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1 Introduction

A basic tenet of economics posits that when consumers or firms do not face the true social cost

of their actions, market outcomes are inefficient. In the case of externalities, Pigouvian taxes

provide one way to correct this market failure, and the optimal tax or subsidy leads agents to

internalize the true cost of their actions. A practical complication, however, is that the level

of externality nearly always varies across economic agents, and directly taxing the externality

may be infeasible. In such cases, policy often taxes or subsidizes a product correlated with

the externality. For example, instead of taxing vehicle emissions directly, policy makers

may tax gasoline even though per-gallon emissions vary across vehicles. Similarly, a uniform

alcohol or tobacco tax may be imposed as a means of reducing the negative externalities

associated with their use, even though externalities likely vary by person or alcohol type.

Or, in the case of positive externalities associated with research and development activities,

policy might subsidize R&D uniformly across firms.

In this paper, we address three related questions. First, what is the size of the optimal

uniform tax rate for gasoline? Second, how much deadweight loss (DWL) remains once

this tax is imposed? Finally, how does variation in responses to gasoline taxes affect the

benefits associated with gasoline or carbon taxes? Our empirical setting is the personal

transportation market in California between 1998 and 2008. We show three things.

First, we observe substantial variation in vehicle-level emissions (externalities) in the

light-duty vehicle market and, more importantly, that variation is correlated with the vehicle-

specific elasticity of miles driven with respect to gasoline prices. Dirtier vehicles are more

price responsive. Using detailed vehicle-specific data on miles driven, we show that the

positive correlation between emissions and elasticities (in absolute value) holds for all three

local pollutant emissions—known as criteria pollutant emissions—for which we have data:

carbon monoxide (CO), hydrocarbons (HCs), and nitrogen oxides (NOx).
1 It also holds for

fuel economy and vehicle weight. We find that the average “two-year” elasticity of miles

traveled is -0.15 across all vehicles, but the differences across vehicle types are substantial.

1Criteria air pollutants are the only air pollutants for which the Administrator of the U.S. Environ-
mental Protection Agency has established national air quality standards defining allowable ambient air
concentrations. Congress has focused regulatory attention on these pollutants (i.e., carbon monoxide, lead,
nitrogen dioxide, ozone, particulate matter, and sulfur dioxide) because they endanger public health and are
widespread throughout the United States
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The elasticity for the dirtiest quartile of vehicles with respect to NOx is -0.29. The second,

third, and fourth quartile elasticities are -0.16, -0.06, and 0.04, respectively. Similar varia-

tion exists for CO and HCs. This correlation drives a wedge between the optimal uniform

Pigouvian tax associated with emissions, which should weight vehicles’ externalities by their

responsiveness to the tax, and what we call the “naive” tax, which is based on the average

externalities. The optimal tax is substantially larger, on the order of 50 percent, in each of

the years of our sample.

Second, we show that even when instituting the optimal uniform Pigouvian tax, the

uniform tax performs very poorly in eliminating DWL. Across our sample, we estimate that

the optimal uniform Pigouvian tax, a gasoline tax in this case, eliminates only 30 percent of

DWL associated with these pollutants. During the second half of our sample, 75 percent of

DWL remains under the optimal uniform tax.2

We investigate ways to improve upon this. We find that allowing gasoline taxes to be

county specific leads to a small improvement, increasing the amount of DWL eliminated by

less than 5 percentage points. We find moderate benefits from “homogenizing” the fleet,

potentially through vehicle retirement (e.g., “Cash-for-Clunkers”) programs; scrapping the

dirtiest 10 percent of vehicles reduces the remaining DWL by 14 percentage points. The

largest pay-offs come from conditioning taxes on vehicle type, in particular vehicle’s age.

Finally, we report some good news. We show that the positive correlation between emis-

sions and the miles-driven elasticity implies that health benefits from a given gasoline, or

carbon, tax are larger than would be suggested by ignoring this correlation. We estimate

that across our sample, the health benefits of a gasoline tax, per gallon of gasoline reduced,

increase by 90 percent once one accounts for the the heterogeneity that we document. Fur-

thermore, these differences are large enough to push a substantial gasoline tax of $1.00 per

gallon from harming welfare to improving welfare late in the sample.

We also investigate several sources of the heterogeneity in the responsiveness to gasoline

prices. At the most general level, we show that while the age of the vehicle contributes to

2The closest paper in the literature to ours, in terms of this contribution, is Fullerton and West (2010).
They also investigate the amount of DWL eliminated by a uniform gasoline tax by calibrating a numerical
model with approximate miles and emissions obtained by matching inspection data from a small CARB
program to quarterly gasoline expenditures in the Consumer Expenditure Survey. Our estimates are based
on actual emissions, miles traveled, and gasoline prices from the universe of California vehicles. We find that
a uniform tax removes much less of the DWL of pollution compared to their calculations.
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our results—older vehicles respond more to changes in gasoline prices—this does not explain

all or even most of the heterogeneity. There are at least two additional sources of criteria

pollutant-related heterogeneity in the response of changes in gasoline prices. For one, low-

income consumers may both own dirtier vehicles and respond more to changes in gasoline

prices. Second, the heterogeneity may come from within-household shifts in vehicle miles

traveled across household vehicles. For example if a household has one newer, more fuel

efficient vehicle, and one older vehicle, as gasoline prices increase, the household may shift

miles away from the older vehicle to the newer vehicle. Because age is, on average, correlated

with both fuel economy and criteria pollutant emissions, this would lead to our result. Our

data speak to this. We find that while there is evidence of both a within-household effect

and an income effect, a significant amount of variation persists once these are accounted for.

The paper proceeds as follows. Section 2 draws on Diamond (1973) to derive the optimal

uniform gasoline tax and the amount of remaining DWL. Section 3 discusses the empirical

setting and data. Section 4 provides graphical support for the empirical results. Section 5

presents the main empirical model and results on miles driven. Section 6 estimates empir-

ically the optimal uniform tax and welfare effects, and Section 7 presents the results from

our policy simulation. Section 8 concludes the paper.

2 Optimal Uniform Taxes

In this section, we derive the optimal uniform tax in the presence of heterogeneity in the

externality, following closely the model of Diamond (1973). We reiterate that the optimal

uniform Pigouvian tax is second best, because heterogeneity would imply taxing different

agents differently. We then add more structure to the problem to analytically solve for the

amount of remaining DWL.

Consumer h derives utility (indirectly, of course) from her gasoline purchases, αh, but is

also affected by the gasoline consumption of others, α−h (the externality). We assume single-

car households and discuss robustness to this assumption. Assuming quasi-linear preferences,

consumer h’s utility can be written as:

Uh(α1, α2, ..., αh, ..., αn) + µh. (1)
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We assume utility is monotone in own consumption, i.e., ∂Uh

∂αh
≥ 0.

These assumptions, along with assuming an interior solution for each consumer, lead to:

Proposition 1. The second-best tax is (from Diamond (1973)):

τ ∗ =
−
∑

h

∑
i6=h

∂Uh

∂αi
α′i∑

h α
′
h

. (2)

Proof. See Appendix A.

The optimal uniform Pigouvian tax becomes a weighted average of vehicles’ externalities

where the weights are the derivative of the externality with respect to the tax. When the

price responsiveness and emissions are positively correlated, i.e. dirtier cars are more price

responsive, this will increase the optimal uniform Pigouvian tax.3

As Diamond explicitly discusses, there is no requirement that all of the α′hs must be

negative, although the optimal second-best tax loses the interpretation as a weighted average.

Indeed, if households hold multiple vehicles, it is conceivable that miles traveled is shifted

from the low-mileage vehicle to the high-mileage vehicle. This also implies that the second-

best tax can be negative. For example, suppose the dirty vehicles had a positive miles-

traveled elasticity, while clean vehicles were very price sensitive. In this case, it may be

optimal for policy to subsidize gasoline.

Also, note that the elasticity of the negative externality with respect to price accounts

for any changes on the extensive margin. That is, if the gasoline tax increases the scrappage

rate of some vehicles, then the relevant derivative of the externality with respect to price is

the expected change in miles driven, not the change in miles driven, conditional on survival.

The presence of heterogeneity also implies that the uniform tax will not achieve the

first-best outcome. In short, the uniform tax will under-tax high externality agents and

over-tax low externality agents. We extend Diamond (1973) to solve for the amount of DWL

remaining in the presence of a uniform Pigouvian tax applied to a market with heterogenous

externalities. This requires a bit more structure.

3As an intuitive example, imagine the case where there are only two vehicle types. The first emits little
pollution, while the second is dirtier. Also imagine the clean vehicles are completely price insensitive, while
the dirty vehicles are price sensitive. The naive Pigouvian tax would tax based on the average emissions of
the two vehicle types. However, the marginal emission is the emission rate of the dirty vehicles; the clean
cars are driven regardless of the tax level. In this case, we can achieve first best by setting the tax rate at
the externality rate of the dirty vehicle. There is no distortion to owners of clean vehicles since their demand
is completely inelastic, so we can completely internalize the externality to those driving the dirty vehicles.

4



Proposition 2. Suppose drivers are homogenous in their demand for miles driven, but
vehicles emissions differ. In particular, each consumer has a demand for miles driven given
as:

m = β0 − β1dpm(pg + τ). (3)

If the distribution of the externality per mile, E, is log normal, with probability density
function:

ϕ(Ei) =
1

Ei
√

2σ2
E

exp

(
−(Ei − µE)2

2σ2
E

)
, (4)

the DWL absent any market intervention will be given as:

D =
1

2β1

e2µE+2σ2
E .

Proof. See Appendix A.

This leads to the following calculation of remaining DWL under the optimal uniform

Pigouvian tax.

Proposition 3. Under the assumptions in Proposition 2, the ratio of remaining DWL after
the tax is imposed to the DWL absent the tax:

R =
D − e2µE+σ2E

2β1

D
= 1− e2µE+σ2

E

e2µE+2σ2
E

= 1− e−σ2
E . (5)

Proof. See Appendix A.

With externalities uncorrelated with the demand for miles driven, the remaining DWL

from a uniform tax depends only on the shape parameter of the externality distribution. The

larger σ2
E is, the wider and more skewed will the distribution of the externality be, causing

the uniform tax to “overshoot” the optimal quantity of miles for more vehicles.

If the demand for miles driven is not homogeneous, and in fact is correlated with exter-

nalities per mile, the calculation changes. For ease, define Bi = 1
βi

, and assume that Bi is

distributed lognormal with parameters µB and σ2
B. Define ρ as the dependence parameter of

the bivariate lognormal distribution (the correlation coefficient of lnE and lnB). We then

have:

Proposition 4. When Bi and Ei are distributed lognormal with dependence parameter ρ,
the optimal tax is:

τ ∗ = eµE+
σ2E
2

+ρσEσB
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Proof. See Appendix A.

As we would expect, the optimal tax does not depend on the scale of the elasticity

distribution, only on the extent to which externalities are correlated with elasticities. We

can next calculate the amount of remaining DWL under both the naive and optimal uniform

Pigouvian tax.

Proposition 5. When Bi and Ei are distributed lognormal with dependence parameter ρ,
the ratios of the remaining DWL after the optimal uniform Pigouvian tax to the original
DWL will be:

R(τ ∗) = 1− e−σ2
E , (6)

And, the ratios of the remaining DWL after the naive uniform tax to the original DWL will
be:

R(τnaive) = 1− e−σ2
E(2e−ρσEσB − e−2ρσEσB). (7)

Proof. See Appendix A.

As we would expect, the optimal tax correctly accounts for the correlation between

the externality and demand responses, and thus the remaining DWL depends only on the

variance and skewness of the externality distribution. However, in the presence of correlation

the naive tax reduces less of the DWL from the externality, reducing it by a proportion related

to the degree of correlation and the spread of the two distributions. The term in parentheses

in Equation (7) is strictly less than 1, and strictly greater than zero if ρ > 0, but may be

negative if ρ < 0 and the shape parameters are sufficiently large.

In Section 6, we will show that σ2
E is such that R(τ ∗) is surprisingly large, and that while

R(τnaive) is measurably larger, it is not much larger.

3 Empirical Setting

3.1 Data

Our empirical setting is the California personal transportation market. We bring together

a number of large data sets. First, we have the universe of smog checks from 1996 to 2010

from California’s vehicle emissions testing program, the Smog Check Program, which is

administered by the California Bureau of Automotive Repair (BAR). An automobile appears
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in the data for a number of reasons. First, vehicles more than four years old must pass a

smog check within 90 days of any change in ownership. Second, in parts of the state (details

below) an emissions inspection is required every other year as a pre-requisite for renewing

the registration on a vehicle that is six years or older. Third, a test is required if a vehicle

moves to California from out-of-state. Vehicles that fail an inspection must be repaired and

receive another inspection before they can be registered and driven in the state. There is

also a group of exempt vehicles. These are: vehicles of 1975 model-year or older, hybrid and

electric vehicles, motorcycles, diesel-powered vehicles, and large natural-gas powered trucks.

