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1 Introduction

Not everyone can purchase insurance. Across a wide set of non-group insurance markets,
companies choose to not sell insurance to potential customers with certain observable,
often high-risk, characteristics. In the non-group health insurance market, 1 in 7 applica-
tions to the four largest insurance companies in the US were rejected between 2007 and
2009, a figure that excludes those who would be rejected but were deterred from even
applying.1 In US long-term care insurance, 12-23% of 65 year olds have health condi-
tions that would preclude them from being able to purchase insurance (Murtaugh et al.
[1995]).2

It is surprising that a company would choose to not offer its products to a certain
subpopulation. Although the rejected generally have higher expected expenditures, they
still face unrealized risk.3 Regulation does not generally prevent risk-adjusted pricing in
these markets.4 So why not simply offer them a higher price?

In this paper, I argue that private information, held by the potential applicant pool,
explains rejections. In particular, I provide empirical evidence in three insurance market
settings that those who have observable conditions that prevent them from being able
to purchase insurance also have additional knowledge about their risk beyond what is
captured by their observable characteristics. To develop some intuition for this finding,
consider the risk of going to a nursing home, one of the three settings that will be studied in
this paper. Someone who has had a stroke, which renders them ineligible to purchase long-
term care (LTC) insurance, may know not only her personal medical information (which
is largely observable to an insurer), but also many specific factors and preferences that are
derivatives of her health condition and affect her likelihood of entering a nursing home.
These could be whether her kids will take care of her in her condition, her willingness to
engage in physical therapy or other treatments that would prevent nursing home entry, or
her desire to live independently with the condition as opposed to seek the aid of a nursing
home. Such factors and preferences affect the cost of insuring nursing home expenses, but

1Figures obtained through a formal congressional investigation by the Committee on Energy and
Commerce, which requested and received this information from Aetna, Humana, UnitedHealth Group,
and WellPoint. Congressional report was released on October 12, 2010. The 1 in 7 figure does not
subtract duplicate applications if people applied to more than 1 of these 4 firms.

2Appendix F presents the rejection conditions from Genworth Financial (one of the largest US LTC
insurers), gathered from their underwriting guidelines provided to insurance agents for use in screening
applicants.

3For example, in long-term care I will show that those who would be rejected have an average five-year
nursing home entry rate of less than 25%.

4The Civil Rights Act is a singular exception as it prevents purely race-based pricing.
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are often difficult an insurance company to obtain and verify. This paper will argue that,
because of the private information held by those with rejection conditions, if an insurer
were to offer contracts to these individuals, they would be so heavily adversely selected
that it wouldn’t deliver positive profits, at any price.

To make this argument formally, I begin with a theory of how private information
could lead to rejections. The setting is the familiar binary loss environment introduced
by Rothschild and Stiglitz [1976], generalized to incorporate an arbitrary distribution of
privately informed types. In this environment, I ask under what conditions can anyone
obtain insurance against the loss. I derive new a "no-trade" condition characterizing
when insurance companies would be unwilling to sell insurance on terms that anyone
would accept. This condition has an unraveling intuition similar to the one introduced in
Akerlof [1970]. The market unravels when the willingness to pay for a small amount of
insurance is less than the pooled cost of providing this insurance to those of equal or higher
risk. When this no-trade condition holds, an insurance company cannot offer any contract,
or menu of contracts, because they would attract an adversely selected subpopulation that
would make them unprofitable. Thus, the theory explains rejections as market segments
(segmented by observable characteristics) in which the no-trade condition holds.

I then use the no-trade condition to identify properties of type distributions that
are more likely to lead to no trade. This provides a vocabulary for quantifying private
information. In particular, I characterize the barrier to trade imposed by a distribution
of types in terms of the implicit tax rate, or markup, individuals would have to be willing
to pay on insurance premiums in order for the market to exist. The comparative statics
of the theory suggests the implicit tax rates should be higher for the rejectees relative to
non-rejectees and high enough for the rejectees to explain an absence of trade for plausible
values of the willingness to pay for insurance.

I then develop a new empirical methodology to test the predictions of theory. I use
information contained in subjective probability elicitations5 to infer properties of the
distribution of private information. I do not assume individuals can necessarily report
their true beliefs. Rather, I use information in the joint distribution of elicitations and
the realized events corresponding to these elicitations to deal with potential errors in
elicitations.

I proceed with two complementary empirical approaches. First, I estimate the explana-
tory power of the subjective probabilities on the subsequent realized event, conditional on

5A subjective probability elicitation about a given event is a question: “What is the chance (0-100%)
that [event] will occur?”.
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public information. I show that measures of their predictive power provide nonparametric
lower bounds on theoretical metrics of the magnitude of private information. In partic-
ular, whether the elicitations are predictive at all provides a simple test for the presence
of private information. I also provide a test in the spirit of the comparative static of the
theory that asks whether those who would be rejected are better able to predict their
realized loss.

Second, I estimate the distribution of beliefs by parameterizing the distribution of
elicitations given true beliefs (i.e. on the distribution of measurement error). I then
quantify the implicit tax individuals would need to be willing to pay in order for an
insurance company to be able to profitably sell insurance against the corresponding loss.
I then ask whether it is larger for those who would be rejected relative to those who are
served by the market and whether it is large (small) enough to explain (the absence of)
rejections for plausible values of agents’ willingness to pay for insurance.

I apply this approach to three non-group markets: long-term care (LTC), disability,
and life insurance. I combine two sources of data. First, I use data from the Health and
Retirement Study, which elicits subjective probabilities corresponding to losses insured in
each of these three settings and contains a rich set of observable demographic and health
information. Second, I construct and merge a classification of those who would be rejected
(henceforth “rejectees”6) in each market from a detailed review of underwriting guidelines
from major insurance companies.

Across all three market settings and a wide set of specifications, I find significant
amounts of private information held by the rejectees: the subjective probabilities are
predictive of the realized loss conditional on observable characteristics. Moreover, I find
that they are more predictive for the rejectees than for the non-rejectees; indeed, once
I control for observable characteristics used by insurance companies to price insurance,
I cannot reject the null hypothesis of no private information where the market exists in
any of the three markets I consider. Quantifying the amount of private information in
each market, I estimate rejectees would need to be willing to pay an implicit tax of 80%
in LTC, 42% in Life, and 66% in Disability insurance in order for a market to exist. In
contrast, I estimate smaller implicit taxes for the non-rejectees that are not statistically
different from zero in any of the three market settings.

Finally, not only do the results explain rejections in these three non-group markets,
but the pattern of private information about mortality can also explain the lack of rejec-

6Throughout, I focus on those who “would be rejected”, which corresponds to those whose choice set
excludes insurance, not necessarily the same as those who actually apply and are rejected.
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tions in annuity markets. While some individuals are informed about being a relatively
high mortality risk, very few are exceptionally informed about having exceptionally low
mortality risk. Thus, the population of healthy individuals can obtain annuities without
a significant number of even lower mortality risks adversely selecting their contract.

This paper is related to several distinct literatures. On the theoretical dimension, it
is, to my knowledge, the first paper to show that private information can eliminate all
gains to trade in an insurance market with an endogenous set of contracts. While no
trade can occur in the Akerlof [1970] lemons model, this model exogenously restricts the
set of tradable contracts, which is unappealing in the context of insurance since insurers
generally offer a menu of premiums and deductibles. Consequently, this paper is more
closely related to the large screening literature using the binary loss environment initially
proposed in Rothschild and Stiglitz [1976]. While the Akerlof lemons model restricts the
set of tradable contracts, this literature generally restricts the distribution of types (e.g.
“two types” or a bounded support) and generally argues that trade will always occur
(Riley [1979]; Chade and Schlee [2011]). But by considering an arbitrary distribution of
types, I show this not to be the case. Indeed, not only is no-trade theoretically possible;
I argue it is the outcome in significant segments of three major insurance markets.

Empirically, this paper is related to a recent and growing literature on testing for the
existence and consequences of private information in insurance markets (Chiappori and
Salanié [2000]; Chiappori et al. [2006]; Finkelstein and Poterba [2002, 2004]; see Einav
et al. [2010a] and Cohen and Siegelman [2010] for a review). This literature focuses on
the revealed preference implications of private information by looking for a correlation
between insurance purchase and subsequent claims. While this approach can potentially
identify private information amongst those served by the market, my approach can study
private information for the entire population, including rejectees. Thus, my results provide
a new explanation for why previous studies have not found evidence of significant adverse
selection in life insurance (Cawley and Philipson [1999]) or LTC insurance (Finkelstein
and McGarry [2006]). The most salient impact of private information may not be the
adverse selection of existing contracts but rather the existence of the insurance market.

Finally, this paper is related to the broader literature on the workings of markets
under uncertainty and private information. While many theories have pointed to potential
problems posed by private information, this paper presents, to the best of my knowledge,
the first direct empirical evidence that private information leads to a complete absence of
trade.

The rest of this paper proceeds as follows. Section 2 presents the theory and the
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no-trade result. Section 3 presents the comparative statics and testable predictions of the
model. Section 4 outlines the empirical methodology. Section 5 presents the three market
settings and the data. Section 6 presents the empirical specification and results for the
nonparametric lower bounds. Section 7 presents the empirical specification and results
for the estimation of the implicit tax imposed by private information. Section 8 places
the results in the context of existing literature and discusses directions for future work.
Section 9 concludes. To keep the main text to a reasonable length, the theoretical proofs
and empirical estimation details are deferred to the Online Appendix accompanying this
paper.

2 Theory

This section develops a model of private information. The primary result (Theorem 1)
is a no-trade condition which provides a theory of how private information can cause
insurance companies to not offer any contracts.

2.1 Environment

There exists a unit mass of agents endowed with non-stochastic wealth w > 0. All agents
face a potential loss of size l > 0 that occurs with privately known probability p, which is
distributed with c.d.f. F (p|X) in the population, where X is the observable information
insurers could use to price insurance (e.g. age, gender, observable health conditions,
etc.). For the theoretical section, it will suffice to condition on a particular value for the
observable characteristics, X = x, and let F (p) = F (p|X = x) denote the distribution of
types conditional on this value. I impose no restrictions on F (p); it may be a continuous,
discrete, or mixed distribution, and have full or partial support, denoted by Ψ ⊂ [0, 1].7

Throughout the paper, an uppercase P will denote the random variable representing a
random draw from the population (with c.d.f. F (p)); a lowercase p denote a specific
agent’s probability (i.e. their realization of P ).

Agents have a standard Von-Neumann Morgenstern preferences u (c) with expected
7By choosing particular distributions F (p), the environment nests type spaces used in many previous

models of insurance. For example, Ψ = {pL, pH} yields the classic two-type model considered initially by
Rothschild and Stiglitz [1976] and subsequently analyzed by many others. Assuming F (p) is continuous
with Ψ = [a, b] ⊂ (0, 1), one obtains an environment similar to Riley [1979]. Chade and Schlee [2011]
provide arguably the most general treatment to-date of this environment in the existing literature by
considering a monopolists problem with an arbitrary F with bounded support Ψ ⊂ [a, b] ⊂ (0, 1).
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utility given by
pu (cL) + (1− p)u (cNL)

where cL (cNL) is the consumption in the event of a loss (no loss). I assume u (c) is
twice continuously differentiable, with u′ (c) > 0 and u′′ (c) < 0. An allocation A =

{cL (p) , cNL (p)}p∈Ψ consists of consumption in the event of a loss, cL (p), and in the event
of no loss, cNL (p) for each type p ∈ Ψ.

2.2 Implementable Allocations

Under what conditions can anyone obtain insurance against the occurrence of the loss?
To ask this question in a general manner, I consider the set of implementable allocations.

