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1 INTRODUCTION 

In 2008, the Journal of Instrumentation published a paper entitled “The ATLAS Experiment at 

the CERN Large Hadron Collider” which documented the installation and expected performance of the 

ATLAS detector that had been installed as a critical component of the Large Hadron Collider to extend 

the frontiers of particle physics. As the paper states “This detector represents the work of a large 

collaboration of several thousand physicists, engineers, technicians, and students over a period of fifteen 

years of dedicated design, development, fabrication, and installation” (p.1). This crisply illustrates the 

changing nature of scientific work with the need for large numbers of individuals with distinctive 

expertise to work collaboratively in the solution of a complex scientific problem (Jones 2009). However, 

while the demands for new more expansive modes of organization push scientists towards larger 

collaborative groups the reward system for science has not necessarily changed as dramatically: The 

paper described above has over 1000 authors listed alphabetically, thus, raising the question of whether 

and how individual authors receive credit for their scholarly contributions. Posed more broadly, how 

should knowledge workers with high levels of organizational autonomy – such as academic scientists, 

computer programmers and independent inventors – organize their creative activities? How should they 

structure their collaborative choice in the light of the potential tradeoff between collaboration on the one 

hand and credit allocation on the other? 

This question is of normative interest as autonomy becomes more prevalent among those engaged 

in the production of new knowledge, thus, allowing many more individuals to choose the degree to which 

they work collectively and in collaboration with others in the pursuit of creative outcomes. Not simply a 

question shaping the daily lives of academic scientists, this is also an issue of managerial import as 

complex tasks yield only to growing teams leaving open the question of how to allocate credit and other 

task-based incentives (Holmstrom, 1982; McAfee & McMillan, 1991). The collaboration versus credit 

question is also of considerable theoretical interest to scholars in light of the increased collective 

organization of knowledge work inside organizations, in the Academy and in knowledge communities 

(see for example DiMaggio 2003; Cummings & Kiesler 2007, Adler et al. 2008).  

The rise in collective work, in general, and collaborative work, in particular, suggests that 

collaboration is a highly advantageous organizational choice, particularly for scientists (Wutchy et al. 

2007). Empirical evidence repeatedly showing that the creative outputs accomplished by a larger number 

of people tend to be of higher quality particularly for scientists (Singh & Fleming 2010; Wuchty et al. 

2007) but also, for instance, in paintings (Hargadon 2008) and theatre (Uzzi and Spiro 2005). These “facts 

on the ground” are also greeted with great optimism among scholars who enthusiastically describe the 

emergence of a “new norm” of collectiveness replacing the age-old tradition of the individual genius 

(Beaver 2001; Wray 2002; Johansson 2004). Certainly, many studies highlight collaboration’s positive 



2	  
	  

	  

aspects: the ability to tap into diverse sources of knowledge (Fleming et al. 2007), the potential to 

democratize knowledge production (Von Hippel 2005), and its critical role in greater levels of creativity 

(Hargadon 2003).  

Should we, therefore, assume that collaboration is the most effective way to organize knowledge 

work? Or are there hidden or unmeasured costs associated with the collaborative organization of 

knowledge production? Scholars in social psychology have provided a more nuanced perspective on the 

costs of collaboration on creativity (Paulus & Nijstad 2003). Others taking an efficiency perspective (see 

for example recent analysis by Lee and Bozeman 2005) note that “a trivial but obvious cost [of 

collaboration], only one person can talk at a time during meetings – assumedly, such communication is 

instantaneous and almost costless within an individual” (Singh and Fleming (2010, p. 53). A further cost 

borne by the individual scientist relates to the allocation of credit. Particularly within the scientific 

community, the central reward system for scientific work is grounded in the provision of credit in reward 

for novel contributions to the knowledge base (see Dasgupta and David 1994). Traditional modes of 

credit allocation have been grounded in manuscript authorship and citations to a particular paper – a 

system that is particularly effective when knowledge work was a largely “solo” activity but is rendered 

much more complex as knowledge work (and with it authorship) expands to including growing numbers 

of individuals. Thus, for an individual scientist, the choice of collaboration is made in the shadow of 

possible tradeoffs in credit allocation as well as other efficiency considerations (Engers et.al., 1999; Gans 

and Murray, 2013). However, the current analysis of collaboration only in terms of output (i.e. the quality 

of papers produced) fails to evaluate tradeoffs at the individual level. Thus, the literature ignores whether 

the benefit to individuals of collectiveness are offset by high potential costs in terms of credit allocation 

(and other efficiency costs).   

In this paper, we take an individual level perspective and evaluate the key tradeoff between the 

possible benefits of collaboration for the generation of specific outputs –in terms of quantity and quality – 

and the costs of collaboration to individuals’ overall productivity and credit allocation. To do so, we 

develop a theoretical model that focuses on the decision of an individual scientist in managing their 

portfolio of research activities building on the model of Becker and Murphy (1992) (that is unrelated to 

scientific work but highlights production choices). Our model makes three assumptions: that a scientist 

has a fixed time to allocate to all projects, has discretion in the mode of collaboration and is motivated not 

only by maximizing quality (citations) but maximizing citations allocated to them. While stylized in 

nature, these assumptions allow us to derive a set of predictions regarding collaborative behavior and 

credit allocation tradeoffs. We then test these assumptions by examining the academic publications of 661 

faculty-scientists from one institution – the Massachusetts Institute of Technology – over a thirty year 

period from 1976 to 2006.   
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Our approach is narrower in scope than the massive data-based efforts analyzing millions of 

knowledge outputs (Newman 2001; Wuchty et al. 2007) but larger than qualitative small-scale 

investigations (Melin 2000; Hara et al. 2003). Nonetheless, an individual-level approach (to theoretical 

modeling and empirics) allows us to consider not only the output of collaboration but the net value of 

collaboration. It presents three crucial advantages over prior studies. First, we can make a realistic 

examination of the relationship between collaboration and credit at the scientist-year level. Second, we 

can control for individual’s tendency to consistently take part to larger or smaller projects by adding 

individual-level fixed-effects. Third, we can control for the broader organizational environment by 

focusing on one institution (adding department-year level fixed-effects). 

Our empirical results suggest that collaboration (among MIT researchers) is associated with more 

highly cited work on a per paper basis, and on an annual basis with more fractional credit – suggesting 

that credit allocation is not simply divided among the authors of a paper. A given individual in our sample 

can hope to see their papers receive on average over 60% more citations if they choose to collaborate with 

a coauthor as opposed to working alone. Up to 4 coauthors, collaboration is also associated with the 

publication of more papers per author. Using a revealed preference approach, our data also indicates that 

scientists might be disproportionately rewarded for more collaborative work—i.e. that credit for a given 

collaborative paper is shared across coauthors in a way that sums up to more than 1. Not all collaborations 

are equal, however. In line with theories of cross-fertilization of ideas and division of labor, we find that 

cross-departmental collaborations tend to produce higher quality papers at a lower productivity cost than 

within-departmental work. Free-riding is also apparent: the quality gain is particularly low and the 

productivity loss is particularly high when collaborating with a more senior scientist, especially if that 

scientist is from the same department. 

The paper is organized into five sections. In Section 2 we outline the tradeoffs between 

collaboration as an input into scientific work and credit sharing in the output of collaboration. Section 3 

lays out a formal model of this tradeoff from which we derive clear hypotheses. Section 4 describes our 

setting and method. We detail our results in Section 5. We end with discussion and conclusions. 

2 COLLABORATION VERSUS CREDIT TRADEOFF 

Enthusiasm for collaboration is most visible among practitioners: A large number of popular 

press articles, books, and consulting business reports claim that collaboration provides a superior form of 

work organization (Hoerr 1989; Dumaine & Gustke 1990; Katzenbach et al. 1993; Orsburn & Moran 

2000; Koplowitz et al. 2009). Similarly, in scientific research, the vast majority of policy-makers have 

embraced the trend toward larger research groups and supports its further development (J. S. Katz & 

Martin 1997; Landry & Amara 1998; Stokols et al. 2005). In the US, for instance, the National Institute of 



4	  
	  

	  

Health (NIH) Roadmap for Medical Research lists changing “academic culture to foster collaboration” as 

one of its four main objectives.1 Accordingly, it has made available a number of grants to support 

collective science. For example, the aptly named “Glue Grants” program2 from the National Institute of 

General Medical Sciences allocates tens of millions of Dollars to encourage scientists to collectively 

“tackle complex problems that are of central importance to biomedical science.” Overall, the positive 

perception of collaboration in scientific research was crystallized in the Science editorial written by 

former National Science Board3 chairman arguing that: “It is clear that knowledge and distributed 

intelligence holds immense potential, both from a scientific standpoint and as a driver of progress and 

opportunity for all Americans” (Zare 1997).   

Edward Lawler, in an interview for Fortune, takes a more nuanced view in line with our 

theoretical and empirical approach when he noted that “teams are the Ferraris of work design, they’re 

high performance but high maintenance and expensive” (Dumaine 1994, p.2). This highlights the central 

tension between the positive benefits of collaboration and the possible negative tradeoffs for creative 

work. In laying out the tradeoffs, we focus on the benefits of collaboration (versus working alone) from a 

variety of theoretical perspectives and then contrast this with the costs including efficiency considerations 

but also more centrally the costs in terms of credit allocation.  

2.1 Collaboration’s Benefits 

Researchers, like many practitioners, are traditionally optimistic about the impact of collaboration 

on creative work. At the core of this perspective lies the notion that the division of labor allows 

individuals endowed with different knowledge, beliefs, skills, and social networks to come together, thus 

enabling creativity and novelty. Accordingly, groups establish an ideal context for creativity through the 

recombination of existing ideas (Gilfillan 1935): the variety of ideas and contexts to which group 

members have been exposed can be easily united during collaborative work, potentially igniting an 

explosion of novel ideas – a phenomenon popularized as “the Medici Effect” (Johansson 2004). It has 

been argued that collaborative groups enhance the circulation of knowledge by bringing together 

members with different information, social networks, and skills (Cummings 2004; Singh 2005; Ding et al. 

2010). They do so in part because individuals serve as brokers fostering inspiration across domains 

(Hargadon & Sutton 1997; Obstfeld 2005; Fleming et al. 2007; Singh & Fleming 2010; Girotra et al. 

