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1 Introduction

A striking feature of economic geography is the large variation in innovation productiv-

ity across regions. Silicon Valley and Boston are popular examples of regions that are

significantly more productive than others in terms of innovation. In Figure 1, we illus-

trate a broader cross section of such variation using patent data on US computers and

communications. Even Metropolitan Statistical Areas (MSAs) of a similar size in terms

of the number of local inventors often differ substantially in terms of their innovation

productivity (number of citation-weighted patented inventions per inventor). For exam-

ple, Rochester and Portland had a similar number of innovators working in the computer

and communications industry in 1995, but Portland inventors generated almost double

the number of citation-weighted patents.

Regional productivity disparities have led to a variety of policies focused on enhanc-

ing local innovation. Such initiatives often focus either on encouraging entrepreneurship

(e.g., San Diego, CA, New York, NY, and St. Louis, MO) or on attracting large cor-

porate labs (e.g., Flint, MI, Greenville, SC, and Shelby, AL).1 We argue that effective

regional innovation policymaking requires an understanding of how the structure of local

R&D manpower is related to innovation productivity.

In this paper, we study how local innovation is affected by the organization of

R&D manpower in that region. For over six decades, since Schumpeter (1942), innova-

tion scholars have tried to understand the relationship between product market industry

structure and innovation (Geroski (1990), Grossman and Helpman (1991), Aghion et al.

(2005)). Other research has focused on the relationship between innovation and regional

industrial diversity, for example, comparing innovative output from cities focused primar-

ily on one industry (e.g., automobiles) with industrially diverse cities (e.g., electronics,

chemicals, and textiles) (see Jacobs (1969), Glaeser et al. (1992), and Feldman and Au-

dretsch (1999)). Despite this extensive literature, the effect of R&D labor organization

on local innovation has so far attracted little empirical and theoretical attention. We fill

1The 2008 Brookings Institute’s Blueprint for American Prosperity offers a comprehensive overview
of such regional initiatives. For example, in San Diego, the CONNECT program has helped the devel-
opment of more than 2,000 small firms in the hi-tech and bio-tech sectors since 1985. New York recently
launched the NYC High-Tech CONNECT program modeled on San Diego’s CONNECT. Similarly, St.
Louis implemented a number of policies to promote regional entrepreneurship. Flint, Greenville, and
Shelby focused instead on attracting large firms - GM, BMW, and Mercedes, respectively.
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this gap by combining insights from urban economics and entrepreneurship.2

We develop a simple theoretical framework to study the impact of R&D labor or-

ganization on innovation. The model relies on three main assumptions. First, following

Schumpeter (1942), we assume that large labs have an advantage in idea production.3

Second, following Cassiman and Ueda (2006), we assume that large labs only commer-

cialize innovations that “fit” with their established research activities. However, if po-

tentially profitable, then spin-outs may commercialize “misfit” inventions that do not fit

with the assets, mandate, or strategy of the parent firm.4 Third, we assume that the cost

of spin-out formation is reduced if a large number of small labs is present. This assump-

tion follows Vernon (1960) and Chinitz (1961), who argue that an increasing number of

small firms “thicken” local markets for ancillary services and thus reduce entry costs.

We develop a model that shows how the manner in which regional R&D manpower

is organized may have an impact on local innovation. The main testable prediction is that

innovation productivity is greater in “diverse” MSAs, which we define as MSAs where at

least one large lab and numerous small labs coexist compared to MSAs of a similar size

but with only large or small labs. Because of the large lab advantage in idea production,

an increase in concentration of large labs (keeping constant the number of small labs)

increases spin-out formation. Because of small firm market thickness externalities, an

increase in the number of small labs (keeping constant the number and size of large labs)

renders a spin-out more profitable. Under certain conditions, this trade-off implies that

spin-out formation is maximized when at least one large lab and numerous small labs

2See Cohen (2010) for an excellent survey of the the ‘neo-Schumpeterian’ empirical literature. Our
paper also contributes to the literature on spin-out formation. While this literature has explored the
impact of parent firm characteristics on spin-out performance (Franco and Filson (2006)) and contrasted
spin-outs to other entrants (Chatterji (2009)), our paper is to our knowledge the first to examine the
impact of regional R&D manpower organization on local spin-out formation.

3This typically arises when the lab can spread R&D fixed costs over a larger number of innovations
(see Cohen and Klepper (1996) for a micro-foundation). Empirical evidence of such an advantage
is provided in Klette (1996), Henderson and Cockburn (1996), and Cockburn and Henderson (2001).
Alternatively, scale advantages may arise from division of labor efficiencies (Arora and Gambardella
(1994)) or human capital complementarities (Jones (2008)).

4Prominent examples of such spin-outs include: Intel, founded by Andy Grove, Bob Noyce and others
to make a product that Fairchild was unwilling to make; Lotus Development founded by Mitch Kapor
that left Digital Equipment Corporation; and FreeMarket, founded by a General Electric (GE) engineer
after GE rejected his initial proposal. In 2002 the Wall Street Journal reported that in 2001 GE’s
researchers suggested more than 2,000 new products but only five proposals were accepted for product
development (see Cassiman and Ueda (2006) for additional examples).
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are present. Because spin-outs allow innovators to commercialize inventions that would

otherwise be abandoned since they are not a good fit with their employer’s research

activities, the number of commercialized inventions also increases when both types of

labs are present.

We test the empirical predictions of the model using a 26-year panel dataset at

the MSA-technology-year level.5 The data strongly support the theoretical model. First,

focusing on across-region variation, we find that locations with firm size diversity in 1995

have an average 46% innovation premium five years later compared to those without.

Recognizing the potential for omitted variable bias, we turn to within-region-technology

class variation over time (1975-2000) and use MSA-technology fixed effects in our main

specification. We find that in periods where at least one large lab and numerous small

labs co-exist, MSAs experience a 17% increase in citation-weighted patent counts. To

further address endogeneity, we show this result is robust to using lagged income tax

rates, which vary at the state level, as an instrument for regional firm size diversity.

High income tax rates induce entry and thus may generate subsequent regional firm size

diversity. Finally, we show that the main result is robust to disaggregating the firm

size diversity measure into separate measures for large and small labs, to focusing on a

smaller sample of just large MSAs, to focusing on a smaller sample that drops California

MSAs, to applying different measures of diversity with different cutoffs for large and

small firms, and to an alternate measure of diversity that uses County Business Patterns

Census data rather than patent data.

Next, we turn to examining whether the data are consistent with the mechanism

we focus on in our model that links firm size diversity to regional innovation. First,

we show that diversity is associated with a 32% increase in the probability of spin-out

formation. Second, since the main channel through which diversity increases innovation

in our model is spin-out formation, we expect that any barrier to spin-out formation will

5A number of case studies also provide support for our theory. For example, consider Portland, OR
versus Rochester, NY (lack of small firms) and Atlanta, GA versus Seattle, WA (lack of large firms) in
1995. In terms of Portland and Rochester, the number of inventors patenting in the “computers and
communications” technology class is very similar in the two cities (roughly 1,000 inventors). Nonetheless,
Portland outperforms Rochester, obtaining almost 50% more patents and about twice the number of
citation-weighted patents than Rochester. While both cities register a similar presence of large labs, the
number of small labs is substantially different: Portland has more than five times the number of small
labs as Rochester. On the other hand, in the “chemicals” technology class, Seattle and Atlanta have a
similar number of small labs (38 and 36, respectively) and also a similar number of overall inventors (457
and 484, respectively), but only Atlanta has a large lab (Kimberly Clark). The difference in innovation
output: Atlanta has 37% more citation-weighted patents.
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reduce the beneficial effect of firm size diversity. We show that the effect of firm size

diversity on innovation is indeed reduced by the presence of strong non-compete laws.

Third, since spin-out formation in our model is predicated on ideas produced by large

labs that are subsequently deemed unrelated, we expect that regions with large labs that

maintain a narrower focus and thus produce more “misfit ideas” will benefit more from

firm size diversity. We show that the effect of firm size diversity on innovation is indeed

higher in regions with more narrowly focused large labs.

We exploit these mechanism-related findings to assess the validity of our theory

against competing explanations for the positive association between regional firm size

diversity and innovation. Several alternative theories are consistent with a subset of the

correlations we report but none with the whole set.

We organize the paper as follows. We present a model in Section 2 and describe

our data in Section 3. We introduce the empirical framework in Section 4, explain our

results in Section 5, and conclude in Section 6. We include proofs of the theoretical

results as well as additional empirical results in the Appendices.

