
NBER WORKING PAPER SERIES

QUIET BUBBLES

Harrison Hong
David Sraer

Working Paper 18547
http://www.nber.org/papers/w18547

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
November 2012

Hong acknowledges support from the National Science Foundation through grant SES-0850404. Sraer
gratefully acknowledges support from the European Research Council (Grant No. FP7/2007-2013
- 249429) as well as the hospitality of the Toulouse School of Economics. The views expressed herein
are those of the authors and do not necessarily reflect the views of the National Bureau of Economic
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2012 by Harrison Hong and David Sraer. All rights reserved. Short sections of text, not to exceed
two paragraphs, may be quoted without explicit permission provided that full credit, including © notice,
is given to the source.



Quiet Bubbles
Harrison Hong and David Sraer
NBER Working Paper No. 18547
November 2012
JEL No. G02,G12

ABSTRACT

Commentaries on the credit bubble of 2003-2007 routinely equate it with earlier episodes like the Internet
boom. While credits were over-priced like Internet stocks a decade before, we show, using a model
based on disagreement and short-sales constraints,  that this is where the similarity ends. Equity bubbles
are loud: price and volume go together as investors speculate on capital gains from reselling to more
optimistic investors.  But this resale option is limited for debt since its upside payoff is bounded. Debt
bubbles then require an optimism bias among investors. But greater optimism leads to less speculative
trading as investors view the debt as safe and having limited upside. Debt bubbles are hence quiet—high
price comes with low volume. We find the predicted price-volume relationship of credits over the
2003-2007 credit boom.

Harrison Hong
Department of Economics
Princeton University
26 Prospect Avenue
Princeton, NJ 08540
and NBER
hhong@princeton.edu

David Sraer
Princeton University
Bendheim Center for Finance
26 Prospect Avenue
Princeton, NJ 08540
and NBER
dsraer@princeton.edu



1. Introduction

Many influential commentators point to a bubble in credit markets from 2003 to 2007,

particularly in the AAA and AA tranches of the subprime mortgage collateralized default

obligations (CDOs), as the culprit behind the Great Financial Crisis of 2008. These com-

mentaries routinely lump together credit and equity bubbles, such as the Internet boom of

the late nineties, as if they were one and the same. For instance, The Economist, in a number

of opinion editorials following the Financial Crisis of 2008, argues for thinking about these

bubble episodes over the past 40 years as the product of too lax monetary policy.1 One

reason perhaps is that the large literature on asset price bubbles often regards bubbles as

being synonymous with price being greater than risk-adjusted fundamental value.2 While

there is indeed compelling evidence that investment-grade or highly-rated credit securities,

especially in housing mortgage-back securities, were severely over-priced (see Coval, Jurek,

and Stafford (2009), Greenwood and Hanson (2011)) in the same way Internet stocks were

a decade earlier, we argue that this is where the similarity ends.

Classic equity bubbles are loud—high prices are accompanied by large trading volume as

investors purchase in anticipation of capital gains (see Hong and Stein (2007) for a review

of this evidence). For example, in the South Sea Bubble of 1720, transactions in the Bank

of England stock, one of the three bubble stocks, were three times larger than in the prior

three years (Carlos, Neal, and Wandschneider (2006)). Stock share turnover during the years

before the Crash of 1929 in the United States were abnormally high by historical standards.

In the dot-com bubble years of the late nineties, internet stocks accounted for nearly twenty

percent of the trading volume in the stock market (Ofek and Richardson (2003)). The

elevated trading volume, and in some of these instances elevated price volatility, associated

with these episodes no doubt prompted the classic economists from Adam Smith to John

1See for instance Bubble History in their Buttonwood’s Financial Markets section published on June 17th,
2010. This refrain is a common one in many other influential circles, going back to the works of Hyman
Minsky.

2For instance, the earliest rational expectations bubble models a la Blanchard and Watson (1983) have
no notion of trading volume.
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Maynard Keynes to emphasize the role of speculation on anticipated capital gains in bubbles.

This signature of equity bubbles is captured parsimoniously in recent asset pricing models

based on investor disagreement and short-sales constraints. The short-sales constraint im-

parts an upward bias in prices when there is sufficient disagreement among investors (Miller

(1977), Chen, Hong, and Stein (2002)). In a dynamic framework, investors anticipate the

potential to re-sell at a higher price to someone with a higher valuation due to binding

short-sales constraints (Harrison and Kreps (1978), Morris (1996), Scheinkman and Xiong

(2003) and Hong, Scheinkman, and Xiong (2006)).3 This framework generates a bubble or

overpricing in which the asset’s price is above fundamental value. Importantly, the potential

for disagreement tomorrow alone, as opposed to having to assume that all investors are op-

timistic today, is enough to get prices to be high today since price embeds this resale option.

A distinguishing feature of this model is that the resale option is also associated with high

share turnover, very much in line with anecdotes on classic equity bubbles.

Within this framework, we consider the pricing of a debt security.4 Investors disagree over

the underlying asset value. In the context of the subprime mortgage CDOs, the underlying

asset values are real estate prices. For corporate credits, the underlying asset values are the

assets of the companies. Whereas equity payoffs are linear in the investor beliefs regarding

underlying asset value, debt up-side payoffs are capped at some constant and hence are

concave in the investor beliefs about fundamental.

There is compelling evidence that short-sales constraints are at least as binding in debt

markets as in equity ones. The theory only requires that some (not all) investors be short-

sales constrained. Indeed, many mutual funds or insurance companies are required by charter

to be long-only: that is they must simply own investment-grade debt or stocks and are

prohibited by charter from shorting or trading derivatives (such as credit default swaps

3See Hong and Stein (2007) for a more extensive review of the disagreement approach to the modeling of
bubbles.

4Earlier work on heterogeneous beliefs and bond pricing such as in Xiong and Yan (2010) assume that
investors have disagreement about bond prices or interest rates and they do not model the nature of the
concavity of debt pay-offs as a function of underlying asset value disagreement.
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(CDSs)) (Almazan et al. (2004) and Koski and Pontiff (1999)). A significant portion of

the $28 trillion dollar of mutual fund money is in this long-only format. The short-sales

constraints come not from the cost of shorting but institutional restrictions to shorting.5

Moreover, Asquith et al. (2010) in their study of the cost of shorting corporate bonds point

out that the rise of credit default swaps (CDS) did not influence the shorting activity or cost

of shorting in debt. In other words, CDSs are not a substitute for shorting credit. And in

the case of the mortgage CDOs, short-sales constraints on these CDOs were binding until

the onset of the financial crisis (see Michael Lewis (2010)).

As a result, one might conclude that speculative credit bubbles would come as naturally

in this setting as equity bubbles. But this is far from the case because debt upside payoffs are

bounded in contrast to equity and hence the valuation of debt is less sensitive to disagreement

about underlying asset value. This then limits the speculative resale option of credits.6 As

a result, a debt bubble has to be smaller and than an equity bubble if there is only this

speculative disagreement motive at work. The safer is the debt claim, the more bounded

is the upside, the less sensitive its valuation is to disagreement and therefore the lower the

resale option and the smaller is the bubble.7

In other words, speculative resale alone is not enough to get a credit bubble, particularly

for safe credits like AAA CDOs. Of course, we are not claiming that there cannot be

bubbles in debt. Indeed, there is evidence from Greenwood and Hanson (2011) and Baker,

Greenwood, and Wurgler (2003) that credit cycles in the U.S. over the past eighty years,

including the eighties junk bond wave and the recent credit boom of 2003-2007, are associated

5There is evidence pointing to the impact of these institutional restrictions on over-pricing in equity
(Chen, Hong, and Stein (2002)). These institutional restrictions to shorting are every bit as relevant for
bonds as they are for stocks.

6Here we are implicitly comparing a debt claim with an equity claim that does not have limited liability,
so that the only difference between the two claims is the upside of the payoff function. If one compares the
debt claim with the complementary equity claim (i.e. with limited liability), then our results hold provided
that the fundamental of the economy is good enough or that there is enough optimism among investors.
Intuitively, when this is the case, the equity claim is mostly linear in the relevant range while the debt claim
has upside bounded payoffs in the relevant range. The formal analysis of equity with limited liability is in
Section 2.5.

7We provide a formal characterization that allows the ranking of two assets in terms of their disagreement
sensitivity in Section 2.
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with debt bubbles as issuance from poor credit quality firms forecast low future aggregate

bond returns. Optimists told stories of how home prices had been too depressed historically

and would keep rising (see Lereah (2005)) or rationalized the risk of the sub-prime mortgage

CDOs by pointing to the fact that national home prices had never fallen in US history.

Indeed, optimism over a lack of correlation among regional home prices seem to have played

a role in the the credit rating agencies’ models (Coval, Jurek, and Stafford (2009)).

To get debt overpricing, we allow for investor optimism in the disagreement framework.

As investor optimism rises holding fixed fundamental value, debt prices naturally and un-

surprisingly rise above fundamental value and a debt bubble emerges. But what is more

interesting is that this optimism channel for debt bubbles makes them quieter in the pro-

cess. When investors become more optimistic about the underlying fundamental of the

economy, they view debt as being more risk-free with less upside and hence having a smaller

resale option. Hence there is less trading of debt when there is greater investor optimism. In

other words, debt bubbles are inherently quiet whereas equity bubbles are intrinsically loud.

We then provide some evidence for this prediction regarding the relationship between

credit price and volume over the recent credit boom of 2003-2007 by looking at invesment-

grade US corporates.8 There was, of course, huge issuance of credits of all types during

the credit boom of 2003-2007 in the same way that there was a lot of issuance of dot-com

companies during the 1996-2000 (Greenwood and Hanson (2011) and Ofek and Richardson

(2003)). Our focus, however, is on whether the trading of these credits went up during

the 2003-2007 period in the same way that trading in stocks went up during the 1996-2000

period.

