
NBER WORKING PAPER SERIES

LOG ODDS AND ENDS

Edward C. Norton

Working Paper 18252
http://www.nber.org/papers/w18252

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
July 2012

The views expressed herein are those of the author and do not necessarily reflect the views of the National
Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2012 by Edward C. Norton. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given to
the source.



Log Odds and Ends
Edward C. Norton
NBER Working Paper No. 18252
July 2012
JEL No. C25,I19

ABSTRACT

Although independent unobserved heterogeneity—variables that affect the dependent variable but
are independent from the other explanatory variables of interest—do not affect the point estimates
or marginal effects in least squares regression, they do affect point estimates in nonlinear models such
as logit and probit models.  In these nonlinear models, independent unobserved heterogeneity changes
the arbitrary normalization of the coefficients through the error variance.  Therefore, any statistics
derived from the estimated coefficients change when additional, seemingly irrelevant, variables are
added to the model.  Odds ratios must be interpreted as conditional on the data and model.  There is
no one odds ratio; each odds ratio estimated in a multivariate model is conditional on the data and
model in a way that makes comparisons with other results difficult or impossible. This paper provides
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1. INTRODUCTION 

 Researchers often struggle with how to present the results from a model with a 

dichotomous dependent variable in a meaningful way.  The most common ways to report results 

tend to fall along disciplinary lines.  Epidemiologists, clinical researchers, and health services 

researchers often report odds ratios after estimating a logit model. Economists tend to report 

marginal effects, and are split on estimating logit, probit, and linear probability models.  There is 

an increasing recognition that independent unobserved (or neglected) heterogeneity—variables 

that affect the dependent variable but are independent from the other explanatory variables of 

interest—affect the interpretation of the results (Mroz and Zayats 2008; Mood 2010).  This is in 

contrast to linear regression models, where independent unobserved heterogeneity does not affect 

the magnitude of the coefficients or the corresponding marginal effects. 

 The fundamental issue is that including or excluding independent unobserved 

heterogeneity changes the information that the results are conditioned on.  While conditioning on 

independent unobserved heterogeneity does not substantively affect the results in linear models, 

conditioning matters greatly in nonlinear models.  In nonlinear models, conditioning on the mean 

of a variable leads to a different prediction than averaging predictions over all possible values.  

The difference leads to predictable differences in the magnitude of the reported results due to 

normalization of the error variance—and should lead to a different interpretation of statistics, 

such as the odds ratio, that are based only on the estimated coefficient.  Unfortunately, the 

importance of conditioning to the interpretation is often neglected.  The odds ratio must be 

reported conditional on the model specification because other model specifications will lead to 

different, often dramatically different, estimated odds ratios.  The odds ratio is not invariant to 

the model specification involving variables that are independent of the variables of interest.  In 
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contrast, marginal effects are largely unaffected by independent unobserved heterogeneity in 

nonlinear models. 

 Omitted variable bias in linear regression is a well-known problem (Griliches 1957).  

(Omitted variables that are correlated with the variables of interest cause omitted variable bias 

due to endogeneity; that challenging topic is not the topic of this paper.)  Later statistical work 

focused on what conditions were needed for independent unobserved heterogeneity to matter for 

logit and probit models and other nonlinear models (Lee 1982; Gail, Wieand, Piantadosi 1984; 

Yatchew and Griliches 1985).  While the odds ratio interpretation of coefficients from logit 

models increasingly became the norm, some researchers raised concerns about the 

understandability of odds ratios (e.g., Greenland 1987; Sackett, Deeks, Altman 1996; Altman, 

Deeks, Sackett 1998; Schwartz et al. 1999; Walter 2000; Kleinman and Norton 2009; Tajeu et al. 

2012).  More recently, Allison (1999) explained why odds ratios cannot be compared across 

samples.  Mood (2010) extended this work nicely to show how odds ratios cannot be interpreted 

as substantive effects, nor can they be compared across models or across groups within models.  

Mroz and Zayats (2008) also pointed out the importance of unobserved heterogeneity in several 

kinds of models. 

 This paper builds on the prior literature and adds to it in several important ways.  I 

provide a comprehensive review of independent unobserved heterogeneity in nonlinear models 

and how independent unobserved heterogeneity affects interpretation in meaningful ways.   I 

start with linear regression to show the intuition for why independent unobserved heterogeneity 

in linear models does not affect the interpretation of the results.  I review what is known from 

econometric theory about independent unobserved heterogeneity in nonlinear models.  I show 

simple Monte Carlo results from probit and logit models to compare and contrast with the linear 
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regression results.  I provide intuition from math, graphs, and simple stories, to explain why 

unobserved heterogeneity matters more in nonlinear models.  The graphs are new and provide 

novel insights about the interpretation.  I discuss results from other Monte Carlo simulations that 

do not adhere to the assumptions required for nice results, but reflect patterns more commonly 

found in real data, and discuss under what circumstances the independent unobserved 

heterogeneity seems to matter most.  This paper also has a number of new results.  I provide new 

insights from how unobserved heterogeneity matters in the interpretation of conditional fixed 

effects models.  The discussion in not restricted to the logit model, but I explain how 

independent unobserved heterogeneity affects probit, linear probability, multinomial, and 

ordered models.  Because risk ratios are an alternative to odds ratios, I present some evidence on 

how they are affected by unobserved heterogeneity.  Most importantly, I argue that the long-

standing argument in the literature against odds ratios (because they are hard to understand) is 

actually much more powerful.  They are much harder to understand than previously thought—it 

is not only that people generally think risk ratio when they see “odds ratio” but more importantly 

that the odds ratio has an extremely narrow, precise, and non-generalizable meaning because it is 

conditioned on the data and the model.  Correctly explaining odds ratios is now even harder.  

Finally, I have recommendations for best practice. 

 Many prior papers have criticized the use of odds ratios (or log odds) in multivariate 

analysis (Greenland S 1987; Sackett DL, Deeks JJ, Altman DG 1996; Altman DG, Deeks JJ, 

Sackett DL 1998; Schwartz et al. 1999; Kleinman LC, Norton EC 2009; Tajeu et al. 2012).  

