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1 Introduction

Dynamic management of portfolios is a critical part of any investment strat-
egy by individuals and firms. Standard theory assumes that there is no cost
to rebalancing a portfolio but transaction costs are not negligible in real
markets. Not only are there transaction fees such as brokerage expenses
but the presence of a bid-ask spread creates a transaction cost to a trader.
These costs may be small, but the frequency of rebalancing is, theoretically,
high. Therefore, any examination of real-world dynamic portfolio manage-
ment needs to consider these frictions.

Multi-stage portfolio optimization problems with transaction costs as-
sume that there are k risky assets (“stocks”) and/or a riskless asset (“bank
account” paying a fixed interest rate r) traded during the period [0, T ]. In
our discrete-time analysis, portfolio adjustments are made at N fixed times
in [0, T ], 0 = t0 < t1 < · · · < tN−1 < tN = T . Trades are made to maximize
the investor’s expected utility over terminal wealth (T is the terminal time)
and/or consumption during [0, T ]. We will examine only the case of propor-
tional transaction costs. If the major transaction cost is the bid-ask spread,
then proportional transaction costs are the correct case to study.

Multi-stage portfolio optimization problems with transaction costs have
been studied in many papers. The problem with one risky asset has been
well studied; see Zabel (1973), Constantinides (1976, 1986), Gennotte and
Jung (1994), and Boyle and Lin (1997). The key insight is that transaction
costs create a “no-trade region” (NTR); that is, no trading is done if the
current portfolio is inside the no-trade region, and otherwise the investor
trades to some point on the boundary of the no-trade region. Kamin (1975)
considered the case with only two risky assets. Constantinides (1979) and
Abrams and Karmarkar (1980) established some properties of the NTR for
multiple assets, but present only numerical examples with one safe and one
risky asset. Brown and Smith (2011) evaluated some heuristic strategies and
their bounds based on simulation, but their method cannot give the optimal
portfolios.

In the continuous-time version, there are many papers about the portfolio
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optimization problem with transaction costs with one or two risky assets;
see Davis and Norman (1990), Duffie and Sun (1990), Akian et al. (1996),
Janecek and Shreve (2004), Liu (2004), and Goodman and Ostrov (2010).
Muthuraman and Kumar (2006, 2008) gave numerical examples at most
three risky assets. Muthuraman and Zha (2008) provided a computational
scheme that combines simulation with the boundary update procedure, and
presented some computational results with k ≥ 3. However, the presence of
simulation implies that the boundary of the NTR is not precisely computed.

To the best of our knowledge, when the number of correlated risky assets
is bigger than three and T ≥ 6, our DP method is the first one to explic-
itly give good numerical solutions with transaction costs and general utility
functions.

2 Portfolio Models

Assume that there are k risky assets ("stocks") and one riskless asset ("bond")
available for investment. The investor’s objective is to maximize the ex-
pected utility at the terminal time T . In [0, T ], there are N + 1 stages,
0 = t0 < t1 < · · · < tN−1 < tN = T . At each stage ti (for i = 0, . . . , N − 1),
the investor has an opportunity to reallocate the portfolio, which will incur
transaction costs. For simplicity, we assume these stages are equally sepa-
rated with a unit length of time, and then we use t = i as the i-th stage in
this paper.

Let R = (R1, . . . , Rk)
> be the random one-period return vector of the

stocks, and Rf be the return of the bond. The portfolio fraction for asset
i at the beginning of period t right before reallocation is denoted xti, and
let xt = (xt,1, . . . , xt,k)

>. Let Wt be the total wealth at the beginning of
period t right before reallocation. The difference between the total wealth
and the wealth invested in stocks is invested in the bond. Let δt,iWt denote
the amount of dollars for buying or selling part of the i-th stock at stage t,
expressed as a fraction of wealth, while δt,i > 0 means buying, and δt,i < 0

means selling. We assume that f(δt,iWt) = τ |δt,iWt| with a constant τ > 0

is the transaction cost function for buying or selling part of the i-th stock
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using δt,iWt dollars. Let e denote the column vector of all elements equal to
1. Then the multi-stage portfolio optimization problem can be expressed as

V0(W0, x0) = max
δt

E {u(WT )}

s.t. Wt+1 = e>Xt+1 +Rf (1− e>xt − yt)Wt),

Xt+1,i = Ri(xt,i + δt,i)Wt,

yt = e>(δt + τ |δt|),

xt+1,i = Xt+1,i/Wt+1,

t = 0, . . . , T − 1; i = 1, . . . , k,

where E{·} is the expectation operator, Xt+1 = (Xt+1,1, . . . , Xt+1,k)
> is the

vector of the amount of dollars invested in the risky assets at stage t+1, and
δt = (δt,1, . . . , δt,k)

>. Note that all of Xt+1, xt+1, Wt+1, yt+1 and δt+1 are
random as R is random. So when R has a continuous distribution, R must be
discretized or simulated so that the model is solvable. But the exponential
growth of scenarios over the number of periods T allows us to solve this
model directly only when T is very limited, typically T ≤ 4. This limitation
makes it necessary to change this model into a DP model discussed in Section
3.