Definition 1. An allocation A = {cL (p) , cNL (p)}p∈Ψ is implementable if

1. A is resource feasible:
ˆ

[w − pl − pcL (p)− (1− p) cNL (p)] dF (p) ≥ 0

2. A is incentive compatible:

pu (cL (p)) + (1− p)u (cNL (p)) ≥ pu (cL (p̃)) + (1− p)u (cNL (p̃)) ∀p, p̃ ∈ Ψ

3. A is individually rational:

pu (cL (p)) + (1− p)u (cNL (p)) ≥ pu (w − l) + (1− p)u (w) ∀p ∈ Ψ

It is easy to verify that these constraints must be satisfied in most, if not all, institutional
environments such as competition or monopoly. Therefore, to ask when agents can ob-
tain any insurance, it suffices to ask when the endowment, {(w − l, w)}p∈Ψ, is the only
implementable allocation.8

2.3 The No-Trade condition

The key friction in this environment is that if a type p prefers an insurance contract
relative to her endowment, then the pool of risks P ≥ p will also prefer this insurance

8Focusing on implementable allocations, as opposed to explicitly modeling the market structure, also
circumvents problems arising from the potential non-existence of competitive Nash equilibriums, as high-
lighted in Rothschild and Stiglitz [1976].
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contract relative to their endowment. Theorem 1 says that unless some type is willing
to pay this pooled cost of worse risks in order to obtain some insurance, there can be
no trade. Any insurance contract, or menu of insurance contracts, would be so adversely
selected that it would not yield a positive profit.

Theorem 1. (No Trade). The endowment, {(w − l, w)}, is the only implementable allo-
cation if and only if

p

1− p
u′ (w − l)
u′ (w)

≤ E [P |P ≥ p]

1− E [P |P ≥ p]
∀p ∈ Ψ\ {1} (1)

where Ψ\ {1} denotes the support of P excluding the point p = 1.
Conversely, if (1) does not hold, then there exists an implementable allocation which

strictly satisfies resource feasibility and individual rationality for a positive mass of types.

Proof. See Appendix A.19

The left-hand side of equation (1), p
1−p

u′(w−l)
u′(w)

is the marginal rate of substitution
between consumption in the event of no loss and consumption in the event of a loss,
evaluated at the endowment, (w − l, w). It is a type p agent’s willingness to pay for an
infinitesimal transfer of consumption to the event of a loss from the event of no loss. The
actuarially fair cost of this transfer to a type p agent is p

1−p . However, if the worse risks
P ≥ p also select this contract, the cost of this transfer would be E[P |P≥p]

1−E[P |P≥p] , which is the
right hand side of equation (1). The theorem shows that if no agent is willing to pay this
pooled cost of worse risks, the endowment is the only implementable allocation.

Conversely, if equation (1) does not hold, there exists an implementable allocation
which does not totally exhaust resources and provides strictly higher utility than the
endowment for a positive mass of types. So, a monopolist insurer could earn positive
profits by selling insurance.10 In this sense, the no-trade condition (1) characterizes when
one would expect trade to occur.11

9While Theorem 1 is straightforward, its proof is less trivial because one must show that Condition 1
rules out not only single contracts but also any menu of contracts in which different types may receive
different consumption bundles.

10Also, one can show that a competitive equilibrium, as defined in Miyazaki [1977] and Spence [1978]
can be constructed for an arbitrary type distribution F (p) and would yield trade (result available from
the author upon request).

11It is easily verified that the no-trade condition can hold for common distributions. For example, if
F (p) is uniform on [0, 1], then E [P |P ≥ p] = 1+p

2 so that the no trade condition reduces to u′(w−l)
u′(w) ≤ 2.

Unless individuals are willing to pay a 100% tax for insurance, there can be no trade when F (p) is
uniform over [0, 1].
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The no-trade condition has an unraveling intuition similar to that of Akerlof [1970].
His model considers a given contract and shows that it will not be traded when its demand
curve lies everywhere below its average cost curve, where the cost curve is a function of
those who demand it. My model is different in the following sense: while Akerlof [1970]
derives conditions under which a given contract would unravel and result in no trade, my
model provides conditions under which any contract or menu of contracts would unravel.12

This distinction is important since previous literature has argued that trade must
always occur in similar environments with no restrictions on the contract space so that
firms can offer varying premium and deductible menus (Riley [1979]; Chade and Schlee
[2011]). The key difference in my environment is that I do not assume types are bounded
away from p = 1.13 To see why this matters, recall that the key friction that can generate
no trade is the unwillingness of any type to pay the pooled cost of worse risks. This
naturally requires the perpetual existence of worse risks. Otherwise the highest risk type,
say p̄ = sup Ψ, would be able to obtain an actuarially fair full insurance allocation,
cL (p̄) = cNL (p̄) = w − p̄l, which would not violate the incentive constraints of any other
type. Therefore, the no trade requires some risks be arbitrarily close to p = 1.

Corollary 1. Suppose condition (1) holds. Then F (p) < 1 ∀p < 1.

Corollary 1 highlights why previous theoretical papers have not found outcomes of
no trade in the binary loss environment with no restrictions on the contract space; they
assume sup Ψ < 1.

The presence of risks near p = 1 make the provision of insurance more difficult because
it increases the values of E [P |P ≥ p] at interior values of p. However, the need for P to
have full support near 1 is not a very robust requirement for no trade. In reality, the cost
of setting up a contract is nonzero, so that insurance companies cannot offer an infinite
set of contracts. Remark 1 shows that if each allocation other than the endowment must
attract a non-trivial fraction of types, then risks arbitrarily close to 1 are not required for
no trade.

Remark 1. Suppose each consumption bundle (cL, cNL) other than the endowment must
attract a non-trivial fraction α > 0 of types. More precisely, suppose allocations A =

12This is also a difference between my approach and the literature on extreme adverse selection in
finance contexts that exogenously restrict the set of tradable assets. Mailath and Noldeke [2008] provide
a condition, with similar intuition to the unraveling condition in Akerlof [1970], under which a given asset
cannot trade in any nonzero quantity. However, it is easy to verify in their environment that derivatives
of the asset could always be traded, even when their no trade condition holds. In contrast, by focusing
on the set of implementable allocations, my approach rules out the nonzero trading of any asset derived
from the loss.

13Both Riley [1979] and Chade and Schlee [2011] assume sup Ψ < 1.
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{cL (p) , cNL (p)}p must have the property that for all q ∈ Ψ,

µ ({p| (cL (p) , cNL (p)) = (cL (q) , cNL (q))}) ≥ α

where µ is the measure defined by F (p). Then, the endowment is the only implementable
allocation if and only if

p

1− p
u′ (w − l)
u′ (w)

≤ E [P |P ≥ p]

1− E [P |P ≥ p]
∀p ∈ Ψ̂1−α (2)

where Ψ̂1−α = [0, F−1 (1− α)] ∩ (Ψ\ {1}).14 Therefore, the no-trade condition need only
hold for values p < F−1 (1− α).

For any α > 0, it is easy to verify that the no trade condition not only does not require
types near p = 1, but it actually imposes no constraints on the upper range of the support
of P .15 In this sense, the requirement of risks arbitrarily close to p = 1 is a theoretical
requirement in a world with no other frictions, but not an empirically relevant condition
if one believes insurance companies cannot offer contracts that attract an infinitesimal
fraction of the population. Going forward, I retain the benchmark assumption of no
such frictions or transactions costs, but return to this discussion in the empirical work in
Section 7.

In sum, the no-trade condition (1) provides a theory of rejections: individuals with
observable characteristics, X, such that the no-trade condition (1) holds are rejected;
individuals with observable characteristics, X, such that (1) does not hold are able to
purchase insurance. This is the theory of rejections the remainder of this paper will seek
to test.

3 Comparative Statics and Testable Predictions

In order to generate testable implications of this theory of rejections, this section derives
properties of distributions, F (p), which are more likely to lead to no trade. I provide two
such metrics that will be used in the subsequent empirical analysis.

14If F−1 (1− α) is a set, I take F−1(1− α) to be the supremum of this set
15More precisely, for any α > 0 and γ ∈ (0, 1], there exists u (·) and F (p) such that F (γ) = 1 and the

no trade condition in equation(2) holds.
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3.1 Two Measures of Private Information

To begin, multiply the no-trade condition (1) by 1−p
p

yielding,

u′ (w − l)
u′ (w)

≤ E [P |P ≥ p]

1− E [P |P ≥ p]

1− p
p

∀p ∈ Ψ\ {1}

The left-hand side is the ratio of marginal utilities in the loss versus no loss state, evaluated
at the endowment. The right-hand side is independent of the utility function, u, and is
the markup that would be imposed on type p if she had to cover the cost of worse risks,
P ≥ p. I define this term the pooled price ratio.

Definition 2. For any p ∈ Ψ\ {1}, the pooled price ratio at p, T (p), is given by

T (p) =
E [P |P ≥ p]

1− E [P |P ≥ p]

1− p
p

(3)

Given T (p), the no-trade condition has a succinct expression.

Corollary 2. (Quantification of the barrier to trade) The no-trade condition holds if and
only if

u′ (w − l)
u′ (w)

≤ inf
p∈Ψ\{1}

T (p) (4)

Whether or not there can be trade depends on only two numbers: the agent’s under-
lying valuation of insurance, u′(w−l)

u′(w)
, and the cheapest cost of providing an infinitesimal

amount of insurance, infp∈Ψ\{1} T (p). I call infp∈Ψ\{1} T (p) the minimum pooled price
ratio.

The minimum pooled price ratio has a simple tax rate interpretation. Suppose for a
moment that there were no private information but instead a government levies a sales tax
of rate t on insurance premiums in a competitive insurance market. The value u′(w−l)

u′(w)
−1 is

the highest such tax rate an individual would be willing to pay to purchase any insurance.
Thus, infp∈Ψ\{1} T (p)− 1 is the implicit tax rate imposed by private information. Given
any distribution of risks, F (p), it quantifies the implicit tax individuals would need to be
willing to pay so that a market could exist.

Equation (4) leads to a simple comparative static.

Corollary 3. (Comparative static in the minimum pooled price ratio) Consider two mar-
ket segments, 1 and 2, with pooled price ratios T1 (p) and T2 (p) and common vNM pref-
erences u. Suppose

inf
p∈Ψ\{1}

T1 (p) ≤ inf
p∈Ψ\{1}

T2 (p)

11



then if the no-trade condition holds in segment 1, it must also hold in segment 2.

Higher values of the minimum pooled price ratio are more likely to lead to no trade.
Because the minimum pooled price ratio characterizes the barrier to trade imposed by
private information, Corollary 3 is the key comparative static on the distribution of private
information provided by the theory.

In addition to the minimum pooled price ratio, it will also be helpful to have another
metric to guide portions of the empirical analysis.

Definition 3. For any p ∈ Ψ, define the magnitude of private information at p by
m (p), given by

m (p) = E [P |P ≥ p]− p (5)

The value m (p) is the difference between p and the average probability of everyone
worse than p. Note that m (p) ∈ [0, 1] and m (p) + p = E [P |P ≥ p]. The following
comparative static follows directly from the no-trade condition (1).

Corollary 4. (Comparative static in the magnitude of private information) Consider two
market segments, 1 and 2, with magnitudes of private information m1 (p) and m2 (p) and
common support Ψ and common vNM preferences u. Suppose

m1 (p) ≤ m2 (p) ∀p ∈ Ψ

Then if the no-trade condition holds in segment 1, it must also hold in segment 2.

Higher values of the magnitude of private information are more likely to lead to no
trade. Notice that the values ofm (p) must be ordered for all p ∈ Ψ; in this sense Corollary
4 is a less precise comparative static than Corollary 3.

3.2 Testable Hypotheses

The goal of the rest of the paper is to test whether the no-trade condition (1) can explain
rejections by estimating properties of the distribution of private information, F (p|X), for
rejectees and non-rejectees. Assuming for the moment that F (p|X) is observable to the
econometrician, the ideal tests are as follows. First, do rejectees have private information
(i.e. is F (p|X) a non-trivial distribution for the rejectees)? Second, do they have more
private information than the non-rejectees, as suggested by the comparative statics in
Corollaries 3 and 4? Finally, is the quantity of private information, as measured by the
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minimum pooled price ratio, is large (small) enough to explain (the absence of) rejections
for plausible values of agents’ willingness to pay, u

′(w−l)
u′(w)

, as suggested by Corollary 2?
Note that these tests do not involve on any observation of adverse selection (i.e. a

correlation between insurance purchases and realized losses). Instead, these ideal tests
simulate the extent to which private information would afflict a hypothetical insurance
market that pays $1 in the event that the loss occurs and prices policies using the observ-
able characteristics, X.

