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ABSTRACT

Test-based accountability including value-added assessments and experimental and quasi-experimental
research in education rely on achievement tests to measure student skills and knowledge. Yet we know
little regarding important properties of these tests, an important example being the extent of test measurement
error and its implications for educational policy and practice. While test vendors provide estimates
of split-test reliability, these measures do not account for potentially important day-to-day differences
in student performance.

We show there is a credible, low-cost approach for estimating the total test measurement error that
can be applied when one or more cohorts of students take three or more tests in the subject of interest
(e.g., state assessments in three consecutive grades). Our method generalizes the test-retest framework
allowing for either growth or decay in knowledge and skills between tests as well as variation in the
degree of measurement error across tests. The approach maintains relatively unrestrictive, testable
assumptions regarding the structure of student achievement growth. Estimation only requires descriptive
statistics (e.g., correlations) for the tests. When student-level test-score data are available, the extent
and pattern of measurement error heteroskedasticity also can be estimated. Utilizing math and ELA
test data from New York City, we estimate the overall extent of test measurement error is more than
twice as large as that reported by the test vendor and demonstrate how using estimates of the total
measurement error and the degree of heteroskedasticity along with observed scores can yield meaningful
improvements in the precision of student achievement and achievement-gain estimates.
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 Recent educational policies such as test-based accountability, teacher evaluation and 

experimental and quasi-experimental research in education rely on achievement tests as an 

important metric to assess student skills and knowledge. Yet we know little regarding the 

properties of these tests that bear directly on their use and interpretation. For example, evidence 

is often scarce regarding the extent to which standardized tests are aligned with educational 

standards or the outcomes of interest to policymakers or analysts. Similarly, we know little about 

the extent of test measurement error and the implications of such error for educational policy and 

practice. While test vendors provide estimates of reliability, these estimates capture only one of a 

number of different sources of error. 

 This paper focuses on test measurement error and demonstrates a credible approach for 

estimating the overall extent of error. For the tests we analyze, the measurement error is at least 

twice as large as that indicated in the technical reports provided by test vendors. Such error in 

measuring student performance results in measurement error in the estimation of teacher 

effectiveness, school effectiveness and other measures based on student test scores. The 

relevance of test measurement error in assessing the usefulness of measures such as teacher 

value-added or schools’ adequate yearly progress often is noted but not addressed, due to the 

lack of easily implemented methods for quantifying the overall extent of measurement error. 

This paper demonstrates a technique for estimating the total measurement error and provides 

evidence of the importance of doing so 

Thorndike (1951) articulates a variety of factors which can result in a test score being a 

noisy measure of student achievement. Technical reports produced by test vendors provide 

information regarding test measurement error as defined in classical test theory and the IRT 

framework. For both, the focus is on the measurement error associated with the test instrument 
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(e.g., randomness in the selection of test items and the raw-score to scale-score conversion). This 

information is useful, but provides no information regarding the measurement error from other 

sources (e.g., students having particularly good or bad days).  

Reliability coefficients based on the test-retest approach using parallel test forms is 

recognized in the psychometric literature as the gold standard for quantifying measurement error 

from all sources. Students take alternative, but parallel (i.e., interchangeable), tests on two or 

more occurrences sufficiently separated in time so as to allow for the “random variation within 

each individual in health, motivation, mental efficiency, concentration, forgetfulness, 

carelessness, subjectivity or impulsiveness in response and luck in random guessing”1 but 

sufficiently close in time that the knowledge, skills and abilities of individuals taking the tests are 

unchanged. However, there are relatively few examples of this approach to measurement error 

estimation in practice, especially in the analysis of student achievement tests used in high-stakes 

settings.  

  Rather than analyzing the consistency of student test scores over occurrences, the 

standard approach used by test vendors is to divide the test taken at a single point in time into 

what is hoped to be parallel parts. Reliability measured with respect to the consistency (i.e., 

correlation) of students’ scores across these parts only accounts for the measurement error 

resulting from the random selection of a set of test items from the relevant population of items. 

As Feldt and Brennan (1989) note, this approach “frequently present[s] a biased picture” in that 

“reported reliability coefficients tend to overstate the trustworthiness of educational 

measurement, and standard errors underestimate within-person variability.” The problem is that 

measures based on a single test occurrence ignore potentially important day-to-day differences in 

student performance.  
                                                 
1 Feldt and Brennan (1989). 
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In this paper we show that there is a credible approach for measuring the overall extent of 

test measurement error that can be applied in a wide variety of settings. Estimation is 

straightforward and only requires estimates of the correlation or covariance of test scores in the 

subject of interest at several points in time (e.g., the correlations between third-, fourth- and fifth-

grade math scores for one cohort of students).2 Note that student-level test-score data is not 

needed, provided that estimates of test-score correlations or covariances are available. Our 

approach generalizes the test-retest framework to allow for either growth or decay in the 

knowledge, skills and abilities of students between the test administrations as well as variation 

across tests in the extent of measurement error. Utilizing the estimated test-score covariance or 

correlation matrix and a few assumptions regarding the structure of student achievement growth, 

it is possible to estimate the overall extent of test measurement error and decompose the variance 

of test scores into the part attributable to real differences in academic achievement and the part 

attributable to measurement error.  

 In the following section we briefly introduce generalizability theory, a framework for 

characterizing multiple sources of test measurement error, and show how the total measurement 

error is reflected in the covariance structure of observed test scores. This is followed by an 

explanation of our statistical approach. In turn, we report estimates of the overall extent of 

measurement error associated with New York State assessments in math and English language 

arts (ELA) and how the extent of test measurement error varies across ability levels. We 

conclude with a summary and a brief discussion of ways in which information regarding the 

                                                 
2 As discussed below, it is necessary that the underlying knowledge one is attempting to measure is measurable 
using a vertical scale.  However, each test instrument employed need only be measured on an interval scale. The 
interval scales can differ as long as they are linear transformations of the underlying vertical scale (even if this linear 
transformation is unknown). 
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extent of test measurement error can be informative in analyses related to educational practice 

and policy.  

1.0 Defining Test Measurement Error 

From the perspective of classical test theory, an individual’s observed test score is the 

sum of two components: the true score representing the expected value of test scores over some 

set of test replications, and the residual difference, or random error, associated with test 

measurement error.3 Generalizability theory, which we draw upon here, extends test theory to 

explicitly account for multiple sources of measurement error.4  

Consider the case where a student takes a test consisting of a set of tasks (e.g., questions) 

administered at a particular point in time. Each task, t, is assumed to be drawn from some 

universe of similar conditions of measurement with the student doing that task at some point in 

time. The universe of possible occurrences is such that the student’s knowledge/skills/ability is 

the same for all feasible times. Here students are the object of measurement and are assumed to 

be drawn from some population. As is typical, we assume the numbers of students, tasks and 

occurrences that could be observed are infinite. The case where each pupil, i, might be asked to 

complete each task at each of the possible occurrences is represented by X Xi t o  where the 

symbol “ X ” is read “crossed with.”  

Let itoS  represent the ith student’s score on task t carried out at occurrence o, which can 

be decomposed using the random-effects specification in Equation 1.  

ito i t o it io to itoS                 (1) 

                                                 
3 Classical test theory is the focus of many books and articles. For example, see Haertel (2006).  
4 See Brennan (2001) for a detailed development of Generalizability Theory. The basic structure of the framework is 
outlined in Conbach, Linn, Brennan and Haertel (1997) as well as Feldt and Brennan (1988). 
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The universe score of a student, i i    , equals the expected value of itoS  over the universe of 

generalization, here the universes of possible tasks and occurrences. The universe score is 

comparable to the true score as defined in classical test theory. In our case, i  measures the 

student’s underlying academic achievement, e.g., ability, knowledge and skills. The  ’s 

represent a set of uncorrelated random effects which, along with ito  and the student’s universe 

score, sum to itoS . Here t  and o , respectively, reflect the random effect, common to all test-

takers, associated with scores for a particular task and a particular occurrence differing from the 

population mean,  . it  reflects the fact that a student might do especially well or poorly on a 

particular task. io  is the measurement error associated with a student’s performance not being 

temporally stable even when his or her underlying ability is unchanged (e.g., a student having a 

particularly good or bad day, possibly due to illness or fatigue). to  reflects the possibility that 

the performance of all students on a particular task might vary across occurrences. ito reflects 

the three-way interaction and other random effects. Even though there are other potential sources 

of measurement error, we limit the number here to simplify the exposition.5 

 The observed score for a particular individual completing a task will differ from the 

individual’s universe score because of the components of measurement error shown in Equation 

2. In turn, the measurement error variance decomposition for a particular student and a single 

task is shown in Equation 3.  

 ito ito i t o it po to itoS                  (2) 

             2 2 2 2 2 2 2
ito itot o it io to                 (3) 

                                                 
5 As noted above, Thorndike (1951, p. 568) provides a taxonomy characterizing different sources of measurement 
error. The above framework also can be generalized to reflect students being grouped within schools and classrooms 
and there being common random components of measurement error at those levels. 



 6 

Now consider a test defined in terms of its timing (occurrence) and the 
TN  tasks making up the 

examination. The student’s actual score, 
iTS , will equal 

i iT   as shown in Equation 4, where 

iT  is a composite measure reflecting the errors in test measurement from all sources.6  

 iT it T i o io t it to ito T i iTt t
S S N N                       (4) 

The variance of 
iT  for student i equals  

   2 2 2
iT

o io            2 2 2 2 /ito Tt it to N          . 

2.0 Test-Score Covariance Structure 

 We generalize the notation in Equation 4 to allow for multiple tests, for exposition here 

assumed to be in multiple grades. In Equation 5 ijS  is the ith student’s score on a test for a  

ij ij ijS        (5) 

particular subject taken in the jth tested grade.7 ij  is the ith student’s true academic achievement 

in that subject and grade. We drop subscript “T’ to simplify notation, but maintain that a 

different test in a single occurrence is given in each grade and period. ij  is the corresponding 

test measurement error from all sources, where 0ijE  . Allowing for the possibility of 

heteroskedasticity across grades and students, 2 2
ijijE   . Let 2

j 
 equal 2

ij  for all pupils in 

the homoskedastic case or, more generally, the mean value of 2
ij for the universe of students in 

                                                 
6 Here we represent the score as the mean over the set of test items. An alternative would be to employ 

iT itt
S S , 

e.g., the number of correct items. 
7 In general, time intervals between tests need not be annual nor constant. For example, from a randomized control 
trial one might know test-score correlations for tests administered at the start and end of the experiment as well as a 
test given at some point during the experiment. 
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grade j. The   in Equation 1 being uncorrelated implies that 0,ij ikE j k      and 

0, ,ij ikE j k    . 