2 Model

Consider an MSA with T scientists divided into J large labs and N small labs. A small

lab employs only one scientist and cannot commercialize multiple innovations. Large labs

employ at least two scientists and have the capability to commercialize more than one

innovation. Moreover, each large lab j has an existing research activity that generates

profits λj. We indicate as Sj > 1 the number of scientists working in large lab j and

denote with SL =
∑J

i=1 Sj the total number of scientists working in large labs. Notice

that T = SL +N .

We assume there are economies of scale in innovation: each small lab discovers an

innovation with probability 1/∆, and each scientist in a large lab of size Sj discovers an

innovation with probability Sj/∆ with ∆ ≥ T .

If commercialized in a small lab, an innovation generates profits equal to π with

1 ≥ π > 0. For a large lab, the profits from the commercialization of an innovation

discovered internally are equal to π + a. The parameter a ∈ R captures the “fit” of the

innovation with the existing research activity of the lab (Cassiman and Ueda, 2006). A

positive value for a may arise because of scale or scope economies. Conversely, a negative

value for a indicates the existence of coordination costs between the innovation and the
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existing research activity. Alternatively, a < 0 may indicate the opportunity cost of

deploying resources from the existing research activity.6 Notice that an innovation is

profitable for a large lab j if the profits from commercialization (π+a+λj) exceed those

without commercialization (λj), i.e., when π + a > 0.

A scientist working in a large lab can implement the discovered innovation outside

the lab by opening a new small lab (spin-out). The cost of opening a new lab is equal

to k(N) with k(0) > 1, k′(N) < 0, and lim
N→∞ k(N) = 0. The entry cost is decreasing

in N because the presence of other small labs generates a positive externality.7

The timing of the game is as follows. In the first period, innovations are discovered.

In the second period, large lab scientists negotiate with their labs about the destiny

of their innovations. The possible strategies are: (i) internal commercialization (with

profits π + a + λj), (ii) spin-out formation (with profits π − k(N)), and (iii) non-

commercialization (with profits λj). In the third period, spin-outs are formed and ideas

are commercialized.

Commercializing an innovation (internally or through a spin-out) may require the

development of subsequent technologies necessary to extract profits from the idea. If this

occurs, commercialized innovations generate new research trajectories. Conversely, the

non-commercialization strategy produces orphan ideas that do not generate follow-on

research.8

To solve the bargaining problem at period 2, we assume that the lab makes a

take-it-or-leave-it offer to the scientist.

Proposition 1 Established small labs commercialize internal innovations with π ≥
0. Large labs commercialize internal innovations with π+a ≥ 0 and a ≥ −k(N). A spin-

out is formed if π ≥ k(N) and a ≤ −k(N).

Figure 2 summarizes the destiny of an innovation discovered in a large lab. When

6See Bresnahan et al. (2011) for evidence of scope diseconomies in the computer industry.

7A possible micro-foundation of this cost can be provided building on the model of Helsley and
Strange (2002) where a large number of small labs generates a dense network of input suppliers that
facilitates spin-out formation. An alternative interpretation for k(N) is that in the presence of small
firms, the MSA develops a culture of entrepreneurship that induces employees of large labs to leave their
employer and start their own firms (Glaeser and Kerr (2009)).

8Empirically, this implies that greater commercialization may not be associated with greater patent-
ing (because orphan ideas may also be patented) but is likely to be associated with greater citation-
weighted patent counts (because orphan ideas do not generate new research trajectories).
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the cost of establishing a spin-out is large, scientists do not find it profitable to form

a spin-out and thus the large lab commercializes the innovations if the fit with the

established business is high enough. When the cost of forming a spin-out is low (k ≤ π),

then inventors form spin-outs to commercialize innovations that are not a good fit with

the existing research activity.

We assume that a is distributed with a continuous and differentiable cumulative

distribution F (a). Under this assumption, a spin-out is formed with a positive probability

as long as π ≥ k(N) that is satisfied if N ≥ N where N is defined as π − k(N) = 0.

Therefore, an innovation of a large lab scientist will generate a spin-out with probability:

Pr(spin-out) =


F (−k(N)) if N ≥ N

0 if N < N

.

Similarly, an innovation discovered in a large lab is commercialized (either inter-

nally or through spin-outs) with probability:

Pr(Comm. from Large)=


1 if N ≥ N

1− F (−π) if N < N

whereas each scientist in a small lab discovers an innovation with probability 1/∆. Be-

cause in large lab j each scientist discovers an innovation with probability Sj/∆, the

expected number of innovations in lab j is S2
j /∆. Exploiting these results, we obtain

the following proposition.

Proposition 2 The expected number of spin-outs, NS, is maximized in the pres-

ence of one large lab and N ≥ N . If T is large enough, then the expected number of

commercialized innovations, NI, is maximized in the presence of one large lab and N

small labs.

Proposition 2 indicates that the presence of large and small labs are complementary

forces affecting both innovation and spin-out formation. Intuitively, a greater concentra-

tion among large labs increases the number of ideas generated and the expected number

of spin-outs. A larger pool of existing small labs facilitates the formation of spin-outs

and thus allow ideas that are not a “good fit” for a large lab to be commercialized. There
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is a positive interaction between the two effects. A large number of small labs has no

effect on spin-out formation in the absence of large labs. At the same time, an increase in

large lab concentration generates a greater number of spin-outs in the presence of small

lab externalities.9

Let us label an MSA as diverse if there are N ≥ N small labs and only one large

lab. By showing that spin-out formation and the number of commercialized innovations

are maximized with diverse MSA configurations, Proposition 2 implies that any non-

diverse MSA configuration is dominated by at least one diverse configuration in terms

of spin-out formation or innovation.

Building on these results, in the Appendix we show that the distinction between

diverse and non-diverse MSAs is even starker. For an arbitrarily diverse MSA with

N ≥ N small labs and only one large lab, we show that if the MSA is large enough, there

is no non-diverse MSA configuration that generates more innovation and spin-outs.10

3 Data

We focus on two units of analysis. First, we study cross-region variation and use MSA-

technology class as our unit of analysis (e.g., Rochester, NY - chemicals). Then, we turn

our attention to within-region variation and use MSA-class-year as our unit of analysis.

In constructing our sample, we begin with the set of 268 MSAs defined in 1999

by the US Office of Management and Budget11 and the set of six one-digit technology

9For simplicity, we do not consider: (i) cannibalization and complementarity effects between the
innovations developed by the spin-outs and those commercialized by the large lab and (ii) imperfect
IP protection. In a previous draft of the paper, we showed it possible to obtain similar results in a
model with cannibalization, complementarity, and imperfect IP protection as in Gans and Stern (2000)
and in a model where spin-outs are formed because of disagreements between large lab scientists as in
Klepper and Thompson (2010). Intuitively, as long as the IP regime allows spin-outs to be profitable,
the presence of local externalities encourages spin-out formation (formal proofs available upon request).

10In the previous analysis, we refer to an MSA as “diverse” if there are N ≥ N small labs and only
one large lab. In the Appendix, we relax this definition and consider MSAs where multiple large labs
are present. We show that in this environment, it is possible to characterize a size threshold S such that
if at least one large lab exceeds this threshold, then the MSA outperforms all non-diverse MSAs with
N < N. This result provides a micro-foundation of our main empirical measure of firm size diversity
that is based on two cut-offs: one for the number of small labs, N, and another for the size of large labs,
S.

11http://www.census.gov/population/estimates/metro-city/99mfips.txt
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classes described in Hall et al. (2001).12 This generates 1608 MSA-class observations. We

then construct our panel dataset, which includes 26 years (1975-2000) and thus contains

41,808 MSA-class-year observations.

We measure innovative activity, our main dependent variable, using a citation-

weighted count of US patents:

Weighted Patentsjkt+5: the forward citation weighted sum of distinct patents

with primary technology classification k and application year t + 5 where at least one

inventor is located in MSA j.

We use inventor address information to assign a patent to an MSA, exploiting the

US National Geospatial-Intelligence Agency dataset to match cities and townships to

counties and ultimately MSAs. If a patent has at least one inventor from a particular

MSA, then we increment the counter for that MSA by one. Thus, a patent with three

inventors located in three different MSAs increments the patent counter for each of those

MSAs by one. However, if all three inventors are located in the same MSA, then the

counter for that MSA is only incremented by one.13

We construct this measure using all patents applied for (and subsequently granted)

between 1975 and 2000, with at least one inventor with a US address. We exclude patents

that cannot be attributed to an MSA (due to incomplete address information or a location

outside an MSA) and patents assigned to universities and hospitals. The US Patent and

Trademark Office is the original source of our patent data. We complement these data

with classification data from the NBER (technology classification, assignee name).