Figure 1 from Hong and Stein (2007) plots the monthly share turnover of Internet stocks

and the cumulative returns to owning these stocks and those of the non-internet analogs.

8There is no comprehensive trading data on the investment-grade mortgage CDOs. But mortgage credits
trade in a similar fashion to US corporates according to anecodotes we gathered from traders at Guggenheim
Partners who trade both types of securities. Institutional investors such as insurance companies value them
for their high credit rating and steady coupons in the same way that they value US corporate bonds. So we
focus on the trading of investment-grade US corporates over the recent credit cycle to test our model.
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The strong correlation of Internet stock share turnover and valuations can be seen in Figure

1. In Figures 2 and 3, we plot the monthly Bank of America/Merrill Lynch US Corporate

7-10 years Option-Adjusted Spread and trading activity measures (number of trades and

dollar trading volume) of these US corporates by insurance companies. The trading data is

obtained from Schedule D provided by the National Association of Insurance Commissioners

(NAIC). These figures are the analogs to Figure 1 for dot-com stocks. The lack of a positive

correlation between price and trading activity in credits in contrast to equity is apparent in

Figures 2 and 3. It is also easy to see that trading activity fell over 2003-2007 when spreads

also fell (i.e. when bond prices rose), consistent with the prediction of our model. We make

this point more formally below.

Finally, we want to acknowledge that the quietness of the credit bubble did not mean that

the excesses of the credit boom were not widely heard in other markets. Notably, there was

indeed speculation in housing markets. Homes, especially ones bought with cheap leverage,

have equity-like pay-offs. And consistent with our model, the housing bubble was loud in

that there was speculation in the form of flipping of homes and buying in anticipation of

capital gains. Our only point is that the bubble in credits, whose payoffs depended on these

home values, was quiet.

Our paper proceeds as follows. The model and main results are discussed in Section

2. We discuss empirical evidence Section 3. We conclude in Section 4 by drawing out the

implications of our work for policy and future research. In the Appendix, we collect proofs

and derive an extension of our model to show that even in a setting with an unbiased average

belief, an increase in the dispersion of priors can make bubbles larger and quieter at the same

time, provided that trading costs and asset supply are sufficiently small.
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2. Model

2.1. Set-up

Our model has three dates t = 0, 1, and 2. There are two assets in the economy. A risk-free

asset offers a risk-free rate each period. A risky debt contract with a face value of D has the

following payoff at time 2 given by:

m̃2 = min
(
D, G̃2

)
, (1)

where

G̃2 = G+ ε̃2 (2)

and G is a known constant and ε̃2 is a random variable drawn from a standard normal

distribution Φ(·). We think of G̃t as the underlying asset value which determines the payoff

of the risky debt or the fundamental of this economy. There is an initial supply Q of this

risky asset.

There are two groups of agents in the economy: group A and group B with a fraction

1/2 each in the population. Both groups share the same belief at date 0 about the value of

the fundamental. More specifically, both types of agents believe at t = 0 that the underlying

asset process is:

Ṽ2 = G+ b+ ε̃2, (3)

where b is the agents’ optimism bias. When b = 0, investor expectations are equal to the

actual mean of the fundamental G and there is no aggregate bias. The larger is b, the greater

the investor optimism.

At t = 1, agents’ beliefs change stochastically: agents in group A believe the asset process

6



is in fact

Ṽ2 = G+ b+ ηA + ε2 (4)

while agents in group B believe it is:

Ṽ2 = G+ b+ ηB + ε̃2, (5)

where ηA and ηB are drawn from a normal standard distribution with mean 0 and standard

deviation 1. These revisions of beliefs are the main shocks that determine the price of the

asset, its volatility and turnover at t = 1.

The expected payoff of an agent with belief G + b + η regarding the mean of Ṽ2 for this

standard debt claim is given by:

π(η) = E[Ṽ2|η] =

∫ D−G−b−η

−∞
(G+ b+ η + ε̃2)φ(ε̃2)dε̃2 +D (1− Φ (D −G− b− η)) . (6)

If the fundamental shock ε̃ is sufficiently low such that the value of the asset underlying the

credit is below its face value (G + b + η + ε̃ < D), then the firm defaults on its contract

and investors become residual claimant (they receive G + b + η + ε̃). If the fundamental

shock ε̃ is sufficiently good such that the value of the fundamental is above the face value of

debt (G + b + η + ε̃ ≥ D), then investors are entitled to a fixed payment D. Our analysis

below applies more generally to any (weakly) concave expected payoff function, which would

include equity as well standard debt claims. Note also that the unlimited liability assumption

– the fact that debtholders may receive negative payoff – is not necessary for most of our

analysis, but it allows us to compare our results with the rest of the literature.

Agents are risk-neutral and can borrow from a perfectly competitive credit market.9 The

9This can be viewed as the limiting case of the following model with borrowing constraints. Agents are
endowed with zero liquid wealth but large illiquid wealth W (which becomes liquid and is perfectly pledgeable
at date 2). Credit markets are imperfectly competitive so that banks charge a positive interest rate, which
we call 1

µ − 1, so that µ is the inverse of the gross rate charged by banks. µ is increasing with the efficiency
of the credit market. We consider here the case where µ = 1. The derivation of the model with µ < 1 is
available from the authors upon request. Results are qualitatively similar.
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discount rate is normalized to 0 without loss of generality. Finally, the last ingredient of this

model is that our risk-neutral investors face quadratic trading costs given by:

c(∆nt) =
(nt − nt−1)2

2γ
, (7)

where nt is the shares held by an agent at time t. The parameter γ captures the severity

of the trading costs – the higher is γ the lower the trading costs. These trading costs allow

us to obtain a well-defined equilibrium in this risk-neutral setting. Note that n−1 = 0 for

all agents, i.e. agents are not endowed with any risky asset. Investors are also short-sales

constrained. This set-up is similar to the CARA-Gaussian platform in Hong, Scheinkman,

and Xiong (2006) except that we consider non-linear payoff functions over disagreement

about underlying asset value.

2.2. Date-1 equilibrium

Let P1 be the price of the asset at t = 1. At t = 1, consider an investor with belief G+ b+ η

and date-0 holding n0. Her optimization problem is given by:

J(n0, η, P1) =

∣∣∣∣∣∣∣∣
max
n1

{
n1π(η)−

(
(n1 − n0)P1 +

(n1 − n0)2

2γ

)}
n1 ≥ 0

(8)

where the constraint is the short-sales constraint.

Call n?1(η) the solution to the previous program. If n?1(η)−n0 is positive, an agent borrows

(n?1(η) − n0)P1 +
(n?1(η)−n0)2

2γ
to buy additional shares n?1(η) − n0. If n?1(η) − n0 is negative,

the agent makes some profit on the sales but still has to pay the trading cost on the shares

sold (n0 − n?1(η)). This is because the trading cost is symmetric (buying and selling costs

are similar) and only affects the number of shares one purchases or sells, and not the entire

position (i.e. n1 − n0 vs. n1). In equation 8, J(n0, η, P1) is the value function of an agent

with belief G+ b+ η, initial holding n0 and facing a price P1. Clearly, J(n0, η, P1) is driven
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in part by the possibility of the re-sale of the asset bought at t = 0 at a price P1.

Our first theorem simply describes the date-1 equilibrium. At date 1, three cases arise,

depending on the relative beliefs of agents in group A and B. If agents in group A are

much more optimistic than agents in group B (π(ηA) − π(ηB) > 2Q
γ

), then the short-sales

constraints binds for agents in group B. Only agents A are long and the price reflects the

asset valuation of agents A (π(ηA)) minus a discount that arises from the effective supply of

agents B who are re-selling their date-0 holdings to agents A.

Symmetrically, if agents in group B are much more optimistic than agents in group A

(π(ηB) − π(ηA) > 2Q
γ

), then the short-sales constraints binds for agents in group A. Only

agents B are long and the price reflects the valuation of agents B for the asset (π(ηB)) minus

a discount that arises from the effective supply of agents A who are re-selling their date-0

holdings to agents B.

Finally, the last case arises when the beliefs of both groups are close (i.e |π(ηA)−π(ηB)| <
2Q
γ

). In this case, both agents are long at date 1 and the date-1 equilibrium price is simply

an average of both groups’ beliefs (π(ηA)+π(ηB)
2

).

Theorem 1. Date-1 equilibrium.

At date 1, three cases arise.

1. If π(ηA)− π(ηB) > 2Q
γ

, only agents in group A are long (i.e. the short-sales constraint

is binding). The date-1 price is then:

P1 = π(ηA)− Q

γ
.

2. If π(ηB)− π(ηA) > 2Q
γ

, only agents in group B are long (i.e. the short-sales constraint

is binding). The date-1 price is then:

P1 = π(ηB)− Q

γ
.
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3. If |π(ηA)− π(ηB)| ≤ 2Q
γ

, both agents are long. The date-1 price is then:

P1 =
π(ηA) + π(ηA)

2
.