These data report the location of the test, the unique vehicle identification number (VIN),

odometer reading, the reason for the test, and test results. We decode the VIN to obtain

the vehicles’ make, model, engine, and transmission. Using this information, we match the

vehicles to EPA data on fuel economy. Because the VIN decoding is only feasible for vehicles

made after 1981, our data are restricted to these models. We also restrict our sample to 1998

and beyond, given large changes that occurred in the Smog Check Program in 1997. This

yields roughly 120 million observations.

The smog check data report two measurements each for NOx and HCs in terms of parts

per million and CO levels as a percentage of the exhaust, taken under two engine speeds. As

we are interested in the quantity of emissions, the more relevant metric is a vehicle’s emissions

per mile. We convert the smog check reading into emissions per mile using conversion

equations developed by Sierra Research for California Air Resources Board in Morrow and

Runkle (2005), an evaluation of the Smog Check Program. The conversion equations are

functions of both measurements of all three pollutants, vehicle weight, model year, and truck

status.

We also estimate scrappage decisions using data reported to CARFAX Inc. for 32 million

vehicles in the smog check data. We detail this analysis in Appendix G. These data contain

the date and location of the last record of the vehicle reported to CARFAX. This includes

registrations, emissions inspections, repairs, import/export records and accidents.

At times we use information about the household. For a subsample of our smog check

data, we are able to match vehicles to households using confidential data from Department

of Motor Vehicle records that track the registered address of the vehicle. We use this infor-

mation to aggregate up the stock of vehicles registered to an address. Appendix C discusses
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how this is done. These data are from 2000 to 2008. Finally, we use gasoline prices from

EIA’s weekly California average price series to construct average prices between inspections.

Table 1 reports means and standard deviations of the main variables used in our analysis,

as well as these summary statistics split by both vehicle vintage and for 1998 and 2008. The

average fuel economy of vehicles in our sample is 23.5 MPG, with fuel economy falling over

our sample. The change in the average dollar per mile has been dramatic, more than doubling

over our sample. The dramatic decrease in vehicle emissions is also clear in the data, with

average per-mile emissions of HCs, CO, and NOx falling considerably from 1998 to 2008.

The tightening of standards has also meant that more vehicles fail the smog check late in

the sample, although some of this is driven by the aging vehicle fleet.

3.2 Automobiles, Criteria Pollutants, and Health

The tests report the emissions of three criteria pollutant: NOx, HCs, and CO. All three of

these result directly from the combustion process within either gasoline or diesel engines.

Both NOx and HCs are precursors to ground-level ozone, but, as with CO, have been shown

to have negative health effects on their own.4

While numerous studies have found links between exposure to either smog or these three

pollutants and health outcomes, the mechanisms are still uncertain. These pollutants, as

well as smog, may directly impact vital organs or indirectly cause trauma. For example,

CO can bind to hemoglobin, thereby decreasing the amount of oxygen in the bloodstream.

High levels of CO have also been linked to heart and respiratory problems. NOx reacts

with other compounds to create nitrate aerosols, which are fine-particle particulate matter

(PM). PM has been shown to irritate lung tissue, lower lung capacity, and hinder long-term

lung development. Extremely small PM can be absorbed through the lung tissue and cause

damage on the cellular level. On their own, HCs can interfere with oxygen intake and irritate

lungs. Ground-level ozone is a known lung irritant, has been associated with lowered lung

capacity, and can exacerbate existing heart problems and lung ailments such as asthma or

allergies.

4CO has also been shown to speed up the smog-formation process. For early work on this, see Westberg
et al. (1971).
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4 Preliminary Evidence

One of the main driving forces behind our empirical results is how vehicle elasticities, both

in terms of their intensive and extensive margins, vary systematically with the magnitude

of their externalities. In this section, we present evidence that significant variation exists in

terms of vehicle externalities within a year, across years, and even within the same vehicle

type (make, model, model year, etc.) within a year. Further, simple statistics, such as

the average miles traveled by vehicle type, suggest that elasticities may be correlated with

externalities.5

Figure 1 plots the distributions of NOx, HCs, and CO emissions in 1998, 2004, and 2010.

The distribution of criteria pollutant emissions tends to be right-skewed in any given year,

with a standard deviation equal to roughly one to three times the mean, depending on the

pollutant. This implies that some vehicles on the road are quite dirty relative to the mean

vehicle. Over time, the distribution has shifted to the left, as vehicles have gotten cleaner,

but the range remains.

This variation is not only driven by the fact that different types of vehicles are on the road

in a given year, but also variation within the same vehicle type, defined as a make, model,

model-year, engine, number of doors, and drivetrain combination. To see this, Figure 2 plots

the distributions of emissions for the most popular vehicle/year in our sample, the 2001

four-door Toyota Corolla in 2009. The vertical red line is at the mean of the distribution.

Here, again, we see that even within the same vehicle-type in the same year, the distribution

is wide and right-skewed. The distribution of HCs is less skewed, but the standard deviation

is 25 percent of the mean. CO is also less skewed and has a standard deviation that is

36 percent of the mean. Across all years and vehicles, the mean emission rate of a given

vehicle in a given year, on average, is roughly four times the standard deviation for all three

pollutants (Table A.1).

To understand how the distribution within a given vehicle changes over time, Figure 3

plots the distribution of the 1995 3.8L, front-wheel drive, Ford Windstar in 1999, 2001, 2004,

and 2007.6 These figures suggest that over time the distributions shift to the right, become

5We are not the first to document the large variation across vehicles in emissions. See, for example, Kahn
(1996). Instead, our contribution is in finding a link between elasticities and emissions.

6We chose this vehicle because the 1995 3.8L, front-wheel drive, Ford Windstar in 1999 is the second-most
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more symmetric, and the standard deviation grows considerably, relative to the mean. Across

all vehicles, the ratio of the mean emission rate of NOx and the standard deviation of NOx

has increased from 3.16 in 1998 to 4.53 in 2010. For HCs, this increased from 3.59 to 5.51;

and, for CO it increased from 3.95 to 5.72.

These distributions demonstrate significant variation in emissions across vehicles and

within vehicle type, and thus significant scope for meaningful emissions-correlated variation

in elasticities along those lines. We next present suggestive evidence that this is the case. To

do this, we categorize vehicles into four groups, based on the quartiles of a given pollutant

within a given year. Next we scale the median annual miles traveled in the groups relative to

their 1998 values, and plot how this has changed over our sample—a period where gasoline

prices increased from roughly $1.35 to $3.20. Figure 4 foreshadows our results on the intensive

margin. For each pollutant, the log change in bottom-quartile vehicles is larger than the first

quartile, with the other two quartiles often exhibiting monotonic changes in miles driven.7

For each pollutant, we see that the dirtiest quartile saw the largest decreases in miles driven

during the run up gasoline prices. The ordering of the relative decreases suggests that dirtier

vehicles were more responsive over this period.

5 Vehicle Miles Traveled Decisions

Our first set of empirical models estimates how changes in gasoline prices affect decisions

about vehicle miles traveled (VMT), and how this elasticity varies with vehicle characteris-

tics. Our empirical approach mirrors Figure 4. For each vehicle receiving a biennial smog

check, we calculate average daily miles driven and the average gasoline price during the

roughly two years between smog checks. We then allow the elasticity to vary based on the

emissions of the vehicle. We begin by estimating:

ln(VMTijgt) = β ln(DPMijgt) + γDtruck + ωtime+ µt + µj + µg + µv + εigt (8)

where i indexes vehicles, j vehicle-types, g geographic locations, t time, and v vehicle age,

or vintage. DPMijgt is the average DPM of the vehicle between smog checks, Dtruck is an

popular entry in our data and it is old enough that we can track it over four 2-year periods.
7The levels also differ. Appendix Figure A.1 plots the median of daily miles traveled across our sample

split up by the emissions quartile of the vehicle.
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indicator variable for whether the vehicle is a truck, and time is a time trend.8

Table 2 shows our basic results. We begin the analysis by including year, vintage, and zip

code fixed effects. We then progressively include finer vehicle-type fixed effects by including

make, then make/model/model-year/engine, and finally individual vehicle fixed effects. We

also differentiate the influence of gasoline prices by vehicle attributes related to the magnitude

of their negative externalities—criteria pollutants, CO2 emissions, and weight.

We do this in two ways. First, we split vehicles up by the quartile in which the vehicle

falls with respect to the within-year emissions of NOx, HCs, and CO, fuel economy (CO2),

and weight. Second, we include a linear interaction of the percentiles of these variables and

the log of gasoline prices. In Appendix B we investigate, in a semi-parametric way, the actual

functional form of this relationship and the robustness of our results to alternative sources

of variation in DPM.

Tables 2 shows our results, focusing on NOx. The changes from Models 1 to 5 illustrates

the importance of controlling for vehicle-type fixed effects. Initially, the average elasticity

falls from -0.265 to -0.117 when including fixed make effects, but then rises when including

finer detailed vehicle fixed effects. Our final specification includes individual vehicle fixed

effects yielding an average elasticity of -0.147.9 In Models 6 and 7 we examine heterogeneity

with vehicle fixed effects. Model 6 includes interactions with quartiles of NOx, as in Model

3. The DPM-elasticity for the cleanest vehicles, quartile one, is positive at 0.041, while the

DPM-elasticity for the dirtiest vehicles is twice the average elacticity at -0.288. To put these

numbers in context, the average per-mile NOx emissions of a quartile one vehicle is 0.163

grams, while the average per-mile NOx emissions of a quartile four vehicle is 1.68 grams.

Model 7 assumes the relationship is linear in centiles of NOx and finds that each percentile

increase in the per-mile NOx emission rate is associated with a change in the elasticity

of .001, from a base of essentially zero. This heterogeneity is also robust to allowing our

other covariates to vary with NOx quartiles, leveraging cross-sectional instead of time-series

variation, allowing a semi-parametric functional form for the heterogeneity and to employing

a log-linear specification with the level of dollars miles as the variable of interest. The details

8Our DPM variable uses the standard assumption that 45 percent of a vehicle’s miles driven are in the
city and 55 percent are on the highway. This is the standard approach used by the EPA for combined fuel
economy ratings.

9This is larger than that found in Hughes et al. (2008) reflecting the longer run nature of our elasticity.
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of these robustness checks are reported in Appendix B.

We find similar patterns across the other externalities. There is slightly more hetero-

geneity over HCs and CO emissions than over NOx, with the dirtiest quartiles around -0.30

and the cleanest around 0.05. For CO2 the cleanest vehicles are those with the highest fuel

economy, and here we see the least fuel-efficient vehicles having an elasticity of -0.183, com-

pared to -0.108. We observe some heterogeneity over weight as well, although it is smaller

than the other externalities. For the full set of results, see Appendix Table A.2.

5.1 The Source of the Heterogeneity

While the optimal uniform Pigouvian tax is not affected by the mechanism behind the

heterogeneity, it is of independent interest to investigate the mechanism. We investigate

three sources, which are not necessarily mutually exclusive. First, it may be driven entirely

by a vintage effect. That is, older vehicles are both more responsive to changes in gasoline

prices and have higher emissions. Second, it might be driven by differences in the incomes of

consumers that drive dirtier versus cleaner vehicles.10 Third, it may result from households

shifting which of their vehicles are driven in the face of rising gasoline prices.

To investigate whether it is simply a vintage effect, we redefine the quartiles based on

the distribution of emissions within vintage and calendar year bins. We split vehicles into

three age categories: 4 to 9 years old, 10 to 15 years old, and 16 to 27 years old.

Table 3 reports the results for heterogeneity over NOx emissions.11 These results suggest

that while vintage is a factor in the externality-based heterogeneity, it is not the only source

or even the most important source. While middle-aged and older vehicles are more elastic

than new vehicles on average, within age bin there is still substantial heterogeneity. For

new vehicles, the difference between the dirtiest and cleanest quartiles is two thirds of the

range for the whole sample. Middle-aged vehicles have three quarters as much range, and

the oldest vehicles, 16 years and older, have a range nearly as large as for the whole sample.

We are able to group a subsample of our smog check vehicles into households. This

grouping comes from access to California Department of Motor Vehicles (DMV) confidential

10West (2005) also documents a positive correlation between income and emissions. She does not separately
estimate elasticities, however.

11Results for the other four externality types are quite similar.
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data. A number of steps are undertaken to “clean” the address entries in the DMV records.

These are discussed in Appendix C. Ultimately, however, the subsample of vehicles that we

are able to match likely draw more heavily from households residing in single-family homes.

Given this selection and the fact that the sample period differs from our base specification,

it is not surprising that we find average elasticities that differ from those presented above.

Table 4 presents the results from this subsample. For this sample, we construct two

additional variables meant to capture the household stock of vehicles. The variable “Higher

MPG in HH” equals one if there is another vehicle in the household that has a higher MPG

rating than the vehicle in question. Likewise, the variable “lower MPG in HH” equals one

if there is another vehicle in the household that has a lower MPG rating than the vehicle in

question.

