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1. Introduction 

A ubiquitous and largely unquestioned assumption in studies of housing markets is that there 

is perfect, or at least unbiased, information about local amenities and disamenities. This assumption 

is critical because it has allowed for the generation of estimates of willingness to pay (WTP) for air 

pollution, hazardous waste sites, health risks, school quality, local crime, climate, and many other 

amenities and disamenties (e.g., Davis 2004 and 2011; Chay and Greenstone 2005; Greenstone and 

Gallagher 2008; Linden and Rockoff 2008); these estimates are of interest in their own right but they 

are also necessary for the development of optimal policy.  However, there is virtually no direct 

evidence on whether housing market participants are aware of the differences in amenities across 

locations.  The absence of this evidence undermines confidence in the reliability of the estimates of 

WTP, especially in the case of environmental disamenities where there is often great scientific 

uncertainty about the consequences of exposure. 

Industrial plants that emit toxics are an especially important and salient local amenity.  These 

plants are ubiquitous in the United States today, and many lie in close proximity to major population 

centers. Further, they emit nearly 4 billion pounds of toxic pollutants annually, including 80,000 

different chemical compounds (GAO 2010).2 Whereas criteria air pollutants like sulfur dioxide have 

been regulated for decades, regulation of other airborne toxics is in its infancy. The unveiling of the 

Mercury and Air Toxics Standards in December 2011 represents the first time the U.S. government 

has enforced limits on mercury and other toxic chemicals and most of the chemicals emitted have 

never undergone any form of toxicity testing (U.S. Department of Health and Human Services 

2010).3  Indeed, the existing evidence on toxic emissions is particularly sparse, despite the fact that 

toxics are widely believed to cause cancer, birth defects, and damage to the brain and reproductive 

systems (U.S. Centers for Disease Control and Prevention 2009). On the other side of the ledger, 

these plants create jobs, increase local economic activity, and can lead to positive economic 

spillovers (Greenstone, Hornbeck, and Moretti, 2010).  

This paper represents a first step towards assessing the standard assumption of perfect or 

unbiased information in the housing market. In doing so, we develop a research design to estimate 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Source: http://www.gao.gov/highrisk/risks/safety-security/epa_and_toxic_chemicals.php. Accessed on March 19th, 

2012. 
3 The Environmental Protection Agency characterizes their risk assessments as “not completely accurate” because 
“scientists don’t have enough information on actual exposure and on how toxic air pollutants harm human cells. The 

exposure assessment often relies on computer models when the amount of pollutant getting from the source(s) to 

people can’t be easily measured. Dose-response relationships often rely on assumptions about the effects of 

pollutants on cells for converting results of animal experiments at high doses to human exposures at low doses.” 

Source: http://www.epa.gov/ttn/atw/3_90_024.html (accessed on March 20, 2012). 
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the external costs of toxic plants in terms of both people’s willingness to pay to avoid toxic industrial 

facilities and population health. We have assembled an extraordinarily rich dataset on the location 

and economic activity of industrial plants in five large states in the United States. Our analysis 

focuses, in particular, on plants that report toxic emissions to the U.S. Environmental Protection 

Agency’s Toxic Release Inventory. We link information on these “toxic” plants with administrative 

data that provides detailed information on the universe of housing transactions and birth outcomes in 

these states. All three datasets provide exact geographic coordinates, so we are able to perform the 

analysis with a high degree of spatial detail.  

Our research design is based on the sharp change in local amenities that result from more 

than 1,600 toxic plants opening and closing.4 The power of combining the 1,600 plus openings and 

closings is that their staggered timing means that they form natural comparison groups for each other.  

Further, the large number of changes in plant operations allows for an analysis based on millions of 

births and hundreds of thousands of housing transactions. The remarkable spatial detail of our data 

means that we can identify housing units and births both in the immediate vicinity of plants and 

slightly farther away, allowing for comparisons both over time and across households living at 

different distances from the plants.5 

Since the previous literature offers little guidance about how far toxic pollutants travel, our 

first contribution is to show that pollution emitted from toxic plants can be detected up to one mile 

away from those plants. Using data from pollution monitoring stations and a difference-in-difference 

estimator, we document significantly higher levels of ambient toxic pollution within one mile of 

operating plants. On average, each birth in our sample lies within one mile of 1.27 toxic plants, so 

our results imply that the total amount of exposure could be substantial. Moreover, these results 

motivate our baseline research design, which compares households within one mile of a plant to 

households one to two miles away.  

We then turn to the housing market to assess the extent to which these 1600 plus plant 

openings and closings are reflected in sales prices. If households have good information, then their 

willingness-to-pay to avoid negative externalities should be reflected in housing price differentials. 

Our preferred estimates imply that housing values are about 1.5 % lower within one mile of operating 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 Indeed, our approach is inspired by a series of studies by C. Arden Pope and collaborators who examined the 

health effects of opening and closing the Geneva steel mill near Provo, Utah in the late 1980s (Pope 1989; Ransom 

and Pope 1992; Pope, Schwartz, and Ransom 1992). These studies have been influential largely because the 
resulting sharp changes in airborne particulates over a short period of time make the empirical analyses transparent 

and highly credible. 
$
There have been attempts to study the health and housing price responses of toxic emissions at the county level 

(Agarwala, Banternghansa, and Bui 2010; Bui and Mayer 2003; Currie and Schmieder 2009), but counties are too 

large due to the short transport distances of most airborne toxic pollutants (see Figure 1). 
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toxic plants.  The results are roughly symmetric with housing prices decreasing when plants open and 

increasing when plants close. We estimate that the aggregate loss in housing value per plant is 

approximately $1.5 million.  The effect is highly localized, with the largest impacts within a half-

mile radius of the plant. 

Housing prices serve as a valuable summary measure of household welfare, but these 

estimates will understate the economic cost of local externalities if there is imperfect information.  

Many toxic pollutants are colorless, odorless, and not well monitored, making them less salient than 

many other negative externalities. Thus, it is valuable to contrast housing prices with health 

outcomes, which should immediately respond to changes in plant activity regardless of how well 

these potential risks are understood. We find that the incidence of low birth weight increases by 2% 

within one mile of operating toxic plants, with comparable magnitudes between 0 and 0.5 miles and 

0.5 and 1 miles. Using an estimate of the monetary costs of low birth weight, this implies a total cost 

per plant of $700,000 from this one health outcome alone. Again the effect appears to be roughly 

symmetric in response to openings and closings, and again the effect appears to be highly localized, 

with no impact beyond one mile.   

Our study is one of the first large-scale empirical analyses of the external costs of toxic 

plants. Whereas there are a handful of case studies of individual plants, relatively few studies have 

examined multiple facilities, and our study is the first to bring together data from such a large 

number of plants.6 This richness allows us to begin to characterize heterogeneity of effects across 

plants. In additional results, we stratify plants by size and by the amount and toxicity of emissions, 

finding that the housing price and health impacts are experienced broadly across different types of 

plants. Interestingly, we find larger health impacts around plants that emit very toxic chemicals, but 

limited evidence that this has a differential impact on housing values. 

Our study is also the first in this literature to simultaneously examine both housing prices and 

health outcomes. Some of the most suggestive results in the paper come from these comparisons. For 

example, whereas the housing market impacts appear to be largely concentrated within a half mile, 

the health effects are observed up to one mile away. This suggests that the health effects of toxic 

plants may not disappear completely as soon as the plant closes, as would be the case if the causal 

channel is water or ground pollution.  

Lastly, we test whether household characteristics change when plants open and close. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 Studies of individual plants include the studies by C. Arden Pope mentioned above, as well as Blomquist (1974), 

Nelson (1981), and Kiel and McClain (1995). For studies of multiple plants see, e.g., Bui and Mayer (2003) and 

Davis (2011). 
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This analysis is of significant independent interest, as it provides new insight on the extent to which 

populations migrate in response to changes in local amenities (Banzhaf and Walsh 2008). We find 

that neighborhoods within one mile appear to have improved socio-economic status when plants are 

in operation, suggesting that other things equal, infant health outcomes would improve rather than 

deteriorate. Given previous evidence that educated, non-Hispanic white mothers are more likely to 

move away from known hazards (Currie, 2011), this pattern suggests that the hazards posed by toxic 

plants may not be widely recognized.   

The rest of the paper proceeds as follows: Section 2 presents an analytical framework which 

helps motivate the empirical analysis. Section 3 discusses the data, and Section 4 discusses the 

research design. Sections 5 and 6 outline the econometric specifications and results for housing 

values and infant health respectively. Finally, Section 7 interprets the results and 8 concludes. 

 

2. Analytical Framework 

2.1. The Incidence of Toxic Plant Openings 

To motivate our empirical strategy, we outline a partial equilibrium model of housing 

incidence in the context of toxic plant externalities.7 A local economy consists of a continuum of 

agents of measure one (denoted !) that choose to live in one of two locations ! ! !!!!!; some 

choose to live near a plant (! ! !) and others choose to live further away from a plant (! ! !), but 

in the same local labor market.  Toxic plant activity generates local economic benefits for both sets 

of residents in the form of wage income, w. Wages are assumed to be an exogenous function of local 

productivity and are the same across groups. Residents in each location enjoy location-specific 

amenities net of any housing costs, Ag, associated with their location. Lastly, each resident ! has some 

idiosyncratic preference for both locations, !!", representing heterogeneity in the valuation of local 

amenities. The !!"’s are independently and identically distributed across individuals and assumed to 

possess a continuous multivariate distribution with mean zero.  