While odds ratios have nice properties—they are simple to calculate and invariant to which risk 

is in the numerator and which is in the denominator—many researchers have complained that 

odds ratios are hard to understand.  The specific complaint has been that odds ratios are often 



5 
 

misinterpreted as risk ratios, yet mathematically they diverge significantly from risk ratios when 

the baseline risk exceeds around 10 percent.  This paper explains another reason why odds ratios 

are hard to understand.  No odds ratio calculated from a multivariable model applies generally to 

all populations.  Odds ratios are conditional on the model specification and conditioning is hard 

to explain.  A different model will lead to a different calculated odds ratio, even when adding or 

excluding seemingly irrelevant variables or controlling for fixed effects.  Odds ratios should only 

be reported when the information that the results are conditioned on is clear. 

 

2. REVIEW OF OLS 

 In least squares regression, adding covariates that are independent of all the covariates 

already in the model has no effect on the magnitude of the coefficients on those covariates of 

interest (Griliches 1957).  Therefore, marginal and incremental effects are also unaffected.   

However, adding independent covariates reduces the standard errors on the coefficients 

of the covariates already in the model and thereby raises the t-statistics and lowers the p-values.  

The reason is obvious from the formula for the variance-covariance matrix of the estimated 

coefficients:  ܸ൫ߚመ൯ ൌ  ଶሺܺ′ܺሻିଵ.  The standard error for an estimated coefficient is proportionalߪ

to the variance of the model error ߪଶ, so when additional important covariates are added, the 

error variance shrinks.  Additional independent covariates leave ሺܺ′ܺሻିଵ unaffected on the main 

diagonal for the coefficients of interest. 

 I demonstrate these properties in two ways using Monte Carlo data.  Both examples use 

linear regression; the first has a continuous dependent variable and the second has a dichotomous 

dependent variable.  Although these examples are trivial, they serve as good comparisons for the 

more complicated nonlinear models that are the focus of this paper.   
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The continuous dependent variable y is a linear function of a dummy variable ݔௗ and four 

continuous variables ݔଵ through ݔସ.  For these illustrative examples, the variables of interest are 

the dummy variable (ݔௗ) and the first two continuous covariates (ݔଵ and ݔଶ).  In equation (1), the 

third and fourth continuous covariates are in parentheses to indicate that they are the unobserved 

heterogeneity and can sometimes be part of the error term.   

ݕ                               ൌ ௗݔ0.5 ൅ ଵݔ ൅ ଶݔ2 ൅ ሺݔଷ ൅ ସሻݔ3 ൅  (1)    ߝ

The mean of the continuous dependent variable is about 0.25 (see Table I).  The dummy 

covariate has a mean of one-half and the continuous covariates all have zero mean. 

To make these examples as clear as possible, it is important to have covariates that are 

perfectly independent, not just having correlation close to zero.  After creating normally 

distributed variables (N = 10,000) and a dummy independent variable, I ensure independence by 

projecting each covariate on the others and replacing the variable with the residual.  The 

correlation matrix shows that the covariates are all independent of each other (see Table II). 

The main parameters of interest are the first three coefficients in the model (0.5, 1.0, and 

2.0).  In a least squares regression model the estimated coefficients on the three variables of 

interest are exactly 0.5, 1.0, and 2.0—the joys of the perfectly controlled world of Monte Carlo 

data (see Table III).  What happens to the coefficients of interest in equation (1) when other 

independent variables ݔଷ and ݔସ  are added?  The coefficients remain exactly the same.  The first 

column shows the regression of y on just the dummy variable and the first two continuous 

variables.  In the second column, the other two continuous variables are added.  The coefficients 

on the three variables of interest remain unchanged.  The standard errors for these coefficients 

predictably decline by a ratio of about 4.53, which is the ratio of root mean squared errors in 

these two models.  The t-statistics increase and the p-values decrease as expected.   
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The corresponding linear probability model, with a dichotomous dependent variable, is 

instructive for later comparisons to probit and logit models.  The dichotomous dependent 

variable ݕௗ is constructed from the continuous dependent variable.  If y is a latent continuous 

variable, then ݕௗ is the corresponding dichotomous variable, equal to one if y is positive. 

ௗݕ ൌ 1ሺݕ ൐ 0ሻ ≡ 1ሺ0.5ݔௗ ൅ ଵݔ ൅ ଶݔ2 ൅ ሺݔଷ ൅ ସሻݔ3 ൅ ߝ ൐ 0ሻ     (2) 

The mean of the dichotomous dependent variable is just over one-half. 

The results for the linear probability model, with the dependent variable ݕௗ, are 

qualitatively similar in terms of adding in the unobserved heterogeneity.  Adding independent 

covariates does not affect the point estimates of the coefficients of interest (see the third and 

fourth columns of Table III).  The coefficients are, of course, different than in the linear 

regression with y as the dependent variable.  The coefficients of interest are now about 0.04, 

0.08, and 0.16 (same proportions as before).  These are the numbers that will be most 

comparable to the marginal effects calculated later from logit and probit models on the same 

data.  The decline in the standard errors from the simpler model to the model including the 

unobserved heterogeneity is proportional to the decline in the root mean square error, as before.  

There are no surprises in Table III. 

 The results from these illustrative examples for OLS apply to other situations.  As long as 

the unobserved heterogeneity is independent of the other covariates, then the inclusion or 

exclusion of these variables has no effect on the point estimates of the covariates of interest.  

Marginal and incremental effects are unchanged.  The statistical significance, however, does 

depend on whether the unobserved heterogeneity is included in the model.  These results do not 

depend on the distribution of the dependent variable—in addition to normal and dichotomous, 

the dependent variable can be uniform, skewed, log transformed, count, or any other distribution.  
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The nuisance variables can be correlated with each other, just not with the variables of interest.  

In the interest of space, I have only included the simple examples in order to focus on less well 

known results for nonlinear models. 

 

3. BASIC PROBIT AND LOGIT 

 Proving what happens to estimated coefficients in probit and logit models is more 

complicated than in linear models.  The crux of the problem is that these models do not estimate 

the coefficients , instead they estimate ߪ/ߚ.  The normalization is clear by rewriting equation 

(2), the probability that ݕௗ ൌ 1 conditional on covariates x, and showing that it is the same as the 

probability that ݕ ൐ 0, conditional on covariates x and then rewriting the expression in terms of a 

normalized error.  Start by showing the relationship between the dichotomous dependent variable 

to its latent continuous dependent variable. 