To implement these tests, one must estimate properties of the distribution of private
information, F (p|X), to which I now turn.

4 Empirical Methodology

I develop an empirical methodology to study private information and operationalize the
tests in Section 3.2. I rely primarily on four pieces of data. First, let L denote an event
(e.g. dying in the next 10 years) that is commonly insured in some insurance market (e.g.
life insurance).16 Second, let Z denote an individual’s subjective probability elicitation
about event L (i.e. Z is a response to the question: “What is the chance (0-100%) that
L will occur?”). Third, let X continue to denote the set of public information insurance
companies would use to price insurance against the event L. Finally, let ΘReject and
ΘNoReject partition the space of values of X into those for whom an insurance company
does and does not offer insurance contracts that provide payment if L occurs (e.g. if L
is the event of dying in the next 10 years, ΘReject would be the values of observables, X,
that render someone ineligible to purchase life insurance).

The premise underlying the approach is that the elicitations, Z, are non-verifiable to
an insurance company. Therefore, they can be excluded from the set of public information
insurance companies would use to price insurance, X, and used to infer properties of the
distribution of private information.

I maintain the implicit assumption in Section 2 that individuals behave as if they have
true beliefs, P , about the occurrence of the loss, L.17 But there are many reasons to
expect individuals not to report exactly these beliefs on surveys.18 Therefore, I do not

16To condense notation, L will denote both a probabilistic event and also the binary random variable
equal to 1 if the event occurs and 0 if the event does not occur (i.e. Pr {L} = Pr {L = 1} = E [L]).

17The approach therefore follows the view of personal probability expressed in the seminal work of
Savage [1954]. The existence of beliefs P are guaranteed as long as people would behave consistently (in
the sense of Savage’s axioms) in response to gambles over L.

18For example, they may not have the training to know how to answer probabilistic questions; they
may intentionally lie to the surveyor; or they may simply be lazy in thinking about their response.
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assume Z = P . Instead, I use information contained in the joint distribution of Z and
L (that are observed) to infer properties about the distribution of P (that is not directly
observed).

I conduct two complementary empirical approaches. Under relatively weak assump-
tions rooted in economic rationality, I provide a test for the presence of private informa-
tion and a nonparametric lower bound on the average magnitude of private information,
E [m (P )]. Loosely, this approach asks how predictive the elicitations are of the loss L,
conditional on observable information, X. Second, I use slightly stronger structural as-
sumptions to estimate the distribution of beliefs, F (p|X), and the minimum pooled price
ratio. I then test whether it is larger for the rejectees and large (small) enough to explain
a complete absence of trade for plausible values of u′(w−l)

u′(w)
, as suggested by Corollary 2.

In this section, I introduce these empirical approaches in the abstract. I defer a
discussion of the empirical specification and statistical inference in my particular settings
to Sections 6 and 7, after discussing the data and settings in Section 5.

4.1 Nonparametric Lower Bounds

Instead of assuming people necessarily report their true beliefs, I begin with the weaker
assumption that people cannot report more information than what they know.

Assumption 1. Z contains no additional information than P about the loss L, so that

Pr {L|X,P, Z} = Pr {L|X,P}

This assumption states that if the econometrician were trying to forecast whether or
not an agents’ loss would occur and knew both the observable characteristics, X and the
agents true beliefs, P , the econometrician could not improve the forecast of L by also
knowing the elicitation, Z. All of the predictive power that Z has about L must come
from agents’ beliefs, P .19 Proposition 1 follows.

Proposition 1. Suppose Pr {L|X,Z} 6= Pr {L|X} for a positive mass of realizations of
Z. Then, Pr {L|X,P} 6= Pr {L|X} for a positive mass of realizations of P .

Indeed, existing research suggests the way in which the elicitation is conducted affects the reported belief
elicitation (Gigerenzer and Hoffrage [1995], Miller et al. [2008]), which suggests elicitations do not measure
true beliefs exactly. Previous literature has also argued that the elicitations in my settings should not be
viewed as true beliefs due to excess concentrations at 0, 50%, and 100% (Gan et al. [2005], Hurd [2009]).

19This assumption would be clearly implied in a model in which agents’ formed rational expectations
from an information set that included X and Z. In this case Pr {L|X,P,Z} = P . But, it also allows
agents’ beliefs to be biased, so that Pr {L|X,P,Z} = h (P ) where h is any function not dependent on Z.
In particular, h (P ) could be an S-shaped function as suggested by Kahneman and Tversky [1979].
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Proof. Assumption 1 implies E [Pr {L|X,P} |X,Z] = Pr {L|X,Z}.

Proposition 1 says that if Z has predictive information about L conditional on X, then
agents’ true beliefs P has predictive information about L conditional on X – i.e. agents
have private information. This motivates my test for the presence of private information:

Test 1. (Presence of Private Information) Are the elicitations, Z, predictive of the loss, L,
conditional on observable information, X?

Although this test establishes the presence of private information, it does not provide
a method of asking whether one group has more private information than another. In-
tuitively, the predictiveness of Z should be informative of how much private information
people have. Such a relationship can be established with an additional assumption about
how realizations of L relate to beliefs, P .

Assumption 2. Beliefs P are unbiased: Pr {L|X,P} = P

Assumption 2 states that if the econometrician could hypothetically identify an indi-
vidual with beliefs P , then the probability that the loss occurs equals P . As an empirical
assumption, it is strong, but commonly made in existing literature (e.g. Einav et al.
[2010b]); indeed, it provides perhaps the simplest link between the realized loss L and
beliefs, P .20

Under Assumptions 1 and 2, the predictiveness of the elicitations form a distributional
lower bound on the distribution of P . To see this, define PZ to be the predicted value of
L given the variables X and Z,

PZ = Pr {L|X,Z}

Under Assumptions 1 and 2, it is easy to verify (see Appendix B) that

PZ = E [P |X,Z]

so that the true beliefs, P , are a mean-preserving spread of the distribution of predicted
values, PZ . In this sense, the true beliefs are more predictive of the realized loss than are
the elicitations.

This motivates my first test of whether rejectees have more private information than
non-rejectees. I plot the distribution of predicted values, PZ , separately for rejectees (X ∈

20Assumptions 1 and 2 are jointly implied by rational expectations in a model in which agents know
both X and Z in formulating their beliefs P . In this case, my approach views Z as a “garbling” of the
agent’s true beliefs in the sense of Blackwell ([1951], [1953]).
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ΘReject) and non-rejectees
(
X ∈ ΘNoReject

)
. I then assess whether it is more dispersed for

the rejectees.
In addition to visual inspection of PZ , one can also construct a dispersion metric

derived from the comparative statics of the theory. Recall from Corollary 4 that higher
values of the magnitude of private information, m (p), are more likely to lead to no trade.
Consider the average magnitude of private information, E [m (P ) |X]. This is a non-
negative measure of the dispersion of the population distribution of P . If an individual
were drawn at random from the population, one would expect the risks higher than him
to have an average loss probability that is E [m (P ) |X] higher.

Although P is not observed, I construct the analogue using the PZ distribution. First,
I construct mZ (p) as the difference between p and the average predicted probability, PZ ,
of those with predicted probabilities higher than p.

mZ (p) = EZ|X [PZ |PZ ≥ p,X]− p

The Z|X subscript highlights that I am integrating over realizations of Z conditional
on X. Then I construct the average magnitude of private information implied by Z

in segment X, E [mZ (PZ) |X]. This is the average difference in segment X between
an individual’s predicted loss, and the predicted losses of those with higher predicted
probabilities. Proposition follows from Assumption 1 and 2.

Proposition 2. (Lower Bound) E [mZ (PZ) |X] ≤ E [m (P ) |X]

Proof. See Appendix B.

Proposition 2 states that the average magnitude of private information implied by Z
is a lower bound on the true average magnitude of private information. Therefore, using
only Assumptions 1 and 2, one can provide a lower bound to the answer to the question:
if an individual is drawn at random, on average how much worse are the higher risks?

Given this theoretical measure of dispersion, E [mZ (PZ) |X], I conduct a test in the
spirit of the comparative statics given by Corollary 4. I test whether rejectees have higher
values of E [mZ (PZ) |X]:

∆Z = E
[
mZ (PZ) |X ∈ ΘReject

]
− E

[
mZ (PZ) |X ∈ ΘNoReject

]
>? 0 (6)

Stated loosely, equation (6) asks whether the subjective probabilities of the rejectees better
explain the realized losses than the non-rejectees, where “better explain” is measured
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using the dispersion metric, E [mZ (PZ) |X]. I now summarize the tests for more private
information for the rejectees relative to the non-rejectees.

Test 2. (More Private Information for Rejectees) Are the elicitations, Z, more predictive of L
for the rejectees: (a) is PZ more dispersed for rejectees and (b) Is ∆Z > 0?

Discussion In sum, I conduct two sets of tests motivated by Assumptions 1 and 2.
First, I ask whether the elicitations are predictive of the realized loss conditional on X

(Test 1); this provides a test for the presence of private information as long as people
cannot unknowingly predict their future loss (Assumption 1). Second, I ask whether the
elicitations are more predictive for rejectees relative to non-rejectees (Test 2). To do so,
I analyze whether the predicted values, PZ , are more dispersed for rejectees relative to
non-rejectees. In addition to assessing this visually, I collapse these predicted values into
the average magnitude of private information implied by Z, E [mZ (PZ)] and ask whether
it is larger for those who would be rejected relative to those who can purchase insurance
(Equation 6).

The approach is nonparametric in the sense that I have made no restrictions on how
the elicitations Z relate to the true beliefs P . For example, PZ and mZ (p) are invariant
to one-to-one transformations in Z: PZ = Ph(Z) and mZ (p) = mh(Z) (p) for any one-
to-one function h. Thus, I do not require that Z be a probability or have any cardinal
interpretation. Respondents could all change their elicitations to 1 − Z or 100Z; this
would not change the value of PZ or E [mZ (PZ) |X].21

But while the lower bound approach relies on only minimal assumptions on how sub-
jective probabilities relate to true beliefs, the resulting empirical test in equation (6) suffers
several significant limitations as a test of the theory that private information causes insur-
ance rejections. First, comparisons of lower bounds of E [m (P ) |X] across segments do not
necessarily imply comparisons of its true magnitude. Second, orderings of E [m (P ) |X]

does not imply orderings of m (p) for all p, which was the statement of the comparative
static in m (p) in Corollary 4. Finally, in addition to having limitations as a test of the
comparative static, this approach cannot quantify the minimum pooled price ratio. These
shortcomings motivate a complementary empirical approach, which imposes structure on
the relationship between Z and P and estimates of the distribution of private information,

21In principle, Z need not even be a number. Some individuals could respond to the elicitation question
in a crazy manner by saying they like red cars, others that they like Buffy the Vampire Slayer. The
empirical approach would proceed to analyze whether a stated liking of red cars versus Buffy the Vampire
Slayer is predictive of L conditional on X. Of course, such elicited information may have low power for
identifying private information about L.
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F (p|X).

4.2 Estimation of the Distribution of Private Information

The second approach estimates the distribution of private information and the minimum
pooled price ratio. For expositional ease, fix an observable, X = x, and let fP (p) denote
the p.d.f. of the distribution of beliefs, P , givenX = x, which is assumed to be continuous.
For this approach, I expand the joint p.d.f./p.m.f. of the observed variables L and Z,
denoted fL,Z (L,Z) by integrating over the unobserved beliefs, P :

fL,Z (L,Z) =

ˆ 1

0

fL,Z (L,Z|P = p) fP (p) dp

=

ˆ 1

0

(Pr {L|Z, P = p})L (1− Pr {L|Z, P = p})1−L fZ|P (Z|P = p) fP (p) dp

=

ˆ 1

0

pL (1− p)1−L fZ|P (Z|P = p) fP (p) dp

where fZ|P (Z|P = p) is the distribution of elicitations given beliefs. The first equality
follows by taking the conditional expectation with respect to P . The second equality
follows by expanding the joint density of L and Z given P . The third equality follows
from Assumptions 1 and 2.