Patent citations identify prior knowledge upon which a patent builds, and prior

literature (starting with Pakes and Griliches (1980)) has often employed the number of

forward-citations received by a patent as an indirect measure of patent value.

We also consider an unweighted patent count as an additional innovation metric:

Patentsjkt+5: the number of distinct patents with primary technology classifica-

tion k and application year t+ 5 where at least one inventor is located in MSA j.

Our second dependent variable is a measure of spin-out formation, which we use

in the latter part of our analysis when we turn our attention to the mechanism through

12This classification scheme includes: chemicals, computers and communications, drugs and medical,
electrical and electronic, mechanical, and other.

13Results are robust to constructing this variable using first inventor data only.
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which firm size diversity influences innovation output. We define a spin-out as a par-

ticular type of lab. We define a lab in MSA j, technology class k, in year t as follows.

First, we take all assignees that, within a five-year window (year t and the four preceding

years), applied for at least one (eventually granted) patent in technology class k. Second,

using this list of assignees, we identify labs in MSA-class jk if there are at least three

different inventors located in MSA j who are named in class k patents of that assignee

during the five-year window. Thus, if a firm has operations (i.e., R&D labs or facilities)

in n different MSA-classes, our procedure will treat it as n distinct entities. In any given

year, the number of patents attributed to such “labs” are thus computed by aggregating

by (standardized) assignee name, location, and application date.

We define a spin-out as a new lab in MSA-class jk if among the patents applied

for during the first year of lab activity we identify at least one inventor who previously

patented in one of the large labs in MSA jk. We construct the following variable to

measure spin-out formation:

log(Spin-Outsjkt): logarithm of one plus the count of spin-outs in year t MSA-

class jk.

Finally, our main explanatory variable is a measure of diversity. We construct this

variable by first identifying the distribution of lab sizes in each technology class k and

year t. By construction, lab size has a lower bound of three (each lab has at least three

inventors). Across the various class-years, the median size is about five inventors, the

75th percentile is about nine inventors, and the 97th percentile is roughly 54 inventors.

We use this distribution to define large and small labs. A large lab is a lab where the

number of inventors is above the 97th percentile in the technology class-year distribution.

We define a lab as small if the number of inventors is below the 75th percentile. We

arbitrarily choose the size thresholds for large and small labs (97th and 75th percentile),

but we perform robustness checks in the Appendix.

Diversejkt: dummy variable equal to one if in year t MSA-class jk has at least

one active large lab and at least 139 active small labs.

The number of small labs (139) corresponds to the 99th percentile of the distri-

bution of the number of small labs across the entire sample. Also, for this cut-off, we

perform a number of robustness checks in the Appendix. This measure intends to cap-

ture MSAs where both large labs and many small labs coexist. Notice that the diverse

dummy is distinct from a count of the number of labs because it considers lab sizes. It
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is also distinct from traditional concentration measures (Herfindahl or share of top four

labs) because intermediate values of these measures may emerge both with and without

diversity.14

Table 1 presents descriptive statistics for the main variables. The average MSA-

class has approximately 91 inventors and eight labs. On average, the inventors of an

MSA-class apply for about 28 patents per year, and these patents receive roughly 466

forward citations. The distributions of these variables are highly skewed. The median

MSA-class in our sample has only one lab and five inventors who apply for three patents

per year and receive 33 cites.

The diverse dummy equals one for about 1% of the sample. The small fraction

of diverse observations is mostly due to the fact that a large number of MSA-classes

do not have enough inventors to display a positive diversity measure. In Table 2 we

focus on MSA-class-years that are “at risk” of becoming diverse.15 The diverse dummy

equals one for roughly 16% of this smaller sample. On average, these MSA-classes have

approximately 105 labs and 1348 inventors, who apply for about 381 patents per year

that receive roughly 6681 forward citations.

Table 3 illustrates the variation in diversity status that will be exploited in our

empirical analysis. We observe a switch in diversity status for 36 MSA-classes. The

first MSA-class to become diverse is New York (in the chemical technology area) in

1976, although switches occur throughout the entire sample period. There are 11 unique

MSAs experiencing a switch in at least one technology class, and all technology classes

experience at least four switches.

4 Methodology

Our main econometric model focuses on the relationship between count-based measures

of innovative activity Yjkt+5 in MSA-class jk in period t + 5 and the indicator for firm

14To see this, consider the following example. MSA A has four identical labs, each employing a quarter
of the local inventors. MSA B has one lab employing half of the local inventors as well as a very large
number of small labs. In MSA A, the Herfindahl index is equal to 1/4 and in MSA B the Herfindahl
index is also (approximately) 1/4. However, MSA B has large firm–small firm coexistence, while MSA
A does not.

15The lab size distribution is bounded below by three (by definition each lab has at least three
inventors), and across the various classes-years the 97th percentile is roughly 54 inventors. Therefore,
our constructed cut-off is equal to 3x139+54=471 inventors.
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size diversity diversejkt in MSA-class jk in period t. We typically model the conditional

expectation of innovative activity as:

E[Yjkt+5] = exp(αdiversejkt + xjktβ + γjk + λtk) (1)

where xjkt is a vector of control variables, γjk is an MSA-class specific idiosyncratic effect,

and λtk is a vector of technology class time-period effects. Notice that all the dependent

variables are lagged five periods to account for simultaneity concerns.

Equation (1) uses the log-link formulation due to the non-negative and highly

skewed nature of our count-based dependent variables. Following Wooldridge (1999), we

adopt the Poisson quasi maximum-likelihood estimation that yields consistent estimates

as long as the conditional mean is correctly specified. We cluster the standard errors to

allow for arbitrary heteroskedasticity and autocorrelation.

When x in Equation (1) includes measures of the number of inventors working

in the MSA-class, α indicates whether MSA-classes with a diverse configuration receive

more citation-weighted patents per inventor; therefore, it is a measure of MSA-class

productivity.

5 Results

Firm Size Diversity and Innovation

Across–Region Variation

Table 4 contains our first set of results, which show a robust positive association between

firm size diversity and innovation in cross-section regressions. We estimate all models in

Table 4 using Poisson, with robust standard errors clustered at the MSA-class level to

account for over-dispersion. In Columns (1) to (3), the dependent variable is the citation-

weighted patent count or, equivalently, the total forward citation count for issued patents

applied for by all inventors in the MSA-class in year t+ 5.

Column (1), focusing on year 1995, shows a large positive correlation between size

diversity and innovation. In Column (2), we include a control for the number of inventors

in the MSA-class. The positive coefficient on diverse now indicates that diverse MSAs

obtain more innovation per inventor. In Column (3), we show that the correlation

is similar when we control for technology effects. Exponentiation of the coefficient in
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Column (3) implies that diverse MSA-classes have a 46% innovation premium over non-

diverse MSA-classes. In Column (4), we show a similar positive correlation measuring

innovation with un-weighted patent counts.

Within–Region Variation

Focusing on year 1995, the cross-section regressions reported in Table 4 indicate a posi-

tive association between diversity and innovation. Column (1) of Table 5 confirms this

result in a pooled cross section that exploits the entire sample period. While this cor-

relation is consistent with our theory, the result may be due to unobserved MSA-class

heterogeneity that is correlated with diversity and innovation. Moreover, the previous

regressions include MSA-classes that do not have enough inventors to display a positive

diversity measure. To address these concerns, in Column (2) we move to a fixed-effects

Poisson estimator (Hausman et al. (1984)) with MSA-class fixed effects, year effects,

and technology class time trends and drop all the MSA-classes that are too small to be

diverse. This specification isolates the within MSA-class co-variation of diversity and

innovation. The estimated coefficient implies an increase in the citation-weighted patent

count of about 17% in periods where MSAs are diverse.

Column (3) shows that the qualitative and quantitative results are robust to intro-

ducing additional controls including the Herfindahl concentration index for the labs in

the MSA-class and the number of active labs. This confirms that the diversity measure

is not simply capturing lab concentration or fragmentation. In Columns (4) and (5),

we show that results are similar in the larger dataset that includes small MSA-classes.

The magnitude and statistical significance of the coefficients are similar with longer or

shorter lag structures.16 Finally, in Column (6), we look at unweighted patent counts.