 Using vector notation, 
i i iS     where  1 2i i i iJS S S S  ,  1 2i i i iJ     , and 

 1 2i i i iJ      for the first (j=1) through the Jth tested grades8. Equation 6 defines ( )i  to 

be the auto-covariance matrix for the ith student’s observed test scores.   is the auto-covariance 

matrix for the universe scores in the population of students. 
i  is the diagonal matrix with the 

measurement-error variances across grades for the ith student (e.g., 2
ij ) on the diagonal.  

     

,1

,2

,

'

2

11 12 1 11 12 1
2

21 22 2 21 22 2

2
1 2 1 2

( ) ( )

0 0

0 0

0
0 0 0







    

     

     

      

           
      

    
    
           
    
     

i

i

i J

i i i i i i i ii i i

i i i J J

i i i J J

iJ iJ iJJ J J JJ

i E S ES S ES E E E E

   



i

    

(6) For the population of all students, 2 2
j ij

E  

  and E ( )i         where 

  is the 

diagonal matrix with 
1 2

2 2 2, ,...,
J    

  
on the diagonal. Note that ( )i  differs from ( ')i  only 

because of possible heteroskedastic measurement error across test-takers. 

 For a variety of reasons, researchers and policymakers are interested in the 

decomposition of the overall variance of observed scores for students in a particular grade, jj , 

into the variance in universe scores across the student population, jj , and the measurement-error 

variance; 2
jjj jj   


  . The corresponding generalizability coefficient, j jj jjG   , measures 

the portion of the total variation in observed scores that is explained by the variance of universe 
                                                 
8 For example, the third grade might be the first tested grade. To simplify exposition, we often will not distinguish 
between the ith grade and the ith tested grade, even though we will mean the latter. Again, the assessments need not 
be annual; the situation might be one in which several tests are given during a particular year. 
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scores. The reliability coefficient is the comparable measure in classical test theory. This 

measure implies the characterization of 
  shown in Equation 7.  

11 12 13 11 1 12 13

22 23 22 2 23

33 33 3

G

G

G

     

   

 


   
   
     
   
   
   

    (7) 

  can be estimated using its empirical counterpart '
i i Si

S S N   where 
SN  is the number 

of students for whom test scores are observed.9  

 Let jk  represent the correlation between the universe scores in grades j and k; 

jk jk jj kk    . This notation along with Equation 7 yields the test-score correlation matrix 

  shown in Equation 8. Note that the presence of test measurement error (e.g., 1jG  ) implies  

1 2 12 1 3 13 1 4 14
12 13

2 3 23 2 4 24
23

3 4 34

1
1

11
11

1

G G G G G G
r r

G G G G
r

G G

  

 



 
  
  
    
  
  
  
  

  (8) 

that each correlation of test scores is smaller than the correlation of the corresponding universe 

scores (e.g., jk jkr  ).  In contrast, ,jk jk j k    , so that estimates of the off-diagonal 

elements of the covariance matrix   (i.e., ˆ
ij ) directly imply estimates of the off-diagonal 

elements of   in Equation 7, i.e., ˆ
ij . However, we are primarily interested in separate estimates 

                                                 
9 This corresponds to the case where one or more student cohorts are tracked through all J grades, a key assumption 
being that the values of the jk  are constant across the cohorts. A subset of the jk  can be estimated when the 

scores for individual students only span a subset of the grades included; a particular jk  can be estimated provided 

one has test score data for students in both grades j and k. For example, , 1, 1,2,3j j j    can be estimated using 
test-score data for first-, second- and third-grade students in year-one and the same students in the next grade a year 
later.    
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of the universe-score and measurement-error variances, both of which enter the diagonal 

elements of  . Test-score data can be used to estimate the 
jk , but these estimates by 

themselves are not sufficient to infer estimates of the 
jj  and 

jG .  

 Assuming nothing more than one of the structures typically maintained by researchers 

estimating models of student achievement growth, the parameters in Equation 7 characterizing 

the covariance of universe scores (i.e., the jk ) can be expressed as functions of a smaller set of 

elemental parameters (e.g., 22  frequently is a function of 11  and other elemental parameters). 

Taking advantage of such structure, estimates of the jk  can be used to infer estimates of these 

elemental parameters, including 11  and 
jG . In general, the structure maintained needs to imply 

that the values of at least J of the parameters on the right-hand side of Equation 7 are implied by 

the values of the remaining parameters.10 In a similar way, the representation of   in Equation 8 

can be used to estimate the jG ; the structures of underlying growth models imply restrictions on 

the structure of the jk  so that test-score correlations can be used to infer estimates of the 

underlying parameters and the jG . The central point of our paper is that these methods allow the 

overall extent of test measurement error to be easily estimated.  

Our estimation strategy is closely linked to frameworks laid out by Joreskog (1971, 1978) 

and Abowd and Card (1989). Abowd and Card develop a framework for studying the covariance 

structure of individual- and household-level earnings, hours worked and other time-series 

variables. Their approach falls within the general framework for the analysis of covariance 

structures developed by Joreskog (1978). Joreskog (1971) employs the kernel of this approach to 

                                                 
10 Suppose m  parameters on the right-hand side of (7) are known functions of the elemental parameters.  If m J , 
the number of moments, ( 1) / 2J J  , will equal or exceed the number of elemental parameters,  ( 3) / 2J J m  , 
one needs to estimate. 
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analyze the covariance of congeneric tests. In classical test theory, the set of K tests 

ik ik ikS    , 1, 2, ,k K , is said to be congenetric if the true scores, ik , are such that there 

is a common i where 0 1 , ,k k
ik i k i      ; here the true scores across tests are perfectly 

correlated. We consider the case where the ik  need only be correlated to some degree, 

following some systematic pattern. This is a generalization of both the test-retest approach and 

the somewhat more general framework of Joreskog (1971) for estimating the extent of test 

measurement error and falls within his general approach for the analysis of covariances 

(Joreskog, 1978). 

3.0 Estimation Strategy 

3.1 General Approach 

We assume that academic achievement, measured by universe scores, is cumulative:  

1 , 1ij j i j ij        (9) 

This first-order autoregressive structure models student attainment in grade j as depending upon 

the level of knowledge and skills in the prior grade11 possibly subject to decay (if 1 1j   ) 

where the rate of decay can differ across grades. A key assumption is that decay is not complete, 

as would be the case if 0j  . j   for all j is a special case. The further simplification 

1j   is maintained in many value-added analyses. ij  is the gain in student achievement in 

grade j, gross of any decay. 12 

 For empirical growth models to actually measure growth in the underlying achievement 

of students, the test(s) used to measure achievement must reflect a single interval scale, meaning 

                                                 
11 Todd and Wolpin (2003) discuss the conditions under which this will be the case. 
12 In the special case where 1j  , ij  is the student’s gain in achievement while in grade j. However, we will refer 

to ig  as the student’s achievement gain even when 1j  .  
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that "equal-sized gains at all points on the scale represent the same increment of learning".13 For 

example, the tests used to estimate 1 2, ,i i   in Equation 9 must all reflect a common vertical 

scale. As discussed by Ballou (2009): (1) the underlying assumptions regarding test items and 

test takers needed to assure interval scaling are quite restrictive, (2) those employing test scores 

in empirical work typically cannot test those assumptions and (3) descriptive statistics for tests of 

venders claiming their tests are vertically scaled often have properties that bring into question 

whether this is actually the case. A set of exams not being vertically scaled could be the result of 

the knowledge and skills being tested not being measurable on a single interval scale. However, 

the lack of vertical scaling instead could be the result problems in test construction.  

 The prevalence of questions regarding whether test scales are the same across grades and 

years explains why analysts often standardize test scores by grade and year to have zero means 

and unit standard deviations. Empirical analysis employing standardized scores can only provide 

information regarding the movements of students within the achievement distribution from grade 

to grade. Fortunately, our approach need only employ test-score correlations. Thus, the 

individual tests each need to reflect an interval scale, but the scales can differ from grade to 

grade.14 Whether or not the tests are vertically scaled, the extent of test measurement error for the 

individual tests, as measured by the jG , can be inferred. After first considering situations in 

which tests are vertically scaled, we discuss the more general and simpler approach that can be 

employed even when the tests are not necessarily vertically scaled. 

 Equation 9 can be used to infer Equation 10, which shows that each ij  reflects the  

1 , 1 1 2 , 2 1 2 ( 1) , ( 1) 1 2 ,( ) ( )ij ij j i j j j i j j j j s i j s j j j s i j s                                    (10) 

                                                 
13 Ballou (2009). 
14 One can think of the underlying model corresponding to the case where actually achievement across grades falls 
on the same interval scale, but the tests instruments employed need not have that property. 
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accumulation of decayed values of prior ij . As is true in other time-series models, one can 

assume that the sum in Equation 10 extends back to an infinite past (i.e., s  ). A more 

attractive alternative in our application is to assume that the pertinent time-series for each student 

begins at a specified point in time (e.g., when she first enters school or the grade in which she is 

first tested) and employ initial conditions to measure the knowledge and skills of each student at 

that point in time (e.g., ,i j s   for student i  where j s  is the starting point). These initial 

conditions together with Equation 10 and the statistical structure of the ij  determine the 

dynamic pattern of universe scores reflected in the parameterization of '( )i iE    and 
 .  

 Two approaches can be used to characterize the statistical structure of the ij . One 

approach is to fully specify the relationship of achievement gains across grades. For example, in 

one specification discussed in Appendix A, we assume that ij i ij     where i  is a student-

level random effect and ij  is white noise. An alternative approach is to assume nothing more 

than that the joint distribution of , 1i j   and ij  is such that the conditional mean , 1( | )i j ijE    is 

a linear function of ij . Because of its simplicity and generality, we focus on the reduced-form 

framework. Several structural models are discussed in Appendix A. 