An individual seeks to maximize utility by choosing over locations  

!!" ! !"# !! ! !!" ! !! ! !!" ! 

where !! represents mean utility in location g. Individuals will locate in whichever community yields 

the highest utility. Without heterogeneity in locational preferences, all individuals will locate in the 

community that offers the highest amenities. With heterogeneity in tastes, individuals in location N 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 The results from this partial equilibrium exercise generalize into a model of general equilibrium of the sort found 

in Kline (2010) and Moretti (2011). These models are themselves generalizations of the canonical models of Rosen 

(1974) and Roback (1982). 
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will have!!! ! !! ! !!" ! !!". Define the distribution function !! ! !!" ! !!" by G(.). Then, 

!! ! !"!!!! ! !! ! !!! is the measure of individuals in location N.  

Write the total welfare of workers in location N and F as  

! ! !!!"# !! ! !!" ! !! ! !!" ! 

And consider a positive economic shock stemming from a toxic plant opening in the community. We 

model this shock as a marginal improvement in productivity in the local community, which is 

assumed to increase wages in both the near and far locations equally. The plant opening, however, 

creates a negative externality for residents living near the plant through, for example, air pollution 

and related health effects.  

Taking the derivative of workers welfare with respect to the economic shock associated with 

a plant opening yields the expression: 

(1)   
!"

!"
! !! !

!"

!"
! !! !

!"

!"
!

!!!

!"
! ! !

!"

!"
! !! !

!!!

!"
 

where !" represents the marginal effect of a plant opening and 
!"

!!!

! !!.8 Equation (1) suggests the 

incidence of the plant opening may be summarized by two terms. The first term is the total wage 

effect associated with the plant opening.   Since in our empirical application, all residents near or far 

live within two miles of a plant, we assume that the wage effects are similar for both nearby residents 

and those a little further from a plant.  The second term consists of the non-wage changes in 

amenities associated with a plant opening for residents near the plant. Since negative plant 

externalities in the form of noise or air pollution are highly localized, these costs will only accrue to 

the residents living near the plant. 

After the plant opening some “marginal” residents who initially lived near the plant are better 

off moving further away. However, since workers are optimizing with respect to location decisions, a 

simple envelope result suggests that workers who switch locations in response to a change in local 

amenities are to first order indifferent about doing so. Therefore, the incidence of the plant opening 

may be approximated simply by the change in prices experienced by the immobile population. In the 

case of non-marginal changes in productivity or local amenities, the envelope theorem no longer 

holds, and taste-based sorting may also have first-order implications for welfare. However, in the 

case of localized disamenities such as a single plant, Bartik (1987) and Palmquist (1992) show that 

the slope of the hedonic price function is an approximate measure of the willingness to pay for a non-

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

8 The relationship 
!"

!!!
! !! follows directly from assuming that preference heterogeneity is drawn from a Type I 

Extreme Value distribution (Train 2003). However, this relationship also holds independent of the distribution of the 

taste heterogeneity. See Busso, Gregory, and Kline (2011).  
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marginal change. See Greenstone and Gallagher (2008) for a more complete discussion of non-

marginal changes in the context of environmental amenities.9  

This paper aims to estimate the local disamenities of toxic plant operation, 
!!!

!!
, holding all 

other factors fixed. We do this by comparing residents near a plant to those within the same local 

labor market who live slightly further away. Since, by assumption, both groups are affected similarly 

by the productivity shock, the difference-in-differences estimate will approximate 
!!!

!"
! By explicitly 

controlling for the first component of equation (1) in this way, our estimates will reflect the gross 

external costs/benefits of a toxic plant opening or closing rather than the net external costs/benefits 

after accounting for any local economic gains associated with toxic plant production.  

2.2. Decomposing Housing Incidence: Pollution-Health Externalities 

Housing prices serve as a useful way to track the costs and benefits of toxic plant activity, 

and housing prices may offer the best data we have about people’s willingness to pay to avoid 

disamenities.10   Nevertheless, housing values may not fully capture the amenities and disamenities 

associated with toxic emissions if residents do not fully understand the risks.  Many air pollutants are 

colorless, odorless, and are not well monitored even though they may be harmful to human health.  

Hence, to supplement our analysis of the housing market, we also explore implications for 

the health of local communities surrounding toxic plants. We focus on infant health because it is one 

of the few measures of population health that is available at a fine level of geographic disaggregation. 

Infant health is also a key indicator of society’s well-being and an important determinant of an 

individual’s future success in life (Currie, 2011). And focusing on infant health is advantageous, 

relative to adult outcomes, because infants do not have a long unobserved health history. For 

example, studies of the effects of pollution on adults are often plagued by concerns about previous 

exposures and behaviors. 

We believe this is the first large-scale study to present evidence on housing prices and health 

outcomes in the same setting.  Comparisons of the two sets of results provide some insight into the 

operation of housing markets.  For example, under the assumption that there are unbiased beliefs 

about the infant health effects, it is possible to estimate the share of the observed effect on housing 

prices accounted for by changes in infant health.  Further, given our fine-grained spatial data, we can 

assess whether the pattern of effects on housing prices matches the pattern of infant health effects. 

This comparison can shed light on the validity of the assumption that the housing market has perfect 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 Equilibrium sorting models may also yield insight into the welfare effects of non-marginal changes in the context 

of environmental disamenities. See Kuminoff, Smith, and Timmins (2010) for a recent review. 
10 The authors have often used these measures for this purpose.  See, e.g., Currie and Walker (2011), Davis (2004, 

2011), Chay and Greenstone (2005), and Greenstone and Gallagher (2008). 
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information about key amenities, which is an assumption that is central to the extensive hedonic 

housing price literature. 

 

3. Data Sources and Summary Statistics 

3.1. The Toxic Release Inventory Data 

We identify toxic plants using the Toxic Release Inventory (TRI), a publicly-available 

database established and maintained by the U.S. Environmental Protection Agency (EPA).11 The TRI 

was established by the Emergency Planning, Community Right to Know Act (EPCRA) in 1986, in 

response to the Bhopal disaster and a series of smaller spills of dangerous chemicals at American 

Union Carbide plants. Bhopal added urgency to the claim that communities had a “right to know” 

about hazardous chemicals that were being used or produced in their midst. EPCRA requires 

manufacturing plants (those in Standard Industrial Classifications 2000 to 3999) with more than 10 

full-time employees that either use or produce more than threshold amounts of listed toxic substances 

to report releases to the EPA.12  

The toxic emissions measures in the TRI have been widely criticized (Marchi and Hamilton, 

2006; Koehler and Spengler, 2007; Bennear, 2008). The emissions data are self-reported, and 

believed to contain a large amount of measurement error.13 Moreover, coverage has expanded over 

time to include additional industries and additional chemicals, making comparisons of total emissions 

levels over time extremely misleading. 14 Finally, because of the minimum thresholds for reporting, 

plants may go in and out of reporting even if they are continually emitting toxic chemicals. This 

introduces additional measurement error, and also makes the TRI poorly suited for identifying plant 

openings and closings.  

The TRI is extremely useful, however, for identifying which U.S. industrial plants emit toxic 

pollutants. The approach we adopt in this paper is to ignore, almost completely, the self-reported 

magnitudes and instead exploit variation introduced by plant openings and closings. Using the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 See EPA (2007) and EPA (2011b) for detailed descriptions of the TRI. 
12 Currently, facilities are required to report if they manufactured or processed more than 25,000 pounds of a listed 

chemical or “otherwise used” 10,000 pounds of a listed chemical. For persistent bio-accumulative toxins, the 

thresholds are lower. These thresholds have changed periodically over the life of the program. For example, in 1998, 

EPA added the receipt or disposal of chemical waste to the definition of “otherwise used”. 
13 The EPCRA explicitly states that plants need not engage in efforts to measure their emissions. The EPA provides 

guidance about possible estimation methodologies, but plants estimate their emissions themselves, and estimating 

methodologies vary between plants and over time. In addition, EPA enforcement of TRI reporting has typically 
taken the form of ensuring compliance rather than accuracy (Marchi and Hamilton, 2006). 
14 Federal facilities were added in 1994. Mining, electric utilities, hazardous waste treatment and disposal facilities, 

chemical wholesale distributors and other additional industrial sectors were added in 1998. Treatment of persistent 

bio-accumulative toxins was changed in 2000. By the EPAs own admission, the TRI is not well suited for describing 

changes in total amounts of toxic releases over time (U.S. EPA 2011b). 
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publicly-available TRI data, we create a list of all U.S. “toxic” plants by keeping every plant that 

ever reported toxic emissions to the TRI in any year. This sidesteps the problems introduced by 

changes in reporting requirements because plants end up being classified as “toxic” plants, even if, 

for example, they are in industries which were not included in the early years of the TRI. We then 

link this list of toxic plants to establishment-level data from the U.S. Census Bureau to determine the 

exact years in which each plant opened (and closed, if applicable).  

3.2. The Longitudinal Business Database 

We determine the exact years in which plants open and close using the U.S. Census Bureau’s 

Longitudinal Business Database (LBD). Started in 1975, the LBD is a longitudinal, establishment-

level database of the universe of establishments in the United States. 15 The LBD has been used 

widely by economists, for example, in studying plant-level employment dynamics (Davis, Faberman, 

Haltiwanger, Jarmin, and Miranda, 2010), and is by far the most accurate existing record of U.S. 

plant activity.  This precision is essential for our analysis, which relies largely on before and after 

comparisons, exploiting the discrete changes in toxic emissions that occur at plant openings and 

closings. 