2010). More specifically, researchers have documented that social interactions can indeed lead to fleeting 

moments of collective creative insight (Hargadon & Bechky 2006) and that collective work enables 

members to identify and filter out bad ideas before they fully develop (Singh & Fleming 2010). In 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 http://nihroadmap.nih.gov/ 
2 http://www.nigms.nih.gov/Initiatives/Collaborative/GlueGrants/ 
3 Governing body of NSF 
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addition, groups can be safe arenas for individuals to express original ideas without fearing ridicule 

(Edmondson 1999). With regards scientific work, by bringing together individuals endowed with 

different types of knowledge (Porac et al. 2004; Hara et al. 2003), scholars argue that collaboration allows 

scientists to take advantage of specialization in the deep stock of scientific knowledge while at the same 

time gaining the benefits of breadth (Jones 2009). 

Empirical evidence supports the view that collaboration leads to significant benefits on a variety 

of output dimensions: The commercial success of creative work such as comic books, Hollywood 

productions and Broadway musicals, as well as its reception by critics, has been linked to collaboration 

(Taylor & Greve 2006; Cattani & Ferriani 2008; Uzzi & Spiro 2005). Survey data and field work in firms 

also highlight the positive performance of groups performing creative work compared to individuals 

(Obstfeld 2005; Burt 2004; Hargadon & Bechky 2006). As noted in the introduction, more systematic 

quantitative evidence linking more creative tasks to larger groups is largely based on analyses of both 

scientific knowledge - patents and papers. Here, the data show that outputs authored by more scientists 

tend to receive more citations (Adams et al. 2005; Wuchty et al. 2007; Fleming 2007). For instance, 

Wuchty and colleagues (2007) studying 20 million scientific publications and over 2 millions patents find 

a clear and increasing advantage of collaborative work in all broad research areas. Specifically, Science 

and Engineering papers written by two authors received 1.30 more citations than sole-authored papers in 

the 1950s and that this ratio increased to 1.74 by the 1990s.4   

Beyond assessing the average effect, collaboration is thought to impact the variance in creative 

outcomes. The direction of this relationship, however, is complex and current results are contradictory. 

On the one hand, Taylor and Greve (2006) find that collaboration in comic books increases the variance 

in good and bad outcomes. On the other, in an analysis of US utility patents, Fleming (2007) finds the 

opposite – i.e. individual inventors are the source of more failures and more breakthroughs. More 

recently, a careful study of the creative outcome distribution of over half million patents (as captured by 

their citations), using quartile regressions shows that collaboration reduces the probability of poor 

outcomes while increasing the probability of extremely successful ones (Singh and Fleming 2010).  

2.2 Tradeoffs – coordination and credit 

Research (as personal experience) suggests a number of potential coordination costs associated 

with collaboration. These costs consume time and have a variety of origins including conflicting goals 

and incentives, communication difficulties, the need for translation for or education of collaborators of 

different backgrounds and the need for processes and routines to distribute work, synchronize, and 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 In their data, self-citations account for only 5-10% of the relative citation advantage of collaboration, therefore 
even accounting for self-citations “the relative citation advantage of teams remains essentially intact” (Wuchty et al. 
2007, p.2) 
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monitor progress. The issue of synchronization is perhaps most eloquently described by Leslie Perlow in 

her study of the organization of time at work among Ditto’s software engine. Using data from a nine-

month field study, Perlow (1999) documents how interactive activities can foster insights and learning. 

More importantly, she also shows that these same activities have a high cost of individual productivity 

when they are not synchronized, phenomenon leading to “time famines” for knowledge workers. 

Coordination costs are documented in academic research for instance by Porac and colleagues who have 

found that the most heterogeneous collaboration in their study, Eco, had the most issues of 

communication and synchronization, but yet saw a large increase in productivity after its members had 

learnt to work together (Porac et al. 2004). Similarly, Cummings and Kiesler have found that multi-

university scientific collaboration impose considerable coordination costs and leads to under-performance 

absent of a significant coordination effort (Cummings & Kiesler 2007). 

Further drivers of coordination costs have been explored in the social psychology literature which 

outlines several cognitive processes leading to inefficiencies in collaboration (Diehl & Stroebe 1987). 

First, “production blocking” results from the chaotic interactions of the group, which impede the 

emergence of a consistent train of thoughts. Second, “evaluation apprehension” stems from the fear that 

some members might have of the others’ judgment of their ideas. Finally, some authors have emphasized 

“information bias,” which stems from a search for consensus within groups (Paulus 2007). It should be 

noted that a recent lab study by Girotra, Terwiesch and Ulrich (2010) finds that many of these drawbacks 

of collaboration can be mitigated through hybrid structures, in which individuals first work separately and 

then work together. Overall then, prior research suggests that the coordination difficulties stemming from 

collaboration in creative work are generally associated with a loss of individual productivity.  

Credit allocation is the second major potential cost to collaboration. This arises because the credit 

is central to the reward system in knowledge work, particularly for scientific research conducted in the 

Academy in accordance with the norms of open science (Dasgupta and David 1994). However, while 

credit can be linked to a particular publication of “piece” of knowledge work, such credit must also be 

allocated to its producers – the authors. When researchers work alone and publish alone they serve as the 

sole recipients of credit for the quality of the output. In contrast, collaboration requires a more complex 

allocation calculus. The central importance of this issue for collaboration in creative work arises because 

as Merton noted: “[citations] are in truth central to the incentive system and an underlying sense of 

distributive justice that do much to energize the advancement of knowledge” (Merton 1988, p.621). 

Nonetheless, citations counts have been criticized for a number of reasons including the fact that – 

independently of the article’s “intrinsic” merits – the amount of citations it is likely to receive will depend 

on the year of its publication, its field, the journal where it is published, its style, its author, its availability 

online, etc (Bornmann & Daniel 2008). While some have tried to disentangle quality from popularity 
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(Salganik et al. 2006), such distinctions are problematic in creative work, where –as Stein’s definition 

suggests5 – broad acceptation by the audience is often considered the only standard upon which quality 

can be assessed (Stein 1953).   

In science, as in other types of creative work, impact is paramount. “For science to be advanced, 

it is not enough that fruitful ideas be originated or new experiments developed or new problems 

formulated or new methods instituted. The innovations must be effectively communicated to others. That, 

after all, is what we mean by a contribution6 to science – something given to the common fund of 

knowledge” (Merton 1968, p.59). It is of course possible that research developed via collaboration will 

have a greater impact because the larger team has a superior ability to communicate, mobilize support for, 

and bring attention to novel ideas. Collaborations play both a social and a cognitive role in this respect. In 

its social role, a group provides greater communication channels for the dissemination of novel ideas, thus 

enabling more visibility because each group member is endowed with a distinct set of relationships that 

he or she can use to promote the novel idea (e.g. Allen 1978; Tushman & R. Katz 1980; Valderas 2007). 

Collaboration can also be instrumental in bringing legitimacy to a novel idea. Merton, for instance, noted 

that famous researchers lend visibility and credibility to a paper and that therefore students sometimes 

“feel that to have a better known name on the paper will be of help to them.” (Merton 1968, p.57) a 

proposition recently validated in the case of the protocols submitted to the Internet Engineering Task 

Force (Simcoe & Waguespack 2011). Similarly, in Hollywood, legitimacy can be gained through 

collaboration with individuals that are central to the network of producers (Cattani & Ferriani 2008).  

Nonetheless, while garnering greater attention overall, each individual contributor to the research 

must consider how this additional impact will shape their own credit allocation– a consideration that has 

not been heretofore examined. More specifically, researchers must consider the tradeoff between the 

greater impact overall and the credit allocation they receive and how it is spread among numerous 

authors. As the Hadron Collider paper illustrates, if individual authors only receive fractional credit 

allocation consistent with a linear function of the number of authors, collaboration becomes a much less 

appealing prospect (absent other modes of credit for research activities). As an illustration, consider the 

decision of a talented scientist – should she spend a year engaged in two collaborative projects each with 

one partner i.e. engaging 50% of her time in each of the two projects or should she work alone? That 

decision is tied importantly to the amount of credit received for collaborative projects compared with 

other projects. When a scientist devotes time to a collaborative project, not only must they take into 

account the balance of quality versus coordination costs but also the possibility that they receive only 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 Morris Stein famously defined creative work as “a novel work that is accepted as tenable or useful or satisfying by 
a group in some point in time.” (Stein 1953, p.311) 
6 Italicized in the original text 



8	  
	  

	  

fractional attribution for the resulting output. Thus, the collaborative projects that are actually observed 

will likely reflect the highest quality amongst those projects (an outcome that likely biases current results 

around the returns to collaboration). 

Thus, credit allocation, as well as the norms associated with credit allocation must be 

incorporated into current empirical and theoretical perspectives regarding collaborative choices, 

particularly from an individual perspective. This is challenging because we have relatively little 

systematic data regarding credit allocation practices. The issue of authorship and credit has received 

widespread discussion in the scientific press, particularly with regards to “ghost” authors who make only 

limited contributions to a paper. In a recent release, publisher Elsevier noted that “Naming authors on a 

scientific paper ensures that the appropriate individuals get credit, and are accountable, for the research.”7 

Nonetheless, ours is the first paper we are aware of that incorporates credit allocation as well as 

coordination into a model of collaboration. It is also the first paper that attempts to use empirical data to 

derive a possible credit allocation function from observable collaborative choices of scientists over many 

years of research activity. 

3 FORMAL MODEL AND HYPOTHESES 

Empirical evaluation of the costs of collaboration is centrally an issue of measurement: while 

many approaches can be taken in observing the quality of research output and the level of collaboration in 

the form of citations and formal co-authorship respectively, these measures are potentially independent of 

coordination costs and the credit allocation costs because they are captured at the level of the publication. 

If, instead, we consider a scientist’s collaborative choices at the individual year level, their portfolio of 

choices is more revealing of the tradeoffs in coordination and credit, thus providing a clearer window into 

collaborative choices well beyond observable quality differences. 

To shed light on these tradeoffs and formulate hypotheses we have developed a formal model that 

explicitly considers the drivers of observable variables by formalizing a variety of the different underlying 

models that scientists might use to determine their own tradeoffs year on year. In this section, we provide 

that model and use it to motivate our empirical approach and the inferences that might be drawn from it. 

The goal of the model is to clearly exposit the benefits to collaboration and the possible credit allocation 

costs in a situation where scientific rewards from collaboration are clearly and consistently defined. 

To this end, we focus on the decision of an individual scientist in managing their portfolio of 

activities. This requires several assumptions that, while stylized, are consistent with the evidence of 

scientists’ broader choices and preferences. First, we assume that the scientist has discretion over the set 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 http://ethics.elsevier.com/pdf/ETHICS_AUTH01a.pdf  
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of projects worked on and on the structure of collaboration for any given project. In reality of course, 

collaboration is a mutual decision (and an overture to collaboration could be rejected). For simplicity, we 

assume here that the focal scientist has full discretion over this choice. We will, however, comment on the 

implications of that simplifying assumption below. 