We still find a positive and significant correlation between diversity and innovation, but

the magnitude of the effect drops to 6.5%, suggesting that diversity has a greater impact

on the quality-adjusted measure than on the number of patents.17 Overall, the results

16The coefficient on diversity equals 0.180 (p-value =0.013) with a seven-period lag, 0.119 (p-value
=0.01) with a two-period lag, and 0.085 (p-value =0.032) with a one-period lag. The correlation between
diversity and contemporaneous cites is positive but not statistically significant (equal to 0.048 p-value
=0.12).

17In our model, for simplicity, we assume that all innovations have the same quality and differ only in
their fit with the existing research activity. Introducing quality heterogeneity would still generate the
prediction that diversity is associated with an increase both in quality (total number of cites) and in
the number of patents. Whether the effect is stronger on quality-adjusted patents than on the number
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in Table 5 document a strong positive association between diversity and innovation.18

The diversity dummy is a natural empirical construct to assess the correlation

between innovation and diversity predicted by our theoretical model. In Appendix 2,

we show this correlation is present in regressions with both direct effects and interaction

(Table A2), confirming that an innovation premium is associated with the co-existence

of large and small labs and that the presence of only large or small labs does not drive

these results.

Instrumental Variable: Lagged Income Tax Rates

In Table 5, we introduce MSA-class fixed effects to control for time-invariant heterogene-

ity affecting both local R&D market structure and innovation. To identify the causal

effect of diversity on innovation, we also need to address the potential bias arising from

the correlation between time variant unobservable heterogeneity and firm size diversity.

This correlation can arise in a variety of ways. A positive shock in the value of the tech-

nologies produced in the MSA-class may lead to an increase both in the entry of small

firms and in the likelihood of innovation. Similarly, capital market shocks (e.g., the dot

com boom in the late 1990s) may facilitate expansion of large firms and the entry of new

firms as well as increase the overall investment in R&D. Human capital shocks (e.g., an

increase in the H1B visas cap) may also lead to an inflow of scientists in the MSA that

may cause a change in both lab structures and innovation. Similarly, local productivity

shocks due to availability of information and communication technologies (Agrawal and

Goldfarb (2008); Bloom et al. (2012)) may impact both the organization of R&D labor

and innovation. Finally, successful innovation may lead empire-building CEOs to engage

in takeovers and eliminate small firms from the MSA-class.

To address these endogeneity concerns, we need an instrumental variable that

affects firm size diversity but does not directly affect innovation. We exploit variation

in income tax rates over the sample period as an instrument for diversity. Many papers

have documented a positive relationship between income tax rates and self-employment

(among others, see Long (1982), Bruce (2000), Gentry and Hubbard (2004), and Cullen

of patents will depend on the correlation between the quality and the fit parameters.

18We obtain similar positive correlations: (i) in panel regressions in which we use the 36 two-digit
categories defined by Hall, Jaffe, and Trajtenberg (2001) as the level of technology disaggregation and
(ii) in regressions in which the dependent variable does not include cites obtained by large labs.
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and Gordon (2007)). A common explanation for this finding is that self-employment

offers tax-sheltering opportunities through the deduction of certain types of expenses

(Cullen and Gordon (2007)).

If high income taxes induce some scientists to establish their own small labs, then

we should expect income taxes to be positively correlated with diversity. Additionally,

as long as states do not change income taxes in response to innovation shocks, we should

expect variation in income tax rates to be uncorrelated with unobservable heterogeneity

affecting innovation. Nonetheless, a possible problem with this instrument is that high

income tax rates may also affect spin-out formation, thus complicating the interpreta-

tion of the estimates. To address this concern, we control for both contemporaneous

and lagged (three years) income tax rates exploiting the lag tax rates as an instrument.

Intuitively, we expect income tax rates in year t− 3 to be correlated with market struc-

ture (diversity) in year t because of their effect on past entry decisions. At the same

time, because we control for current income taxes, we expect lagged income taxes to be

uncorrelated with the current decision to form a spin-out and with innovation in year

t+ 5.

Following Galasso et al. (2011), we obtain information on state and federal income

and capital gain taxes from the NBER Taxsim database described in Feenberg and

Coutts (1993).19 Our main tax variable is the combined (state plus federal) tax rate

that a representative household faces in a specific MSA in a given year. Appendix Table

A1 illustrates the variation of income tax rates averaged across states for five-year time

periods. There is a substantial decline in tax rates in the late 1980s and an increase

in the early 1990s. The table also indicates variation across US states with differences

between the lowest and highest rates of 7 to 28 percentage points.

We present estimates of the instrumental variable regressions in Table 6. Column

(1) reports the baseline OLS estimates with diversity non-instrumented. The coefficient

on the diversity dummy implies an 18% increase in innovation that is very similar to the

effect estimated with the baseline Poisson model. Column (2) presents coefficients of the

first stage regression indicating that lagged income taxes are positively associated with

diversity. The estimated impact of taxes on diversity is large: a one standard deviation

increase in lagged income tax rates increases the probability of being diverse by approx-

imately 25%. The regression shows that current income taxes are not correlated with

19This data set contains income tax rates by year and state for an additional $1,000 of income for a
representative household (with $500,000 of wage income split evenly between husband and wife).
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diversity. In unreported regressions, we also find no statistically significant correlation

between spin-out formation and lagged income taxes (p-value =0.34). Together, these

results suggest that lagged income taxes may serve as a valid instrument for diversity.

Column (3) reports the second stage estimates with the diversity dummy instrumented

by lagged income taxes. Qualitatively, we find that diversity is still positively associated

with innovation. The coefficient of diversity is more than three times greater than the

one in the OLS estimate, but the standard error is also larger and the two confidence

intervals overlap.20

While most of the previous literature studying the impact of taxes on entrepreneur-

ship focuses only on income tax rates, it is plausible that the effect of income taxes on

entry depends on non-income taxes that new firms are required to pay. To this end, in

Column (4), we control for capital gains tax rates. Because reductions in capital gain

taxes may be associated with other pro-business policies that affect innovation, we in-

clude this variable on both stages of the IV regressions. In the (unreported) first stage,

we notice that capital gains taxes have a negative impact on diversity. This is intuitive

because high capital gain taxes reduce the profits that can be made by selling firm assets

and shares and therefore reduce self-employment incentives. Moreover, high capital gain

taxes may reduce the supply of venture capital that in turn will reduce entry of new

firms. Column (4) shows that the second stage regressions are robust to the inclusion of

capital gains taxes. The coefficient on diversity is still about three times larger than the

one in the OLS estimates, suggesting that endogeneity generates a downward bias. Re-

sults are similar if we introduce additional controls, such as corporate taxes, the number

of labs in the MSA-class, and the Herfindhal index.

Mechanism

Firm Size Diversity and Spin-Out Formation

The previous analysis illustrates a positive and robust effect of firm size diversity on

innovation. Our theoretical framework indicates that the main channel through which

diversity affects innovation is spin-out formation. This is consistent with previous liter-

ature indicating that spin-out innovation is superior to those of other entrants (Agarwal

20We obtain very similar estimates with a five-year lag for income taxes. Similarly, including both
taxes in year t-3 and taxes in year t-5 as instruments leads to similar results.
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et al. (2004), Franco and Filson (2006), Chatterji (2009)).21 To assess the importance of

this mechanism, in Table 7 we investigate the relationship between diversity and spin-out

formation.

Because there is spin-out formation for only 4% of the MSA-class observations, our

preferred specification is an OLS regression with MSA-class fixed effects, year effects, and

technology class time trends.22 The dependent variable is the logarithm of one plus the

number of spin-outs.

The coefficient in Column (1) implies a 32% increase in the number of spin-outs

when an MSA-class becomes diverse. In Column (2), we introduce additional controls for

the number of labs in the MSA-class and their concentration. In this specification, the

estimated diversity coefficient implies a 25% increase in spin-outs. Columns (3) and (4)

confirm the result in the full sample that includes small MSA-classes. The estimates from

these models show that diversity is associated with a 109% increase in the probability of

spin-out formation. Column (5) shows that in the large sample, instrumenting diversity

with lagged income taxes has essentially no impact on the estimated diversity coefficient.

Overall, the results in Table 7 provide direct evidence of a positive correlation

between diversity and spin-out formation that is consistent with our theoretical frame-

work. It is important to notice that these regressions exploit a restrictive measure of

spin-out that relies only on patent data and requires inventors to patent both in large

and new small labs. To provide additional support to the idea that spin-outs are the

main mechanism through which diversity affects innovation, in the next sub-sections we

present further indirect evidence consistent with our theory.