If households shift usage from low-MPG vehicles to high-MPG vehicles, we would expect

“Higher MPG in HH” to be negative and “Lower MPG in HH” to be positive. Column 2 of

Table 4 adds these variables to our base specification. The point estimates suggest that a

vehicle in the highest fuel economy quartile belonging to a household that also has a lower

fuel economy vehicle has an elasticity greater than a third lower. We cannot reject the null

hypothesis that the sum of the interactions with quartile four and “Higher MPG in HH” is

zero.12

For this same sample of vehicles, we also use U.S. Census information based on zip-code

of residence to categorize owners into income quartiles. We interact these quartiles with

the log of DPM to see if differences in elasticities exist. Column 3 of Table 4 adds these

interaction terms. There is some evidence that higher-income consumers are less elastic, as

the emissions quartile effects persist; vehicles in the bottom quartile remain nearly three

times more sensitive even after accounting for income differences.

Our smog check data report the zip code of the testing station the vehicle visited. For our

more general sample, we also use this information to construct measures of income. Table

5 compares these results with the DMV data. We find similar differences in the elasticities,

despite the smaller average elasticity.

12The sum of the two vehicle-stock variables is positive, but because lower fuel efficient vehicles are driven
more earlier in the sample, the elasticities are not comparable in terms of what they imply for total miles
driven.
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6 Efficiency of Uniform Pigouvian Taxes

In this section, we consider the efficiency of using a uniform Pigouvian tax to abate the

externalities caused by driving, specifically those resulting from emissions of NOx, HCs, and

CO. We begin by calculating both the naive and optimal second-best Pigouvian tax, and

then compare the remaining DWL left over from these second-best taxes to the optimal

outcome obtained by a vehicle-specific tax.

6.1 Optimal Uniform Pigouvian Tax

We calculate the naive Pigouvian tax per gallon of gasoline as the simple average of the

externality per gallon caused by all vehicles on the road in California in a particular year.

We value the externalities imposed by NOx and HCs using the marginal damages calculated

by Muller and Mendelsohn (2009), based on the county in which each vehicle has its smog

check.13 For CO, we use the median marginal damage estimate from Matthews and Lave

(2000). Let the marginal damage per gram of pollutant p in county c be θpc , with emissions

rates in grams per mile by vehicle i of εpi . Then the externality per mile of vehicle i, Ei is:

Ei = θhc · εhi c+ θHCc · εHi C + θNOx · εNi Oxc + θCO · εCi Oc. (9)

The naive tax in year y will then be simply:

τnaive =
1

Ny

Ny∑
i=1

Ei
MPGi

. (10)

Following Proposition 1, we calculate the second-best optimal Pigouvian tax, taking into

account the heterogeneity in both levels of the externality and the responsiveness to gasoline

prices. We estimate a regression similar to Equation (8), but allowing the elasticity of VMT

with respect to DPM to vary over all our dimensions of heterogeneity. For more details, see

Appendix E. Let the group-specific elasticity for vehicle i be εqi , where q indexes cells by HC

emissions, NOx emissions, CO emissions, MPG, weight, and age, with the externalities again

13Note that the values used in this paper differ from those used in the published version of Muller and
Mendelsohn (2009). The published values were calculated using incorrect baseline mortality numbers that
were too low for older age groups. Using corrected mortality data increases the marginal damages substan-
tially. We are grateful to Nicholas Muller for providing updated values, and to Joel Wiles for bringing this
to our attention.
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in quartiles by year. Further, let the average price per gallon and the quantity of gasoline

consumed per year in gallons in year y be P y
i and Qy

i , respectively. Then the optimal tax in

year y based on the marginal externality will be

τ ymarginal = τ ∗ =
−
∑

h

∑
i6=h

∂Uh

∂αi
α′i∑

h α
′
h

, (11)

with

α′i = −εqi ·
Qy
i

P y
i

.14 (12)

Table 6 shows the taxes based on the average and marginal externalities for each year from

1998 to 2008. The average externality is 61.2 cents per gallon of gasoline consumed in 1998,

while the marginal externality is 86 cents, 39 percent higher. The ratio of the average and

marginal tax increases even as the level of the externalities declines over time. From 2002

on, the marginal tax is at least 50 percent larger than the naive tax in each year.

We also account for vehicle owners’ decisions to scrap their vehicles are affected by

gasoline prices. Appendix G discusses the details and results of this exercise. To summarize,

we allow gasoline price to affect scrappage decisions, and allow this to vary over emissions

profiles and vintages. We find that the main source of heterogeneity occurs across vintages;

specifically, increases in gasoline prices increase the hazard rate of very old vehicles, but

decrease the hazard rate of middle-aged vehicles. Because emissions of criteria pollutants

are positively correlated with age, this has the effect of decreasing criteria pollutants.

6.2 Welfare with Uniform Taxes

We have shown that because of the correlation between elasticities and externality rates, the

optimal uniform Pigouvian tax is much higher than the naive tax calculated as the average of

per-gallon externalities. We now turn to the question of how much the optimal tax improves

welfare beyond what is achieved by the naive tax. We note again that even the optimal

uniform tax is still a second-best policy. Because of the heterogeneity in externality levels,

the most polluting vehicles will be taxed by less than their external costs to society, leaving

remaining dead weight loss. Vehicles that are cleaner than the weighted average will be taxed

14We also weight vehicles based on the number of vehicles of that age and class that appear in the fleet as
a whole; see Appendix E.
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too much, overshooting the optimal quantity of consumption and creating more DWL.

In each of the following analyses, we compare the remaining DWL resulting from the

local pollution externality with both the naive and marginal tax to the DWL without any

additional tax.

6.2.1 Simulation Results

We begin by approximating the ratios of DWL with and without tax using our data to

simulate the change in miles driven and thus in gasoline consumption from a tax. Let

milesyi be the actual average miles per day traveled by vehicle i between its last smog check

and the current one, observed in year y, and let ˆmiles
y

i (τ) be the miles per day that a vehicle

would travel if the average price of gasoline were raised by a tax of τ that is fully passed

through to consumers. We approximate DWL as a triangle, such that the ratio of interest

is:

r(τ) =

∑
i

1
2
·
∣∣∣milesyi− ˆmiles

y
i (τ)

MPGi

∣∣∣ · ∣∣∣ Ei
MPGi

− τ
∣∣∣∑

i
1
2
·
∣∣∣∣milesyi− ˆmiles

y
i (

Ei
MPGi

)

MPGi

∣∣∣∣ · Ei
MPGi

The fully optimal tax would have a ratio of 0, while a tax that actually increased the

DWL from gasoline consumption would be greater than 1. Table 7 shows these ratios for

various taxes. The first two columns show ratios for a statewide tax based on the average

and marginal externalities, respectively, of all vehicles in California in each year. Deadweight

loss from the uniform naive tax averages 72.8 percent of DWL with no additional tax over

the sample period, and rises over time as the fleet becomes cleaner. The uniform marginal

tax is little better, averaging 69.8 percent of DWL with no tax during our sample period.

How can policy makers improve upon these results? The remaining columns of Table

7 allows the tax to vary so that it is uniform by groups, but not uniform over the entire

state. The marginal damages from Muller and Mendelsohn (2009) vary substantially at the

county level,15 due to both baseline emissions levels and the extent to which population is

exposed to harmful emissions. As such, a county-specific tax on emissions might be expected

to target externality levels more precisely. The third and fourth columns of Table 7 shows

15We discuss this further in Appendix F.
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the DWL ratios for an average and marginal tax computed this way, and it turns out there

is relatively little improvement. The average ratios over our sample are 0.684 for the naive

tax and 0.653 for the optimal uniform tax tax. Since emissions rates are highly correlated

with vintage, another approach would be to tax the average or marginal externality rate by

age.16 The fifth and sixth columns of the table show this, and here we see a substantial

improvement: 0.342 for the naive tax and 0.34 for a marginal tax. Combining these and

having the tax vary by both vintage and location, shown in the last two columns, reduces

the ratios to 0.276 and 0.274, respectively.

This analysis shows two striking results. First, a uniform Pigouvian tax does a terrible

job of addressing the market failure from pollution externalities. The dirtiest vehicles are not

taxed enough, and many clean vehicles are over-taxed. This is true even when the uniform

tax is calculated taking heterogeneity into account. The roughly 50 percent increase in the

tax level from a marginal tax correctly abates more emissions from the dirtiest vehicles,

but also over-taxes the cleanest vehicles by a larger amount. This is still an improvement

over the naive tax, but not by much. The number of vehicles for which the uniform tax

overshoots is remarkable. Table 8 shows the proportion of vehicle-years over the 11 years

of our sample for which each tax overshoots. Because the distribution of emissions is so

strongly right skewed, the naive uniform tax overshoots for more than 72 percent of vehicles,

and the optimal uniform tax for even more. Second, there is enough heterogeneity in the

distribution of the per-gallon externality that even a tax targeting broad groups leaves a

substantial portion of DWL. Overshooting is again an issue—when the tax is allowed to

vary by county and vintage, only the average tax by county and vintage overshoots for less

than 70 percent of vehicles.

The variance and skewness in the distribution of externality per gallon causes a uniform

tax to be less efficient than might otherwise be expected. Figure 5 shows this clearly, plotting

the kernel density of the externality per gallon in 1998 and 2008, with vertical lines indicating

the naive tax and the optimal tax, respectively. The long right tail of the distribution requires

that either tax greatly exceed the median externality.

We next examine how the optimal uniform tax would compare to the optimal vehicle

16Such a system could be built within the Smog Check Program, with vehicle taxes based on mileage since
the previous test.
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specific tax if the distribution became less skewed. That is, how would a uniform tax perform

if the right tail of the distribution—the oldest, dirtiest vehicles—were removed from the

road? This could be achieved directly from a Cash for Clunkers-style program, or indirectly

through tightening emissions standards in the Smog Check Program. Sandler (2012) shows

that vehicle retirement programs are not cost-effective in reducing criteria emissions, and

possibly grossly over pay for emissions; however the overall welfare consequences of this sort

of scheme may be more favorable if they improve the efficiency of a uniform gasoline tax.

Table 9 shows the ratios of DWL with the optimal Pigouvian tax to DWL with no tax, with

increasing proportions of the top of the externality distribution removed. Removing the top

1 percent increases the DWL reduction from 30 percent to 38 percent of the total with no

tax. Scrapping more of the top end of the distribution improves the outcome further. If the

most polluting 25 percent of vehicles were removed from the road and the optimal Pigouvian

tax was imposed based on the weighted externality of the remaining 75 percent, this would

remove 58.3 percent of remaining DWL. Of course, the practical complications of scrapping

this large a proportion of the vehicle fleet might make this cost-prohibitive.

6.2.2 Analytical Results

We can also calculate the ratio of remaining DWL to original DWL by calibrating Equations

(6) and (7) and with the moments in our data. The average value in our sample for the

lognormal shape parameters σ2
E and σ2

B are 1.47 and 1.51, respectively. The average value of

ρ, the correlation coefficient for the logs of externality and inverse elasticity, is 0.28.17 These

parameter values produce remaining DWL estimates in line with the simulation results in

Table 7. With σ2
E around 1.47, the optimal uniform tax can only decrease DWL by 23

percent.

6.3 Treatment of Other Externalities

In the previous section we assumed that the difference between the socially optimal con-

sumption of gasoline and actual consumption was entirely driven by externalities from local

pollution. In practice, there are several other externalities from automobiles, as well as

17This is the average of parameters calculated separately for each year from 1998 to 2008. The parameters
do not vary much over time. For the year-by-year parameter estimates, see Table A.7 in the online appendix.
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existing federal and state taxes on gasoline. Examples of additional externalities include

congestion, accidents, infrastructure depreciation, and other forms of pollution. The com-

bined state and federal gasoline tax in California was $0.47 during our sample period.

Many of these other externalities are similar to criteria pollution emissions in the sense

that they also vary across vehicles. Congestion and accident externalities depend on when

and where vehicles are driven. Accident and infrastructure depreciation depend to some

degree on vehicle weight.18 We lack vehicle-specific measures of these other externalities to

measure how they impact our calculations of the amount of remaining DWL after imposing a

uniform Pigouvian tax. Insofar as additional variation exists we are understating the level of

remaining DWL, although not necessarily the share of remaining DWL. One way to interpret

our results is that by ignoring the existing taxes we are assuming that existing taxes exactly

equal the uniform Pigouvian tax associated with these other externalities, and that we are

also ignoring the remaining DWL due to the fact that these externalities are not uniform

across vehicles.

One externality that does not vary across vehicles is the social cost of CO2 emissions due

to their contribution to climate change. Because CO2 emissions are, to a first-order approxi-

mation, directly proportional to gasoline consumption, in this case a per-gallon gasoline tax

is the optimal policy instrument. The larger the climate change externality, the greater the

share of DWL eliminated from the uniform Pigouvian tax will be. To get a sense of how cli-

mate change externalities affect our calculations, we repeat the analysis for a range of social

costs of carbon (SCC). The “correct” social cost of carbon depends on a number of factors,

such as assumptions about the mappings between temperature and GDP, between GDP and

CO2 emissions, and between CO2 emissions and temperatures, as well as assumptions on the

discount rate and the relevant set of economic agents. Greenstone et al. (2011) estimate the

SCC for a variety of assumptions about the discount rate, relationship between emissions

and temperatures, and models of economic activity. For each of their sets of assumptions,

they compute the global SCC; focusing only on the US impacts would reduce the number

considerably. For 2010, using a 3 percent discount rate, they find an average SCC of $21.40

per ton of CO2 or roughly 19.5 cents per gallon of gasoline, with a 95th percentile of $64.90

18For estimates on the degree of this heterogeneity, see Anderson and Auffhammer (2011) and Jacobsen
(Forthcoming).
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(59 cents per gallon).19 Using a 2.5 percent discount rate, the average SCC is $35.10 (38.6

cents per gallon).