Proof. Let (ηA, ηB) be the agents’ beliefs at date 1. Agents in group i are solving the following problem:

∣∣∣∣∣∣∣∣
max
n1

{
n1π(ηi)−

(
(n1 − n0)P1 +

(n1 − n0)2

2γ

)}
n1 ≥ 0

Consider first the case where both agents are long. Then, the date-0 holdings are given by the F.O.C.

of the unconstrained problem and yield

nA1 = n0 + γ
(
π(ηA)− P1

)
and nB1 = n0 + γ

(
π(ηB)− P1

)
The date-1 market-clearing condition (nA1 + nB1 = 2Q) combined with the date-0 market-clearing condi-

tion (nA0 + nB0 = 2Q) gives:

P1 =
π(ηA) + π(ηB)

2
,

and

nA1 − nA0 = γ
π(ηA)− π(ηB)

2
and nB1 − nB0 = γ

π(ηB)− π(ηA)

2
.

This can be an equilibrium provided that these date-1 holdings are indeed positive:

2nA0
γ

> π(ηB)− π(ηA) and
2nB0
γ

> π(ηA)− π(ηB).

If this last condition is not verified, two cases may happen. Either agents in group B are short-sales

constrained (nB1 = 0). In this case, the date-1 market clearing condition imposes that:

P1 = π(ηA)− Q

γ
.

This can be an equilibrium if and only if group B agents’ F.O.C. leads to a strictly negative holding or

π(ηA)− π(ηB) >
2nB0
γ
.
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Or the agents in group A are short-sales constrained (nA1 = 0). In this case, the date-1 market clearing

condition imposes that

P1 = π(ηB)− Q

γ
.

This can be an equilibrium if and only if group B agents’ F.O.C. leads to a strictly negative holding or

π(ηB)− π(ηA) >
2nA0
γ

2.3. Date-0 equilibrium

We now turn to the equilibrium structure at date 0. Let P0 be the price of the asset at t = 0.

Then at t = 0, agents of group i ∈ {A,B} have the following optimization program:

∣∣∣∣∣∣∣∣
max
n0

{
−
(
n0P0 +

n2
0

2γ

)
+ Eη[J(n0, η, P1)]

}
n0 ≥ 0

(9)

where the constraint is the short-sales constraint and the expectation is taken over the belief

shocks (ηA, ηB).

The next theorem describes the date-0 equilibrium. In this symmetric setting, it is

particularly simple. Both groups of agents are long and hold initial supply Q. The date-0

demand is driven by the anticipation of the date-1 equilibrium. When agents consider a

large belief shock, they anticipate they will end up short-sales constrained. In this case,

holding n0 shares at date 0 allows the agents to receive n0P1 at date 1 minus the trading

cost associated with the reselling of the date-0 holding or
n2

0

2γ
. Or agents consider a small

belief shock, and thus anticipate to be long at date 1, i.e. that they will not become too

pessimistic relative to the other group. In this case, it is easily shown that their utility from

holding n0 shares at date 0 is proportional to the expected payoff from the asset conditional

on the date 1 belief π(ηi).
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Theorem 2. Date-0 equilibrium.

At date-0, each group owns Q shares. The date-0 price is given by:

P0 =

∫ ∞
−∞

[(
π(y)− 2Q

γ

)
Φ

(
π−1[π(y)− 2Q

γ
]

)
+

∫ ∞
π−1[π(y)− 2Q

γ
]

π(x)φ(x)dx

]
φ(y)dy − Q

γ

(10)

Proof. At date 0, group A’s program can be written as:

maxn0

{∫∞
−∞

[∫ π−1[π(y)− 2nA0
γ ]

−∞

(
n0

(
π(y)− Q

γ

)
− n2

0

2γ

)
φ(x)dx

+
∫∞
π−1[π(y)− 2nA0

γ ]

(
n?1(x)π(x) + (n0 − n?1(x))P1(x, y)− (n?1(x)−n0)2

2γ

)
φ(x)dx

]
φ(y)dy −

(
n0P0 +

n2
0

2γ

)}

Let G+ b+ x be the date-1 belief of group A agents and G+ b+ y be the date-1 belief of group B agents.

The first integral corresponds to the case where group A agents are short-sales constrained. This happens

when π(x) < π(y) − 2Q
γ ⇔ x < π−1

(
π(y)− 2Q

γ

)
. In this case, group A agents re-sell their date-0 holdings

for a price P1 = π(y) − Q
γ and pay the trading cost

n2
0

2γ . The second integral corresponds to the case where

group A agents are not short-sell constrained and their date-1 holding is given by the interior solution to the

F.O.C., n?1(x). The corresponding payoff is the expected payoff from the date-1 holding with date-1 belief, i.e.

n?1(x)π(x) plus the potential gains (resp. cost) of selling (resp. buying) some shares ((n0 − n?1(x))P1(x, y))

minus the trading costs (
(n?1(x)−n0)2

2γ ) of adjusting the date-1 holding.

Note that the bounds defining the two integrals depend on the aggregate holding of group A, but group

A agents have no impact individually on this aggregate holding nA0 . Thus, they maximize only over n0 in

the previous expression and take nA0 as given. Similarly, agents consider P1(x, y) as given (i.e. they do not

take into account the dependence of P1 on the aggregate holdings nA0 and nB0 ).

To derive the F.O.C. of group A agents’ program, use the envelope theorem to derive the second integral

w.r.t. n0. For this integral, the envelope theorem applies as n?1(x) is determined according to the date-1

interior F.O.C.. We thus have:

∂
(
n?1(x)π(x) + (n0 − n?1)P1(x, y)− (n?1−n0)2

2γ

)
∂n0

= P1(x, y) +
n?1(x)− n0

γ
= π(x).

Thus, the overall F.O.C. writes:
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∫∞
−∞

[∫ π−1[π(y)− 2nA0
γ ]

−∞

(
π(y)− Q

γ −
n0

γ

)
φ(x)dx+

∫∞
π−1[π(y)− 2nA0

γ ]
π(x)φ(x)dx

]
φ(y)dy −

(
P0 + n0

γ

)
= 0

The model is symmetric. Hence, it has to be that nA0 = nB0 = Q. Substituting in the previous F.O.C.

gives the date-0 equilibrium price:

P0 =

∫ ∞
−∞

[(
π(y)− 2Q

γ

)
Φ

(
π−1[π(y)− 2Q

γ
]

)
+

∫ ∞
π−1[π(y)− 2Q

γ ]

π(x)φ(x)dx

]
φ(y)dy − Q

γ

2.4. Comparative Statics

Now that we have solved for the dynamic equilibrium of this model, we are interested in

how mispricing, share turnover and price volatility depend on the following parameters: the

structure of the credit claim (D), the bias of the agents’ prior (b) and the fundamental of

the economy (G). We will relate the predictions derived from these comparative statics to

the stylized facts gathered in Section 2.

To be more specific, we first define the bubble or mispricing, which we take to be P0, the

equilibrium price, minus P̄0, the price of the asset in the absence of short-sales constraints

and with no aggregate bias (b = 0). This benchmark or unconstrained price can be written

as:10

P̄0 =

∫ ∞
−∞

π(η − b)φ(η)dη − Q

γ
. (11)

Now define P̂0 as the date-0 price when there are no short-sales constraint but the aggregate

bias is b. This price is given by

P̂0 =

∫ ∞
−∞

π(η)φ(η)dη − Q

γ
. (12)

10First, if there is no bias b, then the belief of an agent with belief shock η will be G+ η. Thus, this agent
will expect a payoff π(η − b). Moreover, when there is no short-sales constraint, the formula for the price is
similar to equation 10, except that the short-sales constraint region shrinks to 0.
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The date-0 price can then be decomposed in the following way:

P0 = P̂0 +

∫ ∞
−∞

(∫ π−1[π(y)− 2Q
γ

]

−∞

(
π(y)− π(x)− 2Q

γ

)
φ(x)dx

)
φ(y)dy. (13)

Then we can decompose the bubble into the following two terms:

bubble =

∫ ∞
−∞

(∫ π−1[π(y)− 2Q
γ

]

−∞

(
π(y)− π(x)− 2Q

γ

)
φ(x)dx

)
φ(y)dy︸ ︷︷ ︸

resale option

+ P̂0 − P̄0︸ ︷︷ ︸
optimism

(14)

In this simple model, the bubble emerges from two sources: (1) there is a resale option due

to binding short-sales constraints in the future and (2) agents are optimistic about the asset

payoff and thus drive its price up.

The second quantity we are interested in is expected share turnover. It is simply defined

as the expectation of the number of shares exchanged at date 1. Formally:

T = E{ηA,ηB}
[
|nA1 − nA0 |

]
(15)

Share turnover can be expressed in our setting as:

T =

∫ ∞
−∞

Q(Φ(x(y)) + (1− Φ(x̄(y)))︸ ︷︷ ︸
A,B short-sales constrained

+

∫ x̄(y)

x(y)

µγ
|π(y)− π(x)|

2
dΦ(x)︸ ︷︷ ︸

no short-sales constraint

 dΦ(y),

where π(x(y)) = π(y)− 2Q
γ

and π((̄x)(y)) = π(y) + 2Q
γ

. Intuitively, if y is the interim belief

shock of agents in group A, then when agents in group B have an interim belief shock x

below x(y) (resp. above x̄(y)) agents in group B (resp. agents in group A) are short-sales

constrained. Conditional on one group of agent being short-sales constrained, share turnover

is maximum and equal to Q. When neither group is short-sales constrained, turnover is just

proportional to the difference in valuation between the optimistic and the pessimistic group.
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The third object is price volatility between t = 0 and t = 1. Price volatility is defined

simply by:

σP = Var{ηA,ηB}
[
P1(ηA, ηB)

]
(16)

The following proposition shows how these three quantities depend on D.

Proposition 1. A decrease in D (the riskiness of debt) leads to a decrease in (1) mispricing

(2) share turnover and (3) price volatility.

Proof. See Appendix.

