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Abstract

Economists are increasingly turning to the experimental method as a means to estimate causal effects. By
using randomization to identify key treatment effects, theories previously viewed as untestable are now
scrutinized, efficacy of public policies are now more easily verified, and stakeholders can swiftly add
empirical evidence to aid their decision-making. This study provides an overview of experimental
methods in economics, with a special focus on developing an economic theory of generalizability. Given
that field experiments are in their infancy, our secondary focus pertains to a discussion of the various
parameters that they identify, and how they add to scientific knowledge. We conclude that until we
conduct more field experiments that build a bridge between the lab and the naturally-occurring settings of
interest we cannot begin to make strong conclusions empirically on the crucial question of
generalizability from the lab to the field.
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1. Introduction

The existence of a problem in knowledge depends on the future being different from the
past, while the possibility of a solution of the problem depends on the future being like
the past (Knight 1921, p313).

More than fifteen years ago one of the coauthors (List) sat in the audience of a professional presentation
that was detailing whether and to what extent students collude in the lab and what this meant to
policymakers interested in combating collusion. He openly wondered how such behavior would manifest
itself with live traders in an extra-lab market, asking innocently whether policymakers should be
concerned that this environment was much different than the one in which they typically operate. His
concerns were swept aside as naive.

" This paper is written for Frechette, G. & Schotter, A., Methods of Modern Experimental Economics, Oxford
University Press. We wish to thank Marco Castillo, Robert Chambers, David Eil and Andreas Ortmann for helpful
comments and for encouraging us to work on this issue. Alec Brandon and David Novgorodsky provided excellent
research assistance. Al-Ubaydli: Department of Economics and Mercatus Center, George Mason University; List:
Department of Economics, University of Chicago & NBER.



Later in that same year List attended a conference where experimental economists debated the merits of
an experimental study that measured the magnitude of social preferences of students. He asked if such
preferences would thrive in naturally-occurring settings, and how they would affect equilibrium prices
and quantities. In not so many words, he was told to go and sit in the corner again. After the session,
another junior experimentalist approached a now distraught List—"“those are great questions, but off
limits.” List queried why, to which he received a response “that’s the way it is.””

Except for the names and a few other changes, List was articulating words in the spirit of what Knight had
much more eloquently quipped over 80 years prior: the intriguing possibility of using laboratory
experiments as a solution to real world problems depended on the lab being like the field in terms of
delivering similar behavioral relationships. A wet behind the ears List was fascinated by this query, but
was learning that others did not share his passion, or even his opinion that it was a worthwhile point to
discuss.

We are happy to find that the good ol’ days are behind us. Today it is not uncommon for the very best
minds in economics to discuss and debate the merits of the experimental method and the generalizability
of experimental results (e.g., Falk and Heckman 2009, and the excellent chapters in Frechette and
Schotter, forthcoming). We find this fruitful for many reasons, and continue to scratch our heads when
some critics continue to contend that we have ‘ruined the field of experimental economics’ by scribing the
original Levitt and List (2007; henceforth LL) article. This is a very short run view; indeed, our field of
experimental economics can be sustainable only if our audience includes those outside our direct area of
study. Otherwise, we run the real risk of becoming obscure. Understanding the applicability of our
empirical results and having an open discussion can move us closer to the acceptance of our tools by all
economists, and can move us toward an approach that can help us more fully understand the economic
science.

More broadly, the discussions in Frechette and Schotter (forthcoming) represent a sign of change—we
have entered a climate of scientific exploration that permits a serious investigation of what we believe to
be the most important questions facing behavioral and experimental economists: (1) which insights from
the lab generalize to the extra-lab world? (2) how do market interactions or market experience affect
behaviors? And, (3) do individual anomalous behaviors aggregate to importantly affect market equilibria,
and how does equilibration affect the individual anomalies?

One of LL’s contributions was to present a theoretical framework and gather empirical evidence that
questioned the level, or point, estimates delivered by laboratory experiments in economics. As a point of
discussion, they focused on the work within the area of the measurement of social preferences. LL’s
overarching points included arguments that the laboratory is especially well equipped to deliver
qualitative treatment effects, or comparative static insights, but not well suited to deliver deep structural
parameters, or precise point estimates. This is because such estimates critically depend on the properties
of the situation, as they detailed with examples from economics and psychology experiments. In the end,
LL argue that lab and field experiments are complements with each serving an important role in the
discovery process (consistent with what List has argued in all of his work).

* Without any evidence, we suspect that Peter Bohm was feeling similar ostracism as he presented his (seminal)
challenges to laboratory experimentalists in Europe without much traction.



In this study we begin by providing an overview of experimental methods in economics, focusing on the
behavioral parameters that each estimates. We then turn to formalizing generalizability. In principle,
generalizability requires no less of a leap of faith in conventional (non-experimental) empirical research
than in experimental research. The issue is obfuscated in non-experimental research by the more pressing
problem of identification: how to correctly estimate treatment effects in the absence of randomization.

In our model, we generalize the ‘all causes’ approach to a more continuous form where researchers have
priors about causal effects and update them based on data. This formality is necessary for a precise
articulation of a theory of the advantages offered by field experiments. We conclude with some thoughts
on where we hope this line of research goes in the coming years.

2. Preamble: Empirical methods

The empirical gold standard in the social sciences is to estimate a causal effect of some action. For
example, measuring the effect of a new government program or answering how a new innovation changes
the profit margin of a firm are queries for the scientist interested in causal relationships. The difficulty
that arises in establishing causality is that either the action is taken or it is not—we never directly observe
what would have happened in an alternative state in which a different action is taken. This, combined
with the fact that in the real world there are simultaneously many moving parts, has led scholars to
conclude that experimentation has little hope within economics.

Such thoughts reflect a lack of understanding of how the experimental method identifies, and measures,
treatment effects. In fact, complications that are difficult to understand or control represent key reasons fo
conduct experiments, not a point of skepticism. This is because randomization acts as an instrumental
variable, balancing unobservables across control and treatment groups.

To show this point, we find it instructive to consider empirical methods more broadly. The Easternmost
portion of Figure 1, which we have often used elsewhere, highlights some of the more popular approaches
that economists use to analyze naturally-occurring data.