These data must be accessed at a census research data center under authorization from the 

Census Bureau. They provide for each plant the year of opening (and closing, if applicable), as well 

as mean annual employment and mean annual total salaries.16 We merge the LBD with a second 

restricted access Census database called the Standard Statistical Establishment List (SSEL), which 

contains plant names and addresses for all plants in the LBD. Finally, we merge the LBD/SSEL 

dataset with the EPA’s TRI database via a name and address-matching algorithm.17  

3.3. Housing Values 

The housing data for this project includes housing transactions in five large states (Texas, 

New Jersey, Pennsylvania, Michigan, and Florida). These data report the date, price, mortgage 

amount, and address of all property sales for these five states from approximately 1998 to 2005.18 

The data also include the exact street address of the property, which allows us to link the housing 

data with plant level data from the TRI based on the latitude and longitude of the geocoded address 

(described in more detail below). The main limitation of the housing data is that it contains very little 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
15 For more information about the LBD see Davis, Haltiwanger, and Schuh (1998) and Jarmin and Miranda (2002). 
16 The year of a plant opening is left-censored for those plants that were operating on or before 1975. 
17 See Walker (2012) for further details pertaining to the match algorithm.  
18 The transaction records are public due to state information disclosure acts, but the raw data are often housed in 

PDF images on county websites making them inaccessible for computational analysis on a large scale. We used an 

external data provider who compiled the information from the county registrar websites into a single dataset. Data 

availability and temporal coverage varies by county but is fairly consistent between 1998-2005, the years of our 

housing analysis. 
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information pertaining to housing unit characteristics.19 These data include both residential and 

commercial real estate transactions, but we focus only on single-family, residential properties. To 

limit the influence of outliers and focus on “arms length” transactions, we exclude properties that 

sold for less than $25,000 or more than $10 million. All housing prices have been adjusted to year 

2000 dollars. 

3.4. Vital Statistics Data 

Data on infant health comes from restricted-access vital statistics natality and mortality data 

for the same five large states: Texas, New Jersey, Pennsylvania, Michigan, and Florida, from 1990 to 

2002. Together, these states accounted for 10.9 million births between 1990-2002, approximately 37 

percent of all U.S. births. The substantial advantage of these restricted-access data is their geographic 

detail. Whereas publicly-available vital statistics data include only the county of residence, the 

restricted-access data include the exact residential address of the mother. This precision is crucial in 

our context because the health consequences of toxic plants are highly localized. 

These data include detailed information about the universe of births and infant deaths in each 

state. We focus, in particular, on whether the infant is low birth weight defined as birth weight less 

than 2,500 grams. Low birth weight is common, affecting about seven percent of the births in our 

sample. Low birth weight is one of the most widely used overall indicators of infant health, in part 

because it has been shown to predict adult wellbeing.20 Other birth outcomes that we examine include 

a continuous measure of birth weight, very low birth weight (defined as birth weight less than 1,500 

grams), prematurity (defined as gestation less than 37 weeks), congenital abnormalities, and infant 

mortality (death in the first year). These are all outcomes that have been previously examined in the 

environment-infant health literature (e.g., Chay and Greenstone 2003; Currie, Neidell, and 

Schmieder, 2009; Currie, Greenstone, and Moretti, 2011; and Currie and Walker, 2011). Because 

there are many correlated outcomes and multiple hypothesis tests, we also construct a single, 

standardized measure and perform a single hypothesis test (Hochberg, 1988; Kling, Liebman, and 

Katz, 2007; Anderson 2008).  

In addition to these health outcomes, the vital statistics data include a number of important 

maternal characteristics including age, education, race, and smoking behavior.  In the empirical 

analyses below we control explicitly for these factors, as well as for month of birth, birth order, and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
19 For example, we observe square footage of the housing unit for less than half of the transactions. 
20 Black, Devereux, and Salvanes (2007) use twin and sibling fixed effects models on data for all Norwegian births 

over a long time period to show that birth weight has a significant effect on height and IQ at age 18, earnings, and 

education. Using U.S. data from California, Currie and Moretti (2007) find that mothers who were low birth weight 

have less education at the time they give birth and are more likely to live in a high poverty zip code. They are also 

more likely to have low birth weight children. 



!"+!

gender of child. In all analyses we exclude multiple births since they are likely to have poor birth 

outcomes for reasons that have little to do with environmental pollution. We also test directly 

whether plant openings and closings have affected these characteristics directly, either by changing 

the composition of neighborhoods near plants and/or by changing fertility.  

The fact that the LBD data is annual, while births are reported monthly raises the question of 

how to best think about the timing of exposure. We retain births in November, December, January, 

and February. Births in November and December are merged to LBD data from the same calendar 

year, while births from January and February are merged to LBD data from the preceding calendar 

year. The idea is that a baby born January 1, 2002 has not been exposed to any of the toxic plant 

activity for calendar 2002, but was exposed to toxic emissions in 9 out of 12 months of 2001. 

Similarly, a baby born in November 2001 was exposed to toxic emissions for 9 out of 12 months of 

2001.  This restriction has the additional advantage of limiting the extent to which seasonality in 

plant activity or birth outcomes affects our findings.  

3.5. Data Linkages and Aggregation 

We link plants in the TRI and LBD to our vital statistics and housing data based on latitude 

and longitude. Specifically, we first create a large dataset consisting of all pairwise combinations of 

plants and outcome variables (i.e. births and/or housing transactions). We keep outcome variables 

within two miles of a plant. This means that any outcome variable within two miles of more than one 

plant will contribute one observation for each plant-outcome pair. We then collapse the outcome 

measures into various distance bins surrounding plants in a given year. That is, for each plant-year, 

we construct the mean of the outcome variable for outcomes that occurred within one mile of a plant 

and the mean of the outcome variable for births that occurred between one and two miles of a plant. 

We also use more granular distance bin definitions. Collapsing the data eases the computational 

burden while also accounting for issues pertaining to inference when the identifying variation occurs 

at a more aggregate level.  

3.6. Summary Statistics 

 Panel A of Table 1 presents summary statistics for the sample of plants that form the basis for 

our analysis. The three columns reflect the sample characteristics for plants that were always open, 

newly opened, and newly closed within our sample frame respectively. Note that a single plant can 

appear both in columns (2) and (3), although in practice the plants in our sample tend to be long-

lived, with a median age of around 17 years.21 For continuously operating plants, the mean value of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
21 Plant age in the LBD is left-censored in 1975 (the first year the plants are observed in the sample). Therefore, the 

median age of the plants in our sample is likely to be a bit larger.  
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plant equipment and structures is $22 million, and mean annual salary and wages is $11.7 million.22 

Mean salary and wages is lower for plants that opened or closed. The table also reports mean annual 

toxic emissions, which exceeds 17,000 pounds in all three columns. These are the self-reported 

measures of airborne toxic emissions from the TRI, and are averaged over all non-missing 

observations (i.e. if a plant does not report to the TRI during a particular year in which we know the 

plant is operating, we treat this as missing rather than zero). 

Panel B of Table 1 describes community characteristics near plants that either opened or 

closed during our sample period. Statistics are reported separately by distance to the plant and 

observations are restricted to the 2 years after a plant opening or the 2 years before a plant closing. 

Note that a house or birth can be close to more than one plant, and so the same house or birth can 

appear in more than one column. Within columns, we have restricted houses and births so that they 

appear only once in this panel, implicitly giving equal weight to each birth and housing outcome. 

 Both housing values and maternal characteristics tend to improve with distance from the 

plant. The average housing value is $124,424 within a half mile of a plant compared to $132,227 for 

houses between one and two miles away. Similarly, average maternal education rises from 11.93 to 

12.22 over the same distance. In subsequent sections we examine how trends in these observables 

evolve as a function of plant openings and closings, providing some additional insight into 

population responses to changes in local disamenities. In addition, these sorting responses will help 

us to interpret any measured health responses.  Our identification strategy depends on the assumption 

that there are smoothly evolving trends in both observable and unobservable characteristics of the 

populations located less than a mile from a plant, and one to two miles from a plant.  

 These summary statistics describe how housing values and maternal characteristics vary with 

distance, but don’t give a sense of how many toxic plants there are within different distances of a 

given birth.  Restructuring our dataset so that the unit of observation is a birth, we calculate that, on 

average, there are 0.28 plants within a half mile of a birth, and 1.27 plants within one mile. In other 

words, the average mother in our sample lives within one mile of 1.27 plants that emit toxic releases. 

Restricting the sample to only sites where plants opened or closed between 1990 and 2002, there are 

on average 0.10 sites within a half mile of a birth, and 0.32 sites within one mile.  

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
22 The capital stock measures come from the Annual Survey of Manufacturers, and are computed using a modified 

perpetual inventory method (Mohr and Gilbert, 1996). Since the ASM is a sample and oversamples large 

establishments, these statistics are not available for all plant years and reflect statistics for larger plants. 
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4. The Transport of Airborne Toxics as the Basis of a Research Design 

Our difference-in-differences strategy compares houses and births in areas “near” a toxic 

plant to those in areas slightly farther away. While this is a simple idea conceptually, there is little 

guidance in the literature about how near a household must be to a plant for proximity to affect either 

housing prices or birth outcomes. In particular, atmospheric science provides little definitive 

information about how far toxic emissions are transported so we instead characterize this relationship 

empirically. This evidence is of significant independent interest and an important contribution of our 

paper. 

Our approach uses data from monitoring stations about ambient levels of hazardous air 

pollution. While the EPA has been monitoring criteria air pollutants for four decades, they have only 

recently begun monitoring hazardous air pollutants (HAPs).23 The first year of data availability was 

1998 and monitors have been gradually added over time. As of 2003, the last year of our sample, 

there were 84 pollutants being monitored across the 5 states in our sample. We standardize each 

pollutant to have mean zero and standard deviation of one.24  

We matched the monitoring station data to our data on toxic plants using latitude and 

longitude, keeping monitor-plant pairs in which the plant had ever reported releasing the monitored 

pollutant. We then examine the relationship between this standardized pollutant score and distance 

from operating toxic plants using the following linear regression model,  

(2)       !"##!"# ! !! ! !!! !"#$%!!"#$%&'() !" ! 