We calculate the remaining DWL, varying the SCC from zero cents per gallon to $1.00

per gallon ($91 per to of CO2). While our discussion focuses on the externalities associated

with CO2, we stress that these calculations are relevant for any externalities for which a

per-gallon tax is the first-best instrument. They also represent the lower bound on the

remaining DWL when we consider any other externality for which a per-gallon tax is a

second-best instrument. For example, if one considers externalities associated with accidents

or congestion to be $0.30 per gallon on average, then insofar that a per-gallon tax is not

optimal, more DWL will remain than what we report.

Figure 6 summarizes the results across all years in our sample. The points associated

with an extra per-gallon externality of zero correspond to Table 7.20 Not until the extra

per-gallon externality exceeds $0.20 per gallon does a uniform gasoline tax eliminate the

majority of DWL associated with both the criteria pollutants and per-gallon externality.

Even if the per-gallon externality is $1.00, nearly 20 percent of combined DWL remains

under both the optimal naive and marginal taxes.

7 Benefits from Gasoline or Carbon Taxes

We have shown that the positive correlation between emissions and sensitivity to gasoline

prices increases the optimal gasoline tax. At the same time, the large variation in automobile

emissions implies that a uniform gasoline tax does a poor job eliminating the DWL associ-

ated with both local and global pollution. The positive correlation between emissions and

sensitivity to gasoline prices has a second effect: because a given gasoline tax (or carbon tax)

affects dirty vehicles more, the positive correlation increases the amount of local-pollution

benefits arising from a given gasoline or carbon tax. This, in turn, reduces the net social

cost of such a policy, and to our knowledge, has been ignored in the discussion surrounding

the desirability of carbon tax or cap-and-trade policy.

We calculate the cost of a relatively high tax on CO2 net of local-pollution benefits.

19These calculations assume that the lifecycle emissions of gasoline are 22 pounds per gallon.
20Note that the figure plots the weighted averages across the years, while the last row in Table 7 is a simple

average of the annual weighted averages.
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Specifically, we use our data to simulate the change in emissions resulting from a $91 tax

on CO2, which translates to a $1 increase in the gasoline tax.21 This is much higher than

permit prices in Europe’s cap-and-trade program, which peaked at $40 per ton of CO2-

equivalent in 2008 and have plummeted since. It is also higher than permit prices expected

in California’s cap-and-trade program which are estimated to reach of roughly $30 per ton

of CO2-equivalent. The Waxman-Markey Bill of 2009 expected a similar permit price.

We account for the intensive margin of driving, including all the dimensions of hetero-

geneity we have documented in Section 5. For completeness, we also include heterogeneity

in the extensive margin of scrappage, using results that we document in Appendix G. The

extensive margin has little impact on our results. For this simulation, we assume that the

tax was imposed in 1998, and use our empirical models to estimate the level of gasoline

consumption and emissions from 1998 until 2008, if gasoline prices had been $1 greater.

Appendix E provides details of the steps we take for the simulation.

Tables 11 and 12 show the results of our simulation for each year from 1998-2008, and

the yearly average over the period.22 The first two columns shows the total reduction in

annual gasoline consumption and CO2 emissions, in millions of gallons and millions of tons,

respectively. The next two columns value the DWL from the reduction in gasoline consump-

tion.23 The next section of the table presents the social benefit resulting from the reduction

in NOx, HC, and CO due to the tax. Social benefits are valued using the marginal damages

of NOx and HC calculated by Muller and Mendelsohn (2009) and the median CO value from

Matthews and Lave (2000). Finally, the last column of the table shows the net cost per ton

of carbon dioxide abated, accounting for the reductions in criteria pollution.

Table 11 shows the results of a simulation that does not account for heterogeneity across

emissions profiles. The reduction in gasoline consumption declines over time, from around

470 million gallons in 1998 to around 219 in 2008. The reduction in criteria pollutants

declines quickly as the fleet becomes cleaner. Nonetheless, the local-pollution benefits of a

gasoline tax are substantial, averaging 42 percent of the DWL over the ten-year period.

21We assume all of the tax is passed through to consumers. Our implicit assumption is that the supply
elasticity is infinite. This is likely a fair assumption in the long-run and for policies that reduce gasoline
consumption in the near-term.

22Additionally, Table A.9 shows results excluding effects on the extensive margin. These results are very
similar to Table 12.

23We approximate DWL as ∆P ·∆Q
2 and adjust for inflation.
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Table 12 adds heterogeneity in the intensive and extensive margins. The total change in

gasoline consumption is smaller, declining from 272 million gallons in 1998 to 110 million

gallons in 2008. This results from more fuel-efficient vehicles having a higher average VMT.

However, reductions in criteria pollutants are much larger. In 1998 the local-pollution bene-

fits are over 126 percent of the DWL, and the net cost of abating a ton of carbon is negative

until 2002. On average, we estimate that benefits of a decrease in local air pollution from a

gasoline tax would be about 85 percent of the change in surplus between 1998 and 2008.

Consistent with the way smog is formed, the majority of benefits come from reductions

in HCs, because most counties in California are “NOx-constrained.” In simplest terms,

this means that local changes in NOx emissions do not reduce smog, but changes in HCs

do. In addition to the smog benefits from reducing HCs and NOx, we also find significant

local-pollution benefits arising from CO reductions.

We argue that these results should be viewed as strict lower bounds of the local-pollution

benefits for a variety of reasons. First, we have valued the benefits from NOx and HCs using

the most conservative marginal damages from Muller and Mendelsohn (2009). Muller and

Mendelsohn’s estimates depend heavily on the value placed upon mortality. Their baseline,

used here in Tables 11 and 12, assumes the value of a statistical life (VSL) to be $2 million,

weighted by remaining years of life, and they acknowledge this may not be the correct value.

For instance, the U.S. EPA assumes a VSL of $6 million. Muller and Mendelsohn also

calculate a scenario, with a VSL of $6 million, constant over ages, that yields much higher

marginal damages. If we use the marginal damages from this scenario, we find that with

heterogeneity, the benefits average more than three times the DWL over the period, and

remain twice as large in 2008.24

There are other reasons why our estimates should be considered a lower bound. First, we

have ignored all other negative externalities associated with vehicles; many of these, such as

particulate matter, accidents, and congestion externalities, will be strongly correlated with

either VMT or the emissions of NOx, HCs, and CO. Second, because of the rules of the Smog

Check Program, many vehicles are not required to be tested, leading to their omission in this

analysis. Third, a variety of behaviors associated with smog check programs would lead the

24Full results using Muller and Mendelsohn’s “USEPA” values may be found in the online appendix in
tables A.10 and A.11.
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on-road emissions of vehicles to likely exceed the tested levels. These include, but are not

limited to, fraud, tampering with emission-control technologies between tests, and failure to

repair emission-control technologies until a test is required. Appendix F also suggests that

these results may also represent a lower bound across other states.

When we account for the heterogeneity in responses to changes in gasoline prices, we see

that local-pollution benefits would substantially ameliorate the costs of an increased gasoline

tax. These benefits would have been especially substantial in the late 1990s, but persist in

more recent years as well, even though the fleet has become cleaner. To put these numbers

into context, recall that Greenstone et al. (2011) estimate a SCC for 2010, using a 3 percent

discount rate, of $21.40, with a 95th percentile of $64.90. Using a 2.5 percent discount rate,

the average SCC is $35.10. Our results suggest that once the local-pollution benefits are

accounted for, a $1.00 gasoline tax (i.e., a tax of $91 per ton of CO2) would be nearly cost-

effective, even at the lower of these three numbers and well below the average social cost of

capital using a 2.5 percent interest rate.25

8 Conclusions

In this paper we show three general empirical results. First, the sensitivity to a given vehicle’s

miles traveled to gasoline prices is correlated with the vehicle’s emissions. Dirtier vehicles

are more price responsive. This increases the size of the optimal uniform gasoline tax by as

much as 50 percent.

Second, gasoline taxes are an inefficient policy tool to reduce vehicle emissions. Gasoline

taxes are often promoted as a means of reducing vehicle emissions. The optimal policy

would differentially tax vehicles based on their emissions, not gasoline consumption. While

gasoline consumption and emissions are positively correlated, we show that gasoline taxes

are a poor substitute for vehicle-specific Pigouvian taxes. The remaining DWL under the

optimal gasoline tax exceeds 75 percent in the second half of our sample, and surpasses 70

percent across all years.

Finally, the correlation we document leads to a positive result. We show that this cor-

relation significantly increases the health benefits associated with gasoline taxes. This final

25Of course, a tax somewhere below this would likely maximize welfare.

23



result increases the attractiveness of carbon taxes as a means of reducing greenhouse gas

emissions, especially considering that existing policies used to reduce greenhouse gasoline

emissions from transportation—CAFE standards, ethanol subsidies, and the RFS—fail to

take advantage of these local-pollution benefits. In fact, they can even increase criteria pol-

lutant emissions, because they reduce the marginal cost of an extra mile traveled. Given

that previous work analyzing the relative efficiency of these policies to gasoline or carbon

taxes has ignored the heterogeneity that we document, such policies are less efficient than

previously thought.
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Figure 1: Distribution of three criteria pollutant emissions across all vehicles in 1998,
2004, and 2010 (observations above the 90th percentile are omitted)
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Figure 2: Distribution of three criteria pollutant emissions of a 2001 4-door, 1.8L, Toyota
Corolla in 2009 (observations above the 90th percentile are omitted)
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Figure 3: Distribution of three criteria pollutant emissions of a 1995 3.8L, FWD, Ford
Windstar in 1999, 2001, 2005, and 2009 (observations above the 90th percentile are

omitted)
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Tables

Table 1: Summary Statistics

Vehicle Age Year

All 4-9 10-15 16-28 1998 2008

Weighted Fuel Economy 23.49 23.29 23.67 23.67 24.09 23.04
(5.300) (5.224) (5.319) (5.477) (5.402) (5.157)

Average $/mile 0.0893 0.0843 0.0902 0.103 0.0581 0.128
(0.0394) (0.0369) (0.0400) (0.0420) (0.0133) (0.0306)

Odometer (00000s) 1.188 0.923 1.362 1.607 1.022 1.292
(0.594) (0.448) (0.564) (0.684) (0.521) (0.606)

Grams/mile HC 0.749 0.226 0.762 2.049 1.412 0.510
(1.180) (0.281) (1.064) (1.712) (1.524) (0.973)

Grams/mile CO 5.269 0.521 4.915 18.47 12.27 3.136
(12.84) (1.664) (11.07) (21.25) (18.95) (10.26)

Grams/mile NOx 0.664 0.328 0.751 1.321 1.060 0.498
(0.638) (0.309) (0.608) (0.740) (0.921) (0.537)

Failed Smog Check 0.0947 0.0455 0.117 0.202 0.0557 0.107
(0.293) (0.208) (0.321) (0.401) (0.229) (0.309)

Average HH Income 48277.8 49998.8 47279.1 45188.5 50228.4 48044.1
(17108.2) (17702.9) (16633.2) (15628.0) (18067.0) (16887.5)

Truck 0.386 0.403 0.367 0.375 0.331 0.426
(0.487) (0.491) (0.482) (0.484) (0.471) (0.494)

Vehicle Age 10.39 6.644 12.08 18.45 8.975 11.49
(4.477) (1.615) (1.682) (2.424) (3.448) (4.741)

N 7015260 3333774 2699413 981234 386753 541246

Note: Statistics are means with standard deviations presented below in parentheses. Weighted fuel economy is from

EPA. Dollars per mile is the average gasoline price from EIA in between smog checks divided by fuel economy.