Proposition 1 offers a rationale for why debt bubbles are smaller and quieter than equity

ones. The main intuition is that because the credit payoff is bounded by D, it is insensitive

to beliefs on the distribution of payoffs above D. Thus, when D is low, there is very little

scope for disagreement – the credit is almost risk-free and its expected payoff is close to

its face value, and is in particular almost independent of the belief about the fundamental

value. Short-sales constraint are thus not likely to bind (as short-sales constraints at date

1 arise from large differences in belief about the expected payoff). As a result, the resale

option is low (i.e. the asset will most likely trade at its “fair” value at date 1) and mispricing

is low. This, in turns, leads to low expected turnover as turnover is maximized when the

agents’ short-sales constraint binds. Similarly, volatility will be low as prices will be less

extreme (intuitively, the date-1 price will be representative of the average of the two groups

beliefs rather than of the maximum of the two groups’ beliefs). This mechanism builds on

the analysis in Hong, Scheinkman, and Xiong (2006) which relies on risk averse investors and

a positive supply of the security so that there are regions in which both groups of investors

are long.

Conversely, as D increases, agents’ belief matters more for their valuation of the credit,

both because of the recovery value conditional on default and because of the default thresh-

old. In the extreme, when D grows to infinity, the credit becomes like an equity, beliefs
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become relevant for the entire payoff distribution of the asset and the scope for disagreement

is maximum. This leads to more binding short-sales constraint at date 1, and hence more

volatility and expected turnover.

A simple conclusion emerges from this analysis. For risk-less debt, that is D small, there

is little scope for a bubble in credit to emanate from the resale option component. So it is very

difficult for the speculative resale dynamics, which can easily drive equity bubbles, to create

bubbles in safe credit. Perhaps such a mechanism can work for risky or junk bonds. But the

bonds that were mispriced during the credit boom of 2003-2007 were investment-grade and

in some cases AAA-rated.

For such safe credits, any bubble or mispricing has to emanate from the optimism compo-

nent due to b—the optimism bias of investors. Indeed, as we discussed in the Introduction,

there is compelling evidence for this explanation. Of course, when the aggregate bias in-

creases (i.e. b increases), mispricing increases in our model. So a first take-away from our

analysis is that the credit bubble had to emanate from the excess optimism of the average

investor as opposed to disagreement or speculative resale among investors.

We can dig a bit deeper and ask what would happen to share turnover and volatility in

our model as we increase b? In other words, high prices are only one symptom of asset price

bubbles. In equity, high trading volume is another. We can see if credit and equity bubbles

differ in these other dimensions as we increase b. That is, is there an auxiliary prediction

associated with the higher prices coming from optimism.

It turns out that turnover and volatility also decrease as we increase b. We prove this in

the following proposition.

Proposition 2. Assume that D < ∞. An increase in aggregate optimism (i.e. b) leads to

(1) higher mispricing (2) lower price turnover, and (3) lower volatility.

Proof. We first look at mispricing. Note that P̄0 is independent of b. Thus:

∂mispricing

∂b
=
∂P0

∂b
=

∫ ∞
−∞

(
Φ (x(y)) Φ(D −G− b− y) +

∫ ∞
x(y)

Φ(D −G− b− x)φ(x)dx

)
φ(y)dy > 0
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Formally, the derivative of turnover and price volatility w.r.t. b is equal to the derivative of turnover

and price volatility w.r.t. G. Thus, thanks to the proof of proposition 3 below:

∂T
∂b

< 0 and
∂V
∂b

< 0

When investors become more optimistic about the underlying fundamental of the econ-

omy, they view debt as being more risk-free with less upside and hence having a smaller

resale option. Hence there is less trading of debt when there is greater investor optimism.

In our model, provided that the payoff function is strictly concave (or equivalently that

D <∞), an increase in average optimism makes the bubble bigger and quieter at the same

time. This can be contrasted with the case of a straight equity claim, where both volatility

and turnover would be left unaffected by variations in the average optimism – even in the

case of binding short-sales constraint. This is because differences in opinion about an asset

with a linear payoff are invariant to a translation in initial beliefs. Thus while an increase

in optimism would obviously inflate the price of an equity, it would not change its price

volatility nor its turnover. In other words, debt bubbles are inherently quiet whereas equity

bubbles are intrinsically loud.

In Proposition 2, we held fixed G and considered how a change in b influence properties

of the credit bubble. In the next proposition, we hold fix b and consider the comparative

static with respect to G.

Proposition 3. A decrease in G (the riskiness of debt) leads to an increase in (1) mispricing

(2) share turnover, and (3) price volatility.

Proof. See Appendix.

When fundamentals deteriorate, the credit claim becomes riskier and hence disagreement

becomes more important for its valuation. This increase in disagreement sensitivity leads to

an increase in the resale option (the speculative component of the date-0 price increases as
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short-sales constraints are more likely to bind at date 1) and hence higher mispricing. This

triggers an increase in both price volatility and turnover as argued above and the bubble

stops being quiet.

This prediction is very different from the prediction of the standard model of adverse

selection (e.g., see the discussion by Holmstom (Forthcoming)). In this model, a deterioration

in the fundamental of the economy destroys the information-insensitiveness of the credit,

which reinforces adverse selection and potentially leads to a market breakdown. Thus a

worsening of the economy leads to lower trading activity. In our model, however, when the

economy worsens, agents realize that disagreement matters for the pricing of the credit in

future periods – which drives up the resale option and subsequently increases volatility and

trading volume.

2.5. Equity with Limited Liability

Our analysis so far has implicitly compared a credit claim (finite D) with an unlevered equity

claim (D =∞) on the same underlying asset. It is fairly direct to extend our results to the

case where we compare the levered equity claim that complements the credit claim in the

asset value space. Formally, we define the expected payoff function for the levered equity

claim under fundamental G, aggregate optimism b, belief shock η and principal on the debt

claim D as:

πE(η) =

∫ ∞
D−G−b−η

(G+ b+ η + ε−D) dΦ(ε)

The expected payoff of the debt claim is similar to our previous analysis and is easily

defined by: πD(η) = G+ b+ η − πE(η).

The following proposition compares the loudness of these two tranches:

Proposition 4. There exists Ḡ such that if the fundamental is high enough (G ≥ Ḡ), the

equity tranche has greater mispricing, share turnover and volatility than the debt tranche.
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Similarly, provided that aggregate optimism is high enough (b ≥ b̄) or that the principal on

the loan is small enough D ≤ D̄, the equity tranche has greater mispricing, share turnover

and volatility than the debt tranche.

Proof. See Appendix.

Intuitively, when G increases, the debt tranche becomes less disagreement sensitive while

the equity tranche becomes more disagreement sensitive. As a consequence, the relative

mispricing of equity vs. debt increases, as well as their relative turnover and volatility. One

purpose of this proposition is to show that provided that b is large, i.e. provided that the

bubble is large enough, our results that credit bubbles are quieter than equity bubbles is

robust to the consideration of shareholders’ limited liability.

2.6. Characterizing Disagreement Sensitivity

In this section, we move away from the simple debt/equity dichotomy we have emphasized

up to now. Our objective is to provide a characterization of the payoffs of various assets

that allows us to rank them according to their disagreement sensitivity. We consider the

following problem. Take two derivatives on the same underlying fundamental, with payoff

function π1() and π2(). To get rid of level effects, we make the assumption that π1 and π2

have the same expected fundamental value, i.e.:11

∫ ∞
0

π1(x)φ(x)dx =

∫ ∞
0

π2(x)φ(x)dx

The next proposition proposes a sufficient condition under which π1 will lead to a larger

and louder bubble than π2 for any distribution of the belief shocks (ηA, ηB):

Proposition 5. Assume that for all x ∈ R, π′1(x) ≥ π′2(x) and that the inequality holds

strictly on a non-empty set. Then asset 1 has a strictly larger date-0 price, a strictly larger

11Note that in our debt setup, an increase in D was increasing both the disagreement sensitivity of the
debt and its expected payoff. In this sense, the exercise we consider in this section is more precise in that
we only consider variations in the slope of the payoff function for a constant expected value.
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expected turnover and a strictly larger expected volatility than asset 2.

Proof. Consider the function ∆(x) = π1(x)−π2(x). Thanks to our assumption on π1 and π2, ∆ is increasing

over R. We thus have:

∀ y ≥ x, ∆(y) ≥ ∆(x)⇔ π1(y)− π1(x)− Q

2γ
≥ π2(y)− π2(x)− Q

2γ

Moreover:

π−1
1 (π1(y)− 2Q

γ ) ≥ π−1
2 (π2(y)− 2Q

γ )

⇔ π1(y)− π1

[
π−1

2 (π2(y)− 2Q
γ )
]
≥ 2Q

γ

But because π2 is increasing, we know that y ≥ π−1
2 (π2(y) − 2Q

γ ). Moreover, because ∆ is increasing, we

know that: ∆(y) ≥ ∆(π−1
2 (π2(y)− 2Q

γ )). This implies:

π1(y)− π2(y) ≥ π1

[
π−1

2 (π2(y)− 2Q

γ
)

]
− π2(y) +

2Q

γ
⇔ π1(y)− π1

[
π−1

2 (π2(y)− 2Q

γ
)

]
≥ 2Q

γ

Thus, this proves that P0(π1) ≥ P0(π2). This is because (1) short sales constraint are binding more often

under π1 than π2 and (2) when short-sales constraints are binding, the difference between the actual price

and the no-short sales constraint price (which is proportional to the difference in beliefs between the two

groups) is larger under π1 than under π2. Note that the inequality will be strict as soon as the derivatives

of π1 is strictly greater than the derivative of π2 on a non-empty set of R.