The goal of this approach is to specify a functional form for fZ|P , say fZ|P (Z|P ; θ),
and a flexible approximation for fP , say fP (p; ν), and estimate θ and ν using maximum
likelihood from the observed data on L and Z. To do so, one must impose sufficient
restrictions on fZ|P so that θ and ν are identified. Because the discussion of functional
form for fZ|P and its identification is more straightforward after discussing the data, I
defer a detailed discussion of my choice of specification and the details of identification
to Section 7.1. At a high level, identification of the elicitation error parameters, θ, comes
from the relationship between L and Z, and identification of the distribution of P is a
deconvolution of the distribution of Z, where θ contains the parameters governing the
deconvolution. Therefore, a key concern for identification is that the measurement error
parameters are well identified from the relationship between Z and L; I discuss how this
is the case in my particular specification in Section 7.1.22

With an estimate of fP , the pooled price ratio follows from the identity, T (p) =
E[P |P≥p]

1−E[P |P≥p]
1−p
p
. I then construct an estimate of its minimum, infp∈[0,1) T (p). Although T (p)

22Indeed, not all distributions fZ|P are identified from data on L and Z since, in general, fZ|P is an
arbitrary two-dimensional function whereas L is binary.
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can be calculated at each p using estimates of E [P |P ≥ p], as p increases, E [P |P ≥ p]

relies on a smaller and smaller effective sample size. Thus, the minimum of T (p) is not
well-identified over a domain including the uppermost points of the support of P . To
overcome this extreme quantile estimation problem, I construct the minimum of T (p)

over the restricted domain, Ψ̂τ =
[
0, F−1

P (τ)
]
∩ (Ψ\ {1}). For a fixed quantile, estimates

of the minimum pooled price ratio over Ψ̂τ are continuously differentiable functions of
the MLE parameter estimates of fP (p) for p ≤ F−1

P (τ).23 So, derived MLE estimates of
infp∈Ψ̂τ

T (p) are consistent and asymptotically normal, provided FP (p) is continuous.24

One can assess the robustness to the choice of τ , but the estimates will become unstable
as τ → 1.

While the motivation for restricting attention to Ψ̂τ as opposed to Ψ is primarily
because of statistical limitations, Remark 1 in Section 2.3 provides an economic rationale
for why infp∈Ψ̂τ

T (p) may not only be a suitable substitute for infp∈Ψ\{1} T (p) but also may
actually be more economically relevant. If contracts must attract a non-trivial fraction
1 − τ of the market in order to be viable, then infp∈Ψ̂τ

T (p) characterizes the barrier to
trade imposed by private information.

Given estimates of infp∈Ψ̂τ
T (p) for rejectees and non-rejectees, I test whether it is

larger (smaller) for the rejectees (Corollary 3) and whether it is large (small) enough to
explain a complete absence of (presence of) trade for plausible values of people’s willing-
ness to pay, u

′(w−l)
u′(w)

, as suggested by Corollary 2.

Test 3. (Quantification of Private Information) Is the minimum pooled price ratio larger for
the rejectees relative to the non-rejectees; and is it large enough (small enough) to explain an
absence of (presence of) trade for plausible values of agents’ willingness to pay?

5 Setting and Data

I ask whether private information can explain rejections in three non-group insurance
market settings: long-term care, disability, and life insurance.

23Non-differentiability could hypothetically occur at points where the infimum is attained at distinct
values of p.

24To see this, note if FP (p) is continuous then T (p) =
1−pFP (p)−

´ p
0
FP (p̂)dp̂

1−FP (p) , so that T (p) is continuous
in the estimated parameters of FP .
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5.1 Short Background on the Three Non-Group Market Set-

tings

Long-term care (LTC) insurance insures against the financial costs of nursing home use
and professional home care. Expenditures on LTC represent one of the largest uninsured
financial burdens facing the elderly with expenditures in the US totaling over $135B in
2004. Moreover, expenditures are heavily skewed: less than half of the population will
ever move to a nursing home (CBO [2004]). Despite this, the LTC insurance market is
small, with roughly 4% of all nursing home expenses paid by private insurance, compared
to 31% paid out-of-pocket (CBO [2004]).25

Private disability insurance protects against the lost income resulting from a work-
limiting disability. It is primarily sold through group settings, such as one’s employer;
more than 30% of non-government workers have group-based disability policies. In con-
trast, the non-group market is quite small. Only 3% of non-government workers own a
non-group disability policy, most of whom are self-employed or professionals who do not
have access to employer-based group policies (ACLI [2010]).26

Life insurance provides payments to ones’ heirs or estate upon death, insuring lost
income or other expenses. In contrast to the non-group disability and LTC markets, the
private non-group life insurance market is quite big. More than half of the adult US
population owns life insurance, 54% of which are sold in the non-group market.27

Previous Evidence of Private Information Previous research has found minimal
or no evidence of adverse selection in these three markets. In life insurance, Cawley
and Philipson [1999] find no evidence of adverse selection. He [2009] revisits this with a
different sample focusing on new purchasers and does find evidence of adverse selection
under some empirical specifications. In long-term care, Finkelstein and McGarry [2006]
find direct evidence of private information by showing subjective probability elicitations
are correlated with subsequent nursing home use. However, they find no evidence that
this private information leads to adverse selection: conditional on the observables used to
price insurance, those who buy LTC insurance are no more likely to go to a nursing home

25Medicaid pays for nursing home stays provided one’s assets are sufficiently low and is a substantial
payer of long-term stays.

26In contrast to health insurance where the group market faces significant tax advantages relative to
the non-group market, group disability policies are taxed. Either the premiums are paid with after-tax
income, or the benefits are taxed upon receipt.

27Life insurance policies either expire after a fixed length of time (term life) or cover one’s entire life
(whole life). Of the non-group policies in the US, 43% of these are term policies, while the remaining
57% are whole life policies (ACLI [2010]).
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than those who do not purchase LTC insurance.28 To my knowledge, there is no previous
study of private information in the non-group disability market.

5.2 Data

To implement the empirical approach in Section 4, the ideal dataset contains four pieces
of information for each setting:

1. Loss indicator, L, corresponding to a commonly insured loss in a market setting

2. Agents’ subjective probability elicitation, Z, about this loss

3. The set of public information, X, which would be observed by insurance companies
in the market to set contract terms

4. The classification, ΘReject and ΘNoReject, of who would be rejected if they applied
for insurance in the market setting

The data source for the loss, L, subjective probabilities, Z, and public information X,
come from years 1993-2008 of the Health and Retirement Study (HRS). The HRS is an
individual-level panel survey of older individuals (mostly over age 55) and their spouses.
It contains a rich set of health and demographic information. Moreover, it asks respon-
dents three subjective probability elicitations about future events that correspond to a
commonly insured loss in each of the three settings.

Long-Term Care: "What is the percent chance (0-100) that you will move to
a nursing home in the next five years?"

Disability: "[What is the percent chance] that your health will limit your work
activity during the next 10 years?"

Life: "What is the percent chance that you will live to be AGE or more?"
(where AGE∈ {75,80,85,90,95,100} is respondent-specific and chosen to be
10-15 years from the date of the interview)29

Figures 1(a,b,c) display histograms of these responses (divided by 100 to scale to [0, 1]).30

These histograms highlight one reason why it would be problematic to view these elic-
itations as true beliefs. As has been noted in previous literature using these subjective

28They suggest heterogeneous preferences, in which good risks also have a higher valuation of insurance,
can explain why private information doesn’t lead to adverse selection.

29I construct the corresponding elicitation to be Zdie = 100%−Zlive where Zlive is the survey elicitation
for the probability of living to AGE.

30The histograms use the sample selection described in Subsection (5.2.3)
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Figure 1: Subjective Probability Histograms

probabilities (Gan et al. [2005]; Finkelstein and McGarry [2006]), many respondents re-
port 0, 50, or 100. Taken literally, responses of 0 or 100 imply an infinite degree of
certainty. The lower bound approach remains agnostic on the way in which focal point
responses relate to true beliefs. The parametric approach will take explicit account of this
focal point response bias in the specification of fZ|P (Z|P ; θ), discussed further in Section
7.1.1.

Corresponding to each subjective probability elicitation, I construct binary indicators
of the loss, L. In long-term care, L denotes the event that the respondent enters a
nursing home in the subsequent 5 years.31 In disability, L denotes the event that the
respondent reports that their health limits their work activity in the subsequent 10-11

31Although the HRS surveys every two years, I use information from the 3rd subsequent interview (6
years post) which provides date of nursing home entry information to construct the exact 5 year indicator
of nursing home entry.
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years.32 In life, L denotes the event that the respondent dies before AGE, where AGE∈
{75,80,85,90,95,100} corresponds to the subjective probability elicitation, which is 10-15
years from the survey date.33

5.2.1 Public Information

To identify private information, it is essential to control for the public information, X,
that would be used by insurance companies to price contracts. For non-rejectees, this is a
straightforward requirement which involves analyzing existing contracts. But for rejectees,
I must make an assumption about how insurance companies would price these contracts
if they were to offer them. My preferred approach is to assume insurance companies price
rejectees separately from those to whom they currently offer contracts, but use a similar
set of public information. Thus, the primary data requirement is the public information
currently used by insurance companies in pricing insurance.

The HRS contains an extensive set of health, demographic, and occupation information
that allows me to approximate the set of information that insurance companies use to price
insurance. Indeed, previous literature has used the HRS to replicate the observables used
by insurance companies to price insurance in LTC and Life (for LTC, see Finkelstein
and McGarry [2006] and for Life, see He [2009]), and I primarily follow this literature in
constructing this set of covariates. Appendix C.1 provides a detailed listing of the control
specifications used in each market setting.

The quality of the approximation to what insurers actually use to price insurance is
quite good, but does vary by market. For long-term care, I replicate the information set
of the insurance company quite well. For example, perhaps the most obscure piece of
information that is acquired by some LTC insurance companies is an interview in which
applicants are asked to perform word recall tasks to assess memory capabilities; the HRS
conducts precisely this test with survey respondents. In disability and life, I replicate most
of the information used by insurance companies in pricing. One caveat is that insurance
companies will sometimes perform tests, such as blood and urine tests, which I will not
observe in the HRS. Conversations with underwriters in these markets suggest these tests
are primarily to confirm application information, which I can approximate quite well with

32The loss is defined as occurring when the individual reports yes to the question: “Does your health
limit your work activity?” over the subsequent five surveys, which is 10 years for all waves except AHEAD
wave 2, which corresponds to a time interval of 11 years because of a slightly different survey spacing.
Although the HRS has other measures of disability (e.g. SSDI claims), I use this measure because the
wording corresponds exactly to the subjective probability elicitation, which will be important for the
structural assumptions made to estimate the minimum pooled price ratio.

33The HRS collects date of death information that allows me to establish the exact age of death.
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the HRS. But, I cannot rule out the potential that there is additional information which
can be gathered by insurance companies in the disability and life settings.34

While the preferred specification attempts to replicate the variables used by insurance
companies in pricing, I also assess the robustness of the estimates to larger and smaller
sets of controls.35 As a baseline, I consider a specification with only age and gender. As
an extension, I also consider an extended controls specification that adds a rich set of
interactions between health conditions and demographic variables that could be, but are
not currently, used in pricing insurance. I conduct the lower bound approach for all three
sets of controls. For brevity, I focus exclusively on the preferred specification of pricing
controls for the parametric approach.

