does recognize the interests of

families who want to choose a walk zone school.

The 50-50 slot split was seen as “striking an uneasy compromise between neighborhood school
advocates and those who want choice,” while the Superintendent hoped that the “plan would
satisfy both factions, those who want to send children to schools close by and those who want
choice” (Daley 1999).

We begin by investigating the impact of priorities and precedence on assignments in Boston
Public Schools. Using data on students’ choices and assignments, we examine whether the current
BPS mechanism actually represents the intended compromise. We compare the current BPS out-
come to two extreme alternatives: one where none of the seats have walk-zone priority, and one
where all seats have walk-zone priority. Given the 50-50 split and its motivation, it is natural to
expect the outcome under the current BPS mechanism to be close to the midpoint between the
two extremal policies. However, Table 1 shows that the outcome of the current BPS mechanism is
almost identical to the outcome where walk-zone priority is not used at all.

Despite the perception that walk-zone applicants have been advantaged in the BPS system since
1999, they appear to have little advantage in practice. Only 3% of Grade K1 (a main elementary
school entry point) applicants obtain a different assignment under Boston’s current implementation
than they would under open competition without walk-zone priority, as indicated in the column
labeled 0% Walk. The difference is as low as 1% for Grade 6. Furthermore, this pattern is not
simply a feature of student demand. Under the alternative in which all seats have walk-zone priority
(labeled 100% Walk), the number of students assigned to schools in their walk zones increases to
19% and 17% for Grades K1 and K2, respectively. Although motivated as a compromise between
the two factions, BPS’s 50-50 school seat split is significantly closer to open competition than is at
first apparent.

Why does Boston’s assignment mechanism result in an assignment so close to one without

any neighborhood priority, even though half of each school’s seats give priority to neighborhood



students? This paper is about understanding this puzzle. We develop a framework for school choice
mechanism design where both priority and precedence play key roles. We show that the division of
schools into walk-zone and open priority seats reveals little about the proximity of the outcome to
a compromise between the two factions without specifying the precedence order, which determines
what happens a student is qualified for both walk-zone and open seats. Building on Kominers and

Sonmez (2012), we establish two new comparative statics:

1. Given a fixed slot precedence order, replacing an open slot at a school with a walk-zone slot

weakly increases the number of walk-zone students assigned to that school.

2. Given a fixed split of slots into walk-zone and open slots, switching the precedence order
position of a walk-zone slot with that of a subsequent open slot weakly increases the number

of neighborhood students assigned to that school.

While the first of these results is intuitive, the second one is more subtle. Moreover, they do not fol-
low from earlier monotonicity results in simpler models without slot-specific priority structure (e.g.,
Balinski and Sénmez (1999)) because they involve simultaneous priority improvements for a large
number of students. In a further specialized, two-school model, the types of priority and precedence
order changes described above in fact increase neighborhood assignment across all schools. The
impact in this case is entirely distributional as both instruments leave the aggregate number of
students obtaining their top-choice schools unchanged.

We then empirically examine the extent to which the comparative statics from our simplified
model are relevant under the richer priority structure in the Boston’s school choice program. Af-
ter demonstrating that BPS’s current implementation of the 50-50 split is far from balancing the
concerns of the neighborhood schooling and school choice proponents, we show that an alternative
precedence order where open slots are depleted before walk-zone slots results in 8.2% more students
attending walk-zone schools in Grade K1. This represents nearly three-quarters of the maximal
achievable difference between completely eliminating walk-zone priority and having walk-zone pri-
ority apply at all school seats.

We also examine alternative precedence orders which implement policies between the 0% Walk
and 100% Walk extremes. Once a preliminary version of this paper was circulated, it entered the
policy discussion in Boston where these alternative order proposals were discussed. When our work
clarified the role of the precedence order in undermining the intended effects of the 50-50 seat split,
BPS completely eliminated neighborhood priority. We describe this and the larger policy discussion
in Boston in more detail in Section 4.

This paper contributes to a broader agenda, examined in a number of recent papers, that intro-
duces concerns for diversity into the literature on school choice mechanism design (see, e.g., Bud-
ish, Che, Kojima, and Milgrom (2013), Echenique and Yenmez (2012), Erdil and Kumano (2012),
Hafalir, Yenmez, and Yildirim (2012), Kojima (2012), and Kominers and Sénmez (2012)). When an
applicant ranks a school with many seats, it is similar to expressing indifference among the school’s

seats. Therefore, our work parallels recent papers examining the implications of indifferences in



school choice problems (Erdil and Ergin 2008, Abdulkadiroglu, Pathak, and Roth 2009, Pathak
and Sethuraman 2011). However, the question of school-side indifferences, the focus of prior work,
is entirely distinct from the issue of indifferences in student preferences. Tools used to resolve
indifferences in schools’s priorities (e.g., random lotteries) do not immediately apply to the case
of student-side indifferences. Another related paper is that of Roth (1985), which shows how to
interpret a (Gale and Shapley 1962) college admissions (many-to-one) matching model as a mar-
riage (one-to-one) matching model by splitting colleges into individual seats and assuming that
students rank those seats in a given order. Our results show that implementation of this seat-
split approach without attention to precedence can undermine the intentions of priority policies.
Finally, this paper builds on the theoretical literature on matching with contracts (Crawford and
Knoer 1981, Kelso and Crawford 1982, Hatfield and Milgrom 2005, Ostrovsky 2008, Hatfield and
Kojima 2010, Echenique 2012) and the applied motivation shares much with recent work on match-
ing in the military (Sénmez and Switzer 2013, Sénmez 2013).

The paper proceeds as follows. Section 2 introduces the model and illustrates the roles of
precedence and priority. Section 3 reports on our empirical investigation of these issues in the
context of Boston’s school choice plan. Section 4 briefly reviews the current debate in Boston and
describes how the present paper played a role in the debate. Section 5 concludes. All proofs are

relegated to the Appendix.

2 Model

There is a finite set I of students and a finite set A of schools. Each school a has a finite set of
slots S%. We use the notation ag to denote a “null school” representing the possibility of being
unmatched; we assume that this option is always available to all students. Let S = |J,c 4 5 denote
the set of all slots (excluding those at the null school). We assume that |S| > |I|, so that there are
enough (real) slots for all students. Each student i has a strict preference relation P over AU {ag}.
Throughout the paper we fix the set of students I, the set of schools A, the set of schools’ slots .S,
and the students’ preferences (P?);c;.

For any school a € A, each slot s € S* has a linear priority order 7° over students in /. This
linear priority order captures the “property rights” of the students for this slot in the sense that
the higher a student is ranked under #®, the stronger claims he has for the slot s of school a.
Following the current practice in BPS, we allow slot priorities to be heterogeneous across slots of a
given school. A subtle consequence of this within-school heterogeneity is that we must determine
how slots are assigned when a student is “qualified” for multiple slots with different priorities at a
school. The last primitive of the model regulates this selection: For each school a € A, the slots in
S® are ordered according to a (linear) order of precedence >*. Given a school a € A and two of
its slots s, s’ € 5%, the expression s>% s’ means that slot s is to be filled before slot s’ at school a
whenever possible.