To be more general, we can assume that Rf and the multivariate distri-
bution of R are dependent on a vector discrete time stochastic process θt,
denoted by Rf (θt) and R(θt) respectively, for t = 0, . . . , T − 1. Then the
above model becomes

V0(W0, x0, θ0) = max
δt

E {u(WT )}

s.t. Wt+1 = e>Xt+1 +Rf (θt)(1− e>xt − yt)Wt,

Xt+1,i = Ri(θt)(xt,i + δt,i)Wt,

yt = e>(δt + τ |δt|),

xt+1,i = Xt+1,i/Wt+1,

t = 0, . . . , T − 1; i = 1, . . . , k.
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When there is a consumption decision at each stage, a dynamic portfolio
optimization problem is to find an optimal portfolio and a consumption
decision Ct at each stage t such that we have a maximal expected total
utility, i.e.,

max E

{
βTu(WT ) +

T−1∑
t=0

βtu(Ct)

}
,

where u is the given utility function, β is the discount factor, Wt+1 =

e>Xt+1 + Rf (1 − e>xt − yt)Wt − Ct), and Xt, xt and yt have the same
definitions in the equality constraints of the first model.

All these models have their corresponding DP models in the next section
to avoid the exponential growth of scenarios over the number of periods T ,
so that these problems can be solved for a few periods.

3 DP Models for Portfolio Problems with Transac-
tion Costs

For dynamic portfolio problems with transaction costs, we can choose the
state variables as the total wealthWt and allocation fractions xt = (xt,1, . . . , xt,k)

>

invested in the risky assets. Here Wt and xt are the values right before real-
location at time t. Thus, the DP model becomes

Vt(Wt, xt) = max
δt

E {Vt+1(Wt+1, xt+1)} ,

where

yt ≡ e>(δt + τ |δt|), (1)

Xt+1,i ≡ Ri(xt,i + δt,i)Wt,

Wt+1 ≡ e>Xt+1 +Rf (1− e>xt − yt)Wt,

xt+1,i ≡ Xt+1,i/Wt+1,

for i = 1, . . . , k. The terminal value function is VT (W,x) = u(W ) for some
given utility function u. Sometimes, the terminal value function is chosen as

5



VT (W,x) = u((1 − τe>x)W ), if we assume that all risky assets have to be
converted into the riskless asset before consumption. Later, we just assume
that VT (W,x) = u(W ) for simplicity.

In the model, the constraint (1) is nondifferentiable because of the ex-
istence of the absolute operator. We can change the nondifferentiable con-
straint into a linear constraint. Let δt = δ+

t − δ
−
t with δ+

t , δ
−
t ≥ 0, we have

|δt| = δ+
t + δ−t . Here δ

+
t = (δ+

t,1, . . . , δ
+
t,k)
> is the vector of fractions of wealth

Wt for buying stocks, and δ−t = (δ−t,1, . . . , δ
−
t,k)
> is the vector of fractions of

wealth Wt for selling stocks. Thus, by using δ+
t and δ−t instead of δt in the

models, the constraint (1) is changed into a linear constraint:

yt ≡ e>((δ+
t − δ

−
t ) + τ(δ+

t + δ−t )).

We will still use the absolute value notation in the rest of the paper to
simplify the presentation.

If we do not allow shorting stocks or borrowing cash, then we just need
to add the constraints xt + δt ≥ 0 and 1 − e>xt ≥ yt. And the range of xt
and xt+1 is [0, 1]k while e>xt+1 ≤ 1.

3.1 Portfolio with a CRRA Utility

In economics and finance, we usually assume a CRRA utility function, i.e.,
u(W ) = W 1−γ/(1 − γ) for some constant γ > 0 and γ 6= 1, or u(W ) =

log(W ) for γ = 1. Thus, for u(W ) = W 1−γ/(1 − γ), if we assume that
Vt+1(Wt+1, xt+1) = W 1−γ

t+1 · gt+1(xt+1), then

Vt(Wt, xt) = max
δt

E
{
W 1−γ
t+1 · gt+1(xt+1)

}
,
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where

st+1,i ≡ Ri(xt,i + δt,i),

yt ≡ e>(δt + τ |δt|),

Πt+1 ≡ e>st+1 +Rf (1− e>xt − yt),

Wt+1 ≡ Πt+1Wt,

xt+1,i ≡ st+1,i/Πt+1,

for i = 1, . . . , k. By changing Wt+1 to Πt+1Wt in the objective function, we
get Vt(Wt, xt) = W 1−γ

t · gt(xt), where

gt(xt) = max
δt

E
{

Π1−γ
t+1 · gt+1(xt+1) | xt

}
. (2)

Therefore, by induction, from VT (W,x) = u(W ) = W 1−γ · 1/(1− γ), we
showed that

Vt(Wt, xt) = W 1−γ
t · gt(xt)

for any time t = 0, 1, . . . , T , while gt(x) has the iterative formula given
in the above optimization problem and gT (x) = 1/(1 − γ) (or gT (x) =

(1 − τe>|x|)1−γ/(1 − γ) when we assume that all risky assets have to be
converted into the riskless asset before consumption), if we assume a pro-
portional transaction cost and a power utility u(W ) = W 1−γ/(1− γ) with a
constant relative risk aversion coefficient γ > 0 and γ 6= 1.

For u(W ) = log(W ), we can also show by induction that

Vt(Wt, xt) = log(Wt) + gt(xt),

where
gt(xt) = max

δt
E {log(Πt+1) + gt+1(xt+1) | xt} , (3)

while gT (x) = 0 (or gT (x) = log(1− τe>|x|), when we assume that all risky
assets have to be converted into the riskless asset before consumption).