3.2 A Reduced-Form Model 

 Note that  , 1 , 1 , 1|i j i j ij i jE u       where  , 1 , 1 , 1 |i j i j i j iju E       and , 1 0i j ijE u   . 

The assumption that such conditional mean functions are linear in parameters is at the core of 

regression analysis. We go a step further and assume that  , 1 |i j ijE    is a linear function of ij , 

or more generally that such a linear relationship is a reasonably good approximation; 
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 , 1 |i j ij j j ijE a b      where ja  and jb are parameters.15 For example, ij  and , 1i j   having a 

bivariate normal distribution is sufficient, but not necessary, to assure linearity in ij . In 

particular, if the random variables 0 1 2 , 1, , , , , ,i i i ij i j       are multivariate normal, 

, 1 , 2, , ,ij i j i j     will also be multivariate normal, since ij  is a linear function of 

0 1 2, , , ,i i i ij    , as shown in Equation 10. For this distribution, 

     , 1 , 1 , 1| ,i j ij i j ij i j jj ij ijE E Cov E            , which is linear in ij .  

 The assumption of linearity implies that , 1 , 1i j j j ij i ja b u     . This along with 

, 1 , 1i j j ij i j       implies that , 1 , 1i j j j ij i ja c u      where j j jc b  ; a student's universe 

score in grade j+1 is a linear function of the universe score in the prior grade. This implies that 

1

2
1, 1 jj j j jj uc  

    , as well as that , 1j j j jjc   , , 2 1j j j j jjc c    and, more generally, 

, ( 1) ( 2)j j s j s j s j jjc c c      . These equations along with Equation 7 imply the moments shown 

in Equation 11 where 
1

2
1, 1 jj j j jj uc  

    . This structure follows from only assuming that 

 , 1i j ijE    is a linear function of ij (e.g., , 1 , 1i j j ij i j       and  , 1i j ijE    is a linear 

function of ij ).  

11 12 13 14 11 1 1 11 2 1 11 3 2 1 11

22 23 24 22 2 2 22 3 2 22

33 34 33 3 3 33

44 44 4

(11)

G c c c c c c

G c c c

G c

G

       

     

   

 



   
   
   
     
   
   
      

 

                                                 
15 This linear specification is a first-order Taylor series approximation of   , 1 |i j ijE   . 
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 When test-score data for students span J grades, the parameters of the reduced-form 

covariance structure will include the 2 J parameters 11 1 2 1 1 2, , , , , , , ,J Jc c c G G G 
 and either 

2 3

2 2 2, , ,
Ju u u   or a smaller number of parameters that imply the values of 

2

2 2, ,
Ju u   (e.g., 

2 2 ,
ju u j   ). As an example of how such parameters can be estimated, suppose that jG G  

and that test-score data for J=3 grades yields estimates of 11 , 12 , 13 , 22 , 23 , and 33 . The 

corresponding moment conditions are shown in Equation 12. Substitution of the ˆ
jk  for jk  and 

manipulation of the six moments yields the estimators for the elemental parameters shown in 

(13). As is the case here, a few back-of-the-envelope calculations often can yield estimates of the 

overall extent of test measurement error. 

11 12 13 11 1 11 2 1 11
2 2 2 2

22 23 1 11 2 1 11
2 2 2 2

33 2 1 11 2

( ) ( )
[ ( 1) ]

u u

u

G c c c

c G c c

c c c G

     

     

  

   
   

  
   
       

   (12) 

1 2

13 12 23
2 11 11

12 13 22

2 2 2 212
1 22 1 11 33 2 22

11

ˆ ˆ ˆˆ ˆˆ ˆˆ
ˆ ˆ ˆ
ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ( )
ˆ u u

c G G

c G c c G

  
 

  


     



  

    

      (13) 

 This example illustrates that an estimate of the covariance of observed test scores 

together with assumptions regarding the structure of student achievement growth are sufficient to 

estimate the variance(s) of test measurement error from all sources, as well as the variances in 

universe scores measuring the dispersion in student achievement in each tested grade. In general, 

this is possible if student achievement is to some extent cumulative (e.g., 1 0  ) and one has an 

estimate of 
  -- the covariance matrix for a sequence of exams measuring student achievement 

over time (e.g., math test scores of students in three consecutive grades). Achievement being 

cumulative implies that the universe score variances enter expressions characterizing the off-
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diagonal elements of  . For instance, 11  enters the expressions for 12 12   and 13 13   

shown in Equation 12. Thus, estimates of the , ,jk j k   can be used to infer estimates of the 

universe score variances. In turn, the extent of test measurement error can be inferred utilizing 

the diagonal elements of   (e.g., 11 11 1G  ).  

 A similar, but simpler, approach can be employed whether or not the tests utilized are 

vertically scaled, provided that each is interval scaled. The reduced-form model 

, 1 , 1i j j j ij i ja c u      and the formulae in Equation 11 imply the following empirical 

relationships: * * *
, 1 , 1 , 1i j j j ij i ju       where *

, 1 , 1 1, 1i j i j j ju u     , * *
, 1 0ij i jE u    and *

ij  and *
, 1i j 

 

are standardized universe scores having correlation , 1 1, 1j j j jj j jc      (e.g., 

12 1 11 22/c   ). In addition, , 2 , 1 1, 2j j j j j j       (e.g., 

13 2 1 11 33 1 11 22 2 22 33 12 23/ / /c c c c            ),  , 3 , 1 1, 2 2, 3j j j j j j j j         ,  etc.. This 

structure along with Equation 8 implies the moment conditions in Equation 14, where jkr  is the  

1 5 12 23 34 451 4 12 23 3412 13 14 15 1 3 12 231 2 12

23 24 25 2 5 23 34 452 4 23 342 3 23

34 35 3 5 34 453 4 34

45
4 5 45

G GG Gr r r r G GG G

r r r G GG GG G

r r G GG G

r G G

      

   

 



  
  
  
      
  
  

    

   (14) 

test-score correlation for grades j and k . Because 1G  and 12  only appear as a multiplicative 

pair, the two parameters cannot be identified separately, but *
12 1 12G   can. The same is true 

for *
1, 1,J J J J JG    where J is the last grade for which one has test scores. After substituting 

the expressions for *
12  and *

1,J J  , the  1 / 2mN J J   moments in Equation 14 are functions 

of the 2J 3N    parameters in * *
2 3 1 12 23 2, 1 1,J J J J JG G G       

    , which can be 
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identified provided that 4J  . With one or more additional parameter restriction (e.g., 

1 2 3G G G   or 23 34  ), 3J   is sufficient for identification. 

 Whether the moment conditions in Equations 11 or 14 are employed in estimation, the 

parameters can be estimated using a minimum-distance estimator. For example, suppose the 

elements of the column vector ( )r   are the moment conditions on the right-hand-side of 

Equation 14, after having substituted the expressions for *
12  and *

1,J J 
. With r̂  representing the 

corresponding vector of 
mN  test-score correlations for a sample of students, the minimum-

distance estimator is ˆ ˆ[ ( )]' [ ( )]argmin r r r r      where   is any positive semi-definite 

matrix.16 We employ the identity matrix so that ˆ ˆˆ [ ( )]' [ ( )]argminMD r r r r     .17,18 The 

estimated generalizability coefficients, in turn, can be used to infer estimates of the pre-

normalized universe-score variance, ˆˆ ˆ
jj j jjG  , as well as the measurement-error variances 

2 (1 ) (1 )
j

jj j j j jjG G G


       and *
2 1

j
jG


   .19  

3.3 Additional Points  

 Before turning to our empirical analysis, consider six important points. First, noted in the 

introduction, the test-retest approach is a commonly-discussed, but infrequently-employed, 

                                                 
16 If 0

P

BB  and 0Rank[ ( ) ]B r N    ,   is locally identified. In the case of a strict equality, the parameters 

are exactly identified with ˆ ˆ( )r r   implicitly defining the estimator, which is the same for all  . See Cameron 
and Trivedi (2005). 
17  ˆ

MD  , the equally-weighted minimum-distant estimator is consistent, but less efficient than the estimator 

corresponding to the optimally chosen  . However, ˆ
MD  does not have the finite-sample bias problem that arises 

from the inclusion of second moments. See Altonji and Segal (1996). 
18 r̂  having the limit distribution  0ˆ ˆ[0, ( )]d

SN r r N V   implies that the variance of the minimum-distance 

estimator is   1 1ˆ ˆ[ ' ] ' ( ) [ ' ]MDV Q Q Q V Q Q Q    where Q  is the matrix of derivatives ( )Q r     . 
19 ij ij ijS     implies that * * * *

ij jj jj ij ij jj j ij ijS G           where the normalized test- and universe-

scores having unit variances. It follows that  *
21

j
jG


   and, in turn, *

2 1
j

jG


   . 
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method for estimating the overall extent of test measurement error. To see that this approach is a 

special case of our framework, consider the subset of elements in Equation 14 shown in (15), 

initially focusing on the first equation. The test-retest approach requires that (i) the time between  

12 1 2 12 13 1 3 12 23 23 2 3 23r G G r G G r G G        (15) 

the test and retest is sufficiently short that the skills and knowledge of those tested are unchanged 

so that 12 1   and (ii) the tests are administered under identical conditions so that the overall 

extent of measurement error is the same for the two tests (e.g., 1 2G G ). Under these conditions, 

the first equation in (15) reduces to 12r G ; the estimated correlation of scores from the two tests 

is an estimate of the generalizability (reliability) coefficient for the tests. Joreskog (1971) 

maintains the assumption that the universe scores are perfectly correlated but allows the extent of 

measurement error to differ across the tests. (In this case the expressions in (15) imply that 

1 12 13 23G r r r , 2 12 23 13G r r r , and 3 13 23 12G r r r .) Our approach goes meaningfully further in 

allowing the universe-score correlations to be less than one and different between test pairs. 

 Second, to estimate the overall extent of measurement error for a population of students 

one only needs descriptive statistics of scores on each test and test-score correlations, an 

attractive feature of our approach. However, additional inferences are possible when student-

level test-score data are available.  