ௗݕሺݎܲ ൌ ሻݔ|1 ൌ ݕሺݎܲ ൐  ሻ   (3)ݔ|0

Write this in terms of the linear index and then put the mean-zero error on one side. 

ௗݕሺݎܲ ൌ ሻݔ|1 ൌ ௗݔሺ0.5ݎܲ ൅ ଵݔ ൅ ଶݔ2 ൅ ሺݔଷ ൅ ସሻݔ3 ൅ ߝ ൐  ሻݔ|0

ൌ ߝሺݎܲ ൏ ௗݔ0.5 ൅ ଵݔ ൅ ଶݔ2 ൅ ሺݔଷ ൅  ሻݔ|ସሻݔ3

If the mean-zero error term is normalized by its standard error, then one can make statistical 

statements about the probability that a standardized error takes on a range of values, after 

assuming a particular distribution for the error (e.g., normal or logistic). 

ௗݕሺݎܲ ൌ ሻݔ|1 ൌ ݎܲ ቆ
ߝ
ߪ
൏
ௗݔ0.5 ൅ ଵݔ ൅ ଶݔ2 ൅ ሺݔଷ ൅ ସሻݔ3

ߪ
 ሺ4ሻ																	ቇݔ|

 The root mean squared error  cannot be estimated in a probit or logit model.  The root 

mean squared error depends on the unit of the dependent variable.  For example, in a model of 

wages (unlogged) the magnitude of  depends on whether wages are measured in dollars, 
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pennies, euros, pounds, yen, yuans, or other currency.  In the corresponding probit or logit, the 

dependent variable measures whether wages exceed some absolute monetary threshold—the 

currency is irrelevant. 

 Therefore, while textbooks often present this as an arbitrary normalization (set ߪ ൌ 1), it 

is better to think of this instead as the models estimate the ratio of ߪ/ߚ.  The distinction between 

 and ߪ/ߚ is central to this paper, and the ratio ߪ/ߚ depends on which variables x are being 

conditioned on.  As nuisance variables are added to the model, they are removed from the error 

term.  This makes the error variance smaller and the estimate of ߪ/ߚ larger. 

 The other issue for formal proofs is that taking expectations depends on functional form.  

Showing nice results is easy only for certain functional forms.  Wooldridge (2002) proves that if 

an omitted variable is normally distributed and independent of the other variables in the model, 

then the probit will consistently estimate ߪ/ߚ. 

 Is an estimate of ߪ/ߚ useful?  In section 4, where I discuss interpretation, I argue that the 

answer is yes—if the results are presented in terms of quantities that do not depend on  but 

instead depend on ߪ/ߚ.  Average partial effects, the marginal effect of a change in a variable 

averaged over the distribution of omitted variables, depend on ߪ/ߚ and are unaffected (given the 

strong assumptions of normality and independence).  In contrast, the odds ratio (from a logit 

model) depends on , so using ߪ/ߚ as an estimate of  will give different magnitude of results 

depending on whether independent variables are included or omitted from the model.  There is 

more explanation in section 4. 

 Before showing results for the logit, I return to the probit model, where it is well known 

what will happen to the estimated ߪ/ߚ when independent variables are added to the model 

(Wooldridge 2002).  Using the same data as for the linear probability model, the results for 
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probit at first appear quite different (see Table IV).  In contrast to the linear regression where 

coefficients are identical across the model specifications, for the probit the estimated ߪ/ߚ 

increase when independent variables are added.  For example, the estimated coefficient (actually 

 on the dummy variable increases from 0.1122, to 0.1193, to 0.5033 when the two (ߪ/ߚ

independent covariates are added sequentially.  The estimated coefficients on the two other 

variables of interest also increase, by roughly similar proportions. 

The standard errors increase overall, but it is hard to make specific statements about the 

magnitude of the change because of two opposing effects.  One effect is that the standard error 

shrinks as the model error gets smaller, just as in linear regression models.  The other effect is 

that the coefficient is rescaled by , which should increase the absolute magnitude of the 

standard error in proportion to . 

 If the estimated coefficients change, then do the marginal and incremental effects also 

change in the probit model?  No, these statistics are basically unaffected (see Table V).  The row 

marked “IE” indicates the incremental effect of a change in the dummy variable.  The rows 

marked “ME” indicate the marginal effects of a change in a continuous variable.  These marginal 

and incremental effects correspond to the coefficients in the linear probability model (see Table 

III) which are also marginal or incremental effects.  The estimated marginal and incremental 

effects are virtually the same across model specifications, and are essentially the same for both 

the linear probability model and the probit.  The differences in the estimated marginal effects are 

well within the standard errors; these results confirm what Wooldridge proved (2002).  The 

standard errors are similar in the probit compared to the linear probability model, although a bit 

smaller in the probit, especially in column 3.   
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 While the incremental effect is a difference between two probabilities, the risk ratio is the 

ratio of two probabilities.  Because the risk ratio is calculated from ߪ/ߚ  and not from , it too is 

largely unaffected by independent unobserved heterogeneity.  The rows in Table V marked “RR” 

show that these quantities are essentially unchanged across model specifications. 

 Lee (1982) discusses the situations in which omitted variables do not affect the estimated 

coefficients of the included variables for logit and multinomial logit models.  He proves that the 

sufficient condition is that, conditional on the dependent variable, the omitted and included 

variables must be independent.  The additional conditioning on the dependent variable is stronger 

than in the linear regression model.  The Monte Carlo data for this paper were constructed so that 

the additional variables are independent conditional on the dependent variable as well, so this 

property is satisfied. 

 The logit results for the same Monte Carlo data are similar to those of the probit, with one 

important exception.  As before, the estimated coefficients (again, really ߪ/ߚ) increase when 

omitted independent variables are added back into the model (see columns 4 through 6 of Table 

IV).  The difference is that the magnitudes of the logit coefficients are larger than those of the 

corresponding probit, by the well-known amount of roughly 1.6. 