Since Wt and xt are separable for CRRA utilities, we could just do a
backward recursion on the functions gt(x) instead of Vt(W,x).
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When there is no riskless asset, we just need to cancel the Rf term and
replace mt with 0 in the above models for gt or ψt, while we should have
e>xt = 1. (The state variable vector xt = (xt,1, . . . , xt,k) should be changed
to (xt,1, . . . , xt,k−1), and there is the same cutoff in xt+1).

If we do not allow shorting stocks or borrowing cash, then the range of
xt is [0, 1]k, and in the models we just need to add the constraints xt+δt ≥ 0

and yt ≤ 1− e>xt, so that xt+1 ∈ [0, 1]n and e>xt+1 ≤ 1. And we still have
the property of separation of W and x in the value functions V (W,x).

We know that there is a NTR, Ωt, for any t = 0, 1, . . . , T − 1. When
xt ∈ Ωt, the investor will not trade at all, and when xt /∈ Ωt, the investor
will trade to some point on the boundary of Ωt. That is, Ωt is defined as

Ωt = {xt : δ∗t = 0},

where δ∗t is the optimal control for the given xt. See Kamin (1975), Con-
stantinides (1976, 1979, 1986), Davis and Norman (1990), Muthuraman and
Kumar (2006), and so on.

Abrams and Karmarkar (1980) showed that NTR is a connected set and
that it is a cone when the utility function is assumed to be positively homo-
geneous (a function u(x) is positively homogeneous if there exists a positive
value function ψ(x) such that u(ax) = ψ(a)u(x) for any a > 0). Moreover,
in the case of proportional transaction costs and concave utility functions,
NTR can take on many forms ranging from a simple half-line to a nonconvex
set. So we should use numerical methods to compute NTR.

From the separability of W and x, we see that the optimal portfolio
rules are independent of wealth Wt. Thus the “no-trade” regions Ωt are also
independent of Wt, for the CRRA utility functions.

3.2 Serially Correlated Asset Returns with Stochastic Pa-
rameters

In the previous model, we assume that the interest rate is fixed and the risky
asset returns have the same multivariate distribution throughout time, and
they are not serially correlated. But in real-life models, the riskless return
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Rf and the multivariate distribution of risky asset returns are stochastic
and serial-correlated. Assume that they are dependent on some stochastic
parameters. Let all these parameters be denoted as a vector θt at time t.
They could be discrete Markov chains with a given transition probability
matrix from the previous stage to the current stage, or continuously dis-
tributed, conditional on their previous-stage values. Let us denote Rf (θt)

for the bond return and R(θt) for the stocks return vector respectively, for
t = 0, . . . , T − 1.

With wealth Wt, allocation fractions xt and parameters θt as the state
variables, the DP model becomes

Vt(Wt, xt, θt) = max
δt

E {Vt+1(Wt+1, xt+1, θt+1) |Wt, xt, θt} ,

where the terminal value function is VT (W,x, θ) = u(W ), and

yt ≡ e>(δt + τ |δt|),

Xt+1,i ≡ Ri(θt)(xt,i + δt,i)Wt,

Wt+1 ≡ e>Xt+1 +Rf (θt)(1− e>xt − yt)Wt,

xt+1,i ≡ Xt+1,i/Wt+1.

Like what we discussed in Section 3.1, when the utility function is u(W ) =

W 1−γ/(1−γ) with γ > 0 and γ 6= 1, we have Vt(Wt, xt, θt) = W 1−γ
t ·gt(xt, θt)

where
gt(xt, θt) = max

δt
E
{

Π1−γ
t+1 · gt+1(xt+1, θt+1) | xt, θt

}
, (4)

where

st+1,i ≡ Ri(θt)(xt,i + δt,i),

Πt+1 ≡ e>st+1 +Rf (θt)(1− e>xt − yt),

with gT (x, θ) = 1/(1− γ). Similarly, we also have the separability of W and
(x, θ) when u(W ) = log(W ). Moreover, the separability still holds if we add
"no-shorting" and/or "no-borrowing" constraints.
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From the separability of W and (x, θ), we see that the optimal portfolio
rules are independent of wealth Wt. Thus, the NTR is also independent of
Wt for CRRA utility functions, but will depend on θt.

3.3 Portfolio with Transaction Costs and Consumption

If we allow assets to finance consumption during the investment period, then
the DP model becomes

Vt(Wt, xt) = max
Ct,δt

u(Ct)h+ βE {Vt+1(Wt+1, xt+1)} ,

where h is the length of one period,

yt ≡ e>(δt + τ |δt|),

Xt+1,i ≡ Ri(xt,i + δt,i)Wt,

Wt+1 ≡ e>Xt+1 +Rf (Wt(1− e>xt − yt)− Cth),

xt+1,i ≡ Xt+1,i/Wt+1,

and the terminal value function VT (W,x) is given.
Let Ct = ctWt. Like what we discussed in Section 3.1, when the utility

function is u(C) = C1−γ/(1 − γ) with γ > 0 and γ 6= 1, and the terminal
value function is VT (W,x) = W 1−γ · gT (xt) for some given gT (x), we have

Vt(Wt, xt) = W 1−γ
t · gt(xt),

where
gt(xt) = max

ct,δt
u(ct)h+ βE

{
Π1−γ
t+1 · gt+1(xt+1) | xt, ct

}
. (5)

Here,

st+1,i ≡ Ri(xt,i + δt,i),

Πt+1 ≡ e>st+1 +Rf (1− e>xt − yt − cth).