Firm Size Diversity and Non-Compete Agreements

Because in our theoretical framework the main channel through which diversity increases

innovation is spin-out formation, an additional implication of our theory is that when

spin-outs cannot be formed, the beneficial effect of diversity disappears and a single large

lab maximizes innovation. This result suggests the correlation between innovation and

21Our data confirms this. For example, in 1995, spin-out patents receive 30% more citations than
patents by other new entrants (average across all technology classes and MSAs)

22The conditional maximum likelihood estimation of the Poisson model drops MSA-classes in which
the dependent variable is zero for the entire time period. This is equivalent to dropping about 84%
of our data. With Poisson estimations in this smaller sample, we obtain a positive but statistically
insignificant correlation between diversity and number of spin-outs.
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size diversity is likely to be smaller in settings with substantial impediments to spin-out

formation. To explore this idea empirically we interact diverse with the extent to which

MSAs are located in states where non-compete agreements are strongly enforced. If

high enforcement of non-compete laws prevents spin-out formation, then we expect the

organization of the local R&D labor market to have no impact on innovation.

To construct a non-compete enforcement index, we follow Garmaise (2011) and

construct a measure based on the twelve enforcement dimensions studied by Malsberger

(2004). The index assigns one point to each dimension in which the jurisdiction law

exceeds a given threshold; its value varies from zero to 12.

The original index constructed by Garmaise (2011) covers the period 1992-2005.

We extend the time period from 1975 to 1992 by collecting information on changes

in non-compete laws. The only change we identify for the period 1975-1992 occurs in

Michigan in 1985.23 Using this extended dataset, we construct a dummy variable high

enforce that equals one when the index value is greater than or equal to six.24

We present regressions in which the diversity dummy is interacted with the high

enforcement dummy in Table 8. As expected, we find negative and significant coefficients

on the interaction terms, indicating that the effect of diversity is reduced by the presence

of strong non-compete laws. The results are robust to introducing additional controls

and to using the full sample that includes small MSAs.25

In interpreting these results, it is important to remember that, for simplicity, our

theoretical model does not consider the competitive effect of spin-outs on large labs. In

general, the effect of non-compete clauses will depend on the relationship between fit and

competition. Low fit between an innovation and the existing lab activity does not imply

an absence of competition between the spin-out and the large lab. Christensen (1997)

provides a series of examples of companies not adopting new technologies because of

opportunity costs (e.g., low initial profit margins or low attractiveness to the company’s

23Prior to 1985, Michigan outlawed non-compete agreements, but in 1985 it passed legislation that
enforced them. In the Garmaise (2011) data, the score for Michigan is five. We assign an index equal
to zero before 1985 and an index of five after 1985.

24Following Stuart and Sorenson (2003) and Marx et al. (2010), we also generate a state-level indicator
variable with a value of one if the state generally precludes, through statute or precedents, the enforce-
ment of non-compete covenants. Also, with this measure, the results strongly support the predictions
of the model.

25We cannot estimate the direct effect of highenforce on innovation because the dummy is constant
for all states over the entire sample period and thus collinear with the MSA-class fixed effects.
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best customers) and eventually suffering from competing with these new technologies.

If ideas that do not fit also have a competitive effect on large labs, then the innovation

premium generated by diversity is lower when non-compete agreements are strongly

enforced.26

Firm Size Diversity and Large Lab Focus

In our theoretical framework, spin-outs are formed to commercialize ideas that are not

a good fit with the main research activity of a large lab. This implies that diversity has

a greater impact on innovation the greater the number of misfit ideas. Empirically, this

suggests an additional test to highlight the role of spin-outs as an important mechanism

linking R&D market structure and innovation: diversity should have a differential impact

on innovation depending on the likelihood that ideas fit in large lab research trajectories.

We expect MSA diversity to have a greater impact on innovation when large labs follow

narrow research trajectories and thus their ideas are more likely to be misfits. Similarly,

when large labs follow broad research strategies, few spin-outs will be formed and the

presence of small labs will be less beneficial to MSA innovation.27

26To see this, consider an innovation that in the case of a spin-out gives payoffs π− k > 0 to the new
firm and −z to the large lab. Without non-compete agreements, the large lab will have to pay π − k
to the inventor to prevent a spin-out and a spin-out will be formed as long as π + a − (π − k) < −z
or a < −z − k. If non-compete agreements can be enforced, then the large lab can stop the spin-out
at zero cost and there will be no spin-out formation. In this case, the total number of commercialized
innovations will be:

NI =
S2
L

∆
HS (1− F (−π)) +

N

∆
, (2)

which is maximized in the absence of small firms.
Implicitly, our analysis rules out transfers from scientists to large labs. In a Coasian framework where

employees can pay their employers to leave the large lab, spin-outs may be formed even in the presence
of non-compete agreements. The assumption of frictionless Coasian bargaining is hard to justify given
the large evidence of transaction costs in technology transfer (Agrawal et al. (2012)).

27This prediction can be generated by our model assuming that a is distributed with cumulative
distribution F (a; b) where b ∈ R generates a family of distributions ranked for first order stochastic
dominance. For any b and b′ if b′ ≥ b we have that F (a; b′) ≤ F (a; b). The parameter b captures the
breadth of large lab research activity. If b is very low, then most ideas have low “fit” with the existing
research activity of the lab. Let us compare two MSAs with the same number of scientists T . In the
first “diverse” MSA, there is one large lab and N ′ ≥ N small labs; in the second “non-diverse” MSA,
there is one large lab but only N < N small labs. The difference in innovation between the diverse and
the non-diverse MSA is equal to:

(T −N)2

∆
F (−π; b) +

(N ′ −N)(N +N ′ + 1− T )

∆
,
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To construct a measure of narrowness for large lab research trajectories, for each

large lab we compute the share of patents accounted for by the top four classes (C4 index)

based on its patenting activity across three-digit technology classes (the 426 different

USPTO n-classes) in a four-year window. For MSA-class-year cells with multiple large

labs, we construct the mean value of the index for the labs in the cell. We generate an

indicator variable, large lab focus, that equals one when the MSA-class-year C4 index is

above the median relative to other MSAs within that class-year.

As an example of the variation in the data, consider chemical patenting activity

in St. Louis, MO and San Diego, CA in 1994. Our data indicate the presence of only

one large lab in both MSAs. For the St. Louis lab, the top four three-digit technology

classes account for only 37% of its patenting, and the corresponding MSA-class large lab

focus indicator is equal to zero. For the San Diego lab, the C4 index is approximately

85% and large lab focus is equal to one for this MSA-class.

In Table 9, we interact this variable with the diversity measure. Column (1) shows

that the effect of diversity is stronger in MSA-classes where large labs follow narrow

research trajectories. Columns (2) show that the correlation is robust to the inclusion

of additional controls. Columns (3) and (4) show that results are similar in the larger

sample that includes small MSAs.

Alternative Explanations and Robustness Checks

There are many reasons why co-existence of large and small firms may be associated

with an increase in innovation. We first assess several such reasons in light of their

consistency with the empirical correlations and provide additional results that help us

rule out alternative theories that might be consistent with a subset, but not the whole

set, of the correlations we report. We then describe a variety of additional extensions

and robustness checks for interested readers in Appendix 2.

Product Market Competition

Aghion et al. (2005) develop a theoretical model predicting an inverted-U relationship

between innovation and competition and present a series of empirical findings consistent

which is decreasing in b. This implies that diversity has greater impact on innovation when large labs
follow narrow research trajectories (b is low).
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with their theory. In light of their results, there is the concern that firm size diversity

may simply capture intermediate levels of product market rivalry.

Notice that an important difference between Aghion et al. (2005) and our setting

is that we conduct our analysis at the MSA-technology class level whereas their study is

focused at the industry level. We expect most of the labs in our sample, especially the

largest labs in diverse MSAs, to compete industry-wide at the national and international

levels. We do not expect their product prices to be substantially affected by the local

lab structure.

Moreover, the theoretical framework of Aghion et al. (2005) focuses on a duopoly

and has no predictions on spin-out formation. The inverted U-shape theory is also diffi-

cult to reconcile with our findings that diversity has a greater impact when non-compete

agreements are not strongly enforced and when large labs operate in few technology

areas.

As a further robustness check, in Column (1) of Appendix Table A3, we intro-

duce the square term for the Herfindahl concentration index. If the diversity dummy

is only capturing intermediate values of concentration, introducing polynomial terms of

the Herfindahl index should substantially reduce the correlation between diversity and

innovation. Instead, we find that results are very similar when we introduce the square

of the concentration index.28

Agglomeration Economies

Firm size diversity may be correlated with agglomeration economies that increase inno-

vation productivity of labs in the MSA-class (Ellison et al. (2010)). In all our regressions,

we control for the number of inventors working in the MSA-class, but this linear control

can be inadequate if agglomeration economies arise only for very large MSAs.