Second, we assume that, not only is the scientist motivated by maximizing the total number of 

citations they receive for their portfolio of work, but also on the credit attribution of those citations: 

specifically they are motivated by the citations that are attributed to them rather than those attributed to 

other collaborators. For instance, if the scientist completes and publishes a single author paper, they 

receive attribution consisting of the total amount of citations to that paper. However, when the scientist 

publishes a co-authored paper, their attribution may not be the full amount of citations to that paper. 

Instead, their ‘share’ depends upon a variety of factors. While there is a paucity of empirical evidence on 

attribution, a number of factors are likely to intermediate including the identity of the collaborator (e.g., 

relative rank, field) and number of collaborators. It should also be noted that, while we use the expression 

‘share of attribution’ as this is a useful way of conceptualizing attribution, as will be seen below, we do 

not impose a requirement that the ‘shares’ of all scientists involved in a project sum to one. 

Third, we assume that our scientist has a fixed amount of time to allocate across all projects and 

all of the activities that constitute those projects. In reality, a scientist could choose the amount of time 

they devote to research as opposed to other activities and this choice may be impacted by collaboration 

decisions. However, it is most simple to assume that scientists have a fixed allotment of time available for 

research and to assume that they are maximizing the effective allocation of that time. As a starting point, 

we build on the model of Becker and Murphy (1992). Their model concerned the division of labor in 

product activities and was neither about scientific research nor about collaboration in science. However, 

some elements of their model are well matched to the environment under consideration here. Where our 

model differs is in the concept of reward attribution and in the notion that exists a portfolio of projects; 

Becker and Murphy (1992) consider only one project. 

3.1 Model Set-Up and Assumptions 

Let us begin with the ‘production function’ for citations from a particular paper. Following 

Becker and Murphy, we assume that there is a continuum of tasks on the unit interval [0,1]s∈  that must 

be performed in order to produce a paper from a research project. To this end, suppose the number of 

citations for a paper, i, is Q where: 

 0 1min ( )sQ Q s≤ ≤=  (1) 
The Leontief production function captures the notion that each task, s, must be performed for output to be 

non-zero. The key assumption here is not the assumption of strict complements between tasks but their 
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complementarity. Each task can itself be performed at a certain degree of quality, ( )Q s , where we 

assume that ( ) ( ) ( )Q s E N T sθ=  where Ei is the productivity associated with total hours, ( )T s , devoted to 

task s, (0,1)θ ∈  and N is the total number of collaborators on the project. We assume that (1) 1E =  and E 

is increasing in N. This is a simple way of capturing the notion that specialization increases productivity.8 

However, collaboration also requires time, ( )t N , to be devoted to coordinating the activities of that 

team.9 As outlined above, past studies of collaboration have focused on understanding the net effect of 

changes in E and t with N. As we demonstrate below, measures of these are complicated by time 

constraints and the fact that scientists pursue a portfolio of projects with varying levels of collaboration 

over time. 

3.2 Equilibrium Collaboration for a Single Paper 

To begin, we focus on the allocation of time for a given paper. Suppose that a scientist, n, is 

assigned a set, Sn, of the tasks of a paper. Then total time devoted by n to the paper is 

( ) ( )
n

n s S
T t N T s ds

∈
= + ∫ . We assume here that the opportunity cost of that time is ( )n nC T ; a function that 

will be modeled explicitly below. Given this, n solves the following problem: 

 { ( )}max ( ) ( )
n s SnT s n nN Q C Tα

∈
−  (2) 

where ( ) 1Nα ≤  is the fraction of total citations from i attributable to n. We assume that if 1N = , then 

1α = . This fraction is considered to be independent of Q realized.10  

To derive the chosen allocation of time, as they are symmetric, we assume that time devoted to 

each task is equal. Thus, ( ) ( )
n

ns S
T s ds S T s

∈
=∫  and ( ) ( ) ( )Q s E N T sθ=  so the optimal ( )Q s  satisfies the 

minimum of this or the minimal quality achieved for a task by collaborating scientists.  

To complete the model, assume that if there are N collaborators to a project, they split the number 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 Becker and Murphy (1992) assume that productivity increases also require an allocation of time but ultimately this 
reduces to specialization increasing productivity. For notational simplicity, we remove that extraneous layer of 
endogeneity here. 
9 Becker and Murphy (1992) did not model coordination costs specifically and assumed that those costs were a 
function C(N). Here we provide an additional layer of endogeneity consistent with our notion that scientists are 
allocating time across projects and thus, time spent in coordinating activities as an opportunity cost determined by 
time not allocated to other projects.  
10 One can imagine that the attribution may come from market assessments as to the relative contribution of 
collaborators in a scientific team and such attribution may itself depend on the performance of tasks the scientist is 
known for. Thus, the fraction of total citations attributable to n may be dependent upon the realized quality of a 
project. This is a complex problem that we assume away here but is investigated in more detail, theoretically, in 
Gans and Murray (2013). 
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of tasks between them equally. This is a natural assumption if scientists are symmetric11 and results in 

( ) ( )Q E N T sθ= . Holding the time allocation choices of other collaborators as given, the scientist chooses 

nT  to maximize: 

 ( )max ( ) ( ) ( ( )) ( )
nT n nN E N N T t N C Tθα − −  (3) 

Note that if minm n m nT T≠ < , it is optimal to lower nT  to that minimum. Thus, there is potentially a 

continuum of equilibria in this game. The equilibrium with the highest allocation of time, *
nT , is 

characterized by the first order condition: 

 ( ) 1 *( ) ( ) ( ( )) ( )n nN E N N N T t N C Tθα θ − ′− =  (4) 
This equation plays a key role in what follows.12 Specifically, we focus on the equilibrium with the 

highest allocation of time. 

3.3 Equilibrium Collaboration with Multiple Papers 

Our purpose here is to measure the impact of collaboration on productivity and, in the process, 

make inferences about the benefits and costs of collaboration and also the structure of the scientific 

reward function for research teams. The above analysis shows that collaboration can be beneficial 

because of the exploitation of specialization and the division of labor but incurs a potential cost in 

coordination. However, collaboration also impacts time available for a scientist to pursue other papers; in 

particular, sole-authored projects without collaboration. Here we introduce that option into the model. 

What follows is an examination of the impact of introducing collaborators on one paper in the 

portfolio of papers that a scientist is involved in producing during a given time period. To this end, we 

assume that the scientist can allocate time to an additional paper. That paper is single authored. 

Consequently, there are no advantages from the division of labor but the scientist faces no coordination 

costs and receives attribution equal to the full value (in terms of quality or citations) of the paper. We 

otherwise assume that the paper’s production function is equivalent to that specified above. 

For the single-authored paper in the portfolio, if we assume that the total time allocation a 

scientist has is 1, then 

 ( ) 1( ) 1n nC T T θθ −′ = −  (5) 
Using this we can solve for the optimal time allocation to the collaborative project given N: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 This is a strong simplifying assumption as it assumes that no regard to differences in the opportunity cost in time 
are taken into account when allocating tasks between collaborating scientists. However, the qualitative predictions 
of the model that we focus on for this paper would not be changed if this assumption were relaxed. 
12 It could also be used to analyze other issues such as the optimal team size. These are issues explored in Jiang, 
Thursby and Thursby (2012). 
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Given this, scientists face a choice. They can collaborate on one of the papers with N participants (leaving 

a second paper single authored) or they can pursue two single authored papers. The choice depends not 

only on the quality improvement (if any) arising from collaboration but also from the time cost (if any) 

diverted from single authored papers as well as the level of attribution the scientist expects from the 

collaborative project. 

Our model exposes the central issue with empirical analyses of the impact of collaboration on 

scientific productivity and quality: the challenges with studies that focus purely on collaboration versus 

non-collaboration without accounting for time considerations or individual scientist effects. Because 

individual scientists are constrained in the time they have at any particular moment, collaborative projects 

impact time allocation and hence, the observed quality of collaborative and single authored projects. In 

particular, from (6) note that *
nT  is decreasing in 1/( 1)( ) ( )( )N E NN N θα −  and  
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This expression is positive if α(N)E(N)N does not vary much with N. In this situation, an increase in 

collaboration may allow the scientist to reduce the time allocated to the collaborative paper in favor of the 

non-collaborative paper; consequently, studies focused on collaboration may understate the productivity 

of collaboration. Alternatively, in cases when the impact of collaboration on productivity is high (i.e., 

E(N) varies substantially with N) time will be drawn towards the collaborative project away from the 

single authored paper overstating the pure productivity of collaboration. From an empirical standpoint, it 

is only by controlling for scientist-year fixed effects that these distortions can be mitigated. A similar 

issue arises with respect to coordination costs from collaboration: these result in a reduction in ‘research 

time’ for both the collaborative and single authored project. Again, to properly identify the portfolio 

effects of collaboration, year effects are required to exploit variations in portfolio mix over time.  

There are three hypotheses that can be tested with this model. The first concerns the average 

quality of publications: 

H1: A scientist has higher quality average publications in years in which they collaborate more. 

This is a direct implication of the notion that scientists are decision-makers with regard to the 

collaboration choice. As collaborative publications involve a fractional allocation of credit, i.e., α(N) < 1, 
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a scientist will only collaborate if this results in a higher quality over their portfolio of projects.  

Second, collaborative projects involve costs in terms of a reduction in the quantity of papers 

accredited to scientists: 

H2: In years when the scientist collaborates more, fractional publications fall. 

In our model, when the scientist single-authors all papers, they have an output of 2 papers while if they 

collaborates on one of those papers, their fractional output is 1 + α(N) or 1 + 1/N in the case of simple 

fractional allocation. Note that the converse could be true: collaboration may ‘free up’ a scientist’s time 

with the result that this hypothesis will be refuted as more single authored projects or alternative 

collaborations are pursued. This will indicate that α(N)E(N)N does not vary much with N. 

Third, suppose that collaborative opportunities are equally or harder to come by than individual 

research projects, then the ‘rate of return’ to collaboration in a particular year should be (weakly) positive: 

H3: For a given α(N), the fractional quality of the portfolio attributed to the scientist in years 

they collaborate more should be no less than the quality of the portfolio they achieve in years they 

collaborate less. 

The intuition here is that a scientist takes their expected attribution from collaboration as given and 

chooses their portfolio to maximize their attributed quality. Thus, for a posited α(N) if we see a negative 

return, this is evidence that the posited α(N) is not consistent with observed collaborative behavior.  

