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1 Introduction

In the wake of the recent financial crisis, considerable attention has returned to the func-
tioning of markets with adverse selection, in particular credit and insurance markets.
Much of the discussion is rooted on the seminal contribution of Rothschild and Stiglitz
(1976), which has spurred a large body of work on the nature of competitive equilibria
in markets with adverse selection – and unfolded an enormous influence on the develop-
ment of the economics of asymmetric information in general.

However, three shortcomings of the original Rothschild-Stiglitz approach to the prob-
lem of competition under adverse selection have been pointed out: First, in their setting,
an equilibrium as they define it may not exist. In this case, the model is unable to make
predictions about the functioning of competitive markets with adverse selection. Sec-
ond, they restrict each firm to offer a single contract only, ruling out cross-subsidization
between different contracts by assumption. The resulting inefficiency results have been
very influential in the normative literature on government interventions, but they are
an immediate consequence of restricting the sets of contracts that firms can offer. Third,
their approach is not a (non-cooperative) game-theoretic one. Rather than fully specifying
a game and solving for its (subgame-perfect) Nash equilibria, they define an equilibrium
directly based on properties of sets of contracts. This raises the question to what degree
their results are specific to a particular equilibrium notion rather than properties of an
economic environment as captured by an extensive form game.

This paper addresses all three of these issues. We construct a fully specified dynamic
game of complete information that captures Rothschild and Stiglitz’s original setting. In
particular, it allows firms to offer any finite number of different contracts. We show that
a standard subgame-perfect equilibrium (SPE) always exists. There is in fact a multi-
plicity of equilibria, but by invoking an appropriate robustness criterion, we obtain as
unique equilibrium outcome the so-called Miyazaki-Wilson contracts. They may involve
cross-subsidization between contracts and are always Pareto optimal subject to the infor-
mational and resource constraints.

Many authors have addressed various subsets of the three shortcomings raised above.
For instance, Wilson (1977) and Riley (1979) have observed that the non-existence prob-
lem can be overcome by modifying the notion of equilibrium. Notably, defining equilib-
rium in a forward-looking way, where firms anticipate the reaction of other firms to their
contract offers, in form of withdrawal (Wilson 1977) or additional offers (Riley 1979), ei-
ther sustains the Rothschild-Stiglitz equilibrium for all parameter values (Riley 1979) or
gives rise to the existence of a pooling equilibrium whenever the Rothschild-Stiglitz equi-
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librium does not exist (Wilson 1977). Similarly, Grossman (1979) allows for insurance
rejections and shows that the Wilson (1977) pooling equilibrium can be sustained when
agents anticipate that their insurance application may be declined if the insurer expects
it to be unprofitable. However, these contributions do not include comprehensive game
theoretic treatments. In addition, they stick to the assumption that each firm can offer
only a single contract.1

Miyazaki (1977), Engers and Fernandez (1987) and Fernandez and Rasmussen (1993)
relax the latter restriction, but still define their own particular notion of equilibrium.
Miyazaki (1977) considers Wilson’s (1977) anticipatory equilibrium concept and allows
insurers to offer menus of contracts. He shows that an equilibrium always exists and is
efficient in this setting, resulting in the so-called Miyazaki-Wilson outcome. Engers and
Fernandez (1987) proceed analogously, using the reactive equilibrium concept of Riley
(1979). They also suggest a game with an infinite number of moves and argue that the
Miyazaki-Wilson contracts are the outcome of a Nash equilibrium in this game, but only
among many other equilibrium outcomes. Fernandez and Rasmussen (1993) also propose
a framework that generates the Miyazaki-Wilson allocation, but remain within a specific
contestable monopoly model and resort to a non-standard equilibrium concept.

Hellwig (1987) was the first to pursue a standard game theoretic approach to ana-
lyze (sequential) equilibria in the Rothschild-Stiglitz and some modified settings, but
continued to restrict firms to offer no more than one contract each, ruling out cross-
subsidization. Fewer papers simultaneously speak to the three shortcomings pointed
out above, but they do so in frameworks that go well beyond the original market setup.
Maskin and Tirole (1992) consider a very general principal-agent framework where con-
tracts can be arbitrary mechanisms. They focus mostly on signaling settings but also
provide a multiplicity result for the case of screening that is related to ours, even though
less encompassing. Asheim and Nilssen (1996) allow for renegotiation between firms
and customers after initial contract choice, imposing the constraint that firms may not
discriminate between their customers. They obtain the Miyazki-Wilson contracts as equi-
librium outcome. These contracts are also the outcome in Faynzilberg (2006c), in a model
where firms can become insolvent, which introduces an externality between agents in
a contract. In Picard (2011), a similar externality occurs because agents directly partici-

1Several other authors have provided existence results for the Rothschild-Stiglitz equilibrium through
further model extensions. Dasgupta and Maskin (1986) show that equilibrium existence can be guaranteed
by considering mixed-strategy equilibria. Inderst and Wambach (2001) obtain equilibrium existence in
a model with capacity constraints, Guerrieri, Shimer, and Wright (2010) show that search frictions can
eliminate the non-existence problem, and von Siemens and Kosfeld (2011) restore existence by introducing
externalities between agents in labor markets with team production. None of these contributions obtain
Miyazaki-Wilson allocations as equilibrium outcome, since cross-subsidization is ruled out.
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pate in the firms’ profits through mutual insurance, and the Miyazaki-Wilson allocation is
again obtained in equilibrium. All these settings, however, focus on additional economic
mechanisms outside of the canonical framework by Rothschild and Stiglitz (1976) and
Miyazaki (1977).

Instead, following the spirit of the earlier literature, we propose the following dynamic
game: In a first stage, a large number of risk-neutral firms offer any finite number of
contracts to a continuum of risk-averse agents with private information. In a second stage,
firms observe the contracts offered in stage 1 and can decide whether to remain active or
whether to withdraw from the market. Finally, agents select their preferred contracts from
the set of remaining offers and the contractually specified payments are enforced. This
game can be reduced to a game of complete information between firms only, as the agents’
contract choices in the final stage can be incorporated into the firms’ payoff functions.
Solving for the set of SPE of this game, we first confirm the observation of Wilson (1977)
and Miyazaki (1977) for our game theoretic setting, namely that the introduction of a
withdrawal stage guarantees equilibrium existence: The above game always has an SPE.
However, it turns out that the withdrawal stage in fact generates a multiplicity of SPE.
In particular, non-competitive equilibria with positive profits emerge where several firms
offer contracts in stage 1 only to withdraw them along the equilibrium path, but credibly
threaten to remain active if they observe deviations in stage 1. In fact, we show that the
entire set of individually rational and resource and incentive feasible contracts may be
sustained as SPE outcomes if the population share of low risks is not too high, and a
slightly more constrained set otherwise.

To deal with this equilibrium multiplicity and select among the set of SPE, we intro-
duce a withdrawal cost in the second stage. The motivation is that all non-competitive
equilibria described above turn out to be destroyed by arbitrarily small withdrawal costs.
On the other hand, large withdrawal costs would effectively eliminate stage 2 and reintro-
duce equilibrium existence problems. This motivates our focus on small withdrawal costs
to select robust equilibria, i.e. equilibria that exist both when withdrawal is costless but
also when withdrawal costs are strictly positive but sufficiently small. We demonstrate
that there exists only a single SPE outcome that is robust in this sense: the Miyazaki-
Wilson contracts.

A number of other researchers have recently shared our interest in providing game-
theoretic foundations for Miyazaki-Wilson contracts, resulting in a number of contem-
poraneous studies that have pursued complementary approaches. The most related is
the recent work by Mimra and Wambach (2011), which shows that results similar to ours
can be obtained in a model where, instead of withdrawing from the market, firms can
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withdraw individual contracts and there are multiple withdrawal stages that terminate
endogenously. On the other hand, Diasakos and Koufopoulos (2011) and Koufopoulos
(2011) have considered a three-stage game that allows insurers to commit not to with-
draw contracts, e.g. by sending out pre-approved applications, or not to withdraw an in-
dividual contract unless all other contracts in the menu are also withdrawn. These papers
show that the Miyazaki-Wilson allocation can result as the unique equilibrium outcome
under some selection criterion: free entry during the withdrawal stages in Mimra and
Wambach (2011), endogenous commitment in Diasakos and Koufopoulos (2011).

In establishing equilibrium existence and efficiency, our paper also shares a common
goal with the contribution by Bisin and Gottardi (2006). However, our game theoretic
approach is fundamentally different from the general equilibrium perspective that they
take.2 Assuming that agents with private information can trade consumption bundles,
taking prices as given, and incorporating incentive-compatibility constraints in their def-
inition of a competitive equilibrium, they show that an equilibrium always exists: It is
given by the Rothschild-Stiglitz contracts. They then demonstrate how the potential con-
strained inefficiency of this equilibrium can be overcome by introducing markets for con-
sumption rights, where agents exchange permits for trading in markets for consumption
bundles before they trade these consumption bundles themselves. Under some condi-
tions on the initial allocation of these consumption rights, it turns out that the Miyazaki-
Wilson contracts result as the equilibrium outcome.

Our paper is structured as follows. Section 2 introduces the model economy and col-
lects results about Miyazaki-Wilson contract outcomes. In Section 3, we discuss a dy-
namic game that has been informally proposed as giving rise to Miazaki-Wilson type
contracts as SPE outcome. Section 4 contains the full equilibrium analysis of the game
and demonstrates that there generally arises a multiplicity problem. It then shows that
Miyazaki-Wilson contracts are the unique robust equilibrium outcome of the game under
a natural robustness criterion. Section 5 concludes. Several proofs are collected in the
appendix.3

2See also Prescott and Townsend (1984a,b), Gale (1992, 1996), Dubey and Geanakoplos (2002), Mar-
tin (2007) and Rusticchini and Siconolfi (2008) for general equilibrium approaches to adverse selection.
Voornefeld and Weibull (2007) investigate game-theoretic foundations for markets with adverse selection
in a setup as proposed by Akerlof (1970).

3Several results in this paper have been part of our earlier discussion paper Netzer and Scheuer (2008).
Netzer and Scheuer (2010), which investigates ex-ante moral hazard incentives in the spirit of Fudenberg
and Tirole (1990) but with ex-post competitive markets, is also based on this discussion paper. Some of the
collected results on the Miyazaki-Wilson contracts in Section 2 also appear in different form in Netzer and
Scheuer (2010).
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2 Miyazaki-Wilson Contracts

2.1 Setup

There is a continuum of risk-averse agents, each of whom is endowed with an amount y of
a consumption good, but faces idiosyncratic risk of a damage of size d > 0, which reduces
the endowment to y− d. Each agent is one of two types. Low risk agents (indicated by L)
experience the damage with probability pL ∈]0, 1[, while high risk agents (indicated by H)
experience it with larger probability pH ∈]pL, 1[.4 An agent’s type is private information.
The share of low risks in the population is common knowledge and denoted by λ ∈]0, 1[.
We assume that agents use a utility function U : R → R to evaluate consumption c,
and they maximize expected utility. U(c) is strictly increasing, strictly concave, twice
continuously differentiable, and satisfies limc→−∞ U(c) = −∞ and limc→∞ U(c) = ∞.
We denote by Φ(U) the inverse of U(c).