5.2.2 Rejection Classification

Not everyone can purchase insurance in these three non-group markets. To identify con-
ditions that lead to rejection, I obtain underwriting guidelines used by underwriters and
provided to insurance agents for use in screening applicants. An insurance company’s
underwriting guidelines list the conditions for which underwriters are instructed to not
offer insurance at any price and for which insurance agents are expected to discourage
applications. These guidelines are generally viewed as a public relations liability and are
not publicly available.36 Thus, the extent of my access varies by market: In long-term
care, I obtained a set of guidelines used by an insurance broker from 18 of the 27 largest
long-term care insurance companies comprising a majority of the US market.37 In disabil-
ity and life, I obtained several underwriting guidelines and supplement this information
with interviews with underwriters at several major US insurance companies. Appendix
F provides several pages from the LTC underwriting guideline from Genworth Financial,

34In LTC, insurance companies are legally able to conduct tests, but it is not common industry practice.
35While it might seem intuitive that including more controls would reduce the amount of private

information, this need not be the case. To see why, consider the following example of a regression of
quantity on price. Absent controls, there may not exist any significant relationship. But, controlling
for supply (demand) factors, price may have predictive power for quantity as it traces out the demand
(supply) curve. Thus, adding controls can increase the predictive power of another variable (price, in
this case). Of course, conditioning on additional variables X ′ which are uncorrelated with L or Z has no
effect on the population value of E [m (P ) |X ∈ Θ].

36An example of these guidelines is presented in Appendix F and a collection of these guidelines is
available on my website. Also, many underwriting guidelines are available via internet searches of “un-
derwriting guideline not-for-public-use pdf”. These are generally left on the websites of insurance brokers
who leave them electronically available to their sales agents and, potentially unknowingly, available to
the general public.

37I thank Amy Finkelstein for making this broker-collected data available.
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one of the largest LTC insurers in the US.38

I then use the detailed health and demographic information available in the HRS to
identify individuals with these rejection conditions. While the HRS contains a relatively
comprehensive picture of respondents’ health, sometimes the rejection conditions are too
precise to be matched to the HRS. For example, individuals with advanced stages of lung
disease would be unable to purchase life insurance, but some companies will sell policies to
individuals with a milder case of lung disease; however, the HRS only provides information
for the presence of a lung disease.

Instead of attempting to match all cases, I construct a third classification in each
setting, "Uncertain", to which I classify those who may be rejected, but for whom data
limitations prevent a solid assessment. This allows me to be relatively confident in the
classification of rejectees and non-rejectees. For completeness, I present the lower bound
analysis for all three classifications.

Table 1 presents the list of conditions for the rejection and uncertain classification,
along with the frequency of each condition in the sample (using the sample selection
outlined below in Section 5.2.3). LTC insurers generally reject applicants with conditions
that would make them more likely to use a nursing home in the relatively near future.
Activity of daily living (ADL) restrictions (e.g. needs assistance walking, dressing, using
toilet, etc.), a previous stroke, any previous home nursing care, and anyone over the age
of 80 would be rejected regardless of health status. Disability insurers reject applicants
with back conditions, obesity (BMI > 40), and doctor-diagnosed psychological conditions
such as depression or bi-polar disorder. Finally, life insurers reject applicants who have
had a past stroke or currently have cancer.

Table 1 also lists the conditions which may lead to rejection depending on the specifics
of the disease. People with these conditions are allocated into the Uncertain classifica-
tion.39 In addition to health conditions, disability insurers also have stringent income and
job characteristic underwriting. Individuals earning less than $30,000 (or wages below
$15/hr) and individuals working in blue-collar occupations are often rejected regardless
of health condition due to their employment characteristics. I therefore allocate all such
individuals to the uncertain category in the disability insurance setting.

Given these classifications, I construct the Reject, No Reject, and Uncertain samples
38A collection of undewriting guidelines from these three markets are available from the author upon

request and are posted on my website.
39I also attempt to capture the presence of rarer conditions not asked in the HRS (e.g. Lupus would

lead to rejection in LTC, but is not explicitly reported in the HRS). To do so, I allocate to the uncertain
classification individuals who report having an additional major health problems which was not explicitly
asked about in the survey.
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by first taking anyone who has a known rejection condition in Table 1 and classify them
into the Reject sample in each setting. I then classify anyone with an uncertain rejection
condition into the Uncertain classification, so that the remaining category is the set of
people who can purchase insurance (the No Reject classification).

5.2.3 Sample Selection

For each sample, I begin with years 1993-2008 of the HRS. The selection process varies
across each of the three market settings due to varying data constraints. Appendix C.2
discusses the specific data construction details for each setting. The primary sample
restrictions arise from requiring the subjective elicitation be asked (e.g. only individuals
over age 65 are asked about future nursing home use) and needing to observe individuals
in the panel long enough to construct the loss indicator, L in each setting.40 For LTC,
the sample consists of individuals aged 65 and older; for disability the sample consists
of individuals aged 60 and under41; and for life, the sample consists of individuals over
age 65. Table 2 presents the summary statistics for each sample. I include multiple
observations for a given individual (which are spaced roughly two years apart) to increase
power.42

There are several broad patterns across the three samples. First, there is a sizable
sample of rejectees in each setting. Because the HRS primarily surveys older individuals,
the sample is older, and therefore sicker, than the average insurance purchaser in each
market. Obtaining this large sample size of rejectees is a primary benefit of the HRS; but
it is important to keep in mind that the fraction of rejectees in the HRS is not a measure
of the fraction of the applicants in each market that are rejected.

Second, many rejectees own insurance. These individuals could (and perhaps should)
have purchased insurance prior to being stricken with their rejection condition. Also,
they may have been able to purchase insurance in group markets through their employer,
union, or other group which has less stringent underwriting requirements than the non-
group market.

40Note that death during this subsequent time horizon does not exclude an individual from the sample;
I classify the event of dying before the end of the time horizon as L = 0 for the LTC and Disability
settings as long as an individual did not report the loss (i.e. nursing home entry or health limiting work)
prior to death.

41The disability question is asked of individuals up to age 65, but I exclude individuals aged 61-65
because of the near presence of retirement. Ideally, I would focus on a sample of even younger individuals,
but unfortunately the HRS contains relatively few respondents below age 55.

42All standard errors will be clustered at the household level. Because the multiple observations within
a person will always have different X values (e.g. different ages), including multiple observations per
person does not induce bias in the construction of F (p|X).
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However, the fact that some own insurance raises the concern that moral hazard
could generate heterogeneity in loss probabilities from differential insurance ownership.
Therefore, I also perform robustness checks in LTC and Life on samples that exclude
those who currently own insurance.43 Since Medicaid also pays for nursing home use, I
also exclude Medicaid enrollees from this restricted LTC sample. Unfortunately, the HRS
does not ask about disability insurance ownership, so I cannot conduct this robustness
check for the disability setting.

Finally, although the rejectees have, on average, a higher chance of experiencing the
loss than the non-rejectees, it is not certain that they would experience the loss. For
example, only 22.5% of rejectees in LTC actually end up going to a nursing home in
the subsequent 5 years. This suggests there is substantial unrealized risk amongst the
rejectees.

5.2.4 Relation to Ideal Data

Before turning to the results, it is important to be clear about the extent to which the
data resembles the ideal dataset in each market setting. In general, I approximate the
ideal dataset quite well, aside from the necessity to classify a relatively large fraction of
the sample to the Uncertain rejection classification. In Disability and in Life, I classify
a smaller fraction of the sample as rejected or not rejected as compared with LTC. Also,
for Disability and Life I rely on a smaller set of underwriting guidelines (along with
underwriter interviews) to obtain rejection conditions, as opposed to LTC where I obtain
a fairly large fraction of the underwriting guidelines used in the market. In Disability and
Life I also do not observe medical tests that may be used by insurance companies to price
insurance (although conversations with underwriters suggest this is primarily to verify
application information, which I approximate quite well using the HRS). In contrast, in
LTC I classify a relatively large fraction of the sample, I closely approximate the set
of public information, and I can assess the robustness of the results to the exclusion
of those who own insurance to remove the potential impact of a moral hazard channel
driving any findings of private information. While re-iterating that all three of the samples
approximate the ideal dataset quite well, the LTC sample is arguably the best of the three
samples.

43Since rejection conditions are generally absorbing states, this rules out the path through which
insurance contract choice could generate heterogeneity for the rejectees. For the non-rejectees, this
removes the heterogeneity induced by current contract choice; but it does not remove heterogeneity
introduced from expected future purchase of insurance contracts. But, for my purposes this remaining
moral hazard impact only biases against finding more private information amongst the rejectees.
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6 Lower Bound Estimation

I now turn to the estimation of the distribution of PZ and the lower bounds of the average
magnitude of private information, E [mZ (PZ) |X], outlined in Section 4.1.

6.1 Specification

All of the empirical estimation is conducted separately for each of the settings and re-
jection classifications within each setting. Here I provide an overview of the preferred
specification, which controls for the variables used by insurance companies to price insur-
ance. I defer a detailed discussion of all three control specifications to Appendix D.1.

I estimate the distribution of PZ = Pr {L|X,Z} using a probit specification

Pr {L|X,Z} = Φ (βX + Γ (age, Z))

where X are the control variables (i.e. the pricing controls listed in Table A1) and
Γ (age, Z) captures the relationship between L and Z, allowing it to depend on age. With
this specification, the null hypothesis of no private information, Pr {L|X,Z} = Pr {L|X},
is tested by restricting Γ = 0.44 I choose a flexible functional form for Γ (age, Z) that uses
full interactions of basis functions in age and Z. For the basis in Z, I use second-order
Chebyshev polynomials plus separate indicators for focal point responses at Z = 0, 50,
and 100. For the basis in age, I use a linear specification.

With infinite data, one could estimate E [mZ (PZ) |X] at each value of X. However,
the high-dimensionality of X requires being able to aggregate across values of X. To do
this, I assume that conditional on ones’ age and rejection classification, the distribution
of PZ − Pr {L|X} does not vary with X. This allows the rich set of observables to
flexibly affect the mean loss probability, but allows for aggregation of the dispersion of
the distribution across values of X.45

I then estimate the conditional expectation, mZ (p) = E [PZ |PZ ≥ p,X]− p using the
estimated distribution of PZ − Pr {L|X} within each age grouping and rejection classifi-
cation. After estimating mZ (p), I use the estimated distribution of PZ to construct its
average, E [mZ (PZ) |X ∈ Θ], where Θ is a given sample (e.g. LTC rejectees). I construct

44At various points in the estimation I require an estimate of Pr {L|X}, which I obtain with the same
specification as above, but restricting Γ = 0.

45Note also that I only impose this assumption within a setting/rejection classification – I do not require
the dispersion of the rejectees to equal that of the non-rejectees. Also, note that this assumption is only
required to arrive at a point estimate for E [mZ (PZ) |X ∈ Θ], and is not required to test for the presence
of private information (i.e. whether Γ = 0).
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the difference between the reject and no reject estimates,

∆Z = E
[
mZ (PZ) |X ∈ ΘReject

]
− E

[
mZ (PZ) |X ∈ ΘNoReject

]
and test whether I can reject a null hypothesis that ∆Z ≤ 0.

6.2 Statistical Inference

Statistical inference for E [mZ (PZ) |X ∈ Θ] for a given sample Θ and for ∆Z is straight-
forward, but requires a bit of care to cover the possibility of no private information. In
any finite sample, estimates of E [mZ (PZ) |X ∈ Θ] will be positive (Z will always have
some predictive power in finite samples). Provided the true value of E [mZ (PZ) |X ∈ Θ]

is positive, the bootstrap provides consistent, asymptotically normal, standard errors for
E [mZ (PZ) |X ∈ Θ] (Newey [1997]). But, if the true value of E [mZ (PZ) |X ∈ Θ] is zero
(as would occur if there were no private information amongst those with X ∈ Θ), then
the bootstrap distribution is not asymptotically normal and does not provide adequate
finite-sample inference.46 Therefore, I supplement the bootstrap with a Wald test that
restricts Γ (age, Z) = 0.47 The Wald test is the key statistical test for the presence of
private information, as it tests whether Z is predictive of L conditional on X. I report
results from both the Wald test and the bootstrap.