4 EMPIRICAL APPROACH 

4.1 Data and Setting 

Given the challenges associated with empirical analysis, we have chosen to focus on the 

collaborative choices and publication outcomes of a sample of scientists over a long period of time, thus 

allowing us to include both individual and year fixed effects in our analysis. This contrasts with 

approaches that compare outputs at the publication level.  

Our setting is a comprehensive dataset of research publication activity at a single university – the 

Massachusetts Institute of Technology – including the research output over the thirty-one year period 

1976-2006 of more than 650 faculty members in 7 departments from the Schools of Science and the 

School of Engineering. This focus on a single university over time is particularly appealing for several 

reasons. First, a scientist’s choice of whether or not to collaborate is little constrained by formal 

organizational structure. Second, these choices can be easily traced out from one year to the next by 

following authorship on publications. Third, “quality” can be analyzed using the (albeit imperfect) metric 

of citations. Fourth, as noted above our setting offers the opportunity to control for individual effects 

allowing us to tease out the impact of collaboration (Woodman et al. 1993). Lastly by selecting one 
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institution, we can control for institutional setting. Our choice of MIT is not only one of convenience: it 

has been shown that prestigious institutions participate more fully in collaborative science (Adams et al. 

2005; Jones et al. 2008) and, thus, using MIT allows us to examine the “leading edge” of collaboration. 

The core of the study is a sample of publishing faculty members drawn from the annual lists as 

faculty members at MIT (in the Academic Bulletin). Criteria for inclusion are the following: First, we 

include faculty from the following seven departments - Electrical Engineering and Computer Science, 

Chemical Engineering, Material Science and Engineering, Mechanical Engineering, Biology, Chemistry 

and Physics. These were selected because they include both science and engineering disciplines and are 

among the most well established parts of the MIT research activity. Second, faculty must be listed for at 

least a consecutive period of 3 years in order to avoid counting visiting professors, whose participation in 

research groups of particular size might be systematically biased by their short stay. Third, we chose the 

period 1976 to 2006 because of ISI data limitations and because 1975 was the year in which the still 

stable departmental arrangements were established.13 Fourth, we exclude all the scientists who ever took 

part in projects with more than 20 authors due to the decoupling of authorship and contribution for 

specific projects and particular fields (Knorr-Cetina 1999): using ISI subfields, this included scientists in 

5 “Big Science” subfields – Astronomy & Astrophysics, Multidisciplinary Physics, Nuclear Physics, 

Instruments & Instrumentation, Particles & Fields Physics. (Note, however, that our results are robust to 

the inclusion on these scientists in our data). 

We identified 846 individual scientists from our set of Departmental and year criteria. We then 

excluded 128 (most of whom were already Emeriti Professors in 1976) due to a lack of any publication 

record for the time period. We further excluded 57 scientists who had taken part to projects that included 

more than 20 authors. We use our list of 661 publishing faculty as the basis of our analysis. For these 

people, we collected individual level information including PhD year and topic from UMI Proquest 

Dissertation Database, as well as departmental affiliation and seniority from MIT course catalogue for the 

31 years (Assistant, Associate, Full Professor or Emeritus). We collected all the articles written by our 

scientists during their time at MIT using ISI Web of Science. Between 1976 and 2006, the 661 scientists 

stayed at MIT for 5,964 faculty-years and wrote 21,054 publications. 

4.2 Dependent Variables 

Quality: We measure quality (Q in our formal model) by observing the average number of 

citations received by a scientist for all the papers he or she published in a given year. As noted above, 

while citation giving is a part of normal science, citation counts are an imperfect measure of quality, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 In 1975 the department of Electrical Engineering expanded to become Electrical Engineering and Computer 
Science and the department of Metallurgy and Materials Sciences merged into Materials Science and Engineering. 
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impact or credit. However, across a sample of publications, citations are a relatively objective and 

convenient measure of an article’s quality and impact and have therefore been widely used in science 

evaluation (Furman & Stern 2011; Leahey 2007; Wuchty et al. 2007). Practically, we used the number of 

citations received by 2008 (𝐶𝑖𝑡𝑒𝑠) as a measure of impact at the paper-level. Using this metric, we can 

calculate the yearly quality of the scientist’s publications by observing the average number of citations 

that they receive. For scientist i in year t, the quality of publication k was measured as the average number 

of citations 𝑐𝑖𝑡𝑒𝑠! in that year’s publications: 𝐶𝑖𝑡𝑒𝑠!" = 𝐸 𝐶𝑖𝑡𝑒𝑠! !". 

In order to examine whether variation in marketing capability is driving our results about quality, 

we check the robustness of all our results using another proxy for work quality: the average Journal 

Impact Factor (2009 data) of every scientist-year. We could not find a JIF for 16.2% of the publications – 

the discrepancy coming from low ranking journals, conference proceedings, journals which have 

disappeared and those who have changed name. Each model using JIF was run twice, a first time 

considering that the missing JIF was 0, a second time by imputing the missing data using the article 

number of citations. These methods consistently led to the same results. 

Productivity (Quantity): We measure  𝑁𝑃𝑢𝑏𝑠!", the productivity of a scientist’s work (E in our 

formal model) by keeping the input constant (a scientist-year) and observing the number of papers 

published in a given year. It is worth noting that of course publication data is only a proxy for the number 

of projects that a scientist is involved with; publications are only the disclosed final outcomes of projects 

and may therefore undercount the total number of projects if some lead to no publications. Nonetheless, 

our ability to aggregate publications to the individual faculty-year level serves as an important step 

towards accounting for inputs into collaboration (Girotra et al. 2010, p.593). Beyond simply capturing 

NPubs, our approach builds on Lee and Bozeman (2005) and also examines the “factional count” of paper 

published. As the most simple functional form of fractional counting of productivity, we compute 

Frac_Pubs the sum of “papers shares” directly attributed to the scientist. In other words, if the scientist i 

in the year t has published n papers, each of which includes a number 𝑁𝐴𝑢𝑡ℎ𝑜𝑟𝑠! of authors, their 

fractional publication count for that year is: 

𝐹𝑟𝑎𝑐_𝑃𝑢𝑏𝑠!" = 𝛼(𝑁𝐴𝑢𝑡ℎ𝑜𝑟𝑠!)
!

!!!

  𝑤ℎ𝑒𝑟𝑒  𝑛 = 𝑁𝑃𝑢𝑏𝑠!" 

Credit Allocation: As detailed in our formal model, we consider scientists’ motivation to 

collaborate to be dependent on α(N), the share of their research output that is attributed to them (rather 

than to their collaborators). The specific functional form of this attribution is an empirical question that 

we examine in this paper. For a given ( )Nα , we compute the number of yearly citations attributed to a 

scientist’s work by summing the citations attributed to the author for every paper of the year. In other 

words, if the scientist i in the year t has published n papers (k), each of which includes 𝑁𝐴𝑢𝑡ℎ𝑜𝑟𝑠! and 
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has received 𝐶𝑖𝑡𝑒𝑠! by 2008, their attributed citation count for that year is: 

𝐴𝑡𝑡_𝐶𝑖𝑡𝑒𝑠!" = 𝐶𝑖𝑡𝑒𝑠! ∗ 𝛼(𝑁𝐴𝑢𝑡ℎ𝑜𝑟𝑠!)
!

!!!

  𝑤ℎ𝑒𝑟𝑒  𝑛 = 𝑁𝑃𝑢𝑏𝑠!" 

At one extreme, if α(N) = 1, then the credit for a collaborative paper is not split and each author claims 

the entire credit for each coauthored paper and its citations. At the other extreme, if α(N) = 1/N, then the 

scientists split the credit across every author and the sum of shares of all scientists involved in a project 

sums to one. A third possible form is that 𝛼 𝑁 = 1 𝑁  – i.e., that scientists can claim less credit for a 

coauthored than for a sole-authored paper, but that the sum of the shares of credit attributed to all the 

scientists in a coauthored paper is superior to one.14  

4.3  Independent Variable – Collaboration 

We measured the extent of collaboration during a scientist-year by considering the mean number 

of coauthors (N in the formal model) for all the publications of that year (see Wuchty et al. 2007; Adams 

et al. 2005; Jones et al. 2008). We obtain the number of coauthors on a project (𝑁𝐴𝑢𝑡ℎ𝑜𝑟𝑠!) by counting 

the numbers of names in the author field of each of our publications (also referred to as the coauthorship 

index (Bordons et al. 1996)). While co-authorship remains a practice as a form of currency in the cycles 

of scientific credit (Latour & Woolgar 1986), it only reflects actual collaboration to the extent that 

authorship reflects participation. A few studies have noted that this measure is an imperfect one 

(Subramanyam 1983; J. S. Katz & Martin 1997; Cronin et al. 2004): Distinguished researchers are 

sometimes added to the authorship list despite the fact that their contribution is relatively minor, a 

practice known as “guest authorship.” Conversely, “ghost authors” are individuals who are not recognized 

as coauthors despite their significant contribution. Recent work has shown that norms of inclusion vary 

by discipline and that inclusion is often positively correlated to a scientist’s social standing (Biagioli 

2003; Häussler & Sauermann 2011). Decoupling contribution and authorship, increases measurement 

error in our analysis: to avoid some these issues we exclude from our sample scientists who have taken 

part to any publication with more than twenty coauthors. In our regressions, we also control for 

disciplinary, temporal, individual and career-related patterns. For scientist i in year t, collaboration was 

measured as the average number of authors 𝑁𝐴𝑢𝑡ℎ𝑜𝑟𝑠! in that year publications: 𝑁𝐴𝑢𝑡ℎ𝑜𝑟𝑠!" =

𝐸(𝑁𝐴𝑢𝑡ℎ𝑜𝑟𝑠!)!"  .   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 Other synthetic measures of performance have been suggested such as the index h which measures for each 
individual scientist the number of papers with citation superior or equal to h (Hirsch 2005). According to this 
measure, a scientist would have an h-index of 20 if he or she has published 20 papers having received more than 20 
citations and all the other published papers have received fewer than 20 citations. While this measure is attractive 
because of its simplicity and ability to synthesize quantity and quality at the level of the individual, this measure is 
not adapted to measuring within-individual variation in performance over time. 
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4.4 Control Variables 

Individual Ability: Individual aptitudes are widely believed to be a predictor of creativity and 

quality (Amabile et al. 1996; Woodman et al. 1993). Prior research has also shown that better scientists 

tend to work in larger groups (H. Zuckerman 1972). Controlling for individual-level variance in creative 

ability is, therefore, crucial if we are to disentangle the impact of collaboration on the quality of scientific 

work. An important advantage of our setting is that we have a number of observations per individual and 

can therefore introduce in our models a dummy variable for each of our scientist. 