Controlled Data Naturally-Occurring Data
Lab AFE FFE NFE NE, PSM, IV, STR

Lab: Lab experiment

AFE: Artefactual field experiment
FFE: Framed field experiment

NFE: Natural field experiment

NE:  Natural experiment

PSM: Propensity score estimation

IV:  Instrumental variables estimation
STR: Structural modeling

Figure 1: A field experiment bridge



For example, identification in natural experiments results from a difference-in-difference (DD) regression
model where the major identifying assumption is that there are no time-varying, unit-specific shocks to
the outcome variable that are correlated with treatment status, and that selection into treatment is
independent of the temporary individual-specific effect. For example, let’s say that the researcher is
interested in estimating the impact on labor supplied from an increase in minimum wage, as Card and
Krueger (1994) famously do by comparing labor supplied at fast food restaurants in New Jersey—which
raised their minimum wage—and neighboring Pennsylvania—which did not change their minimum wage.
There’s no ex ante reason to expect New Jersey and Pennsylvania to start with the same labor supplied,
but the motivation behind using DD is that you would expect the difference in labor supplied from year to
year in both states to be pretty similar, all else equal.

Card and Krueger leverage the policy change in New Jersey to compare the difference of those
differences in order to understand the impact of minimum wage laws on the quantity of labor supplied.
Implicit in their analysis, though, is that other than the change in minimum wage laws in New Jersey,
nothing has impacted the difference in the quantity of labor supplied between the time periods in
Pennsylvania that is correlated with treatment. Furthermore, they must assume that treatment was
randomly applied to New Jersey and not Pennsylvania, otherwise we don’t know whether New Jersey just
has some unique trait that is correlated with treatment status that would impact the quantity of labor
supplied.

Useful alternatives to this approach include the method of propensity score matching (PSM) developed in
Rosenbaum and Rubin (1983). A major assumption under this approach is called the “conditional
independence assumption,” and intuitively means that selection into treatment occurs only on
observables. This means, for example, that the econometrician knows all the variables that influence
whether a person selects into an employment program. In most cases, this assumption is unrealistic. Other
popular methods of measurement include the use of instrumental variables and structural modeling.
Assumptions of these approaches are well documented and are not discussed further here (see, e.g.,
Rosenzweig and Wolpin 2000 and Blundell and Costa Dias 2002).

We think that it is fair to say that these approaches of modeling naturally-occurring data are very useful,
but because the world is complicated they are sometimes subject to incredulous assumptions. We are not
the first to make this point, as there are entire literatures discussing the limitations of the various empirical
models. In essence, many people argue that because the economic world is extremely complicated, one
must take great care when making causal inference from naturally-occurring data.

On the Westernmost portion of Figure 1 is the laboratory experiment, which typically makes use of
randomization to identify a treatment effect of interest among student subjects. Making generalizations
outside of this domain might prove difficult in some cases, but to obtain the effect of treatment in this
particular domain the only assumption necessary is appropriate randomization.

Field experiments represent a movement to take the data generation process beyond the walls of the
laboratory. Two decades ago, the primary data generators were lab experimentalists. The past 15 years
has witnessed an explosion of creative ways to generate data in the field. Harrison and List (2004)
propose six factors that can be used to determine the field context of an experiment: the nature of the
subject pool, the nature of the information that the subjects bring to the task, the nature of the commodity,
the nature of the task or trading rules applied, the nature of the stakes, and the environment in which the
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subjects operate. Using these factors, they discuss a classification scheme that helps to organize one’s
thoughts about the factors that might be important when moving from the lab to the field.

According to this classification scheme, the most minor departure from the typical laboratory experiment
is the “artefactual” field experiment (AFE), which mimics a lab experiment except that it uses “non-
standard” subjects. Such subjects are non-standard in the sense that they are not students, but participants
drawn from the market of interest. This type of experiment represents a useful type of exploration beyond
traditional laboratory studies. As discussed in Frechette and Schotter (forthcoming), AFEs have been
fruitfully used in financial applications, public economics, environmental economics, industrial
organization, and to test predictions of game theory.

Moving closer to how naturally-occurring data are generated, Harrison and List (2004) denote a framed
field experiment (FFE) as the same as an AFE but with field context in the commodity, task, stakes, or
information set that the subjects can use. This type of experiment is important in the sense that a myriad
of factors might influence behavior and by progressing slowly toward the environment of ultimate interest
one can learn about whether, and to what extent, such factors influence behavior one by one.

FFEs represent a very active type of field experiment in the past decade. Social experiments and recent
experiments conducted in development economics are a type of FFE: subjects are aware that they are
taking part in an experiment, and in many cases understand that their experience is for research purposes.
Peter Bohm was an early experimenter to depart from traditional lab methods by using FFEs (Bohm
1972). While his work touched off an interesting stream of research within environmental and resource
economics, for a reason that we cannot quite put our finger on, the broader economics literature did not
quickly follow Bohm’s lead to pursue research outside of the lab. This has only happened in the past
decade or so.

Finally, a natural field experiment (NFE) is the same as a FFE in that it occurs in the environment where
the subjects naturally undertake these tasks, but where the subjects do not know that they are participants
in an experiment.’ Such an exercise is important in that it represents an approach that combines the most
attractive elements of the experimental method and naturally-occurring data: randomization and realism.
In addition, it importantly tackles a selection problem that is not often discussed concerning the other
types of experiments, as discussed below.

NFEs have recently been used to answer a wide range of questions in economics, including topics as
varied as measuring preferences (List 2003) and how one can manage an on-line shopping experience
(Hossain and Morgan 2006). The economics of charity has witnessed a plethora of NFEs, as recently
discussed in List (2011a). Of course, the taxonomy in Figure 1 leaves gaps, and certain studies may not
fall neatly into such a classification scheme, but such an organization highlights what is necessary in
terms of scientific discovery to link controlled experimentation to naturally-occurring data.

As we will argue below, a NFE represents the cleanest possible manner in which to estimate the treatment
effect of interest. In this light, economists can certainly go beyond activities of astronomers and
meteorologists and approach the testing of laws akin to chemists and biologists. Importantly, however,
background variables can matter greatly when one attempts to generalize empirical results. With an

? This raises the issue of informed consent. For a discussion on this, and related, issues see Levitt and List (2009)
and List (2008, 2011b).



understanding of the exact behavioral parameters identified by the various experimental approaches, we
will be in a position to discuss generalizability, the focus of this paper. We first turn to the estimated
parameters from experiments.

What parameters do experiments estimate?