We will work in the utility space, where contracts are tuples (uN, uD) of consumption
utilities when no damage occurs (uN) and when the damage does occur (uD). Let C =

{(uN, uD) ∈ R2|uN ≥ uD} be the set of possible contracts. We denote the set of all
finite, non-empty subsets of C by O . Let A = {(uH,N, uH,D, uL,N, uL,D) ∈ R4|uH,N ≥
uH,D, uL,N ≥ uL,D} be the set of quadruples representing pairs of contracts, or allocations,
one for each of the two risk types.

2.2 The Miyazaki-Wilson Program

In this subsection, we describe the contractual outcomes that have been referred to as
Miyazaki-Wilson contracts in the insurance literature (see Miyazaki 1977, Wilson 1977 or
Spence 1978). They solve the following optimization problem, which we call problem
MW (for Miyazaki-Wilson):

max
(uH,N ,uH,D,uL,N ,uL,D)∈A

(1− pL) uL,N + pLuL,D (1)

4We assume that a law of large numbers applies to the continuum of random variables defined by the
population facing idiosyncratic risk. That is, we assume that exactly the shares pL and pH of low and
high risks, respectively, eventually experience a damage. While laws of large numbers for a continuum
of random variables may fail due to technical complications (Judd 1985), they can be put back into force
through a variety of approaches. These include the application of a weaker convergence criterion (Uhlig
1996), the redefinition of the set indexing consumers (Green 1994), or the derivation of individual risk from
the desired aggregate level properties (Alós-Ferrer 2002).
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subject to the constraints

(1− pL)uL,N + pLuL,D ≥ (1− pL)uH,N + pLuH,D, (2)

(1− pH)uH,N + pHuH,D ≥ (1− pH)uL,N + pHuL,D, (3)

λ [(1− pL)Φ(uL,N) + pLΦ(uL,D)] + (1− λ) [(1− pH)Φ(uH,N) + pHΦ(uH,D)] ≤ R, (4)

Φ((1− pH)uH,N + pHuH,D) ≥ y− pHd, (5)

where R = y− [λpL + (1− λ)pH]d are per capita resources.
Program MW prescribes maximization of the low risks’ expected utility subject to

three standard and one additional constraint. Constraints (2) and (3) are the usual in-
centive compatibility constraints, and (4) is the resource constraint. Constraint (5) addi-
tionally rules out cross-subsidization from the high to the low risks. Formally, it requires
that the certainty equivalent of contract (uH,N, uH,D) for the high risks cannot be lower
than their type-specific per capita (i.e. expected) resources. Hence, the low risks may
cross-subsidize the high risks, but the reverse is not possible. Observe that (5) implies
that (uH,N, uH,D) can earn at most zero profits when purchased only by high risks.

The following lemma summarizes well-known results about the solution to MW (see,
for instance, Miyazaki 1977, Spence 1978 or Bisin and Gottardi 2006, and the discussion
therein). We also include a proof, because our formulation of the cross-subsidization
constraint (5) differs from earlier approaches and because we will use some intermediary
results from the proof later on.5

Lemma 1. MW has a unique solution VMW = (uMW
H,N , uMW

H,D , uMW
L,N , uMW

L,D ). It is such that
uMW

H,N = uMW
H,D ≡ uMW

H , the constraints (3) and (4) are binding, and (2) is slack.

Proof. See Appendix A.1.

In the Miyazaki-Wilson contracts, high risks obtain a full insurance contract, while the
low risks are only partially insured. The high risks’ incentive compatibility constraint is
binding, and resources are exhausted. Moreover, the solution is unique. Constraint (5)
may or may not bind in the solution.

2.3 A Characterization of Cross-Subsidization

If constraint (5) binds in the solution to MW, there is no cross-subsidization between the
contracts. The Miyazaki-Wilson outcome then coincides with the Rothschild-Stiglitz out-

5Lemma 1 and its proof appear in different form as Lemma 2 in Netzer and Scheuer (2010).
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come VRS = (uRS
H , uRS

H , uRS
L,N, uRS

L,D), where uRS
H = U(y− pHd), and (uRS

L,N, uRS
L,D) solves the

high risks’ binding incentive constraint

uRS
H = pHuRS

L,D + (1− pH)uRS
L,N

and the low risks’ zero profit condition

pLΦ(uRS
L,D) + (1− pL)Φ(uRS

L,N) = y− pLd,

by Lemma 1. If constraint (5) does not bind in the solution to MW, cross-subsidization
takes place from the low risks’ partial insurance contract to the high risks’ full insurance
contract. Taken on its own, the high risks’ contract earns losses and the low risks’ contract
earns strictly positive profits.

We will proceed to study comparative statics of the solution with respect to λ. We will
discuss the relation to the existing literature after Lemma 2. Let us first emphasize the
dependence of the program MW(λ) and its solution VMW(λ) on the share of low risks
λ. With this notation, it is useful to define the cross-subsidy for the high risks as follows.
For any given λ ∈]0, 1[, consider the unique solution VMW(λ) of MW(λ). The contracts
given by VMW(λ) then induce the cross-subsidy

χ(λ) ≡ Φ
(

uMW
H (λ)

)
− (y− pHd) . (6)

We collect the comparative statics of this cross-subsidy in the following lemma.6

Lemma 2. (i) χ(λ) is continuous in ]0, 1[, and it holds that limλ→0 χ(λ) = 0 and
limλ→1 χ(λ) = (pH − pL)d > 0.
(ii) If Φ′(u) is convex, then there exists λ̃ ∈]0, 1[ such that χ(λ) = 0 for all λ ∈]0, λ̃],
and χ(λ) is strictly increasing in λ for all λ ∈ [λ̃, 1[.

Proof. See Appendix A.2.

Lemma 2 reflects the fact that the efficiency of the Rothschild-Stiglitz contracts VRS

depends on the share of low risks λ in the population. Part (i) of the result is well-known
in the insurance literature.7 It has been observed there that, if λ is sufficiently high, an
information-feasible Pareto improvement is available through partial cross-subsidization

6Lemma 3 in Netzer and Scheuer (2010) describes related comparative statics, focusing on the utility
difference between the contracts instead of the cross-subsidy.

7See e.g. Wilson (1977), Crocker and Snow (1985), Eckstein, Eichenbaum, and Peled (1985) and Faynzil-
berg (2006a)-(2006c).
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Figure 1: Optimal cross-subsidization χ(λ)

even if the existence condition for the Rothschild-Stiglitz equilibrium is satisfied. Cross-
subsidization allows to increase the low risks’ insurance coverage without violating in-
centive compatibility. The limit as λ → 1 corresponds to a pooling allocation in which
all individuals obtain the same full insurance contract, as captured by the limiting cross-
subsidization (pH − pL)d. On the other hand, as λ→ 0, cross-subsidization must vanish.
Property (ii) shows that, if preferences are such that Φ′(u) is convex, the cross-subsidy is
monotonically increasing in λ. This implies, in particular, the existence of a unique critical
value λ̃ such that VMW and VRS coincide if and only if λ ≤ λ̃. The cross-subsidy becomes
positive when λ > λ̃, and it is strictly increasing in the population share of low risks.
It is straightforward to verify that convexity of Φ′(u) is guaranteed if U(c) has constant
or increasing absolute risk aversion, or a constant relative risk aversion coefficient larger
than one. In contrast, if risk aversion was decreasing rapidly in income, then the degree
of cross-subsidization may be decreasing in λ over some range, because the low risks’
willingness to subsidize the high risks in exchange for larger insurance coverage might
be decreasing in λ due to income effects.8

The existence of a unique critical value λ̃ has been proven by Maskin and Tirole (1992)
in a significantly more general principal-agent setting and under weaker conditions.9

8See Fudenberg and Tirole (1990) and Netzer and Scheuer (2010) for related arguments in a context
where risk types are endogenous and thus ex-ante incentives are affected by the resulting ex-post allocation.
Both contributions work with a condition that is stronger than convexity of Φ′(u), but is also implied by
the sufficient conditions on risk aversion discussed above (Fudenberg and Tirole 1990, p. 1292).

9See Proposition 3 and its corollary in Maskin and Tirole (1992). Miyazaki (1977), Spence (1978) and
Crocker and Snow (1985) also posit this result, but mostly rely on graphical arguments. Faynzilberg (2006a)-
(2006c) also does not provide a formal proof for uniqueness of the threshold or monotonicity.
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However, monotonicity of the cross-subsidization, while often presumed implicitly, has
not been formally demonstrated to the best of our knowledge. Indeed, part (ii) of the
lemma shows that a weak condition on risk preferences is required to guarantee mono-
tonicity. Figure 1 depicts χ(λ) for a case where this condition is satisfied.

3 A Game Theoretic Foundation

3.1 The Dynamic Game

As discussed in the introduction, our goal is to develop a market structure that satisfies
a number of requirements. First, a subgame perfect equilibrium should exist for every
composition of the population λ ∈]0, 1[. Second, we do not want to restrict firms to offer
only one contract. Third, the market structure should be captured by a simple extensive
form game in line with the early ideas about markets with adverse selection. This is in
contrast to most approaches in the literature on competitive insurance markets, that are
either not based on a game-theoretic analysis, impose the restriction of a single contract
per firm, provide non-standard or only partial game-theoretic arguments, or add addi-
tional aspects to the basic model.

Let J = {0, 1, 2, ..., m} be a set of risk-neutral firms, each of which can offer up to
r ≥ 2 contracts from C .10 We assume that firm 0 is not a regular player of the game but
always offers contract (ūN, ūD) where ūN = U(y) and ūD = U(y − d). Choosing firm
0’s contract corresponds to remaining uninsured. The extensive form we consider is the
following:

Stage 1: Firms simultaneously decide on their contract offers.
Stage 2: After observing all contract offers from stage 1, firms simultaneously decide
whether to remain in the market or to become inactive. Becoming inactive requires all
offered contracts to be withdrawn, with a resulting payoff of −δ ≤ 0.
Stage 3: Agents simultaneously choose among all remaining offers.

Since we do not restrict the number of contracts that a given firm can offer in stage 1
to be one, the presence of another stage 2 in which firms can become inactive is crucial to
avoid problems of equilibrium nonexistence that arise otherwise, as already observed by
Miyazaki (1977).

10The equilibria that we construct require the existence of at least 4 active firms, so m ≥ 4.
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Note that our extensive form is different from the suggestion of insurance rejections
by Grossman (1979) and also from the model by Fernandez and Rasmussen (1993), where
firms can decline individual applications or withdraw individual contracts.11 We rule
out the withdrawal of individual contracts mainly because, otherwise, firms would with-
draw any loss-making contract in stage 2, as pointed out by Grossman (1979), preclud-
ing any cross-subsidization in equilibrium. Other ways around this problem have been
suggested in recent complementary studies, for instance by allowing for multiple with-
drawal rounds with endogenous termination in Mimra and Wambach (2011), or endoge-
nous commitment not to withdraw individual contracts unless the entire menu is with-
drawn in Diasakos and Koufopoulos (2011).12 We abstract from this issue here by ruling
out partial withdrawal, but these papers show that analogous results can be obtained
when this restriction is relaxed.