I conduct inference on ∆Z in a similar manner. To test the null hypothesis that ∆Z ≤
0, I construct conservative p-values by taking the maximum p-value from two tests: 1) a
Wald test of no private information held by the rejectees, E

[
mZ (PZ) |X ∈ ΘReject

]
= 0,

and 2) the p-value from the bootstrapped event of less private information held by the
rejectees, ∆ ≤ 0.48

6.3 Results

I begin with graphical evidence of the predictive power of the subjective probability
elicitations in each sample. Figures 2(a,b,c) plot the estimated distribution of PZ −
E [PZ |X] aggregated by rejection classification for the rejectees and non-rejectees, using

46In this case, Γ̂→ 0 in probability, so that estimates of the distribution of PZ −E [PZ |X] converge to
zero in probability (so that the bootstrap distribution converges to a point mass at zero).

47The event Γ (age, Z) = 0 in sample Θ is equivalent to both the event Pr {L|X,Z} = Pr {L|X} for all
X ∈ Θ and the event E [mZ (PZ) |X ∈ Θ] = 0.

48More precise p-values would be a weighted average of these two p-values, where the weight on the
Wald test is given by the unknown quantity Pr

{
E
[
mZ (PZ) |X ∈ ΘReject

]
= 0|∆ ≤ 0

}
. Since this weight

is unknown, I use these conservative p-values that are robust to any weight in [0, 1].
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Figure 2: Distribution of PZ − Pr {L|X}

the preferred pricing control specification.49

Across all three market settings, the distribution of PZ −Pr {L|X} appears more dis-
persed for the rejectees relative to non-rejectees. In this sense, the subjective probability
elicitations contain more information about L for the rejectees than for the non-rejectees.

Table 3 presents the measurements of this dispersion using the average magnitude of
private information implied by Z. The first set of rows, labelled “Reject”, presents the
estimates for the rejectees in each setting and control specification. Across all settings
and control specifications, I find significant evidence of private information amongst the
rejectees (p < 0.001); the subjective probabilities are predictive of the realized loss, con-
ditional on the set of insurance companies use to price insurance and also are predictive

49Subtracting E [PZ |X] or equivalently, Pr {L|X}, allows for simple aggregation across X within each
sample.
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conditional on the baseline controls (age and gender) and the extended controls.
In addition, the estimates provide an economically significant lower bound on the

average magnitude of private information. For example, the estimate of 0.0358 for the
LTC price controls specification indicates that if a rejectee was drawn at random, one
would expect the average probability of higher risks (with the same observables, X) to be
at least 3.58pp higher, which is 16% higher than the mean loss probability of 22.5% for
LTC rejectees.

The third set of rows in Table 3 provides the estimates of ∆Z . Again, across all spec-
ifications and market settings, I estimate larger lower bounds on the average magnitude
of private information for the rejectees relative to those served by the market. These
differences statistically significant at the 1% level in LTC and life, and positive (but not
significant at standard levels) in disability.50

Not only do I find smaller amounts of private information for the non-rejectees, but I
cannot actually reject the null hypothesis of no private information amongst this group
once one includes the set of variables insurers use to price insurance, as indicated by
the second set of rows in Table 3.51 This provides a new explanation for why previous
research has not found significant amounts of adverse selection of insurance contracts in
LTC (Finkelstein and McGarry [2006]) and Life insurance (Cawley and Philipson [1999]).
The practice of rejections by insurance companies limits the extent to which private
information manifests itself in adverse selection of contracts.

50The estimated magnitudes for the uncertain classification generally fall between the estimates for
the rejection and no rejection groups, as indicated by the bottom set of rows in Table 3. In general, the
theory does not have a prediction for the uncertain group. However, if E [mZ (PZ) |X] takes on similar
values for all rejectees (e.g. E [mZ (PZ) |X] ≈ mR) and non-rejectees (e.g. E [mZ (PZ) |X] ≈ mNR), then
linearity of the expectation implies

E
[
mZ (PZ) |X ∈ ΘUncertain] = λmR + (1− λ)mNR (7)

where λ is the fraction in the uncertain group who would be rejected. Thus, it is perhaps not unreasonable
to have expected E

[
mZ (PZ) |X ∈ ΘUncertain

]
to lie in between the estimates for the rejectees and non-

rejectees, as I find. Nevertheless, there is no theoretical reason to suppose the average magnitude of private
information is constant within rejection classification; thus this should be viewed only as a potential
rationalization of the results, not as a robust prediction of the theory.

51Of course, the difference between the age and gender specification and the price controls specification
is not statistically significant. Also, the inability to reject a null of no private information is potentially
driven by the small sample size in the Disability setting; but the LTC sample of non-rejectees is quite
large (>9K) and the sample of non-rejectees in Life is larger than the sample of rejectees.
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Figure 3: Magnitude of Private Information by Age & Rejection Classification

6.4 Age 80 in LTC insurance

LTC insurers reject applicants above age 80 regardless of health status. This provides an
opportunity for a finer test of the theory by exploring whether those without rejection
health conditions start to obtain private information at age 80. To do so, I construct a
series of estimates of E [mZ (PZ)] by age for the set of people who do not have a rejection
health condition and thus would only be rejected if their age exceeded 80.52

Figure 3 plots the results for those without health conditions (hollow circles), along
with a comparison set of results for those with rejection health conditions (filled circles).53

The figure suggests that the subjective probability elicitations of those without rejection
health conditions become predictive of L right around age 80 – exactly the age at which
insurers choose to to start rejecting applicants based on age, regardless of health status.
Indeed, from the perspective of E [mZ (PZ)], a healthy 81 year old looks a lot like a 70 year
old who had a stroke. This is again consistent with the theory that private information
limits the existence of insurance markets.

52To ensure no information from those with rejection health conditions is used in the construction of
E [mZ (PZ)] for those without health conditions above age 80, I split the Reject sample into two groups:
those who do not have a rejection health condition (and thus would only be rejected because their age is
above 80) and those who do have a rejection condition. I estimate PZ separately on these two samples
using the pricing specification outlined in Section 6.1.

53The graph presents bootstrapped 95% confidence intervals adjusted for bias using the non-accelerated
procedure suggested in Efron and Gong [1983]. These are appropriate confidence intervals as long as the
true magnitude of private information is positive; In the aggregate sample of rejectees, I reject the null
hypothesis of no private information (see Table 3). However, for any particular age, I am unable to reject
a null hypothesis of no private information using the Wald test.
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6.5 Robustness

Moral Hazard As discussed in Section 5.2.3, one alternative hypothesis is that the
private information I estimate is the result of moral hazard from insurance contract choice,
not an underlying heterogeneity in loss probabilities. To assess whether this is driving
any of the results, I re-estimate the average magnitude of private information implied
by Z on samples in LTC and Life that exclude those who currently own insurance. For
LTC, I exclude those who own private LTC insurance along with those who are currently
enrolled in Medicaid, since it pays for nursing home stays. As shown in Table 2, this
excludes 20.6% of the sample of rejectees and 19.5% of non-rejectees. For Life, I exclude
those with any life insurance policy. Unfortunately, this excludes 63% of the rejectees and
65% of the non-rejectees; thus the remaining sample is quite small.

Table 4 presents the results. For LTC, I continue to find significant amounts of private
information for the rejectees (p < 0.001), that is significantly more than for the non-
rejectees (∆Z = 0.0313, p < 0.001), and cannot reject the null hypothesis of no private
information for the non-rejectees (p = 0.8325). For Life, I estimate marginally significant
amounts of private information for the rejectees (p = 0.0523) of a magnitude similar to
what is estimated on the full sample (0.0491 versus 0.0587). I estimate more private
information for the rejectees relative to the non-rejectees, however the difference is no
longer statistically significant (∆Z = 0.011, p = 0.301), which is arguably a result of
the reduced sample size. I also continue to be unable to reject the null hypothesis of no
private information for the non-rejectees (p = 0.2334). In short, the results suggest moral
hazard is not driving my findings of private information for the rejectees and more private
information for the rejectees relative to the non-rejectees.

Additional Robustness Checks Appendix D.2 contains a couple of additional ro-
bustness checks. I present the age based plots, similar to Figure 3, for the Disability and
Life settings and show that I generally find larger amounts of private information across
all age groups for the rejectees in each setting. I also present an additional specification
in life insurance that includes additional cancer controls, discussed in Appendix C.1, that
are available for a smaller sample of the HRS data; I show that the estimates are similar
when introducing these additional controls.
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6.6 Summary

In all three market settings, I estimate a significant amount of private information held
by the rejectees that is robust to a wide set of controls for public information. I find
more private information held by the rejectees relative to the non-rejectees; and I cannot
reject a null hypothesis of no private information held by those actually served by the
market. Moreover, a de-aggregated analysis of the practice of LTC insurers rejecting all
applicants above age 80 (regardless of health) reveals that healthy individuals begin to
have private information right around age 80 – precisely the age chosen by insurers to
stop selling insurance. In sum, the results are consistent with the theory that private
information leads to insurance rejections.

7 Estimation of Distribution of Private Information

While the lower bound results, and in particular the stark pattern of the presence of
private information, provides support for the theory that private information would af-
flict a hypothetical insurance market for the rejectees, it does not establish whether the
amount of private information is sufficient to explain why insurers don’t sell policies to
the rejectees. This requires an estimate of the minimum pooled price ratio, and hence
an estimate of the distribution of private information, F (p|X). To do so, I follow the
second approach, outlined in Section 4.2: I impose additional structure on the relation-
ship between elicitations, Z, and true beliefs, P , that allows for a flexible estimation of
F (p|X).

7.1 Empirical Specification

7.1.1 Elicitation Error Model

Elicitations Z may differ from true beliefs P in many ways. They may be systematically
biased, with values either higher or lower than true beliefs. They may be noisy, so that two
individuals with the same beliefs may have different elicitations. Moreover, as shown in
Figures 1(a,b,c) and recognized in previous literature (e.g. Gan et al. [2005]), people may
have a tendency to report focal point values at 0, 50, and 100%. My model of elicitations
will capture all three of these forms of elicitation error.

To illustrate the model, first define the random variable Z̃ by

Z̃ = P + ε
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where ε ∼ N (α, σ2). The variable Z̃ is a noisy measure of beliefs with bias α and noise
variance σ2 where the error follows a normal distribution. I assume there are two types of
responses: focal point responses and non-focal point responses. With probability 1 − λ,
an agent gives a non-focal point response, Znf ,

Znf =


Z̃ if Z̃ ∈ [0, 1]

0 if Z̃ < 0

1 if Z̃ > 1

which is Z̃ censored to the interval [0, 1]. These responses are continuously distributed
over [0, 1] with some mass at 0 and 1.

The second type of responses are focal point responses. With probability λ an agent
reports Zf given by:

Zf =


0 if Z̃ ≤ κ

0.5 if Z̃ ∈ (κ, 1− κ)

1 if Z̃ ≥ 1− κ

where κ ∈ [0, .5) captures the focal point window. With this structure, focal point re-
sponses have the same underlying structure as non-focal point responses, but are reported
on a scale of low, medium, and high as opposed to a continuous scale on [0, 1].54 As a
result, non-focal point responses will contain more information about P than will focal
point responses. Therefore, most of the identification for the distribution of P will come
from those reporting non-focal point values.

Given this model, I have four elicitation parameters to be estimated: {α, σ, κ, λ},
which will be estimated separately in each market setting and classification. This allows
for the potential that rejectees have a different elicitation error process than non-rejectees.

7.1.2 Flexible Approximation for the Distribution of Private Information

With infinite data, one could flexibly estimate f (p|X) separately for every possible value
of X and p. Faced with finite data and a high dimensional X, this is not possible. Since
the minimum pooled price ratio is essentially a function of the shape of the distribution of
f (p|X) across values of p, I choose a specification that allows for considerable flexibility

54Note that I do assume the act of providing a focal point response is not informative of P (λ is not
allowed to be a function of P ). Ideally, one would allow focal point respondents to have differing beliefs
from non-focal point respondents; yet the focal point bias inherently limits the extent of information that
can be extracted from their responses.
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across p. In particular, I assume f (p|X) is well-approximated by a mixture of beta
distributions,

f (p|X) =
∑
i

wiBeta (p|ai + Pr {L|X} , ψi) (8)

where Beta (p|µ, ψ) is the p.d.f. of the beta distribution with mean µ and shape parameter
ψ.55 With this specification, {wi} governs the weights on each beta distribution, {ai}
governs the non-centrality of each beta distribution, and ψi governs the dispersion of
each beta distribution. The flexibility of the beta distributions ensures that I impose no
restrictions on the size of the minimum pooled price ratio.56 For the main specification,
I include 3 beta distributions.57 Additional details of the specification are provided in
Appendix E.1.