 Like the probit, the estimated incremental and marginal effects and the risk ratios are 

largely unaffected by the inclusion or exclusion of the independent unobserved heterogeneity.  

The magnitudes of the marginal effects are nearly identical to those of the probit and linear 

probability model, certainly the same within the confidence intervals. 

 For the logit, many researchers like to report odds ratios, which are exponentiated 

coefficients.  Actually—and this distinction is critical—exponentiated ߪ/ߚ conditional on the 

variables in the model.  Odds ratios increase when independent omitted variables are added to 
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the model (see Table VIII).  The increase can be substantial.  Adding in ݔସ to the model 

increases the odds ratios of the other variables by several orders of magnitude. 

 In one specific Monte Carlo example I have shown that the marginal effects in probit and 

logit models are nearly constant.  I have also run many other Monte Carlo experiments to show 

that this holds empirically in many other situations (results not reported in tables).  It holds for 

dependent variables whose mean is close to zero or close to one, not just for a mean near one-

half.  It holds for many different distributions of included and omitted variables:  normal, 

logistic, and uniform.  However, it does not seem to hold for highly skewed data, such as the 

exponential of a random normal.  More research could be done to understand exactly which 

distributions matter.  

 

4. INTERPRETATION 

 Next I provide interpretation of the various statistics produced by probit and logit models.  

The interpretation is fundamentally linked to the variables in the model (or those excluded), even 

when those variables are independent of the variables of interest.  This is an important difference 

from interpreting linear regression models, and again shows how intuition from the familiar 

linear regression model fails in nonlinear models.  The differences in results across the different 

model specifications are due to differences in what is being conditioned on.  The simpler models, 

with independent unobserved heterogeneity as part of the error term, are conditioned on fewer 

variables.  The richer models, which include the independent variables, are conditioned on more 

variables.  This conditioning affects both the magnitudes of statistics like odds ratios and their 

interpretation.  
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 One way to understand the intuition for why the estimated coefficients ߪ/ߚ get larger as 

independent variables are added to the model is to return to the formulas.  The mathematical way 

to see this is through equation (4) (see also Mroz and Zayats (2008) for a similar discussion of 

the probit model).  When ݔଷ and ݔସ are excluded from the model and therefore part of the error 

term, then the model error  is larger than when ݔଷ and ݔସ are included in the model. 

ௗݕሺݎܲ ൌ ,ௗݔ|1 ,ଵݔ ଶሻݔ ൌ ݎܲ ൬
ߝ

ௗଵଶߪ
൏
ௗݔ0.5 ൅ ଵݔ ൅ ଶݔ2

ௗଵଶߪ
 ሺ5ሻ																	൰ݔ|

ௗݕሺݎܲ ൌ ,ௗݔ|1 ,ଵݔ ,ଶݔ ,ଷݔ ସሻݔ ൌ ݎܲ ൬
ߝ

ௗଵଶଷସߪ
൏
ௗݔ0.5 ൅ ଵݔ ൅ ଶݔ2 ൅ ଷݔ ൅ ସݔ3

ௗଵଶଷସߪ
 ሺ6ሻ						൰ݔ|

The logit model estimates ߚ ⁄ௗଵଶߪ  and ߚ ⁄ௗଵଶଷସߪ . 

 But it is easier to understand the importance of conditioning using a different example, 

one that explicitly shows the importance of conditioning on values of the independent variable 

and allows for simple graphs.  For this second Monte Carlo example, there are two explanatory 

variables.  The first variable ݓଵ takes on discrete values of one through seven (think of this as 

answers on a seven-item Likert scale).  The second variable ݓଶ has three discrete values: –1, 0, 

and 1.  There are 21 unique combinations of these two variables; I generated 10 observations for 

each unique combination, for a total of 210 observations.  The two variables are independent 

from each other by construction.  The data generating process has the dichotomous dependent 

variable y equal to one if the sum of ݓଵ and 2ݓଶ plus a random normal error ߱ (mean zero) 

exceed 4, giving the mean value of y about one-half.  

ݕ ൌ 1ሺݓଵ ൅ ଶݓ2 ൅ ߱ ൐ 4ሻ																						ሺ7ሻ 

 Before showing the logit results, it is useful to discuss the results from the linear 

probability model.  The results from the simple and the richer linear probability models (N = 

210) are 
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ݕ ൌ െ0.1 ൅ ܴଶ																											ଵݓ0.146 ൌ ොߪ					0.34 ൌ 0.41 

ݕ ൌ െ0.1 ൅ ଵݓ0.146 ൅ ܴଶ						ଶݓ0.307 ൌ ොߪ					0.60 ൌ 0.32 

 The graph of the predicted probability that ݕ ൌ 1 is linear in ݓଵ and ݓଶ (see Figure 1).  A 

one-unit increase in ݓଵ raises the predicted probability by 14.6 percentage points.  A one-unit 

increase in ݓଶ shifts the predicted probability by about 31 percentage points for any value of ݓଵ.  

More importantly for comparison with the logit model, for a given value of ݓଵ, the following are 

identical:  the average of the predictions over all values of ݓଶ and the prediction of the average 

of ݓଶ (i.e., ݓଶ ൌ 0).  Of course, this graph also illustrates the main problem with linear 

probability models—some predicted probabilities are outside the feasible range of [0,1].  Next 

we estimate a logit model, which constrains predictions to be within the feasible range, on the 

same data. 

 The logit model shows that, not surprisingly, the estimated coefficient (again, ߪ/ߚ) on ݓଵ 

is positive, and increases when ݓଶ is added to the model (see Table IX).  The odds ratio also 

increases, while the average marginal effect stays about the same.  This is consistent with the 

prior results when adding a variable that is independent of the other covariates to the model. 

 The advantage of this simple discrete design is that it allows for easy graphing of the 

results (see Figure 2).  The dots connected by the solid line represent predicted values of the 

dependent variable from the simple model that only includes ݓଵ.  These predictions follow the 

familiar S-curve, showing that an increase in ݓଵ increases the probability that the dependent 

variable equals one, but in a nonlinear way.  The other dots, and lines connecting them, represent 

various calculations from the model that also includes ݓଶ.  The predicted probability that the 

dependent variable equals one, conditional on ݓଶ ൌ 1  (or ݓଶ ൌ െ1), is represented by the upper 

(or lower) S-curve, connected by dots.  In between the outer lines are the predictions for ݓଶ ൌ 0, 
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connected by long dashes.  Lying close to the first set of predictions are the average predictions 

for the second model, conditional only on ݓଵ.  This graph illustrates the importance of 

conditioning.   