Similarly, it is direct to show that turnover and volatility will be greater under π1 than under π2. For

instance, short-sales constraints bind more often with π1 and turnover is then maximum and equal to Q.

Moreover, when short-sales constraint do not bind, turnover is proportional to the difference in belief between

the optimistic and the pessimistic group and we know that this difference will be larger under π1 than under

π2.

Intuitively, the payoff function with the largest slope will be such that differences in

beliefs lead to larger differences in valuation for the asset. It will thus have the largest

probability that short-sales constraints are binding and hence will have the largest price,

expected turnover and expected volatility. Note that because of the constant expected value
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assumption, the condition in Proposition 5 is similar to a single crossing condition.12

Finally, note that to derive a necessary condition to rank the two assets, one needs to

make assumptions on the p.d.f. of the beliefs shocks (η1, η2). In particular, if the condition

has to hold for any distribution of the belief shocks, then the condition in Proposition 5 is

also a necessary condition.

3. Price-Volume Relationship of Credits from 1998-

2009

In this section, we provide evidence on the inverse relationship between the price and trad-

ing volume of credits over the recent credit cycle from 1998-2009. Our credit spread data

is obtained from the St. Louis Federal Reserve Bank. We use the monthly Bank of Amer-

ica/Merrill Lynch US Corporate 7-10 years Option-Adjusted Spread (OASs). The Bank of

America/Merrill Lynch OASs are the calculated spreads between a computed OAS index

of all bonds in a given rating category and a spot Treasury curve. The US Corporate 7-10

Year OAS is a subset of the Bank of America Merrill Lynch US Corporate Master OAS,

BAMLC0A0CM. This subset includes all securities with a remaining term to maturity of

greater than or equal to 7 years and less than 10 years.

Our data source for bond trading volume is Schedule D provided by NAIC. Schedule

D covers all the insurance companies in the US, including life and property insurance, and

provides year-end holding and every trading record for bonds, stocks, mutual funds, private

equity and short-term investments for each insurer. The sample includes 1097 life insurance

companies and 2616 property ones or 3713 insurers in total. For the graphs here, we keep

only corporate bond trades. We calculate two measures of bond trading activity. The first

is number of trades by these insurance companies. The second is the dollar trading volume.

12We have limx→−∞∆(x) ≤ 0. If this was not the case, then ∆(x) would be strictly positive for all x and
the two assets could not have the same expected value. Similarly, limx→−∞∆(x) ≥ 0.
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These data are also monthly series. The latter data is comprehensive when it comes to the

trades of insurance companies, which are the major owners of US corporates.

We plot in Figure 2(a) the monthly time series of the credit spread and the number of

trades. Notice that the credit spreads are falling from the end of 2002 to the middle of 2007,

when the financial crisis begins. It can also be easily seen that the number of trades are

falling as the credit spreads are falling or prices are rising, consistent with our model. Notice

moreover that from 1998 to 2002, credit spreads are rising and so is trading activity. We

plot in Figure 2(b) the monthly series of the credit spread and the bond trading volume. We

get a similar picture.

In Table 1, we conduct a regression of the bond spreads on either the log of the number of

trades or of log trading volume. For the whole period, the coefficient is 0.1 but is statistically

insignificant. We then break down the regression into sub-periods of 1998-2001 before the

credit boom, the 2003-2007S1 years (S1 is the first six-months) of the credit boom, up to the

start of the financial crisis in mid-2007, and the period of the financial crisis from 2007S2

to 2009. It is easy to see that there is a very strong correlation between spreads and log

number of trades during the period of the credit boom. The coefficient of interest is 0.99,

which attracts a t-statistic of 4. One standard deviation of our left-hand side variable, credit

spreads, is 1.06. One standard deviation of our right-hand side variable, log number of trades

is 0.323. So for the 2002-2007S1 period, a one standard deviation increase in number of trades

(in logs) is associated with a 30% of a standard deviation increase in spreads, which is an

economically meaningful fraction. The same holds true when we use dollar trading volume.

The coefficient of interest is 0.73 with a t-statistic of 3.1 One standard deviation of log dollar

trading volume is 0.283. So the economic significance is smaller compared to log number of

trades but still sizeable. Notice that the same results holds for the 1998-2001 period.

The only period where the results are not significant is the 2007S2-2009 period of the

financial crisis when credit spreads jumped but trading volume actually fell. Much of this is

due to liquidity issues in credit markets. This liquidity dry-up has been prominently covered
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in other research. The interesting juxtaposition is that in 2003-2007 when there were no

liquidity issues and the credit boom was taking place, trading in credits actually fell.

4. Conclusion

In this paper, we attempt to understand the dynamics of equity and credit bubbles within a

unified framework built on investor disagreement and short-sales constraints. Our analysis

is motivated by the observation that the classic speculative episodes such as the dot-com

bubble usually come with high price, high price volatility and high turnover, while the

recent credit bubble appears much quieter. We show that credit bubbles are quieter than

equity ones because the up-side concavity of debt payoffs means debt instruments (especially

higher rated ones) are less disagreement-sensitive than lower rated credit or equity. As a

consequence, optimism which increases the size of credit and equity bubbles makes credit

bubbles quiet but leaves the loudness of equity bubbles unchanged.

Our analysis drawing out the distinction that credit bubbles are quiet in contrast to equity

bubbles adds to, or more accurately amplifies, a laundry list of potential rationales for the

financial crisis, such as agency problems in banking, incentive problems of rating agencies,

excess surplus of savings from China and a lack of price transparency in the mortgage credits

until it was too late. The fact that credit bubbles are quiet might mean that it was difficult

for banks and regulators to see or detect the speculative excesses in contrast to equities. It

is interesting to ask whether this quietness might have contributed to why the crash of the

credit bubble had more severe consequences than for the crash of the dot-com bubble?

Our analysis also suggests the potential usefulness of a taxonomy of bubbles. Here we

offer a first attempt at a taxonomy of bubbles that distinguishes between loud equity bubbles

and quiet credit bubbles. Future work elaborating on this taxonomy and providing other

historical evidence would be very valuable.
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A. Appendix

A.1. Proof of Proposition 1 and 3

As shown in the text, mispricing can be written as:

mispricing =

∫ ∞
−∞

(∫ π−1[π(y)− 2Q
γ ]

−∞

(
π(y)− π(x)− 2Q

γ

)
φ(x)dx

)
φ(y)dy +

∫ ∞
−∞

(π(y)− π(y − b))φ(y)dy

Note that x < π−1
[
π(y)− 2Q

γ

]
⇒ x < y. Moreover, ∂(π(y)−π(x))

∂D = Φ(D−G− b−x)−Φ(D−G− b−y).

Thus, for all x < π−1
[
π(y)− 2Q

γ

]
, ∂(π(y)−π(x))

∂D > 0. Similarly, as b > 0, ∂(π(y)−π(y−b))
∂D = Φ(D − G − y) −

Φ(D −G− b− y) > 0. Thus, the derivative of mispricing w.r.t. D is strictly positive:

∂(mispricing)

∂D
=

∫ ∞
−∞

∫ π−1[π(y)− 2Q
γ ]

−∞

∂(π(y)− π(x))

∂D︸ ︷︷ ︸
>0

φ(x)dx

φ(y)dy +

∫ ∞
−∞

∂(π(y)− π(y − b))
∂D︸ ︷︷ ︸
>0

φ(y)dy

(17)

Thus, as D increases, both the resale option and the mispricing due to aggregate optimism increases, so

that overall mispricing increases.

We now turn to expected turnover. To save on notations, call x̄(y) the unique real number such that:

π(x̄(y)) = π(y)+ 2Q
γ . Similarly, call x(y) the unique real number such that: π(x(y)) = π(y)− 2Q

γ . Obviously,

x(y) < y < x̄(y). Expected turnover is:

T =

∫ ∞
−∞


∫ x(y)

−∞
Qφ(x)dx︸ ︷︷ ︸

A short-sales constrained

+

∫ x̄(y)

x(y)

γ
|π(y)− π(x)|

2
φ(x)dx︸ ︷︷ ︸

no short-sales constraint

+

∫ ∞
x̄(y)

Qφ(x)dx︸ ︷︷ ︸
B short-sales constrained

φ(y)dy

We can take the derivative of the previous expression w.r.t. D. Note that the derivative of the bounds

in the various integrals cancel out, so that:

∂T
∂D

=

∫ ∞
−∞

(∫ x̄(y)

x(y)

γ

2

∂ |π(y)− π(x)|
∂D

φ(x)dx

)
φ(y)dy (18)

If y ≥ x, ∂|π(y)−π(x)|
∂D = |Φ(D−G− b− x)−Φ(D−G− b− y)| > 0. Thus turnover is strictly increasing

with D.
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We now turn to variance. Formally, note: P1(x̃, ỹ, D) the date-1 price when one agent has belief shock

x̃, the other ỹ and the face value of debt is D.