A matching 1 : I — A is a function which assigns a school to each student such that no schools

is assigned to more students than its total number of slots. Let p; denote the assignment of student



i, and p, denote the set of students assigned to school a.

Our model generalizes the school choice model of Abdulkadiroglu and Sénmez (2003) in that
it allows for heterogenous priorities across the slots of a given school. Nevertheless, a mechanism
based on the celebrated student-proposing deferred acceptance algorithm (Gale and Shapley 1962)
easily extends to this model once the choice function of each school is constructed for given slot
priorities and order of precedence.

Given a school a € A with a set of slots S%, a list of slot priorities (7%)scga, an order of
precedence >® with

1 a 2 .a a |S?
sE b0 82 L p® gl

and a set of students J C I, the choice of school a from the set of students J is denoted by
C*(J), and is obtained as follows: Slots at school a are filled one at a time following the order of
precedence >*. The highest priority student in J under Wsclt, say student ji, is chosen for slot s! of
school a; the highest priority student in J\ {j1} under m is chosen for slot s2 of school a, and so
on.

For a given list of slot priorities (7%)scs and an order of precedence >* at each school a € A, the
outcome of the student-proposing deferred acceptance mechanism (DA) can be obtained

as follows:

Step 1: Fach student ¢ applies to her top choice school. Each school a with a set of Step
1 applicants J{ tentatively holds the applicants in C%(J{), and rejects the rest.

Step £: Each student who is rejected in Step ¢ — 1 applies to most-preferred school (if any)
that has not yet rejected her. Each school a considers its new applicants together
with those on hold from Step £ — 1, and uses its choice function C* to determine

which students are tentatively held and which students are rejected.

The algorithm terminates after the first step in which no students are rejected, assigning

students to the schools holding their applications.

2.1 A Mix of Neighborhood-Based and Open Priority Structures

In this paper we are particularly interested in the slot priority structure used at Boston Public
Schools. There is a master priority order w° that is uniform across all schools. This master priority
order is obtained via an even lottery and is often referred to as the random tiebreaker. At each
school in Boston, slot priorities depend on students’ walk-zone and sibling statuses and the random
tiebreaker 7. For our theoretical analysis, we consider a simplified priority structure which only
depends on walk-zone status and the random tiebreaker. We show in our empirical analysis of
Section 3 that this is a good approximation to the case of Boston Public Schools.

For any school a € A, there is a subset I, C I of walk-zone students that is determined with

a concrete formula. There are two types of slots:



1. Walk-zone slots: For each walk-zone slot at a school a, any walk-zone student ¢ € I, has
priority over any non-walk-zone student j € I\ I,, and the priority order within these two

groups is determined with the random tiebreaker 7°.
2. Open slots: m = 7° for each open slot s.

For any school a € A, define Si, to be the set of walk-zone slots and S to be the set of open
slots. BPS currently uses a priority structure in which half of the slots at each school are walk-zone
slots, while the remaining half are open slots. This structure has been historically interpreted as
a compromise between the proponents of neighborhood assignment and the proponents of school
choice.

An important comparative statics exercise concerns the impact of replacing an open slot with a
walk-zone slot under DA for a given order of precedence. One might naturally expect such a change
to weakly increase the number of students who are assigned to a walk-zone school. Surprisingly,

this is not correct in general, as we show in the next example.

Example 1. There are four schools A = {k,l,m,n}. Each school has two available slots. There
are eight students I = {i1, 9,13, 14, 15, 96, i7,98}. There are two walk-zone students at each school:
I, = {i1,i2}, I = {is,ia}, I, = {is,i6} and I,, = {i7,is}. The random tiebreaker 7w° orders the

students as:

w0 iy = dg i3 > 04 = U5 = 1g = 7 = i9.

The preference profile is:

pit pi2  pis  pis  pis  pie  pir  pis
k k l l m m n k
l l k k k k k l
m m l l l m

n n n n n n m n

m - m

First consider the case where each school has one walk-zone slot and one open slot. Also assume
that the walk-zone slot has higher precedence than the open slot at each school.

The outcome of DA for this case is:
(i d2 i3 g d5 dg U7 g
s k' n L I m mn k)
Observe that six students (i.e. students i1, 3,4, i5, i, i7) are assigned to their walk-zone schools in

this scenario.
Next we replace the open slot at school k& with a walk-zone slot, so that both slots at school
k are walk-zone slots. Each remaining school has one walk-zone slot and one open slot, with the

walk-zone slot having higher precedence than the open slot.



The outcome of DA for the second case is:
= i1 G0 i3 i4 iy ig 17 i
k' k I m mn n 1)
Observe that five students (i.e. students i1, 12,3, i5,77) are assigned to their walk-zone schools in

the second case—the total number of walk-zone assignments decreases when the open slot at school

k is replaced with a walk-zone slot. O

Nevertheless, as we present next, replacement of an open slot of school a with a walk-zone
slot weakly increases the number of walk-zone students assigned to school a (even though it may

decrease the total number of walk-zone assignments).

Proposition 1. For any given order of precedence of slots, replacing an open slot of school a with
a walk-zone slot weakly increases the number of walk-zone students who are assigned to school a
under DA.

When a school district increases the fraction of walk-zone slots, one of the policy motives behind
this change is to increase the fraction of students assigned to walk-zone schools. As Proposition 1
shows, replacing an open slot with a walk-zone slot serves this goal through its “first-order effect”
in the school directly affected by the change, although the overall effect across all schools might in
theory be in the opposite direction. Nevertheless, our empirical analysis in Section 3 suggests that
the first-order effect dominates—the overall effect of an increase in the number of walk-zone slots
is in the expected direction.

While the role of the number of walk-zone slots as a policy tool is quite clear, the role of the
order of precedence is much more subtle. Indeed, the choice of the order of precedence is often
considered a minor technical detail—and until the present work, precedence has never entered
policy discussions. Nevertheless, precedence impacts outcomes significantly.

Qualitatively, the effect of decreasing the precedence order position of a walk-zone slot is similar
to the effect of replacing an open slot with a walk-zone slot. While this may appear counter-intuitive
at first, the reason is simple: By decreasing the order of precedence of a walk-zone slot, one increases
the odds that a walk-zone student who has a lottery number high enough to make her eligible for
both open and walk-zone slots is assigned to an open slot. This in turn increases the competition
for the open slots and decreases the competition for walk-zone slots. Our next result formalizes

this observation.

Proposition 2. Fix the set of walk-zone slots and the set of open slots at each school. Then,
switching the precedence order position of a walk-zone slot of school a with the position of a lower-
precedence open slot weakly increases the number of walk-zone students assigned to school a under

DA.

Given Example 1, it is not surprising to see that the aggregate effect of lowering walk-zone slot
precedence may go against the “first order” effect. We now present a modified version of Example

1 that makes this point.