 Consider the predicted probability that  ݕ ൌ 1 conditional on ݓଵ for the richer model, 

which includes ݓଶ.  Of particular interest is the difference between averaging over all the three 

possible values of ݓଶ compared to conditioning on ݓଶ ൌ 0.  Jensen’s Inequality, which states 

that the mean of a nonlinear function does not equal the nonlinear function of the mean, applies.  

Computing predictions for all observations and then taking the average (given  ݓଵ) yields 

predicted probabilities conditional on ݓଵ that are quite close to those of the simple model.  

However, first taking the mean of ݓଶ (i.e., condition on ݓଶ ൌ 0) and then computing predicted 

probabilities yields the curve connected by the long dashes.  Predicted probabilities conditional 

on ݓଶ ൌ 0 are further away from 0.5 than averaging over all values of ݓଶ.  Why?  Conditional 

probabilities are based on ߪ/ߚ with a smaller ߪ, making them larger in absolute value.  More 

information (conditioning on more variables) improves the ability to sort the data into those that 

are likely to have ݕ ൌ 1 and those that are likely to have ݕ ൌ 0.  The observations that continue 

to have predictions in the mid-range, even after conditioning on lots of variables, are the 

observations that are more likely to be affected by the variables of interest. 

 Here we can visualize the main intuition.  When conditioning on more variables, the 

coefficient on ݓଵ increases, which makes the slope of the CDF with respect to that variable 

steeper in the middle range.  Consider what happens for a particular value of ݓଵ.  Let ݓଵ ൌ 2.  

Without conditioning on ݓଶ, the mean predicted probability is about 0.15 (from the simple logit 

model).  Also conditioning on ݓଶ leads to three different predictions.  The predicted probabilities 

for ݓଶ ൌ 0 and ݓଶ ൌ െ1  are close together because of the floor effect—probabilities are bound 



16 
 

by zero; this is in contrast to the linear probability model that allows nonsensical negative 

predicted probabilities.  Therefore, the average predicted probability over the three values of ݓଶ 

lies between the values for ݓଶ ൌ 0 and ݓଶ ൌ 1, and is about the same as the unconditional 

amount.  The nonlinearity of the logit function for this calculation is clear from the graph.  

 Next consider how conditioning affects the odds ratio.  Part of the appeal of the odds 

ratio is that it simplifies a complicated nonlinear equation to a single number.  However, even 

though the formula does not appear to depend directly on any other covariate (everything falls 

out), the interpretation does fundamentally depend on the covariates in the model.  The 

simplicity of the formula belies the complexity of the interpretation.  Here is the derivation of the 

odds ratio for the dummy variable in the first Monte Carlo example, where the odds are the ratio 

of the probability to one minus the probability. 

ௗݕሺݏܱ݀݀ ൌ ௗݔ|1 ൌ 1, ሻݔ ൌ ݁
଴.ହା௫భାଶ௫మା௫యାଷ௫ర

ఙ೏భమయర ௗݔ| ൌ 1,  	ሺ8ሻ					ݔ

ௗݕሺݏܱ݀݀ ൌ ௗݔ|1 ൌ 0, ሻݔ ൌ ݁
௫భାଶ௫మା௫యାଷ௫ర

ఙ೏భమయర ௗݔ| ൌ 0,  	ሺ9ሻ					ݔ

 This example includes both ݔଷ and ݔସ in the model specification, so the error variance 

ௗݕ ௗଵଶଷସ is explicitly conditional on all those variables.  The odds ratio thatߪ ൌ 1 comparing 

ௗݔ ൌ 1 to ݔௗ ൌ 0 and conditional on the other x variables is 

ௗݕሺ݋݅ݐܴܽݏܱ݀݀ ൌ ሻݔ|1 ൌ ݁
଴.ହ

ఙ೏భమయర|ݔ														ሺ10ሻ	 

The explicit dependence of this odds ratio on the error variance and also on the other variables x 

is rarely acknowledged, even in textbooks.  Yet, clearly the model specification will affect  and 

hence the estimated coefficient ߪ/ߚ, and therefore the reported odds ratio (Mood 2010). 

 The common complaint about reporting only estimated coefficients from a logit or probit 

model is that the coefficients on their own are hard to interpret, without further manipulation.  
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The same can almost be said about odds ratios.  To be clear, an estimated odds ratio does have a 

specific interpretation, but the correct interpretation is far more complex than commonly 

believed or reported (Mood 2010).  Without stating the proper conditioning, a statement like, 

“The estimated odds ratio is 1.5.” is factually incorrect.  A more accurate, but imprecise, 

statement would be “An estimated odds ratio is 1.5.”  A correct precise interpretation might be, 

“The estimated odds ratio is 1.5 conditional on age, gender, race, and income, but a different 

odds ratio would be found if the model also controlled for other important factors not included in 

the data set.  This estimated odds ratio cannot be directly compared to odds ratios estimated from 

other data sets, or even from the same data set with different model specification.”  The odds 

ratio is primarily useful to show the sign and statistical significance of an effect, but the same can 

be said about the estimated coefficient ߪ/ߚ.  Other statistics derived from ߪ/ߚ have the same 

problem.  Odds, log odds, and log odds ratios are all conditional on the model specification. 

 In contrast, the average marginal effect does not have this problem.  This has been proved 

rigorously for the case of independent omitted variables for the probit model and for omitted 

variables that are independent of both the dependent variable and other explanatory variables for 

the logit (and multinomial logit) (Lee 1982; Yatchew and Griliches 1985; Wooldridge 2002).  As 

Wooldridge explains the intuition, the formula for the marginal effect in a probit model has two 

parts 
ఉ

ఙ
߶ ቀ௫ఉ

ఙ
ቁ, and an increase in  lowers the first term ߪ/ߚ and raises the second term ߶ ቀ௫ఉ

ఙ
ቁ. 