7.1.3 Pooled Price Ratio (and its Minimum)

With an estimate of f (p|X) the pooled price ratio is easily constructed as T (p) =
E[P |X]

1−E[P |X]
1−p
p

for each p, where E [P |P ≥ p,X] is computed using the estimated f (p|X).
Throughout, I focus on estimates evaluated for a mean loss characteristic, Pr {L|X}. In
principle, one could analyze the pooled price ratio across all values of X; but given the
specification, focusing on differing values of X or Pr {L|X} does not yield an independent
test of the theory. In Appendix E.2, I show the results are generally robust to focusing
on values of Pr {L|X} at the 20, 50, and 80th percentiles of its distribution.

As described in Section 4.2, I estimate the analogue to the minimum pooled price
55The p.d.f. of a beta distribution with parameters α and β is given by

beta (x;α, β) =
1

B(α, β)
xα−1xβ−1

where B (α, β) is the beta function. The mean of a beta distribution with parameters α and β is given
by µ = α

α+β and the shape parameter is given by ψ = α+ β.
56In principle, the event of no private information is captured with ψ1 →∞, a1 = 0, and w1 = 1. For

computational reasons, I need to impose a cap on ψi in the estimation. In the initial estimation, this
cap binds for the central most beta distribution in both the LTC No Reject and Disability No Reject
samples. Intuitively, the model wants to estimate a large fraction of very homogenous individuals around
the mean. Therefore, for these two samples, I also include a point-mass distribution with weight w0 in
addition to the three beta distributions. This allows me to capture a large concentration of mass in a
way that does not require integrating over a distribution f (p|X) with very high curvature. Appendix
E.1 provides further details.

57While equation 8 allows for a very flexible shape of f (p|X) across p; it is fairly restrictive in how this
shape varies across values of X. Indeed, I do not allow the distribution parameters to vary with X. This
is a practical necessity due to the size of my samples and the desire to allow for a very flexible shape for
f (p|X). Moreover, it is important to stress that I will still separately estimate f (p|X) for the rejectees
and the non-rejectees using the separate samples.
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ratio, infp∈Ψ̂τ
T (p), for the restricted domain Ψ̂τ = [0, F−1 (τ)]. My preferred choice for

τ is 0.8, as this ensures at least 20% of the sample (conditional on q) is used to estimate
E [P |P ≥ p] and produces estimates that are quite robust to changes in the number of
approximating beta distributions. For robustness, I also present results for τ = 0.7 and
τ = 0.9 along with plots of the pooled price ratio for all p below the estimated 90th
quantile, F−1 (0.9).

7.1.4 Identification

Before turning to the results, it is important to understand the sources of identification
for the model. As discussed above, much of the model is identified from the non-focal
point responses. If the elicitation error parameters were known, then identification of
the distribution of P is a deconvolution of the distribution of Znf ; thus, the empirical
distribution of non-focal elicitations provides a strong source of identification for the
distribution of P conditional on having identified the elicitation error parameters.58

To identify the elicitation error parameters, the model relies on the relationship be-
tween Znf and L. To see this, note that Assumptions 1 and 2 imply

E
[
Znf − P

]
= E

[
Znf

]
− E [L]

so that the mean elicitation bias is the difference between the mean elicitation and the
mean loss probability. This provides a strong source of identification for α.59 In practice,
the model calculates α jointly with the distribution of P to adjust for the fact that the
non-focal elicitations are not censored over [0, 1].

To identify σ, note that Assumptions 1 and 2 imply

var
(
Znf

)
− cov

(
Znf , L

)
= var

(
Znf − P

)
+ cov

(
Znf − P, P

)
(9)

where var
(
Znf − P

)
is the variance of the non-focal elicitation error and cov

(
Znf − P, P

)
is correction term that accounts for the fact that I allow non-focal elicitations are censored

58If Znf were not censored on [0, 1], then P would be non-parametrically identified from the observation
of the distribution of Znf = Z̃ (this follows from the completeness of the exponential family of distribu-
tions). However, since I have modeled the elicitations as being censored at 0 and 1, some distributions
of P , especially those leading to a lot of censored values, may not be non-parametrically identified solely
from the distribution of Znf and may also rely on moments of the joint distribution of Znf and L for
identification.

59Indeed, if Znf were not censored on [0, 1] this quantity would equal α.
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on [0, 1].60 The quantity var
(
Znf

)
−cov

(
Znf , L

)
is the variation in Z that is not explained

by L. Since the primary impact of changing σ is to change the elicitation error variance
of Znf−P , the value of var

(
Znf

)
−cov

(
Znf , L

)
provides a strong source of identification

for σ.61 Finally, the fraction of focal point respondents, λ, and the focal point window, κ,
are identified from the distribution of focal points and the loss probability at each focal
point.

7.1.5 Statistical Inference

Bootstrap delivers appropriate confidence intervals for the estimates of infp∈[0,F−1(τ)] T (p)

and the values of fP (p|X) and FP (p|X) as long as the estimated parameters are in the
interior of their potential support. This assumption is violated in the potentially relevant
case in which there is no private information. In this case, ψ1 → ∞, w1 = 1, and
a1 = 0. As with the lower bound approach, the problem is that in finite samples one may
estimate a nontrivial distribution of P even if the true P is only a point mass. Because
the parameters are at a boundary, one cannot use bootstrapped estimates to rule out the
hypothesis of no private information.

To account for the potential that individuals have no private information, I again
use the Wald test from the lower bound approach (see Table 3) that tests whether
Pr {L|X,Z} = Pr {L|X} for all X in the sample (by restricting Γ = 0).62 I construct
5/95% confidence intervals for infp∈Ψ̂τ

T (p) by combining bootstrapped confidence inter-

60To see this, note that

var
(
Znf

)
= var

(
Znf − P

)
+ var (P ) + 2cov

(
Znf − P, P

)
and

cov
(
Znf , L

)
= cov

(
Znf − P, P

)
+ cov (P,L) = cov

(
Znf − P, P

)
+ var (P )

where the latter equality follows from Pr {L|P} = P . Subtracting these equations yields equation 9.
61More generally, Assumptions 1 and 2 impose an infinite set of moment conditions that can be used

to identify the elicitation parameters:

E
[
PN |L = 1

]
Pr {L} = E

[
PN+1

]
It is easy to verify that N = 0 provides the source of identification for α mentioned above and N = 1
provides the source of identification for σ. This expression suggests one could in principle allow for a richer
specification of the elicitation error; I leave the interesting but difficult question of the nonparametric
identification conditions on the elicitation error for future work.

62This test also has the advantage that mis-specification of fZ|P will not affect the test for private
information. But in principle, one could use the structural assumptions made on fZ|P to generate a more
powerful test for the presence of private information. Such a test faces technical hurdles since it involves
testing whether F (p|q) lies along a boundary of the set of possible distributions and must account for
sample clustering (which makes a likelihood ratio test inappropriate). Andrews [2001] provides a potential
method for constructing an appropriate test; but this is left for future work.
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vals and extending the 5% boundary to 1 in the event that I cannot reject a null hypothesis
of no private information at the 5% level. Given the results in Table 3, this amounts to
extending the 5/95% CI to include 1 for the non-rejectees in each of the three settings.

I will also present graphs of the estimated p.d.f., fP (p|X), c.d.f., FP (p|X), and pooled
price ratio, T (p), evaluated at the mean characteristic, Pr {L|X} = Pr {L}, in each
sample. For these, I present the 95% confidence intervals and do not attempt to in-
corporate information from the Wald test. The reader should keep in mind that one
cannot reject F (p|X) = 1 {p ≤ Pr {L|X}} at the 5% level for the non-rejectees in any
of the three settings.63Also, for the estimated confidence intervals of FP (p|X), I im-
pose monotonicity in a conservative fashion by defining F 5

P (p|X) = minp̂≤pF̂
5
P (p|X) and

F 95
P (p|X) = maxp̂≥pF̂

95
P (p|X) where F̂ 5

P (p|X) and F̂ 95
P (p|X) are the estimated point-wise

5/95% confidence thresholds from the bootstrap.

7.2 Estimation Results

Qualitatively, no trade is more likely for distributions with a thick upper tail of high risks,
the presence of which inhibit the provision of insurance to lower risks by raising the value
of E [P |P ≥ p]. In each market setting, I find evidence consistent with this prediction.
Figure 4 presents the estimated p.d.f. fP (p|X) and c.d.f. FP (p|X) for each market
setting, plotted for a mean characteristic within each sample using the price controls,
X.64The solid line presents estimates for the rejectees; the dotted line for non-rejectees.
Across all three settings, there is qualitative evidence of a thick upper tail of risks as
p → 1 for the rejectees. In contrast, for the non-rejectees, there is less evidence of such
an upper tail.

Figure 4 translates these estimates into their implied pooled price ratio, T (p), for
p ≤ F−1 (0.8), and Table 5 presents the estimated minimums over this same region,
infp∈[0,F−1(0.8)] T (p). Across all three market settings, I estimate a sizable minimum pooled
price ratio for the rejectees: 1.82 in LTC (5/95% CI [1.657, 2.047]), 1.66 in Disability

63Estimates of the p.d.f., c.d.f., and minimum pooled price ratio exhibited considerable bias in the
bootstrap estimation, especially among the life and disability settings since they have smaller samples.
To be conservative, I present confidence intervals that are the union of bias-corrected confidence intervals
(Efron and Gong [1983]) and the more traditional studentized-t confidence intervals. In practice, the
studentized-t confidence intervals tended to be wider than the bias-corrected confidence intervals for the
disability and life estimates. However, the use of either of these methods does not affect the statistical
conclusions.

64This involves setting Pr {L|X} = Pr {L} in equation (8) within each sample (e.g. Pr {L} = 0.052 for
the LTC No Reject sample - the other means are reported in Table 2). Appendix E.2 shows the general
conclusions are robust to focusing on other values of Pr {L|X} in each sample; I focus on the mean since
it is the most in-sample estimate.
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Figure 4: Distribution of Private Information
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(5/95% CI [1.524, 1.824]), and 1.42 in Life (5/95% CI [1.076,1.780]). In contrast, in all
three market settings I estimate smaller minimum pooled price ratios for the non-rejectees.
Moreover, consistent with the prediction of Corollary 3, the estimated differences between
rejectees and non-rejectees are large and significant in both LTC and Disability (roughly
59%); for Life the difference is positive (8%) but not statistically different from zero.

The estimates suggests that an insurance market cannot exist for the rejectees unless
they are willing to pay a 82% implicit tax in LTC, a 66% implicit tax in Disability and a
42% implicit tax in Life. These implicit taxes are large enough relative to the magnitudes
of willingness to pay found in existing literature and those implied by simple models
of insurance. For LTC, there is no exact estimate corresponding to the willingness to
pay for a marginal amount of LTC insurance, but Brown and Finkelstein [2008] suggests
most 65 year olds are not willing to pay more than a 60% markup for existing LTC
insurance policies.65 For disability, Bound et al. [2004] calibrates the marginal willingness
to pay for an additional unit of disability insurance to be roughly 46-109%. This estimate
is arguably an over-estimate of the willingness to pay for insurance because the model
calibrates the insurance value using income variation, not consumption variation, which
is known to be less variable than income. Nonetheless, the magnitudes are of a similar
level to the implicit tax of 66% for the disability rejectees.66 Finally, if a loss incurs a
10% drop in consumption and individuals have CRRA preferences with coefficient of 3,
then u′(w−l)

u′(w)
= 1.372, so that individuals would be willing to pay a 37.2% markup for

insurance, a magnitude that roughly rationalizes the pattern of trade in all three market
settings.67 In short, the size of the estimated implicit taxes suggest the barrier to trade
imposed by private information is large enough to explain a complete absence of trade for
the rejectees.