Example 2. To illustrate the conceptual relation between priority swaps and changes in the order

of precedence, we closely follow Example 1. The only difference is a small modification in the

second case.
There are four schools A = {k,l,m,n}. Each school has two available slots. There are eight

students I = {iy,19,13,14,15,1%6,17,98}. There are two walk-zone students at each school: I =
{ir,ia}, I} = {is,ia}, I, = {i5,16} and I,, = {i7,ig}. The random tiebreaker m° orders the students

as:

7T02i1>i8>i3>i4>i5>i6>i7>i2.

The preference profile is:

pih pi2  pis pia  pis  pis  pir  pis
k k l l
{ l k k k k k l
m m l l l m

n n n n n n m n

m m n k

m m

First consider the case where each school has one walk-zone slot and one open slot. Also assume
that, at each school, the walk-zone slot has higher precedence than the open slot.

The outcome of DA for this case is:
(i d2 i3 dg d5 g U7 g
s k' n L I m mn k)

Observe that six students (i.e. students i1, i3, 4, i5, i, i7) are assigned to their walk-zone schools in
this scenario.

Next, we change the order of precedence at school k so that the open slot has higher precedence
than the walk-zone slot. Each remaining school maintains the original order of precedence with the
walk-zone slot higher precedence than the open slot.

The outcome of DA for the second case is:
= i1 G0 i3 i4 iy ig 17 i
kK 'k I m mn n 1)
Observe that five students (i.e. students i1, 12,3, i5,77) are assigned to their walk-zone schools in

the second case. Thus, we see that the total number of walk-zone assignments decreases following

reduction in the precedence of the walk-zone slot of school k. O

2.2 Additional Results for the Case of Two Schools

In this section, we obtain sharper theoretical results by focusing on the case of two schools (|A| = 2).
We assume that each student belongs to exactly one walk zone and that students rank both schools.
This case is motivated in part by the commonly discussed policy objective of giving students from

poorer neighborhoods access to desirable schools in richer neighborhoods.



We have the following additional results in this more specialized setting

Proposition 3. Suppose that there are two schools, that each student belongs to exactly one walk
zone, and that students rank both schools. Then, replacing an open slot of either school with a

walk-zone slot weakly increases the total number of walk-zone assignments under DA.

An immediate implication of Proposition 3 is the following intuitive result justifying why the
school choice and neighborhood schooling lobbies respectively prefer 0% and 100% walk-zone pri-
ority.

Corollary 1. Suppose that there are two schools, that each student belongs to exactly one walk
zone, and that students rank both schools. Under DA (holding fized the number of slots at each
school):

o The minimum number of walk-zone assignments across all priority and precedence policies is

obtained when all slots have open slot priority, and

o the mazimum number of walk-zone assignments across all priority and precedence policies is

obtained when all slots have walk-zone priority.

Proposition 4. Suppose that there are two schools, that each student belongs to exactly one walk
zone, and that students rank both schools. Fix the set of walk-zone slots and the set of open slots
at each school. Then, switching the order of precedence position of a walk-zone slot at either school
with that of a subsequent open slot at that school weakly increases the total number of walk-zone

assignments under DA.

Our empirical analysis in Section 3 shows that the fraction of students who receive their first
choices, second choices, and so forth show virtually no response to changes in the fraction of walk-
zone slots or the order of precedence. Our final theoretical result provides a basis for this empirical

observation.

Proposition 5. Suppose that there are two schools, that each student belongs to exactly one walk
zone, and that students rank both schools. Then, the number of students assigned to their top-choice

schools is independent of both the number of walk-zone slots and the choice of precedence order.

An important policy implication of our last result is that the division of slots between walk-
zone priority and open priority as well the order of precedence selection has little bearing on
the aggregate number of students who receive their top choices; thus, the impact of these DA

calibrations on student welfare is mostly distributional.

3 Precedence and Priority in Boston Public Schools

3.1 50-50 vs. No Slot Split

Examples 1 and 2 illustrate that even given priorities and precedence orders, determining how
many students attend a walk-zone school is challenging without additional structure on priorities

or preferences. These examples motivate the two-priority-type model presented in Section 2.

10



To examine whether these comparative static predictions presented in our theoretical results
capture the main features of school choice with richer priority structures, we use data on submitted
preferences from Boston Public Schools. Relative to our two-priority-type model, Boston has three

additional priority groups:
1. guaranteed applicants, who are typically continuing on at their current schools,

2. sibling-walk applicants, who have siblings currently attending a school and live in the walk

zone, and

3. sibling applicants, who have siblings attending a school and live outside the walk zone.

Under BPS'’s slot priorites, applicants are ordered as follows:

Walk-Zone Slots Open Slots
Guaranteed Guaranteed
Sibling-Walk o o

e Sibling-Walk, Sibling
Sibling
Walk

Walk, No Priority

No Priority

A single random lottery number is used to order students within priority groups, and this number
is the same for both types of slots.

We use data covering four years from 2009-2012, when BPS employed a mechanism based on the
student-proposing deferred acceptance algorithm. Students interested in enrolling in or switching
schools are asked to list schools each January for the first round. Students entering kindergarten
can either apply for elementary school at Grade K1 or Grade K2 depending on whether they are
four or five years old. Since the mechanism is based on the student-proposing deferred acceptance
algorithm and there is no restriction on the number of schools that can be ranked, the assignment
mechanism is strategy-proof.> BPS informs families of this property on the application form,

advising;:

List your school choice in your true order of preference. If you list a popular school first,
you won't hurt your chances of getting your second choice school if you don’t get your first
choice (BPS 2012).

Since the BPS mechanism is strategy-proof, we can isolate the effects of changes in priorities and

precedence by holding submitted preferences fixed.”

SFor analysis of the effects of restricting the number of choices which can be submitted, see Haeringer and Klijn

(2009), Calsamiglia, Haeringer, and Kljin (2010), and Pathak and Sénmez (2013).
5As a check on our understanding of the data, we verify that we can recreate the assignments produced by BPS.

Across four years and three applicant grades, we can match 98% of the assignments. Based on discussions with
BPS, we learned that the reason why we do not exactly recreate the BPS assignment is that we do not have access
to BPS’s exact capacity file, and instead must construct it ex-post based on the final assignment. There are small
differences between this measure of capacity and the capacity input to the algorithm due to the handling of unassigned
students who are administratively assigned. In this paper, to hold this feature fixed in our counterfactuals, we take

our re-creation as representing the BPS assignment.

11



The motivating puzzle for this paper is shown in Table 1, which reports a comparison of the
assignment produced by BPS, which relies on a 50-50 split of slots, to two extreme alternatives
representing the ideal positions of the school choice and neighborhood school factions: (1) a priority
structure without walk-zone priorities at any slot and (2) a priority structure where walk-zone
priority applies at all slots. We refer to these two extremes as 0% Walk and 100% Walk, and
we compute their outcomes using the same lottery numbers as BPS. Table 1 shows that the BPS
assignment is nearly identical to the former of these two alternatives; it differs for only 3% of
Grade K1 students. One might suspect that this phenomenon is driven by a strong preferences for
neighborhood schools among applicants, which would bring the outcomes of these two assignment
policies close together. However, comparing the 100% Walk outcome to BPS outcome, 19% of Grade
K1 students obtain a different assignment. Therefore, the remarkable proximity of the current BPS
outcome to the ideal of school choice proponents does not suggest (or reflect) negligible stakes in
school choice.