    !! !"#$%!!"#$%&'() !" ! !"#$%&'(!"!!!! ! !!" ! !! ! !!!"# 

where the dependent variable is the standardized pollution measure for monitor m linked to plant j in 

year t. The regression includes an indicator variable for whether a plant is operating in a given year, 

and the interaction between the indicator and a polynomial in the distance between the plant and the 

monitor. We also include monitor-plant pair fixed effects, !!", so that identification comes from 

plant openings and closings. Lastly, we include year fixed effects, !!! to control for overall trends in 

ambient pollution concentrations. The standard errors are two-way clustered on both monitor and 

plant.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
23 Hazardous air pollutants, also known as toxic air pollutants, are defined by the EPA as “pollutants that are known 

or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse 
environmental effects.” In contrast, criteria air pollutants, are more commonly found air pollutants that are regulated 

according to the EPA’s National Ambient Air Quality Standards (NAAQS). 
24 Note that some pollutants are certainly more toxic or hazardous than others. For the purposes of this particular 

econometric exercise, we are simply trying to understand if any detectible relationship exists between toxic plant 

activity and ambient levels of hazardous air pollutants, irrespective of the toxicity of a given pollutant. 
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Figure 1 plots the marginal effect of an operating plant on hazardous air pollution as a 

function of distance from the plant to a monitor. Average levels of ambient hazardous air pollution 

are one standard deviation higher immediately adjacent to an operating plant, and decline 

exponentially with distance, reaching zero at roughly one mile from a plant. This figure was 

constructed using a quartic in distance. We have also examined different functional forms for 

distance and the results are similar.25  

Documenting this relationship between toxic plant activity and ambient levels of hazardous 

air pollution is valuable in its own right, but it also helps motivate our empirical specifications. There 

are several ways for a plant to affect housing values and human health including aesthetics, 

congestion, and noise. Toxic emissions may be among the channels that have the most distant effects, 

and the evidence suggests that on average emissions do not reach further than one mile.26  This 

finding underscores the importance of performing the analyses which follow using spatial data at a 

high level of resolution. In most analyses below, we define “near” as within one mile of a plant and 

“far” as one to two miles away. Due to their geographic proximity, houses and households within one 

to two miles of the toxic plants are used as a comparison group for outcomes in the zero to one mile 

range. We also present results using alternative distances. As discussed above, the underlying 

assumption is that these individuals are close enough that they share in the wage and productivity 

effects of the plant. Hence, differences in the impact of plant operations reflect the effects of the local 

disamenities of plant operation.  

 

5. Housing Values 

5.1. Housing Values: Empirical Strategy 

In order to investigate the effects of toxic plants on housing values we fit the following 

econometric model:  

(3)   !!"# ! !!! ! !!! !"#$%!!"#$%&'() !" ! !!! ! !!!"#$ !" !! 

     !!! !"#$%!!"#$%&'() !" ! ! ! !!!"#$ !" ! !!!" ! !! ! !!!!!""#!" ! !! ! !!!"# 

where !!"# denotes average housing values near plant site !, within distance group !, in year !. For 

each plant j, there are two observations per year. In each plant-year, one observation consists of 

average housing prices "near" a plant (i.e. within 1 mile of the plant), which is the distance that toxic 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
25 Models using more flexible distance specifications, such as replacing a continuous distance measure with dummy 

variables for different distance bins yield similar results, but the models are less precisely estimated. 
26 A recent literature also finds that other forms of housing externalities are very localized (See for example, Linden 

and Rockoff (2008), Harding, Rosenblatt, and Yao (2009), Rossi-Hansberg, Sarte, and Owens (2010), and 

Campbell, Giglio, and Pathak (forthcoming)). 
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air emissions travel.  The second observation per plant-year consists of average house prices for 

houses within 1-2 miles of the plant; this second group provides a counterfactual for housing prices 

near the plant.  The availability of these two groups allows for a difference in differences-style 

estimator. 

 The variable ! !"#$%!!"#$%&'() !" is an indicator equal to one if a toxic plant ! is operating 

in year ! and zero otherwise. It is equal to 1 for both distance groups associated with a plant.  In 

equation (3), we define "near" as being within one mile of and the indicator ! ! !!!"#$ !" is equal 

to one if the house is within one mile of a location in which a toxic plant operated at any point in our 

sample. Equation (3) also includes plant by distance fixed effects !!" to control for all time-invariant 

determinants of house prices in a plant by distance group, which in practice is collinear with the 

indicator ! ! !!!"#$ !". Additional controls include 1990 census tract characteristics !!""#!", 

interacted with quadratic time-trends !!.
27 Equation (3) also includes time fixed effects, !!, in order to 

flexibly account for trends in housing values over time.  In practice, we report specifications that 

include either state by year fixed effects to account for regional patterns in housing prices or plant by 

year fixed effects to account for very local trends in prices.  The former specification requires the 

estimation of 25 fixed effects, while the latter adds approximately 10,000 fixed effects, one for each 

plant-year.  

The parameter of interest in Equation (3) is !!, the coefficient on the interaction term, 

! !"#$%!!"#$%&'() !" ! !!! !!!"#$!!". It captures the differential impact of an open plant on 

locations within one mile, relative to those one to two miles away. Given that our models include 

plant by distance fixed effects !!", !! is identified by changes in the operating status of a plant (i.e. 

plant openings and closings). In the model that includes plant by year fixed effects (in addition to 

plant by distance fixed effects), the identification of  !! is based on within year comparisons of 

changes in house prices among houses 0-1 and 1-2 miles from the location of toxic plant openings 

and closings.  

Finally, we estimate an alternative model that allows us to test whether the effects of plant 

openings differ from those of plant closings. In this alternative model, the variable 

! !"#$%!!"#$%&'() !" is replaced by two separate indicators ! !"#$%!!"#$#% !" and 

! !"#$%!!"#$%& !". The variable ! !"#$%!!"#$#% !" is an indicator equal to zero before the plant 

opens, and equal to one in all years after the plant opens, even if the plant subsequently closed. The 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
27 Census tract characteristics were mapped to plant radii using ArcGIS, where the radius characteristics consist of 

the area weighted averages of census tracts that intersect the distance circle/radius. Results are similar with and 

without these controls. 
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variable ! !"#$%!!"#$%& !" is an indicator variable equal to zero before the plant opens and while it 

is operating, and then equal to one for all years after the plant closes.  The parameters associated with 

the interactions of these indicators with !!! !!!"#$!!" allows for a comparison of the differential 

impacts of plant closings and openings on property values.   

Finally, two other estimation details are worth noting.  Equation (3) is estimated using 

weighted least squares, with the weights equal to the number of homes in the respective plant by 

distance group by year cell. The subsequent analysis reports conservative standard errors that are 

two-way clustered by plant and year to allow for serial correlation within a plant over time as well as 

for arbitrary forms of spatial correlation in a given year. 

5.2. Housing Values: Results 

Before turning to the parametric models, we present event study graphs that plot the effects 

of plant openings and closings on housing values. These graphs are derived from the estimation of 

versions of equation (3) that include plant by year fixed effects and allow the coefficients on 

! !"#$%!!"#$#% !" ! !!! !!!"#$!!" and ! !"#$%!!"#$%& !" ! !!! !!!"#$!!" to vary with event 

time, where year zero is the year that the plant's operating status changes (i.e., the year of the plant 

opening or closing).  The figures plot these coefficients and their 95% confidence intervals.28  The 

figures preview the regression results that boil down to a comparison of the averages of the data 

points to the left and right of the vertical lines.  Further, they provide an opportunity to judge the 

validity of the difference in a differences-style approach that is based on the assumption of similar 

trends in advance of the opening or closing.29   

The left panel of Figure 2 plots event study coefficients for years before/after a plant opening, 

and the right panel plots event time coefficients before/after a plant closing. The plotted coefficients 

represent the time path of housing values near to a plant (relative to far) conditional on 

plant*distance and plant*year fixed effects. Both panels support the validity of the design as there is 

little evidence of differential trends in housing prices between houses 0-1 and 1-2 miles from the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
28 The available housing price data only allow for the estimation of the coefficients for event years -3 through +5 for 

plant openings and -5 through +5 for plant closings since plant openings are concentrated in the earlier part of our 

sample. 
29 We estimate the event-study graphs separately for plant openings and plant closings. In particular, we fit the 

following regression model, reporting the event-time coefficients, !!: 

!!"# ! !!! ! !
!
! !!" !! ! ! ! ! !!!"#$ !"

!

!!!!

! ! !" ! !" ! !!!!!""#!"

where ! !!" !! !  is an event-time indicator equal to 1 for each of the years prior and after a plant opening or 

closing. In the presence of plant*distance fixed effects !!" not all the event-time indicators are identified. For this 

reason, we normalize the coefficient on the indicator for ! !!" !! !!  to be equal to zero. 
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plant.  Further, they both suggest that the changes in plant operating status affected housing prices. In 

the left panel, housing prices are lower after the plant opening and in the right panel they are higher 

after a plant closing.  Notably in both panels, there appears to be a jump in housing prices in the year 

where the plant's operating status changed. It is also apparent that the estimates for plant openings are 

noisier which is to be expected because there are relatively fewer plant openings than closings during 

the period covered by the housing price data (i.e., 70 openings and 544 closings).   