P1(x̃, ỹ, D) =



π(x̃)− Q

γ
if π(x̃) ≥ π(ỹ) +

2Q

γ

π(x̃) + π(ỹ)

2
if |π(x̃)− π(ỹ)| ≤ 2Q

γ

π(ỹ)− Q

γ
if π(ỹ) ≥ π(x̃) +

2Q

γ

We have:

Ex,y [(P1(x̃, ỹ)2] =

∫ ∞
−∞

(∫ x(y)

−∞

(
π(y)−

Q

γ

)2

φ(x)dx+

∫ x̄(y)

x(y)

(
π(x) + π(y)

2

)2

φ(x)dx+

∫ ∞
x̄(y)

(
π(x)−

Q

γ

)2

φ(x)dx

)
φ(y)dy

(19)

We can take the derivative of the previous expression w.r.t. D. Call K = D −G− b:

1
2
∂E[(P1(x̃,ỹ)2]

∂D

=

∫ ∞
−∞

[∫ x(y)

−∞
(1− Φ(K − y))

(
π(y)−

Q

γ

)
φ(x)dx+

∫ x̄(y)

x(y)

(
1−

Φ(K − x) + Φ(K − y)

2

)(
π(x) + π(y)

2

)
φ(x)dx

]
φ(y)dy

+

∫ ∞
−∞

[∫ ∞
x̄(y)

(1− Φ(K − x))

(
π(x)−

Q

γ

)
φ(x)dx

]
φ(y)dy

Note first that:

∫ ∞
−∞

[∫ x(y)

−∞
(1− Φ(K − y))

(
π(y)− Q

γ

)
φ(x)dx

]
φ(y)dy =

∫ ∞
−∞

(1− Φ(K − y))

[∫ x(y)

−∞

(
π(y)− Q

γ

)
φ(x)dx

]
φ(y)dy

Now the second term in equation 19 can be decomposed into:

∫ ∞
−∞

[∫ x̄(y)

x(y)

(
1− Φ(K − x) + Φ(K − y)

2

)(
π(x) + π(y)

2

)
φ(x)dx

]
φ(y)dy

=

∫ ∞
−∞

[∫ x̄(y)

x(y)

(1− Φ(K − y))

(
π(x) + π(y)

2

)
φ(x)dx

]
φ(y)dy

+

∫ ∞
−∞

[∫ x̄(y)

x(y)

Φ(K − y)− Φ(K − x)

2

(
π(x) + π(y)

2

)
φ(x)dx

]
φ(y)dy︸ ︷︷ ︸

=0

=

∫ ∞
−∞

(1− Φ(K − y))

[∫ x̄(y)

x(y)

(
π(x) + π(y)

2

)
φ(x)dx

]
φ(y)dy

Thus, eventually:
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1

2

∂E[(P1(x̃, ỹ)2]

∂D
=

∫ ∞
−∞

(1− Φ(K − y))

[∫ x(y)

−∞

(
π(y)−

Q

γ

)
φ(x)dx+

∫ x̄(y)

x(y)

(
π(x) + π(y)

2

)
φ(x)dx

]
φ(y)dy

+

∫ ∞
−∞

[∫ ∞
x̄(y)

(1− Φ(K − x))

(
π(x)−

Q

γ

)
φ(x)dx

]
φ(y)dy

Call m = Ex,y[P1(x̃, ỹ, D)]. The derivative of m2 w.r.t. to D is simply:

1

2

∂ (E[P (x, y)])2

∂D
=

∫ ∞
−∞

(1− Φ(K − y))

[∫ x(y)

−∞
mφ(x)dx+

∫ x̄(y)

x(y)
mφ(x)dx

]
φ(y)dy

+

∫ ∞
−∞

[∫ ∞
x̄(y)

(1− Φ(K − x))mφ(x)dx

]
φ(y)dy

and V = V ar(P1(x̃, ỹ, D)) = Ex,y[(P1(x̃, ỹ)2]−m2. We have:

1

2

∂V
∂D

=

∫ ∞
−∞

(1− Φ(K − y))

[∫ x(y)

−∞

(
π(y)−

Q

γ
−m

)
φ(x)dx+

∫ x̄(y)

x(y)

(
π(x) + π(y)

2
−m

)
φ(x)dx

]
φ(y)dy

+

∫ ∞
−∞

[∫ ∞
x̄(y)

(1− Φ(K − x))

(
π(x)−

Q

γ
−m

)
φ(x)dx

]
φ(y)dy

=

∫ ∞
−∞

(1− Φ(K − y))

[∫ x(y)

−∞

(
π(y)−

Q

γ
−m

)
dΦ(x) +

∫ x̄(y)

x(y)

(
π(x) + π(y)

2
−m

)
dΦ(x) +

∫ ∞
x̄(y)

(
π(x)−

Q

γ
−m

)
dΦ(x)

]
dΦ(y)

+

∫ ∞
−∞

[∫ ∞
x̄(y)

(Φ(K − y)− Φ(K − x))

(
π(x)−

Q

γ
−m

)
φ(x)dx

]
φ(y)dy

First note that (1 − Φ(K − y)) is an increasing function of y, as well as E[P (x, y) − m|y]. Thus, these

two random variables have a positive covariance and because Ey[Ex[P (x, y) −m|y]] = 0, this implies that

Ey[(1− Φ(K − y))× Ex[P (x, y)−m|y]] ≥ 0, i.e. the first term in the previous equation is positive.

Now, consider the function: x → π(x) − Q
γ − m. It is strictly increasing with x over [x̄,∞(. Call

x0 = π−1(Qγ +m). Assume first that x̄(y) > x0 (i.e. y > π−1(m− Q
γ )).Then for all x ∈ [x̄,∞(:

(Φ(K − y)− Φ(K − x))

(
π(x)− Q

γ
−m

)
>
(
Φ(K − y)− Φ(K − x0)

)(
π(x)− Q

γ
−m

)
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Now if x̄ < x0, then:

∫ ∞
x̄(y)

(Φ(K − y)− Φ(K − x))

(
π(x)−

Q

γ
−m

)
φ(x)dx =

∫ x0

x̄(y)
(Φ(K − y)− Φ(K − x))

(
π(x)−

Q

γ
−m

)
φ(x)dx

+

∫ ∞
x0

(Φ(K − y)− Φ(K − x))

(
π(x)−

Q

γ
−m

)
φ(x)dx

≥
(
Φ(K − y)− Φ(K − x0)

) ∫ x0

x̄(y)

(
π(x)−

Q

γ
−m

)
φ(x)dx

+
(
Φ(K − y)− Φ(K − x0)

) ∫ ∞
x0

(
π(x)−

Q

γ
−m

)
φ(x)dx

≥
(
Φ(K − y)− Φ(K − x0)

) ∫ ∞
x̄(y)

(
π(x)−

Q

γ
−m

)
φ(x)dx

Thus, for all y ∈ R,

∫ ∞
x̄(y)

(Φ(K − y)− Φ(K − x))

(
π(x)− Q

γ
−m

)
φ(x)dx ≥

(
Φ(K − y)− Φ(K − x0)

) ∫ ∞
x̄(y)

(
π(x)− Q

γ
−m

)
φ(x)dx

This leads to:

∫ ∞
−∞

[∫ ∞
x̄(y)

(Φ(K − y)− Φ(K − x))

(
π(x)−

Q

γ
−m

)
φ(x)dx

]
φ(y)dy

≥
∫ ∞
−∞

[(
Φ(K − y)− Φ(K − x0)

) ∫ ∞
x̄(y)

(
π(x)−

Q

γ
−m

)
φ(x)dx

]
φ(y)dy

Now, Φ(K − y)−Φ(K − x0) is a decreasing function of y.
∫∞
x̄(y)

(
π(x)− Q

γ −m
)
φ(x)dx is also a decreasing

function of y. Thus, the covariance of these two random variable is positive. But note that:

∫ ∞
−∞

[∫ ∞
x̄(y)

(
π(x)− Q

γ
−m

)
φ(x)dx

]
φ(y)dy = P

[
π(x) ≥ π(y) +

2Q

γ

]
×
(
E
[
P (x, y)|π(x) ≥ π(y)− 2Q

γ

]
− E[P (x, y)]

)

Finally, note that the conditional expectation of prices, conditional on binding short-sales constraints

has to be greater than the expected price, m. Thus, this last term is positive and finally the variance of

date-1 prices is strictly increasing with D:

∂V ar(P1(x̃, ỹ, D)

∂D
≥ 0

We now turn to the comparative static w.r.t. G. First, note that ∂π(y)
∂G = Φ(D − G − b − y) > 0 and

strictly decreasing with y. Now, the derivative of mispricing w.r.t. G is simply
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∂(mispricing)

∂G
=

∫ ∞
−∞

∫ π−1[π(y)− 2Q
γ ]

−∞

∂(π(y)− π(x))

∂G︸ ︷︷ ︸
<0

φ(x)dx

φ(y)dy+

∫ ∞
−∞

∂(π(y)− π(y − b))
∂G︸ ︷︷ ︸
<0

φ(y)dy < 0

Similarly:

∂T
∂G

=

∫ ∞
−∞

(∫ x̄(y)

x(y)

γ

2

∣∣∣∣∂ (π(y)− π(x))

∂G

∣∣∣∣φ(x)dx

)
φ(y)dy < 0

Finally, note that:

∂V
∂G

= Cov(
∂P1(x, y)

∂G
, P1(x, y)) = Cov(

1− ∂P1(x, y)

∂D
,P1(x, y)) = − ∂V

∂D
< 0

QED.

A.2. Proof of Proposition 4

Consider first mispricing. The formula for the derivative of mispricing w.r.t. D (equation 17) holds irrespec-

tive of the nature of the claim, i.e. whether π = πE or π = πD. We simply remark that πE , as πD, is increas-

ing with x (the investor’s belief) and ∂πE(y)−πE(x)
∂D = Φ(D−G− b− y)−Φ(D−G− b−x) = −∂π

D(y)−πD(x)
∂D .