For Grades K2 and 6, the BPS assignment is similarly close to the 0% Walk outcome. Just
as with Grade K1, this fact is not driven by applicants’ preferences for neighborhood schools.
The fraction of students who obtain a different assignment under the 100% Walk alternative are
17% and 10%, respectively. The differences are smaller at higher grades because there are more
continuing students who obtain guaranteed priority. On average, 4.5% of Grade K2 applicants have
guaranteed priority at their first choice compared to 13% of Grade 6 students. Hence, despite the
adoption of a seemingly neutral 50-50 split, Table 1 shows that the BPS outcome is closely similar

to the 0% Walk outcome across different grades and years.

3.2 The Impact of Precedence

To understand the source of this puzzle, in Table 2 we report the fraction of students who obtain
a slot in a school in their walk zone under different priority and precedence policies. Each year,
when a student is unassigned in BPS, they are administratively assigned via an informal process
conducted by the central enrollment office. These students are reported as unassigned in Table 2,
even though many are likely to eventually obtain an assignment. Unassigned students are also the
reason why the fraction of students who obtain a walk zone school is less than 50% even though
most applicants at Grades K1 and K2 rank walk-zone schools as their first choices. Among those
who are assigned, the BPS mechanism assigns 62.6% of Grade K1 and 58.2% of Grade K2 students
to schools in their walk zones.

Before turning to variations in precedence, we start by comparing the fraction of students
assigned to a walk zone school under the two priority extremes of 0% Walk and 100% Walk. Recall
that in our model, Proposition 3 states that the number of students assigned to a walk zone school
increases when the walk zone percentage increases. Table 2 shows this prediction borne out in
Grade K1, K2, and 6, even though BPS’s priority structure is more complicated than that studied
in our model. Corollary 1 suggests that the fraction of students who obtain walk-zone assignments
under the 0% Walk and 100% Walk policies provides a benchmark for what can be obtained under
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variations of priority or precedence given student demand. For Grade K1, this range spans from
46.2% to 57.4% walk-zone assignment; the 11.2% interval represents the maximum difference in
allocation attainable through changes in either priorities or precedence Grade K1.

The first alternative precedence we consider is Walk-Open, under which all walk-zone slots
precede the open slots. (The actual BPS implementation is a slight variation on Walk-Open in
which applicants with sibling priority and outside the walk zone apply to the open slots before
applying to the walk-zone slots.) Focusing on Walk-Open provides useful intuition because as
Table 2 shows the BPS system produces an outcome very close to Walk-Open. Under Walk-Open,
if there are more walk-zone applicants than slots, then the pool of walk-zone applicants will be
depleted by the time the open slots start being filled. For instance, suppose a school has 100 slots,
and there are 100 walk-zone applicants and 100 non-walk-zone applicants. With the Walk-Open
precedence order, 50 of the 100 walk-zone applicants will fill the 50 walk-zone slots. The remaining
competition for open slots is between 50 walk-zone applicants and 100 non-walk-zone applicants.
Since there are twice as many non-walk-zone applicants as walk-zone applicants in this residual
pool, the non-walk-zone students stand to get more of the open slots. This processing bias partly
explains why having walk-zone applicants first apply to walk-zone slots ends up disadvantaging
them.

Next we consider the Open-Walk precedence order in which all applicants fill open slots before
filling walk-zone slots. This represents the other end of precedence policy spectrum. Proposition 4
states that in our model, switching the order of precedence positions of walk-zone slots with those
of subsequent open slots weakly increases the total number of walk-zone assignments. For each
grade, Table 2 shows that this effect appears in the data. 54.8% of Grade K1 students are assigned
to their walk-zone schools under Open-Walk, relative to 46.6% with Walk-Open. The 8.2% range,
all holding fixed the 50-50 split, represents 73% of the range attainable from going from 0% Walk
to 100% Walk. For Grade K2, the two extreme precedence policies cover 74% of the 9.3% range
between the priority policy extremes. For Grade 6, the two extreme precedence policies cover 67%
of the 5.4% range between the extremes. Thus, we see that decisions about precedence order have
impacts on the assignment of magnitude comparable to decisions about priorities.

The difference between Walk-Open and Open-Walk represents the range of walk zone assign-
ments that can arise from alternative precedence orders all within the 50-50 split. We turn to
intermediate precedence policies still holding the 50-50 split fixed. The first alternative we examine
attempts to mitigate the bias caused processing all of the slots of a particular type at once. The
Rotating precedence order alternates between walk-zone and open slots. Under Rotating, the
fraction of students who are assigned to schools in their walk zones increases by 2.5% relative to
the Walk-Open precedence policy for Grade K1, but is still closer to Walk-Open than Open-Walk.
The reason that Rotating is closer to Walk-Open is that alternating slots only partly undoes the

processing bias, as we describe next.
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3.3 Lottery Numbers

The other ingredient which accounts for the effect of precedence policies are the lottery numbers
of applicants. Recall the earlier example where a school has 100 slots, and there are 100 walk-
zone applicants and 100 non-walk-zone applicants. Under the Walk-Open precedence order, the
remaining walk-zone applicants are out-numbered in the competition for the remaining open slots.
They also come from a pool of applicants with adversely selected lottery numbers. Under Walk-
Open, the walk-zone slots are filled by the 50 walk-zone applicants with the highest lottery numbers
among walk-zone applicants. The competition for open slots is among the 50 walk-zone students
with lowest lottery numbers and the 100 non-walk-zone students. When walk-zone applicants are
considered for slots at the open slots, their adversely selected lottery numbers systematically place
them behind applicants without walk-zone priority, leaving them unlikely to obtain open slots.

The random number bias—created by the precedence order—renders the outcomes under Walk-
Open precedence very similar to the assignment that arises when all slots are open. In our example
with 100 slots, with no walk zone priority, on average, 50 slots would be assigned to walk-zone
applicants and 50 would be assigned to non-walk-zone applicants. Hence, there is no difference
between a system without walk zone priority and the Walk-Open precedence. Even though the
official BPS policy (following the School Committee’s 1999 policy declaration) states that there
should be open competition at the open slots, walk-zone applicants are systematically disadvantaged
in the competition for those slots.

A single lottery number is also the reason why the Rotating precedence order is much closer
to Walk-Open than Open-Walk in Table 2. With Rotating, the pool of walk-zone applicants with
favorable lottery numbers is depleted after the first few slots are allocated, so the bias in lottery
numbers among the pool of walk-zone applicants re-emerges after a few rounds of rotation. While
Rotating tackles the processing bias, with one lottery number, it still retains the random number
bias.