 Third, our approach is applicable whether the measurement-error variance is constant 

across students in each grade (i.e., 2 2 ,
ij j

i
 

 


  ) or there is heteroskedasticity, where 2
j




 is 

the mean variance for the population of students (i.e., 2 2
j ij

E
 

 

 ). In the latter case, it is 

possible to explore the extent and pattern of heteroskedasticity, provided one has student-level 

test scores. Consider the case where *
2 3 4 12 23 34G G G        has been estimated. The 
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relationship * * *
, 1 , 1 , 1i j j j ij i ju       for the standardized universe scores *

ij  and *
, 1i j 

 implies that 

*
, 1

2 2
, 11

i j
j ju

 


  .20 Note that * * *
ij j ij ijS G     and, in turn, * * *( )ij ij ij jS G   . These 

expressions imply that * * * * *
, 1 , 1 1 1 , 1 , 1 , 1 1i j j j j j ij j i j i j j j j j ijS G G S G u G G               . It 

follows that the variances of the expressions before and after the equality are also equal, which 

implies that      * *
, 1

2 2 2 * * 2
, 1 1 , 1 , 1 1 1 , 11

iji j
j j j j i j j j j j ij j j jG G V S G G S G

 
    


           . 

 To provide some needed structure, suppose that * *
2 2

ij j
i 

  


 ; the ratio of a student's 

measurement-error variance to the population mean variance is constant across grades. If so, 

Equation 16 follows, which suggests that   can be estimated for a group of students, C, having 

the same (unknown) value 
C , as shown in Equation 17.21 Rather than grouping students based 

upon one or more observed attributes, student-level values of 
i  can be estimated using a 

regression approach described below where we estimate the extent to which 
i varies with the 

level of student achievement. 

   
 * *

, 1

* * 2
, 1 , 1 1 1 , 1

2 2 2
, 1 1

1

j j

i j j j j j ij j j j

i

j j j j

V S G G S G

G G
 

 


  
  

    

 

  



   (16) 

   

 * *
, 1

2
* * 2
, 1 , 1 1 1 , 1

1
2 2 2

, 1 1

ˆ ˆ ˆˆ ˆ1
ˆ

ˆ ˆˆˆ ˆC

j j

i j j j j j ij j j j

C N

i C j j j j

S G G S G

G G
 

 


  
  

    

  

  




    (17) 

 The reduced-form framework provides a useful tool for estimating the extent of test 

measurement error from all sources. Estimation is straightforward and the key assumptions 

                                                 
20 This follows because , 1 0i j ijE u    implies that * *

, 1 0i j ijE u   . 
21 The formula in (16) only maintains that 

i  for each student is constant across grades j and j+1. The formula easily 
can be generalized to reflect 

i  being constant across more than two adjacent grades.  
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underlying the empirical model (i.e., , 1 , 1i j j ij i j       with 0j   and  , 1i j ijE    is a linear 

function of ij ) appear to be quite reasonable. A fourth point is that the assumptions need not be 

accepted as an article of faith; together they imply that , 1i j   is a linear function of ij  (i.e., 

, 1 , 1i j j j ij i ja c u      where , 1 0ij i jE u   ), which can be tested utilizing test-score data, as 

demonstrated below. 

 The fifth point is that even though the following empirical analysis utilizes the reduced-

form model, our general approach is not dependent on this particular specification. One can carry 

out empirical analyses employing fully-specified statistical structures for the ij . A variety of 

specifications can be employed, provided the specifications imply covariance structures where 

the number of moment conditions are sufficient to estimate the number of parameters, including 

the generalizability coefficients. The estimation strategy for the structural approach is the same 

as above, the only difference being that the moment conditions employed will include the full set 

of structural parameters, not a subset of the structural parameters and a set of reduced-form 

parameters. We discuss the structural approach and alternative model specifications in more 

detail in Appendix A.  

  Finally, the parameters entering the covariance structure can be estimated without 

specifying the distributions of ij  and ij . However, additional inferences are possible when one 

assumes particular functional forms and has student-level test scores. When needed, we assume 

that ij  and ij  are normally distributed. When ij  is either homoskedastic or heteroskedastic 

with 2
ij  not varying with the level of ability, ij  and ijS  will be bivariate normal, implying that 

the conditional distribution of ij  given ijS will be normal with moments  ij ijE S   
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(1 )ij j ij ijG G S   and   (1 )ij ij ij jjV S G    where   j ij ijE ES  and  2
ijij jj jjG     . 

Here  ij ijE S is the Bayesian posterior mean of ij  given ijS  – the best linear unbiased 

predictor (BLUP) of the student's actual ability.  ij ijV S  and easily computed Bayesian 

confidence (credible) intervals can be employed to measure the precision of the BLUP estimator 

for each student.  

 When the extent of test measurement error systematically varies across ability levels (i.e., 

( )
ij j ij    ) – as is the case in our application – the normal density of ij  is  j

ij ijg     

 2 ( ) ( )
j jij ij ij        where ( )  is the standard-normal density. The joint density of ij  and 

ij  is    , ( )j j j

ij ij ij ij ijh g f         21 ( ) ( )
( ) j

j

ij ij ij j jj

ij jj





       
  

   which is 

not bivariate normal, due to 
ij  being a function of ij . (In this case ijS  is a mixture of normal 

random variables.) The conditional density of ij given ijS  is    ,j j

ij ij ij ijh S k S  . Here 

   ,j j

ij ij ij ij ijk S h S d  



     ( )j j

ij ij ij ij ijg S f d   



   is the density of ijS . Given any 

particular function 2 2 ( )
ij j ij    , this integral can be calculated using Monte Carlo integration 

with importance sampling;    * *
1

Mj j

ij ij mj mjm
k S g S M 


   where * , 1,2, , ,mj m M   is a 

sufficiently large set of random draws from the distribution ( )j

ijf  . Similarly, the posterior 

mean ability level given any particular score is  ij ijE S   

 
 * * *

1
1 M j

mj ij mj mjj m
ij
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
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the cumulative posterior distribution of ij  which can be used to infer Bayesian confidence 

intervals (i.e., credible intervals). For example, the 80 percent credible interval is (L, U) such that 

 ij ijP L U S  =0.80. Here we choose the lower- and upper-bounds corresponding to the 

values of a such that   0.10ij ijP a S    and   0.90ij ijP a S   .22 

4.0 An Empirical Application 

 We estimate the parameters in the reduced-form model employing moments defined in 

terms of the correlations of scores on the third- through eighth-grade New York State math and 

ELA tests for the cohort of New York City students who were in the third grade in the 2004-

2005 school year. Students making normal grade progression were in the eighth grade in 2009-

2010. The exams, developed by CTB-McGraw Hill, are aligned to the New York State learning 

standards and are given to all registered students, with limited accommodations and exclusions. 

Table 1 reports descriptive statistics for the cohort of students studied. Correlations for ELA and 

Math are shown below the diagonals in Tables 3 and 4.23
  

4.1 Testing Model Assumptions 

                                                 
22 A common alternative is to define the credible/confidence interval to be the narrowest interval (L, U)  for which  

  0.80ij ijP L U S   .  In the computation of   ij ijP a S   we employ estimates of 2, ,
jj    and the 

parameters in the function 2 ( )
j ij  , but do not adjust the formula for  ij ijP a S   to account for this imprecision. 

23 There are a nontrivial number of missing test scores.  For example, consider the percent of students having scores 
in the data for a particular grade but missing score for the next grade.  The percentage of missing scores in the 
following grade averages seven percent across grades in each subject. The extent to which this is a problem depends 
upon the reasons for the missing data. There is little problem if scores are missing completely at random. (See Rubin 
(1987) and Schafer (1997).)  However, this does not appear to be the case for the NY tests.  In particular, we find 
evidence that students having missing scores typically score relatively low in the grades where scores are present.  
The exception is that there are some missing scores for otherwise high-scoring students who skip the next grade. To 
avoid statistical problems associated with this systematic pattern of missing scores, we impute values of missing 
scores using SAS Proc MI.  The Markov Chain Monte Carlo procedure is used to impute missing-score gaps (e.g., a 
missing fourth grade score for a student having scores for grades three and five). This yielded an imputed database 
with only monotone missing data (e.g., scores included for grades three through five and missing in all grades 
thereafter). The monotone missing data were then imputed using the parametric regression method.   
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 We first explore whether the data is consistent with the assumptions which imply that 

 , 1 |i j ijE  
 is a linear function of ij . While the two assumptions are sufficient to assure the 

linearity of  , 1 |i j ijE  
, it is this linearity that implies the structure of correlations shown in 

(14). It is fortunate that we are able to assess whether  , 1 |i j ijE  
 is in fact linear. 

 The lines in Figures 1 and 2 are empirical, nonparametric estimates of the function 

 , 1 |i j ijE S S
 for ELA and math, respectively, showing how the observed scores of students in 

the eighth grade are related to scores in the prior grade. The bubbles with white fill show the 

actual combinations of observed seventh- and eighth-grade scores; the area of each bubble 

reflects the relative number of students with that score combination.  

 The dark bubbles toward the bottoms of Figures 1 and 2 show the IRT standard errors of 

measurement (SEMs) for the seventh grade tests (in reference to the right vertical axis) reported 

in the test technical reports.24 Note that the extent of measurement error associated with the test 

instrument is meaningfully larger for both low and high scores, reflecting the nonlinear mapping 

between raw and scale scores. Each point of the standard errors of measurement plot corresponds 

to a particular scale score as well as a corresponding raw score; movements from one dot to the 

next (left to right) reflect a one-point increase in the raw score (e.g., one additional question 

being answered correctly), with the scale-score change shown on the horizontal axis. For 

example, starting at an ELA scale score of 709, a one point raw-score increase corresponds to a 

20 point increase in the scale score to 729. In contrast, starting from a scale score of 641, a one 

point increase in the raw score corresponds to a two point increase in the scale score. This 

varying coarseness of the raw- to scale-score mappings – reflected in the varying spacing of 

                                                 
24 CTB/McGraw-Hill (2006, 2007, etc.). 
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points aligned in rows and columns in the bubble plot – explains why the reported scale-score 

standard errors of measurement are substantially higher for both low and high scores. Even if the 

variance were constant across the range of raw scores – as assumed in classical test theory used 

to produce the reliability coefficient estimates in the technical reports – the same would not be 

the case for scale scores. 