Similarly, we can also have the separability of W and x when u(C) = log(C)
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and VT (W,x) = log(W ) + gT (xt). Moreover, the separability still holds if
we add "no-shorting" and/or "no-borrowing" constraints. If R and Rf are
dependent on a Markov chain parameter vector θt, then we still have the
separability of W and (x, θ).

From the separability ofW and x, we see that the optimal portfolio rules
are independent of wealth Wt. Thus NTR, Ωt, is also independent of Wt, for
the CRRA utility functions. Here Ωt is defined as

Ωt = {xt/(1− c∗th) : δ∗t = 0},

where c∗t and δ∗t are the optimal controls for the given xt.

4 Numerical DP Algorithms

If state and control variables in a DP problem are continuous, then the value
function must be approximated in some computationally tractable manner.
It is common to approximate value functions with a finitely parameterized
collection of functions; that is, we use some functional form V̂ (x;b), where
b is a vector of parameters, and approximate a value function, V (x), with
V̂ (x;b) for some parameter value b. For example, V̂ could be a linear com-
bination of polynomials where b would be the weights on polynomials. After
the functional form is fixed, we focus on finding the vector of parameters,
b, such that V̂ (x;b) approximately satisfies the Bellman equation (Bellman,
1957).

Numerical solutions to a DP problem are based on the Bellman equation:

Vt(x, θ) = max
a∈D(x,θ,t)

ut(x, a) + βE
{
Vt+1(x+, θ+) | x, θ, a

}
, (6)

s.t. x+ = Gt(x, θ, a, ω),

θ+ = Ht(θ, a, ε),

where x is the continuous state, θ is the discrete state, Vt(x, θ) is called the
value function at time t ≤ T (the terminal value function VT (x, θ) is given),
a is the action variable vector in its feasible set D(x, θ, t), x+ is the next-
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stage continuous state with its transition function Gt at time t, θ+ is the
next-stage discrete state with its transition function Ht at time t, ω and ε
are two random variables, and ut(x, a) is the utility function at time t, β is
the discount factor, and E{·} is the expectation operator.

The following is the algorithm of parametric DP with value function
iteration for finite horizon problems.

Algorithm 1. Numerical Dynamic Programming with Value Function Iter-
ation for Finite Horizon Problems

Initialization. Choose the approximation nodes, Xt = {xit : 1 ≤ i ≤ mt} ⊂
Rd, for every t < T , and choose a functional form for V̂ (x, θ;b). Let
V̂ (x, θ;bT ) ≡ VT (x, θ). Then for t = T−1, T−2, . . . , 0, iterate through
steps 1 and 2.

Step 1. Maximization Step. Compute

vi,j = max
a∈D(xi,θj ,t)

ut(xi, a) + βE
{
V̂ (x+, θ+;bt+1)

}
s.t. x+ = Gt(xi, θj , a, ω),

θ+ = Ht(θj , a, ε),

for each θj ∈ Θ, xi ∈ Xt, 1 ≤ i ≤ mt.

Step 2. Fitting Step. Using an appropriate approximation method, compute
the bt such that V̂ (x, θj ;b

t) approximates (xi, vi,j) data for each θj ∈
Θ.

Algorithm 1 shows that there are three main components in value function
iteration for deterministic DP problems: optimization, approximation, and
integration. More detailed discussion of numerical DP can be found in Cai
(2009), Cai and Judd (2010), Judd (1998) and Rust (2008).

4.1 Approximation

An approximation scheme consists of two parts: basis functions and approx-
imation nodes. Approximation nodes can be chosen as uniformly spaced
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nodes, Chebyshev nodes, or some other specified nodes. From the view-
point of basis functions, approximation methods can be classified as either
spectral methods or finite element methods. A spectral method uses globally
nonzero basis functions φj(x) such that V̂ (x;b) =

∑n
j=0 bjφj(x) is a degree-n

approximation. Examples of spectral methods include ordinary polynomial
approximation, Chebyshev polynomial approximation, and shape-preserving
Chebyshev polynomial approximation (Cai and Judd, 2012a), and Hermite
approximation (Cai and Judd, 2012c). In contrast, a finite element method
uses locally basis functions φj(x) that are nonzero over sub-domains of the
approximation domain. Examples of finite element methods include piece-
wise linear interpolation, cubic splines, B-splines, and shape-preserving ra-
tional splines (Cai and Judd, 2012b). See Cai (2009), Cai and Judd (2010),
and Judd (1998) for more details.

We prefer Chebyshev polynomials when the value function is smooth.
Chebyshev polynomials on [−1, 1] are defined as Tj(x) = cos(j cos−1(x)),

while general Chebyshev polynomials on [xmin, xmax] are defined as Tj((2x−
xmin − xmax)/(xmax − xmin)) for j = 0, 1, 2, . . .. In a d-dimensional approxi-
mation problem, let the domain of the value function be

{
x = (x1, . . . , xd) : xmin

j ≤ xj ≤ xmax
j , j = 1, . . . d

}
,

for some real numbers xmin
j and xmax

j with xmax
j > xmin

j for j = 1, . . . , d.
Let xmin = (xmin

1 , . . . , xmin
d ) and xmax = (xmax

1 , . . . , xmax
d ). Then we denote

[xmin, xmax] as the domain. Let α = (α1, . . . , αd) be a vector of nonneg-
ative integers. Let Tα(z) denote the product Tα1(z1) · · · Tαd

(zd) for z =

(z1, . . . , zd) ∈ [−1, 1]d. Let

Z(x) =

(
2x1 − xmin

1 − xmax
1

xmax
1 − xmin

1

, . . . ,
2xd − xmin

d − xmax
d

xmax
d − xmin

d

)
for any x = (x1, . . . , xd) ∈ [xmin, xmax].