Because incremental effects are similar to marginal effects—they are a discrete 

difference instead of a derivative—incremental effects and risk differences empirically tend to be 

unaffected by the inclusion or exclusion of independent variables.  I confirmed this with Monte 

Carlo experiments on a variety of data sets with different distributions.  When the incremental 

change was small, for most distributions the incremental effect was essentially unchanged.  As 
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with marginal effects, however, when the distribution of the omitted variable was highly skewed, 

then the incremental effect changed. 

 The risk ratio is in between the marginal effect and the odds ratio in terms of being 

affected by unobserved heterogeneity.  In my Monte Carlo simulations, the risk ratio seemed to 

shift more than marginal effects, but still far less than odds ratios.  More research could be done 

to understand exactly which distributions matter. 

 

5. FIXED EFFECTS MODELS 

 Hoes does unobserved heterogeneity inform the interpretation of fixed effects models?  

With panel data, the researcher can often control for unobserved heterogeneity that is common to 

a group of observations.  For example, in repeated observations on individuals, an individual 

fixed effect controls for characteristics of the person that are time invariant, such as gender, eye 

color, and perhaps risk preferences.  Individual fixed effects would not control for time-varying 

characteristics such as age, education (for a young sample), or health status.  Controlling for 

fixed effects in linear regression, which has fixed effects independent of the variables of interest, 

has exactly the same effect on the coefficient found before—none.   

 The logit model with fixed effects is more interesting, however, than just adding 

independent variables to a logit, for three reasons.  One reason is that marginal effects are not 

defined in a Chamberlain conditional fixed effect logit model (Chamberlain 1980).  The fixed 

effects are never estimated.  There is no constant term, and the only way to interpret the 

estimated coefficients is as an odds ratio (unless one makes strong additional assumptions, 

discussed below).  The second reason is that the results are conditional on the data in another 

way.  Observations with no within-group variation in the dependent variable are dropped from 
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the model.  This does more than change the sample size—it changes the interpretation and the 

generalizability of the results.  The third reason is that we can now better understand how to 

interpret case-control studies, which are a common study design in epidemiology where subjects 

are matched on some common characteristics but differ on one important variable of interest 

(e.g., treatment).   

 Returning to the first reason, consider analyzing one large data set, with clusters at the 

state, zip code, household, and individual level.  How will the results change if one adds fixed 

effects at progressively finer levels, starting at the state level and moving to the individual level?  

In linear regression, if all the fixed effects are independent of the variables of interest, then the 

marginal effects will remain the same no matter the level of the fixed effects.  In a logit model 

with fixed effects, as the fixed effects are applied at a finer level, then the coefficients (again, 

 get larger because of the renormalization.  So far, this is just the same as with other (ߪ/ߚ

independent variables.   

 One major difference between a fixed effects logit and a regular logit is that one cannot 

directly compute predicted probabilities from the conditional fixed effects model.  The lack of a 

constant term means that only relative statements about risks can be made.  Without further 

assumptions, the odds ratio is the only possible interpretation.  Statistical packages like Stata 

allow the user to make additional assumptions and thereby calculate predicted probabilities.  For 

example, one can assume that all the fixed effects are zero.  But it is odd to go to the trouble of 

modeling fixed effect heterogeneity carefully and then assume homogeneity when making 

predictions.  Therefore, in this model with no constant term, the odds ratio interpretation can be 

useful, as long as proper conditioning is understood. 
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In a conditional logit model with fixed effects some observations may be dropped.  Any 

observation from a group that does not have variation in the dependent variable within the group 

will be dropped.  This is consistent with the graph of predicted values from the simple logit 

model.  When the variable ݓଶ was added to the model, then more of the conditional predicted 

probabilities were close to either zero or one.  More information allows for better sorting, and 

fixed effects at a fine level add much more information.  The remaining observations are those 

that have at least one observation with ݕ ൌ 1 and at least one with ݕ ൌ 0 within the same cluster.  

The name conditional logit is because the results are conditional on the sum of the dependent 

variable within a group.  Analogous to the local average treatment effect (LATE) interpretation 

of instrumental variables, in a fixed effects logit model when observations are dropped from the 

model, the interpretation of the effect applies to the remaining marginal observations.  In a short 

panel in which many observations are dropped, the remaining observations are not representative 

of the entire data set, and the interpretation is only about those whose clusters are not dropped.  

 Another way to think about conditioning in the fixed effects logit model is for the case-

control study.  Consider a simple hypothetical study design; let there be one treatment person 

matched to each control person.  With no conditioning, the matching could be strange.  For 

example, just picking two human beings at random from anywhere in the world could result in a 

4-year old girl from Indonesia matched to 82-year old sheep farmer from the Australian Outback.  

With no matching on controls, the results from pairs like this would not be very informative.  

Yes, there may be a difference in outcome, but if there is, is the difference due to the treatment or 

any of the other innumerable differences between these two people?  This corresponds to having 

a relatively small ߪ/ߚ because ߪ is large because there is so much unaccounted for in the model. 
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At the other extreme, consider matching pairs of monozygotic twins, or a person to 

themselves in different time periods (pre-post trial).  When holding nearly all relevant factors 

constant (e.g., age, gender, genetics, current health, health history, smoking status, risk 

preferences) the effect of a treatment relative to a control can be isolated.  In a conditional fixed 

effects logit model, many of the paired observations will fall out of the model because both have 

the same outcome—conditional on all the matching characteristics, the treatment did not matter.  

However, for those pairs of observations with different outcomes, the effect of treatment is 

strong.  This corresponds to having a relatively large ߪ/ߚ because ߪ is small because there is so 

much accounted for in the model. 

 The results from a conditional fixed effects logit model can only be interpreted as 

conditional on the fixed effects.  Returning to example with clusters at the state, zip code, 

household, and individual level:  Fixed effects at a different levels lead to different magnitudes 

of the estimated ߪ/ߚ conditioned on those other fixed effects.  The results are not directly 

comparable; the interpretation is completely different. 

The bottom line is that in a conditional fixed effects logit model, the exponentiated 

estimated coefficient (ߪ/ߚ) can be interpreted as the odds ratio in a precise and meaningful way.  