Table 2 reports the baseline estimates for the effects of toxic plant operation on housing 

values from 16 separate regressions. Panel (A) reports the coefficient and standard error associated 

with the interaction of ! !"#$%!!"#$%&'() !" ! !! ! !!!"#$ !", while Panel (B) allows the effects of 

openings and closings to differ; it also reports the p-value from a test that the opening coefficient is 

equal to the negative of the closing coefficient. In all regressions the comparison group is homes 

located between one and two miles, whereas the definition of “near” changes across regressions, as 

indicated by the column headings. The odd numbered columns report on specifications that include 

state by year fixed effects and the even numbered ones are from specifications that alternatively use 

plant by year fixed effects.  We estimate these models on a balanced panel of plant*distance*year 

observations, excluding a subset of plants for which no housing values occurred in a specific 

distance*year.30 

The estimates suggest that toxic plant operations reduce housing values in the immediate 

vicinity of the plant. Columns (1) and (2) indicate that an operating toxic plant within a half mile is 

associated with a 2 to 3% percent decrease in housing values. Within a half mile of a plant, the 

effects of openings and closings are opposite in sign, although the effect of plant openings is not well 

identified. The estimates suggest that housing values decrease by 1 to 2% within a half mile when a 

plant opens, and then increase by 2 to 3% when a plant closes. However, we cannot reject the null 

that the opening coefficient is equal to -1 times the closing coefficient. 

The point estimates in columns (3) and (4) are generally of a smaller magnitude, suggesting 

that the effects of plant operations on housing values to fade with distance. For example, the point 

estimate in column 3 suggests that the effect of plant operations on housing values falls to one 

percent in the half mile to one mile range. The standard errors are large enough, however, that their 

95 % confidence intervals overlap the 95% confidence intervals of the estimates in columns (1) and 

(2). Hence, in columns (5) and (6) we compare the entire zero to one mile area with the one to two 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
30 Results using an unbalanced panel are similar. Models estimated using plant*year fixed effects are estimated in 

two steps. The first step demeans all regression model variables by plant*year. The second step then estimates the 

model on the remaining covariates using the demeaned data.  
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mile zone.31 Not surprisingly given the previous estimates, the overall impact on housing values 

within one mile is about -1.5%. Additionally, we cannot reject the null that openings and closings are 

equal but of opposite sign, though only the effects of closings are statistically significant in these 

models.  

The last two columns of Table 2 drop observations that identify coefficients on event years 

prior to -2 and after 2. Focusing on the years immediately before and after a plant opening or closing 

also helps to measure shifts in the demand for housing along an inelastic short-run housing supply 

curve, since longer run estimates will reflect shifts in both supply and demand. This restriction 

attenuates the point estimates, but we cannot reject the null hypothesis that these results are the same 

as our baseline results in columns (5) and (6).   

Results are similar when we use a comparison group of two to four miles from a plant instead 

of one to two miles. See Appendix Table A1. This is reassuring because it suggests that the results 

are not driven by patterns in housing prices in the one to two mile zone. Nonetheless, it is possible 

that plant disamenities could lead to a reduction in housing demand in nearby (i.e., 0-1 miles) 

locations and a corresponding increase in housing demand in locations farther away. This type of 

preference-based sorting, which we investigate in more detail in subsequent sections, would lead us 

to over-estimate the housing price response of the plant in the 0-1 mile range. We investigate this 

issue further by estimating alternative models for home prices within mutually exclusive concentric 

rings around the plant.  

Appendix Table A.2 presents regressions based on the following econometric model, 

restricting the sample to different distance bandwidths (e.g. 0 to 0.5 miles, 0.5 to 1 miles, 1 to 1.5 

miles, 1.5 to 2.0 miles, etc…): 

(4)  !!" ! !!! ! !!! !"#$%!!"#$%&'() !" ! !!! ! !! ! !!!!!""#!" ! !! ! !!!". 

The coefficient of interest is !!, which captures the relationship between plant operating activity and 

housing values. The specification includes a plant level fixed effect (!!!!so that !! is identified by 

pre-post comparisons of housing prices in areas with plant openings or closings.32 We report on a 

specification that includes year fixed effects and a second one that replaces them with state by year 

fixed effects. In these models, the comparison group is no longer houses within the same community, 

but further away from the plant: instead, the comparison group consists of houses within the same 

distance from a toxic plant in other communities that did not experience an opening or closing.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
31 The column (6) specification is the difference-in-differences analogue to the event-time regression plotted in 

Figure 2. 
32 Note, there is only one distance category in each regression so that a plant*distance fixed effect would be 

redundant in this class of models. 



!")!

  The estimates in Appendix Table A.2 corroborate our baseline findings and choice of 

comparison group; the effects of plant operating status are highly localized, and there seems to be 

little negative effect of plant openings in areas more than one mile away from a plant. These 

estimates suggest that an operating plant reduces housing values by about 2 percent within a half 

mile of a plant and closer to 1 percent in the 0.5 to 1 mile range although this is estimated less 

precisely.  However, there is little evidence of an effect on housing prices at further distances. 

Thus far we have concentrated on the average effect of a plant opening or plant closing. 

However, this focus obscures a tremendous amount of heterogeneity across plants. Table 3 explores 

heterogeneity in our baseline estimates by stratifying plants across different observable 

characteristics. We group plants into whether their median value of a particular variable of interest 

(taken over years of plant operation) is above or below the population median (taken over the plant-

level medians).  The characteristics we explore are plant employment, payroll, stack emissions, 

fugitive emissions, mean toxicity of chemicals released, and the maximum toxicity of the chemicals 

released.  These toxicity measures were calculated using the EPA’s Risk-Screening Environmental 

Indicators.33 Plants report in the TRI both stack and fugitive emissions. Stack emissions occur during 

the normal course of plant operations, emitted via a smoke stack or some other form of venting 

equipment which is, in many cases, fitted with pollution abatement equipment.  Because stacks are 

often extremely high, these emissions may tend to be dispersed over a wide geographic area. Fugitive 

emissions are those that escape from a plant unexpectedly, generally without being treated. These 

emissions may be more likely to be manifest to households in the form of noxious odors or residues.  

Table 3 shows that the effect of plants on housing values is greater for larger plants (as 

measured by employment and payroll).  In addition, there is evidence that plants emitting large 

amounts of fugitive emissions have a more negative effect on housing values than those emitting 

fewer fugitive emissions.  Conversely, for stack releases, the point estimates for plants below the 

median is larger. However, since the 95% confidence intervals of each of the pairs of estimates 

overlap, the estimates are not precise enough for definitive conclusions.  

Turning to the toxicity of releases, the estimates suggest that housing prices respond more to 

high mean toxicity than to high maximum. If households were aware of these toxicity measures and 

they were valued (negatively) by households, one would have expected to see this reflected in 

housing price differentials and the lack of a robust pattern between plants with high and low toxicity 

is consistent with households having imperfect information.  In addition to the imprecision of these 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
33 Surprisingly little is known about the relative toxicity of different chemicals. Although animal testing is broadly 

used for evaluating the toxicity of chemical compounds, these studies are of limited relevance for evaluating which 

chemicals are likely to be most damaging for human health. 
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estimates, it is also noteworthy that there is little scientific evidence on how the health effects of 

exposure vary with these measures of toxicity. 

 

6. Infant Health 

6.1. Infant Health: Empirical Strategy 

The empirical strategy for examining infant health outcomes is very similar to the approach 

used for housing values. Again, our main focus is on comparing outcomes within one mile of a plant 

to outcomes between one and two miles, 

(5)    !!"# ! !!! ! !!! !"#$%!!"#$%&'() !" ! !!! ! !!!"#$ !" ! 

!!! !"#$%!!"#$%&'() !" ! !! ! !!!"#$ !" ! !!!" ! !! ! !!!!!""#!" ! !!! ! !!"# 

where !!"# denotes the average incidence of low birthweight or another measure of infant health near 

plant site !, within distance group !, in year !.  

This estimating equation is almost identical to the estimating equation used for housing 

values. Again, the coefficient of interest, now denoted !!, is the differential impact of an operating 

plant within one mile. As before, the specification includes plant by distance fixed effects !!", year 

fixed effects !! (which in practice are state by year or plant by year fixed effects), and census controls 

!!""#!" interacted with quadratic time-trends !!. We again explore possible asymmetries in the 

health impacts of plant openings and closings.  

The vital statistics data include a rich set of mother’s characteristics that can be used to 

control for possible changes in the composition of mothers (explored further below). However, the 

identifying variation in our models comes at a much higher level of aggregation; hence, in order to 

avoid overstating the precision of our estimates we control for mother's characteristics using a two-

step, group-level estimator (Baker and Fortin, 2001; Donald and Lang, 2007). In the first step, we 

estimate the relationship between low birth weight (!!"#! and plant by distance by year indicators 

(!!"#!, after controlling for mother’s characteristics (!!"):  

(6)    !!"# ! !!!!"! ! !!"# ! !!"#! 

The vector !!" controls for maternal characteristics including indicators for: age categories (19-24, 

25-34, and 35+), education categories (<12, high school, some college, and college or more), race 

(African American or Hispanic), smoking during pregnancy, month of birth, birth order, and gender 

of child.34 The estimated !!"# provide group-level, residualized averages of each specific birth 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
34 For a small number of observations there is missing data for one or more of these control variables and we include 

indicator variables for missing data for each variable. 
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outcome after controlling for the observable characteristics of the mother. In the second step, we use 

these averages as the dependent variable in Equation (5) instead of !!"#, weighting by the group-level 

cell size.35,36 

6.2. Infant Health: Results 

We again start by presenting event study graphs for the incidence of low birth weight (i.e., an 

infant born weighing less than 5.5 pounds or 2500 grams) based on the fitting of a version of 

equation (5). The data points represent the interaction of the event-time indicators with 

! !"#$%!!"#$#% !" ! !!! !!!"#$!!" and ! !"#$%!!"#$%& !" ! !!! !!!"#$!!" in regressions for !!"#, 

which is constructed as described above. The specification also includes the plant by distance and 

plant by year fixed effects, as well as the census controls interacted with a quadratic time trend.  The 

birth data cover a longer period than the housing prices data and we can estimate the parameters of 

interest for all event years from five years before an opening/closing through 5 after an 

opening/closing.  