Using these notations, the degree-n complete Chebyshev approximation
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for V (x) is
V̂n(x;b) =

∑
0≤|α|≤n

bαTα (Z(x)) , (7)

where |α| =
∑d

j=1 αj for the nonnegative integer vector α = (α1, . . . , αd). So
the number of terms with 0 ≤ |α| =

∑d
j=1 αi ≤ n is

(
n+d
d

)
for the degree-n

complete Chebyshev approximation in Rd.

4.2 Numerical Integration

In the objective function of the Bellman equation, we often need to compute
the conditional expectation of V (x+ | x, a). When the random variable is
continuous, we have to use numerical integration to compute the expectation.

One naive way is to apply Monte Carlo or pseudo Monte Carlo meth-
ods to compute the expectation. By the central limit theorem in statistics,
the numerical error of the integration computed by (pseudo) Monte Carlo
methods has a distribution that is close to normal. So there is no bound for
the numerical error occurred by (pseudo) Monte Carlo methods. Moreover,
the optimization problem often needs hundreds or thousands of evaluations
of the objective function. This implies that once one evaluation of the ob-
jective function has a big numerical error, the previous iterations to solve
the optimization problem may make no sense. Therefore, the iterations may
never converge to the optimal solution. Thus it is not practical to apply
(pseudo) Monte Carlo methods to the optimization problem generally, un-
less the stopping criterion of the optimization problem is set very loosely.

Therefore, it will be good to have a numerical integration method with a
bounded numerical error. Here we present a common numerical integration
method when the random variable is normal.

In the expectation operator of the objective function of the Bellman equa-
tion, if the random variable has a normal distribution, then it will be good to
apply the Gauss-Hermite quadrature formula to compute the numerical inte-
gration. That is, if we want to compute E{f(Y )} where Y has a distribution
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N (µ, σ2), then

E{f(Y )} = (2πσ2)−1/2

ˆ ∞
−∞

f(y)e−(y−µ)2/(2σ2)dy

= (2πσ2)−1/2

ˆ ∞
−∞

f(
√

2σ x+ µ)e−x
2√

2σdx

.
= π−

1
2

m∑
i=1

ωif(
√

2σxi + µ),

where ωi and xi are the Gauss-Hermite quadrature weights and nodes over
(−∞,∞). See Stroud and Secrest (1966).

If Y is log normal, i.e., log(Y ) has a distribution N (µ, σ2), then we can
assume that Y = eX where X ∼ N (µ, σ2), thus

E{f(Y )} = E{f(eX)} .= π−
1
2

m∑
i=1

ωif
(
e
√

2σxi+µ
)
.

If we want to compute a multidimensional integration, we could apply
the product rule. For example, suppose that we want to compute E{f(X)},
where X is a random vector with multivariate normal distribution N (µ,Σ)

over (−∞,+∞)d, where µ is the mean column vector and Σ is the covariance
matrix, then we could do the Cholesky factorization first, i.e., find a lower
triangular matrix L such that Σ = LL>. This is feasible as Σ must be a
positive semi-definite matrix from the covariance property. Thus,

E{f(X)} =
(

(2π)ddet(Σ)
)−1/2

ˆ
Rd

f(y)e−(y−µ)>Σ−1(y−µ)/2dy

=
(

(2π)ddet(L)2
)−1/2

ˆ
Rd

f
(√

2Lx+ µ
)
e−x

>x2d/2det(L)dx

.
= π−

d
2

m∑
i1=1

· · ·
m∑
id=1

ωi1 · · ·ωidf

(
√

2L1,1xi1 + µ1,

√
2(L2,1xi1 + L2,2xi2) + µ2, · · · ,

√
2(

d∑
j=1

Ld,jxij ) + µd

)
,

where ωi and xi are the Gauss-Hermite quadrature weights and nodes over
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(−∞,∞), Li,j is the (i, j)-element of L, and det(·) means the matrix deter-
minant operator.

4.3 Parallelization

Parallelization allows researchers to solve huge problems and is the founda-
tion of modern scientific computation. Our work shows that parallelization
can also be used effectively in solving the dynamic portfolio optimization
problems using value function iteration. The key fact is that at each max-
imization step, there are many independent optimization problems, one for
each (xi, θj). In our portfolio problems there are often thousands of such
independent problems, and future problems will easily have millions of inde-
pendent problems. See Cai et al. (2013) for more detailed discussion. In this
paper, we will use the parallel DP algorithms to solve a dynamic portfolio
problem with seven assets.