Notice that if only agglomeration generates the diversity premium, then it is not

clear why its impact is greater when non-compete agreements are not strongly enforced

and when large labs operate in few technology areas. Nonetheless, to further address this

concern, in Column (2) of Table A3 we introduce polynomial controls for the number

of inventors in the MSA-class and the total number of inventors in the MSA. If the

diversity dummy is only capturing agglomeration economies at MSA or MSA-class level,

introducing these polynomial terms should substantially reduce the correlation between

28We obtain similar results using higher degree polynomials.
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diversity and innovation. Instead, we find that results are very similar when we introduce

the square terms.

In unreported regressions, we obtain similar results using higher degree polynomi-

als. Results are also robust to controlling more flexibly for the number of MSA inventors

by introducing a dummy for each decile of the distribution and there is essentially no

change in the diversity coefficient in regressions that exploit the sample of large MSAs.

Large Lab Demand for Innovation and Licensees

Another competing explanation is that the role of large labs as consumers of small lab

innovations drives the correlation between diversity and innovation. In other words, large

labs generate a demand for technologies that induces entry by small firms and increases

innovative output. Alternatively, the correlation may be driven by the role of small labs

as licensees of large lab innovations that do not fit with large lab commercialization

strategies.

While we expect these forces to have an impact on MSA innovation (Agrawal

and Cockburn (2003)), alone these alternative theories cannot explain the entire set

of correlations that we observe in the data. In particular, they are difficult to reconcile

with the strong association between diversity and spin-out formation and with the finding

that the effect of diversity is weaker when non-compete agreements are strongly enforced.

Finally, we should expect large labs to boost innovation demand more strongly when they

operate in a variety of technology areas, which is the opposite of what we find in our

data.

Strategic Patenting

Ziedonis (2004), Lanjouw and Schankerman (2004), and Noel and Schankerman (2006)

show that firms tend to expand their patent portfolios in response to potential hold-

up problems generated by “thickets” in the market for technologies. If regional firm

size diversity is associated with patent thickets, then the increase in innovation that we

register may be due to the presence of overlapping and fragmented patent rights and not

by the interplay of large and small firm externalities.

Previous studies, however, have documented the strategic patenting effect at the

technology level and not at the regional level. Because our regressions include technology

class time trends, they control for variation in “thickets” over time. Moreover, the

21



defensive patenting explanation would suggest an increase in the number of patents but

a decline in the quality of the patents in the presence of regional diversity, which is the

opposite of what we find in our data. Finally, strategic patenting is hard to reconcile

with greater spin-out formation (in the same technology) and with the stronger impact

of diversity of innovation when non-compete agreements are not enforced.

Innovation Affects Lab Structure

There is the concern that the correlation between diversity and innovation is due to

changes in innovation outcomes rather than driven by changes in lab structure. In

other words, “reverse causality” may take place if potential future innovation generates

expansion of large labs and entry of small labs.

To address this concern, throughout our empirical analysis we use a five-year lag

for the control variables. The IV regressions presented in Table 6 also address this

concern by exploiting exogenous variation in MSA-class diversity. Finally, note that

if an innovation shapes the lab configuration, then we must explain why its impact is

greater when non-compete agreements are not strongly enforced and when large labs

operate in few technology areas, neither of which are obvious.

Additional Robustness Checks

We conduct a number of additional empirical exercises to document the robustness of

our main empirical results to alternative specifications and measurement strategies.

First, Appendix Table A2 provides evidence supporting the correlation between

diversity and innovation in a series of regressions that distinguish between the direct

effect of the presence of a large lab, the presence of numerous small labs, and their

interaction. Columns (1) and (2) show that the presence of a large lab has no significant

impact on innovation, whereas the presence of numerous small labs is associated with

a greater number of cites per inventor. Columns (3) and (4) show that the two direct

effects are not significant once we introduce the interaction between the two variables

(the diversity dummy). These results confirm that the co-existence of at least one large

lab and numerous small labs boosts innovation, not the presence of only one of these two

factors.

There is concern that California MSAs, accounting for a large fraction of our

switches in diversity, drive the results. In Column (3) of Appendix Table A3, we show
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that we obtain similar results using the smaller sample of non-California MSAs.29

We also examine the technology specificity of the small firm externality. Specifi-

cally, we look at whether the diversity effect is driven by the presence of numerous small

firms in the same MSA-class of a large lab compared to the presence of many small labs

in the same MSA of a large lab (irrespective of class). Column (4) of Appendix Table A3

exploits a diversity measure that uses a small firm number cutoff at the MSA level rather

than the MSA-class level. The correlation between this alternative diversity measure and

innovation is small and not statistically significant, suggesting that externalities tend to

be technology specific.30

We use patent data to construct the diversity measure, which may be associated

with measurement error. To address this concern, we use an alternative diversity measure

based on County Business Patterns Census data that reports detailed information on

firm size across US MSAs. Because these data are available only for a sub-period of

our panel, we focus on 1995 and construct a dummy (diversecbp) that equals one if the

MSA-class has at least one establishment with more than 1,000 employees and a number

of establishments with 5-49 employees above the 99th percentile. Column (5) of Table

A3 shows that results are robust to using this alternative diversity measure.31

In Appendix Table A4, we show that results are similar if we employ different

measures of diversity. We start by changing the definition of a large lab, moving its cutoff

to the 98th and 99th percentile of the size distribution. We also alter the definition of

a small lab, from exploiting all the labs below the 75th percentile to using labs in the

50th-75th range and the 50th-97th range. Results are similar if we reduce the threshold

level of small labs in the diversity measure by 20% and 30% (from 139 to 111 and 97,

respectively).

In unreported regressions, we also alter the definition of the large MSA sample. In

the previous tables, we use the entire sample and MSA-class years where the number of

inventors is above 471 (the minimum required to have diversity). Results are robust to

29To conduct this exercise, we rescale the diversity measure using the distributions of large lab size
and of small firms in this new sample.

30We also examine whether MSA-classes with numerous small firms benefit from the existence of large
labs operating in the same technology area but located in different MSAs in the same state. We find
that this is not the case: co-existence of large and small labs is associated with an innovation premium
only if large and small labs are located in the same MSA-class.

31We obtain similar results using spin-outs as the dependent variable. There is no change in the
diversity coefficient if we control for the Census measure of the number of employees in the MSA-class.
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considering MSA-classes that have more than 471 inventors for the entire sample period

or to having an MSA-class entering the sample when it passes the 471 threshold. Finally,

results are robust to dropping technology class 6 (Miscellaneous).

6 Conclusion

Our results suggest that the way in which R&D labor is organized in a region is associated

with its dynamism and growth, at least insofar as this is captured by rates of patenting.

Our findings point to a potentially important role for market structure in driving the

performance of local innovation economies. Like Aghion et al. (2005) but on a differ-

ent dimension (R&D labor market rather than product market), we find that extreme

structures are not optimal for innovation. Policies focused exclusively either on attract-

ing “anchor tenants” or on cultivating small entrepreneurial ventures may therefore be

missing an important opportunity.32

Following an approach that is common in the empirical literature on the determi-

nation of industries’ innovative activity (Aghion et al. (2005), Bloom et al. (2010), Cohen

(2010)), we examine the interplay between firm size diversity and innovation by perform-

ing comparative statics in the regional organization of R&D labor. Because innovation

and regional lab structure are mutually endogenous, our empirical analysis exploits fixed

effects, lagged dependent variables, and instrumental variables to identify the impact

of diversity on innovation. We leave for future research an analysis of the impact of

innovation on R&D labor structure, wages, and their evolution over time.

Our results also point to additional opportunities and challenges for further re-

search. While our characterization of market structure is richer than one-dimensional

measures such as the Herfindahl index or concentration ratios, it still represents only a

first step. We note that even on the somewhat easier turf of the product market, decades

of empirical research have yet to establish robust relationships between traditional mea-

sures of market structure and outcomes such as price-cost margins. Furthermore, while

we distinguish between incumbents’ and entrants’ contributions to overall innovation

activity, this represents only initial progress towards understanding the impact of local

32An additional implication of our results is that policies focused on facilitating spin-out formation
(e.g., amending non-compete enforcement laws) may also have a beneficial effect on regional innovation.
It remains for future research to study how different policies may interact with the organization of R&D
labor organization and affect regional innovation.
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innovation market structure on the intensive versus extensive margin of innovation by

different types of firms.