Average household income is taken from the 2000 Census ZCTA where the smog check occurred. Dataset

contains one observation per vehicle per year in which a smog check occurred.
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Table 2: Vehicle Miles Traveled, Dollars Per Mile, and Nitrogen Oxides (Quartiles by year)

(1) (2) (3) (4) (5) (6) (7)
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

ln(DPM) -0.265** -0.117** -0.177** -0.147** -0.044
(0.045) (0.038) (0.027) (0.025) (0.032)

ln(DPM) * NO Q1 -0.037** 0.041+
(0.011) (0.023)

ln(DPM) * NO Q2 -0.086** -0.062*
(0.011) (0.026)

ln(DPM) * NO Q3 -0.133** -0.158**
(0.011) (0.027)

ln(DPM) * NO Q4 -0.189** -0.288**
(0.012) (0.030)

ln(DPM)*NO Centile -0.001**
(0.000)

NO Q2 -0.083** 0.378
(0.012) (0.800)

NO Q3 -0.144** -1.246
(0.016) (1.012)

NO Q4 -0.166** -2.297*
(0.020) (1.116)

NO Centile -0.001
(0.001)

Truck 0.058+ 0.062 0.049** 0.006
(0.035) (0.046) (0.009) (0.057)

Time Trend -0.281** -0.355** -0.388** -0.318** -0.019 -0.027 -0.046
(0.040) (0.029) (0.026) (0.023) (0.041) (0.070) (0.053)

Time Trend-Squared 0.002** 0.003** 0.003** 0.002** 0.000 -0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Vintage Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes Yes
Make Fixed Effects No Yes Yes No No No No
Vin Prefix Fixed Effects No No No Yes No No No
Vehicle Fixed Effects No No No No Yes Yes Yes

Observations 3640433 3640433 2979289 3640433 3640433 2979289 2979289
R-squared 0.216 0.224 0.234 0.149 0.120 0.116 0.117
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Table 3: Vehicle Miles Traveled, Dollars Per Mile, and Nitrogen Oxides (Quartiles by age
range)

(1) (2) (3) (4) (5) (6)
4-9 10-15 16-27 4-9 10-15 16-27

ln(DPM) -0.013 -0.126** -0.119+
(0.020) (0.027) (0.064)

ln(DPM) * NO Q1 0.119** -0.002 0.035
(0.036) (0.029) (0.073)

ln(DPM) * NO Q2 0.026 -0.076** 0.002
(0.018) (0.021) (0.066)

ln(DPM) * NO Q3 -0.029 -0.153** -0.151*
(0.019) (0.034) (0.073)

ln(DPM) * NO Q4 -0.099** -0.249** -0.248**
(0.025) (0.031) (0.065)

NO Q2 -0.113 -1.351* -2.616
(0.694) (0.647) (2.241)

NO Q3 -0.516 -2.797** -7.279**
(0.959) (0.897) (1.949)

NO Q4 -3.574** -4.890** -7.861**
(1.230) (0.817) (1.842)

Time Trend 0.362** 0.208** 0.016 0.463** 0.108 -0.186
(0.049) (0.062) (0.146) (0.094) (0.081) (0.181)

Time Trend-Squared -0.003** -0.002* -0.001 -0.004** -0.001 0.001
(0.001) (0.001) (0.002) (0.001) (0.001) (0.002)

Year Fixed Effects Yes Yes Yes Yes Yes Yes
Vintage Fixed Effects Yes Yes Yes Yes Yes Yes
Demographics Yes Yes Yes Yes Yes Yes
Vin Prefix Fixed Effects No No No No No No
Vehicle Fixed Effects Yes Yes Yes Yes Yes Yes

Observations 1548634 1535833 555966 1215676 1269332 494281
R-squared 0.124 0.096 0.091 0.121 0.097 0.091
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Table 4: VMT Elasticity for a Sample of Households, 2000-2008

(1) (2) (3)

ln(DPM) * MPG Q1 -0.0881∗∗∗ -0.0902∗∗∗ -0.0970∗∗∗

(0.0145) (0.0145) (0.0149)
ln(DPM) * MPG Q2 -0.0882∗∗∗ -0.0910∗∗∗ -0.0976∗∗∗

(0.0145) (0.0145) (0.0148)
ln(DPM) * MPG Q3 -0.0324∗ -0.0385∗∗ -0.0448∗∗

(0.0145) (0.0145) (0.0148)
ln(DPM) * MPG Q4 -0.0263 -0.0339∗ -0.0401∗∗

(0.0148) (0.0148) (0.0152)
ln(DPM) * Higher MPG in HH -0.0290∗∗∗ -0.0296∗∗∗

(0.00402) (0.00402)
ln(DPM) * Lower MPG in HH 0.0628∗∗∗ 0.0626∗∗∗

(0.00418) (0.00417)
Higher MPG in HH -0.0739∗∗∗ -0.0753∗∗∗

(0.00932) (0.00932)
Lower MPG in HH 0.150∗∗∗ 0.149∗∗∗

(0.0106) (0.0106)
ln(DPM) * HH Income Q2 -0.00514

(0.00455)
ln(DPM) * HH Income Q3 0.00763

(0.00473)
ln(DPM) * HH Income Q4 0.0224∗∗∗

(0.00520)

Year Fixed Effects Yes Yes Yes
Vintage Fixed Effects Yes Yes Yes
Demographics Yes Yes Yes
Vehicle Fixed Effects Yes Yes Yes

Observations 7549359 7549359 7549359
R-squared 0.113 0.113 0.113

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 5: VMT Elasticity by Income Quartile, 2000-2008

40% Sample of HHs HHs, with HH FE 10% Sample of VINs

ln(DPM) * HH Income Q1 -0.0659∗∗∗ -0.0560∗∗∗ -0.0524∗

(0.0146) (0.00560) (0.0242)
ln(DPM) * HH Income Q2 -0.0706∗∗∗ -0.0591∗∗∗ -0.0559∗

(0.0145) (0.00555) (0.0241)
ln(DPM) * HH Income Q3 -0.0588∗∗∗ -0.0451∗∗∗ -0.0679∗∗

(0.0144) (0.00552) (0.0239)
ln(DPM) * HH Income Q4 -0.0461∗∗ -0.0316∗∗∗ -0.0527∗

(0.0146) (0.00553) (0.0242)

Year Fixed Effects Yes Yes Yes
Vintage Fixed Effects Yes Yes Yes
Demographics Yes Yes Yes
Vehicle Fixed Effects Yes No Yes

Observations 7549359 7549359 2489373
R-squared 0.112 0.165 0.107

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 6: Average and Marginal Pollution Externality

Average Externality (¢/gal) Marginal Externality (¢/gal)

1998 61.20 86.00
1999 54.28 76.58
2000 48.52 70.90
2001 41.12 61.51
2002 33.92 51.10
2003 28.68 43.93
2004 24.23 36.54
2005 21.17 31.59
2006 18.64 27.46
2007 16.19 23.87
2008 14.38 21.12

Dollar figures inflation adjusted to year 2008.
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Table 7: Ratios of DWL with Tax to DWL With No Tax

Statewide Tax County-Level Taxes Vintage Tax County/Vintage Tax

Average Marginal Average Marginal Average Marginal Average Marginal

1998 0.616 0.564 0.570 0.516 0.351 0.346 0.299 0.293
1999 0.631 0.568 0.587 0.519 0.329 0.324 0.266 0.262
2000 0.638 0.582 0.590 0.530 0.328 0.326 0.261 0.258
2001 0.698 0.633 0.657 0.587 0.365 0.362 0.297 0.295
2002 0.700 0.671 0.652 0.621 0.349 0.346 0.284 0.282
2003 0.719 0.698 0.665 0.643 0.321 0.319 0.251 0.250
2004 0.763 0.752 0.719 0.707 0.359 0.358 0.293 0.292
2005 0.769 0.762 0.726 0.717 0.329 0.328 0.260 0.259
2006 0.819 0.811 0.782 0.774 0.397 0.397 0.335 0.334
2007 0.814 0.810 0.776 0.772 0.313 0.312 0.243 0.243
2008 0.837 0.831 0.801 0.794 0.320 0.320 0.249 0.247

Average 0.728 0.698 0.684 0.653 0.342 0.340 0.276 0.274

Notes: DWL with no tax calculated based on the difference in emissions from imposing a tax equal to the actual
externality per gallon consumed by a particular car. Marginal tax computed as the weighted average of externality
per gallon, using the negative slope of the vehicle’s demand curve as the weight.

Table 8: Proportion of Vehicles for which a Uniform Tax Overshoots the Optimal Tax

Mean

Fleet Average 0.724
Fleet Marginal 0.794
County Average 0.714
County Marginal 0.784
Vintage Average 0.706
Vintage Marginal 0.726
County/Vintage Average 0.671
County/Vintage Marginal 0.706

N 3605189

mean coefficients
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 9: Ratios of DWL with Tax to DWL With No Tax, Scrapping Most Polluting
Vehicles

Percentile Scrapped

None 1% 2% 5% 10% 25%

1998 0.564 0.466 0.441 0.415 0.405 0.415
1999 0.568 0.474 0.458 0.442 0.437 0.444
2000 0.582 0.493 0.478 0.462 0.459 0.460
2001 0.633 0.528 0.511 0.495 0.491 0.437
2002 0.671 0.585 0.573 0.560 0.556 0.496
2003 0.698 0.629 0.619 0.608 0.604 0.472
2004 0.752 0.675 0.666 0.654 0.645 0.439
2005 0.762 0.699 0.689 0.672 0.648 0.371
2006 0.811 0.731 0.720 0.700 0.658 0.344
2007 0.810 0.759 0.748 0.725 0.658 0.355
2008 0.831 0.780 0.768 0.737 0.612 0.349

Average 0.698 0.620 0.606 0.588 0.561 0.417

Notes: DWL with no tax calculated based on the difference in
emissions from imposing a tax equal to the actual externality
per gallon consumed by a particular car. Marginal tax com-
puted as the weighted average of externality per gallon, using
the negative slope of the vehicle’s demand curve as the weight.

Table 10: Ratios of DWL with Tax to DWL With No Tax

Statewide Tax County-Level Taxes Vintage Tax County/Vintage Tax

Average Marginal Average Marginal Average Marginal Average Marginal

1998 0.571 0.434 0.536 0.397 0.318 0.295 0.280 0.254
1999 0.590 0.426 0.558 0.390 0.301 0.279 0.256 0.235
2000 0.591 0.433 0.556 0.397 0.299 0.281 0.250 0.235
2001 0.648 0.472 0.619 0.440 0.329 0.312 0.280 0.266
2002 0.619 0.490 0.586 0.459 0.324 0.310 0.281 0.268
2003 0.625 0.503 0.589 0.469 0.314 0.303 0.268 0.259
2004 0.647 0.544 0.619 0.516 0.351 0.341 0.309 0.301
2005 0.644 0.548 0.617 0.522 0.347 0.336 0.306 0.296
2006 0.692 0.595 0.669 0.573 0.397 0.390 0.360 0.353
2007 0.674 0.585 0.653 0.564 0.368 0.362 0.329 0.325
2008 0.701 0.605 0.682 0.586 0.388 0.383 0.349 0.345

Average 0.636 0.512 0.608 0.483 0.340 0.327 0.297 0.285

Notes: DWL with no tax calculated based on the difference in emissions from imposing a tax equal to the actual
externality per gallon consumed by a particular car. Marginal tax computed as the weighted average of externality
per gallon, using the negative slope of the vehicle’s demand curve as the weight.
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A Proofs of Propositions

Proposition 1. The second-best tax is (from Diamond (1973)):

τ ∗ =
−
∑

h

∑
i6=h

∂Uh

∂αi
α′i∑

h α
′
h

. (13)

Proof. Consumers have quasi-linear utility functions, given as:

max
αh

Uh(α1, α2, ..., αh, ..., αn) + µh, (14)

s.t. (p+ τ)αh + µh = mh. (15)

Where p is the price and τ the tax per gallon. Assuming an interior solution, we have:

∂Uh

∂αh
= (p+ τ). (16)

This yields demand curves, given by:

α∗h = αh (p+ τ) . (17)

The optimal uniform Pigouvian tax maximizes social welfare, or the sum of utilities:

W (τ) =
∑
h

Uh[α∗1, ..., α
∗
h, ...α

∗
n]− p

∑
h

α∗h +
∑
h

mh. (18)

The first-order condition for the optimal uniform Pigouvian tax is given as:

W ′(τ) =
∑
h

∑
i

∂Uh

∂αi
α′i − p

∑
h

α′h = 0. (19)

Rewriting this and plugging in the result from the consumers’ problem, ∂Uh

∂αh
− p = τ , we

have:

W ′(τ) =
∑
h

∑
i6=h

∂Uh

∂αi
α′i + τ

∑
h

α′h = 0. (20)

Solving for the second-best tax yields:

τ ∗ =
−
∑

h

∑
i6=h

∂Uh

∂αi
α′i∑

h α
′
h

. (21)
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Proposition 2. Suppose the drivers are homogenous in their demand for miles driven, but
vehicles differ in terms of emissions. In particular, each consumer has a demand for miles
drive given as:

m = β0 − β1dpm(pg + τ). (22)

If the distribution of the externality per mile, E, is log normal, with probability density
function of:

ϕ(Ei) =
1

Ei
√

2σ2
E

exp

(
−(Ei − µE)2

2σ2
E

)
, (23)

the deadweight loss absent any market intervention will be given as:

D =
1

2β1

e2µE+2σ2
E .

Proof. Given these assumptions, the deadweight loss absent any market intervention will be
given as:

D =

∫ ∞
0

(Ei)
2

2β1

ϕ(Ei)dEi

=
1

2β1

E[E2
i ] (24)

=
1

2β1

e2µE+2σ2
E .