5 Numerical DP in Portfolio Problems

All the optimization problems of Section 3 have differential objective func-
tions and constraints after replacing δt with δ+

t − δ
−
t , and replacing |δt| by

δ+
t + δ−t , where δ

+
t , δ

−
t ≥ 0. Therefore, we can apply some fast Newton-type

solvers, such as NPSOL optimization package (Gill et al., 1994), to solve
the maximization problems in numerical DP algorithms (Algorithm 1). The
maximization problems (2) and 4 are formulated in terms of 2k control vari-
ables (δ+

t and δ−t ), and 2k bound constraints (δ+
t , δ

−
t ≥ 0), where k is the

number of risky assets, and other unknowns are expressed in terms of these
controls. The problem (5) has one more control at each time, ct, and one
more bound constraint, ct ≥ 0. If we do not allow shorting stocks or bor-
rowing cash, then there are (k + 1) more constraints, xt + δ+

t − δ
−
t ≥ 0 and

yt ≤ 1− e>xt (or yt ≤ 1− e>xt − ct when there is a consumption decision),
where yt ≡ e>((δ+

t − δ
−
t ) + τ(δ+

t + δ−t )).
If the return for a risky asset i, Ri, is unbounded (e.g., log-normal),

then we have P(Πt ≤ 0) > 0 when xt,i + δt,i < 0. It follows that for the
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CRRA utility functions, the optimal solution must have xt,i + δ∗t,i ≥ 0 unless
the asset i can be replicated by other assets, which is a degenerate case.
Since the expectation of next-time value function is computed numerically
by numerical DP, we must add the constraint xt,i + δ+

t,i − δ
−
t,i ≥ 0 to avoid

an unreasonable approximation solution. If returns are unbounded, then for
CRRA utility functions, we must have both “no-shorting” and “no-borrowing”
constraints: xt + δ+

t − δ
−
t ≥ 0 and yt ≤ 1− e>xt (or yt ≤ 1− e>xt− ct when

there is a consumption decision). Thus, we can set the domain of xt as [0, 1]k

for each stage t.
We assume R is log-normal and with correlation, therefore, log(R) =

(log(R1), · · · , log(Rk))
> ∈ Rk, has the multivariate normal distribution

N ((µ− σ2

2 )h, (ΛΣΛ)h), where h is the length of a period, µ = (µ1, · · · , µk)>

is the drift, σ = (σ1, · · · , σk)> is the volatility, and Σ is the correlation ma-
trix of the log-returns, and Λ = diag(σ1, . . . , σk). Let the interest rate be r
be constant with gross return per period equaling Rf = exp(rh). We can
express the returns in terms of the Cholesky factorization Σ = LL>, where
L = (Li,j)k×k is a lower triangular matrix, implying

log(Ri) = (µi −
σ2
i

2
)h+ σi

√
h

i∑
j=1

Li,jzj ,

where zi are independent standard normal random variables, for i = 1, . . . , k.
Therefore, for the optimization problems (2), (4) and (5), we apply a product
Gauss-Hermite quadrature to estimate the conditional expectation of Π1−γ

t+1 ·
gt+1(xt+1) while xt is given.

6 Numerical Examples

In this section, we give several numerical examples for solving the multi-
stage portfolio optimization problems with proportional transaction costs
and a power utility function u(W ) = W 1−γ/(1− γ). In these examples, the
length of one period is h, Rf = exp(rh) for an interest rate r, and R is
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always assumed to be log-normal with

log(R) ∼ N ((µ− σ2

2
)h, (ΛΣΛ)h)

in Rk, where µ = (µ1, · · · , µk)> is the drift, σ = (σ1, · · · , σk)> is the
volatility, and Σ is the correlation matrix of the log-returns, and Λ =

diag(σ1, . . . , σk).
In these examples, the number of stages is from 7 to 361, and the number

of assets is from 3 to 7. By using the numerical DP method, we computed
the “no-trade” regions for each stage in these examples. We applied the
NPSOL optimization package (Gill et al., 1994), and the complete Chebyshev
approximation method, and the multi-dimensional product Gauss-Hermite
quadrature rule in the numerical DP method for these examples.

6.1 Three-Asset Portfolio Problems without Consumption

We gives two examples to illustrate our numerical DP method for solving
the model (2) and (4) respectively, the multi-stage portfolio optimization
problems without consumption. In these examples, the assets available for
trading include one bond with a constant interest rate r and k = 2 stocks
with independent log-normal annual returns. We assume that the utility
function at the terminal time is u(W ) = W 1−γ/(1 − γ) with γ = 3. In the
numerical DP method for these examples, we use the degree-10 complete
Chebyshev approximation method with 11k tensor Chebyshev nodes for k
stocks, and the multi-dimensional product Gauss-Hermite quadrature rule
with 9 nodes in each dimension.

6.1.1 Example 1

The first example is a simple three asset portfolio problem of the model (2)
with quarterly time periods and 10-year horizon, i.e., h = 0.25 year and
T = 40 periods. We let r = 0.03, µ = (0.07, 0.07)> and σ = (0.2, 0.2)>.
Figure 1 shows NTR’s with τ = 0.5% at stages t = 0, 37, 38, 39, and Figure 2
shows NTR’s at stage t = 0 with various τ = 0.1%, 0.2%, 0.5%, 1%, 2%, 4%.
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Figure 1: No trade regions of Example 1 at various stages
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Figure 2: No trade regions of Example 1 at various transaction costs
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The circle point located inside the NTR’s is the Merton point, that is, the
portfolio that would be chosen if there were no transaction costs and the
horizon were infinite (Merton 1969, 1971). These NTR’s are symmetric
w.r.t. the 45 degree line, which is expected because the two stocks are i.i.d.
Also, each NTR is close to being square.