 The fitted nonparametric curves in Figures 1 and 2, as well as very similar results for 

other grades, provide strong evidence that  , 1 |i j ijE S S
 is not a linear function of ijS . Even so, 

this does not contradict our assumption that  , 1 |i j ijE  
 is a linear function of ij ; test measure 

error can explain  , 1 |i j ijE S S
 being S-shaped even when  , 1 |i j ijE  

 is linear in ij . It is not 

measurement error per se that implies  , 1 |i j ijE S S
will be an S-shaped function of ijS ; 

 , 1 |i j ijE S S
 will be linear in ijS  if the measurement-error variance is constant (i.e., 

2 2 ,
ij j

i
 

 


  ). However,  , 1 |i j ijE S S
 will be a S-shaped function of ijS  when ij  is 

heteroskedastic with ( )
ij j ij     having a U-shape (e.g., the SEM patterns shown in Figures 

1 and 2). The explanation and an example are included in Appendix B.  

 Appendix B also includes a discussion of how information regarding the pattern of test 

measurement error can be used to obtain consistent estimates of the parameters in a 

corresponding polynomial specification of  , 1 |i j ijE  
. We utilize this approach to eliminate 

the inconsistency of the parameter estimates associated with the measurement error reflected in 

the SEMs reported in the technical reports. Even though this does not eliminate any 
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inconsistency of parameter estimates resulting from other sources of measurement error, we are 

able to adjust for the meaningful heteroskedasticity reflected in the reported SEMs.25  

 Results from using this approach to analyze the NY test data are shown in Figures 3 and 

4 for ELA and math, respectively. As an example, consider graph (d) in either figure. The 

thicker, S-shaped curve corresponds to the OLS estimation of 5iS  regressed on 4iS  using a cubic 

specification. We employ a third-order polynomial because it is the lowest-order specification 

that can capture the general features of the nonparametric estimates of  , 1 |i j ijE S S
 in Figures 1 

and 2. The dashed line is a cubic estimate of  , 1 |i j ijE  
 obtained using the approach described 

in Appendix B to avoid parameter-estimate inconsistency associated with that part of test 

measurement error reflected in the SEMs reported in the technical reports. For comparison, the 

straight line is the estimate of  , 1 |i j ijE  
 employing this approach and a linear specification. 

Across the grade-pair graphs, it is striking how close the consistent cubic estimates of 

 , 1 |i j ijE  
 are to being linear.26 Overall, the assumption that  , 1 |i j ijE  

 is a linear function 

of ij  appears to be quite reasonable in our application.  

4.2 Estimated Model 

 Parameter estimates for the reduced-form model and their standard errors are reported in 

                                                 
25 As discussed below, how the reported SEMs vary with the level of ability is quite similar to our estimates of how 
the standard deviations of the measurement-error from all sources vary with ability.  If true, by accounting for the 
heteroskedasticity in the measurement error associated with the test instrument, we are able to roughly account for 
the effect of heteroskedasticity, increasing our confidence in the estimated curvature of  , 1 |i j ijE    for each grade 
and subject.  At the same time, not accounting for other sources of measurement error will result in the estimated 
cubic specification generally being flatter than  , 1 |i j ijE   . 
26 The cubic estimates of  , 1 |i j ijE    in the graphs might be even closer to linear if we had accounted for all 
measurement error.  This was not done to avoid possible circularity; one could question results where the estimates 
of the overall measurement-error variances are predicated maintaining linearity and the estimated variances are then 
used to assess whether  , 1 |i j ijE    is in fact linear. 
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Table 2. First consider how well the estimated models fit the observed score correlations. The 

empirical correlations for ELA and math, respectively, are shown below the diagonals in Tables 

3 and 4. The predicted correlations implied by the estimated models are above the diagonals. To 

evaluate goodness of fit, consider the absolute differences between the empirical and predicted 

correlations. The average, and average percentage, absolute differences for ELA are 0.001 and 

one-fifth of one percent, respectively. For math, the differences are 0.003 and one-half of one 

percent. Thus, the estimated reduced-form models fits the New York data quite well.  

 Returning to Table 2, the estimated generalizability coefficients for math are 

meaningfully larger than those for ELA, and the estimates for ELA are higher in some grades 

compared to others. These differences are of sufficient size that one could reasonably question 

whether they reflect underlying differences in the extent of test measurement error. Instead the 

pattern could reflect estimation error or a fundamental shortcoming of our approach, or both. 

Fortunately, we can compare these estimates to the reliability measures reported in the technical 

reports for the New York tests, to see whether the reliability coefficients differ in similar ways. 

The top two lines in Figure 5 marked with squares show the reported reliability coefficients for 

math (solid line) and ELA (dashed line). The lower two lines marked with diamonds show the 

generalizability coefficient estimates reported in Table 2. It is not surprising that the estimated 

generalizability coefficient are smaller than the corresponding reported reliability coefficients, as 

the latter statistics do not account for all sources of measurement error. However, consistencies 

in the patterns are striking. The differences between the reliability and generalizability 

coefficients vary little across grades and subjects, averaging 0.117. Reflecting this result, the 

generalizability coefficient estimates for math are higher than those for ELA, mirroring 

corresponding difference between the reliability coefficients reported in the technical reports. 
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Also, in each subject the variation in the generalizability coefficient estimates across grades 

closely mirrors the corresponding across-grade variation in the reported reliability coefficients. 

This is especially noteworthy given the marked differences between math and ELA in the 

patterns across grades.  

 The primary motivation for this paper is the desire to estimate the overall extent of 

measurement error motivated by concern that the measurement error in total is much larger than 

that reported in test technical reports. The estimates of the overall extent of test measurement 

error on the NY math exams, on average, are over twice as large as that indicated by the reported 

reliability coefficients. For the NY ELA tests, the estimates of the overall extent of measurement 

error average 130 percent higher than that indicated by the reported reliability coefficients. The 

extent of measurement error from other sources appears to be at least as large as that associated 

with the construction of the test instrument. 

 Estimates of the variances in actual student achievement can be obtained employing 

estimates of the overall extent of test measurement error together with the test-score variances. 

Universe-score variance estimates for our application are reported in column (3) of Table 5. It is 

also possible to infer estimates of the variances of universe-score gains shown in column (6). 

Because these values are much smaller than the variances of test-score gains, the implied 

generalizability coefficient estimates in column (7) are quite small, especially for ELA. 

 Estimation of the overall extent of measurement error for a population of students only 

requires descriptive statistics of scores for each test and test-score correlations. However, 

additional inferences are possible when student-level test-score data are available. In particular, 

student-level data and the formula in Equation 16 can be used to estimate 2 2( ) ( )
j j

j i i 
      

characterizing how the variance of measurement error varies with student ability. For example, 
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for grade pairs 4-5 and 6-7 we compute ˆ
i  for each student and grade pair using Equation 16. 

Assuming that a student's mean (normalized) universe score across the grade pair, *
i , is the 

relevant measure of ability in ( )j i  , *
i  can be estimated using a student's average normalized 

test score for the adjacent grades, *
iS . Here we estimate *( )j i   employing a fourth-order 

polynomial. However, regressing ˆ
i  on *

iS  would yield inconsistent parameter estimates as a 

result of *
iS  measuring *

i  with error. If  * *( ) , 1,2,3,4k

ik i iE S k   , were know for each 

student, consistent estimates of polynomial parameters could be obtained by regressing ˆ
i  on 

1 2 3 4, , , andi i i i    .27 The problem is that computation of 
ik requires knowledge of *( )j i   – 

the function we are trying to estimate.  

 This circularity suggests the following iterative solution. (1) Obtain an initial estimate of 

the parameters in *( )j i   by regressing ˆ
i  on *

iS . (2) Use the estimated function *ˆ ( )j i   to 

compute estimates of the 
ik , i.e., 

îk .28 (3) Regress ˆ
i  on 1 2 3 4

ˆ ˆ ˆ ˆ, , , andi i i i     to obtain an 

updated estimate of *ˆ ( )j i  . Steps two and three can be repeated until estimates of the 

polynomial parameters converge (a dozen or so repetitions in our analyses). In this way we 

estimate how the variance of measurement error from all sources varies across the range of 

universe scores; 2 2 ˆˆ ˆ ˆˆ ˆ( ) ( ) ( ) (1 )
j j

i j i j i j jjG
 

          .  

 The solid lines in Figures 6 and 7 are our estimates of ˆ ( )
j

i
  . The dashed lines show the 

IRT SEMs reported in the test technical reports for the grade. The shapes of the two curves in 
                                                 
27 For example, see the discussion of  the "structural least squares" polynomial estimator in Kukush et. al (2005) . 
28 Extending the approach  for computing  ij ijE S  discussed above, 

        
1 * * 2 * *

1
ˆ ( ) ( )

j j

kk Mj
ik ij ij ij mj ij mj mj mjm

E S k S M S          



   
   . 
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each graph indicate that our estimates of how the overall measurement-error standard deviations 

vary over the range of universe scores is very similar to the patterns reported in the technical 

reports. These results together with those shown in Figure 5 are striking. Our estimates of the 

overall extent of measurement error, as expected, are systematically higher than those associated 

with the test instrument. The estimated standard deviation of the overall measure error for each 

test varies over the range of abilities in a way quite similar to the pattern seen for the reported 

IRT SEMs. In addition, as shown in Figure 5, the variation in generalizability coefficient 

estimates across grades mirror across-grade differences in the reliability coefficients and the 

differences between the math and ELA generalizability coefficient estimates mirror the 

corresponding differences between the reported math and ELA reliability coefficients. These 

similarities do not prove the accuracy of our technique for estimating the overall extent of test 

measurement error, but they do greatly increase our confidence that the technique is able to 

identify at times subtle differences in the extent of measurement error. 