Without loss of generality, define y; as the outcome with treatment, y, as the outcome without treatment,
and let T = 1 when treated and T = 0 when not treated. The treatment effect for person i can then be
measured as T; = ¥;; — Yjo. The major problem, however, is one of a missing counterfactual—person i is
not observed in both states of the world. We assume that p = 1 indicates participation in the experiment,
p = 0 indicates non-participation. That is, people who agree to enroll in the experiment have p = 1,
others have p = 0. In this way, if one is interested in the mean differences in outcomes, then the treatment
effect of interest is given by:

t=E@lp=1D=EW;1—Ylp=1

Yet, in our experience in the field, what is typically reported by government programs such as Head Start,
firms—non-profits and for profits—and laypeople who discuss results from experiments is a treatment
effect as follows:

t'=EWlp=1)—EWolp=0)

Such a reported effect represents a potentially misleading measurement because it is comparing the mean
outcome for two potentially quite different populations. To see the difference between t and t’, simply
add and subtract E(y,| p = 1) from t', yielding:

t'=EG@lp=D=E@1—Yolp=1)+EQolp=1)—EQolp=0)
t )

where ¢ is the traditional selection bias term. This bias is a result of the non-treated differing from one
another in the non-treated state.

This equation is illustrative because it shows clearly how selection bias, as is typically discussed in the
literature, relates to outcomes in the non-treated state. For example, if parents who care more deeply
about their children’s educational outcomes are those who are more likely to sign up for services from
Head Start, then their children might have better outcomes in the non-treatment state than children of
parents who care less deeply about their children’s educational outcomes. In this case, such selection bias
causes the second term to be greater than zero because E(yy|p = 1) > E(yo| p = 0), leading the Head
Start program to report a treatment effect that is too optimistic; or a treatment effect estimate that is
biased upwards. In such instances, we would systematically believe that the benefits of Head Start are
considerably higher than their true benefits. In our travels, we have found that this problem—one of not
constructing the proper control group—is ubiquitous.

To avoid this sort of selection bias, what is necessary is for randomization and identification of the
treatment effect to occur just over the p = 1 group, yielding a treatment effect estimate of the mean



outcome differences between treated and non-treated from the p = 1 group. Letting D = 1 (0) denote
those randomized into treatment (non-treatment):

t=E(y;|D=1ANDp=1)—-E(yolD =0ANDp =1)

At this point, it is instructive to pause and ask how to interpret the meaning of this treatment effect. First,
this is the treatment effect that laboratory experiments, as well as AFEs and FFEs report (but not the
treatment effect reported from NFEs). Given that randomization was done appropriately, this is a valid
treatment effect estimate for the p = 1 population. For this effect to generalize to the p = 0 population,
however, further assumptions must be made.

For example, the effect of treatment cannot differ across the p = 1 and p = 0 groups. If, for instance, a
person has a unique trait that is correlated with treatment status and correlated with the outcome variable,
such generalization is frustrated. In our Head Start example, it might be the case that parents who believe
Head Start will have a positive effect on their child are more likely to enroll. In that case, it would not be
appropriate to generalize the effect from the p = 1 group to the p = 0 group if such beliefs were actually
true.

This effect—call it Treatment Specific Selection Bias—is quite distinct from the traditional selection bias
discussed in the literature and shown above. Whereas the standard selection bias relates to outcomes of
the p = 1 and p = 0 groups in the non-treated state, this sort of bias in the measured treatment effect is
related to outcomes of the p = 1 and p = 0 groups in the freated state.

So how do NFEs differ in their identification approach? Since subjects are not aware that they are taking
part in an experiment, NFEs naturally resolve any bias issues. In this case, there isnop=1orp =20
group: subjects are randomly placed into treatment or control groups without even knowing it. This fact
excludes the typical selection effect discussed in the literature and precludes Treatment Specific Selection
Bias (see Slonim et al. 2012 for a recent excellent study of selection into the laboratory). Indeed, it also
rids us of other biases, such as randomization bias and any behavioral effects of people knowing that they
are taking part in an experiment.

The very nature of how the parameter is estimated reveals the mistake that many people make when
claiming that the laboratory environment offers more ‘control’ than a field experiment. There are
unobservables in each environment, and to conclude ex ante that certain unobservables (ficld) are more
detrimental than others (lab) is missing the point. This is because randomization balances the
unobservables—whether a myriad or one. Thus, even if one wished to argue that background
complexities are more severe in one environment than the other there really is little meaning—one
unobservable can do as much harm as multiple unobservables. Indeed, all it takes is for one unobservable
to be correlated with the outcome for an approach to have a problem of inference. The beauty behind
randomization is that it handles the unobservability problem, permitting a crisp estimate of the causal
effect of interest.



3. Formalizing generalizability

When we first began to explore generalizability, we found a dearth of theory and smattering of empirical
evidence.* Even though we presented a theoretical framework in LL, our attention there was focused on
the empirical evidence. Accordingly, here we focus on the theory and leave it to the interested reader to
scrutinize the extant literature and make an informed opinion about what it says. Our own opinion is that
it is too early to tell decisively where the empirical debate will end, but the evidence is mounting in favor
of the hypotheses in LL. But, as usual, caveat lector—we leave it to the reader to decide.

In the all causes model (Heckman 2000), the researcher starts with a causal effect about which she has no
prior. The purpose of an empirical investigation is to generate an estimate. In this section, we will
generalize the all causes model to a more continuous form where researchers have priors about causal
effects and update them based on data. This formality is necessary for a precise articulation of a theory of
the advantages offered by field experiments; it is also consonant with our empirical complement
presented below.

Setup

Let Y be a random variable, denoted the dependent variable, whose realizations are in Sy € R; let X be a
random variable, denoted the explanatory variable of interest, whose realizations are in Sy € R; and let
Z be a random vector, denoted the additional explanatory variables, whose realizations are in S, € R¥.
Further, Z contains all the explanatory variables (apart from X) that have an impact on Y. To focus our
model on the generalizability problem (rather than the sampling/inference problem), we assume that Z is
observable. This model can be easily expanded to allow for unobservable variables.