Figure 1 shows that the NTR’s depend on the trading horizon, but the
sensitivity is small. Only the T = 39 case is significantly different than the
others, due to the fact that the T = 39 is the last period before liquidation.
The NTR’s are otherwise nearly the same for all stages less than 37. This
indicates that the trading strategies for most periods are the same as an
infinite-horizon problem.

Figure 2 displays the sensitivity of the NTR to transaction costs τ . Note
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that a very small transaction cost, τ = 0.1%, creates a nontrivial NTR, but
that the NTR’s grow more slowly in size than τ grows as we increase τ .
The width of the NTR’s is expanding in a rate of about τ1/3. For example,
the width of the NTR of τ = 4% is a nearly (0.04/0.001)1/3 ≈ 3.4 times of
the width of τ = 0.1%. This reflects the theoretical asymptotic results of
Goodman and Ostrov (2010) for an infinite-horizon problem.

6.1.2 Example 2

In this example, we solve the three asset portfolio model (4) with one-year
time periods and 6-year horizon, i.e., h = 1 year and T = 6 periods. The
drift terms of stocks, µt = (µt,1, µt,2)>, are discrete Markov chains and in-
dependent of each other. The transition probability matrix

P(µt+1,i | µt,i) =

[
0.75 0.25

0.25 0.75

]

for i = 1, 2, while µt,1 is independent of µt,2. We let r = 0.04 and σ =

(0.2, 0.2)>. The proportional transaction cost ratio is τ = 1% for buying or
selling stocks.

Figure 3 displays NTR’s for four possible discrete states of (µt,1, µt,2) at
stages t = 0, 1, 4, 5. These NTR’s are close to be square as the two stocks are
i.i.d.. The top-right squares are NTR’s for the state (µt,1, µt,2) = (0.08, 0.08),
the bottom-left squares are the NTR for the state (µt,1, µt,2) = (0.06, 0.06),
and the top-left and the bottom-right squares are respectively the NTR
for the states (µt,1, µt,2) = (0.06, 0.08) and (µt,1, µt,2) = (0.08, 0.06). The
circle points inside the squares are the optimal allocation fractions given the
discrete states (µt,1, µt,2) if there were no transaction costs for trading stocks.
We see that in the case with serially correlated parameters, the sensitivity
of NTR’s on the trading horizon is still small, and only the last period is
significantly different.

In Figure 3, the circle points representing τ = 0 are not in centers of their
corresponding squares when t < 5. Each circle point stays away from the
center of its square at each stage, and the “outside edges” of its NTR are closer

20



Figure 3: NTR for 2 stocks with stochastic µ and 1 bond
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to the circle point than the “inside edges”. Suppose that the discrete state
at time t is (µt,1, µt,2) = (0.06, 0.06), i.e., the NTR is the bottom-left square,
a portfolio before rebalance locates near the center of all the four squares
(i.e., a point in the northeast direction of the circle in the bottom-left square)
tends to have less trade than another portfolio having the same distance from
the circle but away from the center (i.e., a point in the southwest direction of
the circle in the NTR). This confirms the intuition that if the portfolio is in
a position closer to the center of all NTR’s, there is little or no incentive to
trade, because the expected direction of next period’s trade is close to zero.

We ran Example 1 and 2 on a single core of a Mac laptop with a 2.5 GHz
processor. Every case in both examples took only several seconds.

6.2 Portfolio Problems with Consumption

We gives two examples to illustrate our numerical DP method for solving the
model (5), the multi-stage portfolio optimization problems with consump-
tion. In these examples, the assets available for trading include one bond
with a constant interest rate r and two or three stocks with correlated log-
normal annual returns. Table 1 lists the other parameters and running times
on a single core of a Mac laptop with a 2.5 GHz processor.

6.2.1 Example 3

This example assumes that the total investment horizon is 30 years and
the portfolio is rebalanced each month. This is a finite-horizon discrete
time approximation for the infinite-horizon continuous-time dynamic port-
folio problem given by Discussion 1 in Muthuraman and Kumar (2006). To
approximate the infinite-horizon problem, we assume that after the termi-
nal stage T = 360, the transaction cost becomes 0 and the portfolio can be
traded at any time, so the investor will always choose the Merton ratio,

x∗ =
(ΛΣΛ)−1(µ− r)

γ
,
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Table 1: Parameters and Running Times for Examples of Portfolio Problems
with Consumption

Example 3 Example 4
k 2 3
h 1/12 (1 month) 1
T 360 6
γ 2 3
β exp(−0.1h) 0.95
r 0.07 0.04
µ> (0.15, 0.15) (0.07, 0.07, 0.07)

σ> (
√

0.17,
√

0.17) (0.2, 0.2, 0.2)

Σ

[
1 0.4706

0.4706 1

]  1 0.4 0.4
0.4 1 0.16
0.4 0.16 1


Running time 3.5 minutes 8 minutes

and the optimal portfolio and the optimal consumption rate is

c∗ ≡ 1

γ

[
ρ− (1− γ)

(
(µ− r)>x∗

2
+ r

)]
= 9.14%,

where ρ = − log(β)/h = 0.1 is the continuously compounded discount rate
corresponding to the discretely compounded discount factor β. See Merton
(1969, 1971) for more details. Therefore, the terminal value function is
VT (W,x) = W 1−γ · gT (x), with

gT (x) =

ˆ ∞
0

e−ρtu (c∗) dt =
(c∗)1−γ

ρ(1− γ)
.