4.3 Inferences Regarding Universe Scores and Universe Score Gains 

 Observed test scores typically are used to directly estimate students' abilities and ability 

gains. More precise estimates of universe scores and/or universe-score gains for individual 

students can be obtained employing the observed scores along with the parameter estimates in 

Table 2 and the estimated measurement-error heteroskedasticity measured by ˆ ( )
j

i
  . As an 

example, the solid S-shaped line in Figure 8(a) shows the values of  ˆ
ij ijE S  for fifth-grade 

ELA. Results for grades five and seven math are shown in Figure 9. Results for both subjects in 

other grades are quite similar. Referencing the 45o straight line, the estimated posterior-mean 

ability levels for higher-scoring students are substantially below the observed scores while 

predicted ability levels for low-scoring students are above the observed scores. This Bayes 
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"shrinkage" is largest for the highest and lowest scores due to the estimated pattern of 

measurement-error heteroskedasticity. The dashed lines show 80-percent Bayesian credible 

(confidence) bounds for ability conditional on the observed score. For example, the BLUP of the 

universe-score for fifth-grade students scoring 775 in ELA is 731, 44 point below the observed 

score. We estimate that 80 percent of students scoring 775 have universe scores in the range 717-

747;  717.1 747.2 775 0.80ij ijP S    . In this case, the observed score is 28 points higher 

than the upper bound of the 80-percent credible interval. Midrange scores are somewhat more 

informative, reflecting the smaller standard deviation of test measurement error. For an observed 

score of 650, the estimated posterior mean and 80 percent Bayesian confidence interval are 652 

and (639,665), respectively. The credible bounds for a 775 score is 15 percent larger than that for 

a score of 650. 

 As Figures 8 and 9 make clear, utilizing test scores to directly estimate students' abilities 

is problematic for high- and, to a lesser extent, low-scoring students. To explore further, consider 

the root of the expected mean squared errors (RMSE) associated with estimating student ability 

using (i) observed scores and (ii) estimated posterior mean abilities conditional on observed 

scores.29 In the case of the fifth-grade math exam shown in Figure 9(a), the RMSE associated 

with using  ˆ
ij ijE S  to estimate students' abilities is 15.5 scale-score points. In contrast, the 

RMSE associated with using ijS  is 18.4, 19 percent larger. The magnitude of this difference is 

meaningful given that  ˆ
ij ijE S  differs little from ijS  over the range of scores for which there 

are relatively more students. Over the range of actual abilities between 620 and 710 in Figure 

                                                 
29 The expected values are computed using Monte Carlo simulation and assuming our parameter estimates are 
correct. 
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9(a), the RMSE for  ˆ
ij ijE S  and ijS  are 15.5 and 15.6, respectively. For ability levels below 

620 the RMSEs are 16.8 and 21.8, respectively, the latter being 30 percent larger. For students 

whose ability levels are greater than 710, the RMSE of employing  ˆ
ij ijE S  to estimate 

ij  is 

14.4, smaller than the overall RMSE for this estimator. In contrast, the RMSE associated with 

using ijS  to estimate 
ij  is 31.3 for students whose actual abilities are greater than 710 -- over 

twice as large as the corresponding RMSE for  ˆ
ij ijE S . By estimating the overall extent and 

pattern of test measurement error from all sources, it is possible to compute estimates of universe 

scores that have statistical properties superior to those corresponding to merely using the 

observed scores of students as estimates of their ability levels. 

 Turning to the measurement of ability gains, the solid S-shaped curve in Figure 10 shows 

the posterior-mean universe-score change in math between grades five and six conditional on the 

observed score change. Again, the dashed lines show 80-percent credible bounds. For example, 

among students observed to have a 40-point score increase between the fifth and sixth grades, 

their actual universe score changes are estimated to average 13.5. Eighty-percent of all students 

having a 40-point score increase are estimated to have actual universe score changes falling in 

the interval -1.1 to 27.4. It is noteworthy that for the full range of score change shown ( 50  

points), the 80-percent credible bounds include there actually being no change in ability. 

 Note that there are many different combinations of scores that yield a given change in 

observed scores; a score increase from 590 to 630 implies a 40-point change as does an increase 

from 710 to 750. Figure 10 corresponds to the case where one knows the score change but not 
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the pre- and post-scores.30 However, for a given score change, the mean universe-score change 

and credible bounds will vary across known score levels because of the pattern of measurement 

error heteroskedasticity. For example, Figure 11 shows the posterior-mean universe score change 

and credible bounds conditional on particular combinations of scores that correspond to a 40-

point increase. For example, students scoring 710 on the grade-five exam and 750 on the grade-

six exam are estimated to have a 10.2 point universe-score increase on average, with 80 percent 

of such students having actual changes in ability in the interval (-12.4, 31.0). (Note that a 40 

point score increase is relatively large in that the standard deviation of the score change between 

the fifth- and sixth-grades is 26.0.) For students having a 40-point score increase, there actually 

being no change in ability falls outside the credible bounds only when the score in grade five is 

approximately between 615 and 658. 

 A striking result in Figure 11 is that the posterior mean universe-score change, 

 6 5 5 6
ˆ ,E S S       6 5 6 5 5 6

ˆ ˆ, ,E S S E S S  , is substantially smaller than the corresponding 

observed-score change, warranting further explanation. Again consider 

 6 5 5 6
ˆ 710, 750 10.3E S S     . Figure 12 illustrates why this is substantially smaller in 

                                                 
30 The joint density of , 1 , 1, , , and ij i j ij i j      is      1

, 1 , 1 , 1 , 1 , 1, , , ( , )j j j

ij i j ij i j ij ij i j i j ij i jh g g f         

     .  

With 1j j     and  1 1j j j jD S S          , the joint density of , , , and ij ij D     is 

 , , ,j

ij ij ij ijh D        .  Integrating over  and ij ij   yields the joint density of and D ; 

     1 2 1
, 1, ( ) ( )j j

ij i j ij ij ij ij ij ij ijz D g D f g f d d           
 




 

      where 1( )ijf   is the marginal 

density of  ij  and 2
, 1( )i j ijf    is the conditional density of , 1i j   given ij .  This integral can be computed using 

     1 * * 2 * *
1

, 1 ( )J j

ij ij ij ijj
z D J g D f       


      where * *( , ), 1,2, , ,ij ij j J    is a sufficiently large 

number of draws from the joint distribution of ( , )ij ij  .  In turn, the density of the posterior distribution of   given 

D  is      , /z D z D l D   where      1 * * * *
, 1 , 11

1 J j

i j ij ij i jj
l D J g D    

 
     is the density of  D . The 

cumulative posterior distribution is      * *
, 1

1 * * * *
, 1 , 11 ( )

i j ij

j

i j ij ij i ja
P a S J l D g D

 
    





  
     .  Finally, the 

posterior mean ability given D  is        * * 1 * * * *
, 1 , 1 , 11

1 ( ) J j

i j ij i j ij ij i jj
E D J l D g D      

  
     . 



 32 

magnitude compared to the 40-point increase in score. First, 6 6
ˆ ( 750) 733.0E S    is 17 points 

below the observed score due to the Bayes shrinkage toward the mean 6 667.8  . 

 6 5 6
ˆ 710, 750 729.9E S S     is even smaller; because 6S  is a noisy estimate of 6  and 5  is 

correlated with 6 , the value of 5S  provides information regarding the distribution of 6  that 

goes beyond the information gained by observing 6S . Note that  6 5 6,E S S  would equal 

6 6( )E S  if either 
6

2 0   or 56 0  .  6 5 6
ˆ ,E S S  is less than 6 6

ˆ ( )E S  because 5S  is 

substantially below 6S . Similar logic holds for the fifth grade. 5 5
ˆ ( 710) 707.5E S    is less than 

710 because the latter is substantially above 5 . However, 5 5 6
ˆ ( , ) 719.6E S S  is meaningfully 

larger than 5 5
ˆ ( ) 707.5E S   and larger than 5 710S  , reflecting that 6 750S   is substantially 

larger than 5S . In summary, among New York City students scoring 710 on the fifth-grade math 

exam and 40 points higher on the sixth grade exam, we estimate the mean gain in ability is little 

more than one-forth as large as the actual score change;    6 5 6 5 5 6
ˆ ˆ, ,E S S E S S    

729.9 719.6 10.3  . The importance of accounting for the estimated correlation between ability 

levels in grades five and six is reflected in the fact that the mean ability increase would be two 

and one-half times large were the ability levels uncorrelated, 

   6 6 5 5
ˆ ˆE S E S   733.0 707.5 25.5  . 

5.0 Conclusion 

 In this paper we show that there is a credible and feasible approach for estimating the 

total extent of test measurement error utilizing estimates of the empirical correlation or 

covariance matrix for three or more interval-scaled tests. The scales can differ across the tests 



 33 

provided that they are linear transformations of an underlying common vertical scale that need 

not be known. Our approach maintains relatively unrestrictive assumptions regarding the 

structure of student achievement growth. We assume that academic achievement is cumulative 

following a first-order autoregressive process; 1 , 1ij j i j ij       where there is at least some 

persistence (i.e., 1 0j   ) and the possibility of decay ( 1 1j   ), which can differ across grades. 

Even though derivations would be more complicated, one could employ some other structure 

(e.g., a second-order autoregressive process). With 1 , 1ij j i j ij      , an additional assumption 

is needed regarding the stochastic properties of ij . A reduced-form specification is employed in 

the paper and, to illustrate the generality of the approach, three examples of fully specified 

structural models are outlined in Appendix A,  

Our approach is a meaningful generalization of the test-retest method, providing a useful, 

more generally applicable tool for estimating the extent of test measurement error from all 

sources. Estimation is straightforward and the key assumptions underlying the empirical model 

(i.e., , 1 , 1i j j ij i j       with 0j   and  , 1i j ijE    is a linear function of ij ) appear to be 

quite reasonable. Furthermore, these assumptions imply that , 1i j   is a linear function of ij  

which can be tested.  

Estimation of the overall extent of measurement error for a population of students only 

requires computed test-score descriptive statistics and correlations. However, when student-level 

test-score data are available, one can explore the extent and pattern of measurement error 

heteroskedasticity. Results for New York make clear that heteroskedasticity can be important in 

that variation in the extent of test measurement error across ability levels is quite large.  
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The overall extent of test measurement error can be estimated without specifying 

particular functional forms for the distribution of either abilities or test measurement error. 

However, by maintaining standard assumptions (e.g., normality), one can make inferences 

regarding universe scores and universe score gains. In particular, for a student with a given score, 

the Bayesian posterior mean and variance of ij  given ijS ,  ij ijE S  and  ij ijV S  are easily 

computed where the former is the best linear unbiased predictor (BLUP) of the student's actual 

ability. Similar statistics for test score gains can also be computed. We show that using the 

observed score as an estimate of a student's underlying ability can be quite misleading for 

relatively low- or high-ability students. However, this is not the case when the posterior mean is 

employed. 