Figure 3 suggests that operating plants raise the incidence of low birth weight. With both 

openings and closings, there is little evidence of differential trends in the adjusted incidence of low 

birth weight between mothers living 0-1 and 1-2 miles away during the years leading up to the 

change in plant activity. This finding supports the validity of the design. After plant openings, there 

is a relative increase in the incidence of low birth weight among mothers living within one mile of a 

plant. After plant closings, there is the opposite effect. Specifically, the incidence of low birth weight 

within one mile decreases modestly relative to what is observed between one and two miles although 

the decline is less sharp than in the in plant opening panel. 

Table 4 presents regression estimates, which is structured identically to Table 2 that reported 

the primary housing price results. Columns (1) and (2) report coefficients corresponding to locations 

within a half mile; these point estimates are positive, indicating a modest but statistically 

insignificant increase in the incidence of low birth weight in the immediate vicinity of operating 

plants. Columns (3) and (4) report results corresponding to between a half mile and one mile from 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
35 To limit the computational burden of estimating the first stage of the full sample, the first stage is estimated 

separately by state. Alternative group-level weights include the inverse of the sampling error on the estimated fixed 

effects, but since we are estimating state by state, the estimated standard errors are likely to be inefficient (although 

the group level estimates are still consistent) making this weighting mechanism less attractive. Donald and Lang 
(2007) present an alternative feasible GLS specification where the weights come from the group level residual and 

the variance of the group effect. Since all of these weights are proportional and highly correlated, the choice of 

weights has little effect on the results. We follow Angrist and Lavy (2009), who weight by the group cell size.  
36 We obtain similar results from group-level models that convert micro-level covariates into indicator variables and 

take means within cells. 
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the plant. These estimates are slightly larger than those in columns (1) and (2) and statistically 

significant in both the pooled specification in Panel A and separately for plant openings. 

Columns (5) and (6) show estimates for the entire zero to one mile group. These are similar 

to the estimates in the preceding columns: For example, an operating toxic plant within one mile is 

associated with an increase in the incidence of low birth weight of 0.0013 - 0.0014 or about 2.0 

percent. And the effect is approximately symmetric, with low birth weight increasing after plant 

openings and decreasing after closings, though the latter effect is statistically insignificant.  

Columns (7) and (8) drop observations that identify coefficients on event years prior to -2 

and after 2. These specifications are designed to address possible concerns with unobserved and 

differential sorting in the health endowment of near relative to far mothers. The point estimates are 

all larger in magnitude. Indeed in the richer column (8) specification with plant by year fixed effects, 

both plant openings and closings are related to statistically significant changes in the incidence of 

low birth weight.  

Overall, the evidence from Table 4 indicates that toxic plants are associated with modest 

increases in the incidence of low birth weight. As suggested in the event study figure, the effect 

appears to be larger in magnitude for plant openings but the null hypothesis that they are of equal 

magnitude cannot be rejected in any of the specifications. The results are qualitatively similar when 

we use a comparison group of births that occur two to four miles from a plant, rather than one to two 

miles (see Appendix Table A1). The results are also similar when we estimate the regression 

separately by distance group (see Appendix Table A2). The estimates corroborate the main results, 

again indicating that the effects of plant operating status are highly localized, and providing 

additional empirical support for our choice of comparison group. 

 Table 5 examines plant heterogeneity, stratifying plants as was done in the housing 

regressions (i.e. Table 3) from the version of equation (5) that includes plant by year fixed effects. 

The estimated toxic plant impact on the incidence of low birth weight is slightly larger for smaller 

plants (Column 1a) and significantly larger for those plants that have a high volume of stack 

emissions (Column 2b) and those that emit very toxic chemicals (Column 6b). One possible 

interpretation of these findings is that households who live near smaller plants that emit very toxic 

chemicals, or near plants that treat much of their emissions, may not realize that they are at risk and 

hence may be less likely to take measures to protect themselves from harmful releases.37  When the 

point estimates are taken literally, these patterns contrast with those in Table 3, and suggest that 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
37 Deschenes, Greenstone, and Shapiro (2012) demonstrate the importance of compensatory behavior (i.e., self-

protection) in response to air pollution. 
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housing prices may not respond to observables in the same way that health outcomes respond. 

However, the estimates are not precise enough for such conclusions to be definitive as the 95% 

confidence intervals of each of the pairs of estimates overlap. 

6.3. Alternative Measures of Infant Health: Results 

Table 6 reports the results from fitting versions of equation (5) where alternative measures of 

infant health are used as the dependent variable. Each column presents results from a separate 

regression, comparing birth outcomes for mothers less than one mile from a plant to those of mothers 

living one to two miles from a plant, so these models are comparable to those presented in columns 

(5) and (6) of Table 4. The pattern of coefficients is consistent with the hypothesis that toxic plants 

damage infant health; birth weight decreases and the incidence of prematurity increases. The other 

birth outcomes are not individually statistically different from zero although this is perhaps 

unsurprising given that outcomes, such as the incidence of very low birthweight (i.e., an infant born 

weighing less than 3.3 pounds or 1500 grams) and infant deaths, are an order of magnitude rarer than 

low birth weight and prematurity.  

In light of this issue of precision, the last two columns show models using a summary index 

measure of infant health. We first convert each birth outcome measure so that they all move in the 

same direction (i.e. an increase is “bad”) and then subtract the mean and divide by the standard 

deviation of each outcome. We construct our summary measure by taking the mean over the 

standardized outcomes, weighting by the inverse covariance matrix of the transformed outcomes in 

order to ensure that outcomes that are highly correlated with each other receive less weight, while 

those that are uncorrelated and thus represent new information receive more weight (Hochberg, 

1988; Kling, Liebman, and Katz, 2007; Anderson 2008).38 An operating plant has a small but 

statistically significant positive effect on the index, increasing the probability of a bad health 

outcome by 0.016-0.017 standard deviations.  

6.4. Sorting as a Function of Plant Openings and Closings 

In response to a decrease in environmental quality there may also be a change in the 

composition of local neighborhoods. Documenting this sorting is of significant independent interest 

(See for example, Banzhaf and Walsh, 2008; Cameron and McConnaha, 2006; Greenstone and 

Gallagher, 2008; Davis, 2011; Currie, 2011; and Currie, Greenstone, and Moretti, 2011). Most 

previous studies of residential sorting in response to changes in environmental quality have relied on 

decennial Census data, which are only available every ten years. In contrast, vital statistics data 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
38 Alternatively, we have created summary index measures that weight each outcome variable equally, as in Kling, 

Liebman, and Katz (2007), with little appreciable effect on our results. 
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provide both rich data about maternal characteristics and a continuous measure of residential sorting. 

Previous estimates have also tended to focus on pure disamenities (e.g.. air pollution). The opening 

of a plant involves increased disamenities like noise and air pollution and presumably landscape but 

also changes that may be viewed as positives like economic activity. 

Table 7 presents regression estimates from a model identical to our baseline specification for 

housing values and health outcomes, except where the dependent variable now consists of various 

measures of maternal characteristics. As before, we focus on outcomes within one mile and present 

models with state by year (odd numbered columns) and plant by year (even numbered columns) fixed 

effects. We also include estimates for a measure of predicted birth weight (columns 13 and 14), 

created by fitting a regression model of birth weight on the observable characteristics of mothers (and 

flexible interactions).39 All regressions are weighted by group level cell size, with the exception of 

fertility (columns 15 and 16), which is unweighted. 

The estimates in columns (1) and (2) indicate that the population immediately surrounding 

toxic plants becomes less African American when a plant is operating. Relative to a mean value of 

0.20, the fraction of mothers that is African American declines by 0.006 (about 3%) when the plant is 

operating. Column (11) suggests that these areas may also gain white, college educated mothers, 

though this effect becomes statistically insignificant in column (12) when plant by year fixed effects 

are added. Columns (13) and (14) indicate that the predicted birth weight for the population near the 

plant improves during periods of operation. This is consistent with the results in columns (1) and (2) 

because African American mothers have lower birth weight children on average. The results for 

fertility in columns (15) and (16), and the other maternal characteristics are not statistically 

significant. The point estimates on mother’s education, for example, are positive indicating an 

increase in maternal education associated with toxic plants, but the standard errors are large. 

This finding that neighborhoods within one mile appear to become “whiter”, and perhaps 

more educated, contrasts with previous evidence that educated, non-Hispanic white mothers are more 

likely than others to move away from known hazards (see, e.g., Currie, 2011). In general, one would 

expect willingness-to-pay to avoid environmental disamenities to increase with household income 

and/or education levels (see, e.g., Greenstone and Gallagher, 2008), and the sorting here appears to 

be going in the other direction. Imperfect information is one potential explanation. It is possible that 

the hazards posed by toxic plants are simply not well understood relative to some of the other local 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
39 In particular, we used the natality micro data to estimate a regression of birth weight as a function of maternal 

characteristics including indicators for: age categories (19-24, 25-34, and 35+), education categories (<12, high 

school, some college, and college or more), race (African American or Hispanic), smoking during pregnancy, month 

of birth, birth order, and gender of child. We use the predicted values from this regression as a summary index 

measure of maternal characteristics. 
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disamenities that have been studied in the literature.   It is also possible that we are observing sorting 

in response to a mixture of the positive and negative amenities from plants. Jobs, economic activity, 

and/or tax revenue may have modest impacts at closer distances and the changing demographics may 

be happening in response. It is important to note that the sorting we observe implies that the 

measured health effects may be under-estimates of the true effects if the controls for observable 

maternal characteristics do not adequately account for the changes in infant health endowments. 