Withdrawal costs can be interpreted as a shortcut for the legal, administrative or rep-
utational costs resulting from the fact that the firm originally offered contracts, but then
foregoes the opportunity to serve them to customers on the market. Besides legal issues
and claims, withdrawal may lead to adverse consequences such as consumer confusion
or demand reductions in future periods or other markets in which the firm is active, ef-
fects that are not otherwise captured in our parsimonious three stage game. Alternatively,
they could be motivated as a form of partial commitment not to withdraw contracts, an
interpretation emphasized by Diasakos and Koufopoulos (2011) in their distinction be-
tween pre-approved versus standard applications. Methodologically, the only purpose
of introducing withdrawal costs is to enable us later on to restrict attention to equilibria
where firms remain active in case of indifference, so that there is no withdrawal along the
equilibrium path.

We start with characterizing the agents’ optimal strategies in stage 3 for any history of
play up to stage 2. First, we restrict the history dependence of agents’ strategies such that
they are contingent only on the set of offered contracts available after stage 2, excluding
the possibility that choices depend on the history of offers and withdrawals. We can then

11As outlined above, Fernandez and Rasmussen (1993) consider a contestable monopoly model and re-
sort to a special equilibrium concept. In their approach, exogenously given “old” contracts define a game,
in which firms can decide to add “new” contracts and withdraw old but not new contracts. They are inter-
ested in subgame perfect equilibria where no new contracts are offered and no old contracts are withdrawn.
Despite these differences, some of the arguments in our proofs, most notably for Proposition 2, share simi-
larities to arguments by Fernandez and Rasmussen (1993).

12Note, however, that Diasakos and Koufopoulos (2011) consider a different timing where agents select a
contract in stage 2 and withdrawal occurs in stage 3, so that customers who choose a contract that is with-
drawn subsequently end up without insurance, as in Hellwig (1987) or the screening version of Maskin and
Tirole (1992). In this case, the agents’ out-of-equilibrium beliefs about whether contracts will be withdrawn
become crucial, issues that are absent from our setting.
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describe contract choices in stage 3 by functions Ik : O → C , k = L, H, that give the
contract Ik(Q) ∈ Q that an agent of type k = L, H chooses out of any offered set Q. In
particular, optimality of choice requires that for k = L, H and any Q ∈ O ,

I∗k (Q) ∈ arg max
(uN ,uD)∈Q

(1− pk)uN + pkuD. (7)

We also restrict attention to stage 3 strategies according to which the contract with smaller
difference uN − uD, that is, with larger insurance coverage, is chosen in case of indiffer-
ence. Moreover, we assume that, whenever the optimal contract for a type is offered by
several different firms, then each firm receives the same share of these individuals.

The agents’ optimal strategies can now be incorporated directly into the firms’ profit
functions. Stages 1 and 2 then constitute a well-defined extensive form game of complete
information, denoted by Γ, in which firms are the only strategic players (we suppress the
dependency of the game on the withdrawal cost parameter δ for notational convenience).
Pure strategy profiles are denoted by s = (s0, s1, ..., sm) ∈ S, where a firm’s strategy sj =

(s1
j , s2

j ) has two components. First, s1
j is a set (possibly empty) of up to r contracts to

be offered at stage 1. Let S1
j be the set of possible first period offers of firm j.13 Then,

S1 = ∏j∈J S1
j is the set of possible histories to be observed at the beginning of stage 2, and

we can associate a stage 2 subgame Γ(s̃1) to each history s̃1 = (s̃1
0, ..., s̃1

m) ∈ S1. For each
subgame, s2

j then prescribes a withdrawal decision, i.e. s2
j : S1 → {NW, W}, where NW

stands for no withdrawal and W for withdrawal. As before, denote by S2
j the set of firm

j’s possible stage 2 strategies and by S2 = ∏j∈J S2
j the set of stage 2 strategy profiles.14

Then, given a profile s2 ∈ S2 of functions, s2(s̃1) = (s2
0(s̃

1), ..., s2
m(s̃1)) ∈ {NW, W}m+1 is

the vector of withdrawal decisions that s2 prescribes after history s̃1.

3.2 Payoffs

Fix a strategy profile s = (s1, s2). We first define payoffs for each stage 2 subgame Γ(s̃1).
Let Q(s2(s̃1)|s̃1) be the nonempty (due to existence of company 0), finite set of contracts
that is available for choice at the end of Γ(s̃1) under the withdrawal decisions given by s2.
Formally,

Q(s2(s̃1)|s̃1) =
⋃

j∈J /

s2
j (s̃

1)=NW

s̃1
j .

13Formally, S1
j = {Q ∈ O | |Q| ≤ r}⋃{∅} for j = 1, ..., m, and S1

0 = {{(ūN , ūD)}}.
14Formally, S2

j = {NW, W}S1
for j = 1, ..., m, while S2

0 is the singleton set containing only the function

s2
0(s̃

1) = NW, ∀s̃1 ∈ S1.
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Let πk(uN, uD) = (1− pk)(y−Φ(uN)) + pk(y− d−Φ(uD)) denote the expected profits
earned with one unit of k-types in contract (uN, uD). Then, the payoffs of firm j in sub-
game Γ(s̃1) are given by Πj(s2(s̃1)|s̃1) = −δ if s2

j (s̃
1) = W and otherwise, if s2

j (s̃
1) = NW,

by

Πj(s2(s̃1)|s̃1) = λπL(I∗L(Q))
1s̃1

j
(I∗L(Q))

∑
i∈J /

s2
i (s̃

1)=NW

1s̃1
i
(I∗L(Q))

+ (1−λ)πH(I∗H(Q))
1s̃1

j
(I∗H(Q))

∑
i∈J /

s2
i (s̃

1)=NW

1s̃1
i
(I∗H(Q))

,

where Q = Q(s2(s̃1)|s̃1), and 1X is the indicator function of set X. Given a strategy profile
s = (s1, s2) ∈ S, the actual payoff of firm j in Γ is then Πj(s) = Πj(s2(s1)|s1). Mixed
strategies and the associated payoffs can be defined analogously.

4 Equilibrium Analysis

In principle, we are interested in pure strategy subgame perfect equilibria (SPE) of Γ.
However, we have to allow for randomization in some off-equilibrium path stage 2 sub-
games which do not have a Nash equilibrium in pure strategies.15 We denote equilib-
rium candidates by σ, i.e. strategy profiles that are pure everywhere except in such off-
equilibrium path subgames, and we indicate SPE of Γ by σ∗. In stage 3, agents are then
faced with a nonempty set Q of available contract offers and will make their choices I∗L(Q)

or I∗H(Q), respectively. Thus, any SPE σ∗ is associated with an outcome V∗ = (u∗H,N, u∗H,D,
u∗L,N, u∗L,D) ∈ A that summarizes the optimal contract choices of both types in equilib-
rium.

4.1 Anything Goes

We start with demonstrating that, while the withdrawal phase in stage 2 guarantees equi-
librium existence, it turns out that it also introduces a multiplicity of equilibria whenever
withdrawal is costless (δ = 0). Non-competitive equilibria emerge where firms offer com-
petitive contracts only to withdraw them in equilibrium, but credibly threaten to remain
active if they observe deviations after stage 1. The following proposition shows that,
based on this idea, a very large set of contracts can in fact be sustained as SPE outcomes.

15In the SPE that we construct, any potentially profitable stage 1 deviation is destroyed using a pure
strategy Nash equilibrium in stage 2. Thus we allow for randomization only to guarantee that there exists
a Nash equilibrium in all of the (uncountably many) stage 2 subgames, including those that cannot even be
reached by unilateral deviations, but we do not use randomization explicitly in our constructions.
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Proposition 1. Assume δ = 0. Consider any V∗ = (u∗H,N, u∗H,D, u∗L,N, u∗L,D) ∈ A that satisfies
individual rationality and incentive compatibility,

(u∗k,N, u∗k,D) = Ik
({

(u∗H,N, u∗H,D), (u
∗
L,N, u∗L,D), (uN, uD)

})
, k ∈ {H, L}, (8)

and the resource constraint,

λ
[
(1− pL)Φ(u∗L,N) + pLΦ(u∗L,D)

]
+ (1− λ)

[
(1− pH)Φ(u∗H,N) + pHΦ(u∗H,D)

]
≤ R. (9)

(i) Suppose λ is such that VRS solves MW(λ). Then there exists an SPE σ∗ with outcome V∗.
(ii) Suppose λ is such that VRS does not solve MW(λ). Then there exists an SPE σ∗ with outcome
V∗ if V∗ = VMW or if V∗ is Pareto dominated by VMW , i.e.

(1− pk)u∗k,N + pku∗k,D < (1− pk)uMW
k,N + pkuMW

k,D , k ∈ {H, L}. (10)

Proof. See Appendix A.3.

Proposition 1 shows that any pair of contracts on which the firms make non-negative
profits together, which is incentive-compatible, and satisfies the agents’ participation con-
straints, can be sustained as an SPE outcome of the above game, whenever λ is not too
high. Note that this includes as a special case all weakly profitable pooling contracts
(where u∗H,N = u∗L,N and u∗H,D = u∗L,D) that are better than autarky for both types. If λ

is so high that VMW involves cross-subsidization, then the proposition delivers a slightly
weaker “anything goes” result, in the sense that all contracts that satisfy the constraints
mentioned above and in addition are Pareto dominated by the Miyazaki-Wilson contracts
(or are identical to them) can be the outcome of an SPE. This is still a large set, includ-
ing for instance all weakly profitable and individually rational pooling contracts that are
worse than VMW for the high risk types.

We use the following construction in order to sustain this large set of allocations as SPE
outcomes. In stage 1, firm j = 1 offers the contracts from V∗ which are to be implemented,
and it remains active in stage 2. For part (i) of the result, firms j = 2, 3 offer the Rothschild-
Stiglitz contracts in stage 1. They withdraw them in stage 2 along the equilibrium path,
but credibly threaten to remain active in stage 2 whenever any deviation occurs in stage 1
(since there are two such firms, at least one remains offering the Rothschild-Stiglitz con-
tracts after any unilateral deviation). Both withdrawal and the threat to remain active are
best responses when withdrawal is costless, because the Rothschild-Stiglitz contracts earn
zero profits no matter which contracts are offered in addition to them. This construction
rules out any profitable deviation whenever VRS is constrained efficient, because in that
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situation there are no contracts which can earn strictly positive profits in the presence of
the Rothschild-Stiglitz contracts. A similar construction works for part (ii) of the propo-
sition, with the main difference that j = 2, 3 now offer the Miyazaki-Wilson contracts
and withdraw them along the equilibrium path. They threaten to remain active after any
deviation, except if this would entail strict losses. Based on the arguments of Miyazaki
(1977), it then again follows that deviations cannot be profitable. However, only alloca-
tions V∗ that are either given by VMW or make both risk types worse off than VMW can
be implemented in this way. If, for instance, the high risks were better off in V∗ than in
VMW , then firms j = 2, 3 would not be willing to become inactive in stage 2, as they are
only left with the low risks and make strictly positive profits.16 This is the reason for the
additional restriction in part (ii) of Proposition 1.