And similarly: ∂πE(y)−πE(y−b)
∂D = Φ(D −G− b− y)− Φ(D −G− y) = −∂π

D(y)−πD(y−b)
∂D . Thus:

∂(mispricing on πE)

∂D
= −∂(mispricing on πD)

∂D
< 0

Thus mispricing of the equity tranche decreases with D. The difference between the mispricing on the

equity claim and the mispricing on the debt claim decreases with D as well. When D goes to infinity, there

is no mispricing on the equity claim (which is worth 0) so that the difference between the mispricing on the

equity claim and the mispricing on the debt claim is strictly negative. Similarly, when D goes to −∞, there

is no mispricing on the debt claim (which is worth 0) so that the difference between the mispricing and the

equity claim on the mispricing on the debt claim is strictly positive. Thus, there exists a unique D̄1 ∈ R

such that for D ≥ D̄1, there is a larger mispricing on the equity claim than on the debt claim.

Consider now turnover. The formula for the derivative of turnover w.r.t. D (equation 18) holds irrespec-

tive of the nature of the claim, i.e. whether π = πE or π = πD. We simply remark that πE , as πD, is increas-

ing with x (the investor’s belief) and ∂πE(y)−πE(x)
∂D = Φ(D−G− b− y)−Φ(D−G− b−x) = −∂π

D(y)−πD(x)
∂D .
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Thus:

∂T(πE)

∂D
= −∂T(πD)

∂D
< 0

Thus, the turnover of the equity tranche decreases with D. The difference between the turnover on the

equity claim and the turnover on the debt claim decreases with D as well. When D goes to infinity, there

is no turnover on the equity claim (which is worth 0) so that the difference between the turnover on the

equity claim and the turnover on the debt claim is strictly negative. Similarly, when D goes to −∞, there is

no turnover on the debt claim (which is worth 0) so that the difference between the turnover on the equity

claim and the turnover on the debt claim is strictly positive. Thus, there exists a unique D̄2 ∈ R such that

for D ≥ D̄2, there is a larger mispricing on the equity claim than on the debt claim.

That the variance of PE1 (x̃, ỹ) is decreasing with D is direct from ∂πE

∂D (x) = −∂π
D

∂D (x). Thus, we can

apply the same argument as for mispricing and turnover and show the existence of a unique D̄3 ∈ R such

that for D ≥ D̄3, the variance of the equity tranche is larger than the variance of the debt tranche. To finish

the proof, simply define D̄ = max(D̄1, D̄2, D̄3).

The proof for the existence of Ḡ and b̄ follows exactly the same logic.

A.3. Extension: Interim Payoffs and Dispersed Priors

As we showed in the previous section, an increase in aggregate optimism leads to both larger and quieter

bubbles while leaving unchanged the loudness of equity bubbles. In this section, we highlight another

mechanism that makes credit bubbles both larger and quieter while still holding aggregate optimism fixed.

In order to do so, we add two additional ingredients to our initial model. First, we introduce heterogenous

priors. Group A agents start at date 0 with prior G+ b+ σ and group B agents start with prior G+ b− σ.

Second, we introduce an interim payoff π(G+ ε1) that agents receive at date-1 from holding the asset at date

0. As a consequence, agents now hold the asset both for the utility they directly derive from it (consumption)

and for the perspective of being able to resell it to more optimistic agents in the future (speculation). More

precisely, the t = 1 interim cash-flow π(G + ε1) occurs before the two groups of agents draw their date-1

beliefs. We also assume that the proceeds from this interim cash flow, as well as the payment of the date-0

and date-1 transaction costs all occur on the terminal date. This assumption is made purely for tractability

reason so we do not have to keep track of the interim wealth of the investors.

Our next proposition shows that, provided that dispersion is large enough, an increase in the initial

dispersion of belief, σ, leads to an increase in prices and simultaneously to a decrease in share turnover an

price volatility. Thus, quiet bubbles emerge when there is sufficient heterogeneity among investors about the
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fundamental.

Proposition 6. Provided the cost of trading are large enough/initial supply is low enough, there is σ̄ > 0 so

that for σ ≥ σ̄ only group A agents are long at date 0. For σ ≥ σ̄, an increase in σ leads to (1) an increase

in mispricing and (2) a decrease in trading volume.

Proof. We now consider the case where group A has prior G+ b+σ and group B has prior G+ b−σ. Thus,

at date 1, beliefs are given by (G+ b+ σ + ηA) for group A, with ηA ∼ Φ() and (F − σ + ηB) for group B,

with ηB ∼ Φ(). Agents also receive at date 1 an interim payoff proportional to π() from holding the asset at

date-0. We first start by solving the date-1 equilibrium. At date 1, three cases arise:

1. Both groups are long. Thus demands are:


nA1 = nA0 + γ

(
π(σ + ηA)− P1

)
nB1 = nB0 + γ

(
π(−σ + ηB)− P1

)
The date-1 price in this case is: P1 = 1

2

(
π(σ + εA) + π(−σ + εB)

)
. This is an equilibrium if and only

if:
2nA0
γ > π(−σ + εB)− π(σ + εA) and

2nB0
γ > π(σ + εA)− π(−σ + εB)

2. Only A group is long. The date-1 equilibrium price is then simply: P1 = π(σ + εA)− nB0
γ

This is an equilibrium if and only if π(σ + εA)− π(−σ + εB) >
2nB0
γ .

3. Only B group is long. The date-1 equilibrium price is then simply: P1 = π(−σ + εB) − nA0
γ . This is

an equilibrium if and only if π(−σ + εB)− π(σ + εA) >
2nA0
γ

At date 0, group A program can be written as 13 :

maxn0

n0π(σ) +
∫∞
−∞

∫ π−1[π(y−σ)−
2nA0
γ

]−σ
−∞

(
n0

(
π(y − σ)− nA0

γ

)
− n2

0
2γ

)
φ(x)dx+

∫∞
π−1[π(y−σ)−

2nA0
γ

]−σ
n0π(σ + x)φ(x)dx

φ(y)dy

−
(
n0P0 +

n2
0

2γ

)}

The F.O.C. of group A’s agents program is given by (substituting nA0 for n0 in the F.O.C.):

0 = π(σ)+

∫ ∞
−∞

∫ π−1[π(y−σ)−
2nA0
γ

]−σ

−∞

(
π(y − σ)−

2nA0
γ

)
φ(x)dx+

∫ ∞
π−1[π(y−σ)−

2nA0
γ

]−σ
π(σ + x)φ(x)dx

φ(y)dy−
(
P0 +

nA0
γ

)

13In group A agents’ program, we note nA0 group A agents aggregate holding – each agent in group A
takes nA0 as given.
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Similarly, at date 0, group B agents’ program can be written as:

maxn0

π(−σ) +
∫∞
−∞

∫ π−1[π(y+σ)−
2nB0
γ

]+σ

−∞

(
n0

(
π(y + σ)− nB0

γ

)
− n2

0
2γ

)
φ(x)dx+

∫∞
π−1[π(y+σ)−

2nB0
γ

]+σ
n0π(−σ + x)φ(x)dx

φ(y)dy

−
(
n0P0 +

n2
0

2γ

)}

Group B agents’ F.O.C.:

0 = π(−σ)+

∫ ∞
−∞

∫ π−1[π(y+σ)−
2nB0
γ

]+σ

−∞

(
π(y + σ)−

2nB0
γ

)
φ(x)dx+

∫ ∞
π−1[π(y+σ)−

2nB0
γ

]+σ
π(−σ + x)φ(x)dx

φ(y)dy−
(
P0 +

nB0
γ

)

Consider now an equilibrium where only group A is long, i.e. nA0 = 2Q and nB0 =0. In this case, the

date-0 price is given by:

P0 = π(σ) +

∫ ∞
−∞

[∫ π−1[π(y−σ)− 4Q
γ

]−σ

−∞

(
π(y − σ)−

4Q

γ

)
φ(x)dx+

∫ ∞
π−1[π(y−σ)− 4Q

γ
]−σ

π(σ + x)φ(x)dx

]
φ(y)dy −

2Q

γ

This is an equilibrium if and only if:

P0 > π(−σ) +

∫ ∞
−∞

[∫ y+2σ

−∞
π(y + σ)φ(x)dx+

∫ ∞
y+2σ

π(−σ + x)φ(x)dx

]
φ(y)dy

We now show that P0 is increasing with σ (noting K = D −G− b):

∂P0

∂σ
= π′(σ) +

∫ ∞
−∞

[∫ ∞
π−1[π(y−σ)− 4Q

γ
]−σ

Φ(K − σ − x)φ(x)dx−
∫ π−1[π(y−σ)− 4Q

γ
]−σ

−∞
Φ(K − y + σ)φ(x)dx

]
φ(y)dy

= π′(σ) +

∫ ∞
−∞

φ

(
π−1[π(y + σ) +

4Q

γ
] + σ

)
Φ(K − σ − y)φ(y)dy −

∫ ∞
−∞

φ

(
π−1[π(y − σ)−

4Q

γ
]− σ

)
Φ(K − y + σ)φ(y)dy

≥ π′(σ) +

∫ ∞
−∞

φ (y + 2σ) Φ(K − σ − y)φ(y)dy −
∫ ∞
−∞

φ (y − 2σ) Φ(K − y + σ)φ(y)dy

≥ π′(σ) +

∫ ∞
−∞

φ (y + 2σ) Φ(K − σ − y)φ(y)dy −
∫ ∞
−∞

φ (y) Φ(K − y − σ)φ(y + 2σ)dy

≥ π′(σ) +

∫ ∞
−∞

Φ(K − σ − y) [φ (y + 2σ)φ(y)− φ (y)φ(y + 2σ)] dy

Call ψ(σ) = φ (y + 2σ)φ(y)−φ (y)φ(y+2σ). ψ′(σ) = 2φ(y+2σ) (φ(y) + (y + 2σ)φ(y)) Thus, ψ is increasing

if and only if: 2σ > −y − φ(y)
φ(y) . Now consider the function κ : y ∈ R → yφ(y) + φ(y). κ′(y) = φ(y) > 0.