Proposition 3. Under the assumptions in Proposition 2, the ratio of the remaining DWL
with the deadweight loss after the tax is:

R =
D − e2µE+σ2E

2β1

D
= 1− e2µE+σ2

E

e2µE+2σ2
E

= 1− e−σ2
E . (25)

Proof. The level of the externality is given as:

E = τ = eµE+σ2
E/2. (26)
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The deadweight loss associated with all vehicles is given as:

D(τ) =

∫ ∞
0

(τ − Ei)2

2β1

ϕ(Ei)dEi

=
1

2β1

E[τ 2 − 2τEi + E2
i ]

=
1

2β1

(τ 2 − 2τE[Ei] + E[E2
i ]) (27)

=
1

2β1

(τ 2 − 2τeµE+
σ2E
2 + e2µE+2σ2

E)

=
1

2β1

(τ 2 − 2τeµE+
σ2E
2 ) +D

= D − e2µE+σ2
E

2β1

.

The ratio of remaining DWL with the deadweight loss absent the tax is therefore:

R =
D − e2µE+σ2E

2β1

D
= 1− e2µE+σ2

E

e2µE+2σ2
E

= 1− e−σ2
E . (28)

Proposition 4. When Bi = 1
βi

and Ei are distributed lognormal with dependence parameter
ρ, the optimal tax is:

τ ∗ = eµE+
σ2E
2

+ρσEσB

Proof. The slope of the demand curve with respect to the cost of driving, defined as Bi = 1
βi

,

is distributed lognormal with parameters µB and σ2
B. ρ is the dependence parameter of the

bivariate lognormal distribution (the correlation coefficient of lnE and lnB). The optimal
tax is:

τ ∗ =

∑
Eiβi∑
βi

=
1
N

∑
Eiβi

1
N

∑
βi

=
E[Eiβi]

E[ 1
Bi

]
(29)

=
eµE+

σ2E
2
−µB+

σ2B
2 eρσEσB

e−µB+
σ2
B
2

= eµE+
σ2E
2

+ρσEσB .

Proposition 5. When Bi = 1
βi

and Ei are distributed lognormal with dependence parameter
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ρ, the ratios of the remaining deadweight loss after the optimal uniform Pigouvian tax to the
original deadweight loss will be:

R(τ ∗) = 1− e−σ2
E , (30)

and, the ratios of the remaining deadweight loss after the naive uniform tax to the original
deadweight loss will be:

R(τnaive) = 1− e−σ2
E(2e−ρσEσB − e−2ρσEσB). (31)

Proof. The deadweight loss with no gasoline tax is:

D =

∫ ∞
0

(∫ ∞
0

(Ei)
2Bi

2
ϕ(Ei)dEi

)
ϕB(Bi)dBi

=
1

2
E[E2

iBi] (32)

=
1

2
e2µE+2σ2

E+µB+
σ2B
2

+2ρσEσB .

The deadweight loss with the optimal uniform tax is:

D(τ ∗) =

∫ ∞
0

(∫ ∞
0

(τ − Ei)2Bi

2
ϕ(Ei)dEi

)
ϕB(Bi)dBi

=
1

2
E[τ 2Bi − 2τEiBi + E2

iBi]

=
1

2
(τ 2E[Bi]− 2τE[EiBi] + E[E2

iBi]) (33)

=
1

2
(τ 2eµB+

σ2B
2 − 2τeµE+

σ2E
2

+µB+
σ2B
2

+ρσEσB + e2µE+2σ2
E+µB+

σ2B
2

+2ρσEσB)

=
1

2
e2µE+σ2

E+µB+
σ2B
2

+2ρσEσB − e2µE+σ2
E+µB+

σ2B
2

+2ρσEσB +D

= D − 1

2
e2µE+σ2

E+µB+
σ2B
2

+2ρσEσB ,

while the deadweight loss with the naive tax, equal to the average externality level is:

D(τnaive) = D − 1

2
(2e2µE+σ2

E+µB+
σ2B
2

+ρσEσB − e2µE+σ2
E+µB+

σ2B
2 ). (34)

Then the ratios of the remaining deadweight loss after a tax to the original deadweight
loss will be:

R(τ ∗) = 1− e2µE+σ2
E+µB+

σ2B
2

+2ρσEσB

e2µE+2σ2
E+µB+

σ2
B
2

+2ρσEσB

= 1− e−σ2
E , (35)
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R(τnaive) = 1− 2e2µE+σ2
E+µB+

σ2B
2
ρσEσB − e2µ+σ2

E+µB+
σ2B
2

e2µE+2σ2
E+µB+

σ2
B
2

+2ρσEσB

= 1− e−σ2
E(2e−ρσEσB − e−2ρσEσB). (36)

B Robustness Checks

In this appendix, we report the results of several robustness checks to our main results

on the intensive margin. Table A.2 reports elasticities by quartile for all five categories of

externality.

Our base specification controls for the fixed effect of a each NOx quartile on miles trav-

eled. One might be concerned, however, that variation in dollars per mile (DPM) might be

correlated with other characteristics such as age, odometer, and demographics, and that the

DPM-quartile interactions may be picking up this correlation, rather than true heterogeneity.

To test for this, in Table A.5 we present results with vehicle fixed effects and interactions be-

tween NOx quartiles and various control variables. Adding these interaction terms actually

makes the heterogeneity in the effect of DPM more pronounced.

Table A.6 repeats the same exercise, but uses levels rather than logs of DPM as the

variable of interest. The results are qualitatively similar, with substantial heterogeneity in

every specification. However, with a log-linear specification we do not observe the cleanest

vehicles having a positive coefficient.

We also investigate the functional forms of these relationships in a semi-parametric way.

For each externality, we define vehicles by their percentile of that externality. We then esti-

mate Equation (8) with separate elasticities for vehicles falling in the zero to first percentile,

first to second, etc. Appendix Figure A.2 plots a LOWESS smoothed line through these 100

separate elasticity estimates. For the three criteria pollutants, we find that the relationship

is quite linear with the elasticity being positive for the cleanest 10 percent of vehicles. The

dirtiest vehicles have elasticities that are roughly 0.4. For fuel economy, the relationship is

fairly linear from the 60th percentile onwards, but begins steeply and flattens out from the

20th percentile to the 40th. The elasticity of the lowest fuel economy vehicles is nearly 0.6.

To put these numbers into context across the different years, the average fuel economy of
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the 20th percentile is 18.7, while the average for the 40th percentile is 21.75. The variation

in elasticities across weight is not monotonic. The relationship begins by increasing until

roughly the 20th percentile, and then falls more or less linearly thereafter. The elasticity of

the heaviest vehicles is roughly 0.3.

Note that the roughly linear relationship between criteria pollutant emissions and the

elasticity is not due to “over smoothing.” Appendix Figure A.3 plots the LOWESS smoothed

lines for HCs under different bandwidths. The top left figure simply reports the 100 elas-

ticities. There is some evidence that the relationship is not monotonic early on, but from

the 5th percentile on, the relationship appears monotonic. Doing this exercise for the other

criteria pollutants yields similar results.

C Steps to Clean Smog Check Data

C.1 Smog Check Data

California implemented its first inspection and maintenance program (the Smog Check Pro-

gram) in 1984 in response to the 1977 Clean Air Act Amendments. The 1990 Clean Air

Act Amendments required states to implement an enhanced inspection and maintenance

program in areas with serious to extreme non-attainment of ozone limits. Several of Cal-

ifornia’s urban areas fell into this category, and in 1994, California’s legislature passed a

redesigned inspection program was passed by California’s legislature after reaching a com-

promise with the EPA. The program was updated in 1997 to address consumer complaints,

and fully implemented by 1998. Among other improvements, California’s new program in-

troduced a system of centralized “Test-Only” stations and an electronic transmission system

for inspection reports.26 Today, more than a million smog checks take place each month.

Since 1998, the state has been divided into three inspection regimes (recently expanded

to four), the boundaries of which roughly correspond to the jurisdiction of the regional Air

Quality Management Districts. “Enhanced” regions, designated because they fail to meet

state or federal standards for CO and ozone, fall under the most restrictive regime. All of

the state’s major urban centers are in Enhanced areas, including the greater Los Angeles,

San Francisco, and San Diego metropolitan areas. Vehicles registered to an address in an

26For more detailed background see http://www.arb.ca.gov/msprog/smogcheck/july00/if.pdf.
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Enhanced area must pass a biennial smog check in order to be registered, and they must

take the more rigorous Acceleration Simulation Mode (ASM) test. The ASM test involves

the use of a dynamometer, and allows for measurement of NOx emissions. In addition, a

randomly selected two percent sample of all vehicles in these areas is directed to have their

smog checks at Test-Only stations, which are not allowed to make repairs.27 Vehicles that

match a “High Emitter Profile” are also directed to Test-Only stations, as are vehicles that

are flagged as “gross polluters” (those that fail an inspection with twice the legal limit of one

or more pollutant in emissions). More recently some “Partial-Enhanced” areas that require

a biennial ASM test have been added, but no vehicles are directed to Test-Only stations.

Areas with poor air quality not exceeding legal limits fall under the Basic regime. Cars

in a Basic area must have biennial smog checks as part of registration, but they are allowed

to take the simpler Two Speed Idle (TSI) test and are not directed to Test-Only stations.

The least restrictive regime, consisting of rural mountain and desert counties in the east and

north, is known as the Change of Ownership area. As the name suggests, inspections in

these areas are only required upon change of ownership; no biennial smog check is required.

Our data from the Smog Check Program essentially comprise the universe of test records

from January 1, 1996 to December 31, 2010. We were able to obtain test records only

going back to 1996 because this was the year when the Smog Check Program introduced its

electronic transmission system. Because the system seems to have been phased in during

the first half of 1996, and major program changes took effect in 1998 we limit our sample to

test records from January 1998 on. For our analyses, we use a 10 percent sample of VINs,

selecting by the second to last digit of the VIN. We exclude tests that have no odometer

reading, with a test result of “Tampered” or “Aborted” and vehicles that have more than

36 tests in the span of the data. Vehicles often have multiple smog check records in a year,

whether due to changes of ownership or failed tests, but we argue that more than 36 in what

is at most a 12 year-span indicates some problem with the data.28

A few adjustments must be made to accurately estimate VMT and emissions per mile.

27Other vehicles can be taken to Test-Only stations as well if the owner chooses, although they must get
repairs elsewhere if they fail.

28For instance, there is one vehicle in particular, a 1986 Volvo station wagon, which has records for more
than 600 smog checks between January 1996 and March 1998. The vehicle likely belonged to a smog check
technician who used it to test the electronic transmission system.
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First, we adjust odometer readings for “roll overs” and typos. Many of the vehicles in our

analysis were manufactured with 5-digit odometers–that is, five places for whole numbers

plus a decimal. As such, any time one of these vehicles crosses over 100,000 miles, the

odometer “rolls over” back to 0. To complicate matters further, sometimes either the vehicle

owner or smog check technician notices this problem and records the appropriate number

in the 100,000s place, and sometimes they do not. To address this problem, we employ an

algorithm that increases the hundred thousands place in the odometer reading whenever a

rollover seems to have occurred. The hundred thousands are incremented if the previous test

record shows higher mileage, or if the next test record is shows more than 100,000 additional

miles on the odometer (indicating that the odometer had already rolled over, but the next

check took this into account). The algorithm also attempts to correct for typos and entry

errors. An odometer reading is flagged if it does not fit with surrounding readings for the

same vehicle–either it is less than the previous reading or greater than the next–and cannot

be explained by a rollover. The algorithm then tests whether fixing one of several common

typos will make the flagged readings fit (e.g., moving the decimal over one place). If no

correction will fit, the reading is replaced with the average of the surrounding readings.

Finally, if after all our corrections any vehicle has an odometer reading above 800,000 or has

implied VMT per day greater than 200 or less than zero, we exclude the vehicle from our

analysis. All of our VMT analyses use this adjusted mileage.