Career Stage: Scientific creativity and propensity to collaborate are widely believed to vary over 

their career span (H. Zuckerman 1972; Stephan & Levin 2001; Jones 2009). It is, therefore, important to 

control for such career-level variation. We therefore introduce an indicator variable for each of the 

scientist’s career stage: Assistant Professor, Associate Professor, Professor and Professor Emeritus. 

Department-Year: General citations patterns vary from one year to the next and are known to be 

increasing over time due to the fast expansion of knowledge production (Cawkell 1976). Moreover, this 

expansion might vary from one discipline to the next. To control for such variation, we included an 

indicator variable for all department-years in the sample.  

Authoring Position: In order to check the robustness of our findings and control for authoring 

position, we introduce a dummy variable when the focal scientist is the first (last) author. At the level of 

the faculty-year, our First Author variable (Last Author variable) is the propensity of the scientist to be 

first (last) author for all of their year’s publications. 

4.5 Empirical Approach 

H1: A scientist has higher quality average publications in years in which they collaborate more: 

We test hypothesis 1 by assessing the impact of an individual’s annual collaborative behavior on the 

average quality of the scientist’s publications. The mean number of co-authors for the year proxies for 

collaboration and 𝐸 𝐶𝑖𝑡𝑒𝑠! !" is our measure of quality (we also measure the average journal impact 

factor as an alternative measure of quality). Because we can control for individual and contextual 

characteristics, we are building on and bringing further robustness to prior results that collaboration is 

associated with higher quality output (Adams et al. 2005; Wuchty et al. 2007). We use an OLS regression 

(Adams & Griliches 1998; Adams et al. 2005) with department-year, individual scientist, and career stage 

fixed effect. In all our regressions, robust standard errors are clustered at the level of the individual 

scientist to account for the non-independence of observations from the same author. We estimate:  

𝑙𝑛(𝐶𝑖𝑡𝑒𝑠!") = 𝑓(𝜀!";   𝑁𝐴𝑢𝑡ℎ𝑜𝑟𝑠!" + 𝛽! + 𝛿! + 𝜃!" + 𝑋!") 

where 𝛽! is the fixed effect for each scientist, 𝛿! is the fixed effect for each department-year, 𝜃!" is the 

fixed-effect for career stage and 𝑋!" represents a vector of variables (potentially including a squared term 
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as well as measures of authoring position) which may be associated with output quality. 

H2: In years when the scientist collaborates more, fractional publications fall: We test H2 by 

studying the impact of an individual’s yearly collaborative behavior on the quantity of the scientist’s 

publications. We, therefore, examine productivity by studying the relationship between collaboration and 

the number of papers published that year using the Frac_Pubs measure to account for the fractional 

number of publication (and compared to the total number of publication NPubs). Because the number of 

attributed publications per year is a continuous variable skewed to the right, we used the natural log to 

alleviate this skewness and used OLS with robust standard errors for our estimation. As earlier, we used 

scientist, career stage and department-year fixed effects. Specifically we estimate the following equations: 

𝑙𝑛(𝐹𝑟𝑎𝑐_𝑃𝑢𝑏𝑠!") = 𝑓(𝜀!";   𝑁𝐴𝑢𝑡ℎ𝑜𝑟𝑠!" + 𝛽! + 𝛿! + 𝜃!" + 𝑋!") 

where, as in the previous equation, 𝛽! is the fixed effect for each scientist, 𝛿! is the fixed effect for each 

department-year, 𝜃!"  is the fixed effect for career stage and 𝑋!" represents a vector of variables which 

may be associated with productivity. 

H3: For a given α(N), the fractional quality of the portfolio attributed to the scientist in years 

they collaborate more should be no less than the quality of the portfolio they achieve in years they 

collaborate less. As is apparent from our formal model, the benefit of collaboration relative to non-

collaboration will depend on α(N) the share of the credit attributed to the scientist for a collaborative 

paper. If scientists behave rationally and maximize their attributed citations, we should find that the 

hypothesized positive impact of collaboration on quality and its negative impact on quantity would cancel 

one another. Assuming that collaborative opportunities are scarcer than non-collaborative ones (since 

collaborators might be hard to find), we might expect that scientists systematically under-collaborate and, 

therefore, find that the overall returns to collaboration might appear positive. We test hypothesis 3 by 

examining attributed citations as a function of collaboration for a given α(N). As earlier, we take the 

natural log of the fractional number of citations and use an OLS estimator with robust standard errors, as 

well as scientist, career-stage and department-year fixed effects: 

𝑙𝑛(𝐴𝑡𝑡_𝐶𝑖𝑡𝑒𝑠!") = 𝑓(𝜀!";   𝑁𝐴𝑢𝑡ℎ𝑜𝑟𝑠!" + 𝛽! + 𝛿! + 𝜃!" + 𝑋!") 

According to H3, one would not expect that the overall returns to collaboration be negative. 

Assuming that scientists optimize the citations that are attributed to them every year, for a given α(N), 

finding negative returns to collaboration would indicate that in our chosen α(N) probably underestimates 

the actual credit that scientists are getting for the work that they produce. While testing H3, we will 

consider three different functions for α(N) as described above.  

We deepen our understanding of the mechanisms at work shaping the impact of collaboration on 

quality and productivity by distinguish the effect of different types of co-authorship. Specifically, we 

compare the impact on the focal scientist of collaborations with a more junior scientist, a more senior 
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scientist and a scientist of the same rank. We can also explore the impact of collaborating across 

departments and/or with non-PIs. To do so, we limit our analysis the subset of the sample of scientist-

years in which every published paper involved only MIT-affiliated authors (2,273 faculty-years and 4,617 

publications) allowing us to identify all the MIT PIs, their department and their career stage as well as 

count the number of non-PIs on each paper.  

5 RESULTS 

5.1 Descriptive Statistics 

Table 1 and 2 present the main variables of our analysis. Over the 5,964 faculty-year observations 

we have data on a total of 21,054 publications. This allows us to track the extent to which the researcher 

collaborated by observing the average number of coauthors for the year. Mean group size (𝑁𝐴𝑢𝑡ℎ𝑜𝑟𝑠) is 

3.8 authors. Collaboration at the faculty-year level varies between 1 and 20. Scientists did not collaborate 

at all only during 157 faculty-years (2.6%). In 64% of the faculty-years average group size was between 2 

and 4 authors. The entire distribution of group sizes in the data is plotted in Figure 1. 

[Figure 1 approximately here] 

The key dependent variables in our data are quality (average number of forward citations received 

by the papers produced in a faculty-year), productivity (quantity of papers attributed to the scientist per 

year), and the overall credit (citations) attributed to the scientist for a year of work. With regards to 

quality (Cites), the average number of forward citations received (by 2008) by the papers written in a 

faculty-year is 41.3. Turning to productivity, the MIT researchers published an average of 3.5 papers per 

year (i.e. NPubs is 3.5).  However, Frac_Pubs (i.e. assuming 𝛼 𝑁 = 1/𝑁)  is only 1.1.  Both quality and 

productivity are highly skewed across faculty-years. We also measure the credit attributed to the scientist 

of the year of work using the three proposed functional forms: 

  

• If 𝛼 𝑁 = 1, the  mean Att_Cites is 165.1 citations  

• If 𝛼 𝑁 = 1 𝑁, then mean Att_Cites is 86.4 citations 

• If 𝛼 𝑁 = 1/𝑁 then mean Att_Cites is 48.7 citations.  

 

Table 2 presents the correlation coefficients of our main variables. It highlights that average 

group size and year are positively correlated (+0.23), i.e. collaboration in our sample has evolved over 

time toward larger groups. Also note that productivity has also been increasing over time, and that this 

holds across both NPubs and Frac_Pubs (0.20 and 0.11 respectively). Consistent with the prior literature, 

we find a positive correlation between collaboration (NAuthors) and quality (Cites) (+0.09). Table 2 also 
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shows that the correlation between collaboration on the one hand and yearly productivity on the other is 

highly dependent whether we consider NPubs or Frac_Pubs: For 𝛼 𝑁 = 1, collaboration is positively 

correlated with productivity (+0.13) i.e. not surprisingly, on average, collaboration is associated with 

more authored papers but the correlation is negative for Frac_Pubs (-0.14). With regards to credit 

attribution, for 𝛼 𝑁 = 1 the correlation is positive (+0.11) but for 𝛼 𝑁 = 1/𝑁 the correlation is almost 

null (-0.01). Interestingly, the correlation between productivity and quality appears overall positive, i.e. 

we do not find evidence of any intrinsic quality-quantity trade-off in academic research. 

[Table 1 and 2 approximately here] 

5.2 Econometric Analysis of Hypotheses 

Our hypotheses 1, 2 and 3 are tested in Table 3. Model (3-1) confirms Hypothesis 1 and in doing 

so, adds robustness to the result of prior studies in showing that choosing to collaborate in larger groups 

leads on average to higher quality outputs since we can control for individual and context level 

idiosyncrasies. The highly significant positive coefficient on group size confirms our hypothesis 1. More 

specifically the coefficient of 0.099 can be interpreted as an increase by about 10% of the number of 

citations received per paper for the addition of one collaborator on average for the year. 

Our hypothesis 2, that collaboration is associated with a loss in productivity is tested in models 

(3-2) and (3-3). At the level of the year at work, we find in (3-2) that the choice to collaborate in larger 

groups is not associated with a higher number of authored publications per year. This result is particularly 

interesting since we have seen in Table 2 that the two variables are overall positively correlated in the 

data. On average, however, it seems that at the level of the scientist’s yearly choice, the potential 

productivity gains stemming from specialization and division of labor are counterbalanced by the costs of 

coordination. This result is even more striking if we consider that, by choosing collaboration, scientists 

cannot really be “allocated” all the resulting publications but rather might consider their fractional 

contribution to the stock of published knowledge i.e. 𝛼 𝑁 < 1. Model (3-3) shows that collaboration is 

associated on average with lower attributed productivity. In the case of fractional publication counts (3-3), 

group size is negatively correlated (-0.069).   

Finally, models (3-4) to (3-6) explore credit attribution from collaboration. Model (3-4) shows 

that the quality benefit from collaboration is on average superior to its productivity cost where 𝛼 𝑁 = 1. 

This result can be interpreted in two ways. First, if one believes that scientists get all the credit for each of 

their coauthored publication, then scientists might be systematically under-collaborating. A second, more 

plausible interpretation of the result is that 𝛼 𝑁 < 1 —i.e., that scientists actually share some of the 

credit with their collaborators. Models (3-5) and (3-6) propose different credit sharing functions 𝛼 𝑁 . 