In the all causes model, (X, Y, Z) are related according to the function f: Sy X S; = Sy. Each (x,x',2) €
Sy X Sy X S, is denoted a causal triple. The causal effect of changing X from x to x’ on Y given Z = z
is described by the function g: Sy X Sx X S; = R, where:

g(x,x',z) = f(X’,Z) _f(X,Z)

Let T € Sy X Sx X S7 be the target space. It describes the causal triples in which an empirical researcher
is interested. Typically, she wants to know the exact value of the causal effect, g(x,x’,z), of each
element of T. Often, particularly in experimental research, a researcher is interested merely in knowing if
the causal effect lies in a certain range. Let h: Sy X Sy X S; — R be a function that captures the aspect of
a causal effect in which the researcher is interested. The most common, especially when testing theory
(rather than selecting policy), is h:

* Various people use the term external validity. As we noted in Harrison and List (2004, p1033), we do not like the
expression "external validity" because “what is valid in an experiment depends on the theoretical framework that is
being used to draw inferences from the observed behavior in the experiment. If we have a theory that (implicitly)
says that hair color does not affect behavior, then any experiment that ignores hair color is valid from the
perspective of that theory. But one cannot identify what factors make an experiment valid without some priors from
a theoretical framework, which is crossing into the turf of "internal validity." Note also that the "theory" we have in
mind here should include the assumptions required to undertake statistical inference with the experimental data.”
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—1lifg(x,x",2) <0
h(x,x',z) =3 0ifg(x,x',2) =0
lifg(x,x',2z) >0
Before embarking upon a new empirical investigation, a researcher has a prior F)?, X 2 R= [0,1] about
the value of h(x,x’,z) for each (x,x’,z) € T. The prior is a cumulative density function based on
existing theoretical and empirical studies, as well as researcher introspection.

An empirical investigation is a dataset D S Sy X Sy X S;. Note that D and T may be disjoint, and both
may be singletons. Indeed, D is often a singleton in laboratory experiments. The researcher will typically
sample Y repeatedly at (X,Z) = (x,z) and (X,Z) = (x',z) and use this to obtain an estimate of
g(x,x',2). Let the results R € D X R be the set of causal effects obtainable from the dataset D making
no parametric assumptions (i.e., no extrapolation or interpolation):

R = {(x,x’,z,g(x,x’,z)): (x,x",z) € D}

As mentioned above, we set aside the sizeable problem of obtaining a consistent estimate of g(x, x’,z). In
fact this is the primary problem faced by most non-experimental, empirical research due to, e.g., small
samples and endogeneity problems. To some extent, generalizability is a secondary issue in empirical
research that uses naturally-occurring data simply because it is overshadowed by the more pressing issue
of identification.

This essay will ignore this part of the identification problem to focus attention upon the generalizability
problem. Questions about how sample size and variance affect the estimation procedure are set aside as
they do not interact with the main principles, though this framework can be easily expanded to
incorporate such issues. Consequently, we do not draw a distinction between a causal effect g(x, x’, z)
and a direct empirical estimate of g(x, x’, z).

After seeing the results, R, the researcher updates her prior F? for each (x,x’,z) € T, forming a

xx' z
posterior F; ' z- The updating process is not necessarily Bayesian. The generalizability debate, which we
discuss in the next section, is concerned with the formation of the posterior, especially for elements of
T\D. We henceforth assume that the prior is never completely concentrated at the truth, implying that any

valid estimate of g(x, x’, z) will always lead to the researcher updating her prior.

The posterior is the conclusion of the empirical investigation. This framework is designed to include
studies that estimate causal effects for policy use, for testing a theory or for comparing multiple theories.

To put the framework into motion with an economic example, we consider a Laffer-motivated researcher
who wants to know if increasing sales tax (X) from 10% to 15% increases tax revenue (Y) when the
mean income in a city (Z) is $30k. For expositional simplicity, we assume that the only element of Z is
mean income level. The researcher can only generate data in four cities: two cities have a mean income of
$20k and two cities have a mean income of $35k. All four cities currently have a sales tax of 10%. She
randomly assigns treatment (increasing sales tax to 15%) to one city in each income pair and control
(leaving the sales tax at 10%) to the other city in each pair. She then collects data on tax revenue (one
observation in each cell is sufficient because we are not tackling the sample-size component of the
identification problem).



The researcher’s prior is a 0.5 chance of a positive causal effect at a mean income of $30k. She finds a
positive causal effect at both mean income levels and revises her prior at a mean income of $30k to a 0.6
chance of a positive causal effect. In terms of our notation:

T = {(10%, 15%, $30000)}

1ifg(x,x',2z) >0

hx, x',2) = {0 ifg(x,x',z) <0

D = {(10%, 15%, $20000), (10%, 15%, $35000)}

R = {(10%, 15%, $20000,1), (10%, 15%, $35000,1)}

0 _ 1 .
F10%,15%,$30000(0) = 0.5, F1994 159 $30000(0) = 0.4

Different types of generalizability

Given a set of priors F° = {F O, :(x,x',2) € Sx X Sy X SZ} and results R, the generalizability set

xx'z
A(R) S {Sx x Sy X S;}\D is the set of causal triples outside the dataset where the posterior F> is

xx' z
updated as a consequence of learning the results:

A(R) = {(x,x’,z) € {Sx X Sy X S;}\D: F;x,’Z(G‘) * F)?’x,,z(e) for some 6 € R}

Results are generalizable when the generalizability set is non-empty: A(R) # @. A researcher is said to
generalize when the generalizability set intersects with the target space: A(R) N T # @. The researcher in
the above Laffer example is generalizing. Note that generalizability is focused on h(x, x’, z) rather than
g(x,x', z) since the prior is focused on h(x, x', z).

As mentioned above, in principle, generalizability requires no less of a leap of faith in conventional (non-
experimental) empirical research than in experimental research. The issue is obfuscated in non-
experimental research by the more pressing problem of identification: how to correctly estimate
g(x,x',z) in the first place due to, e.g., the absence of randomization. This problem does not plague
experimental work. Indeed, the beauty of experimentation is that through randomization the problem of
identification is solved.

Given prior beliefs F°, a set of results R has zero generalizability if its generalizability set is empty:
A(R) = @. Zero generalizability is the most conservative empirical stance and equates to a paralyzing fear
of interpolation, extrapolation, or the assumption of additive separability.