If the mechanism is constrained to have one lottery number, it may be possible to combat the
random number bias via the precedence order.” The Compromise precedence order first fills half
of the walk-zone slots, then fills all the open slots, and then the fills the second half of the walk-zone
slots. It attempts to even out the treatment of walk-zone applicants through changes in the order
of slots. Initially, when the first few open slots are processed, the walk-zone applicant pool has
adversely selected lottery numbers, but this bias becomes less important by the time the last open
slots are processed. As a result, the fraction of applicants who attend a school for which they
have walk-zone priority is close the midpoint between Walk-Open and Open-Walk. The results of
this policy are shown in column (5) of Table 2. At Grade K1, Compromise assigns 50.7% to a
walk-zone school—exactly the mid-point between the Walk-Open (46.6%) and Open-Walk (54.8%)
assignments.

When more than one lottery number can be used, there are additional possibilities. Table 3

"In the next section, we describe how BPS initially preferred this treatment, partly because of the difficulty

involved in explaining a system with more than one lottery number.
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reports on alternative policies which use two lottery numbers in ordering applicants, one for the
walk-zone slots and one for the open slots. The results reported in this table allow us to examine
the processing and random number biases in isolation. Column (2) reports on the Walk-Open
precedence order with two lottery numbers. This deals with the random number bias, but retains
the processing bias, since the pool of applicants from the walk zone is still depleted by the time
the open slots are filled. Walk-Open with two lottery numbers is still close to the current BPS
outcome. It assigns 48.1% of students to walk-zone schools at Grade K1 and is quite close to
the 46.6% assigned when Walk-Open is used with only one lottery number. Walk-Open with two
lottery numbers is still closer to 0% Walk than 100% Walk; this suggests that random number bias
accounts for only part of the reason the 50-50 allocation is not midway between the two extremes.

To deal with both the processing and random number bias, we investigate a Rotating treatment
which uses two independent lottery numbers, one for walk-zone slots and the other for open slots.
For Grade K1, 51.7% of students are assigned to walk-zone schools under this treatment; this point
is near the 51.8% midpoint between 0% Walk and 100% Walk. Moreover, the difference between
column (2) and (3) shows the magnitude of the processing bias. This difference is 3.6%, while the
difference due to random number bias (comparing column (2) in Table 2 and column (3) in Table
3) is 1.5%. This suggests that both biases are substantial. The patterns are similar for Grades K2
and 6.

The remedy of using two lottery numbers, however, has an important drawback. It is well-
known that using multiple lottery numbers across schools with deferred acceptance may generate
efficiency losses (Abdulkadiroglu, Pathak, and Roth 2009). Even though the two lottery numbers
are within schools (and not across schools), the same efficiency consequence arises here. Indeed, if
we compare the Unassigned row in Table 2 to Table 3, there are slightly more unassigned students
when two lottery numbers are used. For Grade K1, 25.0% of students are unassigned when using
Rotating two lottery numbers, and this fraction is between 0.2-0.4% higher than any precedence
policy reported in Table 2. The same pattern holds for Grade K2 and Grade 6. Though these are
small numbers, they do suggest the possibility of inefficiency from two lottery numbers.

If the efficiency cost is prohibitive or explaining a system with two lottery numbers is too chal-
lenging, then the Open-Walk precedence order with a single lottery number is a viable alternative.
By removing the statistical bias in the processing for walk-zone applicants, Open-Walk respects the
school committee’s goal of keeping the competition for non-walk seats open to all applicants. One
implication of the Open-Walk treatment, we saw in Table 2, is that it leads to the highest fraction
of students with a walk zone assignment within the 50-50 split. Therefore, adoption of Open-Walk
may require calibration of the fraction of walk zone slots.

We report on such a calibration in Table 4, where we investigate what policy BPS has been
implementing from 2009-2012. We compare BPS to the two alternatives we’ve proposed: Open-
Walk with one lottery number and Rotating with two lottery numbers. Table 4 reports how the
actual BPS implementation compares to the Open-Walk treatment with a smaller set of walk zone
seats.

From 2009-2012, BPS’s implementation corresponds to Open-Walk with a 5-10% walk-zone
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priority depending on the grade. This fact stands in sharp contrast to the advertised 50-50 split. For
Grade K1, the actual BPS implementation gives 47.2% of students walk-zone assignments; this is
just above the Open-Walk treatment with 5% walk share, but below the Open-Walk treatment with
10% walk share. For Grade K2, the actual BPS implementation has 48.5% walk-zone assignment
compared to 48.4% with the Open-Walk treatment with a 10% walk share. For Grade 6, the
actual BPS implementation is bracketed by Open-Walk with 5% and 10% walk share. BPS’s
implementation also corresponds to Rotating with two lottery numbers where the fraction of walk
zone seats is just above 10%.

Finally, the last issue we examine empirically is whether these changes are mostly distributional
as suggested by Proposition 5. Table 5 reports on how the overall distribution of choices received
varies with precedence order. This table shows that there is almost no difference in the aggregate
distribution of received choice rank across BPS, rotating with two lottery numbers and Open-Walk
with one lottery number. Consistent with Proposition 5, changes in precedence are a tool to achieve
distributional objectives, having little overall impact on the total number of students who obtain

their top choices.

4 The 2012-2013 Boston Debate between Neighborhood and Choice

The debate between neighborhood and choice proponents was rekindled in dramatic fashion in
Boston following Mayor Thomas Menino’s 2012 State of the City Address.® In the speech, Menino

(2012) articulated support for the faction in favor of greater neighborhood assignment:

“Something stands in the way of taking our [public school] system to the next level: a
student assignment process that ships our kids to schools across our city. Pick any street.
A dozen children probably attend a dozen different schools. Parents might not know each
other; children might not play together. They can't carpool, or study for the same tests.

L]

Boston will have a radically different school assignment process—one that puts priority on

children attending schools closer to their homes.”

For elementary and middle school admissions, Boston is currently divided into three zones:
North, West, and East. To respond to Menino’s charge, a natural proposal is to try to increase
walk-zone assignment by increasing the proportion of walk-zone slots at each school. But no one
knew at the time of Menino’s speech that the current system was unintentionally disadvantaging
walk-zone students in the competition for open slots.

In Fall 2012, BPS proposed five different plans which all restricted participant choice by reducing
the number of schools students could rank.® The idea behind each of these plans was to reduce

competition from non-neighborhood applicants at the open half of each school. These plans and

8For more on this debate, see the materials available at http://bostonschoolchoice.org and press accounts by

Goldstein (2012) and Handy (2012).
9The initial plans suggested dividing the city into 6, 9, 11, or 23 zones, or assignment based purely on neighborhood.
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other proposals from the community became the center of a year-long, city-wide discussion on school
choice. Critics expressed concerns that with smaller choice menus, families from disadvantaged
neighborhoods would be shut out of good schools if the neighborhood component of assignment

were given more weight. This point was summarized by a community activist (Seelye 2012):

“A plan that limits choice and that is strictly neighborhood-based gets us to a system that
is more segregated than [BPS] is now.”