Estimates of the overall extent of test measurement error have a variety of uses that go 

beyond merely assessing the reliability of various assessments. Employing  ij ijE S , rather 

than ijS , to estimate ij  is one example. Another is the computation of effect sizes where the 

magnitudes of the effects of different causal factors can be judged relative to either the standard 

deviation of ability or the standard deviation of ability gains. Bloom et al. (2008) discuss the 

desirability of taking into account the dispersion of ability or ability gains rather than test scores 

or test-score gains but note that analysts often have little if any information regarding the extent 

of test measurement error.  

As demonstrated above, the same types of data researchers often employ to estimate how 

various factors affect educational outcomes can be used to estimate the overall extent of test 

measurement error. Based on the variance estimates shown in columns (1) and (3) of Table 5, for 

the tests we analyze effect sizes measures relative to the standard deviation of ability will be ten 

to 18 percent larger than effect sizes measured relative to the standard deviation of test scores. In 
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cases where it is pertinent to judge the magnitudes of effects in terms of achievement gains, 

effect sizes measured relative to the standard deviation of ability gains will be two to over three 

times larger compared to those measured relative to the standard deviation of test-score gains. 

 Another use of the estimated extent of test measurement error pertains to the common 

practice of entering student test scores as right-hand-side variables in regression equations, as is 

often done in value-added modeling. A concern is that the measurement error associated with the 

prior tests can bias other coefficient estimates. However, any such problem can be avoided by 

employing  |ij ijE S rather than ijS  as a proxy for ability in the regression.31 Doing so has a 

second benefit. Even if the dependent variable in such a regression is a linear function of ability, 

a problem of nonlinearity is introduced when ijS  is used to proxy ability. This problem arises 

when  |ij ijE S  is a nonlinear function of ijS , as we demonstrate in our application. In an effort 

to deal with this issue, one could include the square and cube of ijS  in the regression. However, 

the problem can be avoided by employing  ˆ |ij ijE S  rather than ijS  in the regression.  

 Finally, by estimating the extent and pattern of test measurement error one can assess the 

precision of a variety of measures that are computed based upon test scores. These include 

indicators of student proficiency (e.g., AYP), teacher- and school-effect estimates and 

accountability measures more generally. As we have shown, it is possible to measure the 

reliability of such measures as well as employ the estimated extent of test measurement error to 

calculate more accurate measures, information which should be employed in policy applications 

based on student achievement tests. 

 Overall, this paper has both methodological and substantive implications. 

Methodologically it shows that the full extent of test measurement error can be estimated without 

                                                 
31 See Sullivan (2001). 
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employing the costly test-retest strategy. Substantively, it shows that the overall measurement 

error is substantially greater than reported split-test measurement error and this difference 

suggests that much empirical work has been underestimating the effect sizes of interventions 

(e.g., programs or teachers) that affect student learning. 
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Table 1 

Descriptive Statistics for Cohort  
 ELA  Math 
  standard   standard 
 mean deviation  mean deviation 

Grade 3 626.8 37.3  616.5 42.3 
Grade 4 657.9 39.0  665.8 36.0 
Grade 5 659.3 36.1  665.7 37.5 
Grade 6 658.0 28.8  667.8 37.5 
Grade 7 661.7 24.4  671.0 32.5 
Grade 8 660.5 26.0  672.2 31.9 

 N = 67,528  N = 74,700 
 
 
 

Table 2 Correlation and Generalizability  
Coefficient Estimates, New York City 

  

Parameters+ Math ELA 
*
34  0.8144 0.8369 
 (0.0016) (0.0016) 
45  0.9581 0.9785 
 (0.0012) (0.0013) 
56  0.9331 0.9644 
 (0.0011) (0.0012) 
67  0.9647 0.9817 
 (0.0011) (0.0012) 

 *
78  0.8711 0.8168 
 (0.0013) (0.0013) 
   
4G  0.8005 0.7853 
 (0.0024) (0.0025) 
5G  0.8057 0.7169 
 (0.0020) (0.0018) 
6G  0.8227 0.7716 
 (0.0019) (0.0019) 
7G  0.8284 0.7184 
 (0.0020) (0.0019) 

                          + The parameter subscripts here correspond to the  
                           grade tested. For example, *

34  is the correlation of  
                           universe scores of  students in grades three and four 
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Table 3  Correlations of Scores on the NYS ELA Examinations 

 in Grades Three Through Eight (Computed values below  
the diagonal and fitted-values above) 

       
 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 

Grade 3  0.7416 0.6934 0.6937 0.6571 0.6332 
Grade 4 0.7416  0.7342 0.7346 0.6958 0.6705 
Grade 5 0.6949 0.7328  0.7173 0.6794 0.6548 
Grade 6 0.6899 0.7357 0.7198  0.7309 0.7044 
Grade 7 0.6573 0.6958 0.6800 0.7303  0.6923 
Grade 8 0.6356 0.6709 0.6514 0.7050 0.6923  
 

 
Table 4  Correlations of Scores on the NYS Math Examinations 

in Grades Three Through Eight (Computed values below 
the diagonal and fitted-values above) 

       
 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 

Grade 3  0.7286 0.7003 0.6603 0.6393 0.6119 
Grade 4 0.7286  0.7694 0.7254 0.7023 0.6722 
Grade 5 0.6936 0.7755  0.7597 0.7355 0.7039 
Grade 6 0.6616 0.7248 0.7592  0.7964 0.7623 
Grade 7 0.6480 0.6998 0.7323 0.7944  0.7929 
Grade 8 0.6091 0.6685 0.7077 0.7643 0.7929  

 
 
 

        

Table 5:  Variances of Test Scores, Test Measurement Error, Universe Scores, Test-Score Gains, 
Measurement Error for Gains, and Universe Score Gains and Generalizabiltity Coefficient for 

Test-Score Gain, ELA and Math  
 (1) (2) (3)  (4) (5) (6) (7) 

          
2 2ˆ ˆ ˆ

j j
j S

G


 
 



 
  ELA  

grade 7 1520.8 326.5 1194.3  763.8 695.3 68.4 0.090 
grade 6 1303.0 368.8 934.2  646.2 558.9 87.3 0.135 
grade 5 832.1 190.0 642.1  407.4 357.6 49.8 0.122 
grade 4 595.1 167.6 427.5      

         

Math         
grade 7 1297.6 259.0 1038.6  661.9 532.8 129.1 0.195 
grade 6 1409.5 273.8 1135.7  677.9 523.8 154.1 0.227 
grade 5 1409.5 250.0 1159.5  527.8 431.0 96.8 0.183 
grade 4 1054.9 181.0 873.9      

2

jS




2ˆ
j




2ˆˆ
j

jj j S
G 




2ˆ

jS




2ˆ
j




2ˆ
j



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Figure 1: Nonparametric Regression of Grade 8 ELA Scores on Scores in Grade 7, 
Bubble Graph Showing the Joint Distribution of Scores and 

Standard-Error of Measurement for 7th Grade Scores 
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Figure 2: Nonparametric Regression of Grade 8 Math Scores on Scores in Grade 7,  
Bubble Graph Showing the Joint Distribution of Scores and  

Standard-Error of Measurement for 7th Grade Scores 
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       Figure 3: Cubic Regression Estimates of  , 1 |i j ijE S S
as well as consistent 

     estimates of cubic and linear specifications of  , 1 |i j ijE  
,  ELA 
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Figure 4: Cubic Regression Estimates of  , 1 |i j ijE S S

as well as consistent 

            estimates of cubic and linear specifications of  , 1 |i j ijE  
,  Math 
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 Figure 5: Generalizability and Reliability Coefficient  
Estimates for New York Math and ELA Exams by Grade 
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Figure 6:  Standard Errors of Measurement Reported in Technical Reports (dashed lines) and 
Estimated Using the Reduced-Form Model, ELA by Grade Pairs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7:  Standard Errors of Measurement Reported in Technical Reports (dashed lines) and 
Estimated Using the Reduced-Form Model, Mathematics by Grade Pairs 
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 Figure 8 
Estimated Posterior Mean Ability Level Given the Observed Score 
and 80-Percent Bayesian Confidence Bounds, Grades 5 and 7 ELA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 
Estimated Posterior Mean Ability Level Given the Observed  

Score and 80-Percent Bayesian Confidence Bounds, Grades 5 and 7 Math 
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Figure 10 
Estimated Posterior Mean Change in Ability Given the Change in Observed 

Score and 80-Percent Credible Bounds, Grades 5 and 6 Mathematics 
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Figure 11 
Estimated Posterior Mean Change in Ability for the Observed Scores in Grades 

Five and Six Mathematics for S6 - S5 = 40 and 80-Percent Credible Bounds 
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Figure 12 
Example Showing Posterior means for a Forty-Point Score Increase, Grades 5 & 6 Mathematics  
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APPENDIX A 
 
 We illustrate the structural approach for estimating the overall extent of test measurement 

error using three alternative specifications for ij  in 1 , 1ij j i j ij      , each of which fully 

specifies the covariance structure of achievement gains across grades.  

 Before considering particular specifications, note that for any specification of ij , 

12 1 2( , )i iCov     1 1 1 2( , )i i iCov      1 11 1 2( , )i iCov     1 11 12    and, in general, 

( , )jk ij ikCov     1 , 1( , )ij k i k ikCov       1 , 1k j k jk     , for k > j, where ( , )jk ij ikCov   . 

These recursive equations imply the structure of 
  shown in Equation A1 and the moment 

conditions in Equation A2. Equation A3 also holds (e.g., 
2

2 2
22 1 11 1 122        ). 