Given prior beliefs F°, a set of results R has local generalizability if its generalizability set contains
points within an arbitrarily small neighborhood of points in D:

(x,x',z) € A(R) = (x,x',z) € B.(%,x',Z) forsome e > 0,(%X,x',Z) € D
The simplest way to obtain local generalizability is to assume that h(x, x', z) is continuous (or only has a

small number of discontinuities), since continuity implies local linearity and therefore permits local
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extrapolation.” In the Laffer example above, assuming that the causal effect is continuous in the mean
income level in the city, the researcher can extrapolate her findings to estimate the causal effect for a city
with a mean income level of $35100. In principle, non-local changes in (x, x’,z) can have a large effect
on h, limiting our ability to extrapolate. However as long as we do not change (x,x',z) by much and
h(x,x',z) is continuous, then h will not change by much and so our dataset D will still be informative
about causal effects outside this set.

Since continuity is sufficient for local generalizability, it follows that discontinuity is necessary for zero
generalizability. If, as is often likely to be the case, the researcher is unsure of the continuity within
h(x,x',z), then the more conservative she is, the more she will be inclined to expect zero
generalizability.®

Given prior beliefs F°, a set of results R has global generalizability if its generalizability set contains
points outside an arbitrarily small neighborhood of points in D:

A(x,x',z) € A(R): (x,x',z) & B.(X,x',2) for some € > 0, forall (x,x',z) € D

In the Laffer example above, the researcher is assuming global generalizability. At its heart, global
generalizability is about assuming that a large change in (x,x', z) does not have a large effect on h.

A succinct summary of Section 3 thus far is as follows.

1. In a non-parametric world, results can fail to generalize, generalize locally, or generalize globally.

2. A sufficient condition for local generalizability is continuity of h(x, x’, z).

3. A sufficiently conservative researcher is unlikely to believe that her results generalize globally
because this requires a much stronger assumption than continuity.

We are now in a position to formalize the advantages offered by field experiments.

A theory of the advantage offered by field experiments

A (function of a) causal effect h(x, x’,z) is investigation-neutral if it is unaffected by the fact that it is
being induced by a scientific investigator ceteris paribus. Thus, for example, suppose that we are studying
the causal effect of the slope of a demand curve on the percentage of surplus realized in a market. If this
effect is investigation-neutral, then the fact that the market was set up as the result of a scientific
investigation versus simply observed in the naturally-occurring domain, ceteris paribus, does not change
the causal effect. We assume that causal effects are investigation-neutral.

We define a natural setting as a triple (x,x’,z) that can plausibly exist in the absence of academic,
scientific investigation. For example if a scientist is studying the effect of a piece rate versus a fixed wage
compensation scheme on the productivity of a worker soliciting funds in a phoneathon for a charity, then
this is a natural setting since it is common for workers to get hired to do such tasks using a piece rate or a
fixed wage scheme. In contrast, if a scientist is interested in studying the magnitude of social preferences

> Continuity in a subset of its arguments guarantees local generalizability in a subset of dimensions.
% This is where our allowance for non-Bayesian updating applies; a highly conservative researcher may be reluctant
to update her prior if there is a large probability of the generalization being invalid.
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and brings a group of students into the lab to play a dictator game, then this is not a natural setting since
students virtually never find themselves involved in such a scenario under the specific features of that
environment and task.

Our principal assumption is that as economists, we are more interested in learning about and
understanding behavior in natural settings than in non-natural settings. This does not eliminate the
value of learning about causal effects in non-natural settings; after all, the benefits of centuries of artificial
studies in physics, chemistry, and engineering are self-evident. However it requires that insights gained in
non-natural settings generalize to natural settings for them to be of great value. This is because as
economists we are interested with reality, in contrast to say poetry. We are concerned with understanding
the real world and in modifying it to better the allocation of scarce resources or to prescribe better
solutions to collective choice problems.

Through this lens, because of their very nature laboratory experiments represent an environment that
could only ever come about as the result of a scientific investigation. Thus, laboratory investigations are
not completed in natural settings. Moreover, many laboratory experiments might not even be in the
neighborhood of a natural setting. This is because several variables have to change by large amounts in
order for a laboratory setting to transform into a natural setting, e.g., the nature and extent of scrutiny, the
context of the choice decision and situation, the experience of participants, and several other factors
discussed in LL. We elaborate on one such factor—the participation decision—below.

Falk and Heckman (2009) and others (see the work in Frechette and Schotter, forthcoming) have
questioned whether the non-local changes in (x,x’,z) that arise when generalizing from a laboratory
setting to field setting have a large effect on h(x,x’, z). Interestingly, when making their arguments they
ignore one of the most important: typical laboratory experiments impose artificial restrictions on choice
sets and time horizons.

Regardless of the factors that they discuss and fail to discuss, to the best of our knowledge, nobody has
questioned the proposition that the changes in (x, x’,z) are non-local.” In fact, the artificial restrictions on
choice sets and time horizons are a particularly dramatic illustration of the non-local differences between
laboratory and field settings. Another critical, non-local difference between laboratory and natural field
settings is the participation decision, shown above in the traditional treatment effects model and discussed
below within our framework.

With this background in hand, we proceed to three Propositions which are meant to capture the range of
thoughts across the economics profession today. We do not believe that one can categorize all laboratory
experiments under any one of these propositions, but rather believe that there are a range of laboratory
experiments, some of which fall under each of the three propositions.

Proposition 1: Under a liberal stance (global generalizability), neither field nor laboratory experiments
are demonstrably superior to the other.

" We are therefore implicitly referring to NFEs (Harrison and List 2004) when we discuss field experiments in this
section, since FFEs and AFEs are not natural settings in every dimension. However in Propositions 1-3, they will lie
between NFEs and conventional laboratory experiments.
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This view is the most optimistic for generalizing results from the lab to the field. It has as its roots the fact
that the generalizability sets are both non-empty and, in general, neither will contain the other. In this
way, empirical results are globally generalizable.

As an example, consider the work on market equilibration. Conventional economic theory relies on two
assumptions: utility-maximizing behavior and the institution of Walrasian tdtonnement. Explorations to
relax institutional constraints have taken a variety of paths, with traditional economic tools having limited
empirical success partly due to the multiple simultaneously moving parts in the marketplace. Vernon
Smith (1962) advanced the exploration significantly when he tested neoclassical theory by executing
double oral auctions. His results were staggering—quantity and price levels were very near competitive
levels after a few market periods. It is fair to say that this general result remains one of the most robust
findings in experimental economics today.