 

7. Interpretation 

  The estimates in Table 2 indicate that opening a plant that emits toxic releases reduces 

housing values by about 1.5 % within one mile. Since the mean housing value within a mile of a 

plant is $125,927, the value of the average house falls by about $1,890. Under the assumptions 

described in Section 2 these estimates can be interpreted as a household’s MWTP to avoid living 

within one mile of a toxic plant. This is the dollar amount that toxic plants would owe each 

homeowner located within one mile of the plant under a system of full compensation for losses in 

property values.40  

  Under the same assumptions, these estimates can also be used to calculate a measure of the 

total value of local disamenities from toxic plants. In our sample, the value of the median housing 

stock within one mile of a toxic plant is $98.6 million. Multiplying this by 1.5 percent yields an 

average housing market capitalization of about $1.5 million.41 Although non-negligible, this is small 

compared to the capital cost of new industrial plants. As a point of comparison, a small (100MW) 

coal-burning power plant costs about $280 million to build.42 Moreover under our imposed 

assumption that the economic benefits of plant production accrue similarly to those homes within one 

mile and those one to two miles from the plant, this estimate reflects an upper bound on the net costs 

associated with toxic plants. As we have emphasized throughout, these plants have positive as well as 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
40 A literature in public economics considers whether or not victims of externalities should be compensated for their 

damages (see for example, Olson and Zeckhauser, 1970 and Baumol and Oates, 1988).  If neighbors of industrial 

plants were perfectly compensated for damages, they would have no incentive to move away or to make investments 

to reduce the damages they suffer. This potential efficiency loss must be balanced against concerns about fairness. 

Perhaps this is why compensation most often takes the form of property tax revenue rather than direct payments to 

neighbors. 
41 One limitation of this measure of capitalization is that it does not capture changes to the value of industrial, 

commercial, or undeveloped property. While some industrial uses may not be substantially affected by toxic plant 

proximity, commercial property and, perhaps more importantly, the price of undeveloped land may be affected. 
Moreover, it is important to emphasize that this measure reflects only the highly-localized externalities from 

industrial plants. Industrial plants also emit criteria pollutants such as particulates, nitrogen oxides, and sulfur 

dioxide that impose costs over a much broader geographic area and thus are not captured in these estimates. 
42 U.S. Department of Energy (DOE), Energy Information Administration. 2010. Updated Capital Cost Estimates 

for Electricity Generation Plants. November. U.S. Department of Energy. http://www.eia.gov/oiaf/beck_plantcosts/ 
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negative externalities, bringing jobs to local communities and potentially raising wages and housing 

prices over a wide area. 

   An appealing feature of our analysis is that it provides estimates of the effect of toxic plant 

openings on both housing prices and an important health outcome. The estimates of MWTP from the 

housing value analysis can hence be compared with a valuation of the costs of low birth weight. It 

has been estimated that each low birth weight baby incurs approximately $14,500 in additional 

hospital costs in the first year of life (Russell et al., 2007) and is 50% more likely to need special 

education services, which had an incremental cost of $8000 per child in 2000 (Chaikind and Corman, 

1991; President’s Commission on Special Education, 2002). Black, Devereux, and Salvanes (2007) 

show that in addition to the direct costs, low birth weight decreases future adult earnings. A back of 

the envelope estimate based on their figures suggests that the present discounted value of the 

reduction in lifetime wages due to low birth weight is $77,000.43 Hence, a conservative estimate of 

the added costs of low birth weight children (which excludes things like medical bills after the first 

year) is $95,500. 

Between 1990 and 2002, there were 10.9 million births in our five sample states.  And, as we 

reported earlier, there are 1.27 toxic plants, on average, within one mile of each birth. Multiplying the 

number of births by .0014 (the estimate from column 6 of Table 4) and then by 1.27 implies that in 

these states, during this period, toxic plants increased the number of low birth weight infants by 

19,380. At $95,500 per birth, this is $1.85 billion in costs due to low birth weight births, which works 

out to an average of about $542,000 per toxic plant during our sample frame. To get the total lifetime 

cost per plant, we first need to calculate the low birth weight costs per year by dividing by the 

number of years in our sample, which is about $42,000 (i.e. $542,000 divided by the 13 years in our 

sample). This implies that the typical low birth weight cost of a toxic plant is around $700,000 (i.e. 

the per year costs multiplied by the average age of the plants in our sample, 17 years). 

 

8. Conclusion 

Achieving socially efficient outcomes when there are production externalities requires 

reliable empirical estimates of these external costs. Given the challenges associated with using 

stated-preferences techniques to value non-market amenities (see e.g. Hausman 2012), a substantial 

fraction of existing work in valuation relies on hedonic analysis of housing markets. However, it is 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
43 Suppose that the mean weight of a normal baby is 3500 grams and the mean weight of a low birth weight baby is 

2200 grams, for a difference of 1300 grams or 37%. Black et al. (2007) estimate that each 1% increase in birth 

weight increases earnings by .13%. So a decrease in birth weight of 37% would decrease earnings by 4.8%. Poterba 

et al. (2010) estimate that average lifetime earnings in the United States are 1.6 million, so 4.8% of this is $76,800. 
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surprising how few studies have questioned the perfect information assumption implicit in all 

hedonic analyses. Whether or not negative externalities are fully capitalized into housing values 

depends critically on what information the buyers and sellers have. 

In this paper we have examined a set of externalities for which information is far from perfect. Toxic 

emissions are widely believed to cause cancer, birth defects, and other severe health impacts, but 

there is little guidance from the scientific literature about the magnitude of these effects. And because 

many toxic pollutants are invisible and odorless, it seems likely that most housing market participants 

are imperfectly informed, or responding to other, more salient clues about potential environmental 

risks. The efficient regulation of toxic emissions requires understanding both what can and what 

cannot be learned from housing market studies. 

As a first step, we assembled a unique longitudinal data set with the latitude and longitude of 

new mothers, housing sales, and toxic plants in five large states. Using the dates of more than 1,600 

plant openings and closings, we examine the effect of toxic plants on ambient air pollution, housing 

values, and infant health. Our study is the first to simultaneously examine both housing values and 

health outcomes, and it is among the first large-scale empirical analyses in either category for toxic 

pollutants. 

We show first, using data from air quality monitoring stations, that toxic emissions can be 

detected up to one mile from operating industrial plants. Whereas criteria pollutants such as sulfur 

dioxide are typically diluted in the atmosphere and carried far away, our results are consistent with 

certain toxic pollutants having much more local impacts. Second, we find that housing values within 

one mile decrease by 1.5 percent when plants open, and increase by 1.5 percent when plants close. 

The estimates imply an aggregate reduction in housing values per plant of $1.5 million within a one-

mile radius. Third, we show that toxic plants are associated with a 2% increase in the incidence of 

low birth weight among infants born to mothers within a one-mile radius of the plant; this implies a 

monetized cost over the life of the plant of about $700,000 per plant. Thus the implied monetized 

value of the low birth weight effect is about half of the change in housing values. Under the standard 

assumptions in the Rosen (1974) framework, housing values should capture the present discounted 

value of all amenities associated with a particular location. This includes not only other health risks 

(which might or might not be correlated with the pattern of infant health effects), but also non-health 

factors such as visual disamenities, noise, and local economic activity, including additional traffic. 

There may also be costs associated with protective health behavior, which our health estimates would 

fail to capture (see e.g. Deschenes, Greenstone, and Shapiro 2012). Overall, the finding that the 

dollar value of the change in housing values is larger than our estimate of increased costs due to low 
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birth weight fails to contradict the standard assumption in the hedonic housing price literature that 

there is perfect, or at least unbiased, information in the housing market.  Thus, one reasonable 

conclusion is that housing markets may be getting it right even in cases where there is scientific 

uncertainty about the health risks. 

However failing to contradict this assumption is not the same as proving its validity.   One of 

the contributions of our paper is to show that toxic releases can be detected up to one mile away, 

which presumably many participants in the housing market do not know. It is possible that the 

change in housing values we observe actually reflect responses to the more salient disamenities such 

as noise and traffic, rather than full compensation for environmental health risks. In this regard, it is 

interesting that, ignoring issues of precision, the housing price effects are larger within a radius of 

half of a mile than in the 0.5 to 1 mile range, while the health effects are felt up to one mile away.  

On the other hand, visual disamenities and noise pollution are likely to be reduced in the 0.5 to 1 mile 

range, relative to the 0 to 0.5 mile range, and this could explain the smaller housing price effect 

further away. 

Some of the other results in the paper also point to the importance of thinking about 

information, and what is known and unknown in the housing market. We find, for example, that 

housing prices responses to plant openings and closings are of similar absolute value, while infant 

health reacts more strongly to plant openings.  These findings are consistent with the possibility that 

mothers near new plants may not yet have learned about the risks. The estimates of the effects of 

plant heterogeneity also suggest that information may matter. For example, we find that housing 

values respond more strongly to “fugitive” emissions, which people may see and smell, while birth 

weight responds more strongly to the maximum toxicity of the chemicals released, which 

homeowners may not know. We also find suggestive evidence that areas surrounding toxic plants 

improve in socio-economic status when plants are in operation, suggesting that the hazards for 

pregnant women may not be widely recognized.  