Thus, κ is increasing strictly with y. But limy→−∞ κ′(y) = 0. Thus: ∀ y, κ(y) > 0. Thus, for all σ > 0,

−y − φ(y)
φ(y) = −κ(y)

φ(y) < 0 < 2σ so that ψ is strictly increasing with σ, for all σ > 0 and y ∈ R. Now ψ(0) = 0.
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Thus, ψ(y) > 0 for all σ > 0. As a consequence:

∂P0

∂σ
≥ π′(σ) +

∫ ∞
−∞

Φ(K − σ − y)ψ(y)dy > 0

Thus, when the equilibrium features only group A long at date 0, the price is strictly increasing with

dispersion σ.

We now simply show that in this equilibrium, turnover is strictly increasing. Turnover is 2Q when group

B only is long at date 1 (i.e. π(−σ + ηB) > π(σ + ηA) + 4Q
γ ), it is given by: γ π(y−σ)−π(x+σ)

2 when group B

and group A are long at date 1 ((i.e. π(−σ + ηB) < π(σ + ηA) + 4Q
γ and π(−σ + ηB) > π(σ + ηA) and it

is 0 if only group A is long at date 1 (i.e. π(−σ + ηB) < π(σ + ηA)). Thus, conditioning over ηB , expected

turnover can be written as:

T =

∫ ∞
−∞

[∫ π−1(π(−σ+y)− 4Q
γ

)−σ

−∞
2Qφ(x)dx+

∫ y−2σ

π−1(π(−σ+y)− 4Q
γ

)−σ
γ
π(y − σ)− π(x+ σ)

2
φ(x)dx

]
φ(y)dy

Again, the derivative of the bounds in the integrals cancel out and the derivative is simply:

∂T
∂σ

=

∫ ∞
−∞

∫ y−2σ

π−1(π(−σ+y)− 4Q
γ )−σ

−γΦ(K − y + σ) + Φ(K − x− σ)

2
φ(x)dxφ(y)dy < 0

Now consider the equation defining the equilibrium where only group A is long at date 0. This condition

is:

δ(σ) = P0(σ)−
(
π(−σ) +

∫ ∞
−∞

[∫ y+2σ

−∞
π(y + σ)φ(x)dx+

∫ ∞
y+2σ

π(−σ + x)φ(x)dx

]
φ(y)dy

)
> 0

Notice that the derivative of the second term in the parenthesis can be written as:

∫ ∞
−∞

[∫ y+2σ

−∞
π′(y + σ)φ(x)dx−

∫ ∞
y+2σ

π′(−σ + x)φ(x)dx

]
φ(y)dy

=

∫ ∞
−∞

φ(y + 2σ)π′(y + σ)φ(y)dy −
∫ ∞
−∞

φ(y − 2σ)π′(y − σ)φ(y)dy

=

∫ ∞
−∞

Φ(K − y − σ) (φ(y + 2σ)φ(y)− φ(y)φ(y + 2σ)) dy

We thus have:

∂δ

∂σ
≥ (π′(σ) + π′(−σ)) > 0

Thus, there is σ̄ > 0 such that for σ ≥ σ̄, the equilibrium has only group A long at date 0, the price increases

with dispersion and turnover decreases with dispersion. QED.
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The intuition for this result is the following. The condition on trading costs/initial supply allow the

optimists to have enough buying power to lead to binding short-sales constraints at date 0. In the benchmark

setting, low trading costs/low supply were associated with a louder credit bubble. But it turns out that

when there is dispersed priors they can lead to large but quiet mispricings.

To see why, first consider the effect of dispersed priors on mispricing. Mispricing (i.e. the spread between

the date-0 price and the no-short-sales constraint/ no bias price) increases with dispersion for two reasons.

First, group A agents’ valuation for the interim payoff increases. This is the familiar Miller (1977) effect in

which the part of price regarding the interim payoff reflects the valuations of the optimists as short-sales

constraints bind when disagreement increases. Second, as dispersion increases, so does the valuation of the

marginal buyers (or the optimists) at date 1 – which leads to an increase in the resale option and hence of

the date-0 price.

As dispersion increases, group A agents – who are more optimistic about the interim payoff than group

B agents – own more and more shares until they hold all the supply at date 0 (which happens for σ > σ̄).14

As σ increases, the probability that group B become the optimistic group at date 1 also becomes smaller. As

a consequence, an increase in dispersion leads to an increase in the probability of the states of nature where

turnover is zero or equivalently where the group A agents hold all the shares at date 0 and 1. So overall

expected turnover decreases.

Price volatility also decreases as σ increases. This is because in these states of nature where only group

A agents are long, the expected payoff becomes more concave as a function of their belief shock, so that the

price volatility conditional on these states decreases. When σ becomes sufficiently large, group A agents are

long most of the time and the asset resembles a risk-free asset and price volatility goes down to zero.

14Note that this occurs despite the fact that both types share the same valuation for the date-1 resale
option – this is entirely driven by the interim payoff: in a pure resale option setting (i.e. without the interim
payoff), all agents would end up long at date 0 as, in the margin, there would be no disagreement about the
value of the resale option.
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Table 1: The Relationship between Trading Activity and Investment-Grade
Credit Spreads, 1998-2009

Spreads

Whole period 1998-2001 2002-2007S1 2007S2-2009
(1) (2) (3) (4) (5) (6) (7) (8)

Log(Number of Trades) .1 .5*** .99*** -.92
(.41) (3.3) (4) (-.72)

Log(Volume of Trades) -.034 .39*** .73*** -1.7
(-.16) (3.1) (3.1) (-1.6)

Constant .74 2.6 -3.2** -8** -8.4*** -17*** 12 45
(.31) (.49) (-2.2) (-2.6) (-3.6) (-2.9) (.98) (1.7)

Observations 144 144 48 48 66 66 30 30
R2 .00074 .0001 .14 .13 .18 .14 .018 .077

This table reports the contemporaneous relationship between bond spreads and volume measured either as the log of number of

trades during the month or the log of $ transacted during the month. Robust T-stats are in parenthesis. ∗, ∗∗, and ∗∗∗ means

statistically different from zero at 10, 5 and 1% level of significance.
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Figure 1: ABX Prices

The figure plots the ABX 7-1 Prices for various credit tranches including AAA, AA, A, BBB, and BBB-.
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Figure 2: CDS Prices of Basket of Finance Companies

Source: Moodys KMV, FSA Calculations. The figure plots the average CDS prices for a basket of large
finance companies between December 2002 and December 2008. Firms included: Ambac, Aviva, Ban-
coSantander, Barclays, Berkshire Hathaway, Bradford & Bingley, Citigroup, Deutsche Bank, Fortis, HBOS,
Lehman Brothers, Merrill Lynch, Morgan Stanley, National Australia Bank, Royal Bank of Scotland and
UBS.
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Financial firms’ CDS and share prices

Source: Moody’s KMV, FSA Calculations
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Firms included: Ambac, Aviva, Banco Santander, Barclays, Berkshire Hathaway, Bradford & Bingley, Citigroup, Deutsche Bank, Fortis, HBOS, Lehman Brothers, 

Merrill Lynch, Morgan Stanley, National Australia Bank, Royal Bank of Scotland and UBS.

CDS series peaks at 6.54% in September 2008.
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Figure 3: Monthly Share Turnover of Financial Stocks

The figure plots the average monthly share turnover of financial stocks.
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Figure 4: Monthly Share Turnover of Internet Stocks

Source: Hong and Stein (2007). The figure plots the average monthly share turnover of Internet stocks and
non-Internet stocks from 1997 to 2002.
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Figure 5: Issuance of IG synthetic CDOs (Monthly)

Source: Citygroup. The figure plots the monthly issuance of investment grade synthetic CDOs.
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This section discusses products in the credit derivatives market other than single-name 
and index CDS referencing corporate unsecured bonds. Such products include synthetic 
CDOs, CDS on leveraged loans, and CDS on asset-backed securities. 
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Whereas the new issue market for cash bonds provides a constant source of supply, 
leveraged structures known as synthetic CDOs provided a constant source of demand 
for credit risk that was often sourced through single-name CDS from 2005 until early 
2007. In the synthetic CDO market, dealers typically sold credit risk to the end investor 
through one particular tranche. Higher credit-risk tranches, such as equity and 
mezzanine structures, had greater leverage. Dealers hedged their short credit-risk 
exposure by selling protection in the single-name (secondary) CDS market, resulting in 
tighter CDS spreads.109 
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However, during 2007, losses in subprime mortgages and traditional cash CDOs caused 
synthetic CDO volumes to plummet. See Figure 133. Correlation desks’ until-then 
persistent demand to sell protection dried up, shrinking the cushion that had prevented 
credit default swap spreads from moving wider. 

Potentially, should such structures ever unwind en masse, CDS spreads could move 
notably wider, particularly at popular seven- and ten-year maturities. For a further 
introduction to the structured credit market, please see the Chapter Appendix on page 
179. 

                                                        
109 To sell single-name protection on a large number of Reference Entities in different notionals, correlation desks (groups responsible for 

managing structured credit risk and banks and broker-dealers) often use lists known as “Bid Wanted in Competition (BWIC).” Each recipient 
of the BWIC is responsible for entering a bid on trades in which it is interested. Typically, either the best bid wins a particular trade or the 
flow desk bidding the best overall wins the entire list. By contrast, an OWIC is an Offer Wanted in Competition and signals the desire to buy 
single-name protection. 
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