List (2004) represents a field experiment that moves the analysis from the laboratory environment to the
natural setting where the actors actually undertake decisions. The study therefore represents an empirical
test in an actual marketplace where agents engage in face-to-face continuous bilateral bargaining in a
multi-lateral market context.® Much like Smith’s (1962) set-up, the market mechanics in List’s bilateral
bargaining markets are not Walrasian.

Unlike Smith (1962), however, in these markets subjects set prices as they please, with no guidance from
a centralized auctioneer. Thus, List’s design shifts the task of adaptation from the auctioneer to the agents,
permitting trades to occur in a decentralized manner, similar to how trades are consummated in actual free
unobstructed markets. In doing so, the market structure reformulates the problem of stability of equilibria
as a question about the behavior of actual people as a psychological question—as opposed to a question
about an abstract and impersonal market.

A key result of List’s study is the strong tendency for exchange prices to approach the neoclassical
competitive model predictions, especially in symmetric markets. This example highlights exactly what the
original LL model predicts: a wide class of laboratory results should be directly applicable to the field. In
particular, we would more likely find an experiment falling under Proposition 1 when the experimenter
does not place the subject on an artificial margin, when moral concerns are absent, the computational
demands on participants are small, non-random selection of participants is not an important factor,
experience is unimportant or quickly learned, and the experimenter has created a lab context that mirrors
the important aspects of the real-world problem. At that point, we would expect results from the lab to be
a closer guide to natural settings.

Our next Proposition strengthens this liberal view:

Proposition 2: Under a conservative stance (local generalizability; or if the researcher is confident that
h(x,x', z) is continuous), field experiments are more useful than laboratory experiments.

This view follows from the idea that results generalizable locally. Thus, whether empirical data is
generated in the lab or the field, it can be generalized to the immediately adjacent settings. And, since

¥ In this way, List’s (2004) institution was more in line with Chamberlin (1948) than Smith. Since Chamberlin’s
original lab results have proven not to replicate well, we view his laboratory insights as an aberration when
discussing lab results from market experiments.
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field experiments provide information from a natural setting and laboratory experiments from a non-
natural setting, field experiment are more useful. This is because the neighborhood of a natural setting is
still a natural setting, while the neighborhood of a non-natural setting is non-natural.

As an example, consider the recent work in the economics of charity. Without a doubt, the sector
represents one of the most vibrant in modern economies. In the US alone, charitable gifts of money have
exceeded 2% GDP in the past decade. Growth has also been spectacular—from 1968-2008, individual
gifts have grown nearly 18 fold, doubling the growth rate in the S&P 500. Recently, a set of lab and field
experiments have lent insights into the “demand side” of charitable fundraising.

For instance, consider the recent laboratory experiments of Rondeau and List (2008). They explored
whether leadership gifts—whether used as a challenge gift (simply an announcement) or as a match gift
(i.e., send in $100 and we will double your contribution)—affect giving rates. From the lab evidence, they
found little support for the view that leadership gifts increase the amount of funds raised.

Alternatively, in that same paper, they used leadership gifts to raise money for the Sierra Club of Canada
via a field experiment. Their natural field experiment was conducted within the spirit of one of the typical
fundraising drives of the Sierra Club organization. A total of 3,000 Sierra Club supporters were randomly
divided into four treatments, varying the magnitude and type of leadership gift. They find that challenge
gifts work quite well in the field. This means that it is important for fundraisers to seek out big donors
privately before they go public with their cause, and to use challenge gifts when doing so.

One is now in a position to ask: if I am a fundraiser, which set of results should guide my decision-
making—those from the lab or the field?

Viewed through the lens of Proposition 2, practitioners in the field who are interested in raising money for
their cause would be well served to pay close attention to the field experimental results because such
insights are locally generalizable (see also List 2011a). On the other hand, the lab results that suggest the
upfront monies raised will not help much are less likely to generalize outside of the lab confines.

This result highlights that economists are often only concerned with obtaining the sign of a causal effect
g(x,x',z), as summarized by the function h(x, x', z) above. In this case, if the researcher is confident that
g(x,x’,z) is monotonic in z; over some range [z;y,Zz;;], then h(x,x’,z) will be continuous almost
everywhere. This is sufficient for local generalizability.

Finally, an even further tightening of the restriction set leads to our third Proposition:

Proposition 3: Under the most conservative stance (zero generalizability), field experiments are more
useful than laboratory experiments because they are performed in one natural setting.

This cautious view has as its roots in the fact that nothing is generalizable beyond the specific context
where the investigation occurs.” Thus, because field experiments are guaranteed to help us to refine our
prior about one natural setting—the causal effect that the field experiment itself estimates—they are more

? Of course, an even more extreme view is to conclude that we can learn nothing from empirical work because of the
passage of time.
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useful. In contrast, under this level of conservatism, laboratory experiments tell us nothing about any
natural setting.

Consider the increasingly-popular task of measuring social preferences. One popular tool to perform the
task is a dictator game. The first dictator game experiment in economics is due to Kahneman, Knetsch,
and Thaler (1986). They endowed subjects with a hypothetical $20, and allowed them to dictate either an
even split of $20 ($10 each) with another student or an uneven split ($18, $2), favoring themselves. Only
1 in 4 students opted for the unequal split. Numerous subsequent dictator experimental studies with real
stakes replicate these results, reporting that usually more than 60 percent of subjects pass a positive
amount of money, with the mean transfer roughly 20 percent of the endowment.

The common interpretation of such findings can be found in Henrich et al.’s (2004) work: “Over the past
decade, research in experimental economics has emphatically falsified the textbook representation of
Homo economicus, with hundreds of experiments that have suggested that people care not only about
their own material payoffs but also about such things as fairness, equity, and reciprocity.” Indeed, the
point estimates of giving from these experiments have even been used to estimate theoretical models of
social preferences (see, e.g., Fehr and Schmidt 1999).

Under the extreme view of Proposition 3, such insights have limited applicability because the properties
of the situation are such that we only learn about one specific situation—giving in the lab. In short, our
model informs us that putting subjects on an artificial margin in such a setting necessarily limits the
ability to make direct inference about markets of interest.

As a point of comparison, consider a recent field measurement of social preferences from List (2006a). As
discussed more fully below, one of the goals of this study was to measure the importance of reputation
and social preferences in a naturally-occurring setting. To explore the importance of social preferences in
the field, List (2006a) carries out gift exchange natural field experiments in which buyers make price
offers to sellers, and in return sellers select the quality level of the good provided to the buyer. Higher
quality goods are costlier for sellers to produce than lower quality goods, but are more highly valued by
buyers.