Finally, our empirical analysis is sparing in its use of explanatory variables and

also relies heavily on only one noisy measure of innovative output, patents. We would

prefer to capture other factors that potentially directly affect innovation performance,

such as Glaeser-type “amenities,” rather than through fixed effects. Linking the types

of patent statistics used here to other sources, such as demographics or data on the

production economy, may help with external validation as well as provide the basis for

a richer investigation of local innovation markets.
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Figure 1: Variation in Regional Innovation
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Figure 2: Commercialization of Large Lab Innovations
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Table 1: Summary Statistics; N = 41,808

Variables mean median Std. Dev. min max

Weighted Patentsjkt+5 465.72 33 2556.94 0 161861

Patentsjkt+5 27.73 3 118.42 0 6436

Diverse 0.01 0 0.08 0 1

LargeLab 0.11 0 0.32 0 1

# Small Labs 6.43 1 23.37 0 995

# Inventors 91.16 5 411.66 0 23689

# LargeLab Inventors 33.62 0 199.81 0 11725

# Labs 8.08 1 29.76 0 1318

Herf 0.27 0 0.38 0 1

Spin-out 0.08 0 0.26 0 1

# Spin-outs 0.18 0 1.80 0 158

High Enforce 0.27 0 0.44 0 1

No Enforce 0.21 0 0.41 0 1

Large Lab Focus 0.06 0 0.23 0 1
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Table 2: Summary Statistics; N = 1,870

Variables mean median Std. Dev. min max

Weighted Patentst+5 6680.68 4166.0 10093.74 418.00 161861

Patentst+5 381.71 268.0 413.65 72.00 6436

Diverse 0.16 0.0 0.36 0.00 1

LargeLab 0.96 1.0 0.20 0.00 1

# Small Labs 83.03 63.0 73.10 2.00 995

# Inventors 1347.22 905.0 1425.11 472.00 23689

# LargeLab Inventors 574.62 366.5 747.89 0.00 11725

# Labs 105.08 80.0 94.01 2.00 1318

Herf 0.15 0.1 0.16 0.01 1

Spin-out 0.57 1.0 0.50 0.00 1

# Spin-outs 2.35 1.0 5.62 0.00 111

High Enforce 0.24 0.0 0.43 0.00 1

No Enforce 0.30 0.0 0.46 0.00 1

Large Lab Focus 0.45 0.0 0.50 0.00 1

Table 3: Variation in Diversity (Year of the Switch)

MSA Chemical Computers Drugs Electronics Mechanical Other

Boston 1993 1995 1994 1992 1996 1996

Chicago 1996 2000 1979 1978

Dallas 1999

Detroit 1994

LA 1998 1995 1995 1993 1978 1980

NYC 1976 1995 1989 1987 1978 1977

Philadelphia 1996 1998

San Diego 2000 1998

San Francisco 1990 1989 1992 1987 1995 1994

Seattle 2000

DC 1998
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Table 4: Diversity and Innovation (Cross-Section)

(1) (2) (3) (4)
Sample: Full, 1995 Full, 1995 Full, 1995 Full, 1995

Dependent Variable: Weighted Weighted Weighted
Patentsjkt=2000 Patentsjkt=2000 Patentsjkt=2000 Patentsjkt=2000

diversejkt=1995 3.762∗∗ 0.406∗ 0.382∗ 0.296∗∗

(0.333) (0.185) (0.165) (0.106)

logInventorsjkt=1995 0.937∗∗ 0.891∗∗ 0.861∗∗

(0.050) (0.027) (0.017)

Constant 6.005∗∗ 1.841∗∗ 1.348∗∗ −0.328∗∗

(0.140) (0.284) (0.140) (0.109)

Class FE X X

Observations 1608 1608 1608 1608
log likelihood −1260012.43 −303371.15 −168774.27 −12157.30

Notes: Observations are at the MSAj-classk level. All specifications are Poisson regressions estimated by maximum
likelihood. Weighted patents is the forward citation weighted sum of distinct patents with primary technology
classification k and application year t + 5 where at least one inventor is located in MSA j. The main independent
variable, diverse, equals 1 if MSA j in class k in 1995 has at least one large lab and more than 139 active small labs, and
0 otherwise. Loginventors is the log of the number of distinct active inventors in MSA j, class k in 1995.
Robust standard errors clustered at the MSA-class level in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 6: Innovation and Lagged Income Tax IV

(1) (2) (3) (4)
Sample: At-Risk At-Risk At-Risk At-Risk

Estimation: OLS First Stage 2SLS 2SLS

Dependent Variable: ln Weighted ln Weighted ln Weighted
Patentsjkt+5 diversejkt Patentsjkt+5 Patentsjkt+5

diversejkt 0.180∗∗ 0.683∗∗ 0.836∗∗

(0.048) (0.236) (0.215)

logInventorsjkt 0.525∗∗ 0.229∗∗ 0.300∗∗ 0.315∗∗

(0.076) (0.035) (0.069) (0.070)

logIncomeTaxjt 0.194 0.825∗ 0.760
(0.403) (0.419) (0.593)

logIncomeTaxjt−3 1.402∗∗

(0.340)

logGainsTaxjt 0.032
(0.031)

Year X Class FE X X X X
MSA X Class FE X X X X

Observations 1873 1702 1693 1517
Num. Groups 149.00 149.00 140.00 121.00
First Stage F-statistic 17.53
R2 0.94 0.41 0.92 0.91

Notes: Column 1 replicates the specification estimated in Table 3, Column 4 with OLS. This specification serves as a
baseline for results when estimated with linear least squares. Column 2 presents the first stage regression with diverse as
the dependent variable. logIncomeTax is the log of personal income tax in year t in MSA j’s state. Column 3 presents
2SLS results with diverse instrumented by logIncomeTaxt−3. Column 4 includes the additional control logGainsTaxt−3,
the log of capital gains tax in year t− 3 in MSA j’s state.
Robust standard errors clustered at the MSA-class level in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 7: Diversity and Spin-Out Formation

(1) (2) (3) (4) (5)
Sample: At-Risk At-Risk Full Full Full

Estimation: OLS OLS OLS OLS 2SLS

Dependent Variable: ln Spin-outsjkt ln Spin-outsjkt ln Spin-outsjkt ln Spin-outsjkt ln Spin-outsjkt

diversejkt 0.324∗∗ 0.246∗∗ 1.097∗∗ 1.096∗∗ 1.066∗∗

(0.071) (0.070) (0.110) (0.110) (0.321)

logInventorsLargejkt 0.071∗∗ 0.007 0.063∗∗ 0.061∗∗ 0.059∗∗

(0.025) (0.019) (0.004) (0.004) (0.004)

logInventorsjkt 0.638∗∗ 0.007∗∗ 0.010∗∗

(0.111) (0.002) (0.001)

logIncomeTaxjt −0.041
(0.065)

Year X Class FE X X X X
MSA X Class FE X X X X

Observations 1873 1873 41808 41808 30552
Num. Groups 149.00 149.00 1608.00 1608.00 1608.00
First Stage F-statistic 91.24
R2 0.49 0.51 0.23 0.23 0.19

Notes: The dependent variable, ln Spin-outsjkt is the logarithm of one plus the count of spin-outs in MSA j, class k in
year t. The variable diversejkt in Column 5 is instrumented with logIncomeTaxjt−3 and logIncomeTaxjt−5. Because of
the five-year lag in these instruments, the panel in Column 5 includes five fewer years.
Robust standard errors clustered at the MSA-class level in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 8: Innovation and Non-compete Clauses

(1) (2) (3) (4)
Sample: At-Risk At-Risk Full Full

Dependent Variable: Weighted Weighted Weighted Weighted
Patentsjkt+5 Patentsjkt+5 Patentsjkt+5 Patentsjkt+5

diversejkt 0.189∗∗ 0.168∗∗ 0.175∗ 0.157∗

(0.064) (0.061) (0.072) (0.066)

diversejkt X high enforcej −0.152+ −0.174∗ −0.194∗ −0.206∗∗

(0.091) (0.082) (0.084) (0.079)

logInventorsjkt 0.630∗∗ 0.475∗∗ 0.291∗∗ 0.197∗∗

(0.078) (0.101) (0.034) (0.054)

logNumLabsjkt 0.227 0.209∗∗

(0.139) (0.070)

herfjkt −0.730 −0.073
(0.546) (0.052)

Year X Class FE X X X X
MSA X Class FE X X X X

Observations 1864 1864 41262 41262
Num. Groups 140.00 140.00 1587.00 1587.00
log likelihood −142174.66 −138097.89 −1342338.58 −1328971.60