But the correct precise interpretation (conditional on the data and model specification) means 

that the magnitude cannot be directly comparable to other results.  In contrast, marginal effects 

cannot be calculated directly from the conditional fixed effects logit model.  An understanding of 

what conditioning means in this model is useful in understanding what conditioning means in 

regular logit models. 
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6. EXTENSIONS 

 All the points that apply to probit and logit models also apply to their related multinomial 

and ordered models.  Those models also have an arbitrary normalization and so the estimated 

coefficeints ߪ/ߚ again depend on independent unobserved heterogeneity. 

 The same issues also matter in two-stage residual inclusion, the control function 

instrumental variables method for dealing with endogeneity when the main dependent variable is 

dichotomous and the endogenous variable is continuous (Newey, Powell, Vella 1999; Terza, 

Basu, Rathouz 2008).  Independent unobserved heterogeneity in the main probit equation 

changes the point estimate of the endogenous variable of interest in the usual way.  The local 

average treatment effect interpretation is conditional on the model specification. 

 Mroz and Zayats (2008) discuss several of these issues in detail.  They make many of the 

same basic arguments made in this paper.  They show how excluding an independent normally 

distributed variable from a probit model will change the error variance and hence the arbitrary 

scaling of the estimated coefficients ߪ/ߚ.  This, they argue, has led to bias in several important 

nonlinear models.  Mroz and Zayats specifically show problems with tests of endogeneity in a 

conditional logit model, with the interpretation of multilevel models with binary outcomes, and 

for hazard models with heterogenetiy controls.  They point out that many problems of 

interpretation of arbitrarily scaled coefficients could be avoided by estimating the substantive 

effect of interest. 

 

7. IMPLICATIONS 

 There is no one odds ratio.  Each odds ratio estimated in a multivariate model is 

conditional on the data and model specification in a way that makes comparisons with results 
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from other models difficult or impossible (Allison 1999; Mood 2010).  A study that aims to 

estimate the odds ratio is misguided.  Given the voluminous literature in epidemiology, clinical 

research, health services research, and other social sciences that estimates and reports odds ratios 

without proper discussion of conditioning, arbitrary normalization of parameters, or independent 

unobserved heterogeneity, there is a long way to go to improve best practice and translation of 

results. 

 Another implication is that the importance of conditioning to the odds ratio interpretation 

complements and enhances the already strong criticism of reporting odds ratios on the basis of 

misunderstanding by others (Greenland 1987; Sackett, Deeks, Altman 1996; Altman, Deeks, 

Sackett 1998; Kleinman and Norton 2009; Tajeu et al. 2012).  Most prior arguments have 

focused on the difference between risk ratios and odds ratios, and how people mistakenly 

interpret odds ratios as risk ratios (Sackett, Deeks, and Altman (1996) also discuss other points).  

This paper adds to that debate by pointing out that the correct interpretation of odds ratios is even 

harder and more subtle to explain.  It is not enough understand odds ratios; an understanding of 

what the odds ratio is conditioned on is also necessary.  So while the odds ratio in multivariate 

analysis does have a precise interpretation, that interpretation is even harder to explain than 

previously thought. 

 What should researchers report when the dependent variable is dichotomous?  The 

answer depends on the research question.  There is no single right way for all studies.  Nonlinear 

models are inherently complicated, and predictions based on estimated models will depend on 

whether the predictions are conditional on a particular set of covariates or averaged over a 

distribution of covariates.  A linear probability model can be useful if the goal is an overall 

average marginal effect (Angrist 2001), although considerable caution is needed because of the 
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problems of predicted probabilities that lie outside of [0,1] and the assumption of linearity of 

effects.  In a conditional fixed effects model (or case-control study design), interpreting results as 

odds ratios may be preferable to making additional assumptions needed to compute other 

summary statistics, although considerable caution is needed because of the importance of 

reporting the results as conditional on the fixed effects (or matched sample characteristics) and 

being applicable only to the subset of observations that are not dropped from the estimation 

sample.  Risk ratios may be preferable in many cases for reasons of interpretation (Kleinman and 

Norton 2009), but they are still conditional on the model specification.  More work is needed to 

understand how sensitive the adjusted risk ratio is to unobserved heterogeneity.  But in most 

cases, I believe that some version of a marginal or incremental effect, perhaps averaged over the 

sample or subsample, will be both most understandable to the reader and least sensitive to 

independent unobserved heterogeneity.  Mood (2010) has a comprehensive discussion of 

alternatives. 

In summary, the most important things are to answer the research question and to 

communicate the results clearly to the intended audience. 

 

8. CONCLUSION 

 The correct interpretation of odds ratios acknowledges that the magnitude is conditional 

on the model.  When more independent variables are included in the model, the error variance is 

reduced and the estimated coefficient ߪ/ߚ increases.  Yes, the odds ratio has meaning, but a 

narrow conditional meaning that cannot be directly compared to other models.  A vast literature 

in epidemiology, clinical medicine, health services research, and other social sciences reports 

odds ratios without the correct interpretation, and apparently without understanding that odds 
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ratios are highly sensitive to unobserved heterogeneity.  Given the documented difficulties that 

most people have in understanding odds ratios, this places further burden on researchers to 

correctly interpret the results to readers in a meaningful way.   
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Table I.  Summary Statistics for the first Monte Carlo data set. 
 

Variable Mean Std. Dev. Minimum Maximum 
 17.894 19.159- 4.64 250. ݕ
 ௗ .529 .499 0.0 1.0ݕ
 ௗ .500 .500 0.0 1.0ݔ
 ଵ 0.0 1.00 -3.558 3.324ݔ
 ଶ 0.0 1.00 -3.840 4.640ݔ
 ଷ 0.0 1.41 -4.793 5.223ݔ
 ସ 0.0 1.22 -4.776 5.082ݔ

        N = 10,000 
 
 
 
Table II.  Correlations of the variables in the first Monte Carlo data set. 
 

ௗݔ ௗݕ ݕ  ଵݔ ଶݔ ଷݔ  ସݔ
       1.0000 ݕ
      ௗ 0.7997 1.0000ݕ
     ௗ 0.0538 0.0391 1.0000ݔ
    ଵ 0.2154 0.1775 0.0000 1.0000ݔ
   ଶ 0.4307 0.344 0.0000 0.0000 1.0000ݔ
  ଷ 0.3046 0.239 0.0000 0.0000 0.0000 1.0000ݔ
 ସ 0.7913 0.634 0.0000 0.0000 0.0000 0.0000 1.0000ݔ
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Table III: OLS and LPM results for the simple and full model specifications. 
 