The results from the AFEs in List (2006a) mirror the typical laboratory findings with other subject pools:
strong evidence consistent with social preferences was observed through a positive price and quality
relationship. List (2006a) reports that similarly constructed FFEs provide identical insights. Yet, when the
environment is moved to the marketplace via a NFE, where dealers are unaware that their behavior is
being recorded as part of an experiment, little statistical relationship between price and quality emerges.

Viewed through the lens of Proposition 3, this study provides three social preference estimates that are
applicable to only the three specific environments in which they are measured. The first estimate uses
actual traders from this market in a laboratory experiment. The second uses actual traders from this
market in a setting that resembles the market that they have naturally selected to participate, but one in
which they know that they are being scrutinized. The third observes actual traders in a market that they
have naturally selected to participate, wherein they do not know that they are being observed for scientific
purposes. As such, under the extreme view of Proposition 3, we have at least learned about one naturally-
occurring setting from List’s (2006a) data.
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Our three propositions are summarized visually in Figure 2. Consider a causal triple where we
vary two of the dimensions of . The space is divided into natural environments (above the dashed line)
and non-natural environments (below the dashed line). One combination of is the field
experiment and one is the laboratory experiment, each of which is depicted by a spot in the figure.

Under conservative generalizability (the inner, black circles), only the field experiment yields information
about natural environments. As we become less conservative and the circles expand (to the outer, gray
circles), both types of experiments yield potentially disjoint information about natural environments.
Thus, they become complements in the production of knowledge.
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Figure 2: Generalizability in field and lab experiments

In the simpler version of the all-causes model, Falk and Heckman (2009) claim that generalizability
requires an assumption of additive separability, an arbitrary assumption that is no more plausible for field
experiments than it is for laboratory experiments. However their claim only applies for global
generalizability; when generalizing locally under the assumption of continuity, additive separability is not
necessary and the advantage of field experiments is particularly salient.

The kind of statistical conservatism required for zero- or local generalizability is extreme, and this is
because we have a highly discontinuous definition of both: priors for certain subsets of have to be
completely unchanged in response to non-intersecting data. A more realistic treatment would be to include
a more continuous measure of generalizability. We used highly stylized, discontinuous measures purely
for expositional simplicity, akin to summarizing a hypothesis test by its conclusion (accept or reject)
rather than by the p-value associated with the test-statistic. The essence of our argument is unchanged by
allowing generalizability to evolve into a more continuous concept.
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Extending the model: The participation decision

In Section 2, we discussed how selection impacts the measurement of treatment effects. In this section,
we return to this topic and use our formal structure to extend the previous treatment effects discussion on
the participation decision.

Consider a family of causal triples {g(x, x", 2)},ey,cs, that an investigator wants to estimate, where z is
unidimensional. Z can be thought of as a potentially observable individual-level characteristic, such as
preferences or IQ. In the absence of experimental interference by the investigator, individuals learn their
realization of Z and can then influence the realization of X. For simplicity, assume that at a (potentially
small) cost, they can guarantee the control value, X = x. We assume that it is the control rather than the
treatment because usually, the treatment corresponds to an intervention, whereas the control is the status
quo. Conditional on the realization of Z, all remaining randomness is exogenous. Assume that at every
z € Uy, a positive proportion of people are observed in each of control and treatment: Vz € U,, 0 <
PriX=x|Z=2)<1land0<Pr(X=x'|Z=12)<1.

At this point, in principle, no experiment need be conducted. Under our highly stylized framework, the
investigator can simply collect two naturally-occurring observations at each value of Z (a control and a
treatment) and thereby directly calculate g(x,x’,z). In practice, the investigator has to worry about
sample sizes (the sampling issue that we abstracted away from above) and she may have a strict time limit
for data collection, either of which would push her toward running an experiment where she directly and
randomly manipulates the value of X.

If, after deciding to conduct an experiment, the investigator chooses to conduct it covertly (as in NFEs),
then inference will proceed as normal and the desired family of causal effects will be estimated. Her ex
post control over the value of X swamps individuals’ ability to influence X.

On the other hand, should the investigator publicize her intention to conduct the experiment, then she has
to worry about subjects exercising their ex ante control over X as a result of knowing about the
experiment. Suppose some subset U; © U, decides to guarantee themselves the control value of X,
meaning that the investigator cannot estimate the causal triples for this subset. The investigator has a large
degree of control over X, but usually she cannot force those who, upon becoming aware of the
experiment, choose not to participate. Inference for the remaining group, U;\U, remains valid as before.

Consequently, she will be forced to update her priors on causal triples associated with Uz by
extrapolating/interpolating from U,\U;. In practice, this will be rendered even more precarious by the
possibility that Z is unobservable, meaning that the experimenter will be forced to assume that the causal
triple is simply unaffected by the participation decision.'’ In the case when U, = {z,2,}, Uy = {z,}, the
extrapolation bias, which we term Treatment Specific Selection Bias, will be:

B = g(x,x',zz) - g(xe,JZI)

12 Of course, a selection model can limit the size of the necessary leap of faith. However unless the investigator can
convincingly present a perfectly deterministic participation model, or one where residual randomness is definitively
exogenous with respect to the treatment effect (neither of which is likely), then bias will remain a concern.
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Thus ironically, in a specific sense, natural field experiments afford the investigator more control over the
environment because it allows her to bypass the participation decision. This insight is exactly opposite to
received wisdom, wherein critics argue that field experiments have less control.

This abstract argument is illustrated above with the Head Start example: if parents who care more deeply
about their children’s outcomes are more likely to sign up for services from Head Start, then their
children might have better outcomes in the non-treatment state than children of parents who care less
deeply about their children. This orthodox selection effect is what motivates the investigator to
randomize. The investigator will publicize the randomized program and solicit for enrollment, creating
the two groups U \U; (participants) and U, non-participants. However it might be the case that parents
who believe Head Start will have a significant effect on their child are more likely to enroll. In that case,
it would not be appropriate to generalize the effect from the U,\Uy group to the U, group if such beliefs
were actually true; the bias term B would be negative.

One potential example of this bias is randomization bias—where a direct aversion to the act of
randomization is what discourages people from participating. This would be a valid concern for long-term
studies where the ex ante uncertainty generated by randomization may lead to an expectation of
adjustment costs and hence the certainty of non-participation is preferred.