65More specifically, the results of Brown and Finkelstein [2008] imply that an individual at the 60-70th
percentile of the wealth distribution is willing to pay roughly a 27-62% markup for existing LTC insurance
policies This is not reported directly, but can be inferred from Figure 1 and Table 2. Figure 2 suggests
the break-even point for insurance purchase is at the 60-70th percentile of the wealth distribution. Table
2 shows this corresponds to individuals being willing to pay a tax of 27-62%. Their model would suggest
that those above the 80th percentile of the wealth distribution are willing to pay a substantially higher
implicit tax; however Lockwood [2012] shows that incorporating bequest motives significantly reduces
the demand for LTC insurance in the upper income distribution.

66See column 6 of Table 2 in Bound et al. [2004]. The range results from differing samples. The lowest
estimate is 46% for workers with no high school diploma and 109% for workers with a college degree.
The sample age range of 45-61 is roughly similar to the age range used in my analysis.

67To the best of my knowledge, there does not exist a well-estimated measure of the marginal willingness
to pay for an additional unit of life insurance.
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Robustness to choice of τ The results in Table 5 focus on the results for τ = 80%.
Table 6 assesses the robustness of the findings to the choice of τ by also presenting results
for τ = 0.7 and τ = 0.9. In general, the results are quite similar. For LTC and Disability,
both the minimums for the rejectees and non-rejectees are obtained at an interior point
of the distribution, so that the estimated minimum is unaffected by the choice of τ in the
region [0.7, 0.9]. For Life, the minimums are obtained at the endpoints, so that changes
in τ do affect the estimated minimum. At τ =0.7, the minimum pooled price ratio rises
to 1.488 for the rejectees and 1.423 for the non-rejectees; at τ = 0.9 the minimum pooled
price ratio drops to 1.369 for the rejectees and 1.280 for the non-rejectees. In general, the
results are similar across values of τ .

Additional Robustness Checks The results in Tables 5 and 6 evaluate the minimum
pooled price ratio for a characteristic, X, corresponding to a mean loss probability within
each sample, Pr {L|X} = Pr {L}. In Appendix E.2, I show that the estimates are quite
similar if, instead of evaluating at the mean, one chooses X such that Pr {L|X} lies at
the 20th, 50th or 80th quantile of its within sample distribution.68 The minimum pooled
price ratio for rejectees ranges from 1.77 to 2.09 in LTC, 1.659 to 1.741 in Disability, and
1.416 to 1.609 in Life. For the non-rejectees I estimate significantly smaller magnitudes
in LTC and Disability and the estimated differences between rejectees and non-rejectees
for Life remain statistically indistinct from zero.

8 Discussion

The results shed new light on many existing patterns found in existing literature and pose
new questions for future work.

8.1 Annuities

There are no rejections in annuity markets. Indeed, annuity companies generally post
the same prices to all applicants based solely on their age and gender. At first glance, it
may seem odd that I find evidence of private information about mortality that, I argue,

68Because of the choice of functional form for fP (p|X), these should not be considered separate sta-
tistical tests of the theory. The functional form is restrictive in the extent to which the shape of the
distribution can vary across values of X within a rejection classification. But, nonetheless it is important
to ensure that the results do not change simply by focusing on different levels of the index, Pr {L|X}.

42



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Probability of Loss

P
o

o
le

d
 P

ri
c
e
 R

a
ti

o

Pooled Price Ratio
LTC

 

 

No Reject

95% CI

Reject

95% CI

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Probability of Loss

P
o

o
le

d
 P

ri
c
e
 R

a
ti

o

Pooled Price Ratio
Disability

 

 

No Reject

95% CI

Reject

95% CI

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Probability of Loss

P
o

o
le

d
 P

ri
c
e
 R

a
ti

o

Pooled Price Ratio
Life

 

 

No Reject

95% CI

Reject

95% CI

(c)

Figure 5: Pooled Price Ratio
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leads to rejections in life insurance. But annuities, which provide a fixed income stream
regardless of one’s length of life, insure the same (yet opposing) risk of living too long.

However, the pattern of private information found in this paper can explain not only
why applicants for annuities are not rejected, but also why previous literature has found
adverse selection in annuity markets (Finkelstein and Poterba [2002, 2004]) but not life
insurance markets (Cawley and Philipson [1999]). My results suggests that although some
people, namely those with health conditions, know that they have a relatively higher than
average mortality risk, few people know that they have an exceptionally lower than average
mortality risk. There’s only one way to be healthy but many (unobservable) ways to be
sick. Thus, annuity companies can sell to an average person without any major health
conditions without the risk of it being adversely selected by an even healthier subset of
the population. Annuities may be adversely selected, as the sick choose not to buy them,
but by reversing the direction of the incentive constraints, rejections no longer occur.69

8.2 Welfare

My results suggest that the practice of rejections by insurers is constrained efficient. Insur-
ance cannot be provided without relaxing one of the three implementability constraints.
Either insurers must lose money or be subsidized (relax the resource constraint), individ-
uals must be convinced to be irrational (relax the incentive constraint), or agents’ outside
option must be adjusted via mandates or taxation (relax the participation constraint).
However, policymakers must ask whether they like the constraints. Indeed, the first-best
utilitarian allocation is full insurance for all, c = W − E [p]L, which could be obtained
through subsidies or mandates that use government conscription to relax the participation
constraints.

However, literal welfare conclusions based on the stylized model in this paper should
be highly qualified. The model abstracts from many realistic features such as preference
heterogeneity, moral hazard, and the dynamic aspect of insurance purchase. Indeed, the
latter may be quite important for understanding welfare. Although my analysis asks
why the insurance market shuts down, I do not address why those who face rejection
did not purchase a policy before they obtained the rejection condition. Perhaps they
don’t value insurance (in which case mandates may lower welfare) or perhaps they face
credit constraints (in which case mandates may be beneficial). Unpacking the decision of
when to purchase insurance in the presence of potential future rejection is an interesting

69Moreover, the presence of private information amongst those with health conditions may explain why
annuity companies are generally reluctant to offer discounts to those with health conditions.
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direction for future work.

8.3 Group Insurance Markets

Although this paper focuses on non-group insurance markets, much insurance is sold in
group markets, often through one’s firm. For example, more than 30% of non-government
US workers have group-based disability insurance; whereas just 3% of workers a non-group
disability policy([ACLI 2010]). Similarly, in health insurance 49% of the US population
has an employer-based policy, whereas only 5% have a non-group policy.70

While it is commonplace to assume that the tax advantage status for employer-
sponsored health insurance causes more insurance to be sold in group versus non-group
health insurance markets, tax advantages cannot explain the same pattern in disability
insurance. Disability benefits are always taxed regardless of whether the policy is sold in
the group or non-group market.71 This suggests group markets may be more prevalent
because of their ability to deal with informational asymmetries. Indeed, group markets
can potentially relax participation constraints by subsidizing insurance purchase for its
members. Identifying and quantifying this mechanism is an important direction for fu-
ture work, especially for understanding the impact of government policies that attempt
to promote either the individual or the group-based insurance market.

8.4 Private Information versus Adverse Selection

There is a recent and growing literature seeking to identify the impact of private infor-
mation on the workings of insurance markets. Generally, this literature has searched for
adverse selection, asking whether those with more insurance have higher claims. Yet my
theoretical and empirical results suggest this approach is unable to identify private infor-
mation precisely in cases where its impact is most severe: where the insurance market
completely shuts down. This provides a new explanation for why previous literature has
found mixed evidence of adverse selection and, in cases where adverse selection is found,
estimated small welfare impacts (Cohen and Siegelman [2010], Einav et al. [2010a]).

Existing explanations for the oft-absence of adverse selection focus on preference het-
erogeneity (see Finkelstein and McGarry [2006] in LTC, Fang et al. [2008] in Medigap,
and Cutler et al. [2008] for a broader focus across five markets). At a high level, these
papers suggest that in some contexts the higher risk (e.g. the sick) may have a lower

70Figures according to Kaiser Health Facts, www.statehealthfacts.org.
71If premiums are paid with after-tax income, then benefits are not taxed. If premiums are paid with

pre-tax income (as is often the case with an employer plan), then benefits are taxed.
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preference for insurance. Unfortunately, this paper cannot directly shed more light on
whether those with different beliefs have different utility functions, u. Indeed, I do not
estimate demand and instead assume u is constant throughout the population. But fu-
ture work could merge my empirical approach to identify beliefs with traditional revealed
preference approaches to identify demand, thereby identifying the distribution of pref-
erences for insurance conditional on beliefs and further exploring the role of preference
heterogeneity in insurance markets.

But it is important to note that my results raise concerns about the empirical con-
clusion that the sick have lower demand for insurance; such studies generally have not
considered the potential that the supply of insurance to the sick, especially those with
observable health conditions, is limited through rejections.72 It may not be that the sick
don’t want insurance, but rather that the insurers don’t want the sick.

9 Conclusion

This paper argues private information leads insurance companies to reject applicants with
certain observable, often high-risk, characteristics. In short, my findings suggest that if
insurance companies were to offer any contract or set of contracts to those currently
rejected, they would be too adversely selected to yield a positive profit. More generally,
the results suggest that the most salient impact of private information may not be the
adverse selection of existing contracts, but rather the existence of the market itself.
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Primary 
Sample

Excluding 
Insured

Primary 
Sample

Excluding 
Insured

Reject 0.0358*** 0.0351*** 0.0587*** 0.0491*
s.e.1 (0.0037) (0.0041) (0.0083) (0.0115)
p-value2 0.0000 0.0000 0.0000 0.0523

No Reject 0.0049 0.0038 0.0249 0.0377
s.e.1 (0.0018) (0.0019) (0.007) (0.0107)
p-value2 0.3356 0.8325 0.1187 0.2334

Difference: ∆Z 0.0309*** 0.0313*** 0.0338*** 0.011
s.e.1 (0.0041) (0.0046) (0.0107) (0.0157)
p-value3 0.000 0.000 0.000 0.301

Uncertain 0.0086*** 0.0064 0.0294*** 0.0269
s.e.1 (0.0025) (0.0024) (0.0054) (0.0078)
p-value2 0.0014 0.1130 0.0001 0.1560

3p-value is the maximum of the p-value for the rejection group having no private information (Wald test) and the p-value 
for the hypothesis that the difference is less than or equal to zero, where the latter is computed using bootstrap

Table 4: Robustness to Moral Hazard: No Insurance Sample

LTC, Price Controls

1Bootstrapped standard errors computed using block re-sampling at the household level (results shown for N=1000 
repetitions)

2p-value for the Wald test which restricts coefficients on subjective probabilities equal to zero

*** p<0.01, ** p<0.05, * p<0.10

Life, Price Controls



Reject 1.827 1.661 1.428
5%1 1.657 1.524 1.076
95% 2.047 1.824 1.780

No Reject 1.163 1.069 1.350
5%1 1.000 1.000 1.000
95% 1.361 1.840 1.702

Difference 0.664 0.592 0.077
5%2 0.428 0.177 -0.329
95% 0.901 1.008 0.535

25/95% CI computed using bootstrap block re-sampling at the household 
level (N=1000 Reps); 5% level extended to include 1.00 if p-value of F-test 
for presence of private information for the rejectees is less than .05; 
Bootstrap CI is the union of the percentile-t bootstrap and bias corrected (non-
accelerated) percentile invervals from Efron and Gong (1983).

Note: Minimum Pooled Price Ratio evaluated for X s.t. Pr{L|X} = Pr{L} in each 
sample

Table 5: Minimum Pooled Price Ratio

LTC Disability Life

15/95% CI computed using bootstrap block re-sampling at the household 
level (N=1000 Reps); 5% level extended to include 1.00 if p-value of F-test 
for presence of private information is less than .05; Bootstrap CI is the union 
of the percentile-t bootstrap and bias corrected (non-accelerated) percentile 
invervals from Efron and Gong (1983).
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