Underlying the discussion was puzzlement as to how Menino’s concerns could be correct given
that a walk zone applicant always obtains a seat ahead of a non-walk zone applicant at 50% of
school seats and remaining walk zone applicants have a shot at the open half. A few members of
the neighborhood assignment faction were convinced that there had not been enough neighborhood
assignment in recent years, but they could not determine why. After a preliminary version of our
research became available, Pathak and Sénmez interacted with BPS’s staff. Parts of our research
were presented to the Mayor’s twenty-seven-member Executive Advisory Committee (EAC), where
it became known that the BPS walk-zone priority was not having its intended impact because of

the chosen precedence order. The EAC meeting minutes summarized the discussion (EAC 2013):

“A committee member stated that the walk-zone priority in its current application does not
have a significant impact on student assignment. The committee member noted that this
finding was consistent with anecdotal evidence that the committee had heard from parents.”

Following the presentation, BPS immediately recommended that the system switch to the compro-

mise treatment for the Fall 2013 admissions cycle. The meeting minutes state:

“BPS’s recommendation is to utilize the compromise method in order to ensure that the

walk-zone priority is not causing an unintended consequence that is not in stated policy.”

Part of the reason for recommending the Compromise method is the anticipated difficulty of de-
scribing a system employing two lottery numbers.

The switch to the Compromise treatment, as Table 2 shows, leads to an increase in the number
of students assigned to their walk-zone schools. This change, together with the proposals to shrink
zones or adopt a plan with a smaller choice menus, raised concerns that the equity of access would
decrease. Our discovery about the role of precedence proved so significant that it became part of
the fight between those favoring neighborhood assignment and those favoring increased choice.

On one hand, proponents of neighborhood assignment interpreted our findings as showing that
the unintentional improper implementation of the 50-50 school split caused hundreds of students
to be shut out of their neighborhood schools. They argued that a change in the precedence order
would be the only policy consistent with the School Committee’s policy in 1999. Moving either
to Rotating with two lottery numbers or Open-Walk would also coincide with the Mayor’s push
towards moving children closer to home.

Choice proponents seized on our findings for two distinct points. First, some groups, such as
the activist Metropolitan Area Planning Council, fought fiercely to maintain to keep the 50-50 seat
split with the current precedence order (MAPC 2013):
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“The assignment priority given to walk-zone students has profound impacts on the outcomes
of any new plan. The possible changes that have been proposed or discussed include
increasing the set-aside, decreasing the set-aside, changing the processing order, or even
reducing the allowable distance for walk zone priority to less than a mile. Actions that
provide additional advantage to walk-zone students are likely to have a disproportionate
negative impact on Black and Hispanic students, who are more reliant on out-of-walk-zone

options for the quality schools in their basket.”

The symbolism of the 50-50 split resounded with sophisticated choice proponents because it created
the impression that they were giving something away to neighborhood proponents even though they
really were not due to the BPS implementation.

Some other parties refused to let go of the idea that walk-zone priority as currently implemented
did not have large implications for the assignment. For instance, the City Councillor in charge of
education publicly testified (Connolly 2013):

“MIT tells us that so many children in the walk zones of high demand schools ‘flood the
pool’ of applicants, and that children in these walk zones get in in higher numbers, so walk
zone priority doesn't really matter.”

“Maybe, that is true. But if removing the walk zone priority doesn’t change anything, why
change it all?”

Choice proponents also interpreted our findings as an argument for removing walk-zone priority
entirely. Indeed, given that walk-zone priority plays a relatively small role (as currently imple-
mented by BPS relative to 0% Walk), simply eliminating it might increase transparency about how
the system works. Getting rid of walk zone priority altogether avoids the (false) impression that
applicants from the walk zone are receiving a boost under the mechanism.

This argument eventually convinced Boston Superintendent Carol Johnson to overturn the
Mayor’s committee’s recommendation to keep the existing processing order. On March 13, 2013,
Superintendent Johnson stated (Johnson 2013):

“After viewing the final MIT and BC presentations on the way the walk zone priority actually
works, it seems to me that it would be unwise to add a second priority to the Home-Based

model by allowing the walk zone priority be carried over.”

“Leaving the walk zone priority to continue as it currently operates is not a good option.
We know from research that it does not make a significant difference the way it is applied
today: although people may have thought that it did, the walk zone priority does not in fact
actually help students attend schools closer to home. The External Advisory Committee
suggested taking this important issue up in two years, but | believe we are ready to take
this step now. We must ensure the Home-Based system works in an honest and transparent

way from the very beginning.”
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In March 2013, BPS voted to totally eliminate walk zone priority, so as to avoid giving the false
impression of advantaging walk-zone students. The district also voted for a Home-Based system
which defines the choice menu for applicants based on their address, and substantially reduces the
number of schools applicants can rank. This change affects applicants for elementary and middle
school starting Fall 2013, but not those for Grade 9, where as of this draft, admissions are city-wide

and still retain the 50-50 split with the existing BPS precedence order.

5 Conclusion

Those articulating a pro-neighborhood position in the school choice debate often lament how choice
has “destroyed the concept of neighborhood schools” by scattering children across the city by
assigning them to schools far from home (Ravitch 2011). In Boston, Mayor Menino’s claim that
the current system does not put priority on children attending schools closer to their homes seemed
to be at odds with the fact that half of each school’s seats prioritized applicants from the walk-zone.
This paper explains this apparent puzzle by showing the important role played by the precedence
order in the deferred acceptance algorithm.

In addition to the two new comparative statics results, the paper has shown how the precedence
order effectively undermined the policy aim of the 50-50 slot split in Boston. Moreover, our empir-
ical results show that in Boston, the precedence order (1) has quantitative impacts almost as large
as changes in neighborhood priority, and (2) is an important lever for achieving distributional ob-
jectives. The role precedence played was so central in Boston that once its unintended consequences
were made transparent, policymakers decided to abandon walk zone priority altogether.

Even though explicit implementation of precedence has not been part of prior school choice
policy discussions (with the exception of the recent one at BPS), it is clear that they should
accompany debates about priorities. It also seems likely that precedence could play an important
role outside of student assignment, in other priority-based assignment problems where priorities
depend on particular slots. Finally, it is worth noting that our paper uses market design techniques
and analysis to show how to achieve given policy objectives. We have not considered normative
questions like whether there should be walk-zone priority at all, or how to compute the optimal

walk-zone set aside. These important questions seem worth future investigation.
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A Appendix

A.1 Preliminaries for Proposition 1

For a school a* and a slot s* € S* of school a*, suppose that s* is an open slot under priority
structure 7, and is a walk-zone slot under priority 7. Suppose furthermore that 7#* = 7° for all
slots s € S%" other than a*. Let C% and C®" respectively be the choice functions for a* induced

by the priorities 7 and 7, under (fixed) precedence order > .
Lemma 1. For any set of students I C I:

1. All students in the walk-zone of a* that are chosen from I under choice function C* are

chosen under choice function C* (i.e. [(C% (I)) N I4+] C [(C¥ (1)) N Io+]).