Proposition 1 demonstrates that the game Γ in itself is not able to produce Miyazaki-
Wilson type contracts as the unique SPE outcome, as one may have expected. In con-
trast, the entire feasible set of contract outcomes, including contracts that make strictly
positive profits, may arise in equilibrium. This multiplicity result is much more encom-
passing than related results in the literature. For instance, Hellwig (1987) argued that,
if the Rothschild-Stiglitz equilibrium is inefficient, then the Rothschild-Stiglitz contracts
as well as any pooling contract that Pareto dominates them can be the sequential equi-
librium outcome of his three-stage game (see also Diasakos and Koufopoulos, 2011). In
contrast, our multiplicity result is not confined to the case where the Rothschild-Stiglitz
contracts are inefficient, and it allows for outcomes that are Pareto worse or incompara-
ble to them. For their general screening model, Maskin and Tirole (1992) also provide a
multiplicity result, but it is restricted to menus that make zero profits overall (i.e. (9) must
hold with equality). Mimra and Wambach (2011) illustrate the multiplicity in their model
using as an example a particular profitable full insurance contract that is only chosen by
the high risks, but do not provide a further characterization.

Since the equilibria underlying the result in Proposition 1 involve firms becoming in-
active along the equilibrium path, they are not robust in the sense that they are destroyed
by arbitrarily small withdrawal costs. On the other hand, large withdrawal costs would
effectively eliminate stage 2 and thus lead to equilibrium nonexistence. This motivates
our introduction of withdrawal costs to select robust equilibria, i.e. equilibria that exist if
withdrawal is costless, δ = 0, but still for sufficiently small values of δ > 0. It is worth
emphasizing again that the purpose of considering withdrawal costs is therefore only to

16The same would be true if the high risks were indifferent between V∗ and VMW but the low risks strictly
preferred VMW to V∗, since then firms j = 2, 3 would be left with all of the low risks and part of the high
risks, leading to strictly positive profits again. For this reason, (10) requires strict inequalities for both risk
types whenever V∗ 6= VMW .
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eliminate equilibria with withdrawal in case of indifference, and in particular along the
equilibrium path. Mimra and Wambach (2011) show that an alternative selection crite-
rion that achieves the same result in their model with multiple rounds of withdrawal and
endogenous termination is to allow for entry of firms during the withdrawal stages.

4.2 Robust Equilibrium Outcomes

Let us denote the set of SPE outcomes of Γ for given cost parameter δ ≥ 0 by Ω∗(δ) ⊆ A .
That is, for every V∗ ∈ Ω∗(δ) there exists an SPE σ∗ of the game Γ for cost parameter δ

which has the outcome V∗, and conversely. From the previous section we already know
that Ω∗(0) contains many elements. The main result of this subsection, which does not
rest on any assumptions about λ, is the following:

Proposition 2. (i) For any δ > 0, Ω∗(δ) ⊆ {VMW} ⊆ Ω∗(0).
(ii) There exists a δ > 0 such that VMW ∈ Ω∗(δ) for all 0 ≤ δ < δ.

Proof. See Appendix A.4.

Part (i) of the proposition states that, whenever withdrawal costs are strictly positive,
the set of SPE outcomes is either empty due to equilibrium nonexistence, which will be
the case if withdrawal costs are too high, or it contains exactly the solution to MW.17 This
solution is still an equilibrium outcome if δ = 0, but many additional equilibria with
new outcomes emerge in this case, as illustrated by Proposition 1. All these additional
outcomes are, however, not robust, i.e. they disappear for arbitrarily small withdrawal
costs δ > 0. On the other hand, part (ii) states that the solution to MW is actually robust,
because it is an SPE outcome for sufficiently small but strictly positive values of δ. Thus,
Proposition 2 shows that our market game Γ produces Miyazaki-Wilson contracts as the
unique robust SPE outcome.

The intuition for robustness of the Miyazaki-Wilson contracts is as follows. Miyazaki
(1977) has shown that there cannot be profitable deviations if the Miyazaki-Wilson con-
tracts are withdrawn whenever they have become unprofitable. Strictly positive with-
drawal costs might in principle inhibit such withdrawal, even if the firms offering the
Miyazaki-Wilson contracts earn losses after a deviation. This could make some devia-
tions profitable and destroy equilibria with outcome VMW . However, when the Miyazaki-
Wilson contracts earn losses, these losses are necessarily large, in the sense of being strictly

17Observe that this is a statement about uniqueness of the equilibrium outcome, not about the equilib-
rium itself. There are always multiple equilibria with the same outcome, which for instance differ with
respect to irrelevant contract offers that no agents chooses.
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bounded away from zero across all potentially profitable deviation histories. Losses can
occur only when a competitor attracts away low but not high risks, in which case the
profits of the firms that still offer the Miyazaki-Wilson contracts experience a discrete de-
cline.18 Hence withdrawal is optimal after any such deviation for sufficiently small but
positive withdrawal costs, which enables us to construct an SPE with outcome VMW and
withdrawal in the corresponding off-equilibrium subgames.

5 Conclusion

We propose a framework for competitive markets with adverse selection that satisfies
three key properties: (i) firms can offer an arbitrary finite number of contracts, (ii) the
analysis is based on characterizing SPE of a fully specified extensive form game, and
(iii) an equilibrium always exists. In particular, it allows firms to withdraw from the
market after initial contract offers have been observed. We show that, when withdrawal
is costless, the set of SPE outcomes can be very large and include all contracts that are
resource feasible, incentive-compatible and satisfy the agents’ participation constraints
(Proposition 1). We then focus on robust equilibria that exist both when withdrawal costs
are zero and when they are strictly positive but small. We show that the constrained
efficient Miyazaki-Wilson contracts are the unique robust equilibrium outcome of our
game (Proposition 2).

Even though the extensive form game for which we derive these results is still spe-
cial and may capture the strategic interaction between firms in different markets more or
less well, our game theoretic approach has the advantage of shifting the focus from dis-
cussing the plausibility of equilibrium concepts to that of market structures as formalized
by a fully specified game. For instance, in line with the ideas suggested by Engers and
Fernandez (1987), a natural extension of our setting is to allow firms to interact for more
than two periods, and offer and withdraw contracts while observing the competitors’
behavior repeatedly. Pursuing this line of research, Mimra and Wambach (2011) have
found that similar results to ours can be obtained in such a setting. Relatedly, Diasakos
and Koufopoulos (2011) have demonstrated that distinguishing between pre-approved
and standard applications for insurance and allowing firms to commit to not reject the
applications for some contracts can yield similar results in a modified three stage game.

Another natural extension of our framework would be to allow for more than two risk
18Losses can also occur when a deviator attracts some but not all of the low risks. Since it is not possible

to attract only a negligible share of the low risks, this will still have a large impact on the existing firms’
profits, and the argument remains unaffected.
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types. In this case, one additional complication that arises is that deviations could attract
various sub-pools of the population that are profitable overall (e.g. the low and medium
risks in a simple three type model). The effect of this possibility on equilibrium existence
and uniqueness is not obvious. We leave these issues for future research.
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A Appendix

A.1 Proof of Lemma 1

We will first show that the statement about the constraints has to be true and that the high risks’

utility will not be output-dependent in any solution VMW to the problem, if it exists. We then

prove that the problem has a unique solution.19

Constraint (4). Assume that V = (uH,N , uH,D, uL,N , uL,D) ∈ A satisfies all constraints, and (4)

with slack. Consider Ṽ = (uH,N + ε1, uH,D + ε2, uL,N + ε3, uL,D + ε4) with εi, i = 1, ..., 4, such that

pL

1− pL
(ε2 − ε4) ≤ ε3 − ε1 ≤

pH

1− pH
(ε2 − ε4),

ε1 ≥ ε2 > 0 and ε3 ≥ ε4 > 0. By the assumptions on εi, i = 1, ..., 4, Ṽ ∈ A , Ṽ satisfies (2), (3)

and (5), and Ṽ leads to a strictly increased value of (1). To see that a set of εi, i = 1, ..., 4, with the

required properties always exists, start by fixing any ∆24 ∈ R+ and note that since pL < pH, there

exists a ∆31 ∈ R+ such that
pL

1− pL
∆24 ≤ ∆31 ≤

pH

1− pH
∆24.

Next, fix any ε2, ε4 > 0 such that ε2 − ε4 = ∆24. Clearly, it is then always possible to find ε1, ε3 > 0

such that ε1 ≥ ε2, ε3 ≥ ε4 and ε3 − ε1 = ∆31, which proves the claim. Finally, continuity of Φ(.)

implies that (4) is still satisfied for εi sufficiently small, so that V was not a solution to MW.

Output-independent utilities for high risks. Assume that V = (uH,N , uH,D, uL,N , uL,D) ∈ A with

uH,N > uH,D satisfies all constraints, and (4) with equality. Define ũ = (1− pH)uH,N + pHuH,D

and consider Ṽ = (ũ, ũ, uL,N , uL,D) ∈ A . By construction, Ṽ satisfies (3) and (5), and the value

of (1) is the same under V and Ṽ. Since pH > pL and uH,N > uH,D (by assumption), it follows

that (1− pL)uH,N + pLuH,D > (1− pH)uH,N + pHuH,D = ũ = (1− pL)ũ + pLũ, so that Ṽ satisfies

(2) as well, given that it is satisfied by V. Strict convexity of Φ implies that (1− pH)Φ(uH,N) +

pHΦ(uH,D) > Φ((1− pH)uH,N + pHuH,D) = Φ(ũ) = (1− pH)Φ(ũ) + pHΦ(ũ), so that Ṽ satisfies

(4) with slack (given that λ ∈]0, 1[). From the previous argument, the value of the objective can

then be increased above its value for Ṽ and V, so that V was not a solution to MW.

Constraint (3). Let V = (uH, uH, uL,N , uL,D) ∈ A satisfy all constraints, and (4) with equality.

(2) and (3) together imply uL,N ≥ uH ≥ uL,D. Assume (3) is slack, which implies uL,N > uL,D.

19This direct proof is a combination of the proofs of Lemmas 1 and 2 in Netzer and Scheuer (2010).
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Consider Ṽ(ε) = (uH, uH, uL,N − ε, uL,D + ε
1−pL

pL
), ε ≥ 0, which is an element of A for ε small

enough, and which satisfies Ṽ(0) = V. By construction, Ṽ(ε) satisfies (2) and (5), and the value of

(1) is the same under V and Ṽ(ε), for any ε ≥ 0. (3) is also satisfied by Ṽ(ε) for ε small enough.

Let EL(ε) ≡ (1− pL)Φ(uL,N − ε) + pLΦ(uL,D + ε
1−pL

pL
) denote the per capita expenditure for low

risks in Ṽ(ε). Straightforward calculations reveal that dEL(ε)/dε < 0 if 0 ≤ ε < pL(uL,N − uL,D),

so that for ε > 0 small enough, Ṽ(ε) satisfies (4) with slack. From the above argument, V cannot

be a solution to MW.

Constraint (2). Let V = (uH, uH, uL,N , uL,D) ∈ A satisfy all constraints, and (2) – (4) with

equality. This implies that uL,N = uL,D = uH, and (4) simplifies to Φ(uH) = R. Consider

Ṽ(ε) = (uH, uH, uH + ε, uH − ε
1−pH

pH
) ∈ A for ε ≥ 0, which satisfies Ṽ(0) = V. By construc-

tion and the fact that pL < pH, Ṽ(ε) satisfies (2) and (3), and the value of (1) is higher under Ṽ(ε)

than under V for any ε > 0. (5) is also satisfied by Ṽ(ε). Let E(ε) = λ[(1 − pL)Φ(uH + ε) +

pLΦ(uH − ε
1−pH

pH
)] + (1− λ)Φ(uH) denote the per capita expenditure in Ṽ(ε). Straightforward

calculations reveal that dE(ε)/dε < 0 at ε = 0, so that Ṽ(ε) satisfies (4) with slack for ε > 0 small

enough. Hence V cannot be a solution to MW.