11 12 13 14 11 1 1 11 12 2 12 13 3 13 14

22 23 24 22 2 2 22 23 3 23 24
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44 44 4
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2 2
1 , 1 1 1, 1 1 1,( ) ( ) 2

jjj ij j i j ij j j j j j jV V                      .  (A3) 
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This covariance structure follows from only assuming 1 , 1ij j i j ij      . We consider three 

specifications for ij , each of which implies formulae for jk  and 2
j

 . In each case, we utilize a 

random variable ij  having the following properties: ( , ) 0ij ikCov j k     , 2( )ijV   , 

,( , ) 0 0ij i j mCov m      , and ,( , ) 0 0ij i j mCov m      .32  

Model 1 is the relatively simple, but frequently employed, specification ij i ij     

where i  is a student-level random effect with 2( )iV   . It follows that 2 2 2( )
j

ijV  
       

and ( , )ij ikCov     ( , )i ij i ikCov        2 , j k   . Here the variance of student 

achievement gains gross of any decay is constant across grades. 

Model 2 is the specification , 1ij i j ij     where 0 1  . Note that , 1( , )ij i jCov      

2
, 1( , )

jij ij i jCov       and, more generally, ,( , )ij i j mCov      2 0
j

m m    . 

Model 3 is the moving average 1 , 1 2 , 2ij ij i j i j         . It follows that 

2 2 2 2
1 2( ) (1 )ijV           is constant across grades. Note that , 1( , )ij i jCov      2

1 2(1 )    , 

2
, 2 2( , )ij i jCov       and ,( , ) 0 3ij i j mCov m      .   

 The three models differ in the degree to which the achievement gains of students are 

persistent over time, as shown in (A4). The expression for Model 2 is obtained through iterative  

2
, 1 , 2 , 3

1 , 1 2 , 2

Model 1:   

Model 2:   

Model 3:   

ij ij i

ij ij i j i j i j

ij ij i j i j

  

     

     

  

 

 

   

  

  (A4) 

                                                 
32 We allow for the possibility that the mean of ,i j , say ,i j jE  ,  is nonzero and varies across grades. This 

generalizes the specification , 0,i jE j   , , ,, 0i j i kE j k     , ,, 0i i jE j    , and , ,, 0i j i kE k j     . Note 

that the value of 2( )ijV    can vary across the three models. 
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substitution. There is no diminution in the persistence of the ij over time in Model 1; 

2
,( , )

i
ij i j mCov


     is constant regardless of the grade span (i.e., for all m). The covariance of 

ij  and ,i j m   in Model 2 diminishes as m increases; ,( , )ij i j mCov      2 0
j

m m    . Even so, 

,( , )ij i j mCov     is greater than zero for all grade spans. In Model 3 there is no memory for spans 

of three grades or larger; 2
1 1 2( , ) (1 )ij ijCov        , 2

2 2( , )ij ijCov       and 

,( , ) 0, 3ij i j mCov m      . Memory would be limited to adjacent grades if 1 20 but 0    and 

there would be no persistence if 1 2 0   . Even though there is no memory in Model 3 across 

spans exceeding two grades, any pattern is possible for the first two years, as the values of 1  

and 2  are not restricted. For example, if 1   and 2
2  , the first three terms on the right 

hand side of the equations for Models 2 and 3 in (A4) would be identical. As a group, the three 

models include a wide range of possibilities. However, the estimation strategy discussed below 

can be extended to other specifications for ij  as well. We largely focus on Model 1 to illustrate 

the structural approach to estimation.  

 The specification ij i ij     in Model 1 implies a relatively simple structure for the 

jk . For example, 1 1 ,k k    and 2
2 1 1      . In general, ( , )jk ij ikCov    

( , )ij iCov    j  where ( , )j ij ikCov     1 , 1( , )j i j i ij i ikCov              

2
1 1j j      . Thus, the value of jk  follows from the values of 2

1 2 1 1, , , , ,  and j      . 

This structure, 2 2 2
j

 
    , and Equations A2 and A3 imply the moment equations in (A5) 

and (A6), where the formulae for , 1,jj j   in (A6) can be used to eliminate jj  in (A5). 

Estimation of the remaining parameters is relatively a straightforward. 
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 Suppose that the values of ˆ
ij  have been estimated employing student test scores 

spanning J  grades (i.e., , 1, 2,...,i j J ). Let ˆ
c  represent a column vector made up of the 

( 1) / 2mN J J   moment equations following the structure in (A5) with ˆ
ij substituted for ij  

and the formulae in (A6) substituted for , 1jj j  . Here  ˆ
c   is a function of the 2 3pN J   
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parameters in 2 2
11 1 1 2 1 1 2J JG G G         

    , which can be estimated using the 

generalized-method-of-moments estimator described toward the end of Section 3.2. 

 In background analysis we estimated the three structural models and found that estimates 

of all three specifications yielded predicted covariance structures that fit the covariance of test 

scores well, with little evidence that any one was a superior specification. Important given the 

motivation for this paper, the estimated patterns of test measurement error are quite robust across 

the three structural models and the reduced-form model discussed in the paper.  
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Appendix B 

 As noted in the paper, measurement error can, but need not, result in  , 1 |i j ijE S S
 being 

a nonlinear function of ijS  even when  , 1 |i j ijE  
 is linear in ij . It is not measurement error 

per se that implies the nonlinearity, as  , 1 |i j ijE S S
 is linear in ijS  if the measurement-error is 

homoskedastic (i.e., 2 2 ,
ij j

i
 

 


  ).  However,  , 1 |i j ijE S S
 is nonlinear in ijS  when 

 , 1 |i j ijE  
 is linear but ij  is heteroskedastic with the extent of measurement error varying 

with the ability level (i.e., ( )
ij j ij    ). When ( )

j ij   is U-shaped, as in Figures 1 and 2, 

 , 1 |i j ijE S S
 is an S-shaped function of ijS .  An explanation and example follow. 

 Consider the case where 2( , )
jij jN    ,  , 1 0 1|i j ij ijE         and ij ij ijS    . 

Note that , 1 0 1i j ij ij         with 0ij ijE    so that , 1 0 1 1 , 1i j ij ij i j ijS S          . In 

turn,    , 1 0 1 1i j ij ij ij ijE S S S E S        since both  ij ijE S  and  , 1i j ijE S   are zero. In 

the homoskedastic case ( 2 2
ij j 

 


 ), ij  and ijS  are bivariate normal, as shown in (B-1), 

implying that       
2

2 2 1j

j j

ij ij ij j j ij jE S S G S


 


  

 
    


 where  2 2 2

j j jjG       .  

2 2

2 2 2

0
, j j

j j j

ij

jij

N
S

 

  

 

   

 

 

  
     
     
       

  

    (B-1) 

It follows that    , 1 0 1 11i j ij j j j ijE S S G G S         is linear in ijS . 

 As discussed in the paper, ijS  and ij  are not bivariate normal when the extent of 

measurement error varies across ability levels (i.e., ( )
ij j ij    ).  Similar to the way 
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 ij ijE S  can be computed,   
 

 2 * *
1

1 ( ) ( )
j j

M

ij ij ij ij mj mjj m
ij

E S
k S M

        


   where 

( )  is the standard-normal density,  j
ijk S  is the score density and *

mj  is a random draw from 

the distribution of ij  .  In this way, we can compute    , 1 0 1 1i j ij ij ij ijE S S S E S       . For 

example, suppose that (670,30)ij N  and  20, ( )ij ijN     with 2( ) ( )n ij o ij j         

and 2( ) 15
j j jn n ij oE         . (These assumptions are roughly consistent with the 

patterns found for the NYC test scores.)  The three cases shown in Figure B.1 differ with respect 

to the degree of heteroskedasticity: the homoskedastic case ( 15 and 0o   ), moderate 

heteroskedasticity ( 12 and 0.00333o   ) and a more extreme heteroskedasticity 

( 3 and 0.01333o   ). Values of  , 1i j ijE S S for the three cases are shown in Figure B.2.  

 , 1i j ijE S S  is linear in the homoskedastic case and the degree to which  , 1i j ijE S S  is S-

shaped depends upon the extent of this particular type of heteroskedasticity. 

 Knowing that the observed S-shape patterns of  , 1i j ijE S S  can be consistent with 

 , 1 |i j ijE  
 being linear in ij  is useful, but of greater importance is whether  , 1 |i j ijE  

 is in 

fact linear for the tests of interest.  This can be explored employing the cubic specification 

2 3
, 1 0 1 2 3 , 1i j ij ij ij i j              where 2 3 0    implies linearity.  Substituting 

ij ij ijS     and regressing , 1i jS   on ijS  would yield biased parameter estimates.  However, if 

 * *( ) , 1,2,3,4k

ik i iE S k   ,  were know for each student, regressing , 1i jS    on 

1 2 3 4, , , andi i i i     would yield consistent estimates.33   

                                                 
33 See the discussion of  the "structural least squares" estimator in Kukush et. al (2005) . 
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 Computing the  * *( ) , 1,2,3,4k

ik i iE S k   , for each student requires knowledge of 

the overall extent and pattern of measurement error. It is the lack of such knowledge that motives 

this paper.  However, we are able to compute  * *ˆ ˆ ( )k

ik i iE S   accounting for the meaningful 

measurement-error heteroskedasticity reflected in the reported SEMs34, even though this does not 

account for other sources of measurement error.  Computation of  * *ˆ ( )k

i iE S  also requires an 

estimate of 2
j

  which can be obtained by solving for 2ˆ
j

  implicitly defined in 

   2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ,
j j j j jS S jf d                 .  We solve for 2ˆ

j
  iteratively by computing  

     2 2 2 2 2 *1ˆ ˆ ˆ,
j j j

M

S j S mj

m

f d
M

               .  Here the integral 

   2 2ˆ ,
jjf d        is computed using Monte Carlo integration with importance sampling 

where the *
mj  are random draws from the distribution  2ˆ ,

jjN    and 2
j

  is an initial estimate 

of 2
j

 . This yielded an updated value of 2
j

  which can be used to repeat the prior step. 

Relatively few iterations are needed for converge to the fixed-point – our estimate of 2
j

   The 

estimate 2ˆ
j

  allows us to compute values of  
îk  and, in turn, regress ijS +1  on 

1 2 3 4
ˆ ˆ ˆ ˆ, , , andi i i i    . 

 

.  

                                                 
34 Because SEM values are reported for a limited set of scores, a flexible functional form for  2

   was fit to the 
reported SEM. This function was then used in computation of moments. 
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Figure B.1 
Examples Showing Different Degrees of Heteroskedastic Measurement Error  
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Figure B.2 

How the Relationship Between  i iE S S  and 
iS   

Varies with the Degree of Heteroskedasticity 
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