Emissions results from smog checks are given in either parts per million (for HC and NOx)

or percent (O2, CO, and CO2). Without knowing the volume of air involved, there is no

straightforward way to convert this to total emissions. Fortunately, as part of an independent

evaluation of the Smog Check Program conducted in 2002-2003, Sierra Research Inc. and

Eastern Research Group estimated a set of conversion equations to convert the proportional

measurements of the ASM test to emissions in grams per mile traveled. These equations are

reported in Morrow and Runkle (2005) and are reproduced below. The equations are for

HCs, NOx, and CO, and estimate grams per mile for each pollutant as a non-linear function

of all three pollutants, model year, and vehicle weight. The equations for vehicles of up to

47



model year 1990 are

FTP HC = 1.2648 · exp(−4.67052 +0.46382 ·HC∗ + 0.09452 · CO∗ + 0.03577 ·NO∗

+0.57829 · ln(weight)− 0.06326 ·MY ∗ + 0.20932 · TRUCK)

FTP CO = 1.2281 · exp(−2.65939 +0.08030 ·HC∗ + 0.32408 · CO∗ + 0.03324 · CO∗2

+0.05589 ·NO∗ + 0.61969 · ln(weight)− 0.05339 ·MY ∗

+0.31869 · TRUCK)

FTP NOX = 1.0810 · exp(−5.73623 +0.06145 ·HC∗ − 0.02089 · CO∗2 + 0.44703 ·NO∗

+0.04710 ·NO∗2 + 0.72928 · ln(weight)− 0.02559 ·MY ∗

−0.00109 ∗MY ∗2 + 0.10580 · TRUCK)

Where

HC∗ = ln((Mode1HC ·Mode2HC).5)− 3.72989

CO∗ = ln((Mode1CO ·Mode2CO).5) + 2.07246

NO∗ = ln((Mode1NO ·Mode2NO).5)− 5.83534

MY ∗ = modelyear − 1982.71

weight = Vehicle weight in pounds

TRUCK = 0 if a passenger car, 1 otherwise
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And for model years after 1990 they are:

FTP HC = 1.1754 · exp(−6.32723 +0.24549 ·HC∗ + 0.09376 ·HC∗2 + 0.06653 ·NO∗

+0.01206 ·NO∗2 + 0.56581 · ln(weight)− 0.10438 ·MY ∗

−0.00564 ·MY ∗2 + 0.24477 · TRUCK)

FTP CO = 1.2055 · exp(−0.90704 +0.04418 ·HC∗2 + 0.17796 · CO∗ + 0.08789 ·NO∗

+0.01483 ·NO∗2 − 0.12753 ·MY ∗ − 0.00681 ·MY ∗2

+0.37580 · TRUCK)

FTP NOX = 1.1056 · exp(−6.51660 + + 0.25586 ·NO∗ + 0.04326 ·NO∗2 + 0.65599 · ln(weight)

−0.09092 ·MY ∗ − 0.00998 ∗MY ∗2 + 0.24958 · TRUCK)

Where:

HC∗ = ln((Mode1HC ·Mode2HC).5)− 2.32393

CO∗ = ln((Mode1CO ·Mode2CO).5) + 3.45963

NO∗ = ln((Mode1NO ·Mode2NO).5)− 3.71310

MY ∗ = modelyear − 1993.69

weight = Vehicle weight in pounds

TRUCK = 0 if a passenger car, 1 otherwise

D Steps to Clean DMV Data

We deal with two issues associated with DMV data. The main issue is that DMV entries for

the same addresses will often have slightly different formats. For example, “12 East Hickory

Street” may show up as “12 East Hickory St,” “12 E. Hickory St.”, etc. To homogenize the

entries, we input each of the DMV entries into mapquest.com and then replace the entry

with the address that mapquest.com gives.

Second, the apartment number is often missing in DMV data. This has the effect of

yielding a large number of vehicles in the same “location.” We omit observations that have
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over seven vehicles in a given address or more than three last names of registered owners.

E Details of the Gasoline Tax Policy Simulation

For the intensive margin, we estimate a regression as in column 6 of Tables 2 and A.2, except

that we interact ln(DPM) with quartile of fuel economy, vehicle weight, and emissions of HC,

NOx, and CO, and dummies for vehicle age bins, again using bins of 4-9, 10-15, and 16-29

years, and control for the direct effects of quartiles of HC, NOx, and CO emissions. As in

Table 3, we use quartiles calculated by year and age bin. The coefficients are difficult to

interpret on their own, and too numerous to list. However, most are statistically different

from zero, and the exceptions are due to small point estimates, not large standard errors.

As in Section G, we compress our dataset to have at most one observation per vehicle per

year. Each vehicle is then assigned an elasticity based on its quartiles and age bin. Vehicle

i’s VMT in the counterfactual with an additional $1 tax on gasoline is calculated by:

VMT icounterfactual = VMT iBAU ·
(
Pi + 1

Pi
· βi
)
,

where VMT iBAU is vehicle i’s actual average VMT per day between its current and previous

smog check, Pi is the average gasoline price over that time, and βi is the elasticity for the

fuel economy/weight/HC/NO/CO/age cell to which i belongs.

For the extensive margin, we estimate a Cox regression on the hazard of scrappage for

vehicles 10 years and older, stratifying by VIN prefix and interacting DPM with all five

type of quartiles and age bins 10-15 and 16-29. Similar to the intensive margin, we assign

each vehicle a hazard coefficient based on its quartile-age cell. Cox coefficients can be

transformed into hazard ratios, but to simulate the affect of an increase in gasoline prices on

the composition of the vehicle fleet, we must convert these into changes in total hazard.

To do this, we first calculate the actual empirical hazard rate for prefix k in year t as:

OrigHazardkt =
Dkt

Rkt

,

where Dkt is the number of vehicles in group k, that are scrapped in year t, and Rkt is the

number of vehicle at risk (that is, which have not previously been scrapped or censored).

We then use the coefficients from our Cox regression to calculate the counterfactual hazard
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faced by vehicles of prefix k in quartile-age group q during year t as:29

NewHazardqkt = OrigHazardkt · exp

{
1

MPGk

· γq
}
,

where MPGk is the average fuel economy of vehicle of prefix k and γq is the Cox coefficient

associated with quartile group q. We then use the change in hazard to construct a weight

Hqkt indicating the probability that a vehicle of prefix k in quartile group q in year t would

be in the fleet if a $1 gasoline tax were imposed. Weights greater than 1 are possible, which

should be interpreted as a Hqkt − 1 probability that another vehicle of the same type would

be on the road, but which was scrapped under “Business as Usual.” Because the hazard is

the probability of scrappage in year t, conditional on survival to year t, this weight must

be calculated interatively, taking into account the weight the previous year. Specifically, we

have:

Hqkt =
t∏

j=1998

(1− (NewHazardqkj −OrigHazardkt)).

We also assign each vehicle in each year a population weight. This is done both to scale

our estimates up to the size of the full California fleet of personal vehicles, and to account for

the ways in which the age composition of the smog check data differs from that of the fleet.

We construct these weights using the vehicle population estimates contained in CARB’s

EMFAC07 software, which are given by year, vehicle age, and truck status. Our population

weight is the number of vehicles of a given age and truck status in a each year given by

EMFAC07, divided by the number of such vehicle appearing in our sample. For instance, if

EMFAC07 gave the number of 10-year-old trucks in 2005 as 500, while our data contained

50, each 10-year-old truck in our data would have a population weight of 10. Denote the

population weight by Ptac, where t is year, a is age, and c is truck status.

There is an additional extensive margin that we have not estimated in this paper: new

car purchases. To ensure that the total vehicle population is accurate, we apply an ad hoc

correction based on Busse et al. (forthcoming), who find that a $1 increase in gasoline prices

would decrease new car sales by 650,000 per year. Because California’s vehicle fleet makes

up about 13 percent of the national total, we decrease the population of model years 1998

and later by 84,500 when constructing the population weight for the counterfactual. We

29Note that age group is determined by model-year and year.
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apply 40 percent of the decrease to trucks, and 60 percent to passenger cars. Denote the

“new car effect” nc.

We estimate the total annual emissions by passenger vehicle in California of NOx, HC,

CO, and CO2 as actually occurred, and under a counterfactual where a $1 gasoline tax was

imposed in 1998. Let i denote a vehicle, a vehicle age, c truck status. Then the annual

emissions of pollutant p in year t under “business as usual” are:

EmissionptBAU =
∑
i

Ptac · VMT iBAU · ri(p) · 365,

and under the counterfactual they are:

Emissionptcounterfactual =
∑
i

(Ptac−1(model year >= 1998)·nc)·Hqkt·VMT icounterfactual·ri(p)·365,

where ri(p) is the emissions rate per mile of pollutant p for vehicle i. For NOx, HC, and

CO, this is the last smog check reading in grams per mile, while for CO2 this is the vehicle’s

gallons per mile multiplied by 19.2 pounds per gallon.

F California versus the Rest of the United States

Given that our empirical setting is California, it is natural to ask whether our results are

representative of the country as a whole. At the broadest level, the local-pollution benefits

from carbon pricing are a function of the per-capita number of miles driven, the emission

characteristics of the fleet of vehicles, and the marginal damages of the emissions. We present

evidence that the benefits may, in fact, be larger outside of California. The reason for this

is that while the marginal damages are indeed larger in California, the vehicle stock in

California is much cleaner than the rest of the country because California has traditionally

led the rest of the U.S. in terms of vehicle-emission standards.

The results in Muller and Mendelsohn (2009) provide a convenient way to test whether

California differs in terms of marginal damages. Table A.12 presents points on the dis-

tribution of marginal damages for NOx, HCs, and the sum of the two, weighted by each

county’s annual VMT.30 Figure A.6 plots the kernel density estimates of the distributions.

30All of the points on the distribution and densities discussed in this section weight each county by its
total VMT.
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We present the sum of because counties are typically either “NOx constrained” or “VOC

(HC) constrained,” and the sum is perhaps more informative. As expected, the marginal

damages are higher in California for HCs, but lower for NOx, as California counties tend

to be VOC-constrained. The sum of the two marginal damages is 78 percent higher in

California. Higher points in the distribution show an even larger disparity.

This effect is offset, however, by the cleaner vehicle stock within California—a result of

California’s stricter emission standards. To illustrate this, we collected county-level average

per-mile emission rates for NOx, HCs, and CO from the EPA Motor Vehicle Emission Sim-

ulator (MOVES). This reports total emissions from transportation and annual mileage for

each county. Table A.12 also presents points on the per-mile emissions, and Figure A.7 plots

the distributions.31 Mean county-level NOx, HCs, and CO are 67, 36, and 31 percent lower

in California, respectively. Other points in the distributions exhibit similar patterns.

Finally, we calculate the county-level average per-mile externality for each pollutant, as

well as the sum of the three. Table A.12 and Figure A.8 illustrates these. As expected,

the HC damages are higher, but the average county-level per-mile externality from the sum

of the three pollutants is 30 percent lower in California than the rest of the country; the

25th percentile, median, and 75th percentile are 35, 30, and 9 percent lower, respectively.

These calculations suggest that, provided the average VMT elasticities are not significantly

smaller outside of California and/or the heterogeneity across vehicle types is not significantly

different (in the reverse way), our estimates are likely to apply to the rest of the country.

G Scrappage Decisions

Our next set of empirical models examines how vehicle owners’ decisions to scrap their vehi-

cles due to gasoline prices. Again we will also examine how this effect varies over emissions

profiles.

We determine whether a vehicle has been scrapped using the data from CARFAX Inc.

We begin by assuming that a vehicle has been scrapped if more than a year has passed

between the last record reported to CARFAX and the date when CARFAX produced our

31We note that these exceed the averages in our data. This may reflect the fact that smog checks are not
required for vehicles with model years before 1975, and these vehicles likely have very high emissions because
this pre-dates many of the emission standards within the U.S.
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data extract (October 1, 2010). However, we treat a vehicle as being censored if the last

record reported to CARFAX was not in California, or if more than a year and a half passed

between the last smog check in our data and that last record. As well, to avoid treating

late registrations as scrappage, we treat all vehicles with smog checks after 2008 as censored.

Finally, to be sure we are dealing with scrapping decisions and not accidents or other events,

we only examine vehicles that are at least 10 years old.

Some modifications to our data are necessary. To focus on the long-term response to

gasoline prices, our model is specified in discrete time, denominated in years. Where vehicles

have more than one smog check per calendar year, we use the last smog check in that year.

Also, because it is generally unlikely that a vehicle is scrapped at the same time as its last

smog check, we create an additional observation for scrapped vehicles either one year after

the last smog check, or six months after the last CARFAX record, whichever is later. For

these created observations, odometer is imputed based on the average VMT between the

last two smog checks, and all other variables take their values from the vehicle’s last smog

check. An exception is if a vehicle fails the last smog check in our data. In this case, we

assume the vehicle was scrapped by the end of that year.

Because many scrapping decisions will not take place until after our data ends, a hazard

model is needed to deal with right censoring. Let Tjivg be the year in which vehicle i, of

vehicle type j, vintage v, and geography g, is scrapped. Assuming proportional hazards, our

basic model is:

Pr[t < Tijvg < t+ 1|T > t] = h0
jv(t) · exp{βxDPMigt + γDfailit + ψGigt + αXit},

where DPMigt is defined as before; Dfailit is a dummy equal to one if the vehicle failed a

smog check any time during year t; G is a vector of demographic variables, determined by

the location of the smog check; X is a vector of vehicle characteristics, including a dummy

for truck and a sixth-order polynomial in odometer; and h0
ijv(t) is the baseline hazard rate,

which varies by time but not the other covariates. In some specifications, we will allow each

vehicle type and vintage to have its own baseline hazard rate.

We estimate this model using semi-parametric Cox proportional hazards regressions,

leaving the baseline hazard unspecified. We report exponentiated coefficients, which may
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be interpreted as hazard ratios. For instance, a 1 unit increase in DPM will multiply the

hazard rate by exp{β}, or increase it by (exp{β} − 1) percent. In practice, we scale the

coefficients on DPM for a 5-cent change, corresponding to a $1.00 increase in gasoline prices

for a vehicle with fuel economy of 20 miles per gallon.

Tables A.3 and A.4 show the results of our hazard analysis. Models 1 and 2 of Table A.3

assign all vehicles to the same baseline hazard function. Model 1 allows the effect of gasoline

prices to vary by whether or not a vehicle failed a smog check. Model 2 also allows the effect

of gasoline prices to vary by quartiles of NOx.
32 Models 3 and 4 are similar, but stratify the

baseline hazard function, allowing each VIN prefix to have its own baseline hazard function.