Existence and Uniqueness. The previous results show that any solution to MW must be of the

form V = (uH, uH, uL,N , uL,D), and that (3) becomes uH = (1− pH)uL,N + pHuL,D, or equivalently

uL,D = (uH − (1− pH)uL,N)/pH. Constraint (2) will be slack. Moreover, the condition uL,N ≥ uL,D

in the definition of A can be reformulated as uL,N ≥ uH, or (uL,N , uH) ∈ C . We can therefore state

the following modified problem MW’, which has the same solution as MW:

max
(uL,N ,uH)∈C

[(
pL

pH

)
uH +

(
pH − pL

pH

)
uL,N

]
(11)

subject to the binding resource constraint

λ

[
(1− pL)Φ(uL,N) + pLΦ

(
uH − (1− pH)uL,N

pH

)]
+ (1− λ)Φ(uH) = R (12)

and the additional cross-subsidization constraint (5). Denote the LHS of (12) by E(uL,N , uH). E
is continuously differentiable on R2, and straightforward calculations reveal that it is strictly in-

creasing in uL,N on C (including its boundary), with limuL,N→∞ E(uL,N , uH) = ∞ due to convexity.

E is strictly increasing in uH globally, with limuH→−∞ = −∞.

The cross-subsidization constraint (5) can easily be rearranged to uH ≥ U(y− pHd) ≡ umin, so

that it specifies the minimal choice of uH. We next claim that umax ≡ U(R) (so that umax > umin)

represents the largest possible choice of uH. Consider the tuple (umax, umax) ∈ C , which satisfies

(12) by construction. Any tuple (ũL,N , ũH) ∈ C with ũH > umax and thus ũL,N > umax can be

reached from (umax, umax) by first increasing uL,N from umax to ũL,N and then increasing uH from

umax to ũH. Both moves strictly increase E(uL,N , uH), so that (ũL,N , ũH) violates (12), which proves

21



the claim.

Now fix any uH ∈ [umin, umax]. It follows that E(umax, uH) ≤ E(umax, umax) = R, with strict

inequality whenever uH < umax. Since E(uL,N , uH) is strictly increasing in uL,N in the set C ,

with limuL,N→∞ E(uL,N , uH) = ∞, it follows that there exists a unique value H(uH) such that

E(H(uH), uH) = R, where H(uH) ≥ umax ≥ uH. The resulting function H : [umin, umax] →
[umax, ∞[ is continuously differentiable and thus continuous by the implicit function theorem.

We can now reduce MW’ to the one-dimensional problem

uMW
H = arg max

uH∈[umin,umax ]
pLuH + (pH − pL)H(uH), (13)

for which existence of a solution follows immediately by the Weierstrass theorem. To prove

uniqueness, we show strict concavity of the objective by showing that H(uH) is strictly concave.

Let (u′L,N , u′H), (u
′′
L,N , u′′H) ∈ C satisfy E(u′L,N , u′H) = E(u′′L,N , u′′H) = R and (u′L,N , u′H) 6= (u′′L,N , u′′H).

Define u′′′L,N = ηu′L,N + (1− η)u′′L,N and u′′′H = ηu′H + (1− η)u′′H for η ∈]0, 1[. Strict convexity of Φ

then implies that E(u′′′L,N , u′′′H ) < R, which in turn implies that H(u′′′H ) = H(ηu′H + (1− η)u′′H) >

u′′′L,N = ηu′L,N + (1− η)u′′L,N = ηH(u′H) + (1− η)H(u′′H), which completes the proof.

A.2 Proof of Lemma 2

Property (i). We will first show that the solution VMW(λ) to MW(λ) is continuous in λ on ]0, 1[.

It then follows that χ(λ) is continuous as well. From the proof of Lemma 1 we know that the

solution to MW(λ) for λ ∈]0, 1[ can be found by solving the simplified problem (13):

uMW
H (λ) = arg max

uH∈[umin,umax(λ)]
pLuH + (pH − pL)H(uH, λ), (14)

where umax(λ) = U(R(λ)), and for given λ, the function H is continuously differentiable, strictly

decreasing and strictly concave in uH on [umin, umax(λ)].20 Let F = (0, 1), U = [umin, U((1 −
pL)y + pL(y− d))], and C(λ) = [umin, umax(λ)] ⊂ U . Clearly, the correspondence C : F ⇒ U is

compact-valued and continuous. Define Z : U ×F → R by

Z(uH, λ) =

{
H(uH, λ) if uH ≤ umax(λ),

umax(λ) if uH > umax(λ).
(15)

The function Z is continuous on U ×F , because H is continuous in λ and in uH ∈ [umin, umax(λ)],

H(umax(λ), λ) = umax(λ) holds, and umax(λ) is continuous in λ. We can now rewrite the maxi-

mization problem as

uMW
H (λ) = arg max

uH∈C(λ)
pLuH + (pH − pL)Z(uH, λ), (16)

20The dependency of umax(λ) and H(uH , λ) on λ has been suppressed in earlier proofs.
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and Berge’s maximum principle implies that uMW
H (λ) is continuous. Then χ(λ) = Φ(uMW

H (λ))−
(y− pHd) is continuous as well.

Now, consider first the case where λ → 0. We will show that, as λ → 0, constraint (5) must

eventually become binding in VMW(λ), i.e. uMW
H (λ) = umin for λ small enough. This implies

χ(λ) = 0. Consider the slope of the objective in (14), evaluated at uH = umin. Using the derivative

of H with respect to uH, obtained from implicitly differentiating (12), the condition that the ob-

jective is weakly decreasing already in uH = umin (which is then the solution to (14) due to strict

concavity), can be rearranged to

(1− λ)(pH − pL)Φ′(umin) ≥ λ(1− pL)pL

[
Φ′(H(umin, λ))−Φ′

(
umin − (1− pH)H(umin, λ)

1− pH

)]
.

(17)

Fixing uH = umin, the budget constraint (4) can be simplified to

(1− pL)Φ(H(umin, λ)) + pLΦ
(

umin − (1− pH)H(umin, λ)

pH

)
= (1− pL)y + pL(y− d),

which implies that H(umin, λ) is independent of λ and satisfies H(umin, λ) > umin. Hence the LHS

of (17) converges to a strictly positive value as λ→ 0, while the RHS converges to zero. Hence (5)

must eventually become binding.

Consider now the case where λ → 1. From the same arguments as above it follows that (5)

must become slack for sufficiently large value of λ, because (17) will eventually be violated. Ob-

serve also that uH = umax(λ) can never be a solution to (14), for any λ ∈ (0, 1), as this would

imply uL,N = H(umax(λ), λ) = umax(λ) = uH and uL,D = uH, contradicting that VMW(λ) satisfies

(2) with slack according to Lemma 1. Hence (14) must have an interior solution for large enough

λ. Again using the derivative of H with respect to uH from implicitly differentiating (12), the nec-

essary and sufficient first order condition for (14) can then be rearranged to (see also Faynzilberg,

2006c, p. 25):
λ

1− λ
=

Φ′(uMW
H (λ))

Φ′(uMW
L,N (λ))−Φ′(uMW

L,D (λ))

pH − pL

pL(1− pL)
. (18)

Clearly, uMW
H (λ) is bounded below by umin and above by umax(λ) = U(R(λ). Since umax(λ) itself

is bounded above by U((1− pL)y + pL(y− d)), it must be that uMW
H (λ) ∈ [U((1− pH)y + pH(y−

d)), U((1− pL)y + pL(y− d))] for all λ ∈]0, 1[. Since limλ→1 λ/(1− λ) = ∞ while Φ′(uMW
H (λ)) ∈

[Φ′(U((1 − pH)y + pH(y − d))), Φ′(U((1 − pL)y + pL(y − d)))] for all λ ∈]0, 1[, we must have

limλ→1

(
Φ′(uMW

L,N (λ))−Φ′(uMW
L,D (λ))

)
= 0, since otherwise the first-order condition (18) would

be violated for large λ. Assume limλ→1 uMW
L,N (λ) = +∞ (−∞). Then, incentive compatibility (3)

requires limλ→1 uMW
L,D (λ) = −∞ (+∞), and the denominator on the RHS of (18) does not go to

zero. Therefore, limλ→1(uMW
L,N (λ) − uMW

L,D (λ)) = 0 has to hold (because Φ′ is strictly increasing),

i.e. the low risks’ contract converges towards full coverage. This implies limλ→1 Φ(uMW
L,N (λ)) =

limλ→1 Φ(uMW
L,D (λ)) = limλ→1 Φ(uMW

H (λ)) = limλ→1(y− pd), where p = λpL + (1− λ)pH is the

23



average damage probability. Thus limλ→1 χ(λ) = (pH − pL)d.

Property (ii). Assume that Φ′(u) is convex. We will first show that both (1− pL)uMW
L,N (λ) +

pLuMW
L,D (λ) and uMW

H (λ) are weakly increasing in λ, and strictly so if (5) is slack. As for (1 −
pL)uMW

L,N (λ) + pLuMW
L,D (λ), this holds even without convexity of Φ′. Fix a value λ0 ∈ (0, 1) and let

λ = λ0 + δ for any δ > 0. In MW(λ), only the resource constraint (4) is affected. Straightforward

calculations, using the fact that VMW(λ0) satisfies (4) for λ0 with equality, reveal that VMW(λ0) is

still feasible under λ iff

(pH − pL)d−
[
(1− pL)Φ(uMW

L,N (λ0)) + pLΦ(uMW
L,D (λ0))−Φ(uMW

H (λ0))
]
≥ 0, (19)

and satisfies the budget constraint with slack iff the inequality is strict. But the binding constraint

(4) can be rearranged to

λ0

[
(1− pL)Φ(uMW

L,N (λ0)) + pLΦ(uMW
L,D (λ0))−Φ(uMW

H (λ0))− (pH − pL)d
]
+ Φ(uMW

H (λ0)) =

y− pHd,

which together with the fact that Φ(uMW
H (λ0)) ≥ (1− pH)y + pH(y− d) from (5) implies that (19)

is always satisfied, and as a strict inequality whenever Φ(uMW
H (λ0)) > (1− pH)y + pH(y− d). In

this latter case, the optimal value of the objective under λ must be strictly larger than under λ0, as

argued in the proof of Lemma 1. Otherwise, given that the old contracts VMW(λ0) are still feasible

under λ, the optimal value of the objective cannot decrease.

Now consider the high risks’ utility uMW
H (λ). If (5) is binding, it is given by uMW

H (λ) = U((1−
pH)y + pH(y − d)) and is independent of λ. Assume then that (5) is slack, such that uMW

H (λ)

satisfies the first-order condition (18). To arrive at a contradiction, suppose we increase λ and

uMW
H (λ) decreases weakly. The binding self-selection constraint (3) can be rearranged to

(1− pL)uMW
L,N (λ) + pLuMW

L,D (λ)− uMW
H (λ) = (pH − pL)(uMW

L,N (λ)− uMW
L,D (λ)).