More generally, due to cognitive limitations, people do not take too active a role in determining natural
treatment allocation in many day-to-day decisions, and so there is room for covert experimentation, e.g.,
in how the goods are displayed in a grocery store or how a commercial looks on TV. But the very public
declaration of a randomized control trial could signal the importance of a certain decision and motivate an
individual to devote the cognitive resources necessary to exercise full control over participation. If you
are convinced that the treatment of viewing a TV commercial is undesirable, you can just turn your TV
off.

The covertness implicit in a NFE, which we are arguing is desirable, is sometimes impossible, especially
in large, new programs where there is no natural, pre-existing target population whose natural choices
over treatment and control can be subtly manipulated by an investigator. For example, if we wanted to
estimate the causal effect of introducing neighborhood watch schemes in areas with few to no
neighborhood watch schemes, participation is likely to be limited in a way that interacts with the
treatment effect and in a way that cannot be circumvented by covertness.

Fortunately, it is possible in many fields of interest, such as design of incentive schemes across many
important economic domains, charitable contributions, auction design, marketing, worker compensation,
organizational structure, and so on.

Advantages of laboratory experiments

Despite Propositions 1-3, our model strongly shows that there is a critically important advantage of
laboratory experiments over field experiments. Thus far, the target space T and dataset D are exogenous.
As suggested in the previous section, in practice, many causal triples are inestimable in field settings due
to ethical/feasibility/cost reasons. For example, it is straightforward to set up a model economy in the
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laboratory and to manipulate randomly interest rates to gauge their effect on inflation. No such
experiment is possible in a natural field experiment.

In this sense, the range of causal triples that cannot be directly estimated in a natural field experiment and
that lie outside the local generalizability set of estimable causal triples is so large that in many
environments, field and laboratory experiments become natural complements.''

Consider the case of discrimination. One would be hard-pressed to find an issue as divisive for a nation as
race and civil rights. For their part, economists have produced two major theories for why discrimination
exists: i) certain populations having a general “distaste” for minorities (Becker 1957) and ii) statistical
discrimination (see, e.g., Arrow 1972, Phelps 1972), which is third-degree price discrimination as defined
by Pigou: marketers using observable characteristics to make statistical inference about productivity or
reservation values of market agents. Natural field experiments have been importantly used to measure and
disentangle the sources of discrimination (see List 2006b for a survey).

Now consider how a laboratory experiment would be formulated. For example, if one were interested in
exploring whether, and to what extent, race or gender influences the prices that buyers pay for used cars,
it would be difficult to measure accurately the degree of discrimination among used car dealers who know
that they are taking part in an experiment. We expect that in such cases most would agree that
Propositions 2 or 3 hold.

This is not say that lab experiments cannot contribute to our understanding of important issues associated
with discrimination. Quite the opposite. Consider the recent novel work of Niederle et al. (2008). They
use lab experiments to investigate whether affirmative action changes the pool of entrants into a
tournament. More specifically, they consider a quota system which requires that out of two winners of a
tournament at least one be a woman. We suspect that this would be quite difficult to do legally in a
natural field experiment. Interestingly, they report that the introduction of affirmative action results in
substantial changes in the composition of entrants.

This is just one of many studies that we could point to that serves to illustrate that, once viewed through
the lens of our model, laboratory and field experiments are more likely to serve as complements as most
suspect.

An aspect of laboratory experimentation that is outside of our model and another important is the ease of
replication. Since replication is the cornerstone of the experimental method, it is important to discuss
briefly the power of replication. For the purposes of this exposition, suffice it to say that the greater ease
of replication in the lab suggests an additional dimension of complementarity between field and lab
experiments, particularly in the search for true qualitative results about causal relationships. We refer the
interested reader to Maniadis, Tufano and List (2011) for a fuller discussion of replication and its benefits.

" Below we give an explicit example of an important case wherein a NFE estimates an effect that is difficult
(perhaps impossible) to measure in the lab.
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4. Epilogue

Going beyond parallelism and discussing scientifically the important issue of generalizability has been an
invaluable turn for the better within experimental economics. Whereas empirical evidence is beginning to
mount that helps to shed light on whether, and to what extent, received results generalize to other
domains, there have been less theoretical advances. In this study, we put forth a theoretical model that
helps frame the important features within the debate on generalizability. In doing so, it highlights the
important role that field experiments should play in the discovery process.

Levitt and List (2009) discuss three distinct periods of field experiments in economics. The first period is
encompassed predominantly by the work of Fisher and Neyman in the 1920s and 1930s. This period was
seminal in that it helped to answer important economic questions regarding agricultural productivity
while simultaneously laying the statistical groundwork relied on today. A second period of interest is the
latter half of the 20" century, during which government agencies conducted a series of large-scale social
experiments. In Europe, early social experiments included electricity pricing schemes in Great Britain in
the late 60s. The first wave of such experiments in the U.S. began in earnest in the late 60s and included
government agency attempts to evaluate programs by deliberate variations in policies. These experiments
have had an important influence on policy, have generated much academic debate between structuralists
and experimentalists, and anticipated the wave of recent field experiments executed in developing
countries.

The third distinct period of field experimentation is the surge of field experiments in economics in the
past decade or so. This most recent movement approaches field experiments by taking the tight controls
of the lab to the field. Although in their infancy, the field experiments produced during this third period
have already contributed to economic science by (1) measuring key parameters to test theory, and when
the theory is rejected collected enough information to inform a new theory, (2) informed policymakers,
(3) extended to both non-profit and for profit firms, and (4) being instrumental methodologically in
bridging laboratory and non-experimental data. We believe going forward that field experiments will
represent a strong growth industry as people begin to understand the behavioral parameters field
experiments estimate and the questions they can address.

We believe that at this point social scientists can move beyond strong statements that lab or field results
will always or never replicate. This type of reasoning seems akin to standing on the stern of the Titanic
and saying she will never go down after the bow sinks below the water surface. Rather, it is now time to
more fully articulate theories of generalizability and bring forward empirical evidence to test those
theories. Building a bridge between the lab and the field is a good place to start. We hope that this paper
and the discussion in Frechette and Schotter (forthcoming) move researchers to use AFEs, FFEs, and
NFEs to bridge insights gained from the lab with those gained from modeling naturally-occurring data.
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