  OLS  LPM 
Variables  Simple Full  Simple Full 

      
Constant  .000 .000 .5092 .5092 

  (.057) (.014) (.0065) (.0044) 
      

 ௗ  .500 .500 .0390 .0390ݔ
  (.081) (.020) (.0092) (.0062) 
      

 ଵ  1.000 1.000 .0886 .0886ݔ
  (.041) (.010) (.0046) (.0031) 
      

 ଶ  2.000 2.000 .1717 .1717ݔ
  (.041) (.010) (.0046) (.0031) 
      

 ଷ   1.0000  .0844ݔ
   (.0071)  (.0022) 
      

 ସ   3.0000  .2584ݔ
   (.0082)  (.0025) 
      
R-squared  0.23 0.95 0.15 0.61 
RMSE  4.06 1.00 0.46 0.31 
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Table IV. Multivariate results for the probit model using the first Monte Carlo data set. 
 

  Probit  Logit 
Variables  Simple Add ݔଷ Full  Simple Add ݔଷ Full 

        
Constant  0.025     0.027     0.044  0.042    0.045    0.072   

  (0.019)   (0.019)    (0.037)  (0.031)   (0.032)   (0.066)  
        

ௗ  0.112     0.119     0.503  0.186ݔ    0.198    0.913   
  (0.026)   (0.027)    (0.053)  (0.044)   (0.045)   (0.097)  
        

   ଵ  0.255     0.271     1.023  0.420    0.451    1.837ݔ
  (0.014)   (0.014)    (0.035)  (0.022)   (0.024)   (0.066)  
        

   ଶ  0.495     0.527     2.078  0.817    0.878    3.74ݔ
  (0.014)   (0.015)    (0.055)  (0.025)   (0.026)   (0.11)   
        

ଷ   0.260ݔ     1.017   0.433    1.824   
   (0.010)    (0.030)   (0.017)   (0.058)  
        

   ସ    3.073    5.51ݔ
    (0.075)    (0.15)   
        
Pseudo 
R2 

 0.12 0.17 0.78 0.12 0.17 0.78 

 
 
 
 
 
 
  



30 
 

Table V. Incremental effects, marginal effects, and risk ratios for the probit model using the first 
Monte Carlo data set. 

 
   Probit 
Variables   Simple Add ݔଷ Full 

      
   ௗ IE  0.0390     0.0389     0.0414ݔ

   (0.0092)   (0.0088)   (0.0043) 
 RR  1.0766     1.0764     1.0814 
   (0.0187)   (0.0180)   (0.0088) 
      

   ଵ ME  0.0886     0.0884     0.0842ݔ
   (0.0044)   (0.0043)   (0.0020)   
 RR  1.1688     1.1682     1.1632 
   (0.0089)   (0.0085)   (0.0042) 
      

   ଶ ME  0.1721     0.1719     0.1708ݔ
   (0.0041)   (0.0039)   (0.0019)   
 RR  1.3392     1.3390     1.3416 
   (0.0099)   (0.0096)   (0.0047) 
Notes:  IE = incremental effect; ME = marginal effect; RR = risk ratio.  Std. errors in 
parentheses. 

 
Table VII.  Incremental effects, marginal effects, and risk ratios for the logit model using the first 

Monte Carlo data set.  
 

   Logit 
Variables   Simple Add ݔଷ Full 

      
 ௗ IE  0.0392    0.0388  0.0418ݔ

   (0.0092)   (0.0088)   (0.0043) 
 RR  1.0770     1.0762     1.0822 
   (0.0188)   (0.0181)   (0.0088) 
      

   ଵ ME  0.0887     0.0884     0.0840ݔ
   (0.0045)   (0.0043)   (0.0020)   
 RR  1.1689     1.1685     1.1636 
   (0.0089)   (0.0086)   (0.0042) 
      

   ଶ ME  0.1723     0.1720     0.1708ݔ
   (0.0041)   (0.0040)   (0.0020)   
 RR  1.3409     1.3406     1.3424 
   (0.0102)   (0.0099)   (0.0047) 
Notes:  IE = incremental effect; ME = marginal effect; RR = risk ratio.  Standard errors in 
parentheses. 
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Table VIII.  Odds ratios for the logit model using the first Monte Carlo data set. 
 

  Logit 
Variables  Simple Add ݔଷ Full 

     
Constant  1.043 1.046     1.075  

  (0.032) (0.033)    (0.071)  
     

   ௗ  1.204 1.219     2.49ݔ
  (0.053) (0.055)    (0.24)  
     

  ଵ  1.522 1.570     6.277ݔ
  (0.034) (0.037)    (0.041)  
     

   ଶ  2.263 2.405    41.8ݔ
  (0.056) (0.063)    (4.5)   
     

  ଷ   1.542     6.198ݔ
   (0.027)    (0.036)  
     

   ସ    248.3ݔ
    (36.7)   
     
Pseudo R2  0.12 0.17 0.78 

 
 

Table IX.  Multivariate logit results for the second Monte Carlo data set. 
 

  Logit Coeficients  Logit Odds Ratios  Marginal Effects 
Variables  Simple Full  Simple Full  Simple Full 

        
Constant  –3.49     –7.4 0.0304  0.0006    

  (.49) (1.2) (.015) (0.0007)   
        

 ଵ  0.86      1.83  2.36     6.2   0.1296 0.1378ݓ
  (.11) (.28) (.26) (1.7) (.0051) (.0031) 
        

   ଶ   3.62   37.2ݓ
   (.61)  (22.6)   
        
Pseudo R2  0.32 0.65     
N  210 210     
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Figure 1.  Predicted probabilities from a linear probability model for the second Monte Carlo 

data set, conditional on ݓଵ and ݓଶ. 
 
 

 
Figure 2.    Predicted probabilities from a logit model for the second Monte Carlo data set, 

conditional on ݓଵ and ݓଶ. 
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