𝛼 𝑁 = 1/ 𝑁 is explored in (3-5) and is consistent with scientists in our dataset rationally using 
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collaboration to maximize their yearly attributed impact. Indeed, model (3-5) shows no statistically 

significant correlation between collaboration and yearly attributed impact overall. Model (3-6) uses a 

more strict credit sharing function in which 𝛼 𝑁 = 1/𝑁 and shows a statistically significant negative 

relationship between collaboration and yearly attributed impact. This result suggests that the credit for a 

given collaborative paper is not shared across coauthors in a way that sums up to 1. Taken together these 

results suggest that the credit sharing function of 𝛼 𝑁 = 1/ 𝑁 is most closely associated with rational 

collaborative behavior all else being equal. 

[Table 3 approximately here] 

Figure 2 presents the regression estimates when we dichotomize our main independent variable, 

average collaboration size for a faculty-year. We can note that the upper left graph that the relationship 

between collaboration and output quality seems to have decreasing returns and to pick at 8 collaborators. 

The middle row graphs display the relationship between collaboration and productivity for NPubs 

(𝛼 𝑁 = 1) and for Frac_pubs (𝛼 𝑁 = 1/𝑁). Interestingly, for relatively large collaborations (average 

coauthoring groups of 5 or more for the year), the relationship between collaboration and productivity is 

negative for Npubs and Frac_pubs. The difference between publication attribution functions comes from 

relatively small collaboration levels. If coauthors do not “share” the papers they write but instead account 

for all their papers equally, then collaboration is positively associated with productivity for collaborations 

of up to three coauthors on average per year. However, if papers are split across coauthors, then 

collaboration is associated with negative (fractional) productivity for every value of N. This result shows 

that scientists produce fewer papers when they collaborate than when they work alone — but individually, 

each of them will have more lines on their CV as long as N < 5 on average for the year.  

The bottom graphs also show striking consistencies across 𝛼 𝑁  functions. For yearly average 

collaboration of up to 3 coauthors, collaboration is associated with more attributed citations. The different 

results that we observed in models (3-4) to (3-6) stem from average yearly group size of 4 or more. If 

credit does not get split, then these highly collaborative years are associated with more attributed 

citations. However, if it does get split, these years are associated with similar levels of (𝛼 𝑁 = 1/ 𝑁) or 

fewer (𝛼 𝑁 = 1/𝑁) attributed citations. 

[Figure 2 approximately here] 

5.3 Robustness Analysis 

In Tables 4 and 5, we subject our results to additional robustness tests. We begin by examining 

the relationship between collaboration and quality. While citations have been broadly used as a measure 

of publication quality, one could worry that they might be associated with some marketing advantage that 
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larger groups might have. In model (4-1), we use an alternative measure of paper quality: the journal 

impact factor (JIF) of the publishing outlet. For the few publications in the dataset for which we could not 

find a JIF, we imputed the latter based on the citations that the articles had received.15 We find that 

scientists not only receive more citations on average for the publications on which they collaborate more, 

they also get published in journals of higher impact factor. Models (4-2) to (4-4) examine whether and 

how authorship position impacts our findings.16 It is, for instance, possible that in those years in which 

our scientists collaborate more they are attributed fewer citations because they do not have the 

“controlling position” of being a first or last author. One way to control for authoring position and to 

avoid the use of fractional measures is to assign to a scientist only the publications in which he or she is 

the last author – and give him or her the entire credit for the publication and resulting citations. Our 

results are very consistent with those that we find when using 𝛼 𝑁 = 1/𝑁. 

[Table 4 approximately here] 

While fractional measures have been used in bibliometric studies for many years (for an early 

example see (Price & Beaver 1966)), one could also worry that our results for the case in which 

𝛼 𝑁 = 1/𝑁 might be mechanically driven by the fact that our main independent variable, collaboration, 

is also in the denominator of our fractional measures of output quantity and overall contribution. This 

worry, however, is unfounded here because what we are really interested in is precisely whether there are 

decreasing returns to collaboration. In other words, a negative coefficient in our fractional regressions is 

evidence of a concave relationship between collaboration and creative output. Although most visible 

through fractional measures, our result can equally be observed without using any fractional variable as in 

Models (4-3) and (4-4).  

Model (5-1) and (5-2) achieve the same results in yet another manner; they show that 

collaboration is associated with significant decreasing returns to scale concerning both quantity and 

yearly contribution (as measured through forward citations). The relationship is concave: N scientists 

working separately during a given time publish more articles and receive more forward citations than N 

scientists working together. The inflection points implied by the coefficients in these two models are 

respectively 5.4 in (5-1) and 9.6 in (5-2). They are also visible in the left-hand side graphs presented in 

Figure 2 (where alpha(N)=1). Finally, one might worry that our results primarily hold for publication of 

average quality. If one believes that only the very best publications really matter, then one might be 

interested in the relationship between collaboration and taking part to a very high impact publication. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15 In another model, we also replaced missing JIF with the value 0 since journals for which we could not find 
information are likely to be of minor importance. The results remained unchanged. 
16 Note that some of this variance is already accounted for by the fact that we include in all of our model career-stage 
fixed effect (authorship position is closely related to career-stage) 
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Models (5-3) to (5-5) consider only the top 5% of the paper published by department-year and shows that 

the general patterns observed overall also holds for this subset of publications only. 

[Table 5 approximately here] 

5.4 Different Collaborators 

In the subset of 2,273 faculty-years in which MIT PIs only publish with a coauthor that was 

affiliated with MIT, we explore the impact of different types of research collaborators. Table 6 provides 

the descriptive statistics for this subsample. For these within-MIT years, PIs on average collaborated with 

0.3 other MIT PIs and 1.7 non-PIs per year. About half of the inter-PI collaborations (54%) took place 

between scientists of the same rank, and collaboration took place both within-department and across-

departments at a similar rate (0.11 and 0.15 collaborating PIs per year respectively). 

[Table 6 approximately here] 

Table 7 illustrates that our main results from Table 3 still hold for our subsample of MIT PIs in 

years in which they have only chosen to collaborate with other MIT PIs. Specifically, researchers who 

collaborate in larger groups produce higher quality papers (7-1) and get fewer fractional papers (7-3) 

although if 𝛼 𝑁 = 1 i.e., they consider all their publications (NPubs) then the number of PIs has no 

significant impact (see (7-2)). 

[Table 7 approximately here] 

The relationship between collaboration and quality might be driven by a number of distinct 

mechanisms including increased time-input for collaborative work, but also potentially cross-fertilization 

from different perspectives and higher credibility of larger groups. These mechanisms would lead to 

conflicting predictions regarding whether scientists would profit more from collaborating within their 

department or with PIs from other departments. If the positive relationship between collaboration and 

quality is driven by credibility alone, then within-department collaboration would be the most 

advantageous. If it was driven by cross-fertilization, then cross-department collaboration might 

particularly lead to higher quality papers. Finally, if it is simply driven by higher input, then both types of 

collaboration should have a similar positive impact on paper quality. Model (8-1) shows that cross-

department collaboration is much more strongly associated with higher quality papers than within-

department work. This result suggests that the main mechanism driving the positive relationship between 

collaboration and quality is cross-fertilization rather than credibility or simply higher input. 

[Table 8 approximately here] 

We have also seen that the relationship between collaboration and productivity might be driven 

by two conflicting mechanisms: coordination cost and division of labor/specialization. The fact that we 

find an overall negative relationship between collaboration and productivity suggests that the coordination 



24	  
	  

	  

costs outweigh on average the gains from specialization. Should we then conclude that there is no gain 

from a division of labor in scientific research? Models (8-2) and (8-3) show the contrary. We find that the 

“productivity cost” to collaboration is lower for collaborations that span departmental boundaries, 

indicating that division of labor does decrease the cost to collaboration. Overall, then, we find that the 

apparent trade-off between quality and productivity is not the same for every type of collaboration. 

Specifically, we find collaboration has more benefits and is less costly when it involves individuals from 

different departments. This overall difference between within and across department collaboration is also 

visible when studying the citations attributed to individual scientists.  

Models (8-4) to (8-6) show that unless scientists get all the credit for collaborative work, within-

department collaboration is associated with fewer attributed yearly citations. In contrast, across 

department collaboration is associated with significantly more attributed citations if 𝛼 𝑁 = 1, and no 

significantly fewer attributed citations if 𝛼 𝑁 = 1/ 𝑁. 

[Table 9 approximately here] 

Finally, the rank of the collaborator might also influence the collaboration’s outcome. On the one 

hand, a prestigious collaborator might increase both the quality and the visibility of the work output. On 

the other hand, senior collaborators might also free-ride on the efforts of more junior coauthors. In order 

to study the influence of these mechanisms in our context, we distinguish in Table 9 between 

collaborating with a more junior scientist, collaborating with a scientist of the same rank or collaborating 

with a more senior PI. Our results are more consistent with the free-riding mechanism. Model (9-1) shows 

that collaborating with a more senior person does not increase quality but does have a cost on 

productivity, especially if the collaboration is inter-departmental. Models (9-4) to (9-6) show that 

scientists seem to perform less well when they collaborate with someone who is senior to them. Like 

collaborations with more senior coauthors, collaborations with more junior ones are not associated with a 

statistically significant gain in output quality. However, Models (9-2) and (9-3) show that the productivity 

cost in this case appears considerably lower, leading to a relatively more positive impact of collaboration 

on attributed citations (Models (9-4) to (9-6)). Interestingly, the positive impact of collaboration on 

quality and its negative impact on productivity are particularly salient in the case of collaboration with 

someone of the same rank. 

Overall, our analysis of the mechanisms driving our main results provides a richer picture of the 

micro-foundations of the apparent quality-productivity tradeoff associated with collaboration choices in 

creative work. Collaboration is particularly associated with higher quality output when it provides more 

opportunities for cross-fertilization of ideas by bringing together scientists of a similar rank and from 

different backgrounds. Collaboration also involves a significant productivity loss (at least if 𝛼 𝑁 < 1). 

This loss is particularly salient if the coauthor is of a more senior rank. Interestingly, opportunities for 
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division of labor—through cross-departmental collaboration—seem to diminish this productivity loss. In 

sum, these results indicate that the apparent tradeoff between quality and quantity associated with 

scientists’ collaboration choices might be driven by the decision to allocate one’s time in a way that might 

lead to coordination costs and free-riding but that might also foster cross-fertilization of ideas and a 

productive division of labor.  