Model 5 allows the effect of gasoline prices to vary both by externality quartile and age

group, separating vehicles 10 to 15 years old from vehicles 16 years and older.

Models 1 and 2 indicate that increases in gasoline prices actually decrease scrapping on

average, with the cleanest vehicles seeing the largest decreases. The effect is diminished

once unobserved heterogeneity among vehicle types is controlled for, but is still statistically

significant. However, the true heterogeneity in the effect of gasoline prices on hazard seems

to be over age groups. Model 5 shows that when the cost of driving a mile increases by

five cents, the hazard of scrappage decreases by about 23 percent for vehicles between 10

and 15 years old, while it increases by around 3 percent for vehicles age 16 and older, with

little variation across NOx quartiles within age groups. This suggests that when gasoline

prices rise, very old cars are scrapped, increasing demand for moderately old cars and thus

reducing the chance that they are scrapped.

Table A.4 presents the quartile by age by DPM interactions for each of the 5 externality

dimensions. Hydrocarbons and CO have the identical pattern to NOx, with no heterogeneity

within age-group. With fuel economy and vehicle weight, there is within-age heterogeneity,

although the form is counter-intuitive. The heaviest and least fuel-efficient vehicles are

relatively less likely thank the lightest and most fuel-efficient vehicles to be scrapped when

gasoline prices increase. That is, while all 10- to 15-year-old vehicles are less likely to be

scrapped, the decrease in hazard rate is larger for heavy, gas-guzzling vehicles. For vehicles

16 years and older, the heaviest quartile is less likely to be scrapped when gasoline prices

32Quartiles in these models are calculated by year among only vehicles 10 years and older.
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increase, even though the lightest (and middle quartiles) are more likely. As the model

stratifies by VIN prefix, this cannot be simply that more durable vehicles have lower fuel

economy.

In summary, increases in the cost of driving a mile over the long term increase the

chance that old vehicles are scrapped, while middle-aged vehicles are scrapped less, perhaps

because of increased demand. Although vehicle age is highly correlated with emissions of

criteria pollutants, there is little variation in the response to gasoline prices across emissions

rates within age groups.
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Figure A.2: Non-parametric relationships between elasticity and externality
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Figure A.3: The effect of bandwidth on the non-parametric function
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Figure A.4: Social damages of pollution, VMT elasticity, and local-pollution benefits of a gasoline tax,
by county
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Table A.2: Vehicle Miles Traveled, Dollars Per Mile, and Externality Quartiles

Quartile Nitrogen Oxides Hydrocarbons Carbon Monoxide Fuel Economy Vehicle Weight

1 0.0406 0.0505 0.0442 -0.183 -0.124

2 -0.0617 -0.0645 -0.0625 -0.173 -0.129

3 -0.158 -0.154 -0.156 -0.119 -0.158

4 -0.288 -0.315 -0.317 -0.108 -0.179
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Table A.3: Hazard of Scrappage: Cox Proportional Hazard Model

Model 1 Model 2 Model 3 Model 4 Model 5

Dollars per Mile 0.917* 0.926**
(0.040) (0.024)

DPM * Failed Smog Check 1.109** 1.080** 1.085** 1.068**
(0.029) (0.025) (0.021) (0.020)

Failed Last Smog Check 7.293** 7.686** 8.282** 8.819**
(0.234) (0.241) (0.187) (0.199)

DPM * NO Quartile 1 0.792** 0.867**
(0.046) (0.040)

DPM * NO Quartile 2 0.859** 0.891**
(0.039) (0.031)

DPM * NO Quartile 3 0.874** 0.916**
(0.034) (0.021)

DPM * NO Quartile 4 0.927* 0.940**
(0.032) (0.015)

Vehicle Ages 10-15

DPM * NO Quartile 1 0.774**
(0.070)

DPM * NO Quartile 2 0.761**
(0.067)

DPM * NO Quartile 3 0.770**
(0.063)

DPM * NO Quartile 4 0.745**
(0.058)

Failed Smog Check 7.156**
(0.558)

DPM * Failed Smog Check 1.143**
(0.050)

Vehicle Ages 16+

DPM * NO Quartile 1 1.037+
(0.023)

DPM * NO Quartile 2 1.028
(0.025)

DPM * NO Quartile 3 1.034
(0.030)

DPM * NO Quartile 4 1.034
(0.035)

Failed Smog Check 10.150**
(0.487)

DPM * Failed Smog Check 1.022
(0.019)

Station ZIP Code Characteristics Yes Yes Yes Yes Yes
Quadratic Time Trend in Days Yes Yes Yes Yes Yes
Vehicle Characteristics Yes Yes Yes Yes Yes
Quartiles of NO No Yes No Yes Yes
Stratified on Vin Prefix No No Yes Yes Yes
Observations 3170553 2682641 3170553 2682641 2682641

Note: Coefficients on dollars per mile scaled for a 5-cent change
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Table A.5: Robustness Check—Intensive Margin Interacting NOx Quartiles With Other
Controls

(1) (2) (3) (4) (5) (6)

ln(DPM) * NO Q1 0.0406 0.0381 0.0678∗ 0.0605 0.0590 0.0666
(0.0231) (0.0250) (0.0339) (0.0335) (0.0333) (0.121)

ln(DPM) * NO Q2 -0.0617∗ -0.0581∗ -0.0453 -0.0478 -0.0484 -0.0410
(0.0261) (0.0269) (0.0309) (0.0310) (0.0308) (0.121)

ln(DPM) * NO Q3 -0.158∗∗∗ -0.155∗∗∗ -0.166∗∗∗ -0.165∗∗∗ -0.165∗∗∗ -0.157
(0.0271) (0.0272) (0.0282) (0.0291) (0.0294) (0.120)

ln(DPM) * NO Q4 -0.288∗∗∗ -0.298∗∗∗ -0.355∗∗∗ -0.353∗∗∗ -0.351∗∗∗ -0.344∗∗

(0.0300) (0.0302) (0.0325) (0.0332) (0.0331) (0.120)

NO Q2 0.378 0.327 -2.622 -3.925∗ -3.954∗ -4.916∗∗

(0.800) (0.735) (1.622) (1.693) (1.673) (1.732)

NO Q3 -1.246 -1.447 -5.233∗∗∗ -6.846∗∗∗ -6.793∗∗∗ -7.987∗∗∗

(1.012) (0.899) (1.447) (1.524) (1.508) (1.566)

NO Q4 -2.297∗ -2.951∗∗ -9.696∗∗∗ -11.39∗∗∗ -11.26∗∗∗ -12.60∗∗∗

(1.116) (1.084) (2.257) (2.253) (2.271) (2.301)

Quartile-Time Trend Interactions Yes Yes Yes Yes Yes Yes

Vintage-Quartile Interactions No Yes Yes Yes Yes Yes

Quartile-Year Interactions No No Yes Yes Yes Yes

Quartile-Lagged Odometer Interactions No No No Yes Yes Yes

Quartile-Demographics Interactions No No No No Yes Yes

Calendar Month Fixed-Effects No No No No No Yes

N 2979289 2979289 2979289 2979289 2979289 2979289

Note: All regressions include vehicle fixed-effects, year fixed effects, vintage/truck fixed effects, a quadratic time trend, a
sixth order polynomial in the odometer reading at previous Smog Check, and ZIP code level demographic characteristics.
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Table A.6: Robustness Check—Intensive Margin Interacting NOx Quartiles With Other
Controls

(1) (2) (3) (4) (5) (6)

DPM * NO Q1 -2.676∗∗∗ -2.807∗∗∗ -2.294∗∗∗ -2.412∗∗∗ -2.421∗∗∗ -5.089∗∗∗

(0.359) (0.350) (0.301) (0.347) (0.345) (0.696)

DPM * NO Q2 -3.337∗∗∗ -3.358∗∗∗ -3.075∗∗∗ -3.128∗∗∗ -3.129∗∗∗ -5.339∗∗∗

(0.359) (0.357) (0.334) (0.355) (0.354) (0.631)

DPM * NO Q3 -3.925∗∗∗ -3.941∗∗∗ -3.858∗∗∗ -3.881∗∗∗ -3.875∗∗∗ -5.728∗∗∗

(0.389) (0.391) (0.397) (0.395) (0.394) (0.631)

DPM * NO Q4 -4.642∗∗∗ -4.720∗∗∗ -4.970∗∗∗ -4.974∗∗∗ -4.957∗∗∗ -6.482∗∗∗

(0.425) (0.433) (0.444) (0.440) (0.442) (0.653)

NO Q2 0.958 0.821 -5.997∗∗∗ -7.404∗∗∗ -7.433∗∗∗ -4.917∗∗

(0.674) (0.613) (1.330) (1.391) (1.384) (1.567)

NO Q3 0.242 -0.00702 -8.999∗∗∗ -10.74∗∗∗ -10.69∗∗∗ -6.708∗∗∗

(0.889) (0.798) (1.563) (1.619) (1.605) (1.527)

NO Q4 0.615 0.124 -12.63∗∗∗ -14.43∗∗∗ -14.34∗∗∗ -9.222∗∗∗

(1.015) (0.999) (2.173) (2.181) (2.205) (2.227)

Quartile-Time Trend Interactions Yes Yes Yes Yes Yes Yes

Vintage-Quartile Interactions No Yes Yes Yes Yes Yes

Quartile-Year Interactions No No Yes Yes Yes Yes

Quartile-Lagged Odometer Interactions No No No Yes Yes Yes

Quartile-Demographics Interactions No No No No Yes Yes

Calendar Month Fixed-Effects No No No No No Yes

N 2979289 2979289 2979289 2979289 2979289 2979289

Note: All regressions include vehicle fixed-effects, year fixed effects, vintage/truck fixed effects, a quadratic time trend, a
sixth order polynomial in the odometer reading at previous Smog Check, and ZIP code level demographic characteristics.
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Table A.7: Ratio of Remaining Deadweight Loss With Tax to Deadweight Loss with No
Tax: Calibration

σ2 σ2
B ρ R(τnaive) R(τ ∗)

1998 1.407 1.465 0.322 0.789 0.755
1999 1.408 1.471 0.299 0.785 0.755
2000 1.438 1.486 0.308 0.794 0.763
2001 1.457 1.496 0.311 0.799 0.767
2002 1.492 1.506 0.283 0.802 0.775
2003 1.517 1.535 0.283 0.807 0.781
2004 1.525 1.531 0.265 0.806 0.782
2005 1.474 1.539 0.265 0.796 0.771
2006 1.482 1.539 0.251 0.795 0.773
2007 1.487 1.547 0.247 0.796 0.774
2008 1.498 1.533 0.252 0.799 0.777

Average 1.471 1.513 0.281 0.797 0.770

Table A.8: Ratios of DWL with Tax to DWL With No Tax, Scrapping Most Polluting
Vehicles

Percentile Scrapped

None 1% 2% 5% 10% 25%

1998 0.434 0.338 0.316 0.293 0.286 0.323
1999 0.426 0.338 0.323 0.308 0.307 0.374
2000 0.433 0.350 0.336 0.323 0.323 0.405
2001 0.472 0.373 0.358 0.347 0.358 0.514
2002 0.490 0.407 0.396 0.388 0.398 0.546
2003 0.503 0.433 0.424 0.419 0.436 0.624
2004 0.544 0.464 0.456 0.455 0.485 0.686
2005 0.548 0.485 0.479 0.482 0.520 0.708
2006 0.595 0.511 0.506 0.518 0.577 0.757
2007 0.585 0.534 0.532 0.552 0.625 0.779
2008 0.605 0.556 0.558 0.590 0.681 0.806

Average 0.512 0.435 0.426 0.425 0.454 0.593

Notes: DWL with no tax calculated based on the difference in
emissions from imposing a tax equal to the actual externality
per gallon consumed by a particular car. Marginal tax com-
puted as the weighted average of externality per gallon, using
the negative slope of the vehicle’s demand curve as the weight.
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Table A.12: Percentage Difference Between California and the rest of the US

25th Percentile Median 75th Percentile Mean

NOx g/mi -0.230 -0.291 -0.338 -0.282

NOx Damage/ton (MM) -0.439 -0.525 -0.558 -0.685

NOx Damage/mi -0.595 -0.657 -0.712 -0.761

HC g/mi -0.262 -0.321 -0.410 -0.354

HC Damage/ton 1.475 2.558 5.318 1.821

HC Damage/mi 0.602 1.134 3.358 1.035

CO g/mi -0.226 -0.321 -0.366 -0.320

CO Damage/mi -0.226 -0.321 -0.366 -0.320

NOx + HC Damage/ton (MM) 0.0191 0.994 2.337 0.787

NOx + HC + CO Damage/mi -0.353 -0.299 -0.0883 -0.295

Notes: The table reports the coefficient on the California dummy divided by the constant.

All differences are statistically significant at the 0.001 level, except for NOx g/mi and

HC Damage/mi at the 25th percentile (significant at the 0.05 level), and NOx Damage/mi.
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