Given that (1− pL)uMW
L,N (λ)+ pLuMW

L,D (λ) strictly increases in λ, as shown above, the term uMW
L,N (λ)−

uMW
L,D (λ) must also be strictly increasing. If Φ′ is convex, this implies that

Φ′(uMW
L,N (λ))−Φ′(uMW

L,D (λ))

is increasing in λ, given that uMW
L,N (λ) and uMW

L,D (λ) cannot both decrease. Collecting results, we

have that, by assumption, uMW
H (λ) and hence Φ′(uMW

H (λ)) weakly decreases, while Φ′(uMW
L,N (λ))−

Φ′(uMW
L,D (λ)) strictly increases. But this is a contradiction to (18), as it implies that the LHS of (18)

strictly increases but the RHS strictly decreases. Hence uMW
H (λ) is strictly increasing in λ whenever

(5) is slack.

Finally, if (5) is slack and uMW
H (λ) is strictly increasing at some level of λ, the same clearly

holds for all λ′ > λ. Together with the previous result that (5) must be binding in VMW(λ) for
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sufficiently small and slack for sufficiently large values of λ, it follows that there exists a value

λ̃ ∈]0, 1[ such that for all λ ≤ λ̃, constraint (5) will be binding in VMW(λ) and neither VMW(λ) nor

χ(λ) change in λ, while for all λ > λ̃, (5) is slack and uMW
H (λ), and thus χ(λ), is strictly increasing

in λ.

A.3 Proof of Proposition 1

The proof involves constructing an SPE σ with outcome V∗. For convenience, we omit the asterisk

for equilibrium strategies, and although σ = (σ1, σ2) formally is a profile of mixed strategies, we

write e.g. σ2
j (s

1) = NW or σ1
j = ∅ to indicate a lottery placing probability 1 on a pure action.

Part (i). To prove part (i) of the proposition, we construct σ as follows. Let firm j = 1 offer

the contracts from V∗ in stage 1, where V∗ satisfies the constraints (8) and (9) in the Proposition.

Formally, σ1
1 = {(u∗H,N , u∗H,D), (u

∗
L,N , u∗L,D)}. Let σ1

j = {(uRS
H , uRS

H ), (uRS
L,N , uRS

L,D)} for firms j = 2, 3,

and σ1
j = ∅ for all j ≥ 4. Now denote the induced history by s1. As for stage 2, first let σ2

1 (s
1) =

NW and σ2
j (s

1) = W for j = 2, 3 (for firms j ≥ 4, the withdrawal decision after history s1 is

irrelevant). Clearly, these withdrawal decisions form a Nash equilibrium in subgame Γ(s1): firm

1 earns non-negative profits by the properties of V∗, and neither firm 2 nor 3 can earn profits by

remaining active. Furthermore, the outcome of the candidate is the desired V∗. Any potentially

profitable deviation has to take place at stage 1.

Strategies must form Nash equilibria in all off-equilibrium path subgames Γ(s̃1) for s̃1 6= s1.

Any such subgame is a finite normal form game, so that a Nash equilibrium exists (possibly in

mixed strategies). To examine deviation incentives in stage 1, we only need to consider histories

s̃1 that can be reached by unilateral deviations, i.e. that differ from s1 in exactly one coordinate i.
At any such history, at least one of firms j = 2, 3 is a non-deviator. For a given deviation history

s̃1, let JRS ⊆ {2, 3} be the (nonempty) set of all firms among 2 and 3 that have not deviated from

s1. We first show there exists a Nash equilibrium in Γ(s̃1) where all j ∈ JRS remain active.

Lemma 3. For any s̃1 6= s1 that can be reached by a unilateral deviation from s1, there exists a Nash
equilibrium in Γ(s̃1) such that σ2

j (s̃1) = NW for all j ∈ JRS.

Proof. Since VRS generates zero profits no matter which types are attracted, all firms j ∈ JRS are

always indifferent between withdrawing and remaining active, so that σ2
j (s̃1) = NW is always

a best response for them. We can then consider the reduced stage 2 subgame between firms j ∈
J \ JRS, taking as given that σ2

j (s̃1) = NW for j ∈ JRS. The reduced game is a finite normal form

game, which has a Nash equilibrium. Together with σ2
j (s̃1) = NW for j ∈ JRS, it extends to a Nash

equilibrium of Γ(s̃1).

Hence after any unilateral deviation history, there exists a stage two Nash equilibrium where

the contracts given by VRS = (uRS
H , uRS

H , uRS
L,N , uRS

L,D) remain active. Since VRS solves MW(λ) by

assumption, there does not exist a set of incentive compatible contracts that makes strictly positive
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profits when offered in addition to only VRS (see Miyazaki 1977). In particular, there does not

exist a set of contracts that is profitable after all the contracts that have become unprofitable are

withdrawn. However, in the considered case in which VRS solves MW(λ), withdrawal does not

need to be considered since VRS always generates zero profits.

Now consider a deviation history s̃1, where deviator i has offered {(ũH,N , ũH,D), (ũL,N , ũL,D)}.21

Consider a Nash equilibrium in Γ(s̃1) with the property described in Lemma 3. Profitability of the

deviation would now require that i ≥ 2, the deviator remains active, firm j = 1 also remains active

with positive probability, and, while {(ũH,N , ũH,D), (ũL,N , ũL,D)} and {(u∗H,N , u∗H,D), (u
∗
L,N , u∗L,D)}

jointly earn non-positive profits in the presence of the Rothschild-Stiglitz contracts, the deviator

earns strictly positive (expected) profits. But this implies (expected) losses for j = 1, contradicting

Nash equilibrium. Hence the deviation cannot be profitable.

Part (ii). To prove part (ii), we distinguish two cases. First, if V∗ = VMW , the existence of

an SPE with outcome V∗ for δ = 0 will follow from Proposition 2. Second, for the case that V∗

satisfies constraints (8) to (10), we construct the following σ. Firm j = 1 again offers V∗, i.e.

σ1
1 = {(u∗H,N , u∗H,D), (u

∗
L,N , u∗L,D)}. For j = 2, 3, we let σ1

j = {(uMW
H , uMW

H ), (uMW
L,N , uMW

L,D )}, and

σ1
j = ∅ for all j ≥ 4. We again denote the induced history by s1. As for stage 2, let σ2

1 (s
1) = NW

and σ2
j (s

1) = W for j = 2, 3 as before. Clearly, these withdrawal decisions again form a Nash

equilibrium in subgame Γ(s1). First, firm 1 earns non-negative profits by the properties of V∗.
Second, neither firm 2 nor 3 can earn profits by remaining active, because V∗ becomes irrelevant

whenever VMW is offered due to (10), and VMW involves zero profits when offered on its own.

Furthermore, the outcome of the candidate is the desired V∗. Any potentially profitable deviation

therefore again has to take place at stage 1.

As before, any off-equilibrium path subgame Γ(s̃1) for s̃1 6= s1 is a finite normal form game so

that a Nash equilibrium exists, and we again only need to consider histories s̃1 that can be reached

by unilateral deviations. For a given deviation history s̃1, let JMW ⊆ {2, 3} be the (nonempty) set of

all firms among 2 and 3 that have not deviated from s1. Let {(ũH,N , ũH,D), (ũL,N , ũL,D)} denote the

set of contracts offered by the deviator i at stage 1. Consider the set of Nash equilibria in subgame

Γ(s̃1). Suppose first that there exists one among them in which the deviator remains active with

probability less than 1. By indifference, the deviation then cannot be profitable. We therefore

only need to consider further those subgames Γ(s̃1) in which there only exist Nash equilibria that

involve the deviator remaining active with probability 1. Among those, we distinguish three cases:

Case 1. Suppose first that there exists a Nash equilibrium in which at least one j ∈ JMW remains

active with probability 1. Note first that this turns 1’s original offer, even if 1 is not the deviator

himself and still remains active, irrelevant by (10). Hence, the deviation contracts are offered in

addition to the contracts given by VMW , and the latter are not earning losses. This implies that the

deviation cannot be profitable, as argued earlier.

21This includes the possibility that the deviator i offers a single contract only, in which case ũH,N = ũL,N
and ũH,D = ũL,D, or that he offers more than two contracts, in which case (ũk,N , ũk,D) represents the best
contract for type k = H, L among those offered by i.
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Case 2. If case 1 does not apply, suppose there exists a Nash equilibrium in which all j ∈ JMW

strictly prefer withdrawal to remaining active, since they would make strictly negative profits

if they remained active unilaterally. Again using the properties of VMW , profitability of the de-

viation would require that i ≥ 2, the deviator remains active, firm j = 1 also remains active

with positive probability, and, while {(ũH,N , ũH,D), (ũL,N , ũL,D)} and {(u∗H,N , u∗H,D), (u
∗
L,N , u∗L,D)}

jointly earn non-positive profits, the deviator earns strictly positive profits. But this implies losses

for j = 1, contradicting Nash equilibrium. Hence the deviation cannot be profitable.

Case 3. Finally, suppose there only exist Nash equilibria in which all firms j ∈ JMW withdraw

with strictly positive probability, but are indifferent between remaining active and withdrawing

(if at least one of them is indifferent, then all of them are indifferent). Starting from any such Nash

equilibrium, we can now construct another Nash equilibrium in which they remain active with

probability 1. First, let σ2
j (s̃

1) = NW for all j ∈ JMW , which is an alternative best response for them,

given the fixed strategies of the other players. If firm 1 is not the deviator, keep σ2
1 (s̃

1) from the

original Nash equilibrium. This remains a best response, since, whenever the contracts from VMW

are offered, 1’s offer is irrelevant by (10). As for the deviator, suppose first that a best response

to the modified strategies is to remain active, as in the original Nash equilibrium. Then we have

found a new Nash equilibrium which returns us to case 1 above and leads to a contradiction.

Second, suppose the deviator now strictly prefers to become inactive. Then we have again found

a new Nash equilibrium: If the deviator becomes inactive, the specified strategies for j ∈ JMW and

j = 1 (if not the deviator) are best responses. However, the deviation is unprofitable in this case.

A.4 Proof of Proposition 2

We prove the proposition in two steps. First, we show that if δ > 0, the outcome of any SPE

of Γ must be a solution to MW. This establishes Ω∗(δ) ⊆ {VMW} for all δ > 0, the first part of

statement (i). We then show that there exists a critical value δ > 0 such that VMW ∈ Ω∗(δ) for all

δ < δ, including δ = 0. This establishes statement (ii), and also {VMW} ⊆ Ω∗(0), the second part

of statement (i).

Throughout the proof, we adopt the following notation. First, we omit the asterisk indicat-

ing equilibrium strategies, for notational simplicity. Second, although σ = (σ1, σ2) formally is a

profile of mixed strategies, we write e.g. σ2
j (s

1) = NW or σ1
j = ∅ to indicate a lottery placing

probability 1 on a pure action. Finally, we write σ = (σj, σ−j), σ2(s1) = (σ2
j (s

1), σ2
−j(s

1)) and so on.