6 DISCUSSION AND CONCLUSIONS 

Considering collaboration at the level of the individual provides insights into the reasons why 

autonomous creative workers choose to work together or with others with different expertise or with 

different positions in the status hierarchy. As any researcher knows, the decision to collaborate is 

endogenous and the focus on creative output (e.g., publications, patents) in prior studies conceals 

important potential variables that contour collaborative choices. Only through a simultaneous exploration 

of the benefits and costs of collaboration for individuals can we really seek to understand the phenomenon 

of collaboration. In this paper, we have taken a step in this direction by developing a theoretical model of 

collaboration that considers both the potential benefits in terms of productivity, but also the coordination 

costs and the costs in terms of credit allocation among individuals. Our empirical focus on individual 

choices over a period of time enables us to hold “talent” constant, thus overcoming (to some extent), the 

heterogeneous nature of individual knowledge workers. We thus explore these tradeoffs in the 

organization of scientific work by considering a scientist’s decision to allocate her fixed time to more or 

less collaborative projects.  

We find that collaboration is associated with important tradeoffs, including higher quality 

publications, lower individual productivity and disproportionate credit attribution—i.e. that credit for a 

given collaborative paper is shared across coauthors in a way that sums up to more than 1. The size of 

these effects is considerable. A scientist working during a year with one other person on average rather 

than working alone can hope to receive over 60% more citations per published paper. They will also be 

able to show more publications on their CV despite the fact that their fractional productivity, in fact, 

decreased by over 15%--indicating that the two together publish considerably less than they would, had 

they worked separately. Importantly, scientists’ collaboration behavior is consistent with a credit premium 

of over 33%17 for collaborating with one person per year on average as opposed to working alone. Taken 

together, these results suggest that the “net value” of collaboration in creative work might be superior for 

the credit-seeking worker than it is for the output-focused manager or policy-maker. The benefits of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
17 Percentages were computed using estimates shown in Figure 2. Average credit attribution (yearly citations 
received) for a collaboration of two when α(N) =1/N is 18 citations by 2008. It is 24 citations when α(N) =1/√𝑁. In 
comparison, credit received for the average sole authored year is about 15 citations. 
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collaborations are particularly high and its costs are particularly low when the collaboration brings 

together individuals having different skills and perspectives—as in the case of cross-departmental 

collaborations. On the other hand, the drawbacks of collaboration are particularly salient when scientists 

collaborate with a person that is senior to them. We find no evidence that junior scientists benefit from 

collaborating from somebody that is more established in their field.  

We regard our results as an important first step in bringing the perspective of the time-conscious 

and credit-seeking knowledge worker to the debate on collaboration and creativity. Despite the recent 

surge in interest in collaboration for creativity by organization scholars, the large majority of these studies 

has focused on the output from the collaboration (typically the quality of the work completed). Our 

contribution was made possible by a departure from previous studies that have examined how to optimize 

the quality of a given piece of work. Indeed, we have complemented this approach by switching unit of 

analysis and focusing on the creative worker’s decision to spend their time working alone or in groups of 

smaller or larger sizes. In so doing, we were able to disentangle a number of tradeoffs associated with 

collaboration and creativity.  

This research is not without its limitations: First, the decision to collaborate in smaller or larger 

groups is a complex one and is likely to involve other considerations than output quality, individual 

productivity and credit allocation. For instance, collaboration might have a financial cost or be 

endeavored to learn rather than to maximize individual credit. Second, we are not able to directly measure 

the scientists’ credit allocation function—which is likely to vary substantially across disciplines (see for 

instance Maciejovsky et al. 2009). Instead we study that function indirectly by first developing a formal 

model of scientific collaborative choice and then by testing whether its predictions are consistent with the 

behavior that we observe in our data. Third, absent an experimental design, we cannot be sure that our 

empirical results are not at least partially driven by task heterogeneity. This endogeneity could be 

particularly problematic if tasks that can only accommodate large groups were important in ways that 

cannot be captured through paper citations or publication journal impact factor. Nonetheless, our setting 

provides the advantage of presenting the real choices made by creative workers in a number of disciplines 

over three decades. Our theoretical model generates predictions that are consistent with scientists’ 

behavior and are robust across a variety of specifications. The fact that our findings are obtained after 

including individual fixed effects is also important– in other words our approach accounts for the 

variation in the choices made by the same scientist over the course of their career. Analysis of different 

types of collaborator further illuminates the various mechanisms underlying the tradeoffs that we observe.  

 Our study is only a first step toward understanding the benefits and drawbacks of collaboration 

for creative workers. Other correlates are likely to shape collaboration’s “net value” beyond what we can 

observe in our data. On the input side, the amount of financial resources and equipment necessary for a 
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given task are likely to vary with group size (Beaver & Rosen 1978). On the output side, collaboration is 

often described as a particularly enjoyable organization of work and a paramount driver of circulation of 

ideas, and learning (J. S. Katz & Martin 1997). Overall, the relationship between these costs and benefits 

is likely to depend on the group’s intensity, structure, and experience (e.g., Porac et al. 2004). These are 

all important nuances which are likely to impact the net value of collaboration, and which we have not 

been able to study here. The importance of continuing the investigation of collaboration in the context of 

creative work should not be understated. As the nature of work is changing, more attention might usefully 

be brought to the fact that in practice, collaboration is an organization of work that has complex and 

perhaps distinct implications for creative workers on the one hand and managers and policy-makers on 

the other. 
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TABLE 1: DESCRIPTIVE STATISTICS AT THE INDIVIDUAL-YEAR AND PUBLICATION LEVELS 

	   	  
	  	   	  	   	  	  

	  
	  	  

	   	  

Variable 
PUBLICATION LEVEL 

(n=21,054)  
INDIVIDUAL-YEAR LEVEL 

(n=5,964)  

Mean Std. Dev. Min Max Mean Std. Dev. Min Max 
Average Group Size (Nauthors) 4.1 2.3 1 20 3.8 1.9 1 20 

Average Forward Citations (Cites) 46.8 111.9 0 4810 41.3 86.9 0 2595 

Productivity -- alpha(N)=1 (NPubs) n.a.  n.a.  n.a.  n.a.  3.5 3.7 1 47 

Productivity -- alpha(N)=1/N (Frac_Pubs) n.a.  n.a.  n.a.  n.a.  1.1 1.1 0.1 9.7 

Att_Cites -- alpha(N)=1 46.8 111.9 0 4810 165.1 388.8 0 8852 

Att_Cites -- alpha(N)=1/sqrt(N) 24.5 67.2 0 4810 86.4 211.7 0 4947 

Att_Cites -- alpha(N)=1/N 13.8 51 0 4810 48.7 135.4 0 4819 

N_ Highly Cited Publications 0.05 0.22 0 1 0.18 0.52 0 8 

Frac_Highly Cited Publications 0.01 0.07 0 1 0.05 0.17 0 2 

Average JIF (missing values imputed) 4.86 5.57 0 52.59 4.46 4.62 0.024 29.89 

Average JIF (missing values 0) 4.1 5.82 0 52.59 3.57 4.76 0 29.89 

Last Authored Paper  0.63 0.48 0 1 0.61 0.39 0 1 

First Authored Paper 0.08 0.27 0 1 0.12 0.29 0 1 

Year 1995 8.6 1976 2006 1993.2 8.8 1976 2006 

 
 
TABLE 2: CORRELATION TABLE, MAIN VARIABLES, INDIVIDUAL-YEAR LEVEL  
(5,964 observations)   

	   	   	   	   	   	   	   	   	    1 2 3 4 5 6 7 8 

1. NAuthors  (mean group size)  1 	  	   	  	   	  	   	  	   	  	   	  	   	  	  
2. Cites (av. forward cites) 0.0944* 1 	  	   	  	   	  	   	  	   	  	   	  	  
3. NPubs 0.1254* 0.0602* 1 	  	   	  	   	  	   	  	   	  	  
4. Frac_Pubs -- alpha(N)=1/N -0.1414* 0.0415 0.9026* 1 	  	   	  	   	  	   	  	  
5. Att_Cites -- alpha(N)=1 0.1068* 0.6097* 0.5092* 0.4712* 1 	  	   	  	   	  	  
6. Att_Cites -- alpha(N)=1/sqrt(N) 0.0414 0.6210* 0.4742* 0.4786* 0.9711* 1 	  	   	  	  
7. Att_Cites -- alpha(N)=1/N -0.011 0.6095* 0.4022* 0.4415* 0.8794* 0.9655* 1 	  	  
8. Year 0.2301* -0.1416* 0.1967* 0.1149* -0.0520* -0.0742* -0.0848* 1 

Significance level: * p<0.001  
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TABLE 3: THE EFFECT OF COLLABORATION CHOICE ON QUALITY, QUANTITY & CREDIT 

	   	   	   	   	   	  
	  

  

QUALITY QUANTITY CREDIT 
DV=log(1+ Cites 

by paper)   DV=log(1+Pubs) DV=log(1+Att_Cites) 

	  	   NPubs Frac_Pubs alpha(N)=1 alpha(N)=1/sqrt(N) alpha(N)=1/N 

(3-1) (3-2) (3-3) (3-4) (3-5) (3-6) 
Department-Year FE Yes Yes Yes Yes Yes Yes 

Scientist FE Yes Yes Yes Yes Yes Yes 

Career Stage FE Yes Yes Yes Yes Yes Yes 

Group Size 0.0990*** -0.00582 -0.0688*** 0.0919*** -0.00303 -0.0834*** 

  -0.01 0 0 -0.01 -0.01 -0.01 

Constant 3.127*** 0.864*** 0.653*** 3.405*** 3.253*** 3.079*** 

  -0.17 -0.05 -0.03 -0.19 -0.18 -0.17 

Observations 5964 5964 5964 5964 5964 5964 

R-squared 0.24 0.136 0.21 0.157 0.16 0.183 

OLS; Robust standard errors in parentheses are clustered at the level of the individual MIT scientist 
Significance level: *** p<0.01, ** p<0.05, * p<0.1 

 
 
 
 
TABLE 4: ROBUSTNESS CHECKS (1)	  

	   	   	   	   	  
	  
	  
	  
	  

JOURNAL IMPACT 
FACTOR CREDIT GIVEN TO LAST AUTHOR ONLY† 

QUALITY QUALITY QUANTITY YEARLY 
CITATIONS‡ 

OLS; DV= Av. JIF for the year; 
missing JIF imputed based on 

pub cites 

OLS; DV= 
log(1+Cites) 

OLS; DV=log(1+ 
NPubs-LastAuthor) 

OLS; DV= DV=log(1+ 
Att_Cites-LastAuthor)  

(4-1) (4-2) (4-3) (4-4) 
Department-Year FE Yes Yes Yes Yes 
Scientist FE Yes Yes Yes Yes 
Career Stage FE Yes Yes Yes Yes 
Group Size 0.387*** 0.117*** -0.0846*** -0.199*** 