While there are alternative explanations for each of these findings, taken together they are 

suggestive and, we believe, a first step toward exploring the assumption that the housing market 

reflects unbiased expectations about local amenities. We believe that a better understanding about 

belief formation around local amenities and how these beliefs interact with willingness to pay in the 

context of local housing markets is a critical area for future research. 
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Figures

Figure 1: The Effect of Toxic Plants on Ambient Hazardous Air Pollution
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Note: This figure plots marginal effects and 95th percentile confidence intervals from a regression of ambient hazardous pollution on a quartic

in distance to the nearest operating toxic plant. In the regression sample, pollutants are pooled, standardizing each pollutant to be mean 0 and

standard deviation 1. The distance gradient can therefore be interpreted as standard deviations from the mean value. The regression includes

pollution monitor fixed effects so the distance gradient is identified using plant openings and closings. Standard errors for the regression are

two-way clustered on plant and monitor, and the pointwise standard errors in the figure are calculated using the delta method.
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Figure 2: Event Study: The Effect of Toxic Plant Openings and Closings on Local Housing Prices
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Note: These are event study plots created by regressing log housing sale price for a plant by distance by year cell on a full set of event time

indicators interacted with an indicator for “near”, plant by distance fixed effects, plant by year fixed effects, and census controls (interacted with

quadratic trends), weighting by the group-level cell size. Reported are the coefficients for event-time, which plot the time path of housing values

“near” relative to “far” before and after a plant opening or closing. The dashed lines represent 95% confidence intervals, where standard errors are

computed using cluster-robust standard errors. Time is normalized relative to the year that the plant’s operating status changes (τ = 0), and the

coefficients are normalized to zero in the year prior to a change in operating status (τ = −1). The coefficients corresponding to four or more years

before a plant opening are not identified due to the lack of openings in the second half of our sample period and the lack of housing data prior to

1998.

Figure 3: Event Study: The Effect of Toxic Plant Openings and Closings on the Incidence of Low Birthweight
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Note: These are event study plots created by regressing the incidence of low birthweight for a plant by distance by year cell
on a full set of event time indicators interacted with an indicator for “near”, plant by distance fixed effects, plant by year
fixed effects, and census controls (interacted with quadratic trends), weighting by the group-level cell size. The dependent
variable in the regression is the residualized mean incidence of low birthweight for a plant by distance by year, adjusted for
micro-level covariates in a first stage. Reported are the coefficients for event-time, which plot the time path of low birthweight
“near” relative to “far” before and after a plant opening or closing. The dashed lines represent 95% confidence intervals,
where standard errors are computed using cluster-robust standard errors. Time is normalized relative to the year that the
plant’s operating status changes (τ = 0), and the coefficients are normalized to zero in the year prior to a change in operating
status (τ = −1).
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Tables

Table 1: Characteristics of Toxic Plants and the Surrounding Community

Panel A: Plant Characteristics by Opening and Closing Status

(1) (2) (3)

Open Continuously Opened Between Closed Between

1990-2002 1990 and 2002 1990 and 2002

Number of Plants 1846 689 1062
Average Plant Employment (Total Workers) 224 90 114
Average Plant Age (Years) 18.6 2.0 16.2
Mean Value of Plant Equipment (in millions) $15.8 $15.4 $14.9
Mean Value of Plant Structures (in millions) $6.2 $5.8 $5.1
Mean Annual Salary and Wages (in millions) $11.7 $5.5 $6.2
Mean Annual Toxic Emissions (in pounds) 22016 23303 17919

Panel B: Community Characteristics by Distance, d, from Plants that Opened or Closed 1990-2002

(1) (2) (3) (4)

0 < d ≤ 0.5 0.5 < d ≤ 1 0 < d ≤ 1 1 < d ≤ 2
Housing Characteristics:

Mean Housing Value $124,424 $126,492 $125,927 $132,227
Aggregate Housing Value (in millions) $38.56 $60.00 $98.57 $174.80

Birth and Maternal Characteristics:
Mother’s Education 11.93 12.08 12.05 12.22
Mother’s Age 26.33 26.50 26.46 26.70
Proportion Teenage Mother 0.15 0.15 0.15 0.15
Proportion Smoker 0.14 0.13 0.13 0.13
Proportion African American 0.23 0.25 0.25 0.26
Proportion Hispanic 0.32 0.30 0.31 0.29
Proportion White/Caucasian 0.72 0.71 0.71 0.70

Notes: Panel A describes plants in Florida, Michigan, New Jersey, Pennsylvania, and Texas that reported to the Toxic
Release Inventory at least one year between 1990 and 2002. In calculating plant characteristics in columns (2) and (3), the
sample is restricted to observations in the 2 years after a plant opening or 2 years before a plant closing to reflect mean
characteristics of an operating plant prior to “treatment”, and a single plant can appear in both columns. Plant age is right
censored, as the the year a plant opened is not available for plants opened before 1975 in the Longitudinal Business Database.
The value of plant equipment, structures, and salary and wages come from the NBER Productivity Database microdata and
is only available for a subset of our data that matches the NBER Productivity Database in a given year. The value of plant
equipment and structures is constructed using the perpetual inventory method from investment data (Mohr and Gilbert,
1996). All dollar amounts are in 2000 dollars. Panel B statistics describe community characteristics surrounding toxic plants
that either opened or closed between 1990 and 2002. Housing sales and births may appear in multiple columns if they are
within 2 miles of more than one plant opening or closing, but within each column a house or birth appears only once.
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Table 3: The Effect of Toxic Plants on Local Housing Values: Heterogeneity Based on Median Plant Characteristics

(1a) (1b) (2a) (2b)

Employment Employment Payroll Payroll

< (p50) >= (p50) < (p50) >= (p50)

1(Plant Operating)×Near -0.008 -0.021∗∗ -0.006 -0.023∗

(0.007) (0.010) (0.006) (0.013)

N 20464 20544 19888 19952

PlantCount 1279 1284 1243 1247

(3a) (3b) (4a) (4b)

Fug. Emissions Fug. Emissions Stack Emissions Stack Emissions

< (p50) >= (p50) < (p50) >= (p50)

1(Plant Operating)×Near -0.003 -0.022∗∗∗ -0.018∗ -0.008

(0.008) (0.007) (0.010) (0.006)

N 14480 14480 14480 14480

Plant Count 905 905 905 905

(5a) (5b) (6a) (6b)

Mean Toxicity Mean Toxicity Max Toxicity Max Toxicity

< (p50) >= (p50) < (p50) >= (p50)

1(Plant Operating)×Near -0.004 -0.023∗∗∗ -0.014 -0.010

(0.009) (0.008) (0.011) (0.014)

N 9680 10192 13920 14272

Plant Count 605 637 870 892

Notes: This table reports regression coefficients from 12 separate regressions, where the respective (a) and (b) columns

stratify the sample by whether the plant-level median of the column variable (taken over plant operating years) is above or

below the sample median value (taken over median plant values). The dependent variable in all regressions is housing values

(in logs), and the data have been aggregated to plant by distance by year cells. The indicator variable “Near” is the same

across columns and is equal to 1 for all homes within one mile of a plant. All regressions control for plant by distance-bin and

plant by year fixed effects, and census tract characteristics (interacted with quadratic trends), and regressions are weighted

by the group-level cell size. The number of plants varies across regressions because emissions and/or toxicity data are not

available for all plants. Standard errors are two-way clustered by plant and year.
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Table 5: The Effect of Toxic Plants on Low Birthweight: Heterogeneity Based on Median Plant Characteristics

(1a) (1b) (2a) (2b)

Employment Employment Payroll Payroll

< (p50) >= (p50) < (p50) >= (p50)

1(Plant Operating)×Near 0.0016∗∗ 0.0007 0.0012 0.0015

(0.0007) (0.0011) (0.0007) (0.0012)

N 44274 44451 44207 44311

PlantCount 1712 1717 1709 1712

(3a) (3b) (4a) (4b)

Fug. Emissions Fug. Emissions Stack Emissions Stack Emissions

< (p50) >= (p50) < (p50) >= (p50)

1(Plant Operating)×Near 0.0010 0.0015 0.0007 0.0018∗∗

(0.0011) (0.0010) (0.0010) (0.0009)

N 39025 39104 39075 39054

Plant Count 1508 1511 1509 1510

(5a) (5b) (6a) (6b)

Mean Toxicity Mean Toxicity Max Toxicity Max Toxicity

< (p50) >= (p50) < (p50) >= (p50)

1(Plant Operating)×Near 0.0014 0.0012 0.0008 0.0026∗∗∗

(0.0010) (0.0014) (0.0010) (0.0010)

N 30486 30537 35789 38559

Plant Count 1178 1180 1383 1490

Notes: This table reports regression coefficients from 12 separate regressions, where the respective (a) and (b) columns

stratify the sample by whether the plant-level median of the column variable (taken over plant operating years) is above

or below the sample median value (taken over median plant values). The dependent variable in all regressions is the mean

incidence of low birthweight, where the data have been aggregated to plant by distance by year cells. The indicator variable

“Near” is the same across columns and is equal to 1 for all births within one mile of a plant. Cell level averages have been

adjusted for micro covariates, and all regressions control for plant by distance and plant by year fixed effects, as well as census

tract characteristics (interacted with quadratic trends). Regressions are weighted by the group-level cell size. The number

of plants varies across regressions because emissions and/or toxicity data are not available for all plants. Standard errors

two-way clustered by plant and year.
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