Step 1. Fix a value of withdrawal cost δ > 0 and consider an SPE σ with outcome V∗. Observe

first that σ2
j (s

1) = NW ∀j ∈ J , where s1 is the history induced by σ, i.e. the profile of stage

1 offers. Otherwise, Πj(σ) = −δ < 0 for some j ∈ J , and deviating to σ̃1
j = ∅ would be

profitable. Observe also that Πj(σ) = 0 for at least one j ∈ J \ {0}. Otherwise, if Πj(σ) > 0

∀j ∈ J \ {0}, any one of them, say i, could deviate to offering the contracts (u∗H,N + ε, u∗H,D + ε)

and (u∗L,N + ε, u∗L,D + ε) in stage 1, for small ε > 0, and remain active after the deviation. Since
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σ2
j (s

1) = NW ∀j ∈ J , the contracts available in addition to (u∗H,N + ε, u∗H,D + ε) and (u∗L,N +

ε, u∗L,D + ε), at the end of stage 2 after the deviation, are at most those available in the SPE,22 and

all agents will choose one of the deviation contracts. Also, the deviation contracts are incentive

compatible, so that, for sufficiently small ε, the deviator could earn profits arbitrarily close to

∑j∈J Πj(σ) > Πi(σ), a contradiction.

We now show that the outcome V∗ must satisfy the constraints of MW, and that it must maxi-

mize the objective (1).

Constraints (2) and (3). Incentive-compatibility is satisfied by definition of V∗.
Constraint (4). Assume to the contrary that V∗ violates (4). Then there must be at least one firm

j ∈ J \ {0} with σ2
j (s

1) = NW and Πj(σ) < 0.23 σ̃1
j = ∅ would be a profitable deviation, which

contradicts that V∗ is an SPE outcome.

Constraint (5). Assume to the contrary that V∗ violates (5), i.e. Φ((1− pH)u∗H,N + pHu∗H,D) <

y − pHd. Let ũ = (1 − pH)u∗H,N + pHu∗H,D + ε, ε > 0, with ε sufficiently small to guarantee

Φ(ũ) < y − pHd. The contract (ũ, ũ) ∈ C then satisfies πk(ũ, ũ) = y − pkd − Φ(ũ) > 0, i.e. it

earns strictly positive profits if a positive mass of agents (of whatever risk) chooses it. Consider

a firm i ∈ J for which Πi(σ) = 0, which exists as shown above, and assume it deviates to

σ̃1
i = {(ũ, ũ)} and remains active thereafter. Since σ2

j (s
1) = NW ∀j ∈ J , the contracts that are

available in addition to (ũ, ũ) at the end of stage 2 after the deviation are at most those available in

the SPE. Hence the high risks will choose (ũ, ũ) and make the deviation strictly profitable, which

contradicts that V∗ is an SPE outcome.

Maximization of (1). Assume that V∗ satisfies all constraints of MW, but, to the contrary,

V∗ 6= VMW . Then (1 − pL)uMW
L,N + pLuMW

L,D > (1 − pL)u∗L,N + pLu∗L,D. For ε > 0 small enough,

the contract (uMW
L,N − ε, uMW

L,D − ε) ∈ C then still satisfies (1− pL)(uMW
L,N − ε) + pL(uMW

L,D − ε) > (1−
pL)u∗L,N + pLu∗L,D. Suppose a firm i ∈J for which Πi(σ) = 0 deviates to σ̃1

i = {(uMW
L,N − ε, uMW

L,D −
ε), (uMW

H − ε, uMW
H − ε)}, with ε small enough as discussed, and remains active thereafter. The

contracts that are additionally available at the end of stage 2 after the deviation are at most those

available in the SPE, and thus the low risks will choose (uMW
L,N − ε, uMW

L,D − ε), given that (u∗L,N , u∗L,D)

was optimal before. High risks weakly prefer (uMW
H − ε, uMW

H − ε) over (uMW
L,N − ε, uMW

L,D − ε), since

VMW satisfies (3). Therefore, all high risks either choose (uMW
H − ε, uMW

H − ε) or a contract offered

by some other firm j 6= i. We claim that the deviation is strictly profitable.24 Even if all high risks

choose the contract (uMW
H − ε, uMW

H − ε) in this outcome, the deviating firm i earns strictly positive

profits.25 If the high risks choose some other contract, firm i obtains only the low risks and earns

strictly positive profits as well.

22If some non-deviating firms randomize in the stage 2 subgame reached after the deviation, this state-
ment holds true for each possible outcome of the randomization.

23Clearly, Π0(σ) = 0 always holds.
24Again, if there is randomization after the deviation, the following arguments apply to each outcome

that occurs with positive probability.
25The contract (uMW

H − ε, uMW
H − ε) might have been offered by non-deviators as well, in which case not

all high risks choose firm i, but the deviation is still profitable.
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Step 2. We now construct an SPE with outcome VMW , which exists for sufficiently small values of

δ, including δ = 0.

In addition to the contracts in VMW , consider the contract (uH, uH) that always pays the ex-

pected endowment of high risks, so that uH = U(y − pHd). Clearly, this contract is identical to

(uMW
H , uMW

H ) if constraint (5) is binding in VMW , but the latter is strictly preferred by high risks

to (uH, uH) otherwise. We now construct an SPE σ of Γ in which σ1
j = {(uH, uH)} for j = 1, 2,

σ1
j = {(uMW

H , uMW
H ), (uMW

L,N , uMW
L,D )} for j = 3, 4, and σ1

j = ∅ ∀j ≥ 5. Denote the induced history by

s1, and set σ2
j (s

1) = NW ∀j ∈J .

Whenever VMW satisfies (5) with slack, all agents will then spread equally among firms j =
3, 4, which implies Πj(σ

2(s1)|s1) = 0 ∀j ∈ J . If (5) is satisfied with equality, high risks spread

equally among firms j = 1, ..., 4, while low risks spread among firms 3 and 4 only. The fact that

there is no cross-subsidization in VMW again implies Πj(σ
2(s1)|s1) = 0 ∀j ∈ J . Thus σ2

j (s
1) =

NW is actually a best response for every firm in subgame Γ(s1), for any value of δ ≥ 0, and the

outcome of the SPE candidate σ is VMW . Any potentially profitable deviation has to take place at

stage 1.

Fix a value of δ ≥ 0. The companies’ strategies must form Nash equilibria in all off-equilibrium

path subgames Γ(s̃1), s̃1 ∈ S1, s̃1 6= s1. The fact that each subgame Γ(s̃1) is a finite normal form

game implies that a Nash equilibrium does exist in each of them, possibly in mixed strategies. For

each s̃1 ∈ S1, s̃1 6= s1, let σ2(s̃1) be such an equilibrium.26 Now consider those stage 2 subgames

Γ(s̃1) that can be reached after a profitable unilateral deviation, i.e. for which there exists a firm

i ∈ J such that s1 and s̃1 differ in the ith coordinate only, and where Πi(σ
2(s̃1)|s̃1) > 0. Let S̃1

be the set of all histories that correspond to such subgames (suppressing the dependency on the

chosen stage 2 equilibria σ2(s̃1)).

Lemma 4. For each s̃1 ∈ S̃1, there exists a pure-strategy Nash equilibrium σ̃2(s̃1) in Γ(s̃1).
If Πi(σ̃

2(s̃1)|s̃1) > 0, i.e. the deviation is still profitable under σ̃2(s̃1), then σ̃2(s̃1) satisfies that
(i) each non-deviator j 6= i, j ∈ {1, 2} plays σ̃2

j (s̃
1) = NW, and

(ii) each non-deviator j 6= i, j ∈ {3, 4} plays σ̃2
j (s̃

1) = NW when indifferent, i.e. if Πj(NW, σ̃2
−j(s̃

1)|s̃1) =

Πj(W, σ̃2
−j(s̃

1)|s̃1).

Proof. We prove the lemma by constructing the equilibrium σ̃2(s̃1) from σ2(s̃1).

Consider first the case where δ > 0. In the given equilibrium σ2(s̃1), both the deviator i
and all non-deviators j 6= i, j ∈ {1, 2} remain active (with probability one). For the deviator,

this is because Πi(σ
2(s̃1)|s̃1) > 0 by assumption. Given that the contract (uH, uH) always earns

non-negative profits, for non-deviators among j ∈ {1, 2} remaining active even strictly domi-

nates withdrawal. The same holds for firms j 6= i, j ∈ {3, 4} if (5) is satisfied with equality in

VMW , because incentive compatibility and lack of cross-subsidization in VMW then always im-

plies zero profits when remaining active. Hence in that case σ2(s̃1) is already in pure strategies,

26If there is more than one equilibrium in a subgame Γ(s̃1), let σ2(s̃1) be an arbitrary one of them.
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satisfies property (i), and (ii) is empty, so we have σ̃2(s̃1) = σ2(s̃1). If (5) is slack in VMW , but

Πj(NW, σ2
−j(s̃

1)|s̃1) 6= Πj(W, σ2
−j(s̃

1)|s̃1) for each non-deviator j 6= i, j ∈ {3, 4}, property (ii) is

also empty and σ2(s̃1) is in pure strategies, such that we also have σ̃2(s̃1) = σ2(s̃1).

Consider then the case that (5) is slack in VMW and Πj(NW, σ2
−j(s̃

1)|s̃1) = Πj(W, σ2
−j(s̃

1)|s̃1) for

at least one j 6= i, j ∈ {3, 4}. Assume first that i /∈ {3, 4} in s̃1. Let β1 be the (non-random) payoff

that one of firms j ∈ {3, 4} would obtain if it remained active while the other did not remain

active, and all other firms’ strategies were as in σ2(s̃1), hence pure. Let β2 be the analogous payoff

if both j ∈ {3, 4} remained active, again keeping all other strategies from σ2(s̃1). Indifference of

(at least) one firm j ∈ {3, 4} in σ2(s̃1) implies that −δ = qβ1 + (1− q)β2, where q ∈ [0, 1] is the

probability in σ2(s̃1) that the other one withdraws. It must therefore be the case that either β1 < 0

or β2 < 0 or both. This happens if and only if the active firm(s) among 3 and 4 obtain high risks

in (uMW
H , uMW

H ), which requires subsidization, but not enough low risks in (uMW
L,N , uMW

L,D ) to break

even. Also, since (uMW
H , uMW

H ) is strictly preferred to (uH, uH) by high risks in the present case,

firms 1 and 2 do not obtain agents whenever at least one of firms 3 and 4 is active. Hence losses

for active firms j ∈ {3, 4} occur only if the deviator has offered a contract which is chosen by

(some) low risks, in the presence of (uMW
L,N , uMW

L,D ), while (uMW
H , uMW

H ) is still the best contract for

high risks.

We can now distinguish two cases: first, the deviator i’s best contract for low risks in s̃1 could

be (uMW
L,N , uMW

L,D ). In this case, the deviator did not also offer (uMW
H , uMW

H ) in s̃1, because this would

imply Πi(σ
2(s̃1)|s̃1) = 0 (irrespective of σ2

j (s̃
1), j = 3, 4). Hence whenever one or both firms

j ∈ {3, 4} are active, all high risks move only to them,27 while all low risks spread equally between

them and the deviator. The number of low risks that active firms j ∈ {3, 4} obtain is not large

enough to break even, irrespective of whether one or both of them are active, which implies β1 < 0

and β2 < 0. It is also straightforward to show that β1 < β2, i.e. the individual losses are smaller

if both j = 3, 4 are active and share the losses. The second possible case is that the deviator i
has offered a contract in s̃1 which is strictly preferred to (uMW

L,N , uMW
L,D ) by low risks.28 The active

firm(s) j ∈ {3, 4} then obtain only the high risks and earn strictly negative profits, irrespective

of whether one or both of them are active. The losses are again smaller if they are shared, also

implying β1 < β2 < 0.