	  
(0.06) (0.02) (0.01) (0.02) 

Constant 4.456*** 2.890*** 0.708*** 2.832*** 

 (0.44) (0.23) (0.06) (0.24) 
Observations 5,964 2,265 5,964 5,964 
R-squared 0.09 0.28 0.16 0.131 

OLS; Robust standard errors in parentheses are clustered at the level of the individual MIT scientist 
Significance level: *** p<0.01, ** p<0.05, * p<0.1 

 
 
  

† Since (total) yearly collaboration is of interest, the “Group Size” variable was not recalculated to include only last-authored paper 
‡ All cites attributed to last author only	  
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TABLE 5: ROBUSTNESS CHECKS (2)	  

	   	   	   	   	   	  
	  	  
	  	  
	  	  
	  	  

CONCAVENESS TOP QUALITY PUBLICATIONS 
QUANTITY CREDIT CREDIT 

OLS; 
DV=log(1+ 

NPubs) 

OLS; 
DV=log(1+ 

Att_Cites) N=1 

OLS; 
DV=log(1+Att_Cites); 

alpha(N)=1 

OLS; 
DV=log(1+Att_Cites); 

alpha(N)=1/sqrt(N) 

OLS; 
DV=log(1+Att_Cites); 

alpha(N)=1/N 
(5-1) (5-2) (5-3) (5-4) (5-5) 

Department-Year FE  Yes  Yes  Yes  Yes  Yes  
Scientist FE  Yes  Yes  Yes  Yes  Yes  
Career Stage FE  Yes  Yes  Yes  Yes  Yes  
Group Size 0.0492*** 0.250*** 0.00457** -0.000532 -0.00247*** 

	  	   (0.01) (0.04) (0.00) (0.00) (0.00) 
Group Size Squared -0.00454*** -0.0130***       
	  	   (0.00) (0.00)       

Constant 0.782*** 3.098*** 0.0921*** 0.0767*** 0.0599*** 

  (0.05) (0.21) (0.03) (0.02) (0.01) 

Observations 5,964 5,964 5,964 5,964 5,964 

R-squared 0.142 0.164 0.041 0.036 0.036 

OLS; Robust standard errors in parentheses are clustered at the level of the individual MIT scientist 
Significance level: *** p<0.01, ** p<0.05, * p<0.1 

 
 
 
 
TABLE 6: WITHIN MIT COLLABORATION -- DESCRIPTIVE STATISTICS	  

	   	   	   	   	   	   	   	   	  

Variable 

PUBLICATION LEVEL INDIVIDUAL-YEAR LEVEL  
 (n=4,617 out of 21,054)  (n=2,273 out of 5,964)  

Mean Std. Dev. Min Max Mean Std. 
Dev. Min Max 

Overall Group Profile 	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  
      # PIs 1.3 0.5 1 4 1.3 0.5 1 4 

      # non-PIs 1.7 1.3 0 10 1.7 1.2 0 10 

                  
Breakdown of Collaborating PIs by Position of the Collaborator   

# junior PIs  0.05 0.2 0 3 0.06 0.2 0 3 

# PIs with same position 0.14 0.4 0 3 0.13 0.3 0 3 

# senior PIs  0.07 0.3 0 3 0.08 0.3 0 3 

                  

Breakdown of Collaborating PIs by Department of the Collaborator  

# PIs from the same department 0.11 0.3 0 3 0.19 0.4 0 3 

# PIs from a different department 0.15 0.4 0 3 0.09 0.3 0 2 
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TABLE 7: THE EFFECT OF PI COLLABORATION CHOICES WITHIN MIT  

	   	   	  
	  	   	  	   	  	  

	  

  

QUALITY QUANTITY CREDIT 
DV=log(1+ 

Cites by 
paper)   

DV=log(1+Pubs) DV=log(1+Att_Cites) 

	  	   NPubs Frac_Pubs alpha(N)=1 alpha(N)=1/sqrt(N) alpha(N)=1/N 

(7-1) (7-2) (7-3) (7-4) (7-5) (7-6) 

Department-Year FE Yes Yes Yes Yes Yes Yes 

Scientist FE Yes Yes Yes Yes Yes Yes 

Career Stage FE Yes Yes Yes Yes Yes Yes 

# PIs 0.196*** -0.0199 -0.297*** 0.169** -0.0945 -0.343*** 

  -0.07 -0.02 -0.02 -0.08 -0.08 -0.07 

# non-PIs 0.119*** 0.00134 0.00214 0.121*** 0.120*** 0.120*** 

	  	   -0.03 -0.01 -0.01 -0.04 -0.04 -0.04 

Constant 1.573*** 0.764*** 1.042*** 1.641*** 1.943*** 2.232*** 

  -0.24 -0.09 -0.08 -0.3 -0.29 -0.29 

Observations 2273 2273 2273 2273 2273 2273 

R-squared 0.245 0.18 0.273 0.221 0.222 0.233 

OLS; Robust standard errors in parentheses are clustered at the level of the individual MIT scientist 
Significance level: *** p<0.01, ** p<0.05, * p<0.1 

 
 
TABLE 8: THE EFFECT OF PI COLLABORATION WITHIN AND ACROSS DEPARTMENTS 

	   	   	   	   	   	   	  

  

QUALITY QUANTITY CREDIT 
DV=log(1+ 

Cites by 
paper)   

DV=log(1+Pubs) DV=log(1+Att_Cites) 

	  	   NPubs Frac_Pubs alpha(N)=1 alpha(N)=1/sqrt(
N) alpha(N)=1/N 

(8-1) (8-2) (8-3) (8-4) (8-5) (8-6) 

Department-Year FE Yes Yes Yes Yes Yes Yes 

Scientist FE Yes Yes Yes Yes Yes Yes 

Career Stage FE Yes Yes Yes Yes Yes Yes 

# PIs from the same department 0.104 -0.0421 -0.323*** 0.0488 -0.214** -0.465*** 

  -0.1 -0.03 -0.03 -0.11 -0.1 -0.1 

# PIs from a different department 0.281*** 0.000757 -0.273*** 0.282** 0.0175 -0.230** 

  -0.0978 -0.0258 -0.025 -0.112 -0.107 -0.104 

# non-PIs 0.116*** 0.000517 0.0012 0.116*** 0.116*** 0.115*** 

	  	   -0.03 -0.01 -0.01 -0.04 -0.04 -0.04 

Constant 1.706*** 0.750*** 0.749*** 1.767*** 1.792*** 1.819*** 

  -0.22 -0.07 -0.07 -0.26 -0.26 -0.25 

Observations 2273 2273 2273 2273 2273 2273 

R-squared 0.246 0.18 0.274 0.222 0.223 0.234 

OLS; Robust standard errors in parentheses are clustered at the level of the individual MIT scientist 
Significance level: *** p<0.01, ** p<0.05, * p<0.1 
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TABLE 	  9: MECHANISM -- THE EFFECT OF PI COLLABORATION WITH DIFFERENT PIs  
(within MIT only) 

	  	  

  

QUALITY QUANTITY CREDIT 
DV=log(1+ 

Cites by 
paper)   

DV=log(1+Pubs) DV=log(1+Att_Cites) 

	  	  
NPubs Frac_Pubs alpha(N)=1 alpha(N)=1/sqrt(N) alpha(N)=1/N 

(9-1) (9-2) (9-3) (9-4) (9-5) (9-6) 
Department-
Year FE Yes Yes Yes Yes Yes Yes 

Scientist FE Yes Yes Yes Yes Yes Yes 

Career Stage FE Yes Yes Yes Yes Yes Yes 

Within Department Collaboration   

Junior PI 0.18 -0.02 -0.293*** 0.14 -0.12 -0.378* 

	  	   (0.18) (0.04) (0.05) (0.21) (0.20) (0.20) 

Same rank PI 0.14 -0.0726* -0.325*** 0.06 -0.18 -0.399*** 

	  	   (0.13) (0.04) (0.04) (0.14) (0.13) (0.13) 

Senior PI  -0.19 0 -0.234*** -0.2 -0.411* -0.612*** 

	  	   (0.20) (0.06) (0.06) (0.23) (0.22) (0.21) 

	  	               

Across Department Collaboration 

Junior PI 0.704 0.187 -0.0639 0.996** 0.737 0.502 

	  	   (0.47) (0.12) (0.12) (0.50) (0.48) (0.45) 

Same rank PI 0.671*** 0.037 -0.252*** 0.733** 0.44 0.162 

	  	   (0.26) (0.07) (0.06) (0.30) (0.29) (0.29) 

Senior PI  -0.0428 -0.00984 -0.232*** -0.0776 -0.341 -0.58 

	  	   (0.39) (0.08) (0.08) (0.42) (0.42) (0.42) 

	  	               

# non-PIs 0.125*** -0.0000413 -0.00772 0.125*** 0.116*** 0.108*** 

   (0.03) (0.01) (0.01) (0.04) (0.04) (0.03) 

Constant  1.825*** 0.739*** 0.721*** 1.861*** 1.881*** 1.903*** 

   (0.22) (0.09) (0.08) (0.29) (0.28) (0.27) 

Observations  2273 2273 2273 2273 2273 2273 

R-squared  0.248 0.182 0.239 0.225 0.227 0.234 

OLS; Robust standard errors in parentheses are clustered at the level of the individual MIT scientist 

Significance level: *** p<0.01, ** p<0.05, * p<0.1 
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FIGURE 1: DISTRIBUTION OF GROUP SIZES BY FACULTY-YEARS (DESCRIPTIVE STATISTICS) 
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FIGURE 2: RELATIONSHIP BETWEEN COLLABORATION, QUALITY, QUANTITY AND OVERALL 
YEARLY CITATIONS (ESTIMATES) 
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Note: These graphs show the results from Table 3 regressions where “Group Size” was turned into a series of indicator variables. X=1 on the 
graphs means that the average group size for the year was between 1 (included) and 2 (excluded). In the regressions, Group  Size superior or equal 
to 11 was used as omitted category. For each regression, a Wald test rejected the null hypothesis that all 10 coefficients were equal. F-statistic 
results were respectively: “Collaboration & Quality”: F(9,660)=	  11.43 ; “Collaboration & Quantity” (alpha(N)=1): F(9,660)=	  13.19; 
“Collaboration & Quantity” (alpha(N)=1/N): F(9,660)=	  64.92; “Collaboration & Yearly Citations” (alpha(N)=1): F(9,660)=	  11.09; “Collaboration 
& Yearly Citations” (alpha(N)=1/sqrt(N))): F(9,660)=	  3.46; “Collaboration & Yearly Citations” (alpha(N)=1/N): F(9,660)=	  8.76 