2. All students not in the walk-zone of a* that are from I chosen under choice function C* are
chosen under choice function C* (i.e. [(C® (I)) N (I\ I,+)] € [(C* (1)) N (I \ I+)]).

Proof. We proceed by induction on the number gq« of slots at a*. The base case g+ = 1 is
immediate, as then S = {s*} and C® (I) # C® (I) if and only if a walk-zone student of a*
is assigned to s* under C, but a non-walk-zone student is assigned to s* under C, that is, if
C%(I) C 1= while C% (I) C I\ I,~. It follows immediately from this observation that [(C (I)) N
1] € [(C" (1)) N I+ and [(C4" (1) N (I L)) € (€% (1) N (1 La+)]-

Now, given the result for the base case g, = 1, we suppose that the result holds for all g« < ¢
for some ¢ > 1; we show that this implies the result for ¢, = £. We suppose that g, = £, and
let 5 € S be the slot which is minimal (i.e., processed last) under the precedence order p%". A
student eligible for one type of slot is also eligible for the other, and hence s is either full in both
cases or empty in both cases. Moreover, the result follows directly from the inductive hypothesis

in the case if no student is assigned to s (under either priority structure); hence, we assume that
IC(D)] = 1C (D] = gar = £. (1)

If s = s*, then the result follows just as in the base case: It is clear from the algorithms defining
%" and C*" that the same students are assigned to slots s> s* = 5 in the computations of C*" (I)
and C%" (I), as those slots’ priorities and relative precedence ordering fixed. Thus, as in the base
case, C% (I) # C (I) if and only if a walk-zone student of a* is assigned to s* under C, but a
non-walk-zone student is assigned to s* under C.

If 5 # s*, then s*>%" 5. We let J C I be the set of students assigned to slots in S¢" \ {5} in the
computation of C (I), and let J C I be the set of students assigned to slots in S*" \ {5} in the
computation of C (I). The inductive hypothesis, in the case gu- = ¢ — 1, implies

[J N 1] C [J NI, (2)
TN I\ L) TN\ L)), (3)

as the first g« slots of a* can be treated as a school with slot-set S% \ {5} (under the precedence
order induced by >%").
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If we have equality in (2) and (3),!° then the set of students available to be assigned to 5 in
the computation of C%"(I) is the same as in the computation of C% (I). Thus, since 7° = #° by
assumption, we have C%" (I) = C%"(I); hence, the desired result follows trivially.

If instead the inclusions in (2) and (3) are strict, then there is some student i € [J NI\ [J NI,
who is in the walk-zone of a* and is assigned to a slot s> 5 in the computation of C" (I) but is not
assigned to such a slot in the computation of C* (I). We let i be the student in [J N Io«]\ [J N Iy+]

ranked highest under 7°; by construction, i must be the 7°-maximal student in [I \ J] N I,«. Thus:

o If 5 is assigned a walk-zone student of ¢* in the computation of C% (I), then that student
must be 7. Then, C* (I) = J U {i}; hence,

[(C (D)) NIa+] = [(JU{i}) N Ioe] € [J N L= U {i},
where the inequality follows from (2). Since 7 € [J N I=] C [(C% (1)) N I,+], it follows that

[(C* (D) N Lax] € [(C¥ (1)) N Lae]. (4)

e If 5 is assigned a student not in the walk-zone of a* in the computation of C% (I), then (2)

directly implies (4).

This completes the first half of the induction.

Likewise, if the inclusions in (2) and (3) are strict, then there is some student i € [JN (1 \ I4+)]\
[J N (I\ I+)] who is not in the walk-zone of a*, is assigned to a slot s> 5 in the computation of
C% (I), and is not assigned to such a slot in the computation of C%" (I). We let i be the student in
[J N (I\ 1))\ [J N (I\ I~)] ranked highest under 7°; by construction, 7 must be the 7°-maximal
student in [T\ J] N (I \ I+). Thus:

e If 5 is assigned a student not in the walk zone of a* in the computation of C%"(I), then that
student must be . Then, C* (I) = J U {i}; hence,

(E™ (D) NI\ L) = (U D) NI\ L)) € [0 (T L)) U (i),

where the inequality follows from (3). Since 7 € [JN(I\ I+)] C [(C* (1)) N (I\ I+)], it follows
that
[(C (D) NI\ Lax)] € [(C¥ (D) N (I L)) ()

e If 5 is assigned a walk-zone student of a* in the computation of C* (I), then (3) directly

implies (5).

These observations complete the second half of the induction. ]

W As |J| = |J| by (1), equality holds in one of (2) and (3) if and only if it holds for both inclusions (2) and (3).
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A.2 Preliminaries for Proposition 2

For a school a* and a slot s¥, € S* of school a*, suppose that s¥ is a walk-zone slot. Suppose

*

» and some open slot

that precedence order & is obtained from > by swapping the positions of s
55 € 8% that is below s%, in the order >® (i.e. s%,>% s¥), and leaving the positions of all other slots
unchanged. Let C%" and C" respectively be the choice functions for a* induced by the precedence

orders > and &, under (fixed) slot priorities 7° (s € S*).
Lemma 2. For any set of students I C I:

1. All students in the walk-zone of a* that are chosen from I under choice function C* are

chosen under choice function C* (i.e. [(C% (I)) N I4+] C [(C¥ (1)) N I,+]).

2. All students not in the walk-zone of a* that are from I chosen under choice function C% are

chosen under choice function C* (i.e. [(C* (I)) N (I\ Io=)] C [(C¥ (1)) N (I \ I)]).

Proof. We proceed by induction on the number g,+ of slots at a*.
First, we prove the base case g,+ = 2. We denote by isx and g (resp. ES;«U and 533) the students

respectively assigned to slots s% and s* in the computation of C% (I) (resp. C* (I)). Now:

o If {Z's;;,is;;} C I+, then the ordering under 7° must take the form

Woiis;j >i53 e

as otherwise some student i # is: would have higher rank than isx under 7°, and would thus
have higher claim than i, for (open) slot s} under precedence order >* . But then, iy is the
m°-maximal student in I and isx is the m%-maximal walk-zone student in I\ {isx }; hence, we

must have igs = is: and i = i, so that co (1) = ¢o" (I).

o If {is:,isx} C (I\ Iy+), then I contains no students in the walk-zone of a* (i.e. I NI+ = 0)
and igx and igx are then just the m°-maximal non-walk-zone students in I. In this case, we
find that is = igx and s = ig; hence, Co (1) = ¢ (I).

o If iy € I and iz € (1\ Lo+ ), then iz is the m°-maximal walk-zone student of a* in I.If igx
is also m°-maximal among all students in I, then we have 553 = isx . Moreover, in this case
either 553; € I «, or ES;L is the only walk-zone student of a* in I, so that 28; = lgx.
Alternatively, if is: is not m°-maximal among all students in I, then isx must be m°-maximal
among all students in I, so that g = igs and g = i . In either case, we have [(C%(I)) N
I+] = {is: } € [(C¥(I))NI,+]. Additionally, we have [(C%" (I))N(I\I+)] C {is:} = [(C¥(I))N
(L \ La»)]-

e We cannot have isx € (I\ Io+) and igx € Iq«, as s, is a walk-zone slot (and thus gives all

students in I« higher priority than students in I\ I,«) and s%>%" s

' Note that the setup requires at least two distinct slots of a*, s0 g = 2 @ priori.
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The preceding four cases are exhaustive and the desired result holds in each; thus, we have the base
case.