With these results, we can construct σ̃2(s̃1) from σ2(s̃1), under the assumption that Πj(NW,

σ2
−j(s̃

1)| s̃1) =Πj(W, σ2
−j(s̃

1)|s̃1) for at least one j 6= i, j ∈ {3, 4}. If i ∈ {3, 4}, set σ̃2
j (s̃

1) = NW,

and σ̃2
k (s̃

1) = σ2
k (s̃

1) ∀k ∈J , k 6= j. This simply amounts to choosing an alternative best response

for the indifferent player, keeping the strategies of all others. If i /∈ {3, 4}, set σ̃2
j (s̃

1) = NW
for both j = 3, 4, and again σ̃2

k (s̃
1) = σ2

k (s̃
1) ∀k ∈ J , k /∈ {3, 4}. The fact that β1 < β2 < 0

27Even if the deviator has offered an output-dependent incentive contract that leaves high risks indiffer-
ent to (uMW

H , uMW
H ), no bad type will choose it due to our tie-breaking assumptions.

28Any contract which leaves the low risks indifferent to (uMW
L,N , uMW

L,D ) but is still chosen in the presence of
(uMW

L,N , uMW
L,D ), must be less high-powered and would violate incentive compatibility, given that (uMW

H , uMW
H )

is still the best contract for high risks by assumption.
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always holds, as shown above, together with −δ = qβ1 + (1− q)β2 for a given q ∈ [0, 1] implies

β2 ≥ −δ. The individual profits of firms j = 3, 4 when jointly remaining active (β2), still given

all other players’ strategies from σ2(s̃1), are weakly larger than −δ, making it indeed a best reply

to remain active. If σ̃2
i (s̃

1) = NW is now still a best response for the deviator, we have arrived

at the desired equilibrium, because σ̃2(s̃1) is a pure strategy Nash equilibrium in which all firms

j 6= i, j ∈ {1, ..., 4} remain active. If i’s unique best response is now withdrawal, set σ̃2
i (s̃

1) = W
to arrive at the final σ̃2(s̃1). It is a Nash equilibrium because σ̃2

j (s̃
1) = NW, as constructed above,

is the unique best response for firms j 6= i, j ∈ {1, ..., 4} if the deviator withdraws. It is in pure

strategies by construction, and properties (i) and (ii) are empty due to Πi(σ̃
2(s̃1)|s̃1) = −δ < 0.

Assume now that δ = 0. Construct σ̃2(s̃1) from σ2(s̃1) by first assuming that all j 6= i, j ∈ {1, 2}
play σ̃2

j (s̃
1) = NW, which is always a best response for them, and initially keep all other play-

ers’ strategies as in σ2(s̃1). Even if this constitutes a change of strategy from σ2(s̃1), the opti-

mal behavior of non-deviators j 6= i, j ∈ {3, 4} is clearly unaffected. If Πj(NW, σ2
−j(s̃

1)|s̃1) 6=
Πj(W, σ2

−j(s̃
1)|s̃1) for all j 6= i, j ∈ {3, 4}, indeed keep σ̃2

j (s̃
1) = σ2

j (s̃
1) for them. Otherwise,

if Πj(NW, σ2
−j(s̃

1)|s̃1) = Πj(W, σ2
−j(s̃

1)|s̃1) for at least one j 6= i, j ∈ {3, 4}, set σ̃2
j (s̃

1) = NW
∀j 6= i, j ∈ {3, 4}. A similar argument as for the case δ > 0 implies that they then give best

responses against the profile constructed so far. If σ̃2
i (s̃

1) = NW is still a best response of the

deviator, we have arrived at the desired equilibrium. Clearly, σ̃2(s̃1) is in pure strategies, it has

firms j 6= i, j ∈ {1, 2} remaining active, and for any firm j 6= i, j ∈ {3, 4} we can have σ̃2(s̃1) = W
only if Πj(NW, σ̃2

−j(s̃
1)|s̃1) < Πj(W, σ̃2

−j(s̃
1)|s̃1), i.e. if there is no indifference. If, on the other

hand, withdrawal is now the unique best-response of the deviator, setting σ̃2
i (s̃

1) = W yields the

desired equilibrium, because if the deviator withdraws and δ = 0, all firms j 6= i, j ∈ {1, ..., 4}
are indifferent between withdrawing and remaining active, making the above constructed pure

strategies best responses. Furthermore, the fact that Πi(σ̃
2(s̃1)|s̃1) = −δ = 0 implies that (i) and

(ii) are empty.

For each s̃1 ∈ S̃1, replace the original Nash equilibrium σ2(s̃1) with the pure-strategy equi-

librium σ̃2(s̃1).29 In some of the corresponding subgames, using σ̃2(s̃1) might already make the

deviation unprofitable, i.e. Πi(σ̃
2(s̃1)|s̃1) ≤ 0. In fact, we show in the following that this is true

in all Γ(s̃1), s̃1 ∈ S̃1, if δ is sufficiently small. To prove this claim, we assume to the contrary that

there are still profitable deviations. The stage 2 equilibria reached after these deviations do then

satisfy the properties (i) and (ii) of Lemma 4. To save on notation, relabel the newly constructed

stage 2 equilibria back to σ2(s̃1), for all s̃1 ∈ S1, and, as before, let S̃1 be the set of histories that

still correspond to profitable unilateral deviations from s1 by some firm i ∈ J . For each s̃1 ∈ S̃1,

denote by Ṽ(s̃1) the corresponding outcome in subgame Γ(s̃1), i.e. the quadruple representing the

two risk types’ choices among the available contracts at the end of stage 2. Ṽ(s̃1) is well-defined

because σ2(s̃1) is in pure strategies.

29If there are several equilibria that all satisfy the properties in Lemma 4 in a subgame Γ(s̃1) for s̃1 ∈ S̃1,
let σ̃2(s̃1) be an arbitrary one of them.
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Lemma 5. There exists a value δ > 0 such that, if 0 ≤ δ < δ, all outcomes Ṽ(s̃1), s̃1 ∈ S̃1, satisfy the
constraints of MW.

Proof. Consider any s̃1 ∈ S̃1. By definition of Ṽ(s̃1) as being the outcome in Γ(s̃1) under σ2(s̃1), it

satisfies constraints (2) and (3). (5) must also be satisfied, because the offer (uH, uH) remains active

by construction of σ2(s̃1).

Concerning (4), assume to the contrary that for some s̃1 ∈ S̃1, Ṽ(s̃1) violates (4), and let Ŝ1 ⊆ S̃1

be the set of all such histories. As argued before, this implies losses for at least one active firm in

Γ(s̃1). Then, for each s̃1 ∈ Ŝ1, let π(s̃1) be the (negative) profits of the active firm with the largest

losses in Γ(s̃1). We are going to show that there exists a value δ > 0 such that π(s̃1) ≤ −δ for all

s̃1 ∈ Ŝ1, i.e. these losses are strictly bounded away from zero across all the histories s̃1 ∈ Ŝ1.

Consider any s̃1 ∈ Ŝ1. By assumption, Πi(σ
2(s̃1)|s̃1) > 0, and the non-deviators j 6= i, j ∈ {1, 2}

choose σ2
j (s̃

1) = NW and earn Πj(σ
2(s̃1)|s̃1) = 0. Thus it must hold that VMW satisfies (5) with

slack and for at least one j 6= i, j ∈ {3, 4}, σ2
j (s̃

1) = NW and Πj(σ
2(s̃1)|s̃1) < 0 must hold. As

shown in the proof of Lemma 4, there are two cases in which this can happen. First, the deviator

i’s best contract for low risks in s̃1 could be (uMW
L,N , uMW

L,D ) and he does not offer a contract that

is chosen by high risks in the presence of (uMW
H , uMW

H ). Denote by Ŝ1
1 ⊂ Ŝ1 the set of deviation

histories with this property. Second, the deviator’s best contract for low risks could be strictly

preferred to (uMW
L,N , uMW

L,D ) by low risks. Let Ŝ1
2 ⊂ Ŝ1 be the set of histories in which this is the case.

Hence Ŝ1
1 and Ŝ1

2 form a partition of Ŝ1.

Consider first a history s̃1 ∈ Ŝ1
1. As we have shown in the proof of Lemma 4, the profits of an

active non-deviator j 6= i, j ∈ {3, 4} are then either β1 or β2, depending on whether one or both

of them are active non-deviators, with β1 < β2 < 0. Hence we know that π(s̃1) ≤ max{β1, β2} =
β2 < 0 for all s̃1 ∈ Ŝ1

1. Consider next a history s̃1 ∈ Ŝ1
2 after which active non-deviators j 6= i,

j ∈ {3, 4} obtain only high risks. They earn πH(uMW
H , uMW

H ) < 0 with each unit of high risks

agents that they obtain. Given that all high risks spread equally among at most three (and thus

finitely many) firms, the losses π(s̃1) are strictly bounded away from zero across all s̃1 ∈ Ŝ1
2, i.e.

there exists a value β3 < 0 such that π(s̃1) ≤ β3 for all s̃1 ∈ Ŝ1
2.

Putting the previous results together, we obtain that π(s̃1) ≤ −δ := max{β2, β3} < 0 for all

s̃1 ∈ Ŝ1, i.e. whenever the outcome after a profitable deviation violates (4), a firm earns losses

larger or equal to δ in the corresponding stage 2 Nash equilibrium. But this is a contradiction if

0 ≤ δ < δ, because the firm would strictly prefer to withdraw, which implies our claim.

Hence if withdrawal costs are sufficiently small, the outcome after any profitable deviation

must satisfy the constraints of MW. We next show that the outcome cannot be a solution to MW.

Lemma 6. If 0 ≤ δ < δ, it holds that Ṽ(s̃1) 6= VMW for all s̃1 ∈ S̃1.

Proof. Assume to the contrary Ṽ(s̃1) = VMW for some s̃1 ∈ S̃1. If Πi(σ
2(s̃1)|s̃1) > 0, it must be true

that VMW satisfies (5) with slack, the deviator i has offered (uMW
L,N , uMW

L,D ) but no contract chosen by
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high risks in the presence of (uMW
H , uMW

H ), and σ2
j (s̃

1) = NW for at least one j 6= i, j ∈ {3, 4}. But

then Πj(σ
2(s̃1)|s̃1) ≤ −δ, as shown in the proof of Lemma 5, which cannot occur in equilibrium if

δ < δ.

We thus know that, if 0 ≤ δ < δ, after any profitable deviation history s̃1 ∈ S̃1 the outcome

Ṽ(s̃1) in Γ(s̃1) under σ2(s̃1) must satisfy the constraints of MW but is not a solution to MW. Hence

low risks are strictly worse off in Ṽ(s̃1) than in VMW , which requires that σ2
j (s̃

1) = W ∀j 6= i,
j ∈ {3, 4}. But if some firm j 6= i, j ∈ {3, 4} remained active instead, it would earn non-negative

profits Πj(NW, σ2
−j(s̃

1)|s̃1) ≥ 0. First, it would always obtain the low risks. Then, even if it

obtained all high risks (in contract (uMW
H , uMW

H )), this ensures Πj(NW, σ2
−j(s̃

1)|s̃1) ≥ 0. Hence

remaining active is a best response (even unique if δ > 0), contradicting that σ2
j (s̃

1) = W, by

construction of σ2(s̃1). This final contradiction shows that there cannot be profitable deviations if

0 ≤ δ < δ.
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