Notes: All specifications are estimated by Poisson with Fixed Effects QML. The variable high enforce is equal to 1 if
MSA j is in a high-enforcement state in year t. A state is high-enforcement if it has a value of 5 or greater on the
13-point scale (0-12) based on Garmaise (2011). This variable is time-invariant during our sample period, and so its
effect is identified through the interaction with the time-varying variable diverse.
Robust standard errors clustered at the MSA-class level in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 9: Innovation, Large Lab Focus and Diversity

(1) (2) (3) (4)
Sample: At-Risk At-Risk Full Full

Dependent Variable: Weighted Weighted Weighted Weighted
Patentsjkt+5 Patentsjkt+5 Patentsjkt+5 Patentsjkt+5

diversejkt 0.118∗ 0.105+ 0.077 0.071
(0.060) (0.055) (0.062) (0.059)

large lab focusjkt −0.028 −0.020 −0.007 0.005
(0.030) (0.029) (0.031) (0.029)

diversejkt X large lab focusjkt 0.096∗ 0.077∗ 0.146∗∗ 0.121∗

(0.041) (0.039) (0.055) (0.050)

logInventorsjkt 0.613∗∗ 0.507∗∗ 0.284∗∗ 0.190∗∗

(0.070) (0.095) (0.032) (0.051)

largelabjkt 0.052 0.047 0.019 0.029
(0.069) (0.066) (0.037) (0.035)

logNumLabsjkt 0.164 0.203∗∗

(0.133) (0.066)

herfjkt −0.733 −0.070
(0.579) (0.051)

Year X Class FE X X X X
MSA X Class FE X X X X

Observations 1864 1864 41262 41262
Num. Groups 140.00 140.00 1587.00 1587.00
log likelihood −142142.56 −139157.24 −1339608.32 −1327459.97

Notes: All specifications are estimated by Poisson with Fixed Effects QML. The variable large lab focus is equal to 1 if
the C4 concentration ratio of the patenting activity across three-digit technology classes of the large labs in MSA j, class
k in year t is above the median value. This measure captures MSAs whose large labs patent in more focused (narrow)
technology areas.
Robust standard errors clustered at the MSA-class in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Appendix 1: Theoretical Results

Proof of Proposition 1

In a small lab, it is efficient to commercialize an innovation if π ≥ 0. To avoid spin-out

formation, large labs need to offer the scientist π − k(N). This implies that spin-outs

are formed if π + a− (π − k(N)) ≤ 0 or a ≤ −k(N).

Proof of Proposition 2

We denote with NS the expected number of spin-outs in the MSA.

NS =
J∑

j=1

S2
j

∆
Pr(spin-out)

=


S2
L

∆
HSF (−k(N)) if N ≥ N

0 if N < N

. (3)

where HS =
J∑

j=1

(Sj/SL)2 is the Herfindahl concentration index of large labs.

Differentiation of (3) shows that NS is maximized when HS = 1, which implies

that at most one large lab will be present. Because there are no spin-outs if N < N , the

number of small labs that maximizes spin-out formation is the largest between N and

N∗ where we define N∗ as

N∗ = arg max
N

ϕ(N)

where ϕ(N) ≡ (T −N)2

∆
F (−k(N)).

We now consider the total innovation activity in the MSA. The total number of
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commercialized innovations is:

NI =
J∑

j=1

S2
j

∆
Pr(Comm. from Large)+

N

∆

=


S2
L

∆
HS +

N

∆
if N ≥ N

S2
L

∆
HS (1− F (−π)) +

N

∆
if N < N

. (4)

NI increases in HS so it is maximized when HS = 1. Consider now the case in

which N < N. Evaluated at HS = 1, NI has the following functional form:

g(N) =
(T −N)2

∆
(1− F (−π)) +

N

∆

that is decreasing in N for T large enough. When N ≥ N and HS = 1, NI can be

written as:

z(N) =
(T −N)2

∆
+
N

∆

that is also decreasing in N . It is easy to see that z(N) > g (N), so innovation is

maximized with diversity if z(N) > g(0), which we can rewrite as:

(T −N)2 +N > T 2(1− F (−π))

or

T [TF (−π)− 2N ] > −N2 −N

that is satisfied for T large enough.

Comparison of Diverse and Non-Diverse MSAs

Take an arbitrary “diverse” MSA with N ≥ N small labs and one large lab of size

(T − N). We first show that this configuration generates more commercialized ideas

than any non-diverse MSA with N < N. Notice that when N < N , we maximize

the amount of commercialized ideas by allocating all scientists to a single large lab:

T 2(1 − F (−π))/∆. This amount of commercialized ideas is lower than the one in the

diverse MSA if:

(T −N)2 +N > T 2(1− F (−π))
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that is satisfied for T large enough. Consider now a non-diverse MSA with N ≥ N and

multiple large labs, each of a size not exceeding T − N . Among all these MSAs, we

maximize the amount of commercialized innovation by allocating (T − N − 1) to one

large lab, (N −N) scientists to a second large lab, and N scientists to small labs. The

amount of commercialized ideas of this MSA is lower than the one in the diverse MSA

if:

(T −N)2 +N > (T −N − 1)2 + (N −N)2 +N

2(T −N) > (N −N)2 − (N −N) + 1

that is satisfied when T is large enough. This shows that the diverse MSA dominates all

the non-diverse MSAs with N ≥ N and multiple large labs, each of a size not exceeding

T −N .

We now consider spin-out formation. Because no spin-out takes place if N < N,

the diverse MSA generates more spin-outs than all the non-diverse MSA with N < N .

Consider now a non-diverse MSA with Ñ ∈ [N,N ] small labs and multiple large labs,

each of a size not exceeding T −N . The MSA generates the maximum amount of spin-

outs when we allocate (T −N − 1) scientists to one large lab and
(
N − Ñ

)
scientists to

a second large lab. This configuration will generate less spin-outs than a diverse MSA if

(T −N)2F (−k(N)) ≥
[
(T −N − 1)2 + (N − Ñ)2

]
F (−k(Ñ)

that is satisfied for T large enough because F (−k(N)) ≥ F (−k(Ñ). This shows that the

diverse MSA dominates all the non-diverse MSAs with Ñ ∈ [N,N ] small labs.

Relaxing the Definition of Diversity

Take an arbitrary “diverse” MSA with N ≥ N small labs and multiple large labs of size

Sj with j = 1, ..., J . We first show that this configuration generates more commercialized

ideas than any non-diverse MSA with N < N. Notice that when N < N , we obtain the

maximum amount of commercialized ideas by allocating all scientists to a single large

lab: T 2(1−F (−π))/∆. The amount of commercialized ideas is lower than the one in the
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diverse MSA if: ∑
j

S2
j +N > T 2(1− F (−π)). (5)

Call k the largest lab and notice that Sk
2 +N <

∑
j S

2
j +N. Then a sufficient condition

to have (5) satisfied is:

Sk
2 +N > T 2(1− F (−π))

that is satisfied if Sk > S ≡
√
T 2(1− F (−π))−N.
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Appendix 2: Additional Tables

Table A.1: Income Tax Rates
Period Mean Std. Dev Min. Max.

1977-1979 52.80 2.26 50 59.9

1980-1984 56.68 1.95 50 56.9

1985-1989 42.02 9.67 28 56.25

1990-1994 38.27 5.46 28 48.15

1995-1999 44.03 1.84 40.79 46.89

2000-2005 40.99 2.63 36.05 46.28
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Table A.2: Innovation and Diversity - Robustness with Levels

(1) (2) (3) (4)
Sample: Full Full Full Full

Estimation: QML QML QML QML

Dependent Variable: Weighted Weighted Weighted Weighted
Patentsjkt+5 Patentsjkt+5 Patentsjkt+5 Patentsjkt+5

largelabjkt −0.002 0.012 0.031
(0.039) (0.035) (0.032)

Smallthreshjkt 0.146∗ −0.080 −0.064
(0.064) (0.068) (0.067)

diversejkt 0.227∗∗ 0.193∗

(0.083) (0.077)

logInventorsjkt 0.288∗∗ 0.292∗∗ 0.290∗∗ 0.191∗∗

(0.034) (0.034) (0.033) (0.051)

logNumLabsjkt 0.211∗∗

(0.070)

herfjkt −0.063
(0.051)

Year X Class FE X X X X
MSA X Class FE X X X X

Observations 41262 41262 41262 41262
Num. Groups 1587 1587 1587 1587
log likelihood −1356561.51 −1346174.30 −1346108.58 −1333246.93

Notes: Robust Standard errors clustered at MSA-class in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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