Now, given the result for the base case g, = 2, we suppose that the result holds for all g,« < /¢
for some ¢ > 2; we show that this implies the result for g,~ = £. We observe that it suffices to show
the result in the case that s¥ and s’ are adjacent under > ; the result for general positions with
STUD“*SZ follows from the adjacency case upon a sequence of adjacent-slot swaps. Thus, we suppose
that s and s} are adjacent under b with s;"uba*sj;, and suppose that g+ = £. We let 5 € S be
the slot which is minimal under the precedence order >* . A student eligible for one type of slot is
also eligible for the other, and hence 5 is either full in both cases or empty in both cases. Moreover,
the result follows directly from the inductive hypothesis in the case if no student is assigned to §

(under either priority structure); hence, we assume that
C(D)] = |C¥(I)] = gar = L. (6)

If 5 = s}, then the result follows just as in the base case, as it is clear from the algorithms defining
C% and C" that the same students are assigned to slots s> 5% >4 % = 5 in the computations of
C% (I) and C°"(I).

If 5 # s¥, then s%>% s5>% 5. We let J C I be the set of students assigned to slots in S \ {5}
in the computation of C* (I), and let J C T be the set of students assigned to slots in S¢" \ {5} in
the computation of ce (I). The inductive hypothesis, in the case g+ = £ — 1, implies

[J N I] C[JN ], (7)
[N I\ L)) S [T (1N Ler)]y (8)

as the first g,« slots of a* can be treated as a school with slot-set S\ {5} (under the precedence
order induced by >®).

If we have equality in (7) and (8),'2 then the set of students available to be assigned to 5 in the
computation of C%"(I) is the same as in the computation of C%" (I); the desired result then follows
trivially.

If instead the inclusions in (7) and (8) are strict, then there is some student i € [J NI\ [JNI,]
who is in the walk-zone of a* and is assigned to a slot s> 5 in the computation of C (I) but is not
assigned to such a slot in the computation of C* (I). We let 7 be the student in [.J N Ip«] \ [J N Io+]

ranked highest under 7°; by construction, i must be the 7°-maximal student in [I \ J] N I,+. Thus:

o If 5 is assigned a walk-zone student of a* in the computation of C% (I), then that student
must be 7. Then, C* (I) = J U {i}; hence,

(C* (D)) N Lo = [(JU{i}) N o] € [T N Lax] U {3},
where the inequality follows from (7). Since 7 € [J N I:] C [(C* (1)) N I,+], it follows that

[(C* (D) N Lax] € [(C¥ (D)) N Le]. 9)

2As |J| = |J| by (6), equality holds in one of (7) or (8) if and only if it holds for both (7) and (8).
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e If 5 is assigned a student not in the walk-zone of a* in the computation of C* (I), then (7)

directly implies (9).

Thus, we have completed the first half of the induction.

Likewise, if the inclusions in (7) and (8) are strict, then there is some student i € [JN (I\ Io+)]\
[J N (I\ I+)] who is not in the walk-zone of a*, is assigned to a slot s> 5 in the computation of
C% (I), and is not assigned to such a slot in the computation of C* (I). We let 7 be the student in
[J N (I\ 1))\ [J N (I\ I+)] ranked highest under 7; by construction, 7 must be the m°-maximal
student in [I'\ J] N (I \ I,+). Thus:

e If 5 is assigned a student not in the walk zone of a* in the computation of C%"(I), then that
student must be i. Then, C% (1) = J U {i}; hence,

[(CT ) NI\ L)) = [(JU{i}) NI\ Las)] [T 0 (1N Lor)] U {2},

where the inequality follows from (8). Since 7 € [JN(I\I4+)] € [(C% (I))N(I\ Io+)], it follows
that
[(C(D) NI\ L)) S U(C¥ (D)) N (I Lar)]. (10)

e If 5 is assigned a walk-zone student of a* in the computation of C% (I), then (8) directly

implies (10).

These observations complete the second half of the induction. O

A.3 Proof of Propositions 1 and 2

Definition. In the cumulative offer process under choice functions C, students to schools in a

sequence of steps £ =1,2,...:

Step 1. Some student i' € I proposes to his favorite school a'. Set flgl = {i'}, and set
A2 = () for each a # a'; these are the sets of students available to schools at the
beginning of Step 2. Each school a € A holds C%(A2) and rejects all other students
in A2,

Step £. Some student i¢ € I not currently held by any school proposes to his most-preferred
school that has not yet rejected him, af. Set fli‘[l = Ai ,U{i*}, and set AL = AL
for each a # a’. Each school a € A holds C%(A%1) and rejects all other students
in ACHL,

If at any Step £+ 1 no student is able to propose—that is, if all students not on hold have
proposed to all schools they find acceptable—then the process terminates. The outcome
of the cumulative offer process is the matching fi which assigns each school a € A the
students it holds at the end of the last step before termination: fi, = C*(A51).
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In our context, the cumulative offer process outcome is independent of the proposal order and
is equal to the outcome of DA (see (Kominers and Sénmez 2012)).
We consider a modification of the cumulative offer process in which some students may be

rejected as soon as they propose.

Definition. For sets of students R, C I (a € A), let the cumulative offer process with premature
rejection under choice functions C be the following algorithm in which students propose to schools

in a sequence of steps £ =1,2,...:

Step 1. Some student i' € I proposes to his favorite school a'. Set ELZLl = {i'}, and set
E2 = () for each a # a'; these are the sets of students available to schools at the
beginning of Step 2. Each school a € A holds [(C*(E?))\ R,] and rejects all other

students in E2.

Step ¢. Some student i¢ € I not currently held by any school proposes to his most-preferred
school that has not yet rejected him, a‘. Set Eﬁjl = Eﬁz U{i*}, and set B = E
for each a # a’. Each school a € A holds [(C%(ESY)) \ R,) and rejects all other
students in B4+,

If at any Step £+ 1 no student is able to propose—that is, if all students not on hold have
proposed to all schools they find acceptable—then the process terminates. The outcome
of the cumulative offer process with premature rejection is the matching i which assigns

each school a € A the students it holds at the end of the last step before termination:
fla = [(CH(EL)) \ Ral.

Lemma 3. For each school a € A, let R, be the set of students rejected by a during the cumulativ