In the numerical DP method for this example, we use the degree-14 complete
Chebyshev approximation method with 152 tensor Chebyshev nodes for two
stocks, and the multi-dimensional product Gauss-Hermite quadrature rule
with 9 nodes in each dimension.

Figure 4 displays NTR’s at the stage t = 0, 320, 357, 358, 359, when
h = 1/12 year and the transaction cost proportion is τ = 1%. The circle
point located inside NTR is the Merton point (0.16, 0.16). We found that
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Figure 4: NTR for 2 correlated stocks and 1 bond with consumption when
τ = 1% (Example 2)
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Figure 5: Initial-time NTR for 2 correlated stocks and 1 bond with consump-
tion at various transaction costs (Example 2)
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NTR at stage t = 0 is close to the solution given in Muthuraman and Kumar
(2006).

We also ran the same example with h = 0.25 year and various τ using
numerical DP algorithm. Figure 5 shows NTR’s at t = 0 with h = 0.25 year
and various transaction cost proportions τ = 0.1%, 0.2%, 0.5%, 1%, 2%. We
can also see that the NTR with larger τ contains the NTR with smaller τ . It
also shows that the NTR’s at time t = 0 converges to a point (0.159, 0.159)

which is very close to the Merton’s point, as τ −→ 0.
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6.2.2 Example 4

In this example, we have one bond and three stocks available for trading,
with a transaction cost proportion τ = 1%. The terminal value function is
VT (W,x) = W 1−γ/(1 − γ). In the numerical DP method for this example,
we use the degree-10 complete Chebyshev approximation method with 113

tensor Chebyshev nodes for three stocks, and the multi-dimensional product
Gauss-Hermite quadrature rule with 9 nodes in each dimension.

Figure 6 displays NTR’s for t = 0, 1, 4, 5. Notice that the faces of the
NTR’s seem to be flat, but in fact there are small perturbation on the faces,
which might be due to numerical errors or the possibility that the exact NTR
might have curvy faces. The NTR’s are tilted as the stocks are correlated.
We see that in the case with 3 correlated stocks and 1 bond and consumption,
the sensitivity of NTR’s on the trading horizon is still small, and only the
last period is significantly different.

6.3 Seven-Asset Portfolio Problem

Our last example solves the model (2), where the assets available for trading
include one bond with a constant interest rate r = 0.03 and six stocks with
independent log-normal annual returns. We assume that

µ = (0.06, 0.064, 0.068, 0.072, 0.076, 0.08)>,

σ = (0.2, 0.22, 0.24, 0.26, 0.28, 0.3)>,

γ = 5, τ = 1%, and h = 1 year.
We applied the degree-4 complete Chebyshev approximation method

with 5 Chebyshev nodes in each dimension, and the multi-dimensional prod-
uct Gauss-Hermite quadrature rule with 5 nodes in each dimension. Thus,
for each value function iteration, it has 56 = 15, 625 optimization problems
in the maximization step. Moreover, the evaluation of the objective function
of each optimization problem is also time-consuming: it needs 56 = 15, 625

evaluations of degree-4 complete Chebyshev polynomials. This is a compu-
tationally intensive problem. But we can solve it by parallelization.

25



Figure 6: NTR for 3 stocks with higher correlation and 1 bond with con-
sumption (Example 4)
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Figure 7: NTR for 6 independent stocks and 1 bond
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At first, we applied the parallel DP algorithm in the HTCondor-MW sys-
tem, a high-throughput distributed computing framework with high-latency
on a cluster of computers. It took 1.3 hours to get the solutions by re-
questing 100 worker processes in the system. More details about the DP
parallelization in the HTCondor-MW system are discussed in Cai et al.
(2013). The parallel DP algorithm can also be extended to be applied in
high-performance supercomputing with low-latency. We used a supercom-
puter in Computation Institute of University of Chicago, called Beagle (see
http://beagle.ci.uchicago.edu for more details), to solve the problem. The
parallel DP algorithm used 480 cores and took only 16 minutes to get the
solutions.

Figure 7 displays NTR’s for t = 0, 1, 4, 5, and we see that the regions
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are close to hypercubes as the six stocks are uncorrelated. In the figure, the
circle, the mark and the plus are, respectively, the Merton points for stock 1
and 2, stock 3 and 4, and stock 5 and 6. The top-right squares, the middle
squares, and the bottom-left squares are the cross-sections of the hypercube
NTR’s for stock 1 and 2, stock 3 and 4, and stock 5 and 6, respectively.
We see that in the case with 6 stocks and 1 bond, the sensitivity of NTR’s
on the trading horizon is still small, and only the last period is significantly
different.

There is no problem to apply parallel DP algorithms to solve a problem
with 6 correlated stocks and 1 bond, and clearly the parallel DP algorithms
can be also applied to solve a problem with more stocks as the supercom-
puters typically now have more than 100,000 cores.

7 Conclusion

This paper has shown that numerical value function iteration can solve multi-
stage portfolio optimization problems with multiple assets and transaction
costs in an efficient and accurate manner. We illustrate the trading strate-
gies by describing the no-trade regions for various choices of asset returns
and transaction costs. The numerical DP algorithms may be computational
intensive for large portfolio optimization problems, but modern hardware
and parallel DP algorithms make it possible to now solve such big problems.
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